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Algorithms for the incorporation of predictive information in
surveillance theoryt

DAVID A. CASTANON+, BERNARD C. LEVY§
and ALAN S. WILLSKY§

The paper discusses the problem of tracking a platform given probabilistic
information concerning its possible destinations. Using a bayesian approach. we
derive an algorithm which optimally incorporates the real-time measurements of the
platform position with the predictive information about its destination. This
algorithm can be efficiently implemented using some results from optimal smooth-
ing. The results are illustrated by a simple example.

1. Introduction
An important problem in the current U.S. Navy system is the design of an

overall surveillance system. This surveillance system has two primary objectives
the first is to keep track of all the ships located in a given area; the second is to
maintain a record of all the information related to these ships (status, nationality,
possible destination, etc.). The information which is available to such a surveillance
system consists of a combination of the following data:

(i) the identification of the ship's class and its dynamics;

(ii) some information about the ship's origin, its destination and its refuelling
stops;

(iii) sightings by other ships (submarines or surface ships), by aeroplanes or by
satellites; and

(iv) some sonar information obtained from tracking sonar arrays.

A close look at the available data indicates that it can be divided into two
categories. Sightings by ships, aeroplanes, sonar or radar, and the ship's origins
provide information about the past of the ship's trajectory, whereas information about
the ship's destination and refuelling stops provide information about the future of the
ship's trajectory. In this paper, we derive an algorithm which can be used to
incorporate both categories of information, in order to obtain an overall best estimate
of the ship's position.

Our basic approach is to assume that the ship's dynamics are governed by a state-
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space model of a stochastic dynamical system, of the form

dx(t) = A(t)x(t) dt + dU(t) (1)

where U(t) is a Wiener process with covariance
min (t.s)

E{ U(t) U'(s)} = Q(T) dz (2)
Jo

Models of this form have been proposed by a number of authors (Singer 1970,
Singer and Behnke 1971, Morgan 1976) for the modelling of ship trajectories with and
without autopilots, or in manoeuvring situations. The detailed modelling of ship
dynamics is not important to the subsequent results; the reader is referred to the above
for further discussions of these issues.

The model in (1) describes the ship dynamics before any additional information on
its destination is known. In the next section, we describe an algorithm which
modifies (1) to obtain a new markovian model which incorporates the predictive
information concerning a single destination.

This algorithm uses the basic approach of obtaining backwards markovian
models, as given in Verghese and Kailath (1979). Based on this new model, the
optimal estimate of ship position using past measurements can be obtained from
standard estimation algorithms such as Kalman filtering (Van Trees 1968).

In § 3, we extend the results of §2 to incorporate probabilistic predictive
information concerning multiple possible destinations. The optimal estimate of the
ship's position, based on past and predictive information, is computed using a
multiple-model approach (Athans et al. 1977). Furthermore, a likelihood-ratio
method to identify the validity of the intelligence information is presented, leading to
an efficient implementation of the tracking algorithm using fixed-interval smoothing
formulae (Mayne 1966, Fraser 1967, Wall et al. 1981). In § 4, we discuss how this
method can be adapted for manoeuvre detection using the results of Willsky and
Jones (1978). Section 5 contains an example which illustrates the basic algorithm.

2. Incorporation of predictive information
Assume that a state-space model of a ship's trajectory is given by eqns. (1)-(2) and

the initial condition

x(O) - N(m o, 0o) (3)

where x(0) is independent of U(t) for all t in [0, T]. Assume that we receive the
additional predictive information that, at time T, the ship's position will be observed
probabilistically, in terms of a mean value and an error, as

Xr - N(mr, IIT) (4)

Our goal is to obtain a new model which already incorporates this predictive
information. Mathematically, we are interested in obtaining a new description of the
trajectories of the process, of the form

dx(t) = A(t)x(t) dt dCU(t) (5)

x(O) = N(xO, o) (6)

such that x(0) is independent of [7(t) for all t in [0, T], and such that the probability
distribution induced by (5) and (6) on the space of sample paths C{[0, T]; Pn} is equal
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to the probability induced by (1), (2) and (3), conditioned on knowledge of the
predictive information (4). The first step in this process is to describe the predictive
information as an observation. Let

m1T = XT + UT (7)

where VT - N(O, nT) is independent of U(t) for t in [0, T]. Let (Q, F, P) be our basic
probability space, where xO, VT and U(s), O s T are defined. Define the two
increasing sequences of a-fields

