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ABSTRACT

Complex networks arise in diverse areas of natural and social sciences and network
topology is a key determinant of such systems. In this work we investigate the protein-
protein interaction network of the KSHV herpesvirus, which is the first viral system
available, and compare it to a prototypical cellular system.

On the local level, we investigated the relationship between interaction and sequence
evolution, functional class, phylogenetic class, and expression profiles. On the global
level, we focused on large-scale properties like small-world, scale-free, and attack
tolerance. Major differences were discovered between viral and cellular systems, and we
were able to pinpoint directions for further investigation, both theoretically and
experimentally. New approaches to discover functional associations through interaction
patterns were also presented and validated.

To put the KSHV network in the context of host interactions, we were able to predict
interactions between KSHV and human proteins and use them to connect the KSHV and
human PPI networks. Though simulations, we show that the combined viral-host network
is distinct from and superior to equivalent randomly combined networks. Our combined
network provides the first-draft of a viral-host system, which is crucial to understanding
viral pathogenicity.

In a separate chapter, the results of a project combining experiments and bioinformatics
are also presented. We were able to report -30 new yeast protein-protein interactions and
pinpoint the biological significance of some of those interactions. The methodology of
yeast two-hybrid itself is also tested and assessed.

Thesis Supervisor: Bonnie Berger, Professor of Applied Mathematics
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Chapter 1 Introduction

Complex networks arise in diverse areas of natural and social sciences. For example, the

Internet is composed of computers and routers (nodes) connected by physical or

telecommunicational links (edges); in a social network, the nodes are individuals and the

edges are various social relationships; in a biological cell, proteins physically interact

with each other, forming a complex network central to the cell's proper functioning. Due

to their huge size and the complexity of their interactions, however, such networks

remain poorly understood and their topology remains largely unknown. Are there any

organizing principles behind such complex networks? How could they have evolved, that

is, what is the interplay between network topology and network dynamics? Can we assess

the robustness of such networks and predict their behaviors under perturbation?

Traditionally complex networks have been modeled using the random graph theory of

Erdos and Rdnyi. However, as data on real-world networks accumulate, aided by

computerized data acquisition and analysis, it has become increasing clear that the ER

model does not fit well with the data - real networks are simply not random! In recent

years, emerging topological properties of such complex networks have been discovered

and various new models have been proposed [1, 2].

One important complex network is the protein-protein interaction (PPI) network of a cell

or a micro-organism. Proteins are the "worker" molecules in a cell, performing diverse

roles ranging from structural components to signaling pathways. Proteins rarely act alone,

however, rather they interact with each other to accomplish their goals. Thus, in order to

understand the functioning of a cell and, more generally, life itself, it is of paramount

importance to understand the underlying PPI network.

Unfortunately, PPI network is currently available only for a few selected model

organsims [3-5]. Despite all the technological advances, it remains costly and time-

consuming to experimentally map protein-protein interactions on a genomic scale. Thus,

the available PPI networks not only provide blueprints for their own organisms, but are
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invaluable as prototypes, from which general patterns might be discovered and

conclusions drawn.

While there exist prototypical PPI networks for eukaryotic cells, some of which have

been intensely studied, there has been no systematic result for any of the micro-organisms,

in particular viruses. Recently Haas and coworkers have completed the first systematic

mapping and analysis of the PPI network for Kaposi Sacoma's Herpesvirus (KSHV),

which constitutes the first viral system available [6]. In this thesis we present our work on

the bioinformatical analysis of the KSHV network.

In this introductory chapter we give some background on molecular biology,

bioinformatics, the herpesviral family, as well as the experimental setup of the KSHV

project. Aside from introducing the necessary terminologies, we also give an overview of

the larger field so that our work can be put in perspective.

While network topology is one of the most exciting aspects of the KSHV project, there

are other aspects that are both important in theory and useful in practice. We

systematically address all major aspects of the KSHV network, with a prototypical

cellular network from yeast alongside for comparison. The analyses done roughly fall

into two categories: local and global. In local analysis, the interactions are treated as a

binary dataset, with their network structure (i.e. connection patterns) only in the

background. In contrast, large-scale network properties are the main focus of global

analysis. Major differences between viral and cellular systems were discovered on both

local and global levels, and we were able to pinpoint directions for further research, both

theoretically and experimentally, some of which are being actively pursued.

Chapter 2 presents the results from local analysis. We investigate the relationship

between interaction and other important characteristics of proteins, including sequence

evolution, functional class, phylogenetic class, and expression profile. In addition, we

predict viral-viral interactions in other major herpesviruses.
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Chapter 3 focuses on the global aspects of the KSHV network. After introducing the

necessary background and notations, we investigate the key topological features of the

KSHV viral system and compare them to those from a prototypical cellular system.

Among the many key differences discovered, we show that

1. Albeit scale-free, the KSHV network has an unusual scaling exponent, which cannot

be explained by current dynamic network evolution models and leads to increased attack

tolerance.

2. The KSHV network is not small-world, implying many of its interactions are dynamic

rather than static.

3. The KSHV network does not exhibit declining degree correlation, which suggests

decreased modularity.

In addition to the comparative network analysis of KSHV and yeast, new approaches to

discovering functional associations through semi-global interaction patterns are also

presented and validated in this chapter.

Since viruses do not act on their own and their pathogenicity is only defined through their

interactions with their hosts, we would like to put our KSHV network in the context of

host interactions, which is the topic of Chapter 4. We were able to predict interactions

between KSHV and human proteins in silico and use them to connect the two systems.

Furthermore, through simulations we show that our combined viral-host network is

distinct from and superior to equivalent, randomly combined networks.

Finally, in Chapter 5 we present the results of a project combining experiments and

bioinformatics. We report -30 new yeast protein-protein interactions and confirm another

-30 previously unreliable ones. The methodology of yeast two-hybrid itself is also tested

and assessed, and we show reproducibility is the key to screening out false positives. We

develop several independent measures to assess the quality of large-scale PPI datasets.

The quality of our own dataset is confirmed, and is compared to that of other genome-

wide screens.
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1.1 Introduction to Molecular Biology

Cell in a Nutshell

Living organisms consist of cells. Just like the physical world consists of atoms and their

interactions, the organic world consists of cells and their interactions. While there are

many different types of cells, they all share some common features. A typical eukaryotic

cell, in its simplest form, can be visualized as a compartment closed off by cellular

membrane ("wall") and filled with fluid (cytoplasm), in which some other smaller

compartments reside. The most important of them, the nucleus, is the genetic information

storage and control center.

DNA, RNA, Protein and the Central Dogma

DNA, or deoxyribonucleic acid, contains the complete genetic information that defines

the structure and function of an organism. DNA consists of two associated polynucleotide

strands that wind together in a helical fashion, the famous "double helix".

Each polynucleotide is a linear polymer in which the monomers (deoxynucleotides) are

linked together by means of phosphodiester bridges, or bonds. Chemically, each

deoxynucleotide consist of a deoxyribose (sugar), a phosphat group ("fuel"), and one of

the four types of organic bases. The four bases, Adenine (A), Guanine (G), Cytosine (C),

Thymine (T), pair up complementarily on the double-stranded DNA, with As and Gs on

one strand paring up with Ts and Cs on the other, respectively. Thus, from an

informational point of view, a DNA molecule is a linear sequence over an alphabet of

four letters.

To read and execute the genetic instructions contained in DNA, the information is first

copied into a messenger molecule, RNA (ribonucleic acid). RNA is similar to DNA in

chemical composition; however, unlike the double-stranded DNA, RNA usually consists

of a single strand. After being copied ("transcribed") from DNA in the nucleus, RNA
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enters the cytoplasm, carrying the information further downstream. On ribosomes the

information contained in RNA is read out and translated into the final product, protein.

Proteins are the "worker" molecules in a cell. They catalyze metabolic reactions,

transport various "cargos" across the cellular wall and between the organells, receive and

relay signals, and form structural components for much of the cell itself.

Unlike DNA, which is linear, the structure of a protein can be described on several

different levels. Its primary structure is the linear sequence of amino acids connected by

peptide bonds, much like DNA being a linear sequence of deoxynucleotides linked

together by phosphodiester bonds. There are 20 different amino acids; thus the primary

structure of a protein can be viewed as a linear sequence over the alphabet of those 20

letters. Unlike DNA, which stays linear through the two paring strands, local stretches of

the protein sequence fold up into well-defined shapes, e.g. alpha-helices and beta-sheets,

forming the secondary structure of the protein. Those secondary structural elements then

further fold up and pack against one another, forming a compact tertiary structure. It is

this 3D structure of proteins that carries out their diverse functions.

This information flow from DNA to RNA to protein is summarized below, the famous

"Central Dogma" of modem molecular biology:

1. Replication: a double stranded nucleic acid is duplicated to give identical copies.

This process perpetuates the genetic information.

2. Transcription: a DNA segment that constitutes a gene is read and transcribed

into a single stranded sequence of RNA. The RNA moves from the nucleus into

the cytoplasm.

3. Translation: the RNA sequence is translated into a sequence of amino acids as

the protein is formed. During translation, the ribosome reads three bases (a codon)

at a time from the RNA and translates them into one amino acid.

In eukaryotic cells, the second step (transcription) is necessary because the genetic

material in the nucleus is physically separated from the site of protein synthesis in the

cytoplasm in the cell. Therefore, it is not possible to translate DNA directly into protein,
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but an intermediary must be made to carry the information from one compartment to

another.

The Central Dogma of Molecular Biolog,
:, . . . .. .. , ~ ,, ', . . ,,,-; . .¢ :, . ;c , N 
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1.2 A Primer on Bioinformatics

Computational molecular biology, or bioinformatics, is a vast and expanding field, which

lies at the intersection of biology, physics, mathematics, and computer science. Its diverse
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areas range from highly theoretical to highly practical. For example, one can prove

certain problems are NP-complete, or write custom software for vendor-specific bio-

equipment. One can also look at bioinformatics from the perspective of a user versus that

of a developer. For example, the popular sequence database searching program BLAST

[7] is used by biologists all over the world, experimental and computational alike, to

search for homologs of genes or proteins under investigation, while there has been an

active research area focusing on BLAST itself, which continually improves the program's

performance and expands its applicable domains. In terms of the biological data types it

handles, bioinformatics consists of the following three core areas: sequence, structure,

and system.

Sequence Alignment and Database Searching

One of the earliest applications of computation to biology is pairwise sequence alignment.

Given two related genes (or equivalently their protein products), it is often illuminating to

compare them. For example, by comparing genes responsible for genetic diseases from

patients and healthy individuals, one can often pinpoint the causal mutations and

understand the molecular basis of the diseases. Fortunately, the problem of aligning two

sequences arises in diverse fields and has been thoroughly investigated - the optimal

match between the two sequences, where some scoring function is maximized, can be

found by dynamic programming.

While it is useful to align two related biological sequences, it is even more powerful to

align a group of related sequences. Through multiple sequence alignment [8], one might

be able to detect major secondary structural elements, differentiate conserved residues,

construct phylogenetic trees, or construct a profile to search for new members of the

same family.

Protein Folding and Structural Prediction
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One of the central tenets of modem molecular biology is that sequence determines

structure and structure determines function. Thus, one cannot hope to fully understand the

function of a protein without knowing its structure. Unfortunately, it is difficult and time-

consuming to determine a protein's structure experimentally. Thus, one central problem

in molecular biology and one grand challenge in bioinformatics is to predict a protein's

3D structure (target structure) from its linear sequence (target sequence), the so-called

protein folding problem.

Despite many years's intense research, the protein folding problem remains open and

efforts to predict protein tertiary structure have only met partial success. Depending on

whether there are homologous sequences with solved structure and the degree of

homology, current structural prediction techniques roughly fall into the following three

areas: homology modeling, fold recognition, and ab initio prediction.

In homology modeling, the target sequence has a homologous sequence with solved

structure, and the level of homology between the two sequences is fairly strong (over

40% sequence identity). Then a predicted structure is accomplished in two steps:

1. Align the two sequences

2. Put target sequence onto homologous structure and resolve obvious strains

Target

Template 1

In fold recognition, or the threading category, the target sequence might share sequence

similarity with proteins with known structure, but the homology is not strong enough to

make a confident choice among the alternative structures. More generally, threading can

13



be cast as an inverse folding problem - given a target sequence and a list of alternative

structures, predict the structure with the best fit:

... QNVERLSLRKNHLTSLPASFKRLSRLQYLDLHNNNFKEIPYILT. ..

/..-~.??--

Two main approaches in threading are 3D profiles [9] and pairwise contact potentials.

While promising in theory, threading certainly has trouble with those multi-domain

proteins or those without clearly defined domain structures.

If no homologous structure is available at all, one has to predict the structure from the

sequence ab initio. The main approach, molecular dynamics, basically recasts the

structure prediction problem as an energy minimization problem, with the assumption

that the native 3D structure sits at the lowest energy conformation of the given sequence.

Unfortunately, the search space of all possible conformations is enormous, even for a

protein of moderate length. Indeed, Levinthal has shown that a protein folds up much

faster than the time it needs itself to explore all this search space. Thus, there is still

something fundamental about the folding process missing in our current understanding -

nature does not fold proteins by trying all possible conformations. Aside from

philosophical concerns, molecular dynamics also runs into practical obstacles, mainly

because we do not have a sufficiently accurate energy function.
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In recent years, however, the "logo" method pioneered by Baker and coworkers [10],

where small library fragments are assembled into bigger structures, has met with

remarkable success.

System Biology and Genome-based Bioinformatics

Since the advent of large-scale genome sequencing projects, a third dimension of

bioinformatics, namely system or genome-based biology, has taken on an increasingly

important role. Versus traditional, hypothesis-driven biology, system biology represents

a paradigm shift. Whole genomes are sequenced, which are the blueprint for cells and

organisms. To decipher the complex hierarchy of information, system biology adopts a

top-down, discovery-based approach, smoothly integrating experimental and

computational aspects. As a first step, coding ORFs can be successfully predicted, either

based on gene structure [11] or through comparative genomics. Microarray experiments

monitoring mRNA levels in a whole cell, or those associated with a particular condition

or process, are carried out. Further down the chain, systematic efforts are being made to

map protein-protein interactions on a genomic scale. Other efforts include functional

assays like lethality and co-lethality. All this promises to change the face of biology.

As various genome-scale projects progress, there has been an exponential growth of

available biological data, which calls for bioinformatics to store and manage them,

process and analyze them, integrate and understand them. In theory, the genome of an

organism contains all the blueprints to make that organism. The ultimate goal of

bioinformatics and biology itself is, in no less measure, to understand this blueprint and

life itself.

1.3 A Primer on Herpesvirus

Herpesviruses are wide-spread in mammals and even in some invertebrates. They possess

one of the largest viral genomes known. There are three major herpesviral families:
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a -herpesvirus, e.g. HSV1

,l -herpesvirus, e.g. CMV

y -herpesvirus, e.g. EBV and KSHV

Four biological properties characterize members of the Herpesviridae family.

· Herpesviruses express a large number of enzymes involved in metabolism of

nucleic acid (e.g. thymidine kinase), DNA synthesis (e.g. DNA helicase/primase)

and processing of proteins (e.g. protein kinase).

· The synthesis of viral genomes and assembly of capsids occurs in the nucleus.

· Productive viral infection is accompanied by inevitable cell destruction.

· Herpesviruses are able to establish and maintain a latent state in their host and

reactivate following cellular stress. Latency involves stable maintanence of the

viral genome in the nucleus with limited expression of a small subset of viral

genes.

The success of herpesvirus infections depends upon several strategies. The first is the fast

efficient way the virion invades the host cell, turning off host protein synthesis and

releasing viral DNA into the nucleus, where replication and virion production start

immediately. Another strategy that herpesviruses share is the ability to thwart attacks

from the host. Tactics include inhibiting splicing of mRNA, blocking presentation of

antigenic peptides on the cell surface and blocking the apoptosis (cell death) induced by

viral gene expression. A third important strategy shared by herpesviruses is their ability

to hide their bare, circularized genome in the nucleus of lymphoma and central nervous

system cells and then return to productive infection months, even years later. These latent

herpesvirus infections are often benign, but can be devastating to newborns and immuno-

suppressed individuals.

