Algorithms for Connectivity Problems in Undirected
Graphs: Maximum Flow and Minimum k-Way Cut

by
Matthew S. Levine

S.M. Computer Science
Massachusetts Institute of Technology, 1997

A.B. Computer Science
Princeton University, 1995

Submitted to the Department of Electrical Engineering and Computer Science in
Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

at the
Massachusetts Institute of Technology ARCHIVES -
June 2002 MASSACHUSETTS INSTITUTE
‘ OF TEGHNOLOGY
(©2002 Massachusetts Institute of Technology JUL 31 20.02
All Rights Reserved
LIBRARIES

Department of Electrical Engineering and Computer Science
May 3, 2002

David R. Karger
Associate Professor of Electrical Engineering and Computer Science
N ... Thesis Supervisor

i T
o S N N

¥ Arthup
Chairman, Department Committee on Graduate S

Accepted by

Algorithms for Connectivity Problems in Undirected
Graphs: Maximum Flow and Minimum k-Way Cut

by

Matthew S. Levine

Submitted to the Department of Electrical Engineering and
Computer Science on May 3, 2002 in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy in Computer Science

ABSTRACT

We consider two connectivity problems on undirected graphs: maximum flow and mini-
mum k-way cut.

The maximum flow problem asks about the connectivity between two specified nodes. A
traditional approach is to search for augmenting paths. We explore the possibility of restrict-
ing the set of edges in which we search for an augmenting path, so that we can find each
flow path in sub-linear time. Consider an n-vertex, m-edge, undirected graph with maxi-
mum flow value v. We give two methods for finding augmenting paths in such a graph in
amortized sub-linear time, based on the idea that undirected graphs have sparse subgraphs
that capture connectivity information. The first method sparsifies unused edges by using a
spanning forest. It is deterministic and takes O(n+/v) time per path on average. The second
method sparsifies the entire residual graph by taking random samples of the edges. It takes
O(n) time per path on average. These results let us improve the O(mv) time bound of the
classic augmenting path algorithm to O(m + nv3/2) (deterministic) and O(m + nv) (random-
ized). For simple graphs, the addition of a blocking flow subroutine yields a deterministic
O (nm?/3v1/8)_time algorithm.

A minimum k-way cut of an n-vertex, m-edge, weighted, undirected graph is a partition
of the vertices into k sets that minimizes the total weight of edges with endpoints in different
sets. We give new randomized algorithms to find minimum 3-way and 4-way cuts, which
lead to time bounds of O(mn*~2log3n) for k < 6. Our key insight is that two different
structural properties of k-way cuts, both exploited by previous algorithms, can be exploited
simultaneously to avoid the bottleneck operations in both prior algorithms. The result is that
we improve on the best previous time bounds by a factor of ©(n?).

Thesis Supervisor: David R. Karger
Title: Associate Professor of Electrical Engineering and Computer Science

Contents

1 Introduction
1.1 The Maximum Flow Problem
111 History e e
112 OurContribution
1.2 The Minimum k-Way CutProblem
121 History e
122 OurContribution e e

2 Flow Background
21 Maximum Flow Fundamentals
22 Residual Graphs and AugmentingPaths
2.3 Shortest Augmenting Paths, Blocking Flow and Simple Graphs
24 Undirected Graph Sparsification
25 Random Sampling in Undirected Graphs

3 Spanning Forests of Undirected Edges
31 SmallFlowsUseFewEdges
3.2 A Conceptually Easy Algorithm for Fast Augmenting Paths
3.3 A Better Algorithm for Fast AugmentingPaths
34 Deterministic Algorithms Using Fast Augmenting Paths

4 Sampling in Residual Graphs
41 TheAlgorithm
42 TheAnalysis
421 SupportingLemmas
422 Proofofthe Main Theorem

10
13
13
14

17
17
19
20
21
22

25
26
28
31
33

4 CONTENTS

5 Minimum k-Way Cuts 43
51 Background 44
52 Minimum 3-Way Cuts 45

521 StructuralResults L. o 45
522 The Algorithm 47
523 COrrectness« « v o vttt e e e e e 48
52.4 Running Time Analysis 48
53 Minimum4-Way Cuts e 50
53.1 StructuralResults 50
532 TheAlgorithm 51
533 COorrectness o v v v v i i e e e e 52
534 Running Time Analysis 52
54 Minimum 5-Way Cuts, 6-Way Cuts and Beyond 53

6 Conclusion 55
6.1 MaximumPFlow o e e 55
62 Minimum k-Way Cuto [57

A Randomized Algorithms Using Fast Augmenting Paths 59
Al New Tricks foran OId DAUG i 59
A2 O(m+nv¥4)-and O(im +n'"/?y)-Time Algorithms 61

B Compression of Residual Graphs 63
B.1 Supporting Definitions and Lemmas 64

B2 The Proof o e e e e e e e e e e e e 65

List of Figures

1.1

1.2
2.1

3.1
3.2
3.3
34

4.1

51
5.2
53
54

5.5
56
5.7

6.1

Al

Picture of the best deterministic bounds, for simple graphs on the left and for
general graphsontheright

Pictures of the best randomizedbounds
A flow that blocks all s-t paths but is not maximum

A graph with an acyclic flow that uses O(nyv)edges
Basic algorithm for fast augmentingpaths,
First algorithm for fast augmenting paths based on sparse certificates

Final algorithm for fast augmentingpaths
Maximum flow algorithm based on sampling the residual graph

The tree corresponding to a laminar collection,
Crossingcuts
Minimum 3-way cutalgorithm

Attempt to insert X = {b, c, d}. Shaded nodes are “subsets of X”. They do not
have a common parent because X overlaps Y. Observe that for a different X,
such as {a, b, c}, where there are containments but no overlap, the subsets of X
would have a commonparent.,

Either ¢(X;) or ¢(X — X;) has value at most co(X) +¢2/2.
Minimum 4-way cutalgorithm

Small cutscancross Vifork >5

With edges directed from left the right, this graph is a flow problem represent-
ing a maximum bipartite matching problem; if the edge directions are removed
then the flow value increases, no longer corresponding to a matching.

The original “divide and augment” algorithm

LIST OF FIGURES

Chapter 1

Introduction

In this thesis we consider two connectivity problems on undirected graphs: maximum flow
and minimum k-way cut.

The maximum flow problem asks about the connectivity between two specified nodes. In
the unit-capacity case, this question reduces to finding a maximum number of edge-disjoint
paths between the two nodes. The classic algorithm for flow does a linear time search for each
path. We explore the possibility of restricting the set of edges in which we search for a flow, so
that we can find each path in sub-linear time. For an n-vertex, m-edge, undirected graph with
maximum flow value v, we give a deterministic algorithm that finds flow in O(n./) amor-
tized time per path by reducing unused edges down to a spanning forest, and a randomized
algorithm that finds flow in O(n)! amortized time per path by considering only a random
sample of the edges of the residual graph.

A minimum k-way cut of an n-vertex, m-edge, weighted, undirected graph is a partition
of the vertices into k sets that minimizes the total weight of edges with endpoints in different
sets. We give new randomized algorithms to find minimum 3-way and 4-way cuts, which
lead to time bounds of O{mn*2log3n) for k < 6. Our key insight is that two different
structural propetties of k-way cuts, both exploited by previous algorithms, can be exploited
simultaneously to avoid the bottleneck operations in both prior algorithms. The result is that
we improve on the best previous time bounds by a factor of @(n?).