G1 =UtVx° 0 t TG. = U, V x, i O~t T
F,= U, V Xo V MT

where U, = a{U(s), 0 < s , t} is the sequence of a-fields generated by the Wiener
process U( ), and where Xo and MT are the a-fields generated by x(O) and mr. Since
the noise U( ) is independent of x(O), the process (U(t), G,) is a martingale; that is

E{ U(s)- U(t) I G,} = O

for 0 < t < s < T. Hence, we can write (1), in integrated form, as

x(t) = x(O) + Ax(s) ds + dU(s) (8)

where x(t) is a Markov process, the middle term is G,-predictable, and the last term is a
G, -martingale. A model satisfying this property is said to be a markovian model of
x( ). Most filtering or estimation results have been obtained for processes described
by markovian models.

Note that the process U(t) is not a martingale with respect to F, (indeed, U(t) and
mT are correlated). Therefore, the problem of incorporating the information (4) in
the model (1) and (2) is essentially the one of constructing a markovian model of x(t )
with respect to Ft, i.e. with respect to all the a priori information available, including
predictive information.

To do so, we shall follow a method similar to the one used by Verghese and
Kailath (1979) for the derivation of backwards markovian models. The first step is to
construct a Doob-Meyer decomposition of U(t) with respect to F, i.e.

U(t)= f E{dU(z)IFr} + U(t) (9)

where
E{U(s)-U(t)lF,} =O for O0<t ,<s T

The reader is referred to Meyer (1966) and Wong (1973) for a description of the
properties of such a decomposition. From (9) it is clear that to obtain the martingale
U(t). one need only compute the predictable projection E{dU(t)lF,}, where

dU(t) _- U(t + dt) - U(t)

However, before doing so, it will be useful to decompose F, as

F, = U, V Xo V X(t, T) (10)

where q5(, -) denotes the transition matrix of A( -), so that

:(t, T)= x(t)- 0(t, T)m = J (t, s) dU(s)- 6(t,. T)T ( 1)

t~~~~~~~~~~~~~~~~~~~~



37 I)D. A. Castlnon ct cal.

Let X(t, T) denote the a-field generated by .'(t, T). This a-field, by construction,
is independent from G, = U, V Xo. To justify the decomposition (10) note that

x(t) e U, V Xo (12)
and also observe that

x(t) V .x(t, T) = X(t) V MT (13)

(i.e. the knowledge of (x(t), x(t. T)) is equivalent to the knowledge of (x(t), nm)).
We are now in a position to prove our main theorem.

Theorem 1: Modified model
Let I-(t, T) denote the solution of the equation

-d n(t, T) - A - nA'+ (14)

n(T, T)= n r

Then, the model

x(t) = x(0) + f Ax(s) ds

+ £ Q(s)I-l(s, T)[q(s, T)mT-x(s)] ds

+ u(t) (15)

is a markovian model of x( ) with respect to F, where (U(t), F.) is a brownian motion

with intensity Q(s)ds.

Proof

The independence of G. and 9(t, T) gives

E{dU(t)IF,} = E{dU(t)IG,} + E{dU(t)lX(t, T)} = E{dU(t)l(t, T)}

because U, is a G, martingale and X(t, T) is generated by x(t, T). Now, dU(t) and
9(t, T) are gaussian random variables, so that

E{dU(t)l.(t, T)} = E{dU(t)Z'(t, T)}E{.(t, T).5'(t, T)} - .(t, T) (16)

From (11), we get

E{dU(t) x'(t, T)} =-Q(t) dt

E{.(t, T) .'(t, T)} = 0 p(t, s)Q(s)4'(t, s) ds + 4(t, T)HT4'(t, T) (17)

Note that (17) is the solution of (14), so that

E{f(t, T) 5'(t, T)} = fI(t, T)

Hence

E{dU(t)I F,} = Q(t) - l'(t, T)(>(t, T)mT -- x(t)) dt (18)
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Equation (18) represents the predictable part of the Doob-Meyer decomposition
of U(t) with respect to the a-fields F,. Since U(t) has continuous sample paths. the
quadratic variation of U(t) is the same as the quadratic variation of U(t). so it is an F,
Wiener process with covariance

nin (t. s)

E{ U(t) U(s)} = o Q(r) dr

Now, substituting (18), into the integrated form of (1) yields the results of the
theorem. L

Remark

The model (15) is the same as the backwards markovian model obtained by
Verghese and Kailath (1979, see also Ljung and Kailath (1976) and Lainiotis
(1976)). However, the model (15) is aforwards model. The martingale method that
we have used here to construct (15) is very general and applies also to a large class of
problems in the study of random fields (Willsky 1979).