1.4 Systematic Mapping of the KSHV Interactome

All KSHV open reading frames (ORFs) were cloned by recombination and the

corresponding bait and prey arrays were generated. Since the yeast two-hybrid (Y2H)
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system takes place in nucleus and hence is unsuitable for transmembrane proteins, full-

length proteins as well as extra- and intracellular domains were cloned separately. To

address the known asymmetry between bait and prey in the Y2H system, each pair of

proteins is tested in both directions for interaction. In total, over 12000 interactions,

corresponding to all possible bait-prey combinations, were tested as a matrix. Among

them, 123 unique interactions were identified.

Since Y2H is known to generate a large number of false positives, all positive Y2H

interactions were retested under both -galactosidase assay (Gal) and co-

immunoprecipitation (CoIP). Approximately 50% of the Y2H interactions were

confirmed by CoIP.
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Chapter 2 Local Analysis

2.1 Prediction of viral-viral interactions in other herpesviruses

2.1.1 Introduction

To date there has been no comprehensive, large-scale study on viral protein interactions,

be it viral-viral or viral-host. Currently known interactions have been generated by small-

scale, individual experiments; as such, the coverage is both limited and biased - there are

not many reported interactions, and the great majority of them focus on viral-host and on

well-known proteins or processes. For example, we could only find 3 reported viral-viral

interactions in KSHV itself after scanning more than 1000 PubMed abstracts on this topic.

Since we have obtained 123 KSHV viral-viral interactions, roughly half of which have

been confirmed by high-confidence CoIP experiments, we would like to extend this

knowledge to other major herpesviruses by predicting their viral-viral interactions in

silico, hence generate first-draft viral-viral interaction networks for them - biologists

could then experimentally verify the predicted interactions with priority and already start

to make/validate hypotheses on those predicted networks.

2.1.2 Identification of KSHV orthologs in other herpesviruses

Biologically, orthologs can be defined as genes in different organisms that are direct

evolutionary counterparts of each other, which arise through speciation. Orthologs are

believed to perform the same function and have the same specificity, that is, the same

interaction partners, if one thinks of them in terms of their protein products. On the other

hand, paralogs are related genes in a single organism that arise through gene duplication.

Being a duplicate of the original gene, a paralog would be under less evolutionary

pressure to maintain the same specificity, that is, it has more latitude to evolve and

acquire new functions. In terms of protein products, this would mean loss of some old

interaction partners and gain of new ones. Thus, if we could successfully identify KSHV
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orthologs in other herpesviruses and distinguish them from paralogs, then, under the

assumption that orthologs have the same functional specificity and interaction partners,

we would be able to predict orthologous interactions in other herpesviruses. For example,

if kl and k2 interact in KSHV and they have orthologs hl and h2, respectively, in another

herpesvirus H, then we predict hl and h2 interact in H.

While the biological definition of orthologs is the correct one, it is not particularly easy to

apply in practice - to identify an ortholog, one would need such detailed knowledge of its

biological function and evolutionary history, which is feasible for only a handful of most

well-studied genes.

Operationally, one can define orthologs as reciprocal best BLAST hits in two proteomes.

For example, if protein a in organism A has protein b in organism B as top hit (that is,

when one runs BLAST using a as query and B as database, b turns up as the one with the

best e-value) and vice versa, then we consider a and b as a pair of orthologs.

Genome A

Genome B

Gene duplication in B
after speciation, or gene
loss in A

Complete genomes of KSHV(K), HSV 1(A), CMV(B), and EBV(C) were downloaded

from GenBank at the NCBI website. For each genome file, all unique protein sequences

corresponding to CDS entries were extracted and compiled into a BLAST database. All

pairs of databases were searched against each other through stand-alone BLAST program,

with cutoff e-value set at 0.1, and reciprocal best hits (i.e. orthologs) were extracted.

Python scripts were used to automate the above process.

19
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2.1.3 Results

ORF K1 *** *** *** HI
ORF 4 *** UL32 BLLFlb HI
ORF 6 UL29 UL57 BALF2 DN
ORF 7 UL28 UL56 BALF3 VS
ORF 8 UL27 UL55 BALF4 VS
ORF 9 UL30 UL54 BALF5 DN
ORF 10 *** *** *** UN
ORF 11 *** *** *** UN
ORF K2 *** *** *** HI
ORF 2 *** *** *** DN
ORF K3 *** *** *** HI
ORF 70 *** *** *** DN
ORF K4 *** *** *** HI
ORF K4.1 *** *** *** HI
ORF K4.2 *** *** *** UN
ORF K5 *** *** *** HI
ORF K6 *** *** *** HI
ORF K7 *** *** *** HI
ORF 16 *** *** *** HI
ORF 17 UL26 UL80 BVRF2 VS
OiRF 18 *** UL79 Predicted UN
ORF 19 UL25 UL77 BVRF1 VS
ORF 20 UL24 UL76 BXRF1 UN
ORF 21 UL23 *** BXLF1 DN
ORF 22 UL22 UL75 BXLF2 VS
ORF 23 *** UL117 BTRF1 UN
ORF 24 *** UL87 BcRF1 UN
ORF 25 UL19 UL86 BcLF1 VS
ORF 26 UL18 UL85 BDLF1 VS
ORF 27 *** *** BDLF2 UN
ORF 28 *** *** BDLF3 UN
ORF 29b UL15 UL89 BDRF1 VS
ORF 30 *** *** *** UN
ORF 31 *** UL92 BDLF4 UN
ORF 32 UL17 UL93 BGLF1 VS
ORF 33 UL16 UL94 BGLF2 VS
ORF 29a *** *** BGRF1 VS
ORF 34 *** UL95 BGLF3 VS
ORF 35 *** *** *** UN
ORF 36 UL13 UL97 BGLF4 HI
ORF 37 UL12 UL98 BGLF5 DN
ORF 38 *** *** *** VS
ORF 39 UL10 UL100 BBRF3 VS
ORF 40 *** *** BBLF2 DN
OREF 41 *** *** *** DN
ORF 42 UL7 UL103 BBRF2 DN
ORF 43 UL6 UL104 BBRF1 VS
ORF 44 UL5 UL105 BBLF4 DN
ORF 45 *** *** BKRF4 GR
ORF 46 UL2 UL114 BKRF3 DN
ORF 47 *** *** BKRF2 VS
ORF 48 *** *** *** VS
ORF 49 *** *** BRRF1 UN
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2.2 Sequence Evolution

2.2.1 Motivation

Sequence alignment programs constitute a major contribution of bioinformatics to

biology and are routinely used by biologists all over the world, often as the first step in

analyzing the gene or protein of interest. In the case of proteins, when two or more
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related sequences are properly aligned, conserved residues and regions can be readily

identified, which often correspond to elements important for function, structure, or

folding kinetics. Moreover, the "texture" of the alignment, i.e. the alternating spacing

between conserved and non-conserved regions often shed light on possible 3D structure

and domain composition. The overall percentage identity in a pairwise alignment is used

to measure how closely related the two underlying sequences are, in the sense of

molecular evolution.

All life forms on earth come from a single ancestor. While the myriad of living organisms

are at once colorful and confusing, they all consist of cells. A cell is the smallest unit that

can be considered "alive", i.e. independently capable of growth and reproduction (unlike

a virus, which must rely on host organisms for replication, hence infection). Cells, of the

same type or heterogeneous, cooperate and interact to form organs and the organism itself,

much like how atoms interact to form the physical world. Thus to understand life, one

must first understand cell.

When a cell replicates, it must copy its own genome and pass it along to the daughter cell.

This, however, is an inherently noisy process and stochastic errors abound. Most copying

errors in a gene, called mutations, are fatal - they either make the daughter cell

immediately inviable or make it less fit, so that this line of cells will be less able to

compete with normal, healthier cells and their progenies and will be gradually wiped out.

Occasionally, however, a mutation can be neutral or even beneficial to the daughter cell

and hence establish itself in the population. Living in different environments, cells are

free to accumulate beneficial mutations unique to their respective environments. When

enough mutations exist between two cell lines, they can be considered different species.

Different genes (respectively proteins) accumulate mutations at different rate. Some

genes are crucial to cell viability and hardly any deleterious mutations will be tolerated,

while others are under less evolutionary pressure and have more latitude to accumulate

mutations. For example, the histone proteins play a critical role in the package of DNA

within the nucleus. All four core histones (H2A, H2B, H3 and H4) are highly conserved,
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with H4 having more than 95% sequence identity across all known H4 sequences, from

yeast to human! At the other end of the spectrum, conservation can drop to below 20%

for distantly related species.

For a single gene (respectively protein), different regions also accumulate mutations at

different rate. For example, residues on protein interface tend to be more conserved than

the rest of residues in a protein sequence, so do ligand-binding and active sites. Since

most proteins carry out their cellular functions through protein-protein interactions, one

would expect PPI to put a constraint on protein sequence evolution. Indeed, it has been

shown for the yeast cell that interacting proteins are more conserved (i.e. have higher

sequence identity) than those with no known interaction partners [12]. Furthermore, there

is a positive correlation between the number of interaction partners a protein has and its

degree of conservation [13].

Since KSHV is the first viral system with enough PPIs available, we would like to

investigate the relationship between PPI and protein sequence conservation, and compare

our results to those from a cellular system.

2.2.2 Methods and Results

Using reciprocal best BLAST hits, we have identified putative KSHV orthologs in HSV1,

CMV, and EBV. Given the large evolutionary distance separating the herpesviral families,

local alignment is much more appropriate than global alignment. Thus we have taken the

BLAST % identity as the measure for sequence conservation between KSHV ORFs and

their orthologs, in hope that this most conserved region contains the key functional

domain or protein-protein interaction interface. In general, we found that herpesviruses

are fairly divergent - many ORFs do not have orthologs and the homology (% identity) is

generally low even if they do.

Among the 83 KSHV ORFs, 54 have orthologs in EBV, with an average sequence

identity at 35.1%. Among those 54 ORFs, 30 have interactions in our screen, with an
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average sequence identity at 34.5%. Thus interacting proteins are not more conserved in

KSHV, in contrast to cells. We hypothesize that this discrepancy is largely due to

"hidden" host interactions, where some KSHV proteins target many host proteins but do

not have viral interaction partners.

On the other hand, among those 54 KSHV ORFs, 22 have orthologs all across the three

major herpesviral families, that is, of phylogenetic class 111. This core set of proteins are,

however, more conserved, with an average sequence identity at 40.9% (p = 0.027 under

t-test).

The following Venn diagram summarizes this relationship:

However, the constraint put on sequence evolution by viral PPI should still exhibit itself,

once we factor out the hidden effect of viral-host interactions. Among the 54 KSHV

ORFs with orthologs in EBV, 30 have viral-viral interaction partners in our screen. Now

we investigate the relationship between sequence conservation and the number of

interaction partners for those 30 KSHV ORFs. In contrast to the previous analysis, where

we compared KSHV ORFs with viral-viral interactions to those without, now we

compare the former set of ORFs among themselves. The idea behind this is that proteins
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with and without viral interaction partners represent two distinct classes, where hidden

effect like host interactions could play a major role; on the other hand, within the class of

proteins with viral interactions, the effect of host interactions, even if still present, would

apply in roughly equal measure to all members and cancel each other out, provide there is

no systematic bias.

Correlation between Sequence Conservation and Connectivity
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For the 30 KSHV ORFs with orthologs in EBV, we plotted the sequence identity (lines)

together with the number of interaction partners (bars). Indeed we observe a significant

positive correlation between sequence conservation and connectivity, with

r = 0.368, p = 0.046. Thus, hubs are indeed more conserved.

Aside from proving this important correlation, the analysis also pinpoints interesting

exceptions where there is high homology but low number of interactions and vice versa.

A good example would be ORF 25 (3rd highest homology but only 1 partner); ORF 57

would be another example (lowest homology but with 7 partners). Reassuringly, ORF 25

is the major capsid protein, a key structural protein in virus shell assembly. Thus it has
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only a small number of interaction partners because its interaction is rather specific, and

it is highly conserved because it needs to maintain a precise 3D structure for assembly.

Here are two other views of this correlation:

Regression line with confidence band

2 4 6 8 10 12 14

Number of partners

Yet Another View

Hubs are more conserved
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2.3 Interactions among Functional Classes

2.3.1 Motivation

Proteins are the operational molecules in a cell and play diverse roles from enzymes to

structural components. However, proteins rarely act alone - rather they act in close

coordination, through protein-protein interactions, to accomplish their goals. For example,

most cellular machineries are protein complexes, several proteins held tightly together by

stable PPI, while a series of transient PPIs, where proteins briefly associate and then

dissociate, are responsible for signalling cascades. Thus it is reasonable to assume that

interacting proteins participate in related biological processes and share similar biological

functions (i.e. cellular roles), though their exact biochemical functions may differ. Indeed,

Schwikowski et al [3] has shown that, for a large, high-confidence set of yeast PPIs,

interacting proteins are more likely to share a function than random pairs of proteins.

Conversely, one can use this observation to assess the quality of PPI datasets. It has been

shown that there is a considerable difference between PPI datasets compiled from

individual publications and those obtained from genome-scale experiments, and argued

that those genome-wide datasets contain a huge number of false positives [14].

On the predictive side, one can assign tentative functions to a protein of unknown

function based on those of its interaction partners. This "guilt-by-association" approach

has proven successful.

Finally, the crosstalks between and within functional classes may provide biological

insights.

2.3.2 Methods and Results
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Given the importance of understanding interactions among functional classes, we would

like to investigate this topic for KSHV, for the first time a non-cellular system.

Unfortunately, knowledge of KSHV protein functions is still rudimentary and scattered in

literature - there has been no comprehensive functional classification to date, with most

proteins assigned "unknown" functions. To circumvent this problem, we looked at the

GenBank annotations for each KSHV ORF and those for its orthologs in other

herpesviruses, if available, and were able to assign a function to most of them with

reasonable confidence. After some further adjustments based on complementary literature,

the KSHV ORFs are partitioned into five broad functional classes:

'DN' = DNA replication, nucleotide metabolism

'GR' = gene regulation

'HI' = host interaction

'UN' = unknown

'VS' = virion structure

There are 123 unique interactions among 50 KSHV proteins. Since self-interactors

always share the same function and bias the result, they are removed from the dataset and

we are left with 115 interactions among 50 proteins. The distribution among fimunctional

classes is summarized in the following table:

DN(10) GR(4) HI(13) UN(8) VS(15)

DN 5 3 22 6 12

GR 4 2 3 3

HI 6 8 19

UN 9 10

VS 11
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To estimate their statistical significance, we first introduce some notations. Suppose there

are E interactions (edges) among N proteins (nodes), which fall into C functional

classes. Let n, n2,..., nc be the counts of nodes in the functional classes, where

E ni = N. Let p, be the probability of interaction between functional classes i and j.

Then we have

P i pi , i j where p, = N is the probability of picking a node from functional

class i. Let q be the observed (relative) frequency of interaction between functional

classes i and j, which is simply the raw count of such edges e divided by E.

Now we define the odds ratio to be o = qi / pg,, that is, observed frequency over

background frequency, and use it to measure the over- and under-representation of

interactions among functional classes.

As a complementary measure, we also directly compute a p-value for the observed count

of edges e between functional classes i and j. Let X be the number of such edges,

then X is a binomial random variable, with E as the number of trials and p as success

probability. The p-value is then computed as P1 = [Xv < e ], that is, the probability of

observing at most e edges by chance.

The results are summarized in the following table. For each entry, the number before '*'

is the odds ratio, the number after being the p-value.
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DN GR HI UN VS

DN 0.652*0.320 0.815*0.496 1.839*0.998 0.815*0.391 0.869*0.366
GR 4.076*0.993 0.418*0.138 1.019*0.659 0.543*0.192
HI 0.514*0.105 0.836*0.375 1.059*0.664
UN 2.038*0.971 0.905*0.448
VS 1.062*0.660



2.3.3 Discussions

In general one would expect that proteins from the same functional class are more likely

to have interactions. In our case, we have:

GR-GR significantly more interactions

UN-UN significantly more interactions

DN-HI significantly more interactions

Some observations:

1) DN-DN, VS-VS have roughly the same level of interactions as background, while HI-

HI has less. This somewhat makes sense, since DN proteins interact with DNA, VS

proteins have specific interactions (e.g. in shell assembly), while HI proteins interact with

host.

2) UN-UN has significantly more interactions. This is actually very interesting -- if this

class were fairly mixed, i.e. with many ORFs from the 4 true functional classes, UN-UN

would look like the background. Thus this implies either ORFs in UN are mostly of the

same (yet unknown) function, and/or they form their own complexes/processes. In other

words, they are mostly not "the missing parts" of known complexes/processes, but are

from entirely new, yet unknown complexes/processes.