The plan of the thesis is as follows. In the remainder of this chapter we give an overview
of the history of the problems, and summarize our contribution in greater detail. Chapter 2 is
background. It includes our notation, but otherwise summarizes some relevant past results
and can easily be skipped by readers who are already familiar with those results. Chapter 3
gives our deterministic maximum flow algorithms based on summarizing the portion of the
graph not carrying flow with a spanning forest. Chapter 4 gives our randomized maximum
flow algorithm based on taking random samples of the edges of the residual graph. Chapter 5
gives our minimum k-way cut algorithms. Chapter 6 wraps up, summarizing our results and
reviewing some open problems. Finally, two minor results that are of conceivable interest are
in appendices. Appendix A has some randomized algorithms that result from combining our

1We write f(n) = O(g(n)) if Ic such that f(n) = Olg(n)log®n)

8 CHAPTER 1. INTRODUCTION

spanning forest techniques with some past algorithms; Appendix B has an extension of the
key theorem used in random sampling from residual graphs.

1.1 The Maximum Flow Problem

1.1.1 History

The maximum flow problem is a fundamental optimization problem and one of the clder
problems in computer science, having been studied extensively since the seminal paper of
Ford and Fulkerson in 1956 [FF56], and reviews of the various results now fill chapters of
textbooks (¢f. [AMO93]). Yet it remains unclear whether we truly understand how to solve
instances quickly.

The problem is normally stated for a directed graph with capacities on the edges, and is a
generalization of the problem of finding edge-disjoint paths from a specified start node (called
the source) to a specified end node (called the sink). Specifically, a flow is an assignment to
the directed edges such that (1) the flow on an edge is less than its capacity and (2) for any
node other than the source or sink, the flow entering the node equals the flow leaving the
node. The value of a flow is the net flow leaving the source (which is the same as the net flow
entering the sink), and the goal is to maximize the value. When we say we will study the
problem on undirected graphs, what we mean is that we require that the edge capacities be
symmetric: the capacity of edge (u,v) always equals the capacity of edge (v, u). As a result
we will sometimes discuss the capacity of an edge without reference to the direction, because
the direction does not matter. Note that we do not change the definition of flow at all—the
flow is certainly still directed. In order to state the running times of algorithms, we will use n
for the number of nodes, m for the number of edges and v for the value of the maximum flow
(we will restrict our attention to integer capacities?, so v is an integer).

The original Ford-Fulkerson algorithm relies on the concept of augmenting paths—
basically a path from source to sink on which more flow can be sent. In pure form, in the
worst case the algorithm does a @(m)-time search to find each unit of flow, resulting in an
O(mv) time bound. This running time is good if the flow value is small, but it is obviously
not so good if capacities are large. In 1972 Edmonds and Karp [EK72] showed that simply us-
ing shortest augmenting paths leads to a strongly polynomial running time bound. By 1980,
a sequence of improvements had led to an algorithm that runs in O(mn) time. Over the next
decade various results whittled away at the logarithmic factors on the time bounds, leading
to the best known strongly polynomial time bound of O(nm10g.m /(n10gn) M), achieved by an
algorithm of King, Rao and Tarjan [KRT94]. Meanwhile there was one other result that fo-
cused on small flows: Even and Tarjan [ET75] and Karzanov [Kar73] showed that on simple
graphs—unit-capacity graphs with no parallel edges—the blocking flow method of Dinitz
[Din70] runs in O(m min{n%3, m'/2 v}) time.

So by 1994 the maximum flow problem seemed reasonably well understood. The best

*Rational capacities can always be converted to integers by multiplying them up. Real capacities are somewhat
different, although they can be approximated by integers

1.1. THE MAXIMUM FLOW PROBLEM 9

running time in general was not quite as small as O(mn), but the bound was very close, and
it was known that faster algorithms existed if the graph was simple or the flow value was
very small.

Then new results started to change the picture. Goldberg and Rao gave an algorithm that
goes a long way toward closing the gap between simple graphs and capacitated graphs in
the directed case [GR97a]. Their algorithm runs in O(m min{n?3 m'/2}logv) time. Tt is only
weakly polynomial, so while they just about close the gap between unit capacities and integer
capacities in directed graphs, there remains a gap between weakly polynomial algorithms and
strongly polynomial algorithms.

Meanwhile, researchers began to consider undirected graphs. First, Nagamochi and
Ibaraki [NI92b] gave a linear time algorithm that finds a set of nv edges that are sufficient
for a flow of value v. This “sparsification” technique allows one to substitute nv for m in
the time of any flow algorithm. In particular, it allows one to improve the running time of
augmenting paths from O(mv) to O(m+mnv?). For the worst case of simple graphs, this is still
0O(n?) time, but the idea turned out to be important.

At this point Karger really opened the question of how much easier it might be to find
flows in undirected graphs, first by giving an O (inv//c)-time algorithm for graphs with edge
connectivity ¢ [Kar99], and then by giving an O(m?/3n!/3y)-time algorithm for simple graphs
[Kar97]. The latter result opened a gap between what was known for directed graphs and
undirected graphs and raised the question of whether randomization can help.

Shortly afterward, Goldberg and Rao discovered that a combination of Even-Tarjan and
Nagamochi-Ibaraki gives a deterministic algorithm for simple, undirected graphs that runs
in O(ny/nm) time [GR97b]. This algorithm introduced a gap between directed graphs and
undirected graphs, even without randomization.

Karger followed Goldberg and Rao with another randomized algorithm that runs in
O(vy/nm) time, thereby reestablishing a gap between randomized algorithms and determin-
istic algorithms [Kar98].

Our results improve the time bounds for small flows in undirected graphs, widening sev-
eral existing gaps. In particular, we widen the gap between randomized algorithms and de-
terministic algorithms for small flow values, and we widen the gaps between algorithms for
small flow values and algorithms for large flow values for both deterministic and randomized
algorithms.

Thus the current state of affairs looks far more unsettled than it did a decade ago. For
simple undirected graphs, better randomized algorithms are known than deterministic algo-
rithms. For small flow values, better algorithms for undirected graphs are known than for di-
rected graphs. Yet unlike directed graphs, results for larger flow values in undirected graphs
are not as good as those known for small flow values. And for both directed and undirected
graphs there is a substantial gap in running time between weakly polynomial algorithms and
strongly polynomial algorithms.

10 CHAPTER 1. INTRODUCTION

1.1.2 Qur Contribution

Qur contribution to maximum flow is two methods for finding augmenting paths in undi-
rected graphs in amortized sub-linear time. Finding an augmenting path normally takes lin-
ear (O(m)) time, because one does a graph search, for example, a breadth-first search. The
underlying idea of both of our methods is that in an undirected graph, information about
which nodes are connected can easily be captured by a small subgraph, so it should not be
necessary to search all m edges. In particular, in an undirected graph, a spanning forest has
O(n) edges, yet contains a path between any two nodes that are connected in the original
graph. Likewise a suitable random sample of O(nlogn) edges will preserve connectivity
information.

It would be useless to us that a spanning forest is small and contains a path if O(m) time
was required to find a new spanning forest after we augmented on one path, but there are
data structures that can be used to avoid this problem. Specifically, a spanning forest can
be maintained under edge insertion and deletion in O(log”n) time per update [HdLT98].
Similarly, a new random sample can be chosen in O(log n} time per edge selected.

At this point it may sound like the result will be trivial, but there remains a serious ob-
stacle: we need to find paths in a residual graph (loosely the original graph minus the flow),
and since the flow is directed the residual graph is directed. So as soon as we find one path,
the graph in which we want to find another path is directed. Since both techniques are for
undirected graphs, it is not clear that either technique is still of any use.

