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1. Introduction

Consider a 2-D linear elliptic PDE on a unit square discretized by a finite-

difference method with a uniform grid. There is a finite difference equation associated

with each grid point, so that a system of linear equations is obtained by this discreti-

zation procedure. We may assign one processor to each grid point and connect every

processor to its four nearest neighbors. This kind of computer architecture, known as

a mesh-connected processor array, suggests a natural parallel computation scheme to

solve the above system of equations, i.e., parallel computation in the space domain.

Jacobi and Gauss-Seidel relaxation methods seem particularly suitable for mesh-

connected processors, since each processor uses only the most recent values computed

by its neighbors to update its own value. Unfortunately, the convergence rate of

these algorithms is slow. The convergence rate can be improved by various accelera-

tion schemes such as successive over-relaxation (SOR) and Chebyshev semi-iterative

relaxation (CSI) [17]. However, to obtain the acceleration effect requires that the

acceleration factors should be estimated adaptively [8]. This procedure requires glo-

bal communication on a mesh-connected processor array and increases the computa-

tion time per iteration enormously. Any time savings due to acceleration may be

cancelled out by the increased communication time. In order to improve the conver-

gence rate as well as to avoid global communication, a recently developed approach

known as the ad hoc SOR [5] [6] or local relaxation [3] method seems to be useful.



The local relaxation scheme was found empirically by Ehrlich [5] [6] and Botta

and Veldman [3]. They applied this method to a very broad class of problems and

found its efficiency by studying many numerical examples. In this paper, we

approach the same problem from an analytical point of view, clearly prove the con-

vergence of this method for the case of symmetric positive-definite matrices, and pro-

vide an analytical explanation for the good performance of the method.

The conventional way to analyze the SOR method is to use matrix analysis [17].

This approach depends heavily on the ordering of the grid points and on the proper-

ties of the resulting sparse matrix. An alternative technique, which was employed in

[12], [14], and [15] to analyze relaxation algorithms, is to use Fourier analysis.

Strictly speaking, Fourier analysis applies only to linear constant coefficient PDEs on

an infinite domain, or with periodic boundary conditions. Nevertheless, at a heuristic

level this approach provides a useful tool for the analysis of more general PDE prob-

lems, and it has been used by Brandt [4] to study the error smoothing effect of relaxa-

tion algorithms and to develop multigrid methods. Since then, the Fourier analysis

approach has received a large amount of attention in the study of multigrid methods

[16]. Following the same idea, we shall apply the Fourier analysis approach to the

SOR method. For the Poisson Problem defined on the unit square with Dirichlet

boundary conditions, we obtain the same result as Young's SOR method. However,

our derivation is simpler. For space-varying PDEs, the local relaxation scheme uses

space adaptive relaxation parameters. This is different from Young's SOR method
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which uses time adaptive relaxation parameters [8].

The paper is organized as follows. Section 2 discusses the implementation of the

Jacobi, Gauss-Seidel, adaptive SOR, and local relaxation methods on mesh-connected

processor arrays. Section 3 proves the convergence of the local relaxation method.

The Fourier analysis approach is used to analyze the local relaxation method for 5-

point and 9-point stencils, respectively, in Sections 4 and 5. It turns out that the 9-

point stencil analysis requires a slight modification of the basic convergence result of

Section 3. Section 6 shows the results of a computer simulation on a test problem

which indicates that the convergence rate of the local relaxation method is superior to

that of the adaptive SOR method. Some further extensions and conclusions are men-

tioned in Section 7.
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2. Implementing Numerical PDE Algorithms on Mesh-connected Processor

Arrays

The computation time for an iterative algorithm equals the product of the

number of iterations and time per iteration. In a sequential machine, time per itera-

tion is determined by operation counts, especially by the number of floating point

operations required. In a multiprocessor machine, however, time per iteration

depends heavily on the algorithm chosen and on the communication scheme. Con-

sider mesh-connected processor arrays in which processors are organized in a geometr-

ically regular two dimensional square "tiling" pattern and connected only to their

nearest neighbors. Algorithms using only local communication will take O ( 1 )

communication time, while those using global communication require O (N/N )

communication time per iteration since for an array with N processors, communica-

tions between processors located on opposite sides of the array will take O ( \N/ )

time. We thus seek algorithms with fast convergence rate, short computation time,

and primarily local communication.

Let us use an example to illustrate how the above considerations affect the

implementation of various iterative algorithms. Consider a self-adjoint second-order

linear PDE defined on a closed unit square U = [0,1] X [0,1],

-(x 1 ( a {q(xl,x2 ) } - +o(Xl,x 2) U =f ( 1,x2 ), (2.1a)

(x 1,x 2) E U,

with the following boundary condition on F, the boundary of U,
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a(x 1,x 2)u + (xX 2) a = - (X1,X2 ) , (5X,x 2) E F, (2.lb)

where 9U denotes the outward derivative normal to F. The coefficient functions are
On

assumed to be smooth and to satisfy

P(Xl,2) ) > , q(x 1 ,X 2) > , U(X 1,X 2) O> 0 (X 1 , 2 ) CE,

C(X 1,x 2) 0 , (z 1,x 2) o , a + > 0 , (X 1,x 2)E r.

If we discretize (2.1) on a N X \/ uniform grid [17], we get a 5-point stencil;

and the finite difference equation at an interior point (i ,j) can be written as

dij ui,j - rij ui-tl,j - lij Ui-l,j - ti,j uij-1 - bij ui,j-l =-- sij (2.2)

with

lij = Pi- k,j , rij = Pij, ,j bj -- qi,j-v , tij = qi,j+t (2.3a)

di,j = Pi-,,j + Pi+,j + qij- + qi,-j+- + -i,jh2 , sij = fij h2 (2.3b)

where h is the grid spacing and Pi,j is defined as p(ih ,jh). Similar discretized equa-

tions can be obtained for the boundary points where ui j is unknown. Let us choose

a particular order for those equations, and construct vectors u and s from the vari-

ables ui,j and si,j arranged in the selected order; then the interior and boundary

equations can be arranged in matrix form

A u =s, (2.4)

where A contains the coefficients di,j, lij, rij, tij, and bi j . The matrix A is sym-

metric, since li +l, j = rij and bi,j+.1 ti,j.In addition, A is positive definite, since

it is irreducibly diagonal dominant [17, p. 23].



-6-

Starting from equation (2.2), we can discuss the details of implementing different

iterative algorithms with a mesh-connected processor array. Assume that we build a

V/N X \N/ grid of processors, and assign the processor at coordinate (i,j) the

responsibility of calculating the value of uij. Direct communication is allowed only

between neighboring processors. At iteration n +1, each processor may combine the

estimated value of u (n ) in neighboring processors, together with its own estimate of

Uin.i), in order to develop a new estimate ui(~.-+' ). A particularly simple iteration, for

example, is the Jacobi method, in which we iteratively calculate:

U (nt:.l ) = di-1 ( ij, u (n)l, j - r, u t bij U () ti+- U ()1 +T, 3 )3 2, 't'1 , · j

According to the above iterative equation, each processor uses the values of u(n)

obtained by its nearest neighbors to update its value at the current iteration. Time

per iteration is constant, because both the communication time and computation

time are constant.

If the grid point ( i j ) is called a red point when i + j is even, and a black

point when i +- j is odd, the Jacobi method can be viewed in space and time as con-

sisting of two interleaved, and totally independent, computational waves alternating

between red and black points. This phenomenon is illustrated in Figure 1, where the

one dimensional grid with red/black partitioning is shown in the horizontal direction

while the evolution from one iteration to the next is indicated in the vertical direc-

tion. The solid and dotted lines represent two value-updating processes evolving with

time, or two computational waves. In fact, these two waves result in unnecessary
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redundancy. We need only one wave to get the answer, since both waves converge to

the same final values. If we delete one computational wave, the rate of utilization of

the processors becomes one half, i.e., every processor works only half of the time.

