
Customized Data Visualization Using
Structured Video

by Kathleen Lee Evanco

Bachelor of Science, Computer Science and Engineering

Massachusetts Institute of Technology

May 1993

Submitted to the Program in Media Arts and Sciences,

School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences at the

Massachusetts Institute of Technology

February 1996

@ Massachusetts Institute of Technology, 1995

All Rights Reserved

:.:A2ssACausrrsT 7NSmUTE
OF TECHNOLOGY

FEB 211996

Author:

Program in Media Arts and Sciences

November 10, 1995

Certified by:

V. Michael Bove, Jr.

Associate Professor of Media Technology

Program in Media Arts and Sciences

Thesis Supervisor

Accepted by:

Stephen A. Benton

Chairperson, Departmental Committee on Graduate Students

Program in Media Arts and Sciences

LIBRARIES

Customized Data Visualization Using
Structured Video

by Kathleen Lee Evanco

Submitted to the Program in Media Arts and Sciences,

School of Architecture and Planning,
on November 10, 1995

in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

Abstract
Structured video describes a video sequence in terms of its compo-
nent structural parts and a set of instructions describing how to
recombine them. Structured video research has primarily focused
on entertainment applications such as creating and displaying mov-
ies. In contrast, the thesis presented in this paper emphasizes the
advantages of structured video as a tool for visual communication
of information. This thesis expands the current field of structured
video research by using structured video as a data visualization
technique in a weather information system. Using a structured
video approach to data visualization allows users to customize the
format of the visual presentation of information. Issues addressed
include collection and parsing of information, automatic composi-
tion of video sequences, and forms of customization and interaction
with the resulting video sequence.

Thesis Supervisor: V. Michael Bove, Jr.

Title: Associate Professor of Media Technology

This work was supported in part by the Television of Tomorrow consortium

Customized Data Visualization Using
Structured Video

by Kathleen Lee Evanco

The following people served as readers for this thesis:

Reader:

Walter Bender

Associate Director for Information Technology
MIT Media Laboratory

Reader:

Glorianna Davenport

Associate Professor of Media Technology

Program in Media Arts and Sciences

Acknowledgments
This probably looks like a thesis to you, but when I look at it, I see
much more. I see two years of my life spent in a haze of not under-
standing who I am or what makes me tick. This paper is proof to
myself that I have emerged from that haze with a new life, a
grounded sense of identity, and the knowledge that I can do any-
thing I set my mind to. Of course, I didn't find my way alone, and I
would like to thank the people who made all of this - the thesis and

the deeper achievements it represents - possible:

Brian - thank you for always being there. You gave me strength
when I had none, you gave me motivation when I ran out, and you
gave me patience when I lost my own. You are probably the only

reason that I managed to find my way at all -thank you for wanting

this for me as much as (if not more than) I wanted it for myself.

My advisor, Mike Bove - thank you for showing confidence in me

even when I did not deserve it. Thank you for being human, and for

realizing that I am only human.

Readers of this thesis, Glorianna and Walter - thank you both for

your patience and your help, even though I waited till the last

minute to ask.

My dear friends, Beth, Nancy, Lisa, Kacey, Jim and Roger - thank
you for just being there - always. I absolutely could not have done
this without your constant reassurance.

My co-worker, Stefan - for providing endless support for my work,

and for making my thesis a reality.

Jon Orwant and Dan Gruhl for helping me learn to write perl scripts

even though half of what you said sounded like it was in another

language.

The gardeners, JSheena, Araz, Karrie, Jill, Shawn, Michelle and

Chris and previous gardeners, Brett, Mark, and Cris - Thanks for

being there during the long days and even longer nights. Thank you

for being a part of my life. You've all given me more than you will

ever know.

My family, Mom, Dad, Nicky, Chris, Colleen, Lance, Brennan,
Katelyn, Mom and Dad Brown and Paul - Thank you for your sup-

port and confidence. I know that lately it seemed like I dropped off

the face of the earth. I just wanted to let you know I'm back.

1 Introduction
1.1 Data Visualization
1.2 Structured Video
1.3 A New Direction for Structured Video
1.4 W hy W eather?
1.5 Thesis Overview

2 A Structured Video Decoder
2.1 The Cheops Imaging System
2.2 The Isis Scripting Language

3 Implementation

3.1 Collecting Weather Data
3.1.1 Data Set

3.1.1.1 Surface Observations
3.1.1.2 Nested Grid Model . .
3.1.1.3 Climatological Report

3.1.2 Data Retrieval
3.2 Requesting Information

3.2.1 Request Files
3.2.2 Region Request Files

3.3 Parsing the Weather Data
3.4 Creating the Isis Scripts

3.4.1 City Isis Files
3.4.2 Data Isis Files
3.4.3 Map Isis Files
3.4.4 Main Isis Files

3.5 Using the Weather System
3.5.1 Makeweather
3.5.2 Weather: A Graphical Interface .
3.5.3 Executing the Programs and Isis

3.6 Extending the System
Scripts

Table of Contents

13
. 13
. 15
. 17
. 17
. 19

. 21

. 23

27
. 27
. 28
. 29
. 29
. 30
. 31
. 34
. 34
. 35
. 37
. 38
. 38
. 39
. 40
. 40
. 41
. 42
. 43
. 45
. 47

.

.

.

Table of Contents

4 Video Object Database
4.1
4.2
4.3

Maps
Graphics
Text

5 Conclusions .
5.1 Evaluation
5.2 If I Had More Time
5.3 Future Work

A lsisFiles
A.1 The Request File
A.2 The Main Isis File
A.3 The Data Isis File
A.4 The Map Isis File
A.5 A City Isis File ...

Bibliography ..

. 49
. 4 9
. 5 1
. 5 3

N EU U U U 0 HUa0E U N S U 517

..... 57
........................5 7
. 6 0
. 6 1

. 63

. 6 3

. 6 3

. 6 8

. 6 9

. 7 2

. S 81

List of Figures
2.1 Processing pipeline of a generic structured video

decoder 22

3.1 An example surface observation data file 29
3.2 An example nested grid model data file 30
3.3 An example climatological data file 32
3.4 Diagram of Data directory tree structure 33
3.5 An example request file 35
3.6 The name Mass is expanded to be the list of cities

included in the region request file
Data/Mass/request 36

3.7 Lines of Isis code required to implement a script for
all of New England 41

3.8 The graphical interface to the weather system 43
3.9 Examples of the display created by the generated

Isis scripts when they are executed on cheops .. . 46

4.1 Examples of the 5 state maps used for each state
in the system 52

4.2 The weather graphics 54

List of Figures

Chapter 1

Introduction

Structured video describes a video sequence in terms of its compo-

nent structural parts and a set of instructions describing how to
recombine them. Structured video research has primarily focused
on entertainment applications such as creating and displaying mov-
ies. In contrast, the thesis presented in this paper emphasizes the

advantages of structured video as a tool for visual communication

of information. This thesis expands the current field of structured

video research by using structured video as a data visualization

technique in a weather information system. Using a structured

video approach to data visualization allows users to customize the

format of the visual presentation of information. Issues addressed

include collection and parsing of information, automatic composi-

tion of video sequences, and forms of customization and interaction

with the resulting video sequence.

1.1 Data Visualization
"Whatever relates to extent and quantity may be represented by

geometrical figures. Statistical projections which speak to the

senses without fatiguing the mind, possess the advantage offixing

the attention on a great number of important facts."

Alexander von Humboldt, 1811

Alexander von Humboldt was one of the earliest scientists to real-

ize the advantages of representing information graphically. In 1817

he prepared the first isothermal chart showing equal lines of tem-

perature. Surprisingly, examples of graphical representations of

data can be traced back to the 1600s. While the concept of data

Chapter 1 Introduction

visualization is not new, the type of data we are able to represent

graphically is increasingly more complex, because of the introduc-

tion of computers and computer graphics to the field. From its hum-

ble beginnings with simple maps and charts, data visualization has

grown to become one of the most widespread and technologically

advanced fields [Ear93].

Computer-aided data visualization began in the late 1960s, when

the computer allowed scientists to calculate answers to large, com-

plex problems which until that point had been too computationally

intensive to solve. With this significant increase in the complexity

of data came a renewed need for methods of understanding that

data. A surge of interest in the field of data visualization occurred in

1987 after the release of the SIGGRAPH panel report Visualization

in Scientific Computing [McC87]. Researchers from a wide variety

of fields began looking for theoretical models and display tech-

niques to achieve a greater understanding of their research. Most of

the data visualization research today focuses on modeling very

complex systems and almost always involves data in more than two

dimensions. However, both a simple bar chart and an abstract

graphical representation of n-dimensional space are all examples of

data visualization.

In the simplest sense, visualization is making pictures out of data.

Jose Encarnacao points out in Animation and Scientific Visualiza-

tion that there are essentially two problems to face in creating a data

visualization system:

"Initially, visualization may be considered as a simple tech-

nical problem of how to map information into visual forms.

In fact, it involves a communication problem of great signif-

icance. The mapping process needs to be adapted to the spe-

cific goals of the visualization. Moreover, mechanisms must

be provided to support the exploration of generated visual

forms." [Ear 93]

1.2 Structured Video

This quote suggests that in order to determine how numerical infor-
mation in a data visualization system will be mapped to a graphical
representation, one must first determine the goals of the visualiza-
tion. For this thesis, the goals of visualization were very simple.
First, the visualization should be a video sequence, where a video
sequence refers to one or more sequential video frames. Second, the
visualization should be modeled after a visualization currently
available in a traditional video format in order to show that struc-
tured video can achieve similar results. Third, the visualization
should be easily understandable.

The above quote also mentions the importance of exploring the
generated visualization. The issue of providing mechanisms to sup-
port the exploration of the resulting visualization is a focus of this

thesis; this thesis will show that structured video is an excellent
way of providing interaction that allows exploration of the data

space.

1.2 Structured Video
The Information and Entertainment Systems Group of the MIT

Media Laboratory has been exploring an image representation

known as "structured video" for the past few years. Structured

video (also known as model-based video [Har89] or analysis-syn-

thesis video [Mus89], [Bov94b]) represents moving images in

terms of component parts such as backgrounds and actors instead of
sequences of frames. These parts may be objects with uniform
depth (2-D), objects with corresponding surface depth values (2 1/
2-D), or particle databases (3-D). These components, along with a
set of instructions describing how they should be assembled, are
used to produce video sequences.

Structured video provides advantages over traditional image-based

coders. For example, structured video allows complex video

sequences to be reduced to simple parametric expressions which

leads to high compression rates. Using a traditional coder, a 1 sec-

Chapter 1 Introduction

ond video sequence at NTSC resolution would require transmission

rates on the order of 40 megabytes per second. Assuming that the

structured video receiver has enough memory to locally store the

component objects (see Section 2.1), and that the objects can be

transmitted in advance, then only the instructions describing how to

construct the sequence need to be transmitted. Depending on the

language used for the instructions (see Section 2.2), the required

transmission rates could drop to the order of kilobytes per second.

Another advantage of structured video is that it uses knowledge of

the structure of the scene being represented to allow enhanced user

interaction [Bov 94b]. In current commercial applications, "cus-

tomized video" can mean anything from video on demand to inter-

active television. However, because of the limits of the frame-based

video representations used in these applications, once the video

sequences have been produced, they cannot be significantly altered.

This limits the interaction in such systems to high-level choices

between different predetermined video selections as opposed to

low-level manipulation of the video's structural components.

Because structured video creates video sequences by compositing a

set of objects, the sequence can be altered at any time, including

during display, thus allowing much higher levels of interaction.

Past research has shown that such manipulation is achievable with
reasonable processing power (see Section 2.1). In a structured

video system, the level of interaction is not dictated by the video

representation, but instead by the method of interaction used.

A third advantage of structured video is its ability to adapt to differ-

ent display environments. Again, because the video sequence is

represented by its component parts and a set of instructions defin-

ing how to reconstruct it, the video can be adapted for a variety of

different displays. For example, one script could describe how to

construct the sequence for a wall size projection while another

could describe how to construct the sequence for a wrist watch size

display. Because traditional frame-based representations do not
have this versatility, they have prevented researchers from focusing

1.3 A New Direction for Structured Video

on how the display environment should affect the creation of the
video sequence. This is one of the most interesting questions intro-
duced by such a flexible video representation and it is a focus of
current research.

1.3 A New Direction for Structured Video
While the Entertainment and Information Systems group of the
MIT Media Laboratory has developed a structured video decoder, it
is currently only being used to create movies. This focus on enter-
tainment applications overlooks a valuable use for structured video
as a method of visually displaying information. This thesis expands
the breadth of the current research by examining how structured
video principles can be applied to a data visualization system.

Structured video is useful for a data visualization application in two
ways. First, the main objective of such a system is to allow a user to
present data in a coherent graphical fashion. Because structured
video uses component video objects and a script describing how to
assemble them, it is conducive to assembling data. Each datum can
be represented by a video object, while the instructions explain
when, where, and how to place that datum in the overall data space.
Second, data visualization systems require a means of interacting
with the visual product. Structured video easily provides this func-
tionality by allowing direct interaction with the video sequence.
Because structured video takes into account the structure of the
scene, it is advantageous for a system where the structure of the
scene conveys information.

1.4 Why Weather?
Despite the large quantity of weather information available through
television, radio, newspapers and the World Wide Web, finding the
answers to personal questions is still very difficult. For example,

imagine yourself preparing to embark on a trip. You would like to
fly from Boston to San Francisco and you are given the option of

Chapter 1 Introduction

making a connection in either Denver or Chicago. Which do you

choose? Both airports are notorious for delays due to weather. You

would be more able to made an educated decision if you could

instantly find out what the weather is like in both cities.

Or, perhaps you are planning on driving from Boston to Cleveland.

and there are two routes you could take. One is shorter but takes

you straight through the snow belt caused by the Great Lakes. The

other is a longer, more southerly route that takes you through the

Pocono Mountains. Which do you choose? If you had access to a

weather system that could show you the weather along the two

routes, you could plan the safest, most efficient trip. This thesis

attempts to implement a customizeable weather information system

that will allow users to answer very user-specific weather related

questions.

Weather data was selected for three reasons. First, while customiza-

tion and interaction are important in all data visualization systems,

they are particularly desirable in an information system that is used

by many different people from many different backgrounds, like a

weather information system. When many people are using an infor-

mation system, it must provide a large range of capability in con-

trast to a highly specialized data visualization system that can cater

to a small group of people in a specific field. The diversity among

users of a general weather system will require a great deal of flexi-

bility to accommodate the user's customization requests. Structured

video can satisfy this need.

Second, while meteorological modeling and forecasting is an

extremely complicated science, there are already a large number of

systems that perform these functions. One such system is the

"Weather" program used by the Earth, Atmospheric and Planetary

Sciences Department at MIT. This program uses sophisticated

models to predict weather patterns, but the resulting data is at best

readable text and at worst, cryptic sequences of alphanumerics. The

weather information system in this thesis transforms the data gener-

1.5 Thesis Overview

ated by the "Weather" program into a graphical representation.
Weather data was selected for this thesis because of the existence
and widespread availability of systems like "Weather." By using
another system to perform the complicated modeling, this thesis
was free to focus on how data created by these systems could be
visualized.

Finally, a weather system was selected because of the existence of
video based weather visualization systems: television weather fore-
casts. The current method of using video to visualize weather infor-
mation provides a framework for creating similar visualizations
using structured video, and for showing the advantages of struc-
tured video over traditional frame based video representations.

1.5 Thesis Overview
This thesis examines the use of structured video as a form of data
visualization. It shows how video sequences can be automatically
generated to represent data provided by an information system, spe-
cifically a weather information system. It also shows how the video
stream produced by the system can be customized through user
interaction.