For spanning forests, we handle the problem of directed edges by only using a spanning
forest on the “undirected part” of the residual graph. More precisely, in order to look for an
augmenting path we take all of the directed edges of the residual graph, but only a spanning
forest of the undirected edges (those for which the capacity is still symmetric). It makes sense
that this approach would be correct, because there is no harm in reducing undirected edges
to a spanning forest, but it is not obvious that the method should be fast. At first glance one
might think that all edges are liable to become directed, and then we would not gain anything,.
We show that it is always possible to restrict a flow to using O(n./v) edges, so only O(n/v)
edges become directed and we can find augmenting paths in O(n./v) time per path.

For random samples, we handle the problem by showing that the asymmetry the flow
creates in the residual graph causes little enough damage to the cut structure of the graph
that we can continue to prove good results about samples. Thus we iterate on the residual
graph, sampling all edges, whether they have symmetric capacities or not. Our proof gets us
the result we hoped for—O(n) time per path on average.

Spanning Forests of Undirected Edges

A spanning forest of an undirected graph has two desirable properties as far as flow is con-
cerned: it has at most n — 1 edges, and it contains a path between any two nodes that are
connected in the original graph. Based on these properties, it is natural to hope that it would
be possible to find a maximum flow in O(n) time per augmenting path, which would give
a total time of O{m + nv). The obstacle is that as soon as some edges are used by a flow

1.1. THE MAXIMUM FLOW PROBLEM 1

they become directed in the residual graph, so we no longer have an undirected graph in
which to find a spanning forest. So instead, we only use a spanning forest on the edges that
are still undirected (for which capacities are still symmetric). That is, when we go to find an
augmenting path, we search in the directed edges plus a spanning forest on the undirected
edges.

The key to this method being fast is that we show that a flow need not use more than
O(n+/v) edges. This bound allows an algorithm in which each search for an augmenting path
only looks at O(n/v) edges, and therefore only takes that much time per path.

Replacing undirected edges with a spanning forest gives simple deterministic algorithms
that are faster than all previous ones for the most difficult values of m and v on simple graphs.
First, we can find flow by augmenting paths in O(m + nv¥/2) time (substituting O(n\/v) for
min the classic O(mv)-time algorithm). Second, by incorporating a blocking flow subroutine,
we can find flow in O(nm?/3v1/¢) time. The first algorithm is the best known deterministic
algorithm for dense graphs with small v; the second algorithm is the best known deterministic
algorithm for dense graphs with large v. The second time bound is also at least as good as
the Goldberg-Rao time bound of O(n32m!/2) for all values of m and v. Both algorithms are
clearly practical to implement, so only experiments will tell which methods are actually best
for practical purposes. The first algorithm works for the capacitated case as well, running in
O(m + nv¥/?) time.

When combined with some prior algorithms, our sparsification technique also gives some
randomized algorithms that run in O(m + nv®/4) time and O(m + n'"/?v) time. At the time
these were discovered, they were the best randomized algorithms for finding small flows in
undirected graphs for certain values of m and v. They are now dominated by the algorithm
given in Chapter 4. Since it is always possible that an idea used by these algorithms could be
useful in improving on the results of Chapter 3, we describe them in Appendix A.

We have so far described our results in terms of trying to restrict the search for an aug-
menting path to a small subgraph. Another way to look at our results is as follows. We prove
that a flow of value v never needs to use more than O(n/v) edges. This result suggests that
we should be able to restrict attention to these “important” edges, thereby effecting a replace-
ment of m by O(n/v) in the time bound of any flow algorithm. For example, our O (m+nv®/4)
time bound is achieved by applying this substitution to Karger’s O(v/mn)-time algorithm.
Unfortunately, we do not know how to identify the right O(n/v) edges without finding a
flow. Nevertheless, we devise methods to achieve all or part of this speed-up on undirected
graphs. It is interesting to compare our result to the sparsification results of Nagamochi and
Ibaraki [NI92b]. They give a linear time algorithm that finds a set of nv edges that are suffi-
cient for a flow of value v. Their result does allow one to substitute nv for m in the time of
any flow algorithm, but obviously nv is substantially larger than n/v.

Note that Galil and Yu [GY95] previously proved that flows need only use O(n\/v) edges
on simple graphs, but they did not show how to exploit that fact. Their proof was also some-
what complex. Henzinger, Kleinberg and Rao [HKR97] independently simplified the proofs
of Galil and Yu, using an argument similar to but weaker that the one we use. Our stronger
result shows that any acyclic flow uses few edges, even on capacitated graphs.

In order to clearly show which algorithms have the best performance for different values

12 CHAPTER 1. INTRODUCTION

Uninteresting nm2/3y1/6 Uninteresting

log,, m log, m

F-mn?/3

1 & 1
0 log, v 1 0 log,, v

=

Figure 1.1: Picture of the best deterministic bounds, for simple graphs on the left and for
general graphs on the right

of m and v relative to n, we have drawn the pictures in Figure 1.1. A point in the picture
represents the value of m and v relative to n. Specifically, (a,b) represents v =n%m = nb,
Each region is labeled by the best time bound that applies for values of m and v in that region.
Note that the region m > nv is uninteresting, because, as mentioned above, the sparsification
algorithm of Nagamochi and Ibaraki can always be used to make m < nv in O(m) time (See
Section 2.4 for further explanation). The shaded regions correspond to algorithms given in
this thesis. Note that some time bounds only apply to simple graphs, so we have made two
pictures: one for simple graphs, one for general graphs. The complexity of these diagrams

suggests that more progress can be made.

Sampling in Residual Graphs

The main result of Chapter 4 is a randomized algorithm that runs in O(m + nv) time. All of
the recent papers on flows in undirected graphs (including Chapter 3) make some attempt to
avoid looking at all of the edges all of the time, so as to reduce the amortized time per aug-
menting path to o(m). Our work closes a chapter in this research, finally achieving amortized
time per augmenting path of O(n). Since a flow path can have as many as n — 1 edges, Ofn)
is the result (up to logarithmic factors) that one would hope to achieve.

QOur key advance is taking random samples of the edges of residual graphs. Benczir
and Karger [BK96] showed that sampling each edge of an undirected graph with probabil-
ity inversely proportional to a quantity called strength yields a connected graph with only
O(nlogn) edges with high probability. This sampling would be a good way to find a first
augmenting path quickly, but once you have a non-zero flow the residual graph is directed,
so it is no longer helpful to know that you can sample from an undirected graph. We ex-
tend their technique so that sampling in a residual graph will work. One way to interpret
our result is as a proof that a residual graph remains similar to the original undirected graph,
which means that the Benczur-Karger sampling can be applied iteratively. With the exception
of computing the edge strengths at the beginning, our algorithm is just this simple iteration:
sample according to strengths and find an augmenting path, repeating until done.

1.2. THE MINIMUM K-WAY CUT PROBLEM 13

2

Uninteresting

log, m

0 log,, v

Figure 1.2: Pictures of the best randomized bounds

It is interesting to compare this sampling result to our other maximum flow result. At
first glance, using Benczir-Karger sampling to find a single path seems foolish—the resulting
edge setis larger than that of a spanning forest, and extra effort is required to compute suitable
sampling weights. But whereas finding a spanning forest in the residual graph by ignoring
edge directions would not capture the path information we need, sampling a residual graph
by ignoring edge directions does. Our first result works with an obvious simple structure, a
spanning forest, and deals with the problem of directed edges by treating them separately.
This approach turns out to be worse than starting with what looks like a sloppier structure,
a random sample of edges, because a random sample is better able to accommodate directed
edges.

In order to show which algorithms have the best performance for different values of m
and v relative to n, we have drawn Figure 1.2. The interpretation of this figure is the same as
for Figure 1.1. Observe that this diagram is much simpler, suggesting that our understanding
of what can be done with randomized algorithms is better than our understanding of what
can be done with deterministic ones.