Therefore, we may group one red point and one black point together and assign them

to a single processor. This saves half of the hardware cost without loss of computa-

tional efficiency (See Figure 2).

To derive a Gauss-Seidel algorithm for this problem, let us consider the same

red/black point partitioning and write the local equation as

red points ( i + j is even ):

u (, ) = di-J ( li,j u ( ri,y ( j + bi,j u (in ,) j l - tij u (.)y + s i j ).1 Y) 1, j( n)i j 

black points ( i + j is odd ) :

, (- t+) = di-, ( i r u (? +1 r u + bi j u (+'1), + t i j u 2 + si ) 

Other partitionings will lead to different Gauss-Seidel Schemes; however, the

red/black partitioning approach is preferred for parallel implementation on mesh-

connected arrays, because of its efficiency and simplicity. Note that the difference

between the Jacobi and the Gauss-Seidel relaxation methods is that the Jacobi

method updates the values of all nodes at one iteration while the Gauss-Seidel

method updates the values of half of these nodes during a first step and updates the

values of the other half during a second step based on the previously updated infor-

mation, and these two steps form a complete iteration. For the case of a one dimen-

sional grid, we find that the Gauss-Seidel iteration is equivalent to the computational



wave of the Jacobi iteration shown by the dotted line in Figure 1. Therefore, we can

save one half of the computational work by using Gauss-Seidel iteration on either a

single processor or a mesh-connected array.

The chief shortcoming of the Jacobi or Gauss-Seidel iterative methods lies in

their slow convergence rate. It usually happens that the spectral radius of the relaxa-

tion matrix is very close to 1, which causes the convergence rate to be extremely slow.

The number of iterations needed is proportional to 0 ( N ) [17]. Since time per itera-

tion is constant, the total running time is also proportional to 0 ( N ).

By applying different acceleration schemes to the Jacobi and Gauss-Seidel tech-

niques, we can derive a variety of accelerated relaxation algorithms. Two typical

examples are the Chebyshev semi-iterative (CSI) method and the successive over-

relaxation (SOR) method. These acceleration schemes use carefully chosen relaxation

parameters to reduce the spectral radii of the iterative matrices so that the iterative

algorithms converge faster. To determine the relaxation parameters, CSI acceleration

uses knowledge of the largest and smallest eigenvalues of the basic relaxation matrix

and SOR acceleration uses knowledge of the spectral radius of the basic relaxation

matrix [17]. For a given mesh-connected processor array, if we know these quantities

a priori and broadcast them to all processors in the loading stage, each processor can

compute the acceleration parameters on its own without additional communication

cost. In this case, although the accelerated schemes require a little more computation

and memory than the basic Jacobi and Gauss-Seidel relaxation schemes, they present



some significant advantages. The reason is that the number of iterations needed is

reduced tremendously, becoming O( \/ ) for both acceleration schemes [8]. How-

ever, in general we do not know the eigenvalues of the basic relaxation matrix in

advance and have to estimate them by some adaptive procedure. To our knowledge,

all the estimation procedures developed require the computation of the norms of some

global vectors. Therefore, global communication cannot be avoided. This means that

the communication cost for a single iteration in a mesh-connected array becomes

0 ( N ). As a consequence, time per iteration is 0 ( \O ) and the total running

time becomes O ( N ) again.

Comparing this result with the result obtained for the basic relaxation methods,

it seems that we do not benefit from acceleration schemes when we seek to implement

iterative algorithms in parallel on mesh-connected arrays. This can be easily

explained by noting that for a single processor, there is no distinction between local

and global communications, since all data are fetched from the same memory, while

for a mesh-connected processor array, long range communication costs much more

than short range communication.

In addition to the above relaxation algorithms, another important class of algo-

rithms for solving systems of linear equations can be derived from an optimization

principle. The conjugate gradient (CG) algorithm is an example [8]. Without consider-

ing rounding errors, a theoretical analysis indicates that the CG algorithm is able to

solve the discretized PDE exactly in O( N ) steps, using only O( N 2 ) computation
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and 0 ( N ) storage on a single processor. In practice, experience shows that the CG

method, when applied to the PDE problem, usually converges in O( ( ) steps even

with rounding errors. Unfortunately, on a mesh-connected array, this algorithm is

slowed by the need to compute several inner products of O ( N ) length vector. Com-

puting the inner product of two vectors whose entries are distributed over a mesh-

connected array requires global communication. We therefore encounter the same

difficulties as for the accelerated relaxation methods.

The local relaxation method proposed by Ehrlich [5] [6] and Botta and Veldman

[3] is a computational algorithm suitable for parallel implementation on mesh-

connected processor arrays, because it has the same acceleration effect as SOR and

uses only local communication. A local relaxation procedure for equation (2.2) can be

written as

red points (i + j is even ):

U (n .l) = ( 1 -_ i ) Ui(n.) (2.5a)

+ wi j di-J ( lii j (iU, j + ri,j U ( 1, + bi, j u (I)j_1 + ti,j u (?)jl + si,j )

black points ( i + j is odd):

U2 (.n l.1) =_ ( - wi,j) Ui(n) (2.5b)

+ w;,j di-l ( lij u (+,l)j + ri,j 1u (n +1) + bi,j u ( fl) f ti,j u (n fP Sj ) 

where wij is called the local relaxation parameter.

Assuming Dirichlet boundary conditions and M 1 X M 2 =-N unknowns within

the unit square, it was suggested in [5] [6] that a good choice of local relaxation



parameters wi j is given by

2
wi- 1 + 7 (2.6)

where

2 7r _7r_
Pi,j d d ( 1, obs M 1 + ,,cos di, ) (2.7)

d;,j M 21 3M2+l1+1

Since we consider only the case of symmetric discretized matrices, the parameter Pi,j

is always real. This gives us the ad hoc SOR method or the local relaxation method

for a symmetric matrix. However, the local relaxation method can also be applied to

more general matrices such that Pi,j is purely imaginary or complex. The formula to

determine the relaxation parameters for these cases can be found in [3],[5] and [6]. In

this paper, we will focus on the local relaxation method for a system of equations

A u - s where A is symmetric positive definite. The more general case will be con-

sidered in a subsequent paper.

The implementation of the local relaxation method is straightforward. It is easy

to see that as long as we know the size of the grid, i.e., M 1 and M 2, we can broad-

cast this information to all processors in the loading stage. Each processor has to

compute its own relaxation parameters once according to equations (2.6) and (2.7);

then the local iterations specified by equation (2.5) can be performed in parallel for all

processors with only local communication. Since the local relaxation method uses

local communication, the computation time per iteration is 0 ( 1 ). We will show that

the number of iterations for typical test problems is proportional to 0 ( ) in
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Section 6. Therefore, the total running time becomes O( (/K ). For a VN/ X 'N/

processor array, the constraint that each processor should contain a minimum

amount of global information implies that the lower bound for the computation time

for any algorithm is 0 ( 1/N ), since it takes 0 ( N/ ) time for the data at one

edge of the array to move to the opposite edge. It turns out that the local relaxation

method achieves this lower bound.

Although the local relaxation method was empirically shown to be powerful,

there are several questions which were left unanswered by the papers of Ehrlich,

Botta, and Veldman. First, they did not prove that the local relaxation method con-

verges. Furthermore, there was no explanation of why the local relaxation method

converges very fast. In the following sections, we will explore these two issues.
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3. Convergence of the Local Relaxation Method

In this section, we give a sufficient condition for the convergence of a local relax-

ation procedure. Then, we show that the local relaxation method given by equations

(2.5)- (2.7) indeed converges.