3) DN-HI has significantly more interactions -- just want to mention there are 6 ORFs in

HI could have been assigned as GR.

Due to the unusual interaction patterns among functional classes, we come to address the

fundamental question - are interacting proteins in KSHV, a viral system, more likely to

share the same function, as is the case for cellular systems? Of the 115 interacting KSHV

proteins, 23.5% fall into the same functional class - this compares to 21.4% for random

pairs of KSHV proteins that have interactions. The odds ratio is only 1.098 (i.e. only
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roughly a 1.1 fold enrichment), which might not be significant. To construct a valid null

model for comparison, it is not enough to only consider the background frequencies of

the underlying functional classes - one must also take into account network topology, the

connectivity patterns of the interacting proteins as a whole. To satisfy both constraints at

once, we fix the topology of the real KSHV interaction network, but randomly permute

node labels, i.e. function assignment of proteins. Since the space of such randomly

permuted networks is huge, we sample 1000 of them and derive an empirical p-value for

the real network. Indeed, the odds ratio is insignificant compared to the random ensemble,

with empirical p = 0.334. Thus, unlike cellular systems, in KSHV interacting proteins

are not more likely to share the same function than random pairs of proteins.

Interactions among KSHV functional classes
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2.4 Phylogenetic Classes

2.4.1 Methods and Results

Just like proteins involved in the same pathway or complex are more likely to interact,

they also tend to co-evolve during evolution - all such functionally related proteins tend

to be either preserved or eliminated all together in a new species. Conversely, proteins

with similar presence/absence patterns in other genomes, or phylogenetic profiles, tend to

be functionally linked, in particular more likely to interact [15]. Since the relationship

between interaction and functional classes for cellular systems cannot be transferred to

KSHV, we would also like to investigate the relationship between interaction and

phylogenetic classes for KSHV.

For each KSHV ORF, we encode its phylogenetic profile in a 3-digit binary string, where

0/1 denotes the absence/presence of an ortholog in HSV1, CMV, and EBV, respectively.

Thus the phylogenetic profiles can be read off directly from the table of KSHV orthologs.

Here we reproduce the top part of that table for illustration:

KSHV HSV1 CMV EBV Phylogenetic Class

ORF K1 *** *** 000

ORF 4 *** UL32 BLLFlb 011

ORF 6 UL29 UL57 BALF2 111

ORF 7 UL28 UL56 BALF3 111

Recall that there are three major herpesviral families, a, ,6, and y, with HSV1, CMV, and

EBV as representatives, respectively, and that KSHV itself belongs to the y family. Thus

the phylogenetic profiles as we defined have intuitive biological interpretations. For

example, proteins of phylogenetic class 000 are KSHV-specific and presumably define its

pathogenicity; those of class 001 are unique to the y family; while those of class 11 are

a core set of proteins common to all herpesviruses - presumably they are the most ancient

proteins and perform the most fundamental tasks in herpesviruses.
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In parallel to the analysis on functional classes, now we similarly compute the over- and

underrepresentation of interactions among phylogenetic classes. The table below

summarizes the result (the entries are of the form logodds*p-value):

000 001 011 111

000 0.492*0.021 0.689*0.065 1.494*0.927 1.067*0.690
001 0.962*0.547 0.781*0.416 0.893*0.369
011 1.270*0.813 1.088*0.686
111 1.451*0.941

Again one would expect proteins from the same class to have more interactions (people

actually predict interactions by such phylogenetic profiles). But this is NOT true for our

data! We have:

000-000 significant under

000-001 borderline under

000-011 borderline over

111-111 borderline over

Thus KSHV-specific proteins (000) tend to avoid each other, while those proteins

conserved in all A, B, C (111) tend to interact with each other.
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Interactions among KSHV phylogenetic classes
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2.4.2 Further Analysis

After analyses done on both functional and phylogenetic classes, now we look at their

intersections. Indeed, quite a few interesting insights can be obtained from the following

figure. For example, the class 000 of KSHV-specific proteins are dominated by those

involved in host interaction, while the class 111 of proteins conserved all across the three

major herpesviral families mostly consists of structural proteins and those involved in

DNA replication, both perform basic, fundamental service to the micro-organisms.
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Functional vs phylogenetic classes
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2.5 Expression Correlation and Interaction

2.5.1 Y2H versus Random

If two proteins interact, then their expression profiles may correlate. Indeed, this property

has been used to assess the quality of genome-scale protein-protein interaction data [14].

In this section, we use expression correlation to validate our own interaction data and to

assess the experimental procedures we used.
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Expression Correlation of KSHV
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All pairwise expression profile correlations for 81 KSHV ORFs were plotted in a matrix.

The ORFs on either axis are in their order along the KSHV genome. The square at

position (i, j) corresponds to the correlation of the expression profiles of ORF i and

ORF j, while the intensity of the heat map (going from red to white) corresponds to the

magnitude of the correlation (from low to high). This way one can easily spot outliers

like ORF 72, which has a very different expression profile from most other ORFs, and
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regions sharing similar profiles (those white regions), e.g. the cluster from ORF 7 to ORF

16 shows profile similarity both within itself and with several late clusters.

Our own interactions are plotted as circles in the matrix. This way one can spot clusters,

where several ORFs interacting with one another, or one ORF interacting with several

other ORFs that are consecutive along the genome.

While intuitive and useful, the matrix does not yield obvious conclusions on the

relationship between expression and interaction. Now we do so numerically by

computing the correlation of all pairwise expression profiles, with the average being

0.804, which is the background or random correlation. Now we compute the expression

correlation of those interacting ORFs, obtaining an average of 0.839 (the difference is

significant at p=0.0004). Thus, despite limited sample size and expression profiling

condition, interacting proteins in KSHV are indeed expressed at similar time points.

2.5.2 ColP versus Gal

Since our experiment is the first study where yeast two-hybrid data is comprehensively

retested using co-immunoprecipitation and l -galactosidase assays, we would like to

assess their relative effectiveness. Again, we use average expression correlation (AEC) as

an independent measure to assess the three experimental methods.

Of the 123 Y2H interactions we have, we require:

1) Both ORFs in the pair have expression data.

2) Self-interactions are excluded (since the expressions would correlate perfectly).

3) ORF 72 is excluded, since it is a huge outlier in terms of expression.

After the filtering step, we are left with 77 Y2H interactions, with average expression

correlation AEC=0.839. As control, under the same three constraints, the background

AEC=0.804.
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Now we partition those 77 Y2H interactions into those confirmed by CoIP (CoIP+) and

the rest (CoIP-). We have:

The difference between CoIP+ and CoIP- has p=0.05, while the difference between

CoIP- and background has p=O.18. Thus CoIP has indeed significantly enriched the Y2H

data for true interactions, but we cannot entirely discount those interactions not

confirmed by CoIP - there are likely still a significant fraction of true interactions among

them.

Similarly, we can also partition the same 77 Y2H pairs according to their Gal level (going

from 0, the lowest level, to 3, the highest):

There are no interactions in the G3 class. The difference between GO and G1 has p=0.36

and thus is insignificant.

Taken together, it seems that CoIP is better than Gal at picking out "true" interactions, if

expression correlation we used is a reliable measure. ColP nicely separates the 77 Y2H

interactions into a high-confidence set and the rest, while Gal barely does so. (GO has

about the same AEC as Y2H, while G2 is actually much worse!) Of course, larger

datasets and more experiments are needed to conclusively confirm our observations.
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Dataset Size AEC

CoIP+ 36 0.858

CoIP- 41 0.822

Dataset Size AEC

GO 46 0.834

G1 28 0.851

G2 3 0.803



Now we look at the intersections of CoIP and Gal to gain further insight:

Note Gal further enriches the results of CoIP+ (first column), with CoIP+&G 1 having

AEC=0.871, but is not effective on CoIP- (second column); on the other hand, CoIP

always enriches the results of Gal (all three rows). This would have important

implications when we combine experiments to obtain high-confidence interactions.
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Size/AEC CoIP+ CoIP-

GO 20/0.849 26/0.821

G1 15/0.871 13/0.828

G2 1/0.818 2/0.796



Chapter 3 Global Analysis

3.1 Background

3.1.1 From Regular Graphs to Complex Networks

Graph theory has a long and colorful history. It started with Euler, when he studied the

K6nigsberg problem:

Old Konigsberg had seven bridges (marked

a through g in the sketch). The townspeople

wondered if was possible to take a walk

around the town in such a way as to cross

each of the seven bridges exactly once.

Traditional graph theory evolves around finite, regular graphs and is combinatorial in

approach. Some favorite graphs include complete graphs (or cliques), bipartitie graphs,

cycles, trees, grids (or lattices), and some favorite problems include Eulerian or

Hamiltonian paths, chromatic numbers, and graph isomorphisms.

K K 3 I 4
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While traditional graph theory is well-developed and has found many diverse

applications, it is clearly inadequate to deal with large, irregular, seemingly random

graphs, or complex networks.

Complex, web-like structures describe a wide variety of systems spanning the spectrum

from biology to internet to socialogy. For example, in a metabolic network the nodes are

metabolites and the (directed) edges are chemical reactions; in a gene-regulatory network

the nodes are genes, while the edges can carry both direction and weight, corresponding

to activation/suppression and the strength thereof; in a protein-protein interaction network,

a pair of proteins are connected if there is a physical association between them. The

Internet is a complex network of routers and computers linked by various physical or

wireless connections; the World Wide Web consists of individual webpages with

hyperlinks both coming in and going out. In a social network, the nodes are individual

persons and the edges represent various social relationships, along which ideas (or

diseases!) spread and propagate.

How could one describe such complex systems? How does their network topology look

like? Are there any organizing principles underlying such complex networks? How could
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they have evolved? How robust are they? Can one predict their behaviors under

perturbation or through evolution?

In the next a few sections we briefly overview the classical approach as well as some

recent developments. We establish notations along the way, in particular introduce

several key topological measures of complex networks.

3.1.2 Random Networks and the ER Model

The Hungarian mathematicians Erd6s and Rdnyi first studied random graphs in the late

1950s, using probabilistic methods to derive large-scale, statistical properties of random

graphs. In the ER model, one starts with N nodes and connects each pair of nodes with

probability p, generating a random network.

For any node i, the probability that it is of degree k (i.e. connected to k other nodes in

the network) follows the Binomial distribution, corresponding to k successes out of

N -1 trials with success probability p:

Pi (k) = (N P ( _ p)N1k)

It has been show that the degree distribution of the network itself, that is, the number of

nodes with a certain degree k, follows the Poisson distribution, with

P(k) = e-k ,where = Pi(k) - )p(1- p)(N-1-)

Intuitively N is large and the graph is sparse, since the number of actual edges would be

much smaller than C(N, 2) all possible edges. Hence p would be small. Furthermore,
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P(k) are close to being independent random variables. Thus to good approximation the

Binomial distribution can be replaced by a Poisson.

Connectedness and Diameter

One of the greatest discoveries of ER is that many topological properties of such random

graphs appear quite suddenly, at a threshold value p(N), e.g. the emergence of a giant

cluster. For a totally connected graph (or the single largest connected component of a

disconnected graph), its diameter, or the characteristic path length, is the average distance

between all pairs of nodes. One feature of random networks is that they have short typical

path length. Empirically it has been observed that real networks tend to have short typical

path length, close to that of comparable random networks, a phenomenon known as "six

degree of separation".

Clustering Coefficient

Unlike random networks, real networks also exhibit a large degree of clustering. For

example, in a social network, two acquaintences of the same person are more likely to

know each other than just any two random persons. Similarly, in a protein-protein

interaction network, the interaction partners of a protein are also likely to interact among

themselves, since they are all involved in the same complex or process. To be precise, we

define the clustering coefficient around each node as follows. Suppose a node has k

neighbors and there are m edges among the neighbors. Then we define

m
C = , that is, the fraction of all possible edges that are actually present.

3.1.3 Small-world Networks and the WS Model

Up to late 1990s, the only available network models were based on either regular graphs

or the ER model. Unfortunately, as data on real networks accumulate and computing
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power multiplies, it has been shown that neither regular nor random graphs capture the

essence of most real-world, large-scale networks.

In 1998 Watts and Strogatz [ ]introduced a new model, the so-called small-world

networks. A small-world network is characterized by short typical path length and high

local clustering. The former property is satisfied by random graphs but not regular lattices,

while the latter holds for regular lattices but not random graphs. Thus small-world

networks lie between the two extremes and the WS model is constructed to describe this

transition from a locally ordered system to a random network.

RIIBy~l I Smnlwoi tr~~m

paO -'--··----- pt 1

In the WS model, one starts with a regular, second-order (each node is connected to its

nearest and next-nearest neighbors) ring lattice with N nodes. Then each edge is rewired

with probability p, under the constraint that no two nodes can have more than one edge

and no node can have an edge with itself. Thus at p = 0 the system is a highly clustered

lattice, and the typical path length L grows linearly with the number of nodes N, while

at p = 1 the system becomes a random graph, poorly clustered but with short typical path

length L oc log N . WS has shown that in the interval 0 < p < 0.01 the system acquires

short typical path length while still highly clustered. In other words, as one introduces

randomness into an orderly system, it rapidly becomes small-world. This helps to explain
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why most real networks are small-world; conversely, the small-world properties have

been used to validate real networks. For example, the high local clustering property has

been used to assess the confidence of individual edges in a protein-protein interaction

network.

3.1.4 Scale-free Networks and the BA Model

Both the ER and WS models lead to networks in which the degree distribution P(k) has

an exponential cutoff and is centered around (k), the average degree. However, it has

been observed that many complex networks are free of scale, that is, the degree

distribution decays as a power law, following P(k) oc k - r for some y > 0.

What does it mean?
Poisson distribution Power-law distribution

I 

0.1

0.01

0.001

0.0001

-- ... -- ----.,.... . ...

k 1 10 IOU 1000
k

Exponential Network Scale-free Network

One real-world example, of particular interest to scientists, is the collaboration network,

where the nodes are the scientists and two nodes are connected if the two scientists have

co-authored a paper together. Not surprisingly, all such networks are small-world, that is,
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they exhibit short typical path length and high clustering coefficient. What is not so

obvious, however, is that all such networks are also scale-free.

To understand the origin of this discrepancy between expected exponential decays and

observed power-law tails, Barabasi and Albert [2] have argued that two crucial aspects of

real complex networks are not accounted for in the ER or WS model. First, both models

have a fixed number of nodes, which are then randomly connected (ER) or reconnected

(WS). In contrast, most real-world networks are continuously growing by addition of new

nodes that are connected to the existing ones. For example, new webpages are being

constantly created, with links to more established websites. Second, in both models the

nodes are connected (or rewired) with uniform probability, while most real networks

exhibit preferential attachment. For example, a new researcher is more likely to

collaborate on papers with more established scientists.

Barabasi and Albert have incorporated these two ingredients, missing in previous models,

into a new model, which naturally leads to scale-free networks. In contrast to the ER and

WS models, in which the goal is to account for network topology, the BA model focuses

on network dynamics and evolution, with topology only as a byproduct.

3.1.5 Network Dynamics and Evolution

The BA model is defined in two steps:

(1) Growth: Start with a small number mo of nodes at time to. At every time step

thereafter, a new node with m < mo edges is added to the system, that is, the new node

will be connected to m existing nodes.

(2) Preferential attachment: The probability I that a new node will be connected to

existing node i depends on the degree ki of that node, such that

48



l (ki)= ki
Zkj

Thus after t time steps the model leads to a random network with N = m + t nodes,

E = mt edges, and total node degree jkj = 2 E = 2 mt.

Barabdsi and Albert have shown, using simulations, that such a network does evolve into

a scale-invariant state, with the scaling exponent y 3, independent of m, the only

parameter in the model. In addition, P(k) is independent of time t (or equivalently, the

system size N = m + t), which indicates that despite its continuous growth, the system

organizes itself into a scale-free stationary state. This independence of time or system

size fits well with the fact that the power-law distribution holds for real complex systems

of drastically different sizes and at different stages of development.