1.2 The Minimum k-Way Cut Problem

A minimum k-way cut of an n-vertex, m-edge, weighted, undirected graph is a partition of the
vertices into k sets that minimizes the total weight of edges with endpoints in different sets.
Asking for a minimum k-way cut is equivalent to asking for the edge set of minimum total
weight whose removal would break the graph into at least k connected components.

1.2.1 History

Our main motivations for studying minimum k-way cuts are that they are a natural prop-
erty of graphs that has received considerable attention in the past. Nagamochi and Ibaraki
[NI99] also point to a number of applications, including finding cutting planes for the trav-
eling salesman problem, VLSI design, task allocation in distributed computing and network

14 CHAPTER 1. INTRODUCTION

reliability.

Goldschmidt and Hochbaum [GH94] showed that the minimum k-way cut problem
is NP-hard if k is part of the input, but that it can be solved in polynomial time if
k is fixed. In particular, they gave a deterministic algorithm with a running time of
O(n¥"/2-3k/2+4F(n m)), where F(n, m) is the time to compute a minimum s-t cut (the mini-
mum 2-way cut that separates specified vertices s and t), which can be solved in O(mn) time
by a maximum flow computation. Karger and Stein [K596] improved on this algorithm with a
randomized one that runs in O(n2*~" log® n) time. These two results are still the best known
deterministic and randomized algorithms that work for general k3.

Better results are known for several special cases. The minimum 2-way cut problem—
more commonly known as simply the minimum cut problem, or the problem of computing
edge-connectivity—can be solved in O(mn) time by the deterministic algorithms of Hao and
Orlin [HO94] or Nagamochi and Ibaraki [NI92a] and in O(n?) or O(m) time by the random-
ized algorithms of Karger and Stein [K596] and Karger [Kar00], respectively.

Improvements were made for the minimum 3-way cut problem as well. Hochbaum and
Shmoys [HS85] showed that on an unweighted planar graph the problem can be solved in
O(n?) time. Kapoor [Kap96] and Kamidoi, Wakabayashi and Yoshida [KWY97a] showed that
the problem can be solved in O(n3F(n, m)) time. Burlet and Goldschmidt [BG97] improved
the bound to O(mn?) time.

For the minimum 4-way cut problem, Kamidoi, Wakabayashi and Yoshida [KWY97a]
gave an O(n*F(n, m))-time algorithm. More recently, Nagamochi and Ibaraki [NI99] gave an
O(mn¥)-time algorithm for k < 4, and Nagamochi, Katayama and Ibaraki [NKI99] extended
this result to work for k < 6.

Note that the special cases of small k are relevant to approximation of larger k. Saran
and Vazirani [SV95] were the first to give an approximation algorithm for the general k-
way cut problem. Their algorithm achieves an approximation ratio of (2 — 2/k) and runs
in O(nF(n,m)) time. Zhao, Nagamochi and Ibaraki [ZNI01] show that it is possible to guar-
antee a slightly better approximation ratio with an algorithm that uses k/2 calls to a minimum
3-way cut algorithm. The approximation ratio is 2 — 3/k for odd k and 2 — (3k — 4}/(k* — k)
for even k.

1.2.2 Our Contribution

Our results, which improve on Nagamochi, Katayama and Ibaraki’s results by a factor of
@(n?), are very much grounded in past results. In particular, the 3-way cut algorithm makes
use of Burlet and Goldschmidt’s structural result, Karger’s minimum 2-way cut algorithm
and Nagamochi and Ibaraki’s structural result and algorithm framework. The high level
view is that Burlet and Goldschmidt gave a way to break the computation up into a number of
subproblems, which could be identified quickly, but took some time to solve. Nagamochi and
Ibaraki took a different approach that created far fewer subproblems, but the subproblems

3 At least, they are the best ones that are fully written up. Nagamochi and Ibaraki [NKI99] say “a deterministic
O(n?*~3m) time algorithm is claimed in [[KWY97b]] (where no full proof is given).”

1.2, THE MINIMUM K-WAY CUT PROBLEM 15

were much harder to identify. Our algorithm is a hybrid that manages to keep only the fast
part of each algorithm.

Our 4-way cut algorithm is similar to the 3-way cut one, except that we needed to find
an appropriate extension of Burlet and Goldschmidt’s results to 4-way cuts, and we ended
up needing to use Karger and Stein’s minimum 2-way cut algorithm instead of Karger’s. The
improvement for 5-way and 6-way cuts follows simply by plugging the result for 4-way cuts
into the algorithm of Nagamochi, Katayama and Ibaraki.

16

CHAPTER 1. INTRODUCTION

Chapter 2

Flow Background

In this chapter we review some background information for the maximum flow problem. The
first section is largely basic definitions and notation. The remainder of the sections cover the
context in which we see our work. In other words, they review the prior concepts that we use.
Readers who are familiar with these results should not need to read these sections in order to
understand later chapters, although seeing what history we consider relevant probably helps
clarify the way in which we look at the problem. In the rest of the thesis we provide pointers
back to sections of this chapter when relevant, to make it easy for readers to use this chapter
only as reference.

We organize the sections in roughly chronological order, starting with the definition of
flow and then discussing augmenting paths, shortest augmenting paths, blocking flow, sparse
connectivity certificates and random sampling. So readers who are not very familiar with the
maximum flow problem should be able to get a reasonable sense of the sequence of results
that has lead to this thesis. Note, however, that our history of flow is heavily biased toward
unit-capacity graphs. In particular, we skip major results in the development of flow algo-
rithms for capacitated graphs, such as dynamic trees [ST83] and the push-relabel method
[GT88]. Readers who want a more complete survey of maximum flow results should refer to
a textbook (e.g. [AMO93]).

2.1 Maximum Flow Fundamentals

The following is a summary of the notation we use when discussing the maximum flow prob-
lem.

G = (V,E,u]) refers to a directed graph, where u(x,y) is an integer representing the ca-
pacity of edge (x,y). Note that many authors define the capacity to be a real number, but we
will only consider integer capacities. We will always assume that either both or neither of
(x,y) and (y, x) are in E. If one has a graph that contains (x,y) but not (y, x), the edge (y, x)
can be added with u(y,x) = 0 without changing the set of feasible flows. This addition at
most doubles the number of edges, which will have no effect on our asymptotic running time
bounds. When we talk about a graph being undirected, we mean that u(x,y) = u(y, x) for ail

18 CHAPTER 2. FLOW BACKGROUND

edges.

The source is s and the sink is t. We use n as shorthand for |V|, the number of nodes, and
m as shorthand for [E|, the number of edges.

A flow is an assignment to the edges f, such that

Y(x,y) €E f(x,y) >0 (non-negativity constraint)

V(x,y) € E f(x,y) < ulx,u) (capacity constraint)

Vx € V—{s,t} Z f(x,y) = Z f(y,x) (conservation constraint)
(x,y)EE (u,x)et

The value of a flow f, denoted |f|, is the net flow leaving the source:

Z f(S,y)— Z f(y,S)

{s,y)eE (y,8)EE

Because of the conservation constraint, the value is always the same as the net flow entering
the sink.

Given G, s and t, the maximum flow problem is to find a flow f of maximum value over all
possible flows. We denote the value of the maximum flow as v.

An important related concept (see next section) is a cut, a non-empty proper subset of the
vertices. In an undirected graph with edge capacities, the value of a cut X, written ¢(X), is the
total capacity of edges with precisely one endpoint in X. In a directed graph, the value of a
cut is the total capacity of edges leaving X. A minimum cut of a graph is a cut of minimum
value. An o-minimum cut is a cut whose value is at most « times the minimum cut value. A
graph is said to be c-edge connected if it has minimum cut value at least c. An s-t cut is a cut
that contains s but does not contain t.