In order to obtain a convergence result which covers the most general type of

local relaxation procedure, we use a matrix formulation, since such a formulation

includes not only the 5-point stencil corresponding to the discretized equation (2.2),

but also other kinds of stencils. Given a linear system of equations, A u =--s ,

where A is an N X N real symmetric positive definite matrix with positive diagonal

elements, we may rewrite A as

A =D-E-F =D (I-L-U), and ET =F,

where I, D, E and F represent identity, diagonal, lower and upper triangular

matrices, and L = D - 1 E and U - D - 1 F. Let W be the diagonal matrix formed

by the local relaxation parameters, i.e., W = diag ( l, w2, . ., wN ). Then, a

local relaxation procedure can be written in matrix iterative form as

u (' fl ) = ( I - W L)- [ ( I - W ) + W U] u (n ) + ( I - W L) -1 W D -1 s . (3.1)

Let ui be the solution of the above iterative equation, so that

- = ( I-WL)- [ ( I-W ) + W U] u + ( I-W L)- W D-s .

Define the error vector at n-th iteration as e( ) = u(n) - . Then the matrix itera-

tive equation in the error space becomes
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e(n-kl) = ( I-W L )-1[( I-W ) -+W U]e( n ) . (3.2)

The iteration matrix of the local relaxation procedure (3.1) is therefore given by

G (W) = ( I - W L )-1 [( I - W ) + W U 1. The iteration procedure will converge

for all initial estimates u( 0) if and only if all eigenvalues of G (W) are less than one in

magnitude, i.e. if the spectral radius p[G (W)] of the iteration matrix G (W) is less

than 1. A simple sufficient condition for convergence is given by the following

theorem.

Theorem 1 (Sufficient Condition for the Convergence of a Local Relaxation
Procedure)

Suppose A is an N X N real symmetric positive definite matrix. For the local relax-
ation procedure given by equation (3.1), if 0 <Wi < 2 for 1 < i < N, then
p[G (W)] < 1 and the iterative algorithm converges.

Proof:

Let X and p be an arbitrary eigenvalue, eigenvector pair of G (W). Then

G (W) p = X p, or equivalently,

[(I-W ) + W U ] p = X(I-W L )p . (3.3)

Premultiplying by pH D W - 1 on both sides, we obtain

pH D W-l p _ pH D p + pH D Up = X pH D W-l p _ pH D L p

Since ET = F, E = D L, and F = D U, it is easy to check that

pH D Up = (L p)H D p = pH D L p

Defining z L and 1 = D W p the equation (3.3) can be
p H D p w pH D p

simplified as
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1 X
-- +-= -X z

or equivalently,

1-W z

Let z = r ej 0, then

X 2- w(2-w)(1--2rcos 0)
l l [I2 __ X X -- 1 (1 -3 r cos 0)2 -+ 2r 2 sin2 (3.4)

We know that I X 12 is always positive. If we can show that the second term in the

above expression is also positive, then we can conclude that I X I is less than 1. The

denominator of the second term of equation (3.4) is positive, so that we only have to

consider the numerator. We have

pH D L p pH D U p
2 r cos -- 2 Re ( z ) = z - + 

pH D p pH D p

PH A p

PH D p

where the inequality is due to the fact that A and D are both positive definite. Note

that since A is positive definite, the matrix D formed with the diagonal elements of

A is also positive definite. Therefore, we know that 1 - 2 r cos 0 > 0. Now, con-

sider the range of the parameter w. Since W = diag ( w 1 , 2 ... , WN )7

W - 1 -- diag ( w1 , W1, ... , wKl ). Assuming that all relaxation factors are posi-

tive, we have
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'EPilp 12diL
1 <p H D W - 1 p i=l 1

< < --N
max pH D p di min

i =1

where wmax and Wmi n are the largest and smallest eigenvalues of the matrix W and Pi

is the i th element of the vector p. If we set 0 < Wmin < Jmax < 2, then

0 < Wmi n < W < Wmax < 2

Under this condition, the second term in equation (3.4) is always positive, so that the

eigenvalues of the matrix G (W) are all less than 1 and the local relaxation pro-

cedure (3.1) converges.

Q.E.D.

The above theorem gives the range of the local relaxation parameters which guaran-

tees that a local relaxation procedure converges; however, it does not tell us how to

choose the relaxation parameters to make a local relaxation procedure converge fas-

ter. The local relaxation method mentioned in the last section is a special case of a

local relaxation procedure, where the local relaxation parameters are specified for a

5-point stencil discretization. To show its convergence, we only have to show that all

relaxation parameters chosen by the rule (2.6), (2.7) are between 0 and 2.

Corollary (Convergence of the Local Relaxation Method for a 5-point Sten-
cil Discretization)

The local relaxation method for a 5-point stencil given by (2.5) - (2.7) converges

Proof:
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From the discussion in the previous section, we know that the matrix A

obtained by discretizing (2.1) is symmetric positive definite.

Since p(xl1,x 2 ) and q(xl,x 2) are positive functions and a(x 1 ,x 2) is a nonnegative

function, we know from (2.3) that lijj, ri,j, bij, tij, and di, j are all positive. In

addition, 0 < cos M <1 I i for 1 < M <oo. Therefore Pi,j given by (2.7) is also

positive. Using the inequalities

2X/l, jr, j < l,j + q,j, 2//ti, jbij < ti,j 4 bi,j

we have

j di ,M

lij +ri, ti j _b,

• ' ~ cos -M 4-C+ cos-- d i , ml +/1.1 di ,y 2+1

ji , jr ,ti j -bi, j,
<1

where the last inequality is obtained by noting that oij > 0 in equation (2.3b). It is

easy to see that

0 < ij- =1 + 2- < 2

for 0 < Pi,j < 1. The local relaxation parameters chosen by the local relaxation

method satisfy the sufficient condition given in Theorem 1, so that the relaxation

method converges.

Q.E.D.
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4. Fourier Analysis of the Local Relaxation Method - 5-point stencil

The convergence rate of a local relaxation procedure depends on how we choose

the local relaxation parameters. The conventional SOR method chooses a spatially

invariant relaxation parameter wi,j = w to minimize the asymptotic convergence

rate, or, equivalently, minimize the spectral radius of G (W). Young [18] showed that

the optimal choice for w in the accelerated Gauss-Seidel iteration is

2

where p is the spectral radius of D-1(E +F). For this relaxation parameter, all eigen-

values of G (wI) can be shown to have magnitude c-1. In practice, it is quite difficult

to calculate p exactly, and thus adaptive procedures are required to estimate p as the

computation proceeds. In this section, we will use a Fourier analysis approach to

derive a simple formula for a spatially varying relaxation parameter. Our formula is

identical to that suggested by Ehrlich [5]. Our approach demonstrates that this for-

mula will indeed achieve an excellent convergence rate. This study also gives some

new insight into Young's SOR method.

For a linear constant coefficient PDE with Dirichlet or periodic boundary condi-

tions, the eigenfunctions of D-'(E+F) are sinusoidal functions. Therefore, the spec-

tral radius of this iterative matrix can be obtained by using Fourier analysis. How-

ever, for a space-varying coefficient PDE with general boundary conditions, the

sinusoidal functions are not eigenfunctions. As a consequence, Fourier analysis cannot

be applied rigorously. Notwithstanding this disadvantage, Fourier analysis is still a



convenient tool for understanding the convergence properties of relaxation methods

[16]. A more rigorous treatment to make Fourier analysis applicable to space-varying

coefficient PDEs with general boundary conditions is needed and is currently under

study. Roughly speaking, the reason why Fourier analysis often works in spatially

varying PDE problems is that the eigenfunctions can be regarded as sinusoidal func-

tions plus some perturbations. As long as the perturbation is comparatively small,

the sinusoidal function is a good approximation of the original eigenfunction. There-

fore, Fourier analysis is still a good analytical tool. A detailed formulation of Fourier

analysis in this general context will be presented elsewhere.