Furthermore, Barabdsi and Albert were able to derive P(k) analytically, using a mean

field approach to calculate the time evolution of the degree of a given node. Consider

node i with degree ki (t). Since at each time step m edges are added, each connecting to

node i with probability I(k, ), the rate of change of k, is just

aki- m k,,= km , ki
at E kj 2mt 2t

The solution of this first-order differential equation, with the initial condition that node i

was added to the system at time ti with degree k, (t,) = m, is

ki(t)= mi
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Thus all nodes acquire more edges over time, while the older nodes (those with smaller ti )

increase their degrees faster.

To calculate P(k), we have

aP(ki (t)< k) a a m2t B m 2t
P(k) k =~- ( <k ) ti > k2 = - ti < k2 , (1)

Since we picked node i at random out of N = mO + t nodes, P(t ) follows the Uniform

1 m 2t ) m2t
distribution with "height" + Thus P(t < k2)= m t(2)

Combining (1) and (2), we obtain

P(k)= 2m2t k-3
m +t

Thus the BA model naturally leads to scale-free networks with power coefficient y = 3.

Furthermore, they have shown that both growth and preferential attachment are essential

to the evolution of scale-free networks.

After BA, various new models, incorporating different "real-world" features, have been

proposed. For example, the preferential attachment function was allowed to be non-linear,

internal edges were allowed to be inserted or deleted within the existing system, nodes

were allowed to duplicate themselves or "retire" or have different levels of "fitness". It is

worth noticing, however, that all current dynamic network evolution models lead to y 1.

50



3.2 The KSHV protein-protein interaction network

Thus far we have mostly treated the 123 interactions (115 when dimers are removed)

among 50 KSHV proteins as a binary dataset. However, there are many advantages in

viewing them ;.as a network. For example, unexpected links between different complexes

or cellular processes might emerge, the confidence of individual interactions could be

assessed, and functional assignment could be made for proteins of unknown function.

Furthermore, large-scale, system-level properties are only available through this network

point of view.

We connected the binary KSHV interactions into a single network, which constitutes the

first meaningful viral system. Each node represents an interacting KSHV protein; its

phylogenetic class is given after the ORF name; node color represents its functional class,

while node shape corresponds to its expression class. The solid edges represent
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interactions confirmed by CoIP, while those dashed edges correspond to interactions

positive only in the Y2H screens.

It has been shown that most real-world complex networks are both small-world and

scale-free. In particular, all known biological networks are scale-free, with power

coefficient y > 2. Moreover, all current dynamic network evolution models predict y > 1.

Since the KSHV network is the first viral system available, we wondered if its network

properties are similar to those of cellular systems and hence confirm the universality of

those properties in all kingdoms of life, or are distinct. At first sight, due to the

abundance of hubs and the interactions among them, we thought the KSHV network is

not scale-free. Now we investigate the major network properties of KSHV and compare it

to a high-confidence yeast protein-protein network, a prototypical cellular system.
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Schwikowski et al has combined Y2H and biochemical protein-protein interaction data in

public databases into a single, high-confidence yeast network. Shown is the single largest

connected component with 2358 edges among 1548 nodes.

3.3 Degree Distribution and Attack Tolerance

While the yeast network is typically scale-free with a power coefficient

y = 2.14 (p = 3.64 x 10- '), the viral system has a surprisingly small scaling exponent

y = 0.95 (p = 1.24 x 104 ). Thus albeit scale-free, the KSHV network is distinct from all
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previously known biological networks, which all have y > 2, and it cannot be explained

by all current dynamic network evolution models, which all predict y > 1.

Scale-free Networks with Power-law Degree Distributions

l

II-
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0gk

The degree distributions of the KSHV and yeast networks are plotted on a log-log scale.

For each network, the probability P(k) of a given node degree k is defined as the

relative frequency of such nodes, that is, the number of nodes with degree k divided by

the total number of nodes in the network. Then the power coefficient is estimated

through regression analysis. For each network, both the original data points and the fitted

regression line are shown.

As we now demonstrate, this unusual topological feature of KSHV has important

consequences, in particular it leads to increased attack tolerance [16].
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Scale-free networks are highly resistent towards random failure, but highly
vulnerable under deliberate attack. Compared to yeast network,

KSHV Network Has Much Higher Attack Tolerance

Increase in network diameter after node removal Decrease in network size after node removal
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To consider the robustness of a network, we consider how the network topology changes

under node failures. When a node fails, we take out that node and all edges associated

with it. To evaluate the remaining network, we look at the size (number of nodes) and the

characteristic path length of its single largest connected component.

It has been shown that scale-free networks are highly robust against random node failures,

while highly vulnerable under deliberate attack, where nodes with the highest degrees are

in turn removed. This corresponds well to real-world networks, where components fail at

random all the time without bringing down the whole network, but bringing down central

hubs would bring down the network as a whole.

Now we demonstrate that the KSHV network has much higher attack tolerance than the

yeast network. In KSHV, the top three most highly connected nodes were removed,

which corresponds to 6% node removal. Similarly, we remove the top 6% most highly
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connected nodes in the yeast network. As shown in the panel of figures, the KSHV

network is much more stable under attack, as measured by either network size or

characteristic path length.

3.4 Degree Correlation and Modularity

In this section we introduce a new topological feature of networks, namely the correlation

of node degrees for all the interacting nodes in the network. Along the way, we also

introduce a new network randomization technique, which will be used in subsequent

sections.

Maslov and Sneppen [17] have shown that, for the yeast network, hubs tend to avoid each

other and connect to those low-degree nodes. Furthermore, Berg and Lassig [18]have

shown, using statistical mechanics, that this degree correlation can be accomplished with

a properly chosen partition function.

To estimate the statistical significance of observed degree correlation in a real network,

one must generate an ensemble of"comparable" random networks. A simple choice

would be networks generated by the ER model, with the same number of nodes and edges

(that is, connection probability p ) as the real network. However, such networks lack a

key property of the real network: while the real network is scale-free with a power-law

degree distribution, the simulated networks have a Poisson degree distribution. To ensure

the observed degree correlation is not an artifact of network topology, Maslov and

Sneppen constructed random networks with the same degree distribution, using an edge-

swapping strategy. In such a randomzied network, each node has the same number of

edges as before; a pair of edges are picked at random and swapped, provide the swapping

does not create redundant edges or self loops; after a number of such swappings one

obtains a random network with exactly the same degree distribution - each node has the

same number of interaction partners as before and only the identity of them are different.
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It has been shown for yeast network (Maslov and Sneppen, Science 2002) that
hubs tend to avoid each other and connect to low-degree nodes. We do not
observe such a clear pattern for

KSHV Degree Correlation
KSHV Network Node Degree Correlation KSHV Network Node Degree Correlation
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For each pair of node degrees (ki, k j ), we find its observed frequency in the real network,

that is, we increase the counter by 1 if there is an edge connecting a pair of nodes with

degree ki and k. To estimate the statistical significance of the observed degree

correlations, we compute two separate measures, logodds and (empirical) z-scores.

For each pair (ki, kj ), its observed frequency is Po (ki,ki )= #(ki, k. )/E, where #(ki, kj)

is the number of edges connecting node degrees ki and kj, and E is the number of

edges in the network.

To compute empirical z-scores, we follow the MS procedure to generate 1000 random

networks with the same degree distribution as the real network. Then the count for each

degree pair (k, ,k,) can be compared to those in random networks and z-scores derived.

In both heat maps, the square at position (i, j) corresponds to the degree correlation

between node degree ki and kj, while the color intensity corresponds to the amplitude of
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the statistics, with green denoting suppression and red denoting enrichment. For example,

bright red squares are those with big positive logodds or z-scores, bright green squares

are those with big negative logodds or z-scores, while those dark squares correspond to

those degree correlations close to random, with logodds or z-scores close to 0.

KSHV Network Degree Correlation
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For a different view, we plotted the average degree of its neighbors as a function of the

node degree itself. Again, we do not observe a declining degree correlation for KSHV.

3.5 Low Clustering and Dynamic Mode of Action

3.5.1 Characteristic Path Length

Both the KSHV and yeast networks exhibit short typical path length, comparable to

random networks of the same size. For comparison, we have generated random networks

under both the ER and the MS model and computed their characteristic path length.
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3.5.2 Clustering Coefficient

For each of the KSHV and yeast networks, we compute its clustering coefficient C and

compare it to that of random networks under either ER or MS model. Under the ER

model, for a network with E edges among N nodes, the clustering coefficient is a

constant, namely CER = E/(2 )since the edges are placed uniformly at random. For the

MS model, we generate 1000 random networks using the edge-swapping strategy, and

define CMS to be the average clustering coefficient of those random networks.

We have the following results:

Thus under both models, the clustering coefficient of KSHV is comparable to those of

random networks, hence the KSHV system is not small-world! In contrast, the clustering

coefficient of the yeast network corresponds to about 25-100 fold enrichment over

comparable random networks.

One major use of protein-protein interaction networks is to discover functional modules

by locating locally dense neighborhoods, in particular cliques. Since the KSHV network

does not exhibit the high local clustering property of small-world networks, we would

like to explore its implications in terms of finding cliques. Since the KSHV network is

relative small, we can enumerate cliques of all orders recursively, and compute their
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L LER LMS

KSHV 2.84 2.68 2.60

Yeast 7.28 6.43 6.35

C CER CMS

KSHV 0.146 0.094 0.193

Yeast 0.213 0.002 0.008



statistical significance following standard procedure. The following table summarizes the

results:

Cliques Mean SD z-score p-valuee-value

['ORF 28', 'ORF 29b','ORF 41','ORF K10'] 0.502 0.181 2.740 0.006 0.138
['ORF 28','ORF 29b','ORF 67.5','ORF K10'] 0.603 0.181 2.179 0.034 0.137
['ORF 23','ORF 28','ORF 29b','ORF 67.5'] 0.510 0.187 2.611 0.009 0.039
['ORF 23','ORF 28','ORF 29b','ORF 30'] 0.369 0.173 3.633 0.000 0.014

['ORF 28','ORF 41', 'ORF K10'] 0.428 0.269 2.122 0.061 1.224
['ORF 29b','ORF 41','ORF K10'] 0.557 0.264 1.672 0.141 0.706
['ORF 31','ORF 41','ORF K10'] 0.381 0.262 2.351 0.038 0.386
['ORF 41', 'ORF 9', 'ORF K10'] 0.405 0.264 2.250 0.045 0.452
['ORF 31','ORF 67.5','ORF K10'] 0.512 0.268 1.816 0.106 0.532
['ORF 31', 'ORF 68', 'ORF K10'] 0.426 0.269 2.132 0.061 1.226
['ORF 28','ORF 67.5','ORF K10'] 0.564 0.273 1.594 0.160 0.643
['ORF 29b','ORF 67.5','ORF K10'] 0.697 0.256 1.182 0.324 0.324
['ORF 59','ORF 67.5','ORF K10'] 0.509 0.268 1.825 0.105 0.528
['ORF 60','ORF 67.5','ORF K10'] 0.667 0.259 1.281 0.277 0.277
['ORF 67.5','ORF 9','ORF K10'] 0.541 0.269 1.700 0.132 0.265
['ORF 29b','ORF 68','ORF K10'] 0.607 0.268 1.460 0.203 0.815
['ORF 59','ORF 68','ORF K10'] 0.423 0.268 2.148 0.056 1.128
['ORF 60','ORF 68','ORF K10'] 0.573 0.272 1.567 0.169 0.677
['ORF 68','ORF 9','ORF K10'] 0.446 0.266 2.073 0.065 0.525
['ORF 39','ORF 9','ORF K10'] 0.289 0.233 3.046 0.007 0.103
['ORF 47','ORF 9','ORF K10'] 0.290 0.234 3.020 0.007 0.107
['ORF 29b','ORF K10','ORF K12'] 0.452 0.250 2.189 0.057 0.630
['ORF 60', 'ORF K10','ORF K12'] 0.425 0.254 2.263 0.047 0.518
['ORF 23','ORF 63','ORF K9'] 0.167 0.205 4.052 0.002 0.069
['ORF 23','ORF 28','ORF 67.5'] 0.435 0.275 2.045 0.071 0.284
['ORF 23', 'ORF 29b','ORF 67.5'] 0.571 0.274 1.561 0.169 0.169
['ORF 23','ORF 60','ORF 67.5'] 0.540 0.274 1.675 0.137 0.137
['ORF 23','ORF 63','ORF 67.5'] 0.352 0.259 2.496 0.030 0.091
['ORF 28','ORF 29b','ORF K 1'] 0.459 0.274 1.970 0.082 0.492
['ORF 28','ORF 29b','ORF K10'] 0.608 0.267 1.464 0.205 0.822
['ORF 28','ORF 29b','ORF 41'] 0.415 0.267 2.183 0.051 1.038
['ORF 28','ORF 29b','ORF 67.5'] 0.545 0.274 1.655 0.143 0.572
['ORF 23','ORF 28','ORF 29b'] 0.490 0.274 1.855 0.098 0.394
['ORF 23','ORF 29b','ORF 30'] 0.376 0.253 2.458 0.032 0.196
['ORF 36','ORF 54','ORF 61'] 0.141 0.195 4.382 0.001 0.117
['ORF 60','ORF 61','ORF K10'] 0.523 0.268 1.776 0.117 0.589
['ORF 60', 'ORF 61', 'ORF K1'] 0.377 0.265 2.346 0.038 0.774
['ORF 23','ORF 28','ORF 30'] 0.255 0.238 3.118 0.009 0.218
['ORF 28','ORF 29b','ORF 30'] 0.355 0.254 2.529 0.024 0.597
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Thus the low clustering coefficient translates into the lack of distinct complexes and

functional modules in the KSHV network - not only are higher-order cliques absent, but

the number of cliques at each level is not enriched.

3.6 Summary of Results

Comparision of Network Properties of KSHV and Yeast

Albeit scale-free, KSHV network differs in many aspects from all known networks.

For comparison, we put the KSHV and yeast networks side by side, together with

important topological quantities. The unusual features of KSHV are highlighted in red.

6113

N E <k> r L/Lran/Lms C/Cran/Cms

KSHV 50 115 4.60 0.95 2.84/2.68/2.60 0.15/0.09/0.19

Yeast 1548 2358 3.05 2.14 7.28/6.43/6.35 0.21/0.00/0.01



3.7 Discovering Functional Associations through Interaction
Patterns

Due to the huge amount of data accumulated by various genome sequencing and genome-

scale experiments, it is increasingly important to transfer our existing knowledge to new

data and new systems. In the past, functional associations, in particular protein-protein

interactions, have been predicted on the basis of similar functional classes, phylogenetic

classes, correlated expression profiles, shared cellular compartments, local clustering in

networks, or a combination of those approaches. In this section we explore new ways to

discover functional associations based on topological properties, and propose some

predictions for experimental verification.

3.7.1 Neighbors in Common

While the clustering coefficient around each node is a local measure, namely it represents

the likelihood of interaction among the node's neighbors, interaction is not strictly a local

event. A physical interaction involve two proteins, and the effect extends to at least the

two nodes's other interaction partners. Furthermore, there are many cases of biological

significance where two proteins do not directly interact, but are bridged by a third protein.

Clearly the local measure of clustering coefficient does not adequately capture this

second-order effect. We now introduce a new measure, which addresses both of the

concerns at once.

Given any two nodes in the network at either distance 1 (i.e. directly interacting) or

distance 2 (i.e. bridged by one other node), we look at the number of neighbors they have

in common. The idea behind this is as follows - if two nodes directly interact and they

have common neighbors, then the confidence of this interaction is enhenced; if two nodes

do not directly interact but are bridged by many common neighbors, then they are likely

to be functionally related.