The results of Theorem 1 provide us with a model which describes the evolution of
the sample paths of x(t) from an initial condition x(0). In order to properly specify
the distribution of sample paths, we must provide a description of the initial
distribution for x(0). This initial distribution will be the conditional probability of
x(0), given the prior statistics

x(O)- N(mo, Ho)

and the posterior observation

mT = XT + VT

From (11), we can transform this observation to

4(O, T)mT = x(O)- 9(0, T) (19)

where x(0, T) is independent of x(0), with distribution

-(0, T) - N(O, n(O,T))

Hence, the a posteriori distribution of x(O), given MT, is

x(O) N(.s(O), ns(O)) (20)

where

nS(o) = (no + I '(0, T))- (21)

(s)= no()(o 1mo + H-'(01 , T)s(0, T)mr) (22)

This last expressiom corresponds to the two-filter Mayne-Fraser smoothing formula
(Mayne 1966, Fraser 1967) obtained from the observations (3) and (4).

Based on these initial conditions, the correspondence between the model in (1) and
(2), with initial condition (3) and predictive observation (4). and the model in Theorem
1 can be stated precisely.
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Theorem 2

Consider the markovian model of Theorem 1, with initial distribution (20). The
probability measure defined on the sample paths x( ) by this model is equal to the
probability measure defined on the sample paths x( ) by the model (1) and (2) with
initial condition (3), conditioned on the a-field MT. almost surely.

Proof
Let P1 be the distribution induced by (1) and P2 the distribution induced by

(15). By construction, both models yield continuous sample paths with gaussian
statistics. Hence, it is sufficient to show that the mean and covariance of x( ') under
both models is identical. By (20), we know

Ep,{x(O)IMT} = Ep2{x(0)} = x5(0) a.s.

Ep,{[x(O)- s.(0)] [x(O)- £s(O)]'IMT} = Ep2{[x(0)-- 2s(0)] [x(0) - 2,(0)]'} = Ins(0)

Furthermore

Ep1{x(t)lMT} = Ep{x(O)IMT} + Ep, Ax(s) ds MT}

+ EPI{U(S)IMT}

=Ep, x(O) MT} + AEp,{x(s)lM} ds

+ i Q(s)n- (s T)[(s, T)MT- Ep,{x(s)lMT} ds

because

EPI{U(t)I MT} = EP1{EP{U(t) X0, MT} iMT}

=0

which implies that, for all t,

Ep,{x(t)lMT} = Ep,{x(t)} a.s.

An identical argument using Ito's formula (Breiman 1968) establishes

Ep,{f(x(t))lMT} = Epf(x(t))}

and

Ep,f( {= E 2 f(x(s))g(x())})}

for 0 < s, t s T, and for twice differentiable functions f and g. Hence, the finite-
dimensional distributions of P1 conditioned on MT and P2 agree, proving the
theorem.

Example: The pinned case

Let I1T = O, and x(t) = m. In this case, the value of x(t) is fixed and the model (15)
has the property that n7(T, T)= 0. Thus, by denoting b(r) = x(t)- 0(t, T)m one gets

d6(t) = A(t) - Q(t)7r- 1(t, T)t(t) dr + dU(t)
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where r- '(t, T) -- x, as t + T. This means that as t -- T the state x(t) is steered
stronger and stronger towards nm, and r(t) - 0 almost surely as t -* T.

This property is consistent with previous studies of the pinned brownian motion
(cf. Breiman).

The main feature of the procedure that has been used here to obtain the model (15)
with initial conditions (20)-(22) is that it is bayesian. This means that the model (1)
and (2) has been assumed a priori for x( ). The advantage of this procedure is that it
can be used to incorporate all the information available on the ship trajectory
sequentially.