Chapter 2 will describe the structured video decoder that this sys-

tem uses. It begins with an explanation of the hardware and soft-
ware of the Cheops Imaging System which is the platform of the
decoder. It also addresses two scripting languages that have been
developed as methods of describing how to composite video

objects.

Chapter 3 details the implementation of the system. This chapter
discusses how the system collects data, how users request informa-

tion, how the system parses the data, how the system generates the

scripts, and how the user interacts with the system.

Chapter 4 describes the different kinds of video objects and how

they are created.

Chapter 1 Introduction

Chapter 5 concludes with the results and evaluation of the system

and ideas for future work.

Chapter 2

A Structured Video Decoder
The challenge of implementing a structured video decoder lies in

the large variety of data representations that must be supported. For

example, the types of video objects supported by the decoder

should include, but not be limited to, arrays of pixels with constant

depth (2-D), arrays of pixels with associated depth values (2 1/2-

D), computer graphics objects (3-D), and layered objects with asso-

ciated intensity, velocity and opacity maps (2-D or 2 1/2-D). In

addition, the decoder should be extensible enough to support new

object representations as the need arises.

A generic structured video decoder must also support a large range

of instructions. For example, it must be able to function both as a

three dimensional interactive graphics rendering system and as a

standard hybrid decoder. Figure 2.1 shows a proposed pipeline for

such a generic structured video decoder. [Bov94a] A more detailed

explanation of these issues can be found in "Real-Time Decoding

and Display of Structured Video" by Bove, Granger and Watling-

ton. [Bov94a]

2.1 The Cheops Imaging System
One example of a structured video decoder has been implemented

on the Cheops Imaging System. Cheops is a compact, modular plat-

form for acquisition, processing, and display of digital video

sequences and model-based representations of moving scenes

[Bov93]. Cheops is both a prototype architecture for programmable

video decoders and a tool for research which requires real-time

video manipulation [Bov93, Bov91].

A Structured Video Decoder

Processing
Pipeline Predictions for later frames

- - - - - - - - - - - - - - - -............................... ..

Figure 2.1 Processing pipeline of a generic structured
video decoder.

Implementing a structured video decoder presents two main pro-
cessing challenges. First, the decoder must be able to interpret a set
of instructions and composite video objects as specified by those
instructions in real time. In some cases, the decoder must also sup-

port real-time interaction. Second, the decoder must be able to store

the large quantity of video objects and retrieve them quickly
enough for real-time display.

Cheops' design makes it ideally suited for acting as a structured
video decoder. Cheops overcomes the challenge of compositing
objects in real-time by implementing a set of basic, computationally
intensive operations in specialized stream processors. These pro-
cessors perform functions like convolution, correlation, matrix
algebra, block transforms, and spatial remapping. In addition,
Cheops' modular design allows the machine to be reconfigured as
technology or computational needs change. Finally, a general pur-
pose processor in conjunction with a software resource manager
[She92] allows the system to execute stream operations in parallel
whenever possible. These attributes enable Cheops to perform real
time video processing that is currently impractical on general pur-
pose computers. This ability is essential for a structured video
decoder that has to interpret a set of instructions and composite

Display

Chapter 2

2.2 The Isis Scripting Language

video objects in real time. In addition, this real time processing

ability allows applications to provide user interaction options that

are not feasible on other systems.

With regard to the problem of accessing large quantities of video

objects, Cheops can easily store and manipulate the video objects

required for the composited sequence because it can be configured

to have up to 32 gigabytes of RAM. This, in conjunction with the

high bandwidth Nile Buses provides Cheops the ability to store and

retrieve the video objects in a timely fashion.

For information about the Cheops imaging system, see [Bov9 1],

[Bov93a], and [Bov95].

2.2 The Isis Scripting Language
Isis is a platform independent scripting language which can be used

for developing multi-media applications. It can be used either as a

stand-alone programming environment or as an interface to C func-

tions that perform a set of specialized operations. [Aga95b] Two

examples of specialized operation sets are the structured audio and

video packages described in [Aga95c] and [Aga95d]. Isis can best

be described as having three levels. The highest level is the plat-

form independent Isis interpreter. The second level consists of the

built in Isis functions implemented in the structured audio and

video packages. Finally the packages rely on machine specific

libraries to produce the video sequence for the platform being used.

The two most noteworthy attributes of the implementation of Isis

are that Isis data structures are based on arrays rather than linked

lists and that the language core of Isis is small compared to other

programming languages. The fact that it is based on arrays makes

Isis an efficient scripting language for many structured video appli-

cations. The small language core makes it easy to learn and use.

This paper will not address the syntactical implementation of Isis

except to say that it resembles the syntax of Scheme. Instead, it will

A Structured Video Decoder

focus on the functionality provided by Isis and how Isis is used to
create the structured video application implemented in this thesis.

Complete documentation of the Isis scripting language and its syn-
tax can be found in [Aga95b], [Aga95c], and [Aga95d].

In general, Isis provides all of the basic functionality needed in any

programming language including data types, variables, constants,
lists, conditionals, expressions, and input/output operations. Three
of the basic functions that were particularly useful in implementing
this thesis were user-defined types, user-defined procedures and file
loading operations. User defined types were useful because
weather-specific data types (like longitude and latitude pairs) could
be defined. This made generating the scripts easier because the C
code did not have to convert the data from a weather representation
to an Isis representation. For example, a "LongLat" type and a pro-

cedure that converts a "LongLat" from longitude and latitude to x, y
pixel coordinates were implemented in Isis. Then, all the C code
has to do is generate a script that loads that type and procedure; it
does not have to know anything about the coordinate system that
Isis uses. Thus, by being able to define types, write procedures and
load files that contain these predefined types and procedures into

the generated Isis scripts, the amount of work required to generate

the scripts was significantly reduced.

In addition to the general functionality, Isis provides one particu-
larly innovative data structure: the timeline data structure. A time-
line structure is initially empty, but can have values at any real
numbered time on the timeline. The values can be anything from
boolean values to user-defined types and do not have to be uniform
throughout the timeline. This data structure was especially useful in
implementing a weather system that deals with large sets of time
series data. For example, a set of forecasted temperatures starting at
the current time and extending for 57 hours at 3 hour intervals can
easily be implemented as a timeline. It is important to note that
timelines do not necessarily have to be correlated to physical time;
they can be correlated to any ordered list of numbers.

Chapter 2

2.2 The Isis Scripting Language

At the second level, the structured video package provides a frame-

work for creating structured video applications. This package

allows the manipulation of 6 kinds of entities: cameras, environ-

ments, actors, objects, windows, and engines. [Aga95c] The cam-

era, in essence, is the viewer. The camera information specifies

where the viewer is in relation to the scene being displayed. In the

weather system, this information controls what part of the map is

visible in the window and at what scale the map is drawn. The envi-

ronment provides information about how the viewer perceives the

scene being displayed. Lighting information is one example of

information that would be stored in the environment. Again, none

of this information was needed for the weather information system.

The actors are the things in the production. For the weather system

implemented in this thesis, each datum for each city is represented

by an actor. Actors can be positioned and transformed in variety of

ways including translation, rotation, warping, and scaling. Each

actor must be associated with an object which is a graphics data

file. An object can be used by multiple actors simultaneously, but

an actor can only be associated with one object at a time.

The window describes how the scene will be translated to the win-

dow on the display. The window information includes window size

and position which, in the weather system, is provided by the user

(see Section 3.2.1). Finally, the engine is the entity that performs all

of processing and compositing. An engine refers to a camera, a

window, an environment, and a set of actors. An application can

have multiple engines which offers the capacity to control several

presentations at once.

The weather system implemented in this thesis is the largest struc-

tured video application implemented in Isis to date. Two other

structured video productions, "The Museum Movie" and "Yellow

Wallpaper" have been implemented in Isis. Each of those applica-

tions uses a maximum of 25 actors. The weather system uses a min-

imum of 128 actors and can easily exceed 1000 actors. In addition,

the Isis scripts created by the weather system can be as large as

25,000 lines of code, much larger than the Isis files for either of the

other two applications. This application establishes Isis' robustness

as a scripting language that can define a variety of structured video

applications.

Chapter 2 A Structured Video Decoder

Chapter 3

Implementation
The implementation of the weather system described in this thesis

can be divided into four steps. The first step is to download weather

data from a weather database. The second step is to provide a mech-

anism for requesting information. The third step is to parse the

weather data files and extract the relevant information. The final

step is to generate Isis scripts describing how to composite the

video objects in relation to the data. The Isis scripts can then be

executed on a structured video decoder where the compositing, dis-

play and interaction takes place. The next sections of this chapter

will describe each of these steps in detail.

The current implementation of the system is limited to 8 states:

Colorado, Connecticut, Maine, Massachusetts, Minnesota, New

Hampshire, Rhode Island, and Vermont. This is not a factor of the

availability of data, but instead a factor of the number of video

objects required to support all 50 states. However, the organization

of the system is versatile enough to add more states should the need

arise (See Section 3.6).

3.1 Collecting Weather Data
There are many sources of weather data available to the general

public in a large variety of formats including text and hypertext,
audio, and video. In video format, there are weather forecasts on

every major television network and an entire cable television chan-

nel devoted to presenting weather information. In addition, the

audio portion of a televised weather forecast can often stand alone

as an audio presentation of weather information. Other audio pre-

Chapter 3 Implementation

sentations include telephone numbers providing recorded informa-

tion and radio station forecasts. Radio is such a popular medium for

distributing weather information that manufacturers build radios
that only tune to the weather station. In written format, weather data

is available in every newspaper, and with the growth of the World

Wide Web, there are literally hundreds of weather information sites
on line.

Despite the proliferation of weather information, on closer exami-

nation, the data set is actually quite small; the same information is

being presented in many different ways. Most weather data origi-
nates from the National Weather Service (NWS). The National

Weather Service collects weather observations from around the
world, and then generates a variety of forecasts using different

models. The results of the models are then passed to vendors who

package the data and distribute it. The large number of vendors
accounts for the enormous variation in presentation and format.

3.1.1 Data Set

The weather system implemented in this thesis only uses a small
subset of the information available for two reasons. First, the sheer
quantity of information available would be too much to parse. Sec-
ond, there is so much overlap of information in the various formats
that parsing more data does not necessarily add information to the
system. The data files come from MIT's Department of Earth,
Atmospheric and Planetary Sciences (EAPS) "Weather" program.
"Weather" provides access to EAPS' extensive database of United
States weather data. Of all the data available from the "Weather"
database, three data sets are used for each city. These data sets were
selected for their regularity of format, which aids in parsing, and for
their combined quantity of information with as little overlap as pos-
sible.

3.1 Collecting Weather Data

3.1.1.1 Surface Observations

The first of the three sets of data is the surface observation data (sa)

which provides information about observed cloud cover and

weather type, temperature in degrees Fahrenheit, dewpoint in

degrees Fahrenheit, humidity by percentage, wind direction in

degrees, wind speed in miles per hour, gust speed in miles per hour,

pressure in millibars, altimeter in inches of mercury and visibility in

miles at hourly intervals. The surface observations are provided in

the textual format shown in Figure 3.1

weather -c safulldecode BOS 1

The weather observed at BOSTON (BOS) at 03:50 PM EDT was:

The skies were thinly scattered with clouds.

Temperature: 57F (14C) Dewpoint: 27F (-3C) Relative Humidity: 31%

Winds from the NW (310 degs) at 18 mph gusting to 24 mph.

Pressure: 1023.7 millibars. Altimeter:30.23 inches of mercury.

Visibility: 20.0 miles.

Figure 3.1 An example surface observation data file.

3.1.1.2 Nested Grid Model

The second data set is the Nested Grid Model (ngmmos). This data

file provides forecast information that is created by a combination

of interpolation and regression estimation. Nested Grid refers to the

method used for interpolating values between observed weather

data points. MOS stands for Model Output Statistics and refers to a

regression estimation technique based on past weather develop-

ments. [Par88] This data provides forecast information about mini-

mum and maximum temperature in degrees Fahrenheit,
temperature in degrees Fahrenheit, dewpoint in degrees Fahrenheit,

cloud cover, wind direction in tens of degrees, wind speed in miles

per hour, probability of precipitation for 6 and 12 hour periods by

percentage, precipitation type, and snowfall at three hour intervals

for 54 hours. An example nested grid model data file is shown in

Figure 3.2.

Chapter 3 Implementation

weather -c ngmmos BOS 1
-BOS ESC NGM MOS GUIDANCE
DAY /OCT 17 /OCT 18
HOUR 18 21 00 03 06
MN/MX
TEMP
DEWPT
CLDS
WDIR
WSPD
POPO6
POP12
QPF
TSVO6
TSV12
PTYPE
POZP
POSN
SNOW
CIG
VIS
OBVIS

0/ 0/
0/ 5 0/

0/
R R R
1 1 0
0 2 0
0/

7 7
5 5
N N

0/
7 7
5 5
N N

09 12
45

47 50
37 39
SC SC
22 21
07 09

6
5

0/0
2/ 7

R R
0 0
1 0
0/0

7 7
5 5
N N

10/17/95 1200 UTC

/OCT 19
15 18 21 00 03 06

0/
2/ 5
3/10
R R
0 0
0 1
0/

7 7
5 5
N N

68
57 62
14 47
3K BK

2 24
.6 11

0
0

0/0
5/ 7

R R
0 1
0 0

0/0
7 7
5 5
N N

0/
6/ 5
9/ 9

09 12
53

55 56
49 48
BK OV
25 26
06 06

6
10

0/0
3/ 1

R R
0 0
0 0

0/ 0/0
7 7
5 5
N N

15 18 21 00
66

61 64 63 59
49 48 49 49
BK BK OV OV
27 15 15 14
06 07 08 05

7 12
15

0/ 0/0
5/ 2 4/ 2
7/ 2

R R
0 0
0 0

0/ 0/0

Figure 3.2 An example nested grid model data file.

3.1.1.3 Climatological Report

The third data set is the climatological report (climo) which is cre-

ated once per day. Climatological data files are usually only avail-
able for large cities, and their format is not as standardized as the
formats of the other two files. The climatological report provides
information about the previous day's minimum and maximum tem-
peratures in degrees Fahrenheit, and the mean temperature and
departure from the normal mean temperature in degrees Fahrenheit.
It also provides the current day's normal high and low temperatures
in degrees Fahrenheit, record high and low temperatures in degrees
Fahrenheit, and the years those records were set. The climatological
data includes heating and cooling information for the previous day,
month and season in degrees Fahrenheit, and the precipitation for
the previous day, month and year, as well as the normal precipita-
tion amounts for the month and year in inches. In months when

3.1 Collecting Weather Data

snow occurs, this file also provides snowfall information for the

previous day, month and season in inches. Information about the

previous day's fastest two minute wind and peak gust in miles per

hour as well as the sunrise and sunset times for the current day and

the next day can also be found in this file. See the example climato-

logical data file in Figure 3.3.

3.1.2 Data Retrieval

The weather information system implemented in the thesis requires

access to each of the three data files described in Section 3.1.1 for

each city in the system. As mentioned at the beginning of Chapter

3, only the New England states, Colorado, and Minnesota have cur-

rently been implemented. However, these 8 states have 94 cities

with National Weather Service stations. Thus the system needs

access to 282 data files. In order to parse the data, the data files

need to be locally accessible to the weather system. A perl script is

used to download the most recent data files from the EAPS data-

base to a local data directory.

The script named "weatherfiles.pl" was written in perl which is "a

language for easily manipulating text, files, and processes."

[Wal91] "Weatherfiles.pl" must be executed inside a directory

named "Data" which has the subdirectory structure shown in Figure

3.4. The first level of subdirectories under the "Data" directory are

named after the two letter abbreviations of the implemented states.