62



[orflO orf2] degl-l deg2-1 #(common neighbors)

['ORF 2'i] 'ORF K10'] 0 15 0

['ORF 23'n 'ORF 45'] 8 3 0

['ORF 25'LI 'ORF 65'] 0 1 0

['ORF 27'0 'ORF 74'] 1 2 0

['ORF 28'0 'ORF K5'] 7 6 0

['ORF 29b'L] 'ORF 50'] 14 3 0

['ORF 29b'CI 'ORF 54'] 14 2 0

['ORF 29b' n 'ORF 72'] 14 2 0

['ORF 29b'D 'ORF 74'] 14 2 0

['ORF 29b'0L 'ORF K10.5'] 14 2 0

['ORF 29b'0 'ORF K8.1'] 14 1 0

['ORF 31"0] 'ORF 30'] 5 3 0

['ORF 31"'0 'ORF Kll'] 5 7 0

['ORF 34"'0 'ORF 52'] 3 6 0

['ORF 34'0 'ORF 67.5'] 3 11 0

['ORF 34" 1 'ORF Kll'] 3 7 0

['ORF 34'0 'ORF K5'] 3 6 0

['ORF 36'0 'ORF 45'] 4 3 0

['ORF 36'0] 'ORF 48'] 4 0 0

['ORF 36'0 'ORF 54'] 4 2 0

['ORF 36'0 'ORF 61'] 4 4 0

['ORF 37'0 'ORF 72'] 2 2 0

['ORF 37'0 'ORF K10'] 2 15 0

['ORF 37'0 'ORF K8'] 2 2 0

['ORF 45'0 'ORF 50'] 3 3 0

['ORF 45'0 'ORF 72'] 3 2 0

['ORF 49'0 'ORF 52'] 1 6 0

['ORF 49'0 'ORF K10'] 1 15 0

['ORF 53'0 'ORF K3'] 1 2 0

['ORF 53'n 'ORF K5'] 1 6 0

['ORF 54'0 'ORF 62'] 2 0 0

['ORF 56'L] 'ORF 36'] 2 4 0

['ORF 56'l 'ORF K10.5'] 2 2 0

['ORF 57'0 'ORF 23'] 5 8 0

['ORF 57'l- 'ORF 50'] 5 3 0

['ORF 57'1 'ORF 52'] 5 6 0
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['ORF 57'11 'ORF 61'] 5 4 0

['ORF 57'(] 'ORF 68'] 5 7 0

['ORF 57'[] 'ORF K8'] 5 2 0

['ORF 58'111 'ORF 27'] 0 1 0

['ORF 59'[] 'ORF 52'] 5 6 0

['ORF 59'[ 'ORF Kll'] 5 7 0

['ORF 59'[] 'ORF K5'] 5 6 0

['ORF 6' 'ORF 52'] 2 6 0

['ORF 6'] 'ORF K15'] 2 0 0

['ORF 6'] 'ORF K5'] 2 6 0

['ORF 60'[ 'ORF 52'] 12 6 0

['ORF 60'[] 'ORF 56'] 12 2 0

['ORF 60'[] 'ORF Ki'] 12 0 0

['ORF 60'[] 'ORF K3'] 12 2 0

['ORF 60'[1 'ORF K5'] 12 6 0

['ORF 60'[]1 'ORF K8'] 12 2 0

['ORF 63'[] 'ORF 41'] 4 5 0

['ORF 63'[1 'ORF 65'] 4 1 0

['ORF 69'[] 'ORF 52'] 3 6 0

['ORF 69'[] 'ORF 67.5'] 3 11 0

['ORF 69'[] 'ORF Kll'] 3 7 0

['ORF 69'[] 'ORF K9'] 3 2 0

['ORF 75'[] 'ORF 50'] 4 3 0

['ORF 75'[ 'ORF 67.5'] 4 11 0

['ORF 75'[] 'ORF 68'] 4 7 0

['ORF 75'[] 'ORF K10.5'] 4 2 0

['ORF 75'[] 'ORF K8.1'] 4 1 0

['ORF K7'[ 'ORF 74'] 2 2 0

['ORF K7'[] 'ORF K3'] 2 2 0

['ORF K7'[] 'ORF K5'] 2 6 0

['ORF 23'[] 'ORF K9'] 8 2 1

['ORF 28'[3 'ORF Kll'] 7 7 1

['ORF 29b'n 'ORF 68'] 14 7 1

['ORF 29b'L] 'ORF Kll'] 14 7 1

['ORF 29b'] 'ORF K12'] 14 2 1

['ORF 31'] 'ORF 41'] 5 5 1

['ORF 31'!] 'ORF 67.5'] 5 11 1
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['ORF 31'i] 'ORF 68'] 5 7 1

['ORF 59' 'ORF 67.5'] 5 11 1

['ORF 59'3 'ORF 68'] 5 7 1

['ORF 60'] 'ORF 23'] 12 8 1

['ORF 60'C] 'ORF 68'] 12 7 1

['ORF 60'[] 'ORF Kll'] 12 7 1

['ORF 60'C] 'ORF K12'] 12 2 1

['ORF 61'] 'ORF K10'] 4 15 1

['ORF 61'1[ 'ORF Kll'] 4 7 1

['ORF 63'[] 'ORF 67.5'] 4 11 1

['ORF 63'] 'ORF K9'] 4 2 1

['ORF 9'C] 'ORF 39'] 5 1 1

['ORF 9'C] 'ORF 41'] 5 5 1

['ORF 9'L] 'ORF 47'] 5 1 1

['ORF 9'C] 'ORF 67.5'] 5 11 1

['ORF 9'CI 'ORF 68'] 5 7 1

['ORF K10'] 'ORF 39'] 15 1 1

['ORF K10'E] 'ORF 47'] 15 1 1

['ORF 23'C] 'ORF 30'] 8 3 2

['ORF 28'0 'ORF 30'] 7 3 2

['ORF 28'C] 'ORF 41'] 7 5 2

['ORF 29b'C] 'ORF 30'] 14 3 2

['ORF 29b'] 'ORF 41'] 14 5 2

['ORF 59'] 'ORF K10'] 5 15 2

['ORF 60'7 'ORF 61'] 12 4 2

['ORF 60'1 'ORF 67.5'] 12 11 2

['ORF 63''] 'ORF 23'] 4 8 2

['ORF K12'C] 'ORF K10'] 2 15 2

['ORF 23'13 'ORF 28'] 8 7 3

['ORF 28'!] 'ORF 67.5'] 7 11 3

['ORF 28'17 'ORF K10'] 7 15 3

['ORF 29b'] 'ORF 23'] 14 8 3

['ORF 29b'C] 'ORF 67.5'] 14 11 3

['ORF K10'] 'ORF 31'] 15 5 3

['ORF 23'!] 'ORF 67.5'] 8 11 4

['ORF 60'lJ 'ORF K10'] 12 15 4

['ORF K10'[] 'ORF 41'] 15 5 4
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['ORF 29b'l 'ORF K10'] 14 15 5

['ORF 9'El 'ORF K10'] 5 15 5

['ORF K10'L] 'ORF 68'] 15 7 5

['ORF 29b'0 'ORF 28'] 14 7 6

['ORF K10'] 'ORF 67.5'] 15 11 6

The table summarizes the result for 115 non-dimeric KSHV interactions.

Note that most interacting proteins have no or few neighbors in common, a consequence

of the lack of local clustering in the KSHV network, and hence it is all the more

significant for those interacting proteins sharing many common neighbors, e.g. K10-67.5,

K10-68, 23-67.5, 29b-28, 9-K10, K10-41, 60-K10, 29b-K10. The most extreme example

would be 9-K10, where K10 has all the interactions ORF 9 has! ORF 9 is DNA

polymerase, one of the most well studied proteins, while the role of ORF K10 is still

under investigation. Our result suggests that K10 is also implicated in DNA replication.

3.7.2 Clustering Coefficient with Average Expression Correlation

To account for the low local clustering observed for the KSHV network, we argue that

many of the interactions are dynamic rather than static. While all protein-protein

interactions are connected into a single network, one has to keep in mind that this is a

superimposed view - the interactions could take place at different time or place or under

different conditions. The clustering coefficient around each node addresses the space

constraint. To take into account the time constraint, we introduce a new measure, the

average expression correlation (AEC) around each node. For any given node with an

expression profile, we look at each of its neighbors which also have an expression profile

in turn and compute the correlation between the two profiles. The AEC around that node

is defined as the average of those correlations. Thus the AEC around a node measures

how similarly that node and its neighbors are expressed.
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KSHV Neighbor-AEC Distribution
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Average Expression Correlation (AEC) with neighbors

Even with limited data, AEC does distribute nicely.

Now we consider the clustering coefficient (C) and the average expression correlation

(AEC) with neighbors around each node. If a node's interactions are largely static, as in a

complex, then 1) its neighbors are more likely to interact with each other (hence high C),

and 2) it is more likely to be similarly expressed as its neighbors (hence high AEC). On

the other hand, if the interactions take place at different time/place, then AEC/C would be

lower. So, we combine the two measures and use them to classify KSHV nodes in the C-

AEC space - different regions on the plane would then correspond to different modes of

action and nodes clustered together would then have putative functional associations.
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Dynamic vs Static Interactions
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The distribution of 50 KSHV nodes on the C-AEC plane. C is set to -1 if a node has only

one interaction partner (and hence C is undefined), AEC is set to 0 if no pairwise

expression profiles are available between a node and any of its neighbors.

1) All hubs are not the same. For example, K10 and 29b are the top two hubs, but K10

has much higher C and AEC. (AEC for 29b is rather low -- one would hypothesize that it

interacts with its partners at different time.)

2) In the manuscript you hypothesized about the four IE proteins 50, 57, K8, and 45.

Based on C (all four =0.0) and AEC, it would seem unlikely that they form a complex.

3) ORFs 36 and 54 have very low AEC (ORF 36 has the lowest AEC among all KSHV

nodes) and C (both have C=O) - this is not too surprising (actually quite reassuring),

since both are enzymes.
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4) ORFs 9 and 41 have high C and AEC - this confirms their roles in the DNA

replication machinery. But they have only one neighbor in common (data from analysis

in the previous section, not shown), which suggests they are not in the same complex.

5) K3, K5, and K7 all have very low C but very high AEC - do they have similar

biological roles, since they share similar action patterns? Their putative functional

association discovered by our analysis already has biological support - the "K" in their

ORF names stands for KSHV-specific, so they indeed belong to the same group of genes.

6) K5 and 52 share the following feature - each has 7 neighbors and there is no

interaction among any of the neighbors - are they involved in diverse roles? Moreover,

K5 and 52 have 4 neighbors in common - are they functionally or structurally similar?

3.8 Joint Analysis using C and AEC for Yeast

To both validate our methodology and obtain new results, we now apply the joint C_AEC

analysis to a prototypical cellular system, the single largest connected component (SLCC)

of the yeast PPI network from Benno et al, which has 2358 edges among 1548 nodes.

Unlike KSHV, for which there has been only one genome-wide expression profiling

analysis to date [19], there have been several such studies on yeast, under diverse

conditions. Here we use the cell cycle dataset from Spellman et al [20] as a representative,

in which 6178 genes are profiled under 77 distinct conditions or time points.

After removing 12 nodes in the SLCC that do not have expressions, we obtain a further

SLCC with 2333 edges among 1531 nodes. All further analysis is done on this final

SLCC. Furthermore, to strengthen data, we also consider hubs separately, since C and

AEC around low-connectivity nodes tend to fluctuate a lot due to the small number of

observations. Among the 1531 nodes, we have 116 hubs, defined as those nodes with 8 or

more neighbors. Now we look at C, AEC, and their combination in turn with respect to

this SLCC and its core set of hubs.
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For an independent biological validation of our analysis, we use the Gene Ontology (GO)

annotations available from SGD. For each ORF, we extract its biological process,

biochemical function, and cellular component information.

3.8.1 Clustering Coefficient

We first compute C around each node for the entire SLCC and plot this background

distribution. For those nodes with only one neighbor and hence C is undefined, we set C

equal to -0.1. While the peaks at -0.1 and 0 are expected, there are also distinct peaks at

over 0.3 and close to 1, suggesting typical interaction patterns within biological modules.

Multimodal Distribution of Clustering Coefficient
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Bimodal Distribution of Hubs
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Strikingly, C for hubs exhibits a bimodal distribution at both ends, that is, hubs tend to

have either very low C or very high C, suggesting drastically different modes of action.

For example, presumably those hubs on the left end are enzymes while those on the right

lie in permanent complexes. To test this hypothesis, we look at the GO annotations for

the 18 hubs with C > 0.8 and 62 hubs with C < 0.1.

Hubs with High C
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YBL084C ubiquitin-dependent protein binding* anaphase-promoting
protein catabolism* complex

YBR081C protein complex structural mitochondrion*
assembly* molecule activity

YBR198C transcription general RNA SAGA complex*
initiation from Pol polymerase II
II promoter* transcription

factor activity
YDL008W ubiquitin-dependent protein binding* anaphase-promoting

protein catabolism* complex
YDR118W ubiquitin-dependent protein binding* anaphase-promoting

protein catabolism* complex
YDR145W transcription general RNA SAGA complex*

initiation from Pol polymerase II
II promoter* transcription

factor activity



YFR036W ubiquitin-dependent protein binding* anaphase-promoting
protein catabolism* complex

YGL112C transcription general RNA SAGA complex*
initiation from Pol polymerase II
II promoter* transcription

factor activity
YGL240W ubiquitin-dependent enzyme regulator mitochondrion*

protein catabolism* activity
YHR099W regulation of histone histone

transcription from acetyltransferase acetyltransferase
Pol II promoter* activity complex*

YHR166C ubiquitin-dependent protein binding* anaphase-promoting
protein catabolism* complex

YKL022C ubiquitin-dependent protein binding* anaphase-promoting
protein catabolism* complex

YLR055C histone transcription nucleus*
acetylation* cofactor activity

YLR102C ubiquitin-dependent protein binding* anaphase-promoting
protein catabolism* complex

YNL172W ubiquitin-dependent protein binding* anaphase-promoting
protein catabolism* complex

YOL148C histone transcription SAGA complex*
acetylation* cofactor activity

YOR249C ubiquitin-dependent protein binding* anaphase-promoting
protein catabolism* complex

YPL254W transcription from transcription SAGA complex*
Pol II promoter* cofactor activity

Indeed those hubs with high C are components of well-known complexes.

Hubs with Low C

YAL028W response to stress molecular_function endoplasmic
unknown reticulum

YBR017C protein-nucleus nuclear cytosol
import* localization

sequence binding
YBR109C cytoskeleton calcium ion binding cytoplasm*

organization and
biogenesis*

YBR16OW protein amino acid cyclin-dependent cytoplasm*
phosphorylation* protein kinase

activity
YCR086W DNA replication* molecular function nucleolus*

unknown
YDL017W protein amino acid protein nucleoplasm

phosphorylation* serine/threonine
kinase activity

YDL030W nuclear mRNA RNA binding snRNP U2
splicing] via
spliceosome

YDL043C spliceosome RNA binding snRNP U2
assembly
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YDL132W ubiquitin- structural molecule nuclear ubiquitin
dependent protein activity* ligase complex*
catabolism*

YDL140C transcription from DNA-directed RNA mitochondrion*
Pol II promoter polymerase activity

YDR11OW DNA recombination* ribosomal DNA nucleolus
(rDNA) binding

YDR228C mRNA protein binding* mRNA cleavage
polyadenylylation* factor complex

YDR328C ubiquitin- protein binding* cytoplasm*
dependent protein
catabolism*

YDR395W mRNA-nucleus protein carrier nucleus
export* activity

YDR412W rRNA processing molecular_function cytoplasm
unknown

YDR477W protein amino acid AMP-activated cytoplasm*
phosphorylation* protein kinase

activity
YER095W telomerase- recombinase nuclear chromosome*

independent activity
telomere
maintenance*

YER133W 35S primary protein phosphatase nucleolus*
transcript type 1 activity
processing*

YER148W transcription DNA binding* nucleus*
initiation from
Pol II promoter*

YER165W regulation of poly(A) binding cytoplasm*
translational
initiation

YER179W meiosis* single-stranded DNA nucleus*
binding*

YFL038C ER to Golgi GTPase activity mitochondrion*
transport*

YFL039C cell wall structural actin cortical
organization and constituent of patch*
biogenesis* cytoskeleton*

YGL092W mRNA-nucleus structural molecule nuclear pore
export* activity

YGL115W regulation of protein kinase cytoplasm*
transcription from activator activity
Pol II promoter*

YGL212W vesicle fusion* v-SNARE activity vacuolar membrane
(sensu Fungi)

YGL229C G1/S transition of protein cytoplasm*
mitotic cell cycle serine/threonine

phosphatase
activity

YGR074W nuclear mRNA pre-mRNA splicing small nuclear
splicingO via factor activity* ribonucleoprotein
spliceosome complex*

YGR172C vesicle-mediated molecular function membrane*
transport unknown

YHRO60W protein complex unfolded protein endoplasmic
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a_ ssembly* binding reticulum membrane
YIL046W ubiquitin- protein binding nuclear ubiquitin

dependent protein ligase complex*
catabolism*

YIL061C nuclear mRNA mRNA binding commitment complex*
splicingll] via
spliceosome

YIL144W chromosome structural condensed nuclear
segregation* constituent of chromosome

cytoskeleton kinetochore*
YIR006C endocytosis* protein bindingE] plasma membrane*

bridging
YIR009W nuclear mRNA RNA binding snRNP U2

splicing] via
spliceosome

YJL030W mitotic spindle molecular function nuclear pore*
checkpoint unknown

YJL203W nuclear mRNA RNA binding snRNP U2
splicing] via
spliceosome

YJR022W nuclear mRNA pre-mRNA splicing nucleus*
splicing] via factor activity
spliceosome*

YLR116W nuclear mRNA RNA binding commitment complex
splicing] via
spliceosome

YLR128W biological_process molecular function cellular component
unknown unknown unknown

YLR147C nuclear mRNA pre-mRNA splicing small nuclear
splicingE via factor activity* ribonucleoprotein
spliceosome complex*

YLR229C establishment of GTPase activity* plasma membrane*
cell polarity
(sensu Fungi)*

YLR293C rRNA processing* GTPase activity cytoplasm*
YLR368W mitochondrion molecular function mitochondrion

organization and unknown
biogenesis

YML064C signal protein binding* spindle pole body
transduction*

YMR080C mRNA catabolism* ATPase activity* cytoplasm*
YMR117C chromosome structural condensed nuclear

segregation* constituent of chromosome
cytoskeleton kinetochore*

YMR138W microtubule-based GTP binding cytoplasm
process

YMR308C rnRNA-nucleus protein carrier cytoplasm*
export activity

YNL189W nucleocytoplasmic protein carrier cytoplasm*
transport activity

YNL236W transcription from RNA polymerase II mediator complex
Pol II promoter transcription

mediator activity
YNL271C actin filament cytoskeletal bud neck*

organization* regulatory protein
binding
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Again, those hubs with low C are predominantly kinases and

involved in transient binding, as we hypothesized.

transporters or otherwise

3.8.2 Average Expression Correlation

While all pairwise expression correlations in KSHV are positive, which motivated our

definition of AEC, correlations in yeast can be either positive or negative. In particular,

around any given node, its neighbors can be either positively or negatively correlated in

expression. Thus the AEC defined for KSHV would not directly work for yeast.