In Section 4.1, we will show how to find the lowest Fourier component for given

boundary conditions. Then, we use Fourier analysis to analyze the Jacobi relaxation

method in Section 4.2. This approach is sometimes called the local Fourier analysis

[16]. Finally, we justify the efficiency of the local relaxation method. The derivation

can be viewed as a generalization of Brandt's local Fourier analysis to the Successive

Over-Relaxation case.

4.1 Admissible Error Function Space and Its Lowest Fourier Component

Let Fi, 1 < i <4 denote the four boundaries of the unit square. Consider a set

of linear first-order boundary conditions such as (2.1b) on the boundaries of the unit

square,

B i u = g on Fi 1 < i < 4, (4.1)

where Bi represents the boundary condition operator on the i-th boundary. It is



- 20-

more convenient to analyze the relaxation in the error space rather than in the solu-

tion space, because the error equations are homogeneous. The error formulation for

the boundary conditions can be obtained as follows. Let fu be the actual solution so

that

Bi u =g- on FJi 1 < i < 4, (4.2)

Subtracting (4.2) from (4.1), we obtain the homogeneous PDE in the error,

B i e =0 on Fi i< i < 4, (4.3)

The functions defined on the unit square and satisfying the homogeneous boun-

dary conditions (4.3) are called the admissible error functions, since any error func-

tion allowed in the relaxation process should always satisfy the given boundary condi-

tions. All admissible error functions form the admissible error function space. The

sinusoidal functions in the admissible error function space can be chosen as a basis of

this space because of their completeness. As far as the convergence rate is concerned,

we will see that only the lowest frequency component is relevant. Thus, we will find

that only the lowest frequency of this basis needs to be determined.

We assume that all B i 's are constant-coefficient operators. Under this assump-

tion, B 1 and B 3 are independent of the x 2-direction, B 2 and B 4 are independent of

the x l-direction, and since the problem domain is square, the admissible Fourier com-

ponents can be written in separable form as sl ( xl ) s2 ( x 2 ), where s1 ( ) and

s2 ( ) are two 1-D sinusoidal functions. The boundary condition on F1 becomes



- 21 -

B 8 1 ( X 1 ) s2 ( x2 ) =s2 ( X2 ) B 1 s ( x ) =O

i. e.,

B 1 sl(xl)=O

Similarly, we simplify the boundary conditions on F2, F3, and F 4, and decompose the

2-D problem into two independent 1-D problems.

(I) B 1 s 1 ( x 1 ) =0 when x1 = O, B 3 sl1( ) = O when x 1 = 1, (4.4a)

(II) B 2 s 2 ( x 2 ) = O when x 2 = O, B 4 s 2 ( x 2 ) = O when x 2 = 1. (4.4b)

From (4.4a) and (4.4b), we can determine the lowest frequencies k1 and k2 separately.

We only show how to get k1 from (I); then I2 can be obtained from (H) in the same

way.

Consider the mixed type boundary operators,

B1 =b1 +b2 d for x = 0 , (4.5a)

B 3 = b 3 + b4 d for x1 = 1 (4.5b)

The Fourier component s ( kl , x1 ) of s ( xl ) at the frequency kl can be written as

a linear combination of two complex sinusoids ei kx, and e i k, 1i. e.,

s ( ki, x) c ( kl ) ei k"' + c (-kl ) e- i k, (4.6)

Substituting (4.6) into (4.5), we obtain

(b1 + i b2 k1 ) c ( kl ) + (b - i b2 kl ) c (-k ) = 0

(b3 + i b4 kI ) e i k xl c ( kl ) + (b 3 - i b4 k 1 ) e - i c (- k ) = 0

In order to get nonzero values for c ( k 1 ) and c ( - k1 ), the determinant of the 2 X

2 coefficient matrix should equal zero, or equivalently
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ei 2 k_ ( bl -+ i b 2 kl ) ( b3 - i b4 kI )
i-k-_ (bl i b 2 kl)(b 3 _-i b 4 kl) (4.7)( bl - i b2 k 1 ) ( b3 + i b4 ki )

Therefore, we conclude that the frequency k1 of any admissible 1-D sinusoidal func-

tion with respect to the boundary conditions (4.5) must satisfy equation (4.7).

Let us look at two examples. If the boundary conditions on both F1 and F3 are

Dirichlet type boundary conditions, which means b2 and b4 are zeros, then (4.7)

becomes

e i 2 k- = 1 or cos 2 k 1 + i sin 2 k 1 = 1

The solutions are k1 = n 7, n = 0, ±1, +2,.... However, it is easy to see that the

zero frequency cannot be allowed. Thus, the lowest Fourier frequency k1 in the admis-

sible error space is 7r. If we change the boundary condition on F3 to be of Neumann

type, i. e., b3 = 0 but b4 74 0, then (4.7) becomes

ei 2 k =_ 1 or cos 2 k 1+ i sin 2 k =- 1

1
The solutions are k 1 = 2 n ir, where n is odd and the lowest frequency kl is 2.

2 2

The same procedure applies to other boundary conditions. Notice that the

determination of the lowest Fourier components of a given PDE requires only the

knowledge of the boundary conditions and of the geometry of the problem domain.

The above procedure does not require any information about the PDE operator.

4.2 Local Jacobi Relaxation Operator and Its Properties

In this section, we use a Fourier analysis approach to analyze the local Jacobi

operator and to determine its largest eigenvalue, or spectral radius, for given boun-
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dary conditions as previously discussed. The spectral radius of a local Jacobi opera-

tor will be used to determine the optimal local relaxation parameter of the local relax-

ation scheme in Section 4.3.

Define the x1 - direction ( x 2 - direction ) forward-shift and backward-shift

operators, E 1 and E - 1 ( E 2 and E - 1 ), as

E1 ui,j -= ui l,j E 1 ui, j = Ui-l,j

E 2 Ui,j = ui,jl E2 - 1 ui,j = ui,j-

Then, the 5-point discretization formula for an interior grid point can be written as

Li,j Ui,j = si,j

where Lij -- di, j - ( ri j E 1 - li j E - 1 +- ti j E 2 bi j E - 1 ) is the local discre-

tized differential operator at node ( i , j ). The Jacobi relaxation at a local node

can be written as

Ui(nf+l) - Jij Ui("j) + sij n > O

where Ji, - di-1 ( ri j E 1 + Iij E- 1 + ti j E 2 + biy E2
- 1 ) is the local Jacobi

relaxation operator. From the error point of view, we get

e(+) = Jij ei(, ) n > 0 .

If the input error function ei(") is the complex sinusoid ei(k Zx+kl2), we have

Jij ei (klXlk 2 x2 ) = tij(klk 2 ) ei (k1 1 +k2x 2 )

where zi,j(kl,k2) = di-j ( rijeik1h + li, j e-iklh + tijeik2h bi,je-ik2h ) There-

fore, we may view ei(kilx+k2 X2 ) as an eigenfunction of Ji,j with eigenvalue pi,j(kl,k2).

The magnitude of 1ti,j(kl,k2) provides some information on how the errors of
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different frequency components are smoothed out by the Jacobi relaxation process.