For example, suppose that additional predictive information concerning possible
refuelling stops is available. That is, we are given

x(ti) - NA{m i, ni} (23)

with Oti T for i= 1, ..., N.
By an analogous procedure to the construction in Theorem 1, we can construct a

markovian model which incorporates the above predictive information. Now,
assume that real-time measurements

dy(t) = Cx(t) dt + d V(t) (24)

are available, where the noises dU(t) and dV(t) are independent. Then, based on the
markovian model of Theorem 1, the optimal estimate of x(t), given the predictive
information (23) and the real-time observations (24), can be obtained from a Kalman
filter based on the markovian model (15) with observation (24).

An alternative approach to obtaining a markovian model of ship trajectories
which included destination information was derived in Weisinger (1978), in the
context of simple brownian motion. In Weisinger (1978), a non-bayesian approach
was used to incorporate the predictive information. In the case that we are
considering here, a simple generalization of Weisinger (1978) would yield the model

[x(t) [A(t) - Q(t)I (t, T) Q(t)fI -'(t,T)(t, T) x(t) 1 dU(t) (25)
dL = dt + (25)

x(T) 0 O O x(T) 0

where the initial conditions are given by

[x(OT) ([mol [ 10 0

Lx(T)i iMTiL 0 n1Th

and where U(,) is a Wiener process with covariance (2). The main aspect of this
model is that it is obvious by replacing mT by x(T) in (15) and by setting H(T, T) = 0 in
the differential equation for I1(, T). To see how this model differs from (15) we need
only note that its transition matrix is given by

,(t, s)= [i(r, s) o 2(t, S)] (26)

where d 1(t, s) = 7r(t, T)Q'(s, t)7 - 1(s, T)

¢ 2(t, s)= ¢(t, T)- dL(t, s)o(s; T)
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Then if ri(t) and r(t) denote the mean and variance of x(t), respectively, one has

11(t) = 1//l(t. O)mii + t/2(t, 0)117

7(t) = i(l, 0)7rolV'(t, 0) - + 2(t, 0)7Tlr 02(, )

+ fl 1(t, s)Q(s)qf'l(t, s) ds

Thus, by noting that

,(0, 0)= I, ¢,(T, 0)=0

2(0, 0) = 0, 2(T, 0) = I

we see that x(O) - N(mi, 7ro) and x(T) - N(mT, 7rr) exactly. By comparison the initial
conditions that were used for the bayesian model (15) were

x(O)- N(s(O), Ers(O))

where x5(0) is a linear combination of mo and q(0, T)mr. This means that the
information on the time of arrival of the ship was used to provide some information
on its time of departure. Such a procedure makes sense: if a ship crosses the Atlantic
and arrives on a certain date, it should leave at least one week before.

The previous comments illustrates the main advantages of bayesian methods as
compared to non-bayesian methods for the fusion of information:

(i) bayesian methods are sequential (any additional information can be in-
corporated in the model); and

(ii) no piece of information is overweighted with respect to another.

3. Predictive information about multiple destinations
The results of Theorems I and 2 describe an approach for deriving markovian

models which incorporate predictive information about a single possible destina-
tion. However, it is common that predictive information consists of multiple
hypotheses concerning the possible destinations of the objeci of interest. A typical
intelligence report might read: 'the ship x will be heading for point A with 75 per cent
certainty; otherwise, it will head for point B'. In this section, we discuss a bayesian
estimation scheme which will incorporate this information, together with some real-
time measurements, to obtain the optimal state estimate.

Figure 1 illustrates the case when there exist a number of possible destinations for
the ship, characterized by

Hi: x(ti) - N(mi, ni), 1 <- i < N

For each of the possible hypotheses Hi. we can use the results of Theorems I and 2
to obtain the markovian models

dx(t) = (Ai(r)x(t) + s(t)) dt + Ui(t) (27)
where

A,(t) =A - Q(0t)7 l(t, t) ,'8)

si(t) = Q(t)r l(t, ti)((t, ti)mi (29)

where r7(t, ti) is the solution of (14) with -,(ti. ti)= ,i 
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Figure 1. Determination of the ship's destination from multiple hypotheses.