Within each state's directory, there is a subdirectory for each city in

that state with a National Weather Service station. These city direc-

tories are named after the three character NWS station codes.

Within each city directory there are three data files named "sa,"

"climo," and "ngmmos" as described in Section 3.1.1. "Weather-

files.pl" traverses the directory structure of "Data" to compile a list

of NWS station codes for which information is requested. It also

relies on this directory structure to know where to put the data files

as they are being created.

Implementation

weather -c climo BOS 1
CSUS2 KBOS 170519
CLIBOS

CLIMATOLOGICAL REPORT (DAILY)
NATIONAL WEATHER SERVICE BOSTON MA
121 AM EDT TUE OCT 17 1995

...TEMPERATURE...
HIGH YESTERDAY... 58
LOW YESTERDAY.... 46
MEAN TEMPERATURE. 52 DEPARTURE FROM NORMAL.. .MINUS 3

NORMAL HIGH FOR TODAY.... 62
NORMAL LOW FOR TODAY.....46
RECORD HIGH FOR TODAY.... 89 SET IN 1947
RECORD LOW FOR TODAY.....27 SET IN 1886

...DEGREE DAY DATA...
HEATING
YESTERDAY... 13
MONTH....... 75
SEASON...... 191

COOLING
YESTERDAY...
MONTH.......
SEASON......

15
846

DEPARTURE.....MINUS 17

DEPARTURE.... PLUS 168

...PRECIPITATION IN INCHES...
YESTERDAY...............TRACE
TOTAL FOR THE MONTH......4.29
NORMAL MONTH TO DATE.....1.60
TOTAL FOR THE YEAR......24.64
NORMAL YEAR TO DATE.....31.58

...WIND DATA...
FASTEST 2-MIN WIND YESTERDAY.........32 MPH FROM THE W
PEAK WIND GUST YESTERDAY.............41 MPH FROM THE W

...ASTRONOMICAL DATA...

SUNRISE TODAY.......659 AM EDT
SUNSET TODAY........600 PM EDT
SUNRISE TOMORROW.... 700 AM EDT
SUNSET TOMORROW.....558 PM EDT

...END...

Figure 3.3 An example climatological data file.

Chapter 3

3.1 Collecting Weather Data

sa climo ngmmos

Figure 3.4 Diagram of Data directory tree structure.

After logging into the EAPS computer, "weatherfiles.pl" sends

commands of the syntax "weather -c safulldecode BOS 1" to the

EAPS server. "Weather" is the name of the EAPS program that pro-

vides access to the weather database in either interactive or com-

mand line modes. The "-c" command line option specifies which

type of data to retrieve (in this case, surface observations; the other

two data files are created using "-c ngmmos" and "-c climo"). The

next three letters are the National Weather Service code for the city

(in this case, Boston). Finally, the "1" asks for the last or most

recent data set. The script then takes the text returned by these com-

mands and writes them to the appropriate local file as determined

by the directory structure described above (in this case, Data/MA/

BOS/sa). Once all 292 commands have been executed (one for each

data file) the necessary weather files are locally accessible to the

weather system.

While "weatherfiles.pl" does serve its purpose, it does not necessar-

ily do it in the most efficient fashion. The drawback of this imple-

mentation is that it takes approximately two hours to download all

of the data files. This is caused by two problems. First, the EAPS

computers are exceptionally slow; this problem cannot be fixed

within the scope of this thesis. The second problem is that not each

'Data

Chapter 3 Implementation

of the three data files is available for every city in the system. When

the EAPS "weather" program is asked for information that does not

exist, it spends a lot of time searching for the information before

returning. The script execution time could be reduced by creating a
more sophisticated perl script that determines when the EAPS com-

puter is taking too long to respond, and then kills that command and
moves to the next one. This is one suggestion for future enhance-

ments to the system.

3.2 Requesting Information
One function of any information system is to provide a method of
requesting a data set. In a weather application, users need the ability

to request information for cities or regions of interest. In current

weather applications data is selected in a variety of fashions rang-
ing from simple text based interfaces where the user enters the
National Weather Service code for each city (for example, the
weather program on Athena), to more sophisticated graphical inter-
faces where the user can click on a map to select a city (for exam-
ple, the University of Michigan Interactive Weather Browser at
http://rs560.cl.msu.edu/weather/graphicalinteractive.html). Regard-
less of how sophisticated the interface is, all weather systems pro-
vide the same functionality: allowing the user to select a data set to
view.

3.2.1 Request Files

The mechanism for requesting information about cities in the
weather system implemented in this thesis is to create a request file.
Request files must be in the format shown in Figure 3.5. The first
line of the request file is the name of the Isis script file to be gener-
ated. The second line must have four real numbers separated by
spaces. These numbers represent the coordinates of the lower left
corner and upper right corner of the display window. The third line
indicates the display mode and can currently be one of two values,
VGA or DEFAULT, both of which must be typed in capital letters.

3.2 Requesting Information

The display mode information affects the placement of the display

window on the screen. DEFAULT centers the display window on a

high resolution monitor, while VGA centers the window for display

on an NTSC device, such as a television monitor, or projection

screen. In general, the DEFAULT setting should be used. The VGA
option was implemented in order to facilitate demonstrating the

system at the Media Lab. Finally, the request file contains a list of

cities (listed as CITY, STATE in capital letters) for which informa-

tion is desired.

Connecticut

-256.0 -256.0 256.0 256.0

DEFAULT

BRADLEY FIELD, CT

BRIDGEPORT, CT

DANBURY, CT

GROTON, CT

HARTFORD, CT

NEW HAVEN, CT

WATERBURY, CT

Figure 3.5 An example request file.

3.2.2 Region Request Files

One interesting ability of the weather information system imple-

mented in this thesis is that users can define regions. A region is a

named list of cities. When a region name is included in the list of

cities in a request file, as in Figure 3.6, the program first looks for

the region name in the list of cities it knows about. If the region

name is not found in that list, the program looks for a file named

"Data/regionname/request," where regionname is the name of the

region as typed in the request file. If a file by that name exists, the

list of cities inside the file "Data/regionname/request" is substituted

into the list of cities in the request file. Note that region request files

are different from standard request files in two ways. First, there is

no header information in a region request file; it simply contains a

list of cities or regions. Second, the name of the region must be a

Chapter 3 Implementation

subdirectory of the "Data" directory, and the region request file

must be in that subdirectory. If no request file is found under these

circumstances, the systems treats the name as an invalid request and
will print a message that there is no data available for that city.

Request File:
Requst Fle:Region Request File:

Conn&Mass Data/Mass/request
-256.0 -256.0 256.0 256.0
DEFAULT BOSTON, MA
Mass CHICOPEE FALLS, MA

BRADLEY FIELD, CT FALMOUTH, MA
BRIDEPOR, CTMARTHAS VINEYARD, MABRIDGEPORT, CT

DANBURY, CT NANTUCKET, MA

GROTON, CTMAGROTO, CTPLYMOUTH, MA
HARTFORD, CT PROVINCETOWN, MA
NEW HAVEN, CT SOUTH WEYMOUTH, MA
WATERBURY, CT WORCESTER, MA

Figure 3.6 The name Mass is expanded to be the list of cit-
ies included in the region request file Data/Mass/request.

The limitation of this implementation is that it creates errors when
"16weatherfiles.pl" is executed. Because states and regions are both

implemented as subdirectories of the "Data" directory, "weather-
files.pl" assumes that the region name is a state, and that "request"
is the NWS code for a city. Of course, when the command is passed
to the EAPS "weather" program asking for information about the
city "request" "weather" returns errors. Likewise, when "weather-
files.pl" tries to write the empty data files in the subdirectory
'(request," the script generates errors because "request" is not a

directory. While these errors may be bothersome, they do not
impair the function of "weatherfiles.pl." The errors could be elimi-
nated by making "weatherfiles.pl" more intelligently traverse the
tree structure of the "Data" directory by looking only for three char-

acter NWS codes. In that implementation, "weatherfiles.pl" would
know that a region request file is not a city and would not try to

request that information.

3.3 Parsing the Weather Data

3.3 Parsing the Weather Data
Once the weather data files are downloaded, and the request file has

been created, the next step is to parse the data for the requested cit-

ies into a format that will facilitate the association of data with

video objects. The parsing routines for the weather system imple-

mented in this thesis were written in the C programming language.

Each data file is parsed by a separate function and these functions

can be found in files named "sa.c," "ngmmos.c," and "climo.c."

This modular design facilitates extending the system to parse more

data files should the need arise.

Each of the three parsing functions uses a different parsing tech-

nique based on the structure of the data file. For example, because

the nested grid model data file is in a tabular format, the lines are all

processed simultaneously and each consecutive number is read off

and placed in the appropriate C structure. On the other hand,
because the surface observation data file is in more of an english

format, "sa.c" searches for key words and then reads the number

associated with that key word. Climatological information is the

most difficult to parse because there is no standard format for cli-

matological data files. "Climo.c" was written by examining a large

data set of climatological data files and determining what format

they had in common. The parsing routine was then based on that

intersection of formats. This has two repercussions. First, climato-

logical data files often have more information than "climo.c" is able

to parse because "climo.c" is limited to parsing information com-

mon to all climatological data files. Second, some climatological

data file formats are so different from the other formats that they

have to be discarded all together. When this happens, the system

will print the message "Nonstandard file format command" where

command is the command sent to the EAPS server that created the

nonstandard data file. Finally, not all cities have all three types of

data. When data does not exist, the data file will be empty and the

Chapter 3 Implementation

system will print the message "Empty file filename" where file-
name is the name of the empty file.

3.4 Creating the Isis Scripts
Once the data has been parsed, the weather system can use that
information to create Isis scripts that will describe how to compos-
ite video objects to represent the data. The functions that create the
scripts were also written in the C programming language and can be
found in the file "script.c."

"Script.c" creates three different kinds of Isis files, each of which is
created by a separate function. The three files and their creation are
described below.

3.4.1 City Isis Files

The function in "script.c" named "CityScript" creates an Isis file for
each city for which data has been requested. Each city script is
named after the three character National Weather Service code for
that city with the extension ".isis." For example, assuming the
information system is given the request file shown in Figure 3.5,
"CityScript" would create the following files:

* BDL.isis

- BDR.isis

- DXR.isis

- GON.isis

e HFD.isis

HVN.isis

OXC.isis

The first line in the city Isis file indicates the longitude and latitude
of the city. As shown in Appendix B, a set of standard weather Isis
functions have been defined, one of which converts longitude and
latitude to screen coordinates based on the range of longitudes and

3.4 Creating the Isis Scripts

latitudes being displayed. Next, the city Isis script sets up one actor

per set of information (i.e. temperature, dewpoint, wind speed,
wind direction, etc.). Then, using the Isis timeline structure, the

script defines what the value of each data set is for all the given

times. If there is no value for a particular data set a a particular

time, the value is set to a dummy value and the visibility is set to

false. In general, each city Isis file sets up 120 actors and is approx-

imately 450 lines of Isis code. An example city Isis file is shown in

Appendix B.

3.4.2 Data Isis Files

There is only one data Isis file created for each script generated by

the weather system and it is created by the function "AllCitiesS-

cript." The data Isis file is named after the script with the extension

"data.isis" appended. For example, given the request file in Figure

3.5, the data Isis file would be named "Connecticutdata.isis." The

first function of the data Isis file is to load each of the city Isis files.

The only other function of the data Isis file is to set up the timeline

structure that is used for the data knob during display. As the user

turns the data knob, a different piece of information is being dis-

played for each city (i.e. temperature, dewpoint, wind direction,
etc.). This is accomplished by setting up a timeline that determines

which actors should be displayed at each value of the data knob.

For example, when the value of the data knob is 0, the system dis-

plays the cloud cover symbols for each city. Because there is one

actor for each city's cloud symbol, the value of the data knob time-

line at 0 is the list of all of the city's cloud symbol actors. Because

there are 38 different pieces of information contained in the system,

the data knob timeline has 38 entries, each of which is a list of

actors. Obviously, the size of the data Isis file depends on the num-

ber of cities requested; the more cities, the larger the file. The data

file for a script that implements all of the cities in New England is

650 lines.

Chapter 3 Implementation

3.4.3 Map Isis Files

The function "MapsScript" creates the map Isis file for each script
created by the weather system. The map Isis file is named after the
script with the extension "map.isis" appended. For example, given
the request file in Figure 3.5, the map Isis file would be named

"Connecticutmap.isis." In creating the map Isis file, the weather
system loops through each of the requested cities and determines a
list of state maps that are needed. For the request file in Figure 3.5,
only the Connecticut maps are needed, but for the request file in
Figure 3.6, both the Connecticut and Massachusetts maps are
needed. The map Isis file loads the necessary state map graphics
objects. There are at least five maps per state as described Figure
4.1. After loading the maps, the map Isis file sets up actors for each
state map and places them at their proper positions according to the
longitude and latitude of the center of the state and the longitude
and latitude range of the entire area being displayed. Again, the size
of the map Isis file depends on the number of state maps needed,
but the map Isis file for all of New England is 450 lines.

3.4.4 Main Isis Files

The script that ties everything together is the main Isis file. This file
is created by the function "Script" in "script.c." It is named after the
script with the extension ".isis" appended. For example, given the
request file in Figure 3.5, the main Isis file would be named "Con-
necticut.isis."

The main Isis file begins by loading the standard weather Isis defi-
nitions. Then it initializes the system. These commands are the
same for every main Isis script file created by the weather system.

The main Isis file then defines the scale information that allows the
structured video decoder to map longitude and latitude to screen
coordinates. This includes setting the position of the display win-
dow as defined by the DEFAULT and VGA settings discussed in
Section 3.2.1. This file also loads the other Isis files and sets up the

3.5 Using the Weather System

list of actors. These commands depend on information gathered

during the parsing step.

Another important function of the main Isis script is that it defines

the user interaction with the system. The main Isis file loads the

standard weather knob Isis files that set up each of the 8 knobs as

follows:

- Knob 1: Controls horizontal position

- Knob 2: Controls vertical position

- Knob 3: Controls the scale

- Knob 4: Changes the map

- Knob 5: Moves through the data sets

- Knob 6: Moves through the time

- Knob 7: Dummy knob

- Knob 8: Exits

The main loop of the main Isis file then reads the input from the

knobs and adapts the display accordingly. The average size of a

main Isis file is 350 lines. The equation shown in Figure 3.7 shows

why automating the generation of these scripts is a necessity for

this type of system.

53 cities * 450 lines + 650 lines + 450 lines + 350 lines = 25,300 lines
city data map main script
file file file file

Figure 3.7 Lines of Isis code required to implement a script

for all of New England.

3.5 Using the Weather System

The previous sections describe the logical steps in implementing

the weather system, but they do not discuss how these steps work

together. When the system is executed, the four steps described

above are actually reduced to three steps. The first steps are the

Chapter 3 Implementation

same: the files are downloaded using the "weatherfiles.pl" script
and a request file is generated. However, because the generated
scripts depend heavily upon the parsed information, these two steps
are tied together in the C program "makeweather" described below.

3.5.1 Makeweather

"Makeweather" is a simple program that takes two arguments: a
request file, and a directory to write the scripts to. It must be exe-

cuted in the directory that contains the "Data" directory.
"Makeweather" first sets up the database of implemented cities
which includes information about the longitude and latitude of each
city and the city's NWS code. It then sets up a database of imple-
mented states that includes information about the longitude and lat-
itude ranges of the states. These structures provide the necessary
information that cannot be obtained from parsing the weather data
files.

"Makeweather" then parses the request file specified by the first
command line argument and creates a linked list of cites for which
information is desired. Then, for each of these cities,
"makeweather" reads the three data files and calls each of the three
parsing routines described in Section 3.3. Finally, "makeweather"
calls each of the script generating functions described in Section
3.4. The scripts are written in the directory specified by the second
command line argument.