Instead of using a single measure, we look at the positive and negative correlations

separately. For a node of degree k, we define k as the number of positively correlated

neighbors and k as the number of negatively correlated neighbors, with k = k+ + k_,

and define A:EC+/AEC- accordingly as the average of positive/negative correlations

around that node.
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YOL004W regulation of histone deacetylase histone deacetylase
transcription from activity complex*
Pol II promoter*

YOR036W Golgi to vacuole t-SNARE activity Golgi apparatus*
transport

YOR047C regulation of protein kinase nucleus*
transcription from activator activity
Pol II promoter*

YOR098C mRNA-nucleus protein binding* nuclear pore
export*

YOR160OW protein-nucleus nuclear cytoplasm*
import* localization

sequence binding
YOR355W aerobic molecular function cytoplasm*

respiration unknown
YPL031C protein amino acid cyclin-dependent nucleus

phosphorylation* protein kinase
activity

YPR105C intra-Golgi molecular function Golgi transport
transport* unknown complex

YPR119W C;2/M transition of cyclin-dependent cytoplasm*
mitotic cell protein kinase
_ cycle* regulator activity

YPR165W cell wall GTPase activity* mitochondrion*
organization and
biogenesis*



Similar to the analysis with C, now we compare the distributions of AEC+ (respectively

AEC-) for all nodes and for hubs only. While the background distribution of all nodes

clusters around 0, where noise mostly occurs, the distribution for hubs shifts away from 0

and has a distinct peak on either side. This not only confirms the unique roles played by

hubs, but also pinpoints the typical, biologically meaningful values of AEC+/AEC-

around the peaks.

Having shown the biological/statistical significance of hubs, we focus the rest analyses

on them. First, we note that hubs tend to have more positively correlated neighbors than

negatively correlated ones, that is, k+ > k_ for most hubs ("day over night"), suggesting

typical temporal regulation patterns around hubs. While this is not surprising for

complexes, those hubs with unusual "day/night" patterns would offer interesting case

studies.
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Distribution of AEC+/AEC- for all nodes and for hubs only. Note the distinct peaks for

hubs, on both positive and negative sides, after the background noise has been filtered out.
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Day over Night around Hubs

I

10

Number of Positive Neighbors (d+)

Sunflowerplot of (k+, k_) around hubs. The number of observations at each data point, if

more than 1, is denoted by the number of stems around the center. As shown in the figure,

such points strongly cluster below the diagonal.
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3.8.3 Joint Analysis of C and AEC

Having validated C and AEC+/AEC- separately, we now combine them for a joint

analysis. We first cluster hubs visually in the C-AEC 3D space and show these two

measures are largely orthogonal, then we prove numerically that the combined measure is

better at picking out biologically significant correlations than either measure alone.

3D Clustering of Hubs

The 116 hubs are plotted in the C-AEC 3D space. Note that the two measures are not

predictive of each other. For a clearer view, we project the points onto the AEC-plane

along the C-axis.
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2D Projection of Hubs
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For a different view, we project the hubs onto the AEC+/AEC- plane, using color

spectrum to denote the corresponding C values. Note how the colors mix without clear

boundaries - thus C and AEC are largely independent measures and their combination

reveals more than the parts.
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To demonstrate this numerically, we compute how often two hubs "close" in space share

the same process, function, or component, for different measures of closeness. The

background sharing percentage for each biological criterion is computed for all pairwise

hubs (6670 of them). Then we define the following three subsets of "close" pairs. We

compute the euclidean distance between two hubs:

Close in 3D - distance < 0.1

Close along C - distance < 0.0707

Close along AEC - distance < 0.0707

Thus the distance in 3D is projected onto the C-axis and the AEC-plane, respectively. As

the following table shows, distance in 3D performs better than either C or AEC alone,

increasing both coverage and accuracy. Interestingly, we also note AEC seems more

predictive of process while C more predictive of function and component.

Random Pair Share Clustered Pair Share Fold Enrichment
0.0629750271444 2.10021715527 3D

Process 0.0299850074963 0.0370885489105 1.23690310617 C
0.0442477876106 1.47566371681 AEC

0.0499457111835 1.66568946797 3D
Function 0.0299850074963 0.0380157626333 1.26782568382 C

0.0320796460177 1.06985619469 AEC

0.0846905537459 1.7274801024 3D
Component 0.0490254872564 0.0713954566528 1.45629264793 C

0.0575221238938 1.17331060053 AEC
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Chapter 4 Viral-host Analysis

4.1 Viral-host Interactions in the Literature

While the KSHV viral system is of significant interest on its own, we recognize that

viruses do not exist in isolation. Many of their properties, in particular pathogenicity, are

meaningful only in the larger context of host interactions. Thus, we would like to connect

our KSHV network to a prototypical host network. Unfortunately, herpesviruses mainly

infect verterbrates and to date there has been no genome-wide experimental mapping of

higher eukaryotic proteomes. Nevertheless, Lehner and Fraser [21] have constructed a

first-draft human PPI network, based on orthologous interactions in model organisms.

We will use their network as our prototypical host network and investigate the topology

of our viral network in that larger context.

To combine the two networks, we need a list of interactions between KSHV and human

proteins, that is, the connection edges. Since there is already a vast literature on

herpesviruses, we first turned there for interaction data. Aside from helping our own

project, a collection of previously scattered herpesviral interactions would be of

considerable interest and use to the virology community.

After extracting and reading more than 1000 PubMed abstracts pertaining to herpesviral

interactions, we were able to compile a list of-300 interactions. As expected, the great

majority of them are viral-host interactions instead of viral-viral ones. The following

table contains those literature interactions between KSHV and human.

PMID Genel (KSHV) Gene2 (Human)

10200596* VIRF-2(ORFK11) ICSBP(ENSG00000140968)

10200596* VIRF-2(ORFK11) IRF-1(ENSG00000125347)

10200596* VIRF-2(ORFK11) IRF-2(ENSG00000168310)

82



10200596*

10200596*

10377196*

10438822*

10438822*

10438822*

10438822*

10559289*

10562490*

10666184*

10736178*

10736178*

11000236*

11000236*

11000236*

11027294*

11038375*

11090200*

11160690*

11160690*

11160690*

11336706*

11390621*

11390631*

11425857*

11533213*

11700073*

11711586*

11741976*

11752170*

12388711*

12477864*

12477864*

12486118*

12584338*

12584338*

12604819*

12612078*

VIRF-2(ORFK11)

VIRF-2(ORFK11)

vMIP-I (ORFK6)

vIRF-1(ORFK9)

vIRF-1(ORFK9)

vIRF-1 (ORFK9)

vIRF-1(ORFK9)

LANA (ORF73)

LANA (ORF73)

vMIP-3 (ORFK4.1)

vMIP-II (ORFK4)

vMIP-II (ORFK4)

LANA-1 (ORF73)

LANA-1 (ORF73)

LANA-1 (ORF73)

vIRF(ORFK9)

LANA-1 (ORF73)

K-bZIP (ORFK8)

ORF50 (ORF50)

ORF50 (ORF50)

ORF50 (ORF50)

kaposnA (ORFK12)

vIRF1(ORFK9)

ORF50 (ORF50)

LANA (ORF73)

K8(ORFK8)

vMIP-II (ORFK4)

RTA (ORF50 )

RTA (ORF50 )

K15(ORFK15)

K7(ORFK7)

RAP=K8(ORFK8)

RTA(ORF50)

LANA (ORF73)

gB (ORF8)

gB (ORF8)

K8(ORFK8)

RTA (ORF50)

RelA/p65 (ENSG00000173039)

p300(ENSG00000100393)

CCR8(ENSGO0000179934)

ICSBP(ENSG00000140968)

IRF1 (ENSGO0000125347)

p300(ENSG00000100393)

p300(ENSG00000100393)

RING3(ENSG00000112526)

HistoneHl(ENSG00000189060)

CCR4(ENSGO0000183813)

CCR5(ENSG00000188239)

CXCR4(ENSG00000121966)

CIR(***)

SAP30 (ENSG00000164105)

mSin3A (ENSG00000169375)

p300(ENSG00000100393)

ATF4/CREB2 (ENSG00000128272)

p53(ENSG00000141510)

CBP(ENSG00000005339)

HDAC-1(ENSG00000116478)

c-Jun(ENSG00000177606)

cytohesin-1(ENSG00000108669)

p53(ENSG00000141510)

CBP(ENSG00000005339)

CBP(ENSG00000005339)

CBP(ENSG00000005339)

CCR5(ENSG00000188239)

MGC2663 (ENSG00000130818)

STAT3(ENSGO0000168610)

HMAX-1 (ENSG00000143575)

CAML(ENSGO0000164615)

C/EBPalpha(***)

C/EBPalpha (***)

HPl-alpha(ENSG00000094916)

alpha3integrin(ENSGO0000005884)

betalintegrin(ENSG00000150093)

hSNF5 (ENSG0000099956)

Brgl(ENSG00000127616)
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12612078*

12612078*

12768028*

12829841*

12829841*

12832621*

12885907*

12885907*

12890756*

12915577*

12941895???

9829980*

RTA (ORF50)

RTA (ORF50 )

LANA-1 (ORF73)

LANA (ORF73)

LANA (ORF73)

RTA (ORF50)

Rap=K8(ORFK8)

Rap=K8 (ORFK8)

vFLIP(ORFK13)

K-bZIP(ORFK8)

Lna(ORF73)

vBcl-2 (ORF16)

CBP(ENSG00000005339)

TRAP230 (ENSGO0000184634)

p53(ENSG00000141510)

Gsk-3A(ENSG00000105723)

Gsk-3B(ENSG00000082701)

RBP-Jkappa (ENSG00000168214)

C/EBPalpha (***)

p21(ENSG00000124762)

IKK-gamma(ENSG00000073009)

Cdk2 (ENSG00000123374)

KLIP1(***)

DIVA???(ENSG00000137875)

In total there are 53 of them. After filtering out 5 redundancies and 5 interactions where

the human interactor does not have an ENSEMBL gene id (denoted by '***'), we are left

with 43 viral-host interactions between 14 KSHV and 36 human genes. Among those 36

human genes, 35 do NOT have interactions in the human network! Obviously there isn't

enough data to combine the KSHV and human networks.

4.2 Predicting Viral-host Interactions

4.2.1 Motivation

The failure of literature interactions to properly connect the KSHV and human protein

interaction networks highlights the urgency for systematic, genome-scale mapping of

viral-host interactions, which would be revolutionary in the study of viral pathogenicity.

Meanwhile, we propose an innovative approach to predict viral-host interactions in silico

and use them to connect the KSHV and human networks for a combined viral-host

analysis.
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While there have been genome-scale interaction mapping for yeast, worm, and fly,

interaction data for other organisms remain sparse. Thus we would like to transfer our

knowledge of interactions in the three model organisms to a new context, namely the

interaction between a virus and its host. The idea is as follows - if a KSHV protein and a

human protein both have orthologs in yeast, and those two yeast orthologs interact in

yeast, then we consider the pair of KSHV and human proteins a potential viral-host

interaction. Similarly, we also map them onto worm and fly networks to see if they

interact.

In contrast to previous effort of mapping interactions in one species onto a second one,

here we map two different species onto a third one. In order to reliably transfer

interactions across, we must have confidence in both the original interactions and the

orthology relationships.

4.2.2 Materials and Methods

To ensure the quality of the original source interactions, we constructed a high-

confidence, core interaction network for each of the three model organism. For yeast, a

core set of interactions were obtained from DIP (Database of Interacting Proteins), as

defined by Deane et al.

To identify orthologs between KSHV and yeast, worm, or fly, we used the reciprocal best

BLAST hit approach. Consider the long evolutionary distance between herpesviruses and

higher eukaryotes, BLOSUM45 were used instead of the default BLOSUM62.

The following table lists the KSHV ORFs with at least one ortholog in the three model

organism:

KSHV ORFs Yeast orthologs Worm orthologs Fly orthologs

KSHV ORF18 *** Y51H4A.17
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KSHV ORF2

KSHV ORF20

KSHV ORF21

KSHV ORF27

KSHV ORF36

KSHV ORF39

KSHV ORF4

KSHV ORF46

KSHV ORF60

KSHV ORF61

KSHV ORF64

KSHV ORF70

KSHV ORF72

KSHV ORF74

KSHV ORF75

KSHV ORF9

KSHV ORFK14

KSHV ORFK5

DYR YEAST

CHK1_YEAST

UNG YEAST

RIR2 YEAST

RIR3 YEAST

YH17_YEAST

TYSYYEAST

CG24_YEAST

PUR4 YEAST

DPODYEAST

SSM4 YEAST

C36B1.7

FllC3.1

C27D6.8

T07H6.5

Y56A3A.29a

C03C10.3

T23G5.1

Y11OA7A.4

Y38F1A.5

F1OF2.2

F1OC2.4

ZK377.2b

F55A3.1

CG14887-PA

CG7036-PA

CG5521-PA

CG1500-PA

CG8975-PA

CG5371-PA

CG3181-PA

CG9096-PC

CG14593-PA

CG9127-PC

CG5949-PA

CG14521-PA

CG13442-PA

To identify human orthologs in the three model organisms is, however, more complicated.

Unlike prokaryotes and micro-organisms, higher eukaryotes have undergone extensive

gene duplication events, resulting in multiple potential orthologs in other species.

Fortunately, the InParanoid algorithm addresses this issue quite nicely. It first identifies

potential orthologs by best pairwise similarity searches, and then clusters those orthologs

into groups of likely co-orthologs, with each ortholog assigned a confidence score that it

is the main ortholog. We obtained the tables of orthologs between human and the three

model organisms from the InParanoid website and extracted only the main orthologs

(those with confidence score 1.0) from each orthologous group.