The model described by (27), (28), and (29) is a markovian model of x(-),
conditioned on the information mi (that is, Hi is true), represented as

mi = x(ti) -+ Vi

Vi - N((0, 7i)

Suppose now that real-time observations are available, to discriminate the
hypotheses Hi. Assume that these observations are given by

dy(t) = Ci(t)x(t) dt + R C12(t) dl(t) (30)

where V(t) is a standard Wiener process independent of U(t). The likelihood ratio
based on the sequence of measurements V, = {y(s), O < s < t} is defined for each pair of
hypotheses as

P(Hi Y,) P(Hi )
Lj(t)= P(Hi) P(Hj IY,) (31

where P(Hj) denotes the a priori probability of Hi.
Thus, evaluation of the likelihood ratio between models can be obtained from a

bayesian approach by evaluating the a posteriori probabilities Pi(t)= P(Hil Y).
These probabilities can be evaluated recursively using Kalman filters (see Dunn (1977)
and Athans et al. (1977) for a derivation of these equations) as

dxi(t) = [Ai(t)xi(t) + si(t)] dt + Zi(t)Cl(t)R- l(t)

* [dY(t)- C(t)-i(t) dt] (32)

- C(t)Ci(t)R - + t R(t) dVt (30)wi dPiar ie peto(t)- PRth liklioo rti-oLdy(t) - P j ( t ) C j ( t )Y) j(t) d t 3

b-a esat) apAi(t)li(t) + p rio b(t)4P'(t) + O(t)

1i~~~~~~~~~~t)Qt)R~~~~~~~~~~~~~~~' AtC~)t x34
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where xi(t) and Yi(t) are the conditional estimate and convariance given that HIi is
true. The initial conditions are

.~i(o) -- .x(io)

Pi(O) = P(Hi)

Yi( ) = 7rsi(O)

where :si(O) and 7ri(O) are given by (21) and (22). We can now state the main result of
this section.

Theorem 3

Denote the c-field generated by the predictive information as K. Then, the
conditional density of x(t) given the information K and the observations 0 < y(s) < t,
is given by

N

p(s) = E Pi(t)pi(x, t)
i = 1

where pi(x, t) is a gaussian density with mean :i(t) and variance Yi(t).

Proof'

The proof follows directly from Bayes' formula, as, for a Boreal set A, in IR",

N

P{x(t)e AIK, y(s), 0 <s t} = E [prob {x(t)eAHi, y(s), 0 s t}

x prob {Hi is truelK, y(s), 0 < s t}]

which establishes the theorem, using Theorems 1 and 2.
The eqns. (32)-(34) requires the parallel processing of the observations dY(t) by N

Kalman filters. By taking advantage of the structure of the models in § 2, one can
obtain an algorithm where the observations are processed by a single Kalman
filter. To do so, we denote the model of the state process before incorporating
predictive information as

dx(t) = A(t)x(t) dt + dU(t) (35)

The hypothesis Hi corresponds to an added observation of the form

mi = x(ti) + vi, vi -' N(O, 7i) (36)

Hence the estimate xi(t) is given by

xi(t) = E{x(t)l Y, mi)

Consequently, xi(t) can be viewed as a smoothed estimate that can be obtained by
using the two-filter procedure described by Mayne (1966), Fraser (1967) and Wall
et al. (1981) among others. The forward filter processes the information Y, as

d.:(t) = A(t)x(t) dt + F (t)C'(t)R - 1(t) [dy(t) - C(t)x(t) dt] (37)

d
- X.(t) = A(t)Z(t) + Z(t)A'(t) + Q(t)

- '(t)C'(t)R- 1(t)C(t)X(t) (38)

x(O) =m, X (O) = 7r
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where the matrices Ci(t) are assumed to be independent of i. Note that the forward
filter is the same for all hypotheses. The backward filter for Hi is given by

dt xi(t) = A(t)_'jf(t) (39)

d_
dt i(t) = A(t)Xi(t) + Yi(t)A'(t) - Q(t) (40)

with the terminal conditions

xi(ti) = mi, i(ti)71 = i (41)

so that we can identify xi(t) = q(t, ti)mi and Zi(t)= r(t, ti) which can be precomputed
off-line, since they require no processing of measurements. The forward and
backward estimates are combined to yield

=(t) '-[- (t) + / (t)]- 1EY- '(t)-(t) +t ) '(t)xi(t)] (42)

where vi is assumed independent of the Wiener processes U(t) and V(t).
The equation (42) can be substituted in (33) to obtain a recursive expression for

Pi(t) driven by the observation dy(t) and the forward filter estimates x(t). Hence, the
likelihood ratio given by eqn. (31) can be obtained by processing the observations
with a single Kalman filter. This implementation has the advantage that the
tracking filter produces the same estimate x(t) whether or not there are predictive
hypotheses, until a specific hypothesis is accepted, whereupon a new single model can
be produced for the tracking algorithm.