One limitation of "makeweather" is that it only runs on DECsta-
tions as opposed to DEC 3000/AlphaStations. Unsuccessful
attempts were made to compile the code on a Dec Alpha. This pre-
sents a problem when attempting to combine the script generation
and script execution into one step because the script generation
only works on DECstations while Isis only runs on Dec Alphas.

3.5 Using the Weather System

3.5.2 Weather: A Graphical Interface

Although the weather information system can be executed by run-

ning all of these scripts and programs individually, it would be

much easier, and much more appealing if the system had a nice,

simple graphical interface that tied everything together in one step.

An interface was developed that allows a user to perform all of the

necessary tasks, creating request files, downloading data files, and

generating the scripts. The interface shown in Figure 3.8 was

implemented in Tcl/Tk which is "a programming system for devel-

oping and using graphical user interface applications." [Ous94] It is

executed by typing "weather" in a directory that has a copy of the

executable, and that has subdirectories named "Scripts" and

"Data." The Data directory must contain the directory tree structure

described in Section 3.3.

[§]L_1 weather
RUN LOAD WEATHER FILES| EXIT

Script File Name: Window Size: Display Mode:
5 2 0 X 512O DEFAULT

City Choices City Requests
AKRON, CO
ALAMOSA, CO
ASPEN, CO
COLORADO SPRINGS
CORTEZ, CO
CRAIG, CO
DENVER, CO
DURANGO, CO
EAGLE, CO
FORT CARSON, CO /

Enter a city or region: |-Clear Requests
Messages

This code will not run on an Alpha

Figure 3.8 The graphical interface to the weather system.

43

Chapter 3 Implementation

"Weather" makes the system very easy to use. To functions of the

buttons, entry boxes and list boxes are described below.

- City Choices: The city choices list box provides a list of all of

the cities implemented in the system. The scroll bar to the right
of the list box is used to scroll through the list. To request infor-
mation for a city, double click on the city name in the city
choices list box.

- City Requests: The city requests box display the current selec-

tions. When a city or region is selected it will appear in the city
requests list box. The scroll bar to the right is used to scroll

through the list.

- Enter City or Region: This entry box allows the user to type the
name of a city or user defined region. A city must be typed in as
CITY, STATE in all capitals. A region must be typed as it

appears in the "Data" directory. To add the city or region to the

city requests list box, press <enter>.

- Clear Requests: This button clears the entire city requests list

box. There is no way to delete only one city.

- Script Name: This entry box allows the user to specify the name
of the Isis script to be created.

" Window X and Y size: These entry fields allow the user to
specify the size of the display window. The default values are
512 by 512.

- Display Mode: This entry box allows the user to specify the dis-
play mode which can be either DEFAULT or VGA. The default
is DEFAULT.

- Run: This button performs two functions. First it writes the
script name, window x and y size, display mode, and city
requests to a request file. The request file is written in the direc-
tory "Scripts/scriptnamel" where scriptname is the script name
provided. Next is executes "makeweather" with that request file
and the directory "Scripts/scriptname/." After clicking on the
run button, the script can be executed on cheops.

3.5 Using the Weather System

- Load Weatherfiles: This button executes "weatherfiles.pl" from

inside the "Data" directory, thus downloading the data files.

Because the script takes a long time to execute, a message box

is used to ask for a confirmation.

- Exit: This button exits the "weather" Tcl script.

- Messages: This box displays the messages printed by any of the

programs or scripts executed by "weather."

3.5.3 Executing the Programs and Isis Scripts

Currently, the weather system is implemented in the directory "/

cheops/demos/weather/." This directory has the necessary "Data,"

"Objects," and "Scripts" subdirectories. Also, regions have been

defined for each state that include every city for that state. The

regions are named "Colo," "Conn," "Main," "Mass," ".Minn,"

"NewH," "Rhod," and "Verm" after the first four letters of each

state.

"Weatherfiles.pl" should be executed from the directory "cheops/

demos/weather/Data." "Makeweather" and "weather" should be

executed from "/cheops/demos/weather/." "Weather" will write the

resulting scripts in the directory "/cheops/demos/weather/Scripts/."

In order to preserve convention, if "makeweather" is used manually

it should be given the directory "Scripts/scriptname/," where script-

name is the desired script name, as the directory to write the scripts

to.

Once the scripts have been generated, either by the "weather" script

or by executing "makeweather" manually, they can be executed on

cheops. Cheops must be running RAM version of "m7-src." To

execute a script from the directory "/cheops/demos/weather/", type

"chex ../isis-files/cheops-isis-iv Scripts/scriptname/script-

name.isis" where scriptname is the name of the script to be exe-

cuted. Figure 3.9 shows examples of the display produced by

scripts when they are executed on Cheops.

Chapter 3 Implementation

Figure 3.9 Examples of the display created by the gener-
ated Isis scripts when they are executed on cheops.

3.6 Extending the System

3.6 Extending the System
Because only 8 states are currently implemented in the weather sys-

tem, it was designed to be extensible. One way in which it is exten-

sible is that it allows users to define regions. However, ultimately

the remaining states should be implemented. The following sec-

tions describe how to extend the system to include more cities and

states.

In order to add more cities and states, the city and state databases

need to be changed. The city database can be found in the file "cit-

ies.c" and is implemented as an array of structures that maintain the

information for each city. The maximum number of cities in the

system is defined by the constant "CITIES." To add a city, incre-

ment "CITIES" and add another array element with the proper city

information: city name, state, national weather service code, longi-

tude, latitude, and elevation. If the city added is in a state other than

one of the eight implemented, the state database will also need to be

updated. The process is very similar to the process described above.

The state database can be found in the file "state.c" and is imple-

mented as an array of structures that maintain the information for

each state. The maximum number of states in the system is defined

by the constant "STATES." To add a state, increment "STATES"

and add another array element with the proper state information:

the two letter abbreviation, maximum and minimum longitudes,

maximum and minimum latitudes, width and height in pixels, and

the number of maps the state has (i.e. Massachusetts has only one

while Maine has two because it had to be tiled). Explicitly defining

the city and state databases makes adding cities and states to the

system more difficult than necessary. Section 5.2 proposes a con-

verting the databases to read from files which would make this pro-

cess much easier.

Once these changes have been made, "makeweather" should be

recompiled. Before executing "makeweather" the appropriate state

and city directories should be added to the "Data" directory, and the

Chapter 3 Implementation

data files should be downloaded by running "weatherfiles.pl."

Before the scripts can be executed on Cheops, the map objects for
the new states have to be created and added to the "Objects/Maps/"
directory. Finally, "weather" relies on a file named "cities" to cre-
ate the list of cities that appears in the city choices list box, so the
new cities should be added to that file as well

Chapter 4

Video Object Database
The final step in the implementation of the weather system

described in this thesis is to relate the information parsed by the

system to video objects. This actually takes place when the scripts

are being written. The script generation functions take as input the

raw data parsed from the data files and output scripts that compos-

ite the video objects. Thus, the association of data and video objects

takes place in the script generation functions. Once the data has

been parsed, collecting the necessary video objects is quite simple.

The difficult part is creating the set of video objects to choose from.

The next sections describe the different types of video objects

available and the methods used to create them.

4.1 Maps
The maps used in this system were obtained from a software pack-

age named "MapArt" made by Cartesia. "MapArt" provides maps

of all 50 states, drawn to the same scale. For each state, there are 4

maps displaying counties, zip codes, rivers, and highways and cit-

ies. These maps are in PICT format and can be edited by a variety

of drawing programs on a Macintosh including "MacDraw Pro" by

Claris. These maps and "MacDraw Pro" were used to create 5 map

video objects for each state implemented in the system. Video

object maps for the remaining states can be created by following

the steps explained in this section.

The process of converting maps for use in this weather system

begins by opening the counties, rivers, and highways and cities

maps in "MacDraw Pro." The zip code maps are not used because

Video Object Database

they have little correlation with weather information. In "MacDraw

Pro," the first step is to select all of the items and group them
together. Then, scale the image by 250%. This scale factor needs to
be consistent in order to have the maps line up properly on the dis-
play. For the rivers map, this is the only step. Once that map has
been scaled up it can be saved again in PICT format.

For the counties map, the counties have to be colored by hand,
being careful not to color adjacent counties with the same color.
Making sure that adjacent counties are different colors can be tricky
when dealing with counties that border other states. After the coun-
ties have been scaled and colored, the counties map can also be
saved in PICT format.

The highways and cities map has to be separated into three different
maps: highways, cities and state. The highways map is created by
deleting everything but the highways and the outline of the state.
This file can then be saved in PICT format as the highway map. The
city map is created by deleting everything but the city markers, city
names, and the state outline. Some city names have to be reposi-
tioned to fall completely within the state boundaries. Then the cities
map can be saved in PICT format. Finally, the state map is created
by deleting everything but the state border. Once again, the map has
to be colored being careful to differentiate it from neighboring
states. Once this is completed, the state map can be saved in PICT
format.

Once all five PICT files have been created, they are opened as anti-
aliased PICTs in Adobe "Photoshop." This step serves three pur-
poses. First, the maps need to be converted to tiff format and
"MacDraw Pro" does not support tiff. This is done using the "save
as" command in "Photoshop." Second, alpha channel tiff files need
to be created for each map image. The easiest way to do this is to
use the "invert" command for black on white maps and a combina-
tion of the "threshold" and "invert" commands for the color maps.
Finally, if the maps are bigger than 512 pixels in either direction,

Chapter 4

4.2 Graphics

they will have to be tiled because they will exceed the size allowed

by Isis. When a map set is tiled it is important that all of the maps

be tiled in exactly the same manner so that they will line up prop-

erly on the display. The "fixed size marquee" in "Photoshop" is a

useful tool for uniformly tiling the maps.

Once all of the maps have been converted to tiff files, they are

transferred from the Macintosh to the network. There they are con-

verted to datfiles which are directories containing one or more

related files. Datfiles generally have a data file which contains the

raw image data, and a descriptor file which describes the data in the

data file. For example, the descriptor file specifies the x and y

dimensions, number of channels, and number of frames of the

image contained in the datfile. To be used with the weather system,
datfiles must have a few special properties. First, the datfiles must

have 4 channels: three for RGB values and one for the alpha chan-

nel. Second, because of hardware constraints of Cheops, the width

of the datfiles must be a multiple of 16. Third, the maps must be

centered in the datfiles. A perl script named "tiffs2datalphacenter"

is used to facilitate this lengthy process.

Finally, once a state's maps have been converted to datfiles, they

are moved to the directory "Objects/Maps/state" where state is the

two letter abbreviation of the state represented by the maps. In this

directory the maps are named "state.dat," "cities.dat," "high-

ways.dat," "counties.dat," and "rivers.dat." Also in this directory is

a "tiff' subdirectory where the original tiff files are stored in case

they are needed.

4.2 Graphics
The weather graphics were much easier to create. They were mod-

eled after the graphics used in current media such as television and

newspaper. After looking at a variety of different weather formats,

it was remarkable how universal weather graphics actually are.

Chapter 4 Video Object Database

Figure 4.1 Examples of the 5 state maps used for each
state in the system.

People instantly understand the message conveyed by these sym-

bols.

Because the graphics were hand drawn, it was necessary to test

their effectiveness before implementing them in the system. For

each graphic, 5 people were asked what the symbol meant. If all 5
people responded correctly the graphic was added to the system. If

any one of the 5 responded incorrectly or was unsure, the graphic

was redesigned until it could pass the test.

4.3 Text

The process of creating the graphics is similar to the process for

creating the maps. First the graphics are drawn in "MacDraw Pro"

and saved as PICTs. Then they are opened in "Photoshop," cropped

to a uniform size of 64 by 64 pixels and saved as tiff files. From

these tiff files, alpha channel tiff files are created. Then the graphics

are transferred to the network where they are converted to datfiles

using a perl scrip named "tiff2datalpha." Once they are converted

to datfiles they are moved to the directory "Objects/Graphics/."

Again the tiff files are moved to a "tiffs" directory in the "Objects/

Graphics!" directory in case they are needed in the future.

Structured video allows objects to be either static or dynamic. The

only dynamic object used in the system is the wind speed symbol.

The wind speed symbol is a leaf that flutters at a speed related to

the wind speed. Other examples of dynamic objects that could be

useful in this system are excerpts of televised weather forecasts or

satellite imagery that shows the progression of clouds (see Section

5.2). Figure 4.2 shows the graphics used in the system. The weather

type graphics show what kind of weather is either occurring or

being forecasted. The data set graphics are used in the upper left

corner of the display window to show the user what piece of infor-

mation is being displayed. The television network graphics were

implemented to allow the use of digitized video clips of televised

weather forecasts. However, because the digitized video clips are

not functional in the current implementation, these graphics are not

used (see Section 5.2).

4.3 Text
There are two types of text objects used in the weather system

implemented in this thesis. The first is a 24 point Century School-

book datfile font that is used for numbers that change like tempera-

tures, dewpoints, etc. The datfile font was already available but it

had to be modified to have an alpha channel, to have a width that is

a multiple of 16, and to be red so that it would be visible on a vari-

Video Object Database

WEATHER TYPE GRAPHICS:

Sunny

Partially
Cloudy

Partially
Sunny

Overcast

Showers

Rain

Thunderstorms

Hurricane

Snow

Wind Speed

DATA SET GRAPHICS:

I
Temperature

Dewpoint

Min
Temperature

Max
Temperature

Sunrise

Sunset

Wind

V1 Y

Visibility

TELEVISION NETWORK GRAPHICS:

ABC
CS
CBS FOX NBC

Figure 4.2 The weather graphics.

ety of colored backgrounds. This datfile was then moved to the
directory "Objects/Text/."

Chapter 4

4.3 Text

The second type of text objects are the static text objects. Static text

objects are implemented separately for efficiency reasons. In the

Isis system, if text needs the ability to change in response to user

interaction (for example, the text data being displayed), then it must

be implemented with one actor per character. If however, the text is

constant (for example the words that appear in the upper corners of

the display), it can be implemented as one datfile and thus would

only require one actor. Of course, once the datfile has been created,

the user cannot interactively change the text.

The static text objects were typed into "FrameMaker" (made by

Frame Technology Corp.) and then grabbed using "xv." They were

saved as tiff files and converted to datfiles like the other graphics

objects. The words implemented in this fashion include "Today,"

"Yesterday," "Tomorrow," "Current," and "Wind." There are also

multi-frame datfiles for the days of the week, the hours ("1:00

p.m.," etc.) and the wind direction arrows (0-360 degrees in 10

degree intervals). These files are stored in the directory "Objects/

Text."

NOTE: MapArt is a trademark of Cartesia. Macintosh is a registered trademark

of Apple Computer, Inc. MacDraw and Claris are registered trademarks of

Claris, Corp. Adobe Photoshop and Adobe are registered trademarks of Adobe

Systems, Inc. FrameMaker is a registered trademark of Frame Technology Corp.

All other brand names, trademarks, and registered trademarks are the property of

their respective holders.

Chapter 4 Video Object Database

Chapter 5

Conclusions

5.1 Evaluation
The focus of this thesis was to show how structured video can be

used to produce a customizeable form of data visualization. In rela-

tion to that goal, the weather system is a success. The implementa-

tion of the weather system on the structured video decoder

embodied by the Cheops Imaging System and the Isis scripting lan-

guage demonstrates that structured video can be used in this capac-

ity. However, successfully implementing the weather system does

not answer the question "How effective is structured video as a tool

for data visualization?" This question is addressed here.

In general, structured video is an effective tool for data visualiza-

tion when the data being represented can be decomposed into a set

of small graphical units. For example, the weather system is most

effective, and most interesting, when it is displaying the weather

symbols or the leaf animations overlaid on the appropriate maps.