Thus, we have three high-confidence, core interaction networks, and both KSHV and

human proteins can be mapped onto the three networks using the six high-confidence

tables of orthologs.
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KSHV Gene

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

Human Gene

ENSG00000008177.4

ENSG00000034152.4

ENSG00000060688.1

ENSG00000076554.2

ENSG00000094880.1

ENSG00000100353.5

ENSG00000100522.1

ENSG00000100632.3

ENSG00000104957.2

ENSG00000109911.5

ENSG00000111336.3

ENSG00000111605.6

ENSG00000111802.2

ENSG00000112062.4

ENSG00000112333.1

ENSG00000119242.2

ENSG00000120341.2

ENSG00000121022.5

ENSG00000121083.1

ENSG00000125676.4

ENSG00000126561.4

ENSG00000126945.1

ENSG00000130772.2

ENSG00000131462.1

ENSG00000134072.1

ENSG00000136827.3

ENSG00000137693.4

ENSG00000138382.1

ENSG00000138443.3

ENSG00000138663.2

ENSG00000141552.5

ENSG00000143256.1

ENSG00000143314.1

ENSG00000145675.2

ENSGO0000148396.3

ENSG00000151208.4

Swissprot ID

MPK3 HUMAN

TD52 HUMAN

CC23 HUMAN

IF37 HUMAN

ERH HUMAN

MK14 HUMAN

NR21 HUMAN

TH02 HUMAN

ST5A HUMAN

ROH2 HUMAN

TBG1 HUMAN

KCC1_HUMAN

ANlHUMAN
PFD2 HUMAN

P85A HUMAN

Y310 HUMAN

dYeast d

* 2

* 2

* 2

* 2

* 2

* 2

* 2

* 2

* 2

* 2

* 2

* 2

* 2

* 2

* 2

* 2

* 2

* 1

* 2

* 2

* 0

* 2

* 2

* 2

* 2

* 2

* 2

* 2

* 2

* 2

* 2

* 2

* 2

* 2

* 2

* 2

Worm dFly
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KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF2

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

ENSG00000158234.3

ENSG00000160293.4

ENSG00000162378.2

ENSG00000163106.2

ENSG00000164080.2

ENSG00000165462.1

ENSG00000165917.2

ENSG00000166902.1

ENSG00000170312.2

ENSG00000170365.1

ENSG00000172432.4

ENSG00000173757.2

ENSG00000174444.2

ENSG00000176248.1

ENSG00000178127.1

ENSG00000178950.3

ENSG00000179912.5

ENSG00000182351.3

ENSG00000187391.3

ENSGO0000188920.1

ENSG00000132581.1

ENSG00000005007.2

ENSG00000013275.1

ENSG00000020426.2

ENSG00000051180.3

ENSG00000056998.4

ENSG00000065150.3

ENSG00000065427.1

ENSG00000073536.3

ENSG00000092201.1

ENSG00000092621.1

ENSG00000095002.1

ENSG00000104884.3

ENSG00000106355.1

ENSG00000108504.4

ENSG00000110367.2

ENSG00000111987.2

ENSG00000117222.2

FAI1 HUMAN

VAV2 HUMAN

PGD2 HUMAN

PMXA HUMAN

RAPS HUMAN

CDC2_HUMAN

SMA1 HUMAN

ST5B HUMAN

RL4_HUMAN

ANC2 HUMAN

NUHM HUMAN

GAKHUMAN

YA02_HUMAN

CRP1 HUMAN

AIP1 HUMAN

SDF2_HUMAN

RNT1 HUMAN

PRS6_HUMAN

MAT1 HUMAN

RA51 HUMAN

GYG2_HUMAN

IMB3 HUMAN

HUS7_HUMAN

SERA HUMAN

MSH2 HUMAN

XPDHUMAN

LSM5_HUMAN

CDK3_HUMAN

DDX6_HUMAN

LSM2 HUMAN

RBB5 HUMAN
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KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF46

KSHV ORF46

KSHV ORF46

KSHV ORF46

KSHV ORF46

KSHV ORF46

KSHV ORF46

KSHV ORF46

KSHV ORF46

KSHVORF60

KSHV ORF60

ENSG00000117394.4

ENSG00000118520.3

ENSG00000124198.1

ENSG00000130332.4

ENSG00000130520.1

ENSG00000131459.3

ENSG00000132361.3

ENSG00000136813.1

ENSG00000136936.1

ENSG00000145736.3

ENSG00000146092.1

ENSG00000146372.5

ENSG00000149554.2

ENSG00000155229.5

ENSG00000159352.3

ENSG00000162290.2

ENSG00000163161.1

ENSG00000163754.4

ENSG00000164025.5

ENSG00000164167.1

ENSG00000169100.2

ENSG00000169375.4

ENSG00000170860.1

ENSG00000175324.2

ENSG00000176974.4

ENSG00000183474.2

ENSG00000186298.2

ENSG00000035928.4

ENSG00000049541.2

ENSG00000076242.1

ENSG00000111445.3

ENSG00000113318.2

ENSG00000116062.1

ENSG00000132646.1

ENSG00000133119.2

ENSG00000163918.2

ENSG00000003393.1

ENSG00000100084.4

GTR1_HUMAN

ARGIHUMAN

BIG2_HUMAN

LSM7_HUMAN

LSM4_HUMAN

GFA2 HUMAN

IF3X HUMAN

XPA HUMAN

TFH2 HUMAN

GBLPHUMAN

HDA2 HUMAN

CHK1_HUMAN

PSD4_HUMAN

XPB HUMAN

GLYG HUMAN

ADHX HUMAN

LSM6 HUMAN

ADT3 HUMAN

SN3A HUMAN

LSM3_HUMAN

LSM1_HUMAN

GLYC HUMAN

TFH2_HUMAN

PP1G HUMAN

RFC1 HUMAN

RFC2 HUMAN

MLH1 HUMAN

RFC5 HUMAN

MSH3_HUMAN

MSH6_HUMAN

PCNA HUMAN

RFC3 HUMAN

RFC4_HUMAN

ALS2_HUMAN

HIRA HUMAN
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KSHV ORF60

KSHV ORF60

KSHV ORF60

KSHV ORF60

KSHV ORF60

KSHV ORF60

KSHV ORF60

KSHV ORF60

KSHV ORF60

KSHV ORF60

KSHV ORF60

KSHV ORF60

KSHV ORF60

KSHV ORF60

KSHV ORF61

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

ENSG00000100242.3

ENSG00000105011.1

ENSG00000109472.1

ENSG00000110042.1

ENSG00000119715.3

ENSG00000137104.2

ENSG00000138663.2

ENSG00000139496.4

ENSG00000142507.1

ENSG00000149100.2

ENSG00000163520.1

ENSG00000166484.5

ENSG00000168439.5

ENSG00000171848.1

ENSG00000167325.3

ENSG00000004660.4

ENSG00000056678.5

ENSG00000087586.6

ENSG00000094804.1

ENSG00000100479.1

ENSG00000101558.4

ENSG00000103044.1

ENSGO0000104812.2

ENSG00000105325.3

ENSG00000105810.1

ENSG00000108306.2

ENSG00000108504.4

ENSG00000110931.6

ENSG00000112118.2

ENSG00000113810.4

ENSG00000114978.2

ENSG00000118689.3

ENSG00000118922.3

ENSG00000119138.1

ENSG00000120438.1

ENSG00000123975.1

ENSGO00000134644.3

ENSG00000136933.4

U84BHUMAN

CBPHHUMAN

ERR2_HUMAN

GAL7 HUMAN

NUP1 HUMAN

PSB6_HUMAN

FBL2_HUMAN

IEFS HUMAN

RIR2 HUMAN

RIR1 HUMAN

KFC1 HUMAN

STK6_HUMAN

DPE2_HUMAN

HAS3_HUMAN

GYS1 HUMAN

FZR HUMAN

CDK6_HUMAN

FL2LHUMAN

CDK3_HUMAN

MCM3 HUMAN

SMC4_HUMAN

FXO3_HUMAN

KLFCHUMAN

BTE1 HUMAN

TCPA HUMAN

CKS2_HUMAN

PUM1 HUMAN
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KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF75

KSHVORF9

KSHV ORF9

KSHVORF9

KSHV ORF9

ENSG00000138346.1

ENSG00000140992.4

ENSG00000151458.2

ENSG00000156802.1

ENSG00000157456.1

ENSG00000163104.5

ENSG00000166851.1

ENSG00000171097.2

ENSG00000171132.3

ENSG00000175166.3

ENSG00000188186.1

ENSG00000189285.1

ENSG00000109736.5

ENSG00000101868.2

ENSG00000106628.1

ENSG00000132646.1

ENSG00000155636.3

DN2L_HUMAN

PDPK HUMAN

YB23_HUMAN

CGB2_HUMAN

SRD1 HUMAN

PLK1_HUMAN

KPCEHUMAN

PSD2 HUMAN

DPOA HUMAN

DPD2 HUMAN

PCNA HUMAN

column 1 kshv gene

column 2 human gene (ENSEMBL ID)

column 3 human gene (SWISSPROT ID)

column 4 distance in yeast network

column 5 distance in worm network

column 6 distance in fly network

distance 0 self-interacting

distance I directly interacting

distance 2 bridged by one other protein

distance * bridged by two or more proteins or not interacting at all

Note there is little overlap between the predictions from the three model organisms. First

of all, this might imply that there are many more viral-host interactions and the analysis

done here is far from saturated. Second, this is also a direct consequence of the fact that

the yeast, worm, and fly networks themselves have little overlap. This is not surprising,

consider the latter two networks are very incomplete. Furthermore, even in the same
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organism, the most well studied yeast, there is little overlap between genome-wide

datasets produced by different methods (e.g. Y2H versus Mass Spec) or even by the same

methods (e.g. Uetz versus Ito, Gavin versus Ho).

4.3 Combined Viral-host Analysis

4.3.1 Motivation

Our KSHV network consists of 115 edges among 50 nodes, and is the first major viral

system to date. However, a virus is not an independent, autonomous life form - its crucial

features, in particular its pathogenicity, depend on its interaction with its hosts. To put the

herpesviral network in perspective, we would like to combine with a host network.

Unfortunately, herpesviruses mainly infect vertebrates, and there has been no large-scale

protein-protein interaction data for any of the higher eukaryotes to date.

To transfer our current knowledge of interactions in model organisms to other species,

Lehner and Fraser [21] have constructed a first-draft human protein-protein interaction

network. In their approach, if a pair of human proteins both have orthologs in one of the

model organisms and they interact, then the two human nodes are connected by an edge

in the human network. To validate their predicted human network, Lehner et al have

shown that it preferentially connects proteins that share the same functional annotations.

Due to the importance of understanding herpesviral infection in humans and the

availability of the Lehner network, we decided to use the Lehner network as a model host

network. To further improve the data, we extracted a core set of high-confidence

interactions from that network. The single largest connected component (SLCC) of this

core network consists of 10636 edges among 3169 nodes. All subsequent analyses are

done using this SLCC and we refer to it as "the human network" from now on.
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With a high-confidence viral and a high-confidence host network at hand, we would like

to have high-confidence connections between them. Toward this end, the 156 predicted

viral-host interactions were filtered, so that only those KSHV-human protein pairs with

directly interacting orthologs in one of the model organisms are retained. After the

filtering step, we have 20 viral-host interactions between 8 KSHV and 20 human proteins.

KSHV Gene

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF18

KSHV ORF2

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF36

KSHV ORF46

KSHV ORF60

KSHV ORF60

KSHV ORF60

KSHV ORF60

KSHV ORF61

KSHV ORF72

KSHV ORF72

KSHV ORF72

KSHV ORF9

Human Gene

ENSG00000121022.5

ENSG00000126561.4

ENSG00000173757.2

ENSG00000174444.2

ENSG00000132581.1

ENSG00000092621.1

ENSG00000104884.3

ENSG00000131459.3

ENSG00000149554.2

ENSG00000175324.2

ENSG00000132646.1

ENSG00000100242.3

ENSG00000105011.1

ENSG00000149100.2

ENSG00000171848.1

ENSG00000167325.3

ENSG00000105810.1

ENSG00000108504.4

ENSG00000123975.1

ENSG00000106628.1

Swissprot ID

ST5A HUMAN

ST5BHUMAN

RL4 HUMAN

SDF2 HUMAN

SERA HUMAN

XPD HUMAN

GFA2 HUMAN

CHK1 HUMAN

LSM1 HUMAN

PCNA HUMAN

U84B_HUMAN

RIR2_HUMAN

RIR1 HUMAN

CDK6 HUMAN

CDK3 HUMAN

CKS2 HUMAN

DPD2 HUMAN

Note that two of the eight KSHV proteins (ORF18 and ORF46) do not have viral-viral

PPI in our KSHV network, demonstrating the hidden role of host interaction, which

would have important implications on analyses from sequence evolution to network

topology.
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4.3.2 Results

Using the predicted viral-host interactions, we were able to connect the KSHV and

human networks into a combined viral-host network. Both the KSHV and the human

networks are scale-free, with power coefficient y = 0.95 and y = 1.81, respectively. The

combined network is also scale-free, with y = 1.82. As expected, the effect of the human

network dominates in the combined one, since the human network is much larger than the

viral one (two orders of magnitude).

To isolate the impact of KSHV on human, we zoom out from the KSHV network, one

level at a time, into the human network. We define level 1 nodes in the human network to

be those human proteins directly targeted by KSHV, and level 2 nodes are level 1 nodes

plus their own interaction partners in the human network, and so on. In general, we define

level nodes recursively as level - 1 nodes plus all their human interaction partners.

Now we look at the combined viral-host network one level at a time - a viral-host

network at level i consists of the KSHV network plus level i human nodes together with

their interactions.

Shown is the combined viral-host network at level 2 (that is, KSHV proteins and their

human targets plus the human interactors of those human targets). KSHV genes and their

interactions are shown in red, human genes and their interactions are shown in blue,

while interactions between KSHV and human genes (i.e. viral-host interactions) are

shown in green. Note how the topology of the KSHV network changes drastically from a

highly coupled module to a more typical scale-free network, where there are distinct

modules and crosstalks among them, once the KSHV network is connected to the human

network.
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4.3.3 Simulations and Discussions

Since herpesviruses attack their hosts and take over cellular machineries to their own

advantage, one would expect the combined viral-host network to rapidly take on

characteristics of the human network. Thus one measure to assess the quality of the

combined network is its scale-free property, in particular the scaling exponent y.

Aside from asking how much the viral network has improved itself by taking over the

host network, we also look at the combined viral-host network from a dual point of view

and ask how much damage is done to the human network by the addition of the viral

network. One approach is to simply knock out all affected human nodes and the

interactions they carry, and look at topological properties of the remaining human

network, e.g. the size of its single largest connected component.

Simulations on combined viral-host network

To estimate the statistical significance of network properties of our combined viral-host

network, we must construct a suitable null model. The idea behind the construction is that

the true, correctly combined network should be able to distinguish itself from random,

incorrectly combined networks in terms of network topology.

To construct an equivalent random viral-host network, we generate 20 random "viral-

host" interactions. The 8 host-interacting KSHV proteins and their degrees (the number

of host proteins they interact with) are both fixed, but their human interaction partners are

picked at random. Now we combine the KSHV and the human network using those

random connections and analyze the combined viral-host network at each level, in

parallell to our analysis on the real viral-host network.

We run 1000 such simulations to generate an ensemble of randomly combined viral-host

networks, whose topological properties can then be compared to those of the real network.
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The following tables summarize our results, where we compute the size (the number of

nodes and the number of edges) and the scaling exponent y of the single largest

connected component of the combined viral-host network at each level, together with

their statistical significance (mean, standard deviation, empirical p-value) estimated by

the 1000 simulation runs. Similarly, we compute N, E, y for the SLCC of the rest of the

human network, after the viral-affected nodes have been removed, at each level and give

their estimated statistical significance.

Level Viral-host N Mean SD P-value

1 65.0 65.08 0.64 0.977

2 146.0 87.62 23.07 0.968

3 506.0 201.54 108.46 0.989

4 1331.0 559.57 315.14 0.994

Level Viral-host E Mean SD P-value

1 133.0 130.1 0.6 0.979

2 288.0 247.1 249.3 0.812

3 1712.0 828.2 765.1 0.841

4 5966.0 2558.8 1717.8 0.979

Level Viral-host y Mean SD P-value

1 1.1809 1.1749 0.0077 0.970

2 1.5183 1.1364 0.2206 0.999

3 1.3519 1.1271 0.1957 0.913

4 1.4824 1.2548 0.1499 0.966

Level Host Rest N Mean SD P-value

1 3145.0 3163.2 4.61 0.009

2 2968.0 3110.0 44.76 0.011

3 2297.0 2899.9 203.71 0.009
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604.09 0.010

Level Host Rest E Mean SD P-value

1 10537 10607 24.7 0.023

2 9852 10183 548.6 0.164

3 5787 8998 1320.8 0.018

4 1513 6132 2514.9 0.014

Level Host Rest y Mean SD P-value

1 1.8264 1.8080 0.0093 0.949

2 1.7811 1.8232 0.0483 0.042

3 2.0274 1.8447 0.0771 0.966

4 1.8673 1.8753 0.1066 0.503

To put the numbers in perspective, for each of the above six topological parameters, we

visualize the corresponding result as follows: The distribution of random parameters at

each level is shown as a boxplot (the middle line in the box is the median, the box itself

corresponds to the spread, while whiskers and points further out are outliers). The four

boxplots, corresponding to the four levels, are shown side by side, with the polygon line

connecting the true parameter at each level. Two representative parameters and the

corresponding figures are shown below:
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Topology of predicted vs randomly combined viral-host network

I I I I

Level Level 2 Level 3 Level 4

Combined viral-host network at each level

Predicted viral-host network does more damage to host

Level Level 2 Level 3 Level 4

Remaining host network (SLCC) at each level
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Note the dramatic difference just by how we combine the two networks - all difference

results from the identity of KSHV targets in human. In comparison to randomly

combined networks, our viral-host network is significantly bigger in size at each level.