This quantity can be computed as

lij,j(kl,k2)1 = (4.8)

1

( [(rijli,j)cosk 1h +(t ,j bi,j)cosk2h ]2+[(rj-li,jj)sink ih +(t ,j-b ,j)sink2 h 12) 2

di ,j

Assuming that the coefficient functions are smooth so that

ri,j - lij -- , j - li,j = 0 (h) and ti, j - bi,j -- b i- l j - bij -- 0 (h),

then the two cosine terms in I !ij I are the dominant terms.

The eigenvalue function pi,j(kl,k 2) is usually called the frequency response in

signal processing [11] and the Jacobi relaxation operator can be viewed as a filtering

process in the frequency domain. The frequency response function with the magnitude

shown in (4.8), in fact, represents a 2-D notch filter instead of a lowpass filter. How-

ever, if the discretization space h is small enough and the waveforms are band-

limited, this is not a significant problem. The reason is best explained from the

Taylor's series approximation of a function f ( x ), i. e.,

f ( )- f ( x0 ) +(X - f'(x0)+ f ! ( ) +

Supposing f ( x ) = eikx and x = x 0 + h, the high order terms are negligible only

if the product kh is reasonably small, say, less than 1. That means that as long as

the magnitude of wavevector k is bounded, we can always find a discretization spac-

ing h which is fine enough so that the dimensionless frequencies 01 = k 1 h and

02 = k 2 h are always inside the unit circle in the ( 01, 02 ) plane. In this region, the
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notch filter behaves like a lowpass filter. The lowpass filtering property makes the

error at higher frequencies converge to zero faster than that at lower frequencies.

The eigenvalue with the largest magnitude is the dominant factor in the asymp-

totic convergence rate analysis, so that we will focus our attention on this quantity.

Following the above discussion, we define the spectral radius Pij of Jfij as the larg-

est magnitude of 1ti,j(k l,k 2 ), i.e.,

Pij - max |i ,j(kl,k2 ) 
kl, k2

For the symmetric positive definite matrix case, the magnitude of Iti,j(kl,k2) is the

largest at the lowest frequency (kl,k2 ), since such a choice makes the dominant cosine

terms of (4.8) as large as possible. Therefore, we obtain

pi,j --= I i,j(k1,k 2) I

The above procedure, known as local Fourier analysis of Ji,j, has two implicit

assumptions. First, Jij is space-invariant. Secondly, the problem domain should be

either extended to infinity or be rectangular but with periodic boundary conditions.

In general, these two assumptions do not hold. As a consequence, Pi j is a spatially

varying function and is not equal to the spectral radius p of the original Jacobi relax-

ation matrix J = D-1(E +F). An important question to be answered is whether the

knowledge of Pij can provide us some information about p. Two observations may

be of help. First, the same lowest frequency gives the spectral radii of all local Jacobi

relaxation operators, so this frequency should play a role in determining the eigen-

function giving the spectral radius of the Jacobi relaxation matrix J. Furthermore,
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for a given low frequency (kl,k2), Pi,j is a very smooth function in space. It is nei-

ther sensitive to variations of the coefficient functions nor sensitive to changes in the

boundary conditions. For example, the values of Pi,j given by equations (2.7) and

(4.8), computed for Dirichlet and periodic boundary conditions separately, are only

slightly different under the assumption that the coefficient functions are smooth. Let

P = max Pij and p =- min Pi,j. Then, p should be a quantity somewhere between p

and p. Usually, the difference between p and p is so small that any Pij can give us

an estimate of p.

Notice that in order to determine the spectral radius of a local relaxation opera-

tor, we only have to know the lowest admissible Fourier component corresponding to

the given boundary conditions, discussed in Section 4.1, and then to compute Pi,j

according to (4.8).

4.3 Applying Fourier Analysis to the Local Relaxation Method

Let us reconsider the local relaxation method, i.e., equation (2.5). We divide the

problem domain into red and black points and update one color at each time step.

Suppose we start with the relaxation of the red points, then with the black points.

The local equations for the error can be written as

e. (n+ l) = (1 - i, ) ei(') + wi, Ji, j ei(') for i +j even (4.9)

e(n 'l ) = (1 - wi j ) ei('.) + wi j Jw j ei("' 'l ) for i +j odd (4.10)

If all ijj's are approximately the same within that small region, then we can com-

bine (4.9) with (4.10) and rewrite equation (4.10) as
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e(!~.+ l) = (1 - wi,j ) ei(.) + wi, j ( 1 - wi, j ) Jij ei(n) + wCi2j Ji2 j ei(n) (4.11)

for i +j odd

Let eR and eB represent respectively the errors at the red and black points around

node ( i , j ). Notice that equations (4.9) and (4.11) describe, in fact, the relation of

two waves - the red and black waves in the local region around node ( i , j ). Rear-

ranging and simplifying (4.9) and (4.11), we obtain the following relation between two

successive iterations,

e/n+1) I z 1W, j O3i,j Ji,j e)

~nf 1)- (elfn > 0

where the 2 X 2 matrix operator Gij ( wi j , Jij, ) appearing in the above equation

is called the local relaxation operator with relaxation factor wi,j at node ( i, j ).

Assuming that an eigenfunction of the local relaxation operator Gi,j has the

form ( c 1 ei(kxl, , +k2X2) , C2 ei(k, - + k2 X2) )T and that the corresponding eigenvalue

is Xijj, we may write

i(k l x l k2z 2 ) (4. 1il f k2 X2)

Gi,j ( wi,j , Ji,j ) c2 ei(kx k2 X2 Ai C-- ei(k l x l f k2z X2 ) (4.12)

The equation (4.12) can be further simplified because of the assumption that the local

operator Ji,j is approximately constant in the region around the node ( i , j ) and

has the eigenvalue ,lij; for this complex sinusoid ei(k il + k2 2 ). We obtain

G'J[ ( wi'j ,'J ) (c - Xij 2 (4.13)

Note that the eigenvalues of the operator matrix Gi j ( wi,j , Ji,j ) are the same as
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those of the matrix G/,j ( wci, , !ai,j ).

Furthermore, from (4.13), we know that lti,j ( kl, k 2 ) and Xij ( k1 , k 2 ) are

related via

Gj ( wij, i,j) -Xij I =0

or, equivalently,

Xi2j - ( 2 i- 2 j j #,2 j ) Xij +j( 1 wij j )2 = 0

Therefore, we get

2 2

where

A = 4 ( 1 - wi, j ) wj /2,j + WA4. 4 (4.14b)

Let us consider the special case, wi, j = 1, which corresponds to the Gauss-Seidel

relaxation method. The eigenvectors of the 2 X 2 matrix Gj ( wij , ptij ) are

( 1, 0 )T and ( 1, i,,j )T and the corresponding eigenvalues are 0 and /2, j. This

means that if we start with two sinusoidal waveforms at the same frequency but with

different amplitudes, one of them, the red wave represented by the vector ( 1, 0 ),

disappears in one step. The other wave remains and alternates between the red and

black points thereafter, as mentioned in Section 2. The ratio between the updated

wave and the old wave is equal to the constant ti ,j , so that the amplitude is reduced

by a factor of tt2 j per cycle.
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The purpose of introducing the relaxation parameter w ,j is to make the eigen-

value Xi,j(kl,k 2,wi, j ) of the new operator Gi,j smaller than the eigenvalue

pi,j(kl,k2) of the old operator Jij. For a fixed real pij,(kl,k2 ), the relationship

between Xi j and wi,j can be described by the root locus technique depicted in Figure

3.