Unfortunately, as the implementation of the weather system pro-

gressed, it became apparent that only a small subset of weather data

is really graphical in nature. Much the data is displayed as numbers

on top of maps. If this is truly the graphical extent of the data being

displayed, then structured video is neither the most efficient, nor

the most effective tool for achieving visualization.

Structured video is also effective when the resulting visualization

requires interaction, or the ability to make static video information

into a dynamic presentation. There are many examples of how

interaction makes the video sequence produced by the weather

Chapter 5 Conclusions

information system dynamic. The most basic examples are the

translation and scale knobs. The only example of a how a video
sequence can be made dynamic by adding dynamic objects is the
display of wind speed. The animated leaf that moves faster or

slower in relation to the wind speed not only makes the video
sequence dynamic, but also transforms a static piece of information

into a dynamic presentation.

In terms of the specific structured video decoder used to implement
this thesis, structured video is most effective when the data being

displayed can be represented by 2-D or 2 1/2-D graphics objects

and when the user needs the ability to interact with and modify the
display in real-time. Although Cheops does have the ability to ren-
der full 3-D graphics objects in real-time, these objects slow the
frame rate of the resulting display thus decreasing the impact of
real-time interaction. The slower the frame rate, the longer the sys-
tem takes to respond to user interaction. However, despite the nega-
tive effects on interaction, using Cheops as a structured video
decoder to perform full 3-D data visualization is an interesting con-
cept that should be pursued (see Section 5.3).

The structured video scripting language used to implement this sys-
tem (Isis), was, for the most part, very simple and effective. How-
ever, the current implementation of the weather system does not use
all of the functionality of such a powerful scripting language. For
example, the system does not use the scripting language to define a
continuous dynamic video sequence although this would be an
interesting addition (see Section 5.2). The most valuable contribu-
tion of the scripting language to this thesis was that it allows for
real-time user interaction which is essential to any information sys-
tem.

Only two problems were encountered with Isis. The first was its
method of handling text. Isis requires each character to be repre-
sented as an actor which is inconvenient and expensive in terms of
memory required to execute the scripts. If this were improved such

5.1 Evaluation

that entire strings could be implemented with one actor, the number

of actors required by the system could be reduced by at least one

order of magnitude. The second was that the size of the Isis script

generated by the weather system is rather unwieldily. Over half of

the lines of Isis code are used to set values for each datum, for each

city, for each time, in Isis timeline structures. Because of this, the

size of the script grows exponentially and quickly becomes unman-

ageable. However, while the files are large, they only require kilo-

bytes of storage space as opposed to the megabytes of storages

space that would be required to store the video sequence created by

the script if it were represented in a more traditional frame based

format.

The method of interaction provided by the structured video decoder

used in this thesis is most effective for series data. The knob inter-

face is well suited for the time series nature of weather forecasts

because scrolling through information is a natural way to interact

with series data. If, however, the information system being imple-

mented requires the ability to make selections or traverse a tree

structure, as in a hypertext like visualization system where data are

linked and the user needs the ability to traverse a path of links, the

knob interface fails miserably.

Finally, when the weather system is viewed as simply a weather

system, and not as a structured video application, it is only slightly

better than average. The output is more understandable and enter-

taining to the average person than the amalgamation of complicated

meteorological symbols created by most other weather systems. In

addition, the system allows users to customize the display of infor-

mation more than other weather systems. However, because of the

current limitations of the weather system in its present state, it does

not compare well to systems that can provide both more data and

more supplementary information (like satellite photos, radar maps,

etc.) in the same amount of time.

Chapter 5 Conclusions

5.2 If I Had More Time.....
The list of things I would add to this weather system if I had more

time seems innumerable. However, it is important to note that while

there is room for improvement, the system did accomplish its goal

of showing that structured video could be used as a form of data

visualization.

The first feature I would add is a larger variety of knobs. For exam-

ple, there are already knobs that move through time and data set; a
knob that moves through the cities and shows all of the information

for one city at a time would be interesting. Other ideas for knob

functions include a knob that controls the granularity of data being
displayed and a knob that allows the user to view video clips of

televised weather forecasts. More knobs would enhance the user's
ability to customize the weather system.

In addition to adding knobs, the system should be enhanced to offer
continuous scripted dynamic sequences, rather than having motion

imposed by user interaction. One interesting example would be to
create a script would loop through the time while allowing the user
to control the other aspects of the display. This would further
emphasize the usefulness of the scripting language component of a
structured video decoder for visualizing data.

Second, I would add live video clips to the system. This step was
partially implemented. The graphics and audio objects for three
television news weather forecasts were created. Adding these to the
system would require defining a knob to control how and when
these video clips are displayed.

Third, a very interesting suggestion was provided by Glorianna
Davenport that involves using an audio weather forecast and using
the weather maps generated by the weather system to supplement

what the weather forecaster is saying. This would show how the

5.3 Future Work

structured weather system could augment traditional weather

broadcasts.

The system also needs satellite and radar images. A lot of effort was

put into trying to implement these graphics. However, none of the

radar or satellite images available over the Web was able to be

adapted for use in the system. The problem was separating the radar

or satellite information from the background of the image so that

they could be composited on top of the maps in the weather system.

One simple but useful improvement to the system would be to set

up the city and state databases from files, rather than hard coding

them as they are done now. This would allow changes to be made

and cities and states to be added without recompiling the system. In

addition, "weather" could use the same "cities" file so that any

changes made to the system would automatically be reflected in the

cities request box.

Of course, implementing all 50 states is on this list of improve-

ments, but it is much more interesting to show different features for

a few states than to show the same features for a lot of states, so this

is not a high priority.

5.3 Future Work
Section 5.2 discusses how I would extend the current system. How-

ever, this is not where the future of this work lies. This thesis has

shown that it is possible to use structured video as a form of data

visualization. However, instead of focusing on this one application,

further research should consider how structured video could be

used for other forms of data visualization. Two main factors point

to this conclusion.

First, in the process of looking for background information on data

visualization I was consistently confronted with example of scien-

tific visualization or systems that deal with very difficult and com-

plicated natural phenomenon. Such a system was not chosen for

Chapter 5 Conclusions

this thesis because implementing it would require knowledge about

what was being modeled. However, scientific visualization is the

focal point of a substantial amount of research in the data visualiza-

tion field and it would be interesting to see if structured video could

be useful as a form of data visualization in that context.

Second, when Cheops is better able to handle full 3-D rendering, it

could be useful for information systems that require real time

access to 3-D data. In fact, this is the most likely way in which

structured video could outperform other visualization systems.

Many people asked why the current system did not use fancy three

dimensional weather graphics. The main reason is based on Tufte's

argument that information should be presented visually in the same

number of dimensions that it requires. For example, using a three
dimensional graphic to display two dimensional data (like a time

series plot) only serves to unnecessarily embellish the data, and

often either misconstrue or detract from it. However, the fact

remains that real-time rendering is one ability currently unique to

Cheops and a few other select (and expensive) platforms, so imple-

menting a system that uses three dimensional data, would show off

the benefits of both structured video and Cheops as tools for data

visualization.

Appendix A

Isis Files

This section includes examples of the isis script files generated by

the weather system. These files were created by executing the

"makeweather" program with the request file shown in Section B. 1.

These files are included for reference purposes and do not have

detailed accompanying explanations.

A.1 The Request File
mycities
-256.0 -256.0 256.0 256.0
DEFAULT
BOSTON, MA
AUGUSTA, ME

A.2 The Main Isis File
#Scripts/mycities/mycities.isis
(load "Scripts/Standard/strvid.isis")
(load "Scripts/Standard/strtext.isis")
(load "Scripts/Standard/weatherfunc.isis")

Iniialize

Set these higher for debugging purposes
(set-video-verbose 0)
(set-interface-verbose 0)

(initialize-interface)
(initialize-video-system)

Set the scale information
This is used to map longitude and lattitude to

screen coordinates.

(set windowsize (RealRect -256.0 -256.0 256.0 256.0))

Appendix A Isis Files

Set the number of x and y pixels of the map

(set pplong 104.469)

(set pplatt 131.515)

Set the geographical center of the map in pixels

(set centlong 70.235)

(set centlatt 44.340)

(load "Scripts/Standard/weatherdef.isis")

(vid-update window win-location (Loc 588 512))

Register graphics objects with the system

(load "Scripts/mycities/mycitiesmaps.isis")

(load "Scripts/Standard/graphics.isis")

(load "Scripts/mycities/mycitiesdata.isis")

Text Actors

(load "Scripts/Standard/corner.isis")

The other definitions are in weatherdefs.isis

(vid-update videng

vid-actors (append (AddrList center-txt left-corner-txt right-corner-txt

MAsl MArl MAc MAhl MAtl MEsl MErl MEcl MEhl MEtl MEs2 MEr2 MEc2 MEh2 MEt2

(AddrList BOS-clds AUG-clds

BOS-temp-str AUG-temp-str

BOS-max-str AUG-max-str

BOS-min-str AUG-min-str

BOS-dew-str AUG-dew-str
(AddrList BOS-wspd AUG-wspd)
(AddrList BOS-wdir AUG-wdir)
BOS-gusts-str AUG-gusts-str

BOS-vis-str AUG-vis-str

BOS-press-str AUG-press-str

BOS-humidity-str AUG-humidity-str

BOS-altimeter-str AUG-altimeter-str

BOS-sunrise-str AUG-sunrise-str

BOS-sunset-str AUG-sunset-str))

Create the user interface

(set knobs (create-interface "Knobs"))

X position knob

(load "Scripts/Standard/Knobs/x-posknob.isis")

Y position knob

A.2 The Main Isis File

(load "Scripts/Standard/Knobs/ypos-knob.isis")

Scale knob
(load "Scripts/Standard/Knobs/scaleknob.isis")

Map selection knob
(load "Scripts/Standard/Knobs/map-sel knob.isis")

Data knob
(load "Scripts/Standard/Knobs/dataknob.isis")

Time knob
(set start-time 19)
(set end-time 72)
(load "Scripts/Standard/Knobs/timeknob.isis")
City knob
(load "Scripts/Standard/Knobs/city-knob.isis")

Exit knob
(load "Scripts/Standard/Knobs/exitknob.isis")

Start the movie loop

(print newline
"Knob one controls the horizontal position"

newline)
(print "Knob two controls the vertical position"

newline)
(print "Knob three controls the zoom"

newline)
(print "Knob four controls the maps being displayed"

newline)
(print "Knob five controls the data being displayed"

newline)
(print "Knob six controls the time being displayed"

newline)
(print "Knob eight exits"

newline
newline)

(start-video-system)
(start-interface knobs)

(set leaf-frame 0)
(set start-day 4)

(set makeframe
(proc ()

(begin
(update-interface knobs)
(set map-sel (/ (check map-sel-input) 20))
(vid-update MAsl ac-visibility (svis-tl map-sel))
(vid-update MAc1 ac-visibility (cvis-tl map-sel))

Appendix A Isis Files
(vid-update
(vid-update
(vid-update
(vid-update
(vid-update
(vid-update
(vid-update
(vid-update
(vid-update
(vid-update
(vid-update
(vid-update
(vid-update

MArl
MAhl
MAt1
MEs1
MEcl
MErl
MEh1
MEt1
MEs2
MEc2
MEr2
MEh2
MEt2

ac-visibility
ac-visibility
ac-visibility
ac-visibility
ac-visibility
ac-visibility
ac-visibility
ac-visibility
ac-visibility
ac-visibility
ac-visibility
ac-visibility
ac-visibility

(set thescale (valid-scales (/
(vid-update camera

cam-ref-point
(Pos (* (check xpos-input)
cam-viewport

(check scale-input) 20.0)))

-1) (check ypos-input) 0.0)

(RealRect (/ -256.0 thescale) (/ -256.0 thescale)
(/ 256.0 thescale) (/ 256.0 thescale)))

(set data (/ (check data-input) 20))
(set time (/ (check time-input) 20))

(vid-update left-corner-txt ac-object (lcorner-tl data))
(if (< time start-time)

(vid-update right-corner-txt
ac-frame 0
ac-object yesterday)

(if (= time start-time)
(vid-update right-corner-txt

ac-frame 0
ac-object current)

(vid-update right-corner-txt
ac-frame (% time 24)
ac-object times)))

(if (<= time start-time)
(vid-update center-txt

ac-visibility 0.0)
(if (< time 24)

(vid-update center-txt
ac-visibility 1.0
ac-frame 0
ac-object today)

(if (< time 48)
(vid-update center-txt

ac-visibility 1.0
ac-frame 0
ac-object tomorrow)

(vid-update center-txt
ac-visibility 1.0
ac-frame (+ start-day (floor (/ time 24)))
ac-object days))))

(rvis-tl
(hvis-tl
(tvis-tl
(svis-tl
(cvis-tl
(rvis-tl
(hvis-tl
(tvis-tl
(svis-tl
(cvis-tl
(rvis-tl
(hvis-tl

(tvis-tl

map-sel))
map-sel))
map-sel))
map-sel))
map-sel))
map-sel))
map-sel))
map-sel))
map-sel))
map-sel))
map-sel))
map-sel))
map-sel))

Appendix A Isis Files

A.2 The Main Isis File

(set data-elems (data-tl data))
(set data-strings (str-tl data))

(let ((elems (length data-elems)) (count 0))
(while (< count elems)

(begin
(let ((city-str (data-strings count))

(city-data (data-elems count)))
(let ((cd (city-data time)))

(if (= data 0)

(begin
(vid-update city-str

ac-visibility (cd 1)
ac-object (cd 0))

(vid-update left-corner-txt
ac-visibility 0.0))

(if (= data 5)

(vid-update city-str
ac-visibility (cd 1)
ac-frame leaf-frame
ac-object (windspd-tl

(cd 0)))
(if (= data 6)

(vid-update city-str
ac-visibility (cd 1)
ac-frame (/ (cd 0) 10))

(begin
(setstring city-str (cd 0))

(stringvisible city-str (cd 1))))))))

(set count (+ count 1)))))

(realize-video videng)
(set leaf-frame (+ leaf-frame 1))
(if (> leaf-frame 11) (set leaf-frame 0) Null)

(let ((elems (length data-elems)) (count 0))
(while (< count elems)

(begin
(let ((city-str (data-strings count)))

(if (or (= data 0)(= data 5) (= data 6))
(begin

(vid-update city-str ac-visibility 0.0)
(vid-update left-corner-txt ac-visibility 1.0))

(stringvisible city-str 0.0)))
(set count (+ count 1)))))

(while (= (check exit-input) 0) (makeframe))

(interactive)

Appendix A

A.3

Isis Files

The Data Isis File
#Scripts/mycities/mycitiesdata.isis

(load "Scripts/mycities/BOS.isis")

(load "Scripts/mycities/AUG.isis")

Set up datalines of pieces of data for each city
(set data-tl

(key

(key
(key
(key

(key
(key

(key

(key

(key
(key
(key

(key

(key
(key

(key
(key
(key

(key
(key
(key

(key
(key
(key

(key
(key
(key
(key
(key
(key
(key
(key

(key
(key

(key

(key

(key
(key

(key

(key

data-tl

data-tl
data-tl
data-tl

data-tl
data-tl

data-tl

data-tl

data-tl
data-tl
data-tl

data-tl

data-tl
data-tl

data-tl
data-tl
data-tl

data-tl
data-tl

data-tl
data-tl
data-tl
data-tl

data-tl
data-tl
data-tl
data-tl
data-tl
data-tl

data-tl
data-tl
data-tl
data-tl

data-tl

data-tl

data-tl
data-tl

data-tl

data-tl

(new-timeline))