4. Detection of branching times
In § 2 and 3 we have studied the problem of selecting a tracking model for a

trajectory, given some predictive information on the possible destination. However,
these results were assuming a known origin, i.e. a known branching time. In practice,
this branching time is seldom known, as ships are likely to change their mission or
their destination while at sea. In this section, we develop similar hypothesis-testing
procedures for processes where the branching times are not known. The basic
approach is motivated by previous work by Willsky and Jones (1978) for detection of
jumps in linear systems using a generalized maximum likelihood technique.

Assume that the original trajectory is modelled by

Ho: dx(t) = [Ao(t)x(t) + so(t)] dt + B(t) dU(t) (43)

and that at an unknown time 0, the ship changes destination to one of several
locations described by Fig. 2, yielding N possible models described by eqns. (27), (28)
and (29).

We assume that the observations dy(t) have been stored over a time interval [0, t],
as well as the state estimate O(0t). The problem consists of identifying two
parameters: the destination i and the switch time 0. We define the likelihood ratios
for a given 0 as

dP(Y, 0, Hi)
L(t; )= dP(Y, IO, Hi)
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0t i gur-2- Dx(o) of e

Figure 2. Detection of manoeuvres.

For a given 0, (44) can be expressed as

P(HiI , Y ) P(HjlO)
Lij(t; O)=

P(Hilt) P(HjOl, Y)

where the conditional probabilities P(HiO) are specified a priori and

P(H IO, Y,) A P,(t; 0) (45)

Separate Y. into Yo and YEO, t] where

Y[O, t] = a {y(s), 0 < s < t}

Then, one can process Yo to get an initial distribution for x(O) as

P(x(O) I Yo) = N( 0o(0), Zo(0)) (46)

The statistics (46) can now be used as initial conditions in (32)-(34) with the initial
conditions

Pi(O; 0) = P(Hi I 0)

and the information Y[O, t] to obtain Pi(t; 0), 0 < i < N. The likelihood ratios can be
obtained as in (31), so that

Lio(t; 0) - exp X [C(s)xi(s) - C(s).o(s)]R- '(s)

[2 dy(s) - C(s) [i(s) + io(s)] ds] (47)

which can be implemented by processing the information Y[0, t] using only one
Kalman filter, as indicated in eqns. (37)-(42). Furthermore, this filter is identical for
all values of 0. This implies that the estimates .i(t) are independent of the branching
time 0.

However, our evolution equations for the identification probabilities Pi(r. 0), as
well as the likelihood ratio Lio(t; 0). depend on the value of the parameter 0. This
suggests a generalized maximum likelihood identification method, where

L*(t; 0)= max Lio(t; 0) (48)

and

L*(t) = max L*(tr 0) (49)0 0 
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Other detection rules can be based on observation of the residuals. We have
exhibited a simple detection procedure which can be implemented in an efficient
manner. Note that the only reprocessing of information is carried out w hen
evaluating the likelihood ratios. Once a destination has been identified, the new
estimate of the state can be obtained from (42) without reprocessing the
observations. Furthermore, if the optimal selection of models is independent of 0
over the range of interest, then the state estimate ;(t) can be obtained independently of
eqn. (49). Thus, our implementation has the advantage that all the processing of
information is carried out by a single Kalman filter, and while the identification
procedure is taking place, this filter continues to produce state estimates which can be
used for decision purposes.