Note that many authors define flow slightly differently. Instead of requiring that flow be
non-negative, they require that it be anti-symmetric (f(x,y) = —f(y, x)). The choice between
the definitions is largely arbitrary. We chose non-negativity because we prefer to think of an
edge having non-zero flow as specifically meaning that the flow is on that edge, rather than
on the reverse edge.

It is sometimes convenient o allow E to be a multiset; that is, to allow there to be parallel
edges. In general, it is undesirable to work with a graph that has parallel edges because doing
sojust makes m larger. Furthermore, in the context of maximum flow, restricting a capacitated
graph to have no parallel edges is no restriction at all, because in time linear in the input we
can merge parallel edges into one edge with capacity equal to the sum of the capacities of
the edges that make it up, and at the end we can split the flow on such an edge among the
edges that make it up. So we will always want our input graphs to be free of parallel edges.
Nevertheless, in certain instances we will define concepts in a unit-capacity graph (a graph
in which all edges have capacity 1), in which case we may want to think about capacities as
parallel edges, even though we would never want to actually convert our input graphs in an
implementation.

2.2. RESIDUAL GRAPHS AND AUGMENTING PATHS 19
2.2 Residual Graphs and Augmenting Paths

An obvious way to try to find a maximum flow is by using a greedy algorithm: find a path
from source to sink, delete the capacity used up, and repeat until there are no more source-
sink paths. Unfortunately, this algorithm does not work. For example, in Figure 2.1, the flow
(thick lines) blocks all source sink paths but is not maximum.

Figure 2.1: A flow that blocks all s-t paths but is not maximum

Fortunately, Ford and Fulkerson [FF56] showed that a very similar algorithm does work.
They defined a residual graph of G with respect to f: G¢ = (V, E, us), where us(x,y) =ulx,y)—
f(x,y) + f(y,x). Observe that the residual graph not only decreases the capacity of an edge
that has flow on it, but increases the capacity of an edge whose reverse has flow on it. The
pointis that even if u(x,y) = 0, if f(y, x) is positive, we can think about sending flow on (x,y),
because what we will really do is remove flow from (y, x). Accordingly, Ford and Fulkerson
called a path in the residual graph an augmenting path, because we can effectively send more
flow on the path, even if we will not actually increase the flow on each edge (because we
might decrease the flow on a reverse edge instead).

Since an augmenting path can easily be found by depth-first search or breadth-first search
in the residual graph in O(m) time, the running time of the augmenting paths algorithm is
O(mv).

Ford and Fulkerson proved several important fundamental theorems about flows:

Theorem 2.2.1 (Flow Decomposition) A flow can always be decomposed into at most m cycles and
source-sink paths.

This theorem says that it is always reasonable to think about flow as a collection of source-
sink paths, although one must keep in mind that there might be cycles. In Chapter 3 we will
be interested in how many edges a flow uses, and as such will want to avoid cycles, because
they use edges but do not contribute to the value.

Thinking of a flow as paths and cycles, one can see the effect of flow on cut values in the
residual graph. A cycle can have no effect on a cut value in the residual graph, because the
same amount of flow crosses the cut in each direction. An s-t path decreases the value of an
s-t cut by precisely the amount of flow on the path, because the number of times the path
can cross from s side to t side minus the number of times it can cross from t side to s side is
always precisely 1. So the maximum flow value can never be larger than the minimum s-t cut
value. Ford and Fulkerson proved something even stronger, that the maximum flow value
always equals the minimum s-t cut value:

20 CHAPTER 2. FLOW BACKGROUND

Theorem 2.2.2 (max-flow min-cut) The following are equivalent

1. fis a maximum flow in G
2. there are no augmenting paths in G¢

3. [f| = c(X) for some s-t cut X

It is worth pointing out that since the maximum flow value can never be larger than the
minimum s-t cut value, the following corollary follows immediately:

Corollary 2.2.3 The value of a maximum flow always equals the value of an s-t minimum cut.

Going back to the max-flow min-cut theorem, the equivalence of 1 and 2 demonstrates the
correctness of the augmenting paths algorithm. But the equivalence of 2 and 3 will be more
relevant for us: as long as every s-t cut has some capacity left there will be an augmenting
path. Our algorithms want to eliminate edges from consideration in order to speed the pro-
cess of finding augmenting paths. The concern will always be that we might eliminate too
many edges, in particular, all residual edges from some s-t cut, thereby failing to find some
flow. So our proofs of correctness will work by showing that until we are done we always
have capacity on every s-t cut.

2.3 Shortest Augmenting Paths, Blocking Flow and Simple Graphs

Edmonds and Karp [EK72] gave the first strongly polynomial flow algorithm by analyzing
an augmenting paths algorithm where one always augments on the shortest available path
(shortest here means having the fewest edges). They show that only O(nm) paths are re-
quired, so their algorithm runs in O{nm?) time.

Dinitz [Din70] introduced the idea of a blocking flow. In full generality, a blocking flow is
a flow found by the greedy algorithm, as discussed at the beginning of the previous section.
It is not known how to compute blocking flows quickly in general, but Dinitz showed that
they could be computed in O(mn) time on an acyclic graph (or O(m) time if all edges have
unit capacity). Further, he showed that if one takes as an acyclic graph all of the edges on
shortest paths from source to sink, then the result of adding a blocking flow is to increase the
source sink distance by at least 1 in the residual graph. Since the source and sink can only be
n apart, this means that n iterations of finding a blocking flow suffices to find a maximum
flow. Observe that this method gives an improved running time in general of O(n?m), or
O(nm) on a unit-capacity graph.

Even and Tarjan [ET75] and Karzanov [Kar73] analyzed Dinitz’s algorithm on simple
graphs (unit capacity with no parallel edges). Their first argument is that since there are
only m edges, when the source-sink distance in the residual graph is d, each path uses at least
d edges so only m/d paths can possibly remain. Therefore, after v/m blocking flows, only
v/m flow remains to be found. Since each blocking flow certainly finds at least one augment-
ing path, a further /m blocking flows will complete the computation. So the total time is
o(m3/2).

2.4. UNDIRECTED GRAPH SPARSIFICATION 21

Their second argument is somewhat more complicated. Let V; be the set of nodes at
distance i from the sink. So t is in Vp and s is in V4. Therefore the cut separating UjiV;
(nodes at distance more than i) from U;<;V; (nodes at distance at most i) is an s-t cut for any
i < d. A residual edge leaving a node in Vi, cannot connect to a node at distance less than
i, because that edge would be the first on a path from the starting node to the sink that was
shorter than i+ 1. Since we do not allow parallel edges, and residual edges can have capacity
at most 2, the total capacity of edges crossing the so-called canonical cut separating V; from
Vi is at most 2|V][Vl

Now consider the V; in pairs: Vo U V1, VU V3,.... There are |(d + 1)/2] such pairs,
and they are vertex disjoint, so some pair has at most 2n/d vertices in it. The canonical cut
separating this pair has capacity at most max, 2(x)(2Zn/d — x) = 2(n/d)?, so the maximum
flow value in G is at most 2(n/d)2.

We can now apply the same analysis as we did with m/d paths remaining. After n2/3
blocking flows, only 2n?/3 paths remain, so the total time is O(mn?/3). We will give a related
algorithm in Chapter 3 that runs blocking flow for a while and then uses a new method to
find augmenting paths at the end, thereby improving on the time bound given here.