Furthermore, at each level our network has a bigger power coefficient, that is, is more

similar to the human network in terms of scale-free topology.

As the level goes up, the combined network should have an increasingly bigger power

coefficient, as it takes on more and more characteristics of the much larger human

network. We indeed observe such a trend for our own viral-host network (except for the

spike at level 2), while the power coefficients for random networks remain random and

flat as the level goes up.

Intuitively one would expect the combined network at level 2 to have the highest impact,

since KSHV proteins affect not only those human proteins they directly interact with, but

also their interaction partners down the chain. As the level goes further up, many more

human proteins are drawn in and the effect becomes diluted and less specific. The sharp

spike at level 2 for our own viral-host network (p = 0.001 compared to random ones)

supports this view and is thus actually quite reassuring.

Taken together, the dramatic difference between the predicted viral-host network and

those randomly combined ones not only validates the predicted viral-host interactions as

being likely correct and their human targets as being special, but also shows that network

topology is indeed a key determinant of viral-host interactions and viral pathogenicity.

4.3.4 Further Analysis

Simulations under more stringent conditions
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While in the above simulations the human targets are chosen uniformly at random from

human genes with orthologs in at least one of the three model organisms, the question

remains whether the orthologous mapping procedure we employed in predicting viral-

host interactions has hidden bias towards, for example, selecting more human targets

from within the human PPI network or selecting human targets with higher connectivity

("hub effect"). Now we address this question on two different levels - first we consider

each intermediate model network separately and show that there is minimal hidden bias,

then we run simulations from ground up by repeating the whole orthologous mapping

procedure on the superimposed network and show that it is the identity of KSHV

orthologs (predicted versus randomly assigned) that is responsible for the distinct

topology of the combined viral-host network.

First, the human network (SLCC) consists of 3169 nodes, with an average degree of 6.7,

while there are -7500 human genes with orthologs in at least one of the three model

organisms. Thus, in the previous simulations where the 20 human targets are chosen

uniformly at random, -40% of them would fall within the human network, with an

average degree of 6.7 - this compares to the 20 predicted human targets, where 11 (55%)

lie within the human network, with an average degree of 10.2.

Since the predicted human targets are mapped from one of the model networks, we look

at each of these networks separately to see if the mapping procedure introduces any

hidden bias.

The yeast network consists of 2624 nodes, among which 1222 have orthologs in human

(i.e. mappable). However, among those 1222 nodes, only 406 (33.2%) can be mapped

onto the human network, while the rest fall outside. The 406 mapped human targets have

an average node degree of 10.4 in the human network. Thus, while the mapping

procedure using yeast as an intermediate does select for hubs, it cannot explain the

number of human targets selected (p < 0.05 under binomial distribution).
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We repeat the same analysis for the worm and fly networks and have the following

results:

Network size Mappable Within % within Avg deg
Yeast 2624 1222 406 33.2% 10.4

Worm 1415 530 217 40.9% 6.8

Fly 4190 1612 529 32.8% 6.8

Thus, mapping through the worm or fly network selects for neither the number nor the

connectivity of human targets, while mapping through the yeast network enriches the

connectivity but not the number of human targets.

Simulations from ground up

Since the human network itself is an orthologous superposition of the three model

networks and mapping through the three intermediates simultaneously could introduce

hidden bias in complicated ways, we run simulations from ground up to validate the

predicted KSHV orthologs, KSHV-human interactions, and combined viral-host network.

Among the KSHV ORFs, 11 have predicted orthologs in yeast, 6 of which lie within the

yeast network. Similarly, 14 KSHV ORFs have predicted orthologs in worm, 2 of which

lie within the worm network; the corresponding numbers for fly are 13 and 5. We fix

those 6, 2, and 5 KSHV ORFs and assign to them at random "orthologs" in the yeast,

worm, and fly networks, respectively. Note those three sets of KSHV ORFs need not be

disjoint - if a KSHV ORF has an ortholog in each of the three model networks, then we

assign to it a random "ortholog" in each network.

After this random assignment of "orthologs", we repeat the whole orthologous mapping

procedure as in the prediction of viral-host interactions: If any "ortholog" in any of the

three model networks has a neighbor with an ortholog in human (not necessarily within

the human network), then we "predict" an interaction between the corresponding KSHV

and human genes. The results from all three model networks are merged to give a unique

set of"predicted" viral-host interactions.
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True orthologs give rise to viral-host network with distinct topology

I

Level 2 Level 3 Level 4

Combined viral-host network at each level

Thus, even under the most stringent simulation criteria, where the identity and interaction

patterns of human-targeting KSHV ORFs are fixed and only their "orthologs" are

assigned at random, the key conclusion from our previous analysis continues to hold: The

predicted viral-host network at level 2, the biologically meaningful level, is significantly

different from simulated ones in the key parameter of scale-free networks.
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Chapter 5 Large-scale Retest of Y2H Interactions

5.1 Introduction

Proteins and their interactions form the molecular basis of life. They form structural or

functional complexes, which are the main working machineries in a cell, and they

constitute signal transduction pathways, passing along information crucial to the cell's

survival, from both inside the nucleus and outside the cellular membrane. Thus, in order

to understand the working of a cell and life itself, it is of critical importance to detect and

understand protein-protein interactions (PPI).

Currently there are several experimental methods to detect PPI, with relative strengths

and weaknesses. Structural approaches like X-ray crystallography or NMR offer the best

resolution - not only are interactions unambiguously confirmed, but the interaction

interface is also available, from which key residues determining the interaction specificity

can often be detected and experimentally confirmed by point mutational analysis.

However, solving for 3D structure is an expensive, time-consuming, and sometimes

technically infeasible approach. While the data in GenBank, i.e. genomic sequences, have

been on an exponential growth course in the last 10 years, the structural data in Protein

Data Bank remain modest. Despite current initiatives in structural genomics, solving for

3D structures will not become a routine procedure to detect PPI in the foreseeable future.

Current methods to detect PPI on a genomic scale are either proteomic or genetic in

nature. The former includes CoIP/MassSpec and protein chips, while the most famous

example of the latter is yeast two-hybrid (Y2H).
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Two-hybrid Principle:

Prey

-!

growth on -HIS

The Y2H system is a split-transcription factor system. The idea is as follows: To test if

two ORFs A and B interact, we fuse A with a DNA-binding domain (DBD) and B with

an activation domain (AD) and express them in yeast haploids of the opposite mating

type. After mating, if A and B indeed interact, they would bring together the DBD and

AD and reconstitute the original transcription factor, which would then turn on a reporter

gene and enable the diploid to grow on selective medium. Since ORF A (the one fused

with DBD) sits on the promoter region, waiting to be activated by a certain ORF B (the

one fused with AD), A is called the bait and B is called the prey.

The principle as illustrated only tests a single pair of ORFs for interaction. To enable

interaction mapping on a genomic scale, Ito et al have developed the pool approach,

while Uetz et al have pioneered the array approach. In the pool approach, we mate a pool

of x baits with a pool of y preys and then select for positives and sequence the inserts to

obtain the identity of the baits and preys. Thus, all xy pairwise interactions are tested, but

the identity of positives is not known beforehand. In contrast, we mate a single bait

los B
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against an array of preys (e.g. all -6000 yeast ORFs) in the array approach, and the

identity of positives can be read out directly from their position on the array.

Two-hvbrid-Screen (-His media)

Array Y2H: one bait against all 6000 preys Uetz et al. Nature 2000

In the illustration, one bait (same B) is mated against all 6000 preys (represented by

ORFs of different shapes). While the great majority of pairs do not interact, some pairs

do (e.g. the middle panel) and will show up positive on the array (the white dot).

Despite its efficiency and success, Y2H does have some serious limitations, including

variability due to differential expression of reporter genes, false positives due to self-

activating baits or random noise, and false negatives on technical ground (e.g. hybrid

fusion proteins fail to fold or localize properly, interaction surfaces are blocked by fused

domains, extra cellular signals are needed). Indeed, some of these issues, especially the

false positive issue, have presented major problems. It has been shown that large-scale

Y2H datasets can contain up to 90% false positives, while even the better ones have

about 50% false positives. Since such large-scale datasets constitute the major source of

PPI in public databases and all subsequent analyses, either experimental or

bioinformatical, are done on and conclusions drawn from such data, it is of crucial
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importance to filter out as many false positives as possible from the very beginning,

before they propagate further downstream.

In this study, we investigate the array method of Y2H and show that reproducibility is the

key to filtering out false positives. Along the way, we confirm a set of high-confidence,

previously unknown interactions and explore their biological significance. Furthermore,

we estimate the false positive rate for our own data and compare it to other large-scale

datasets.

5.2 Materials and Methods

Over the past years, we have accumulated over 1500 reproducible (double positive in the

same screen), specific (positive with non-promiscuous prey) Y2H interactions through

several hundred independent screens. Conscious of the large number of false positives,

we decided to carry out a second, independent screen to retest all those putative positives,

before we make them available to the large biology community.

After filtering out baits or preys unavailable on technical ground, we are left with 998

interactions among 272 baits and 706 preys. To find out what is already known in public

domain, we looked the Database of Interacting Proteins (DIP), one of the most

comprehensive sources of PPI data. The yeast interactions in DIP fall into two classes -

CORE and Y2H, the former are confirmed by small-scale or multiple experiments and

thus more confident, while the latter come from large-scale two-hybrid screens and are

confirmed only once. We looked at the intersection of our dataset with DIP:

Class Number of Interactions
Novel 380
CORE 132
Reverse CORE 112
Y2H 232
Reverse Y2H 142
Total 998
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Due to the well-known asymmetry of Y2H, that is, two ORFs are shown to interact in the

bait-prey order but not the other or vice verse, we treat A-B and B-A as two different

pairs of interactions. Thus, for a pair A-B from our own dataset, either it is not in DIP at

all (novel), or it is in either CORE or Y2H, or its reverse is in either CORE or Y2H. Thus,

the novel and Y2H classes of interactions are of primary interest, while the CORE class

provides positive control, and the two reverse classes will be used to investigate the

asymmetry issue. To further ensure the quality of our experimental results, we also use

bait-specific negative controls - there are -1300 preys that have never shown up positive

with any bait screened so far - we use them as negative controls; the more partners a bait

has, the more negative controls we use. Furthermore, we test all interactions in duplicates

of four (instead of the routine), since our experiment is as much about validating methods

as discovering new interactions.

To fit our agenda within the framework of traditional array screens is, however, not a

trivial issue. Considerable computational and experimental resources were devoted to the

experimental design of this project, which falls outside the scope of this thesis and we

omit here. Instead, we present some typical array plates demonstrating some of the key

issues of the array Y2H approach: successful mating, false positives, activators, and bona

fide interactions.
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Snapshots along the way

Matings on YEPD Matings on -LW

Matings on -LW Matings on -His

109 !'.

I

U



Matings on -LW Matings on -His

Negative control plates clearly show which baits are activators!

For activators, use higher levels of 3AT to differentiate true interactions from
noise.
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5.3 Biological Results and Discussions

Thus, we are able to confirm a much higher fraction of high-confidence, known

interactions than novel ones, and there is indeed a difference between Y2H and Reverse

Y2H.

Experimentally, we are able to report 27 high-confidence, previously unknown

interactions and confirm 32 previously unreliable Y2H interactions. The new interactions

are summarized in the following table:

Bait Bait function/role Prey Prey function/role
THP2 Nucleic acid binding; YGR179C Chromosome segregation
THP2 DNA recombination; NUT2 Pol II transcription
THP2 RNA elongation (Pol II); MED7 Pol II transcription
THP2 mRNA-nucleus export VPS 17 Vesicular transport
SOG2 SNF7 Vacuolar transport
SOG2 Unknown YDR111 IC Amino-acid metabolism
SOG2 BRO 1 Small molecule transport
MDM30 DNA43 DNA systhesis
MDM30 Unknown SPS18 Meiosis
MDM30 SGT1 Protein degradation
SGS1 Chromosome segregation YLR415C Unknown
SGS 1 DUN 1 Mitosis
YAL028W Unknown NBP1 Chromatin structure
YAL028W AKR1 Signal transduction
YPT6 Vesicular transport YPL192C
YJL097W Unknown YPL192C Karyogamy
YNL 146W Unknown YPL 192C
FRQ1 Calcium binding YSP3 Protein degradation
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Class/Size All Matings OK Retest Positive Percent

Novel 380 306 27 9

CORE 132 102 27 26

Reverse CORE 112 86 24 28

Y2H 232 196 16 8

Reverse Y2H 142 132 16 12

Total 998 822 110 13



MPC54 Spore wall assembly MPC54 Spore wall assembly
HUB 1 Protein tagging SNU66 RNA splicing
KRI1 Ribosome biogenesis RPN8 Protein degradation
SEC 17 ER to Golgi transport YOLO1OW Unknown
ECO 1 DNA repair MPS3 Nuclear migration
YLR128W Unknown YNL247W Protein synthesis
YOL022C Unknown RODI Cell stress
YJL048C Unknown YJL048C Unknown
YMR269W Unknown YMR269W Unknown

Thus, even for yeast, the most well-studied model organism, much remains unknown!

Now we proceed and discuss some of the biological significance of the interactions we

discovered. For example, SOG2 is an essential gene, yet to date nothing is known about it

- none of its biochemical function, localization, or cellular role is known. Previously it

has been shown to interact with CVT19, COG2, and KIC1, three proteins of diverse roles,

which provides little clue to the role of SOG2 itself. Though our retest, we have

discovered that it also interacts with YDR 1 IC, BRO 1, and SNF7, with high-confidence.

Furthermore, it is known that the latter two, together with VPS4, form a complex

involved in vacuolar transport. Thus our analysis has associated SOG2 with the vacuolar

transport process, with its action possibly modulated by the two enzymes.
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SOG2: essential, yet absolutely nothing is known!

Aminotransferase

Pr

ERI

Complex involved in vacuolar transport

To further illucidate the context of protein-protein interactions around SOG2, we zoom

out one more level and look at its neighbors's neighbors.
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5.4 Statistical Results and Discussions

Now we evaluate the quality of our dataset using several independent statistical measures

and compare it with other large-scale datasets. In particular, we derive the false positive

rate of them.

Mrowka et al have used mRNA expression correlation to evaluate the quality of genome-

scale PPI datasets. Here we introduce three other measures, namely the fraction of pairs

in the dataset that share function, localization, or cellular role, and use them to analyze

the following datasets:

DIP-CORE, DIP-Y2H

PU-All, PU-Retest

Ito-Full, Ito-Core
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Thus, using three independent measures, we have confirmed that our high-confidence

interaction data is indeed of very high quality, comparable to those produced by small-

scale experiments, thus proving reproducibility is the key to filtering out false positives in

Y2H screens.

To estimate the false positive rate of each dataset, we proceed as follows:

Let R be the reference correlation, which we take as the correlation for DIP-CORE, and

let B be the background correlation between random pairs. Let x be the false positive

rate, and hence 1 - x is the fraction of true positives in that dataset. Let G be the

correlation of the given dataset, for which we would like to estimate its false positive rate.

Assuming that the false positives are random and that they are the only source of noise,

we have

R-G
(1- x)R + xB = G, or x = R-B

Using this formula we estimate that the (Y2H) false positive rate of our dataset is around

50% before retest and close to 0% afterwards. Ito-Core and Ito-Full are around 35% and

75%, respectively.
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