(TimeLineList BOS-clds-tl AUG-clds-tl))
(TimeLineList BOS-temp-tl AUG-temp-tl))
(TimeLineList BOS-max-tl AUG-max-tl))
(TimeLineList BOS-min-tl AUG-min-tl))
(TimeLineList BOS-dew-tl AUG-dew-tl))
(TimeLineList BOS-wspd-tl AUG-wspd-tl))
(TimeLineList BOS-wdir-tl AUG-wdir-tl))
(TimeLineList BOS-gusts-tl AUG-gusts-tl))
(TimeLineList BOS-vis-tl AUG-vis-tl))
(TimeLineList BOS-press-tl AUG-press-tl))
(TimeLineList BOS-humidity-ti AUG-humidity-ti

(TimeLineList BOS-aitimeter-ti AUG-aitimeter-ti

(TimeLineList BOS-norm-max-ti AUG-norm-max-ti

(TimeLineList BOS-norm-min-ti AUG-norm-mm-ti

(TimeLineList EGS-rec-max-ti AUG-rec-max-ti))
(TimeLineList BOS-rec-maxy-ti AUG-rec-maxy-ti

(TimeLineList BOS-rec-min-ti AUG-rec-min-ti))
(TimeLineList BOS-rec-miny-ti AUG-rec-miny-ti

(TimeLineList BOS-sunrise-ti AUG-sunrise-ti

(TimeLineList BOS-sunset-ti AUG-sunset-ti))
(TimeLineList BGS-temp-dep-ti AUG-temp-dep-ti

(TimeLineList EGS-heating-ti AUG-heating-ti))
(TimeLineList BGS-heatingm-ti AUG-heatingm-ti

(TimeLineList BOS-heatings-ti AUG-heatings-ti

(TimeLineList BOS-heatingd-ti AUG-heatingd-ti
(TimeLineList BOS-cooiing-ti AUG-cooiing-ti))
(TimeLineList BOS-cooiingm-ti AUG-cooiingm-ti

(TimeLineList BOS-cooiings-ti AUG-coolings-ti

(TimeLineList BOS-cooiingd-ti AUG-cooiingd-ti

(TimeLineList BOS-precip-ti AUG-precip-ti))
(TimeLineList BOS-precipm-ti AUG-precipm ti

(TimeLineList BOS-precipm-norm-ti AUG-precipm-norm-ti

(TimeLineList BOS-precipy-ti AUG-precipy-ti))
(TimeLineList BOS-precipy-norm-ti AUG-precipy-norm-ti

(TimeLineList BOS-snowfaii-ti AUG-snowfaii-ti))
(TimeLineList BOS-snowfaiim-ti AUG-snowfaiim-ti

(TimeLineList BOS-snowfaiis-ti AUG-snowfaiis-ti
(TimeLineList BOS-fastwind-tl AUG-fastwind-tl))
(TimeLineList BOS-peak-tl AUG-peak-tl))

(set str-tl (new-timeline))

(key str-tl

(key str-tl

(key str-tl

0 (AddrList BOS-clds AUG-clds))
1 (StringList BOS-temp-str AUG-temp-str))
2 (StringList BOS-max-str AUG-max-str))

A.4 The Map Isis File

(key str-tl 3 (StringList BOS-min-str AUG-min-str))
(key str-tl 4 (StringList BOS-dew-str AUG-dew-str))
(key str-tl 5 (AddrList BOS-wspd AUG-wspd))
(key str-tl 6 (AddrList BOS-wdir AUG-wdir))
(key str-tl 7 (StringList BOS-gusts-str AUG-gusts-str))
(key str-tl 8 (StringList BOS-vis-str AUG-vis-str))

(key str-tl 9 (StringList BOS-press-str AUG-press-str))
(key str-tl 10 (StringList BOS-humidity-str AUG-humidity-str

(key str-tl 11 (StringList BOS-altimeter-str AUG-altimeter-str

(key str-tl 12 (StringList BOS-norm-max-str AUG-norm-max-str

(key str-tl 13 (StringList BOS-norm-min-str AUG-nor-min-str

(key str-tl 14 (StringList BOS-rec-max-str AUG-rec-max-str))
(key str-tl 15 (StringList BOS-rec-maxy-str AUG-rec-maxy-str

(key str-tl 16 (StringList BOS-rec-min-str AUG-rec-min-str))
(key str-tl 17 (StringList BOS-rec-miny-str AUG-rec-miny-str

(key str-tl 18 (StringList EOS-sunrise-str AUG-sunrise-str

(key str-tl 19 (StringList BOS-sunset-str AUG-sunset-str))
(key str-tl 20 (StringList BOS-temp-dep-str AUG-temp-dep-str

(key str-tl 21 (StringList BOS-heating-str AUG-heating-str))
(key str-tl 22 (StringList BOS-heatingm-str AUG-heatingm-str

(key str-tl 23 (StringList BOS-heatings-str AUG-heatings-str

(key str-tl 24 (StringList BOS-heatingd-str AUG-heatingd-str

(key str-tl 25 (StringList BOS-cooling-str AUG-cooling-str))
(key str-tl 26 (StringList BOS-coolingm-str AUG-coolingm-str

(key str-tl 27 (StringList BOS-coolings-str AUG-coolings-str

(key str-tl 28 (StringList BOS-coolingd-str AUG-coolingd-str

(key str-tl 29 (StringList BOS-precip-str AUG-precip-str))
(key str-tl 30 (StringList BOS-precipm-str AUG-precipm-str

(key str-tl 31 (StringList BOS-precipm-norr-str AUG-precipm-norm-str

(key str-tl 32 (StringList BOS-precipy-str AUG-precipy-str))
(key str-tl 33 (StringList BOS-precipy-norm-str AUG-precipy-norm-str

(key str-tl 34 (StringList BOS-snowfall-str AUG-snowfall-str))
(key str-tl 35 (StringList BOS-snowfallm-str AUG-snowfallm-str

(key str-tl 36 (StringList BOS-snowfalls-str AUG-snowfalls-str

(key str-tl 37 (StringList BOS-fastwird-str AUG-fastwind-str

(key str-tl 38 (StringList BOS-peak-str AUG-peak-str x r

A.4 The Map Isis File
#Scripts/mycities/mycitiesmaps .isis

Register Maps

(set MA-statel
(new-video-object "Objects/Maps/MA/statel.dat"

"mB-MA-statel" "non-cacheable"))

(set MA-riversA

(new-video-object "Objects/Maps/MA/riversi .dat"

"mi-MA-riversB" "non-cacheable"))

(set MA-countiesA

(new-video-object "Objects/Maps/MA/countiesl.dat"

"mB-MA-countiesi" "non-cacheabler))

(set MA-highwaysl

Appendix A Isis Files

(new-video-object "Objects/Maps/MA/highwaysl.dat"

"ml-MA-highwaysl" "non-cacheable"))

(set MA-cities1

(new-video-object "Objects/Maps/MA/citiesl.dat"

"m1-MA-cities1" "non-cacheable"))

First set up actors for the maps

(set MAs1 (new-actor))

(set MAc1 (new-actor))

(set MArl (new-actor))

(set MAhl (new-actor))

(set MAtl (new-actor))

(vid-update MAs1

ac-do-zbuffer True

ac-position-in-3d True

ac-visibility 0.0

ac-position (+ (conv (LongLatt 71.71 42.06)) (Pos 0.0 0.0 -1.5))

ac-object MA-statel)

(vid-update MAc1

ac-do-zbuffer True

ac-position-in-3d True

ac-visibility 0.0

ac-position (+ (conv (LongLatt 71.71 42.06)) (Pos 0.0 0.0 -1.5))
ac-object MA-counties1)

(vid-update MArl

ac-do-zbuffer True

ac-position-in-3d True

ac-visibility 0.0

ac-position (+ (conv (LongLatt 71.71 42.06)) (Pos 0.0 0.0 -1.0))
ac-object MA-rivers1)

(vid-update MAhl

ac-do-zbuffer True

ac-position-in-3d True

ac-visibility 0.0

ac-position (+ (conv (LongLatt 71.71 42.06)) (Pos 0.0 0.0 -1.0))
ac-object MA-highways1)

(vid-update MAt1

ac-do-zbuffer True

ac-position-in-3d True

ac-visibility 0.0

ac-position (+ (conv (LongLatt 71.71 42.06)) (Pos 0.0 0.0 -1.0))
ac-object MA-cities1)

(set ME-statel

(new-video-object "Objects/Maps/ME/statel.dat"

"m1-ME-statel" "non-cacheable"))

(set ME-state2

(new-video-object "Objects/Maps/ME/state2.dat"

"ml-ME-state2" "non-cacheable"))

(set ME-rivers1

(new-video-object "Objects/Maps/ME/riversl.dat"
"mi-ME-rivers1" "non-cacheable"))

(set ME-rivers2

A.4 The Map Isis File

(new-video-object "Objects/Maps/ME/rivers2.dat"
"ml-ME-rivers2" "non-cacheable"))

(set ME-counties1
(new-video-object "Objects/Maps/ME/countiesl.dat"
"ml-ME-countiesi" "non-cacheable"))

(set ME-counties2
(new-video-object "Objects/Maps/ME/counties2.dat"
"ml-ME-counties2" "non-cacheable"))

(set ME-highwaysl
(new-video-object "Objects/Maps/ME/highwaysl.dat"
"ml-ME-highwaysl" "non-cacheable"))

(set ME-highways2
(new-video-object "Objects/Maps/ME/highways2.dat"
"ml-ME-highways2" "non-cacheable"))

(set ME-cities1
(new-video-object "Objects/Maps/ME/citiesl.dat"
"m1-ME-cities1" "non-cacheable"))

(set ME-cities2
(new-video-object "Objects/Maps/ME/cities2.dat"
"ml-ME-cities2" "non-cacheable"))

First set up actors for the maps
(set MEs1 (new-actor))
(set MEcl (new-actor))
(set MErl (new-actor))
(set MEhl (new-actor))
(set MEt1 (new-actor))
(set MEs2 (new-actor))
(set MEc2 (new-actor))
(set MEr2 (new-actor))
(set MEh2 (new-actor))
(set MEt2 (new-actor))

(vid-update MEs1
ac-do-zbuffer True
ac-position-in-3d True
ac-visibility 0.0
ac-position (+ (conv (LongLatt 69.03 45.51)) (Pos 0.0 0.0 -1.5))
ac-object ME-statel)

(vid-update MEs2
ac-do-zbuffer True
ac-position-in-3d True
ac-visibility 0.0
ac-position (+ (conv (LongLatt 70.59 43.33)) (Pos 0.0 0.0 -1.5))
ac-object ME-state2)

(vid-update MEc
ac-do-zbuffer True
ac-position-in-3d True
ac-visibility 0.0
ac-position (+ (conv (LongLatt 69.03 45.51)) (Pos 0.0 0.0 -1.5))
ac-object ME-counties1)

(vid-update MEc2
ac-do-zbuffer True
ac-position-in-3d True

Appendix A Isis Files

ac-visibility 0.0

ac-position (+ (conv (LongLatt 70.59 43.33)) (Pos 0.0 0.0 -1.5))

ac-object ME-counties2)

(vid-update MEr1

ac-do-zbuffer True

ac-position-in-3d True

ac-visibility 0.0

ac-position (+ (conv (LongLatt 69.03 45.51)) (Pos 0.0 0.0 -1.0))

ac-object ME-rivers1)

(vid-update MEr2

ac-do-zbuffer True

ac-position-in-3d True

ac-visibility 0.0

ac-position (+ (conv (LongLatt 70.59 43.33)) (Pos 0.0 0.0 -1.0))

ac-object ME-rivers2)

(vid-update MEhl

ac-do-zbuffer True

ac-position-in-3d True

ac-visibility 0.0

ac-position (+ (conv (LongLatt 69.03 45.51)) (Pos 0.0 0.0 -1.0))

ac-object ME-highways1)

(vid-update MEh2

ac-do-zbuffer True

ac-position-in-3d True

ac-visibility 0.0

ac-position (+ (conv (LongLatt 70.59 43.33)) (Pos 0.0 0.0 -1.0))

ac-object ME-highways2)

(vid-update MEtl

ac-do-zbuffer True

ac-position-in-3d True

ac-visibility 0.0

ac-position (+ (conv (LongLatt 69.03 45.51)) (Pos 0.0 0.0 -1.0))

ac-object ME-cities1)

(vid-update MEt2

ac-do-zbuffer True

ac-position-in-3d True

ac-visibility 0.0

ac-position (+ (conv (LongLatt 70.59 43.33)) (Pos 0.0 0.0 -1.0))

ac-object ME-cities2)

A.5 A City Isis File
#Scripts/mycities/BOS.isis

Set position

(set BOS (LongLatt 71.03 42.37))

Set up objects

(set BOS-clds (new-actor))

(set BOS-wspd (new-actor))

(set BOS-wdir (new-actor))

(set BOS-temp-str (newstring 2 cs24 (conv BOS) (Pos 10.0 0.0 0.0)))

A.5

(set BOS-max-str (newstring 2 cs24 (conv BOS) (Pos 10.0 0.0 0.0)))
(set BOS-min-str (newstring 2 cs24 (conv BOS) (Pos 10.0 0.0 0.0)))
(set BOS-dew-str (newstring 2 cs24 (conv BOS) (Pos 10.0 0.0 0.0)))
(set BOS-gusts-str (newstring 2 cs24 (conv BOS) (Pos 10.0 0.0 0.0)))
(set BOS-vis-str (newstring 4 cs24 (conv BOS) (Pos 10.0 0.0 0.0)))
(set BOS-press-str (newstring 7 cs24 (cony BOS) (Pos 10.0 0.0 0.0)))
(set BOS-humidity-str (newstring 2 cs24 (conv BOS) (Pos 10.0 0.0 0.0)))
(set BOS-altimeter-str (newstring 5 cs24 (conv BOS) (Pos 10.0 0.0 0.0)))

Set up today objects

(set BOS-norm-min-str (newstring 2 cs24 (conv BOS) (Pos 10.0 0.0 0.0)))
(set BOS-norm-max-str (newstring 2 cs24 (conv BOS) (Pos 10.0 0.0 0.0)))
(set BOS-rec-min-str (newstring 2 cs24 (conv BOS) (Pos 10.0 0.0 0.0)))
(set BOS-rec-miny-str (newstring 4 cs24 (conv BOS) (Pos 10.0 0.0 0.0)))
(set BOS-rec-max-str (newstring 2 cs24 (conv BOS) (Pos 10.0 0.0 0.0)))
(set BOS-rec-maxy-str (newstring 4 cs24 (conv BOS) (Pos 10.0 0.0 0.0)))
(set BOS-sunrise-str (newstring 4 cs24 (conv BOS) (Pos 10.0 0.0 0.0)))
(set BOS-sunset-str (newstring 4 cs24 (conv BOS) (Pos 10.0 0.0 0.0)))

Set up yesterday objects

(set BOS-temp-dep-str (newstring 3 cs24 (conv BOS)

(set BOS-heating-str (newstring 2 cs24 (conv BOS)
(set BOS-heatingm-str (newstring 3 cs24 (conv BOS)

(set BOS-heatings-str (newstring 3 cs24 (conv BOS)

(set BOS-heatingd-str (newstring 4 cs24 (conv BOS)
(set BOS-cooling-str (newstring 2 cs24 (conv BOS)

(set BOS-coolingm-str (newstring 3 cs24 (conv BOS)

(set BOS-coolings-str (newstring 3 cs24 (conv BOS)
(set BOS-coolingd-str (newstring 4 cs24 (conv BOS)

(set
(set

(set

(set

(set
(set
(set
(set
(set
(set

BOS-precip-str (newstring 3 cs24 (conv BOS)

BOS-precipm-str (newstring 4 cs24 (conv BOS)

BOS-precipm-norm-str (newstring 4 cs24 (conv

BOS-precipy-str (newstring 5 cs24 (conv BOS)