Even and Tarjan also observed that as a corollary, one can bound the total length of the
augmenting paths. If one runs shortest augmenting paths, then when x flow remains, the
length of the path can be at most m/x or nv/2/y/x. Adding this quantity up as the remaining
flow goes from v down to 1, we see that the total length of the augmenting paths is at most
O(mlogv) (from first analysis) or O(n/v) (from second analysis). We will use this result in
Chapter 3 to show that acyclic flows do not use many edges.

24 Undirected Graph Sparsification

If one is interested in connectivity information in an undirected graph, it is sufficient to con-
sider a spanning forest. That is, two nodes will have a path between them in the spanning
forest if and only if they have a path between them in the original graph. Since a spanning for-
est can have at most n—1 edges, whereas the original graph could have as many asn{n—1)/2,
it could easily be advantageous to work with a spanning forest.

Likewise, if one is interested in k-edge connectivity in an undirected unit-capacity graph,
one would prefer to work with a sparse k-certificate.

Definition 2.4.1 A sparse k-certificate of an undirected graph G is a subgraph Gy such that the
value of any cut is at least the smaller of k and the value of the cut in G.

It is possible to construct a sparse k-certificate by taking a spanning forest, then taking
another spanning forest on the remaining edges, and so on, k times. This process yields at
most nk edges. Of course it might take a substantial amount of time to find all those spanning
forests.

Nagamochi and Ibaraki [NI92b] gave an-algorithm that finds all such forests in one linear
time pass. That is, in O(m) time they assign to each edge a label, where having label i means

22 CHAPTER 2. FLOW BACKGROUND

that the edge belongs to the it spanning forest. So a sparse k-certificate is easily obtained
by taking every edge with label at most k. We refer to the labeling as a sparse connectivity
certificate, since it contains sparse k-certificates for all k.

If the edges have capacities, one would like to think about an edge of capacity x as x
parallel unit-capacity edges, but O(m) time in such a graph would not be fast. In a later
papet, Nagamochi and Ibaraki [NI92a] show how to handle capacities, assigning each edge
two labels, representing the first and last forest of which the edge is a part. If the capacities are
O(logn) bit integers, their algorithm can be implemented to run in O(m) time. For general
capacities, the running time is O(m + nlogn).

This sparsification algorithm can easily be applied to flows. If the maximum flow value
is v, it is sufficient to use a sparse v-certificate. So in O(m) time, we can restrict attention to
O(nv) edges, and effectively substitute nv for m in the running time of any flow algorithm.
In particular, sparsification plus augmenting paths is an O(m + nv?)-time algorithm.

Goldberg and Rao’s [GR97b] O(n./mn)-time algorithm for maximum flow in simple,
undirected graphs goes a bit further. They use blocking flows to compute flow. As the
source-sink distance increases, the Even-Tarjan results (described in the previous section)
give bounds on how much flow could possibly remain. So after each iteration, they take a
2(n/d)?-sparse certificate of the unused (and therefore undirected) edges, and throw out any
remaining undirected edges, because they will never be needed. Sparsifying again and again
gets the better time bound. We go even further in Chapter 3, only keeping a few spanning
forests of undirected edges at any time, and bringing more back in when we need them.

2,5 Random Sampling in Undirected Graphs

The results on random sampling in undirected graphs can be summarized fairly easily: ran-
dom sampling does a good job of finding sparse subgraphs that preserve connectivity infor-
mation. As such, random samples can sometimes be used as sparse certificates. In Chapter 4,
we improve our sparse certificate based results of Chapter 3 by doing exactly that.

But random samples can also be more powerful, in that they can find sparse subgraphs
that represent the original cut structure fairly well. To see what we mean, compare to a
Nagamochi-Ibaraki sparse k-certificate. Their structure is sparse, preserves all information
about cuts smaller than k exactly and destroys information about cuts larger than k. A ran-
dom sample can be sparse and approximately preserve cut values of all cuts. So one trades
exactness for better information about larger cuts.

The basic result is as follows: if the edges of an undirected graph are sampled such that for
every cut the expected number of edges chosen is at least a certain constant times logn, then
the sample will be connected with high probability [Kar99]. The simplest version of this result
considers a unit-capacity graph and samples uniformly. The minimum cut will clearly have
the minimum expected value in the sample, so for minimum cut c the acceptable probability
is Q(logn/c). Benczir and Karger [BK96] observe that if there are vertex induced subgraphs
with higher edge connectivity, then edges in them can be sampled with smaller probability.
That motivates the following definition.

2.5, RANDOM SAMPLING IN UNDIRECTED GRAPHS 23

Definition 2.5.1 [BK96] The strength of an edge {x,y}, denoted k(x,), is the maximum value of k
such that a k-edge connected vertex-induced subgraph of G contains {x,y}. We say an edge is k-strong
if its strength is k or more, and k-weak otherwise.

In a unit-capacity graph, sampling each edge with probability proportional to log n/k(x,y)
causes the minimum expected number of edges in a cut to be Q(log n). To see why, consider
any cut and its highest strength edge, of strength k. By the definition of strength there must
in fact be at least k edges of strength k in the cut (because strength k came from a k-edge
connected vertex induced subgraph), so the expected number of edges chosen of that strength
alone is Q(log n).

What makes strength more important, though, is the fact that Z{x,y}EE 1/k(x,y) < n
[BK96]. So with high probability, sampling each edge with probability proportional to
logn/k(x,y) gives a sample of size O(nlogn) that is connected. The only problem is that
it is not known how to compute strengths quickly. Worse, it is not known how to find con-
stant factor approximations quickly. So instead Bencztr and Karger introduce and show how
to compute what we will call modified strengths, denoted as k'. Modified strengths are lower
bounds on strengths that are good on average. That is, they are always lower bounds, and
the sum of inverses is still small, 4n. So using them in place of strengths only improves the
probability that the resulting sample will be connected, and the sample will still be small.

In Chapter 4, we do sampling in a residual graph. Our approach is similar to that of
Bencziir and Karger and we manage to achieve similar results, even though we sample a
directed graph.

As mentioned above, beyond just being connected, it is possible to show that cut values
stay close to their expected values:

Theorem 2.5.2 [Kar99] If G is c-edge connected and edges are sampled with probability p, then with
high probability all cuts in the sampled graph are within (1 + /81nn/pc) of their expected values.

Of course if sampling probabilities are non-uniform, as in the case of using strengths, then
it is of less interest to talk about the expected values of cuts, because they are very different
from original values. In the specific case of strength, what Bencziir and Karger do is sample
with probability proportional to log n/k(x,y), and increase the capacity of chosen edges by
one over the sampling probability. That way the expected value of every edge is its original
capacity. They call this technique compression, because they get a new graph that has fewer
edges but similar cuts. In particular, they show that with appropriate constants, one will get
(with high probability) a graph that has the same cut values to within a 1 + € factor, but only
O(nlogn/e?) edges.

Note that for the purposes of our algorithm in Chapter 4, we only need to show that
connectivity is preserved. It is also possible to prove a compression theorem for residual
graphs, although we do not know what to do with it. Accordingly, the proof of compression
is in Appendix B.

24

CHAPTER 2. FLOW BACKGROUND

Chapter 3

Spanning Forests of Undirected Edges

In this chapter we show how to find augmenting paths quickly when finding flow in an
undirected graph by reducing the undirected edges of the residual graph down to a spanning
forest. We then show how to apply this technique to get faster maximum flow algorithms
for undirected graphs. A preliminary version of this work appeared in a conference paper
[KL98].