When 0 < wi,j < 2, the magnitude of Xi,j is less than one. By Theorem 1, we

know that if 0 < wi j < 2 for all i,j then p[G(W)] < 1 and the local relaxation

algorithm converges. When A = 0 0, the two eigenvalues Xij,1 and )i,j,2 coincide,

and the largest possible magnitude of these two eigenvalues, Xij,m

_ max ( \i,j,l I , XI i,j,2 ), is minimized. The value of wi, j which sets A = 0 is

called the optimal relaxation factor with respect to a specific Il j and is denoted by

wij,opt ( Ili,j ). By solving

A = 4( 1 -- wiJ, j ) w j i2, j + , ij =0

and requiring

0 < Oi, j < 2

we find that

i',jopt ( Ii'j ) =-1 + - -k (4.15)

The general relation between Xi,j,m and w ijj can be derived in a straightforward way

from equation (4.14) and is given by

Xi,j,m= -wi,j Wi,j,opt ( pi,j )< i,j < 2 , (4.16a)
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'X iJ j.--lm J 2/-w +0 <( Wi, j1 < . 1i,j,opt ( i,j ) (4.16b)

The minimum value of all possible Xi,j,m's is, therefore, Wi,j,opt ( i ,j ) -- 

Since ti,j is a function of frequency, equation (4.15) implies that different fre-

quencies require different optimal relaxation factors. However, we are allowed to

choose only one wij, so we have to consider the overall performance, i.e., Wij has to

be selected so that the spectral radius of the local relaxation operator Gij(Wi,,JiJj)

is minimized over all frequencies. Let Pij be the spectral radius of the local operator

J/,j and p i,j be an arbitrary eigenvalue of Ji,j. By definition, 'Ii,j I < pij, so we

know that wi,j,opt( li,j ) < wi,j,opt( Pi,j ) from (4.15). Using the relation in (4.16),

we reason as follows. If we choose wi, j = -- w;,j , op t(i, j ), Xi,j,m(#i,j) achieves its

minimum value of wi, j,pt(jij) - 1 but Xi,j,m(pi,j) is greater than wij,,opt(Pi',) - 1.

On the other hand, if Wijopt(Pi,j) is chosen as the relaxation factor, both

Xi,j,m(Iti,j) and Xji,j,m(Pi,j) are equal to wi,j,opt(pi,j ) -1. Comparing these two

cases, the latter choice is the best scheme to minimize the spectral radius of

Gi,j(wi,jJi,j ) . This optimal value of wi,j is denoted as w*,j, and is given by

Zj*---Ci,j,op t ( Pij ) --

This is exactly the same formula as suggested by Erhlich. The reason that this is a

good choice is due to the fact that the eigenfunction with the largest eigenvalue of the

Jacobi relaxation operator is the one corresponding to the lowest frequency com-

ponent, and to the observation that the space varying relaxation parameter w*j

optimizes the convergence of this lowest frequency mode.
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5. The Local Relaxation Method for a 9-point Stencil

The above derivation applies to a 5-point stencil, which appears when we discre-

02
tize a linear second-order elliptic PDE without the crossover term . If there

Ox 1 OX2

is a crossover term, a finite difference discretization gives a 9-point stencil. In this

section, we will propose a local relaxation scheme for a 9-point stencil, give a

sufficient condition for its convergence, and use a Fourier analysis approach to

explain the rule for selecting good local relaxation parameters. The approach is simi-

lar to that used in Sections 3 and 4.

In order to make the presentation clear, we use a simple problem mentioned in

[1] as an illustrative example. Consider the linear partial differential operator defined

on Q = [0,1] X [0,1],

02 02 02
L-= 2 +a( 1 , 2 )d + 2 (5.1)

where a(zX2) <2O, with appropriate boundary conditions. The condition

a a(x 1,x 2) l <2 is required to guarantee that L is an elliptic operator. We also

assume that a (x 1,x 2) is sufficiently smooth so that it can be viewed as being approxi-

mately constant locally. The following discretization scheme is used

02 E 1 - 2 0 E -1 02 E -2 -7L E2- 1

Ox h 2 9 2 h 2

92 E 1 E 2- E11 E2 1 -E 1 E 2 - E l E 1

O xl a O 2 4 h 2

The local Jacobi relaxation operator Ji,j can be decomposed into two parts Ji,j,l and
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Ji,j,2, i.e.

Ji,j = Ji,j,1 + Ji,j,2,

where

Ji, j, 1 = ( E1 - E- 1- E 2 E - 1 ),

1 21Ji,j,2 = 16 ( a i ~+,'J ElE2 +E - ai-~a'Y-"~EEl E2-1 -ai-EY't-)El lE2 -)a i * ,Y ' E E2 -I )

and where

aij = a (ih,jh) .

Suppose we use the red/black partitioning, then the Jijy,1 operator couples nodes

of different colors while the Ji,y, 2 operator couples nodes of the same color. A four-

color scheme which leads to a four-color SOR method has been proposed for this

problem [1]. Here, we propose a different local relaxation scheme which uses only

red/black partitioning, so that the iteration equations for the error in the local region

can be written as

en -) = (1 - wi,j ) e n) + i j Jij,1 e n ) + Ji,j, 2 e-n) (5.2a)

ell) = (1-i( wj ) e) + i,j [,j,l eIn +l) + Ji j,2 e)] (5.2b)

or, equivalently,

eAn +1) 'An)

ean + 1) =Gi,j (wi , Ji,j,l, Ji,j,2 e) [ n)

where

Cj ( ij, Ji,j,l, Ji,j,2 )=
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[1- i1wii,j+Wi Ji,j ,2 Wi'j Jij, 1 5.3

I j(-jj),jCl ?'j Ji,j,l Ji,j,2 1-Wij+Uij Jtj,2+Wz5,j J) 3
In general, the linear system of equations, A u = s for a 9-point stencil which

is obtained by discretizing an elliptic PDE with a crossover term can be decomposed

as

A u =(D-E-F-C)u = D (I-L-U-V)u =s, (5.4)

where A is an N X N real symmetric positive definite matrix and D, E, F, and C

are diagonal, lower and upper triangular, and block diagonal matrices respectively.

In (5.4), we view the 9-point stencil as the superposition of a standard 5-point stencil

and of a 4-point stencil formed by the nodes at the four corners. The standard 5-

point stencil is accounted for by D - E - F, while the remaining 4-point stencil due

to the crossover term is represented by the matrix C = D V. It is not hard to see

that

ET =-- F, and CT = C.

According to the local relaxation method specified by (5.2), the matrix iterative equa-

tion in the error space becomes

e(n+'l) = (I - W I)- [(- W ) + W U 4- W V] e (n) ,(5.5)

where W is a diagonal matrix formed by local relaxation parameters. The iteration

matrix is therefore given by

G(W) = ( I-W L )-1 [(I-W ) + WU +WV]

A simple sufficient condition for the convergence of (5.5), or (5.2), can be

obtained by generalizing Theorem 1. Following the same steps as in the proof of
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Theorem 1, we find that

1- ( - a ) + co Z
X_ 

PH D L p
where X, p is an arbitrary eigenvalue/eigenvector pair of G(W), z =

i pHD W - l p pH C P1 = pH D W P and ca = P C Since C is symmetric, a is a real number.
co pH D p pH D p

Let z = r ej J, then

IX 2 = --1 [ 2-c (1-2c)](-2-2 r cos ) (5 6)
(1 - wr cos 0)2 W2 r2 sin 2 (

which is similar to (3.4). Now, consider

a + 2 r cos 0 = a + 2 Re ( z ) = a + z + z

pH D V p pH D L p pH D U p

pH D p pH D p pH D p

pH HAp
pH D p

where the inequality is due to the fact that A and D are both positive definite.

Furthermore, let us assume that a < 1. In order to guarantee that I X j < 1 for all

possible eigenvalues, the sufficient condition becomes

0 < Wmin < Wij < cmax <
- z,- max ~1 - amin

where

amin = min (5.7)
and where the minimization is over all eigenvectors p of the matrix G (W).

and where the minimization is over all eigenvectors p of the matrix G (W).
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Therefore, we have the following theorem.