BOS-precipy-norm-str (newstring 5 cs24 (conv
BOS-snowfall-str (newstring 3 cs24 (conv BOS)

BOS-snowfallm-str (newstring 5 cs24 (conv BOS

BOS-snowfalls-str (newstring 5 cs24 (conv BOS

BOS-fastwind-str (newstring 2 cs24 (conv BOS)

BOS-peak-str (newstring 2 cs24 (conv BOS) (Po

(Pos 10.0 0.0 0.0)))

(Pos 10.0 0.0 0.0)))

(Pos 10.0 0.0 0.0)))

(Pos 10.0 0.0 0.0)))

(Pos 10.0 0.0 0.0)))

(Pos 10.0 0.0 0.0)))

(Pos 10.0 0.0 0.0)))

(Pos 10.0 0.0 0.0)))

(Pos 10.0 0.0 0.0)))
Pos 10.0 0.0 0.0)))

(Pos 10.0 0.0 0.0)))

BOS) (Pos 10.0 0.0 0.0)))

(Pos 10.0 0.0 0.0)))

BOS) (Pos 10.0 0.0 0.0)))
(Pos 10.0 0.0 0.0)))

(Pos 10.0 0.0 0.0)))

(Pos 10.0 0.0 0.0)))

(Pos 10.0 0.0 0.0)))
s 10.0 0.0 0.0)))

(vid-update BOS-clds

ac-do-zbuffer True

ac-position-in-3d True

ac-visibility 0.0

ac-position (conv BOS)

ac-object sunny)

(vid-update BOS-wspd

ac-do-zbuffer True

ac-position-in-3d True

ac-visibility 0.0

ac-position (conv BOS)

ac-object calm)
(vid-update BOS-wdir

ac-do-zbuffer True

A City Isis File

Appendix A Isis Files

ac-position-in-3d True

ac-visibility 0.0

ac-position (conv BOS)

ac-frame 0

ac-object degrees)

Set up a timeline for each object

(set BOS-clds-tl (new-timeline (ValVis sunny 0.0)))

(set BOS-temp-tl (new-timeline (ValVis 0 0.0)))

(set BOS-max-tl (new-timeline (ValVis 0 0.0)))

(set BOS-min-tl (new-timeline (ValVis 0 0.0)))

(set BOS-dew-tl (new-timeline (ValVis 0 0.0)))

(set BOS-wspd-tl (new-timeline (ValVis 0 0.0)))

(set BOS-wdir-tl (new-timeline (ValVis 0 0.0)))

(set BOS-gusts-tl (new-timeline (ValVis 0 0.0)))

(set BOS-vis-tl (new-timeline (ValVis 0 0.0)))

(set BOS-press-tl (new-timeline (ValVis 0 0.0)))

(set BOS-humidity-tl (new-timeline (ValVis 0 0.0)))

(set BOS-altimeter-tl (new-timeline (ValVis 0 0.0)))

(set BOS-norm-max-tl (new-timeline (ValVis 0 0.0)))

(set BOS-norm-min-tl (new-timeline (ValVis 0 0.0)))

(set BOS-rec-max-tl (new-timeline (ValVis 0 0.0)))

(set BOS-rec-min-tl (new-timeline (ValVis 0 0.0)))

(set BOS-rec-maxy-tl (new-timeline (ValVis 0 0.0)))

(set BOS-rec-miny-tl (new-timeline (ValVis 0 0.0)))

(set BOS-sunrise-tl (new-timeline (ValVis 0 0.0)))

(set BOS-sunset-tl (new-timeline (ValVis 0 0.0)))

(set BOS-temp-dep-tl (new-timeline (ValVis 0 0.0)))

(set BOS-heating-tl (new-timeline (ValVis 0 0.0)))

(set BOS-heatingm-tl (new-timeline (ValVis 0 0.0)))

(set BOS-heatings-tl (new-timeline (ValVis 0 0.0)))

(set BOS-heatingd-tl (new-timeline (ValVis 0 0.0)))

(set BOS-cooling-tl (new-timeline (ValVis 0 0.0)))

(set BOS-coolingm-tl (new-timeline (ValVis 0 0.0)))

(set BOS-coolings-tl (new-timeline (ValVis 0 0.0)))

(set BOS-coolingd-tl (new-timeline (ValVis 0 0.0)))

(set BOS-precip-tl (new-timeline (ValVis 0 0.0)))

(set BOS-precipm-tl (new-timeline (ValVis 0 0.0)))

(set BOS-precipm-norm-tl (new-timeline (ValVis 0 0.0)))

(set BOS-precipy-tl (new-timeline (ValVis 0 0.0)))

(set BOS-precipy-norm-tl (new-timeline (ValVis 0 0.0)))

(set BOS-snowfall-tl (new-timeline (ValVis 0 0.0)))

(set BOS-snowfallm-tl (new-timeline (ValVis 0 0.0)))

(set BOS-snowfalls-tl (new-timeline (ValVis 0 0.0)))

(set BOS-fastwind-tl (new-timeline (ValVis 0 0.0)))

(set BOS-peak-tl (new-timeline (ValVis 0 0.0)))

(key BOS-temp-tl 17 (ValVis "36" 1.0))

(key BOS-max-tl 17 (ValVis "40" 1.0))

(key BOS-min-tl 17 (ValVis "31" 1.0))

(key BOS-temp-dep-tl 17 (ValVis "-11" 1.0))

(key BOS-heating-tl 17 (ValVis "29" 1.0))

(key BOS-heatingm-tl 17 (ValVis "269" 1.0))

(key BOS-heatings-tl 17 (ValVis "599" 1.0))

(key BOS-heatingd-tl 17 (ValVis "-15" 1.0))

A.5 A City Isis File

(key BOS-cooling-tl 17 (ValVis "0" 1.0))
(key BOS-coolingm-tl 17 (ValVis "0" 1.0))
(key BOS-coolings-tl 17 (ValVis "846" 1.0))
(key BOS-coolingd-tl 17 (ValVis "168" 1.0))
(key BOS-precip-tl 17 (ValVis "0.01" 1.0))
(key BOS-precipm-tl 17 (ValVis "2.88" 1.0))
(key BOS-precipm-norm-tl 17 (ValVis "1.74" 1.0))
(key BOS-precipy-tl 17 (ValVis "29.65" 1.0))
(key BOS-precipy-norm-tl 17 (ValVis "34.94" 1.0))
(key BOS-snowfall-tl 17 (ValVis "0.20" 1.0))
(key BOS-snowfallm-tl 17 (ValVis "0.20" 1.0))
(key BOS-snowfalls-tl 17 (ValVis "0.20" 1.0))
(key BOS-fastwind-tl 17 (ValVis "15" 1.0))
(key BOS-peak-tl 17 (ValVis "20" 1.0))
(key BOS-wdir-tl 17 (ValVis 180 1.0))

(key BOS-norm-min-tl 19 (ValVis "39" 1.0))
(key BOS-norm-max-tl 19 (ValVis "53" 1.0))

(key BOS-rec-min-tl 19 (ValVis "16" 1.0))
(key BOS-rec-max-tl 19 (ValVis "71" 1.0))
(key BOS-rec-miny-tl 19 (ValVis "1905" 1.0))

(key BOS-rec-maxy-tl 19 (ValVis "1993" 1.0))

(key BOS-clds-tl 19 (ValVis rain 1.0))

(key BOS-temp-tl 19 (ValVis "47" 1.0))

(key BOS-max-tl 19 (ValVis "-100" 0.0))
(key BOS-min-tl 19 (ValVis "-100" 0.0))

(key BOS-dew-tl 19 (ValVis "43" 1.0))

(key BOS-wdir-tl 19 (ValVis 70 1.0))

(key BOS-wspd-tl 19 (ValVis 37 1.0))

(key BOS-gusts-tl 19 (ValVis "48" 1.0))

(key BOS-vis-tl 19 (ValVis "2.8" 1.0))
(key BOS-press-tl 19 (ValVis "1012.00" 1.0))

(key BOS-humidity-tl 19 (ValVis "86" 1.0))
(key BOS-altimeter-tl 19 (ValVis "29.89" 1.0))
(key BOS-sunrise-tl 19 (ValVis "633" 1.0))
(key BOS-sunset-tl 19 (ValVis "424" 1.0))

(key BOS-clds-tl 12 (ValVis overcast 1.0))
(key BOS-temp-tl 12 (ValVis "36" 1.0))

(key BOS-max-tl 12 (ValVis "-100" 0.0))

(key BOS-min-tl 12 (ValVis "-100" 0.0))

(key BOS-dew-tl 12 (ValVis "31" 1.0))

(key BOS-wdir-tl 12 (ValVis 60 1.0))
(key BOS-wspd-tl 12 (ValVis 10 1.0))

(key BOS-gusts-tl 12 (ValVis "-100" 0.0))
(key BOS-vis-tl 12 (ValVis "-100.0" 0.0))
(key BOS-press-tl 12 (ValVis "-100.00" 0.0))

(key BOS-humidity-tl 12 (ValVis "-100" 0.0))

(key BOS-altimeter-tl 12 (ValVis "-100.00" 0.0))

(key BOS-sunrise-tl 12 (ValVis "-100" 0.0))

(key BOS-sunset-tl 12 (ValVis "-100" 0.0))

(key BOS-clds-tl 15 (ValVis overcast 1.0))

(key BOS-temp-tl 15 (ValVis "43" 1.0))

Appendix A Isis Files

(key BOS-max-tl 15 (ValVis "-100" 0.0))

(key BOS-min-tl 15 (ValVis "-100" 0.0))

(key BOS-dew-tl 15 (ValVis "32" 1.0))

(key BOS-wdir-tl 15 (ValVis 50 1.0))

(key BOS-wspd-tl 15 (ValVis 13 1.0))

(key BOS-gusts-tl 15 (ValVis "-100" 0.0))

(key BOS-vis-tl 15 (ValVis "-100.0" 0.0))

(key BOS-press-tl 15 (ValVis "-100.00" 0.0))

(key BOS-humidity-tl 15 (ValVis "-100" 0.0))

(key BOS-altimeter-tl 15 (ValVis "-100.00" 0.0))

(key BOS-sunrise-tl 15 (ValVis "-100" 0.0))

(key BOS-sunset-tl 15 (ValVis "-100" 0.0))

(key BOS-clds-tl 18 (ValVis overcast 1.0))

(key BOS-temp-tl 18 (ValVis "46" 1.0))

(key BOS-max-tl 18 (ValVis "-100" 0.0))

(key BOS-min-tl 18 (ValVis "-100" 0.0))

(key BOS-dew-tl 18 (ValVis "36" 1.0))

(key BOS-wdir-tl 18 (ValVis 70 1.0))

(key BOS-wspd-tl 18 (ValVis 17 1.0))

(key BOS-gusts-tl 18 (ValVis "-100" 0.0))

(key BOS-vis-tl 18 (ValVis "-100.0" 0.0))

(key BOS-press-tl 18 (ValVis "-100.00" 0.0))

(key BOS-humidity-tl 18 (ValVis "-100" 0.0))

(key BOS-altimeter-tl 18 (ValVis "-100.00" 0.0))

(key BOS-sunrise-tl 18 (ValVis "-100" 0.0))

(key BOS-sunset-tl 18 (ValVis "-100" 0.0))

(key BOS-clds-tl 21 (ValVis overcast 1.0))

(key BOS-temp-tl 21 (ValVis "47" 1.0))

(key BOS-max-tl 21 (ValVis "-100" 0.0))

(key BOS-min-tl 21 (ValVis "-100" 0.0))

(key BOS-dew-tl 21 (ValVis "40" 1.0))

(key BOS-wdir-tl 21 (ValVis 60 1.0))

(key BOS-wspd-tl 21 (ValVis 21 1.0))

(key BOS-gusts-tl 21 (ValVis "-100" 0.0))

(key BOS-vis-tl 21 (ValVis "-100.0" 0.0))

(key BOS-press-tl 21 (ValVis "-100.00" 0.0))

(key BOS-humidity-tl 21 (ValVis "-100" 0.0))

(key BOS-altimeter-tl 21 (ValVis "-100.00" 0.0))

(key BOS-sunrise-tl 21 (ValVis "-100" 0.0))

(key BOS-sunset-tl 21 (ValVis "-100" 0.0))

(key BOS-clds-tl 24 (ValVis overcast 1.0))

(key BOS-temp-tl 24 (ValVis "47" 1.0))

(key BOS-max-tl 24 (ValVis "48" 1.0))

(key BOS-min-tl 24 (ValVis "43" 1.0))

(key BOS-dew-tl 24 (ValVis "44" 1.0))

(key BOS-wdir-tl 24 (ValVis 50 1.0))

(key BOS-wspd-tl 24 (ValVis 25 1.0))

(key BOS-gusts-tl 24 (ValVis "-100" 0.0))

(key BOS-vis-tl 24 (ValVis "-100.0" 0.0))

(key BOS-press-tl 24 (ValVis "-100.00" 0.0))

(key BOS-humidity-tl 24 (ValVis "-100" 0.0))

A.5 A City Isis File

(key BOS-altimeter-tl 24 (ValVis "-100.00" 0.0))
(key BOS-sunrise-tl 24 (ValVis "634" 1.0))
(key BOS-sunset-tl 24 (ValVis "423" 1.0))

(key BOS-clds-tl 27 (ValVis overcast 1.0))
(key BOS-temp-tl 27 (ValVis "46" 1.0))
(key BOS-max-tl 27 (ValVis "-100" 0.0))
(key BOS-min-tl 27 (ValVis "-100" 0.0))
(key BOS-dew-tl 27 (ValVis "45" 1.0))
(key BOS-wdir-tl 27 (ValVis 40 1.0))
(key BOS-wspd-tl 27 (ValVis 23 1.0))

(key BOS-gusts-tl 27 (ValVis "-100" 0.0))
(key BOS-vis-tl 27 (ValVis "-100.0" 0.0))
(key BOS-press-tl 27 (ValVis "-100.00" 0.0))
(key BOS-humidity-tl 27 (ValVis "-100" 0.0))
(key BOS-altimeter-tl 27 (ValVis "-100.00" 0.0))
(key BOS-sunrise-tl 27 (ValVis "-100" 0.0))
(key BOS-sunset-tl 27 (ValVis "-100" 0.0))

(key BOS-clds-tl 30 (ValVis overcast 1.0))
(key BOS-temp-tl 30 (ValVis "45" 1.0))
(key BOS-max-tl 30 (ValVis "-100" 0.0))

(key BOS-min-tl 30 (ValVis "-100" 0.0))
(key BOS-dew-tl 30 (ValVis "45" 1.0))
(key BOS-wdir-tl 30 (ValVis 50 1.0))
(key BOS-wspd-tl 30 (ValVis 21 1.0))

(key BOS-gusts-tl 30 (ValVis "-100" 0.0))

(key BOS-vis-tl 30 (ValVis "-100.0" 0.0))

(key BOS-press-tl 30 (ValVis "-100.00" 0.0))
(key BOS-humidity-tl 30 (ValVis "-100" 0.0))
(key BOS-altimeter-tl 30 (ValVis "-100.00" 0.0))
(key BOS-sunrise-tl 30 (ValVis "-100" 0.0))
(key BOS-sunset-tl 30 (ValVis "-100" 0.0))

(key BOS-clds-tl 33 (ValVis overcast 1.0))
(key BOS-temp-tl 33 (ValVis "47" 1.0))

(key BOS-max-tl 33 (ValVis "-100" 0.0))

(key BOS-min-tl 33 (ValVis "-100" 0.0))

(key BOS-dew-tl 33 (ValVis "46" 1.0))

(key BOS-wdir-tl 33 (ValVis 70 1.0))
(key BOS-wspd-tl 33 (ValVis 17 1.0))