5. A simple example
Consider the following two-dimensional Markov process:

x(t)= l(t)

y(t) = 1,2(t)

where w, and w2 are standard independent brownian motions. Consider the
following predictive information: at time t= 14, the state x(t) will be distributed as

(L+ 10H [I °1)
+ 1 0 , 0

with equal probability. The situation is shown in Fig. 3.
Assume that, real-time measurements are taken, according to the equation

dz:(t) = xl(t) dt + dv1(t)

dz 2(t) = y(t) dt + dr2 (t)

where vI, v2, w1 and w2 are all independent brownian motions. In this example, the
equations (39) and (40) decouple in each coordinate, yielding

(x.i(t), 7yi(t))= (X.,(14), ~(14))

;(t) =for i= 1,2,3, 4

(-10,10) (10,10)

(-i 0,-lO) (10,-10)

o 0
Figure 3. Possible destinations for Example 1.
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Furthermore, the Ricatti equation (38) decouples into two identical equations of the
form

d
(t)= - Z2 + 1

dt

(0) = 0

Table 1 shows the evolution of the probabilities when the true destination is
(10, 10), and the trajectory from the origin to (10, 10), is a straight line of constant
speed, using a sample of random numbers. The column x indicates the estimated
position using no predictive information. The column x, is the optimal mean, using
the predictive information that all four estimations are equally likely. The actual
random trajectory is indicated in the column x.

Time Pl P2 P3 P4 x y 5 )s

0.6 0-03 0.43 0.51 0-03 -0-37 0-43 -0-02 0.38 -0-04 0-92
1 2 0 0-75 0.25 0 0-93 0.15 0-14 0-76 0-48 1-38
1.8 0-05 0-95 0 0 1.0 0.14 0-74 0-37 1-4 1-0
2-4 0.08 0-92 0 0 2-7 0-23 1-5 0-29 2-2 0-96
3-0 0.01 0.99 0 0 2-5 1-8 2-5 0-56 3.0 1.26
3-6 0 1 0 0 2-3 2-6 2-5 0.97 3.1 1.7
5-0 0 1 0 0 2-4 4-93 1-9 4 2-6 4-6

Table 1.

Note the relatively quick identification of the destination, even though the local
properties of brownian motion make the destination difficult to identify. In addition,
note the improvement in performance of the filter with predictive information. Even
though the average of the a priori predictive information corresponds to no informa-
tion at all, the use of a recursive hypothesis estimation logic resulted in correct
a posteriori identification which improved the estimator.

The results of Table 1 indicate how the predictive information is useful when the
actual mean trajectory is a straight line to the destination. Assume now that the
actual model for the trajectory is

x1(t) =- t- sin + w1(t) 

(50)
x2(t)= 2 ((t + sin ) + w 2(t)

This trajectory is depicted in Fig. 4.
Table 2 shows the resulting evolutions of the probabilities, the sample path of the

process, and the filtered estimates with and without predictive information.
Although the identification of the correct destination occurs promptly, the results

in Table 2 suggest that incorporating the correct predictive destination does not
improve the performance of the estimator as much as it did in Table 1. This is the
result of the mismatch between the linear models, incorporating predictive informa-
tion, and the non-linear trajectories generated by (50).
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(10,10)

//

/

Figure 4. Mean ship trajectory for Table 2.

Time Pl P2 P3 P, x -;' Y'

0-6 0-03 0-19 0-66 0-12 -0-38 -1-6 -0-17 0-24 -0-45 0-83
1-2 0-5 0-88 0-12 0 1-17 1-13 0-28 0-73 1-09 1-35
1-8 0 0-95 0-05 0 1-56 0-65 0-38 0-86 1-06 1-5
2-4 0 1 0 0 2-1 3-7 1-1 1-4 1-7 2-0
3-0 0 1 0 0 0-5 3-3 1-3 2-1 2-0 2-78
5-0 0 1 0 0 3-3 5-4 2-1 4-1 2-8 4-6
7-0 0 1 0 0 7-0 4-2 4.7 4-6 5-3 5-2
8-0 0 1 0 0 5-3 5-8 5-5 4-4 6-1 5-1

Table 2.

6. Conclusions
This paper has shown how some information about the possible destinations of a

ship can be incorporated in the modelling of its trajectories. These results are
potentially useful for the tracking of multiple objects (cf. Bar-Shalom (1978) and
Morefield (1977)). One possible approach is to generate multiple models based on
the likely associations of data and use a sequential evaluation of these models as
described in § 3. In addition, when a region is congested with traffic, the additional
knowledge of the destination of the various ships in the area is very valuable for the
track reconstruction problem (one need only match the outgoing tracks with the
ships' destinations).

Another appealing feature of the algorithms presented here is their capacity to
evaluate the validity of predictive information. In particular. §§ 3 and 4 discuss
algorithms where the predictive information is not used in the tracking filter until a
likelihood-ratio test confirms its validity.
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