Theorem 2 (Sufficient Condition for the Convergence of a Local Relaxation
Procedure for a 9-point Stencil Discretization)

Suppose that A is an N X N real symmetric positive definite matrix. For the local
relaxation procedure given by (5.4) and the constant amin defined by (5.7), if

0 < w i < for 1 < i < N, then p[G (W)] < 1 and the iterative algo-
I - aOmi n

rithm converges.

Note that if there is no crossover term, the matrix C is zero and a is also zero.

In this case, the 9-point stencil reduces to a 5-point stencil and Theorem 2 reduces to

Theorem 1. Therefore, our proposed local relaxation scheme for a 9-point stencil,

equation (5.5), is a natural generalization of the conventional SOR method for a 5-

point stencil, specified by equation (3.2).

In the above derivation, we have used the assumption that a - is less
pH D p

than 1 for any eigenvector p of the matrix G (IV). Now, let us estimate the value of a

by examining the example given by (5.1). For simplicity, we consider the special case

where a( x l, 2 )=--a is constant and assume that the boundary conditions are

periodic, i.e. u(O,x 2) =u(1,x 2) for 0 < x2 <, u(xl,0) =u(x1,l) for 0 < x1 <1.

In this case, the eigenvectors p of G (W) can be found in closed form and are given by

one of the following two dimensional arrays, sin(klih + k 2 jh), cos(klih + k 2 jh),

sin(klih - k 2jh), and cos(klih - k 2jh), where i and j range from 1 to /-N,

h-- , and kl,k 2 are multiples of 27r. Then, after some computations, we find
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that

cr(p) = p p- p a sinklhsink2 h and la(p)I[ for all p
PH D p 4 4

8
Therefore, if we choose wi between 0 and 4 a ' the local relaxation algorithm for

this particular problem will converge. However, this choice is too conservative to give

a good convergence rate when Ia I is close to 2.

Generally speaking, two types of errors arise in the numerical solution of elliptic

PDEs by iterative methods. The first of these is caused by the error between the ini-

tial guess and the true solution. The other is the numerical rounding error due to the

finite precision arithmetic. The first error is usually concentrated in the low fre-

quency region, whereas the second can exist at all possible frequencies. The numerical

rounding error is usually so small that it can be ignored, provided it does not grow

with the number of iterations. Thus, the error smoothing primarily aims at reducing

errors in the low frequency region where the initial guess errors are substantial.

Let us temporarily ignore the numerical rounding error and focus on the initial

guess error only. In order to guarantee the convergence of all components in the low

frequency region, we need only to select

L l a I '.J *J
Carin = min- 4Y sin(klh )sin(k2h)

where kl and k 2 are the largest frequencies of interest. Usually the mesh is so fine

that caLin is of order O (h 2). Although this conclusion is obtained from a simple exam-

ple, it seems reasonable to believe that amLin is also of order 0 (h2) for more general
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second-order elliptic PDEs with space-varying coefficients and other boundary condi-

tions.

The remaining problem is to select a set of local relaxation parameters such that

the iterative algorithm converges as quickly as possible in the low frequency region.

We can use the Fourier analysis approach introduced in Section 4 to analyze the local

2 X 2 matrix operator Gi,j( wi,j , Ji,j,l, Ji,j,2 ) given by (5.3). Let #ti,jl(kl,k2),

lij,2(kl,k2), and ti,j(kl,k2 ) be eigenvalues of Ji,j,1, Ji,j,2, and Jij respectively.

Following the procedure used before, we find that the optimal local relaxation factor

for (5.1) is

;'j1 = + (5.8)

where Ci,j = Iti,j,2 ( k1 , k 2 ), Pi,j = Ii,j, ( kl , k 2 ), and ( k1, k 2 ) is the mode

which maximizes iJ --- iji1 + Ipi,j,2. The spectral radius of the local relaxation

operator Gi, is

Xj ( G,j ( ,j, J,, J i , j, 2 ) ) j ( 1 + ij ) -1 (59)

Typical values for wclj and Xji j can be obtained by considering example (5.1)

with Dirichlet boundary conditions, which is of more interest compared to the

periodic boundary conditions in practice. Since a (x 1 ,z 2 ) is smooth, we can approxi-

mate Ji,j,2 by

T vu o'1(1 2 1 2

The values of #i,j,l(kl,k2), Pi,j,2(kl,k2), and pi,j(kl,k2) are
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li,j,l ( kI , k2 ) = ( cos k 1 h + cos k 2 h )

i,j,2 ( k k2 ) = ± a i| cos (k, + k 2 ) h -cos (k - k2 ) h 

- 4a, sin k 1 h sin k 2 h

and

1 _j ( k 1 , k 2 )=-( cos k1 h + cos k 2 h )± i sin k l h sin k 2 h
2 4

In the low frequency region, Ji,y,1 is a lowpass filter, while Ji,j,2 is a highpass filter.

Jij is similar to Ji,j,l in this region, because ui-,j,2 is almost zero for very low fre-

quencies. Therefore, we can view Ji,j,2 as a perturbation. Thus, Ji j is a perturbed

lowpass filter. Its spectral radius Pi,j ( Ji,j ) is determined by the lowest admissible

frequency. For this particular problem, the lowest admissible frequency mode turns

out to be ( kl, k 2 )= ( r, r ). Therefore,

iCj. ai' I sin2 ir h , pij cos 7r h

Substituting these values back into (5.8) and (5.9), we find

2 V7-/aTj7
z*j V 2FTi , 2 ( Ir V ; r h ) ,5 (5.10a)

Xi,j I 1- T4+-T-2 aT , 7r h . (5.10b)

In general, aLin is of O ( h2 ) so that for sufficiently small values of h, the above

optimal relaxation parameters satisfy the sufficient condition of Theorem 2. Hence,

the convergence of the local relaxation method in the low frequency region is

guaranteed and the convergence rate can be estimated by examining the spectral
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radius of the local relaxation operator given by (5.10b).

Now let us go back to the effect of numerical rounding errors. The optimal

relaxation parameters c*,j given by (5.10a) may be outside the convergence range

defined by 0 and 1 ) for some eigenvectors p corresponding to high frequency
1 - a(p)

error components. Therefore, we expect that the error in the high frequency region

will grow. The error growth rate is problem dependent and can be analyzed by

Fourier analysis. If the error growth rate is so slow that it does not effect the answer

much, we can stick to a single set of optimal local relaxation parameters. On the

other hand, if the error growth rate is relatively large, we may use two sets of local

relaxation parameters. One set aims at reducing the low frequency error quickly and

the other set, formed by smaller values of wij, is used to smooth the high frequency

error once in a while so that the rounding errors do not accumulate. This mixed

scheme should perform much better than a scheme using a single set of conservative

local relaxation parameters. However, the optimal scheduling of these two sets of

local relaxation parameters is still unknown. We believe that it depends on the prob-

lem to be solved. Some numerical experiments will be needed to gain a better under-

standing of this issue.
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6. Performance Analysis of the Local Relaxation Algorithm

6.1 Convergence Rate Analysis - Linear Constant Coefficient PDEs

For a linear constant coefficient PDE defined on a unit square with Dirichlet

boundary conditions, the spectral radii of all local Jacobi operators are the same, and

thus all local relaxation parameters and the spectral radii of all local relaxation

operators are the same, i.e. for all i,j

Pi,j wjj = , , Xi,j =X. (6.1)

In this case, the local relaxation method is the same as SOR.

The asymptotic convergence rate of an arbitrary global iterative operator P,

denoted by Roo ( P ), is defined as [17]

R,, (P ) = - n p (P).