(key BOS-gusts-tl 33 (ValVis "-100" 0.0))
(key BOS-vis-tl 33 (ValVis "-100.0" 0.0))
(key BOS-press-tl 33 (ValVis "-100.00" 0.0))

(key BOS-humidity-tl 33 (ValVis "-100" 0.0))
(key BOS-altimeter-tl 33 (ValVis "-100.00" 0.0))
(key BOS-sunrise-tl 33 (ValVis "-100" 0.0))

(key BOS-sunset-tl 33 (ValVis "-100" 0.0))

(key BOS-clds-tl 36 (ValVis overcast 1.0))

(key BOS-temp-tl 36 (ValVis "46" 1.0))

(key BOS-max-tl 36 (ValVis "-100" 0.0))

(key BOS-min-tl 36 (ValVis "-100" 0.0))

(key BOS-dew-tl 36 (ValVis "45" 1.0))

Appendix A Isis Files

(key BOS-wdir-tl 36 (ValVis 70 1.0))

(key BOS-wspd-tl 36 (ValVis 14 1.0))

(key BOS-gusts-tl 36 (ValVis "-100" 0.0))

(key BOS-vis-tl 36 (ValVis "-100.0" 0.0))

(key BOS-press-tl 36 (ValVis "-100.00" 0.0))

(key BOS-humidity-tl 36 (ValVis "-100" 0.0))

(key BOS-altimeter-tl 36 (ValVis "-100.00" 0.0))

(key BOS-sunrise-tl 36 (ValVis "-100" 0.0))

(key BOS-sunset-tl 36 (ValVis "-100" 0.0))

(key BOS-clds-tl 39 (ValVis overcast 1.0))

(key BOS-temp-tl 39 (ValVis "47" 1.0))

(key BOS-max-tl 39 (ValVis "-100" 0.0))

(key BOS-min-tl 39 (ValVis "-100" 0.0))

(key BOS-dew-tl 39 (ValVis "46" 1.0))

(key BOS-wdir-tl 39 (ValVis 160 1.0))

(key BOS-wspd-tl 39 (ValVis 17 1.0))

(key BOS-gusts-tl 39 (ValVis "-100" 0.0))

(key BOS-vis-tl 39 (ValVis "-100.0" 0.0))

(key BOS-press-tl 39 (ValVis "-100.00" 0.0))

(key BOS-humidity-tl 39 (ValVis "-100" 0.0))

(key BOS-altimeter-tl 39 (ValVis "-100.00" 0.0))

(key BOS-sunrise-tl 39 (ValVis "-100" 0.0))

(key BOS-sunset-tl 39 (ValVis "-100" 0.0))

(key BOS-clds-tl 42 (ValVis overcast 1.0))

(key BOS-temp-tl 42 (ValVis "49" 1.0))

(key BOS-max-tl 42 (ValVis "-100" 0.0))

(key BOS-min-tl 42 (ValVis "-100" 0.0))

(key BOS-dew-tl 42 (ValVis "46" 1.0))

(key BOS-wdir-tl 42 (ValVis 190 1.0))

(key BOS-wspd-tl 42 (ValVis 16 1.0))

(key BOS-gusts-tl 42 (ValVis "-100" 0.0))

(key BOS-vis-tl 42 (ValVis "-100.0" 0.0))

(key BOS-press-tl 42 (ValVis "-100.00" 0.0))

(key BOS-humidity-tl 42 (ValVis "-100" 0.0))

(key BOS-altimeter-tl 42 (ValVis "-100.00" 0.0))

(key BOS-sunrise-tl 42 (ValVis "-100" 0.0))

(key BOS-sunset-tl 42 (ValVis "-100" 0.0))

(key BOS-clds-tl 45 (ValVis overcast 1.0))

(key BOS-temp-tl 45 (ValVis "47" 1.0))

(key BOS-max-tl 45 (ValVis "-100" 0.0))

(key BOS-min-tl 45 (ValVis "-100" 0.0))

(key BOS-dew-tl 45 (ValVis "42" 1.0))

(key BOS-wdir-tl 45 (ValVis 220 1.0))

(key BOS-wspd-tl 45 (ValVis 18 1.0))

(key BOS-gusts-tl 45 (ValVis "-100" 0.0))

(key BOS-vis-tl 45 (ValVis "-100.0" 0.0))

(key BOS-press-tl 45 (ValVis "-100.00" 0.0))

(key BOS-humidity-tl 45 (ValVis "-100" 0.0))

(key BOS-altimeter-tl 45 (ValVis "-100.00" 0.0))

(key BOS-sunrise-tl 45 (ValVis "-100" 0.0))

(key BOS-sunset-tl 45 (ValVis "-100" 0.0))

A.5 A City Isis File

(key BOS-clds-tl 48 (ValVis overcast 1.0))
(key BOS-temp-tl 48 (ValVis "44" 1.0))
(key BOS-max-tl 48 (ValVis "51" 1.0))

(key BOS-min-tl 48 (ValVis "36" 1.0))
(key BOS-dew-tl 48 (ValVis "39" 1.0))
(key BOS-wdir-tl 48 (ValVis 220 1.0))
(key BOS-wspd-tl 48 (ValVis 18 1.0))
(key BOS-gusts-tl 48 (ValVis "-100" 0.0))
(key BOS-vis-tl 48 (ValVis "-100.0" 0.0))
(key BOS-press-tl 48 (ValVis "-100.00" 0.0))
(key BOS-humidity-tl 48 (ValVis "-100" 0.0))
(key BOS-altimeter-tl 48 (ValVis "-100.00" 0.0))
(key BOS-sunrise-tl 48 (ValVis "-100" 0.0))
(key BOS-sunset-tl 48 (ValVis "-100" 0.0))

(key BOS-clds-tl 51 (ValVis partialcloudy 1.0))

(key BOS-temp-tl 51 (ValVis "43" 1.0))

(key BOS-max-tl 51 (ValVis "-100" 0.0))

(key BOS-min-tl 51 (ValVis "-100" 0.0))

(key BOS-dew-tl 51 (ValVis "35" 1.0))

(key BOS-wdir-tl 51 (ValVis 230 1.0))

(key BOS-wspd-tl 51 (ValVis 17 1.0))

(key BOS-gusts-tl 51 (ValVis "-100" 0.0))

(key BOS-vis-tl 51 (ValVis "-100.0" 0.0))

(key BOS-press-tl 51 (ValVis "-100.00" 0.0))

(key BOS-humidity-tl 51 (ValVis "-100" 0.0))

(key BOS-altimeter-tl 51 (ValVis "-100.00" 0.0))
(key BOS-sunrise-tl 51 (ValVis "-100" 0.0))

(key BOS-sunset-tl 51 (ValVis "-100" 0.0))

(key BOS-clds-tl 54 (ValVis partialcloudy 1.0))

(key BOS-temp-tl 54 (ValVis "41" 1.0))

(key BOS-max-tl 54 (ValVis "-100" 0.0))
(key BOS-min-tl 54 (ValVis "-100" 0.0))

(key BOS-dew-tl 54 (ValVis "30" 1.0))

(key BOS-wdir-tl 54 (ValVis 240 1.0))

(key BOS-wspd-tl 54 (ValVis 12 1.0))
(key BOS-gusts-tl 54 (ValVis "-100" 0.0))

(key BOS-vis-tl 54 (ValVis "-100.0" 0.0))
(key BOS-press-tl 54 (ValVis "-100.00" 0.0))

(key BOS-humidity-tl 54 (ValVis "-100" 0.0))

(key BOS-altimeter-tl 54 (ValVis "-100.00" 0.0))

(key BOS-sunrise-tl 54 (ValVis "-100" 0.0))
(key BOS-sunset-tl 54 (ValVis "-100" 0.0))

(key BOS-clds-tl 57 (ValVis sunny 1.0))

(key BOS-temp-tl 57 (ValVis "39" 1.0))

(key BOS-max-tl 57 (ValVis "-100" 0.0))

(key BOS-min-tl 57 (ValVis "-100" 0.0))

(key BOS-dew-tl 57 (ValVis "28" 1.0))

(key BOS-wdir-tl 57 (ValVis 260 1.0))

(key BOS-wspd-tl 57 (ValVis 16 1.0))

(key BOS-gusts-tl 57 (ValVis "-100" 0.0))

Appendix A Isis Files

(key BOS-vis-tl 57 (ValVis "-100.0" 0.0))

(key BOS-press-tl 57 (ValVis "-100.00" 0.0))

(key BOS-humidity-tl 57 (ValVis "-100" 0.0))

(key BOS-altimeter-tl 57 (ValVis "-100.00" 0.0))
(key BOS-sunrise-tl 57 (ValVis "-100" 0.0))
(key BOS-sunset-tl 57 (ValVis "-100" 0.0))

(key BOS-clds-tl 60 (ValVis partialcloudy 1.0))
(key BOS-temp-tl 60 (ValVis "37" 1.0))
(key BOS-max-tl 60 (ValVis "-100" 0.0))
(key BOS-min-tl 60 (ValVis "-100" 0.0))

(key BOS-dew-tl 60 (ValVis "26" 1.0))

(key BOS-wdir-tl 60 (ValVis 230 1.0))

(key BOS-wspd-tl 60 (ValVis 11 1.0))

(key BOS-gusts-tl 60 (ValVis "-100" 0.0))
(key BOS-vis-tl 60 (ValVis "-100.0" 0.0))
(key BOS-press-tl 60 (ValVis "-100.00" 0.0))
(key BOS-humidity-tl 60 (ValVis "-100" 0.0))
(key BOS-altimeter-tl 60 (ValVis "-100.00" 0.0))
(key BOS-sunrise-tl 60 (ValVis "-100" 0.0))
(key BOS-sunset-tl 60 (ValVis "-100" 0.0))

Bibliography

[Aga95a] Agamanolis, S. "High-level Scripting Environments for
Interactive Multi-Media Systems." SM Thesis Proposal.
Massachusetts Institute of Technology, August 1995.

[Aga95b] Agamanolis, S. "Isis: A Multi-Purpose Interpretive
Scripting Language Reference Manual and Tutorial."
Internal Memo. MIT Media Laboratury, November
1995.

[Aga95c] Agamanolis, S. "Structured Video with Isis." Internal

Memo. MIT Media Laboratury, November 1995.

[Aga95d] Agamanolis, S. "Structured Audio with Isis." Internal
Memo. MIT Media Laboratury, November 1995.

[Bov9l] Bove, V., Jr. and J. Watlington. "Cheops: A Modular
Processor for Scalable Video Coding." Proceedings of
SPIE Visual Communications and Image Processing

1991, Vol. 1605, pp. 886-893. SPIE, November 1991.

[Bov93a] Bove, V., Jr. and J. Watlington. "Cheops: A Data-Flow

System for Real-Time Video Processing." Internal
Memo. MIT Media Laboratory, June 1993.

[Bov93b] Bove, V. Jr. "Hardware and Software Implications of
Representing Scenes as Data." Proceedings of ICASSP -
1993, pp. I-121-I-124. ICASSP, 1993

[Bov94a] Bove, V., Jr., B. Granger and J. Watlington. "Real-Time

Decoding and Display of Structured Video." Proceed-

ings of IEEE ICMCS 1994, pp. 456-462. IEEE, May

1994.

Bibliography

[Bov94b] Bove, V., Jr. "Object-Oriented Television." Paper pre-

sented at the SMPTE 136th Technical Conference and

World Media Expo. SMPTE, October 1994.

[Bov95] Bove, V., Jr. and J. Watlington. "Cheops: A Reconfig-

urable Data-Flow System for Video Processing." IEEE

Transactions on Circuits and Systems for Video Tech-

nology, Vol. 5, No. 2, pp. 140-149. IEEE, April 1995.

[Cha95] Chang, T. "Real-Time Decoding and Display of Lay-

ered Structured Video." SM Thesis. Massachusetts

Institute of Technology, June 1995.

[Cor95] Correia, N., I. Oliveira, J. Martins, and N. Guimaraes.

"WeatherDigest: an experiment on media conversa-

tion." Proceedings of SPIE Integration Issues in Large

Commercial Media Delivery Systems 1995, Vol. 2615,
in press. SPIE, November 1995.

[Ear93] Earnshaw, R. and D. Watson eds. Animation and Scien-

tific Visualization Tools and Applications. Academic

Press, Ltd.: San Diego, CA, 1993.

[Elo96] Elo, S. "PLUM: Contextualizing News for Communi-

ties Through Augmentation." SM Thesis. Massachusetts

Institute of Technology, February 1996.

[Enc93] Encarnacao, J., et al. "Graphics and Visualization: The

Essential Features for the Classification of Systems."

IFIP Transactions of Graphics, Design and Visualiza-

tion, Vol. B-9, pp. 3-18. IFIP, February 1993.

[Feh88] Fehrle, T., T. Strothotte and M. Szardenings. "Generat-

ing Pictorial Presentations for Advice-Giving Dialog

Systems." Lecture Notes in Computer Science, Visual-

ization in Human-Computer Interaction, Vol. 439, pp.
27-36. Springer-Verlag: New York, May 1988.

Bibliography

[Gra95] Granger, B. "Real-Time Structured Video Decoding and

Display." SM Thesis. Massachusetts Institute of Tech-

nology, February 1995.

[Har89] Harashima, H., et al. "Model-Based Analysis Synthesis

Coding of Videotelephone Images - Conception and

Basic Study of Intelligent Image Coding." Transactions

of the IEICE, E72(5), pp. 452-459. IEICE, 1989.

[Ing95] Inguilizian, A. "Synchronized Structured Sound." SM
Thesis. Massachusetts Institute of Technology, Septem-

ber 1995.

[Kun88] Kunkel, K., T. Strothotte. "Visualization and Direct

Manipulation in User Interfaces: Are we Overdoing it?"

Lecture Notes in Computer Science, Visualization in

Human-Computer Interaction, Vol. 439, pp. 183-193.
Springer-Verlag: New York, May 1988.

[Mar93] Martin, J., "Visualization for Telecommunications Net-

work Planning." IFIP Transactions of Graphics, Design

and Visualization, Vol. B-9, pp. 327-334. IFIP, Febru-

ary 1993.

[McC87] McCormick, B., T. DeFanti and M. Brown. "Visualiza-

tion in Scientific Computing." Computer Graphics

21(6). 1987.

[McL91] McLean, P. "Structured Video Coding." SM Thesis.

Massachusetts Institute of Technology, May 1991.

[Mus89] Mussmann, H., M. Hotter and J. Ostermann. "Object-

Oriented Analysis-Synthesis Coding of Moving

Images." Signal Processing: Image Communication I,

pp. 117-138. May 1989.

[Ous94] Ousterhout, J. Tcl and the Tk Toolkit. Addison-Wesley:

Reading, MA, 1994.

Bibliography

[Par88] Parker, S. Meteorology Source Book. McGraw-Hill:

NewYork, NY, 1988.

[She92] Shen, I. "Resource Manager foir a Video Processing

System." SM Thesis. Massachusetts Institute of Tech-

nology, May 1992.

[Tho94] Thomas, E. Jr. "You May Not Know Your Weatherman

is in Jackson, Miss." The Wall Street Journal, sec. 1: 1,
10. November 2 1994

[Tuf83] Tufte, E. The Visual Display of Quantitative Informa-

tion. Graphics Press: Cheshire, CT, 1983.

[Tuf9O] Tufte, E. Envisioning Information. Graphics Press:

Cheshire, CT, 1990.

[Wal9l] Wall, L. and R. Schwartz. Programming perl. O'Reilly

& Associates, Inc.: Sebastopol, CA, 1991.

[Wat95] Watlington, J. and V. Bove, Jr. "Stream-Based Comput-

ing and Future Television." 137th SMPTE Technical

Conference, September 1995.