The basic idea is easy to state: use a spanning forest on the edges that are still undirected
(for which capacities are still symmetric). That is, when we go to find an augmenting path, we
search in the directed edges plus a spanning forest on the undirected edges. Since spanning
forests capture the connectivity information of undirected graphs, it should make sense that
this method is correct. And clearly whenever there are more than n — 1 undirected edges it
will reduce the size of the graph in which we search for an augmenting path.

The obvious potential problem is that all the edges might become directed, such that we
get no benefit. We will begin by proving that this problem can be avoided, and then give
details of a complete algorithm for finding augmenting paths that is conceptually simple but
has some excess logarithmic factors in the running time. We then give details of a more
complicated method that avoids the logarithmic factors, and finish the chapter by discussing
complete flow algorithms.

Since we want to treat undirected edges differently from directed edges, some additional
notation is useful. For a flow problem G = (V,E,u), we use E* to denote the “undirected
edges”, {(x,y) : u(x,y) = u(y,x)}, and E to denote the “directed edges”, {(x,y) : u(x,y) #
u(y, x)}

The point of these definitions is that an undirected graph G and a non-zero flow f will
give rise to a residual graph Gy in which the edge capacities are no longer symmetric, That
is, E{ will always be non-empty. So we cannot hope to exploit undirected graph properties in
G; we can, however, exploit undirected graph properties in EY.

We will want to talk about running algorithms defined only for undirected graphs on
E". Whenever we say to run such an algorithm on E“, we mean that it should be run on an
undirected graph with the same vertices and the edge set {{x, y} : (x,y) € E*}. If the algorithm
expects capacities, then u({x,y}} = u(x,y), which of course is the same as u(y, x). When we

26 CHAPTER 3. SPANNING FORESTS OF UNDIRECTED EDGES

talk about using the output edge set E’ from such an algorithm in the context of flow, we
mean {(x,y) : {x,y} € E'}. So in general this means that the number of edges we use in our
flow context is double the number of undirected edges. For example, a spanning tree of an
undirected graph has at most n — 1 edges, so in our flow context when we talk about using a
spanning tree, there will be 2(n — 1) directed edges.

3.1 Small Flows Use Few Edges

Separating directed edges and undirected edges and exploiting the good properties of undi-
rected graphs when possible would be worthless if all of the edges were liable to become
directed. As such the bound on the number of directed edges that we give in this section is
the foundation for the rest of the chapter. With one definition, the theorem is easy to state:

Definition 3.1.1 A flow f is acyclic if there is no directed cycle on which every edge has positive flow
in the cycle direction.

Theorem 3.1.2 Any integral acyclic flow f uses at most 2n/|f| edges.

Note that this theorem is very close to a theorem proved by Galil and Yu [GY95] and
simplified by Henzinger, Kleinberg and Rao [HKR97] that says there exists a maximum flow
that uses only O(mn/v) edges in simple graphs. Our result is stronger in that we show that
any integral acyclic flow uses few edges, even on capacitated graphs. We also have tighter
constants. Our proof is a stronger version of the one used by Henzinger, Kleinberg and Rao,
although we proved it independently.

The proof given by Henzinger, Kleinberg and Rao is easy to state, given the results proved
by Even and Tarjan [ET75] about blocking flows in simple graphs (see Section 2.3). Even and
Tarjan showed that the total length of augmenting paths in the blocking flow algorithm is
only O(n+/v). Since the total length of augmenting paths is an upper bound on the number of
edges used, it is clear that there always exists a maximum flow that uses only O{n\/v) edges.

We refine this proof in two ways. We show that it applies equally well when there are
edge capacities, and we show that any acyclic flow uses few edges, not just that a flow using
few edges exists.

In order to account for capacities, we consider a slightly different algorithm. Recall that
the Even-Tarjan argument is based on shortest augmenting paths. We would like to avoid
over-counting edges that have high capacity and consequently are in many augmenting
paths. So what we will do is define a length function on the edges and consider finding
shortest augmenting paths with respect to the lengths. The length of unit capacity edges will
be 1, and the length of any higher capacity edges will be 0. The idea is that an edge will only
contribute to the length of an augmenting path the last time it is used.

As an aside, observe that while it might sound like the combination of this idea and block-
ing flows would make for a fast flow algorithm for capacitated graphs, it does not. The prob-
lem is that when zero length edges are present, the set of edges that are on shortest paths

3.1. SMALL FLOWS USE FEW EDGES 27

is not necessarily acyclic, and we only know how to find blocking flows quickly on acyclic
graphs. Note that the Goldberg-Rao algorithm that achieves Even-Tarjan like time bounds on
capacitated graphs does use a 0-1 length function, but in a more complicated way. For our
proof we only care about the bound on the total length of augmenting paths, not the running
time of the algorithm, so we did not need to do anything as complicated as Goldberg-Rao.

The extended version of the Even-Tarjan canonical cut argument is as follows:

Lemma 3.1.3 Given a graph G = (V, E,u) with no parallel edges, let 1, (x,y) be 0 if u(x,y) > 1, 1
ifu(x,y) < 1,and oo if u(x,y) = 0. Let dy,(x) be the distance with respect to 1,, from node x to t, or
oo if there is no path from x to t. If 0 < dy,(s) < oo, then v < (n/dy(s))?.

Proof. (Note that this proof is really only different from the Even-Tarjan proof in that it is
stated with the length function.)

Let V; be the set of nodes with d,,(x) = i. Since s is in Va,(s) and the sink is in Vj, the
cut separating U;»iV; from U;<iVj is an s-t cut for any i < d,,(s). Call this cut the canonical
cut separating Vi from V;. Observe that edges with positive capacity leaving a node in Vi
can never go to a node at distance i or less, and cannot even go to a node at distance i if
they have length 0 (capacity exceeding 1), or else there would be a path to the sink from the
starting node that is shorter than i 4 1. Since only unit capacity edges can cross from Vi1 to
Vi, and we do not allow parallel edges, the total capacity of edges crossing the canonical cut
separating Vi from Vjis at most [V 4||Vy].

Now consider the Vi in pairs: VoU Vy,V2U V3,.... There are |(dy(s) + 1)/2] such pairs,
and they are vertex disjoint, so some pair has at most 2n/d,,(s) vertices in it. The canonical
cut separating this pair has capacity at most max, (x}(2n/d.(s) — x) = (n/dw.(s))?, so the
maximum flow value in G is at most (n/dy(s))2. =

Now, the other component we want to add to our final proof is that any acyclic graph
uses few edges. We get that extra strength from the following lemma, which says that we can
construct a graph in which the unique maximum flow is the acyclic flow we are interested in,
so that existence of a maximum flow with few edges in this graph will imply that the original
flow uses few edges.

Lemma 3.1.4 Let f be an acyclic flow in G = (V,E,u). Then f is the unique maximum flow in
G'=(V,E,u), where u'(x,y) = f(x,y).

Proof. (See Section 2.2 for relevant background.) First, observe that f is a flow in G’, and it
uses up the capacity of every edge, so it saturates a minimum cut, so it must be maximum.
Now, to show uniqueness, suppose that there exists f/, a maximum flow in G’ that is not the
same as f. Consider f” = f — f'. It is clear that f” will satisfy capacity and conservation
constraints. Since f uses up every edge, f” must also satisfy non-negativity. The value of " is
clearly 0. By flow decomposition, f” can be decomposed into paths from source to sink and
cycles. It must be that f” has only cycles, because it has no paths from source to sink. But the
only edges with non-zero capacity are those on which f was positive, and those edges do not
contain cycles—a contradiction. |

28 CHAPTER 3. SPANNING FORESTS OF UNDIRECTED EDGES

We can now prove the theorem.