Under the conditions (6.1), the asymptotic convergence rate is also given by

Roo (P ) =-ln p(Pi ( j

where Pi j is the local relaxation operator of P.

For a Poisson equation on the unit square with Dirichlet boundary conditions,

the local Jacobi operator for this particular problem is

Jij 4 (iEl E +E 2 +E - 1 ).

Applying Fourier analysis to Ji j, we find that the spectral radius of Jijy is cos 7r h,

where h is the grid spacing. The global asymptotic convergence rate of the Jacobi

method, the Gauss-Seidel method, and the local relaxation method can be computed
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as

R ( Jacobi ) =-ln p( j ) =-ln cos rh 2 h2

Ro. ( Gauss -Seidel ) I- n X [ G,j ( 1, Ji,j ) -- n cos2 r h

7 r2 h 2

1+sinirh

Therefore, the number of iterations is proportional to 0( - ), i.e. 0( (/T ), for the

local relaxation method.

6.2 Computer Simulation

For general space-varying coefficient PDEs, it is difficult to analyze the conver-

gence rate as shown in Section 6.1. So, a simple numerical example is used to illus-

trate the convergence rate of the local relaxation method for solving space-varying

coefficient PDEs. The convergence rates of the SOR and CG methods are also shown

for the purpose of comparison. For the SOR and CG methods, the Ellpack software

package [13] was used.

The example chosen is

02 U 92 U au au 1
eY + edxy . + eSxy y a-ey Z a + 1-_ + u (6.2)

sny(2y2 2sn ycossin (x cosy y2siny

-- e 2xy sin~ry [(2y 2 _- 72)sinlrx 4- 37ry cos~rx ] 4- 7r sin~rx ( x coslry -- r sin~'y )
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exy sin7rx sin7ry

+ 1 x 1 +y

on the unit square, with the boundary conditions

u (, x ) =0 , forx = 0, x =1, y =0, andy =1, (6.3)

and its solution is exy sinwrx sinlry. Although equation (6.2) does not have the same

form as (2.1), it is easy to verify that the discretized matrix is still symmetric positive

definite so that Theorem 1 applies here. The lowest frequency mode for this problem

is ( k 1 , k 2 )= ( ir, or ) because of the Dirichlet boundary conditions.

For this test problem, three 5-point discretization schemes are used with grid

spacings ' 30, and . Starting from the initial guess u(°) ( x , y ) = 0 for all
10 30' 50

grid points, the maximum errors at each iteration are plotted in Figure 4. The

results indicate that on a single processor the convergence rate of the local relaxation

method is better than that of the SOR method and worse than that of the CG

method. However, as mentioned in Section 2, on a mesh-connected array the local

relaxation takes constant time for each iteration while the CG and SOR methods

take O( (VN ) time per iteration, so that the local relaxation method is much faster.

We also note that the number of iterations required for the local relaxation method is

proportional to \/N. This is consistent with the analysis of the previous section.
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7. Extensions and Conclusions

The local relaxation method includes two important steps. The first is to deter-

mine the admissible lowest frequencies using boundary condition information. The

second is to approximate the PDE operator locally by a linear finite difference opera-

tor, divide the nodes into red and black points, and form a locally accelerated succes-

sive over-relaxation (local relaxation) operator. In previous discussions, some ideal

assumptions were made so that the analysis and design of the local relaxation algo-

rithm become very simple. However, we may encounter several difficulties in applying

the local relaxation method directly to real world problems.

Under the assumption that the problem domain is a unit square and that the

boundary condition operator is constant along each edge, the procedure for determin-

ing the lowest admissible frequencies is straightforward. These assumptions make the

basis functions separable and easy to analyze. However, in practice, the above

assumptions may not hold. The problem domain is usually of irregular shape and the

boundary condition operators may have space-varying coefficients. As a consequence,

it is considerably more difficult to find the lowest frequency error component than for

the case we have considered in this paper.

The second difficulty is related to the construction of the local relaxation opera-

tor. If the coefficients of a PDE operator have some discontinuities in some region, the

Jacobi relaxation operator is not smooth over the region with discontinuous

coefficients. In this case, the determination of the optimal local relaxation factors for
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such abruptly changing operators is still an open question.

To map the irregular domain problem into a regular processor domain is impor-

tant in practice. In addition, we need some schemes to partition the grid points

evenly between all processors, when the number of grid points is larger than that of

processors. The mapping and partitioning problems have been studied recently [2] [7],

but not too many results are known.

Other open questions include how to terminate the local relaxation method. A

centralized termination scheme can work as follows. The residues of the local proces-

sors are pipelined to a certain processor, say, the central one. Then this processor

determines the termination time of the relaxation algorithm and broadcasts a "stop"

signal to all processors. The above procedure can be performed in parallel with the

local relaxation procedures. Note however that because we avoid the use of global

communications in the termination procedure by pipelining the local residues which

are sent to the central processor, this processor uses the error residues of the local

processors at different iterations in determining whether the algorithm should be

stopped. A distributed termination scheme would also be useful.

It also seems interesting and challenging to see whether the local relaxation con-

cept can be applied to elliptic PDEs which do not satisfy the assumptions made in

Section 2, such as the Helmholtz equation, or to other types of PDEs such as hyper-

bolic PDEs or nonlinear PDEs, and to other discretization schemes such as the finite-

element method.
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We may note that distributed computational PDE algorithms (local relaxation)

are different from traditional central computational methods (SOR) in several ways.

First, distributed computation provides a natural way to achieve a high degree of

parallelism. Secondly, distributed algorithms suggest a space-adaptive acceleration

scheme, which is not as convenient in centralized computation. Thirdly, although

global information is required in determining the local optimal acceleration factors, it

seems that only very little global information is relevant, namely the size of the

domain. Finally, we benefit a lot in designing the local acceleration algorithm from

the simple structure of the local operator and from the fact that the global informa-

tion required is minimized, while the determination of the optimal uniform SOR

acceleration factor is complicated and time-consuming.

These nice properties are closely related to the special structure of PDEs. Partial

differential equations are formulated to describe local interactions in the physical

world, where any interaction between two far space points is the result of a chain of

local interactions between near space points. The locality property is very similar to

the local communication constraint imposed by VLSI computation [10]. Therefore,

although this constraint is a bottleneck in other types of problems, it is not as res-

trictive for numerical PDE problems.

Our paper has also demonstrated the use of the Fourier analysis approach, or

frequency domain approach, to analyze the local relaxation algorithm. This metho-

dology forms a bridge between numerical analysis for solving PDEs and digital signal
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processing [9]. This new method seems more informative than traditional matrix

iterative methods, which usually hide information in a huge matrix. In addition, the

local Fourier analysis approach provides a way to analyze distributed numerical algo-

rithms while matrix iterative methods only can be applied to central numerical algo-

rithms. A closer relationship between numerical analysis techniques and Fourier

analysis is expected in the future.
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Figure Captions

Figure 1 : 1-D Jacobi Relaxation with Red/Black Partitioning

Figure 2 : 2-D Red/Black Partitioning and Grouping

Figure 3 : Root Loci of Xij(w) with Fixed Lti j

Figure 4 : Computer Simulation Results for Problem (6.2)-(6.3) with

(a) 11 X 11, (b) 31 X 31, and (c) 51 X 51 Grids
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Figure 1. 1-D Jacobi Relaxation with Red/Black Partitioning
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Figure 2. 2-D Red/Black Partitioning and Grouping
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Figure 4. Computer simulation results for given example (6.2)-(6.3)
with (a) 11 x 11, (b) 31 x 31, and (c) 51 x 51 grids.The x-axis
is the number of iterations and the y-axis is the maximum error at
each iteration.
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