Proof of Theorem 3.1.2. Consider G’ = (V,E, u’), where u'(x,y) = f(x,y). By Lemma 3.1.4,
if we find a maximum flow in this graph, it will be f. So consider building a flow f’ in G’ by
repeatedly finding and augmenting one unit of flow on a shortest path in G{,, where shortest
is defined by the length function of Lemma 3.1.3 in G¢,. When no paths are left we will have
f' = f. Lemma 3.1.3 says that when du;(s) >0,|f—1 < (n/du;(s))z, which we can restate

as clu;(s] < n/y/if —'|. Aswe find paths, |f — '| takes on each value from [f| to 1. Since we
always augment on shortest paths, the length of each path is d,;; (s). Therefore the total length

of the paths is at most
If] Ifl

n
gdu;(s) < ; 7S my/Ifl

Since 1’ is integral, and we only reduce the capacity of an edge by 1 unit at a time, and every
edge is reduced to 0 capacity at the end, it must be the case that every edge has length 1 at
least one of the times it is on an augmenting path, so that edge is counted when we count the
length of that path in the sum. It follows that the total length of the augmenting paths is an
upper bound on the number of edges used by f. u

Observe that Theorem 3.1.2 is tight up to constant factors. Figure 3.1 gives an example of
a simple graph with an acyclic maximum flow that uses all @(n+/v) edges.

vnodes

Ar-f""__"\‘h-

\"/‘ }\\" [
9 O D
\ / PALA S

Every cut defined by a vertical
line has v edges crossing it.

Figure 3.1: A graph with an acyclic flow that uses O(n./v) edges

3.2 A Conceptually Easy Algorithm for Fast Augmenting Paths

In this section we give a full algorithm based on the idea of maintaining a spanning forest
on the undirected edges. We will maintain the spanning forest using a dynamic connectivity
data structure, and we will take steps to prevent flow cycles so that we can apply the bounds
of the previous section. This algorithm is conceptually simple, and will find augmenting
paths in O(n\/v) amortized time per path. The price of the conceptual simplicity will be
several logarithmic factors. In the next section we will describe another method that is less
conceptually simple (although possibly easier to implement) and avoids logarithmic factors
most of the time.

3.2. A CONCEPTUALLY EASY ALGORITHM FOR FAST AUGMENTING PATHS 29

We can get efficient dynamic maintenance of spanning forests by simply applying a data
structure built for that purpose:

Lemma 3.2.1 [HALT98] It is possible to maintain a spanning forest of an undirected graph under edge
insertions and deletions in O(log? n) amortized time per operation.

We also need to worry about keeping our flow acyclic, because Theorem 3.1.2 only applies
if it is. Fortunately, using a procedure given by Sleator and Tarjan [ST83], it is easy to remove
all cycles from a flow (we will refer to this procedure as decycling):

Lemma 3.2.2 [ST83] It is possible to take a flow f that is non-zero on x edges and find an acyclic flow
! of the same value (|f'| = |f|) in O(x logn) time.

Since our algorithms are only interesting for small flow values, and unit-capacity graphs
are a frequently studied case of graphs with small flow values, we observe that a simplifica-
tion of the Sleator-Tarjan algorithm works a little faster in a unit-capacity graph:

Lemma 3.2.3 In a unit-capacity graph, it is possible to take a flow f that is non-zero on x edges and
find an acyclic flow ' of the same value (|f'| = |f]) in O(x) time.

Proof. One natural way to remove cycles from a flow would be to repeatedly find a cycle by
doing a depth first search on edges carrying flow (in the direction of the flow) and remove it
by sending flow backward on the cycle. Removing cycles will not change the flow value. If
no cycle is found, then obviously we are done, and we will reach this point because in every
iteration we reduce the number of edges carrying flow. However we might end up doing too
much work this way, because we have to do many searches. But when we find a cycle, any
work done looking at edges that did not reveal cycles need not have been wasted—removing
flow will never create flow cycles, so we can just restart the search from the first node of the
cycle that we found and only search on edges that were not previously explored. Since we
explore each edge at most once and delete each edge at most once, and there are only x edges
that we are interested in, the running time is O(x). (Note that the capacitated case solved by
Sleator and Tarjan is far more difficult—an edge will not necessarily be deleted when flow
is removed from it, so a given edge might need to be explored many times. They solve this
problem with an amazing data structure called a dynamic tree.)]

The basic algorithm for fast augmenting paths appears in Figure 3.2. To show that this
algorithm is correct, we just need to know that G’ contains an augmenting path if and only if
Gt does, and then we can apply the max-flow min-cut theorem (see Section 2.2).

Theorem 3.2.4 Let T be any spanning forest of B Then T U EF has an augmenting path if and only
if G does.

Proof. Let G’ = T U E{. Since G’ is a subgraph of Gy, it is clear that if G’ has an augmenting
path then G does. For the other direction, suppose that there is an augmenting path in Gy,

30 CHAPTER 3. SPANNING FORESTS OF UNDIRECTED EDGES

SparseAugment1(G, f)
insert all undirected edges (E}) into a dynamic connectivity data structure, and use it
to maintain a spanning forest T
repeat:
look for an augmenting pathin E¢ U T
if no such path exists
return f
else
augment f using the path
T decycle(f)
update the connectivity structure as appropriate to the augmentation:
delete any edge no longer in £} (because flow added)
insert any edge newly a member of E}* (because flow removed)

Figure 3.2: Basic algorithm for fast augmenting paths

but not in G'. By the max-flow min-cut theorem, we can restate this condition as follows:
every s-t cut of G¢ has an edge with positive capacity crossing it (from the s to the t side), but
some cut of G’ does not. Thus, there is an s-t cut C that has a positive capacity edge (x,y)
crossing it in Gy, but no edges crossing it in G'. If {x,y) € EY, then it is in G'—a contradiction.
So (x,y) must be in E}". But T is a spanning forest of T}, which means that it contains an edge
from every nonempty cut of L}. (If there were an edge across a cut where T did not have any
edges, then the edge could be added to T, increasing its span and contradicting the fact that T
is spanning to begin with.) Since C is nonempty in E} ((x,y) crosses it), some edge of T, and
thus of G’, crosses C. This contradicts our (restated) original assumption. []

We now consider the running time:

Theorem 3.2.5 SparseAugmentl runs in O (m+1n\/v) time on an undirected graph, where v = v—|f|
is the number of augmenting paths that need to be found.

Proof. First consider the work done finding augmenting paths. Since we decycle the flow in
each iteration, every augmenting path search takes place in a graph with O(n./v) edges and
therefore takes O(n+/v) time. Similarly, every decycling takes O(n+/v) time. Since there are
iterations, the total time is O (rny/v).

It remains to account for the dynamic connectivity operations. First consider deletions.
An edge is deleted from the data structure when we place flow on it. This happens to at
most 1 edges in any one augmenting path, for a total of nr deletions taking O(nr) time. Now
consider insertions. Initially we insert all edges in the structure in O(m) time. Later, edges
are inserted in the data structure when flow is removed from them. Note, however, that flow
cannot be removed from an edge until flow has been added to the edge. We have already
counted the cost of deleting edges when we add flow to them; this cost can also absorb the
equal cost of inserting those edges when the flow is removed.]

3.3. A BETTER ALGORITHM FOR FAST AUGMENTING PATHS 31
3.3 A Better Algorithm for Fast Augmenting Paths

The algorithm in the previous section spends more time maintaining the edge set in which
it will search for augmenting paths than it spends actually searching. One way to reduce
this overhead cost is to find several spanning forests at once and use them to find several
augmenting paths. In this section we apply an algorithm given by Nagamochi and Ibaraki
[NI92b] to do just that (see Section 2.4 for background).

SparseAugment2(G, f)

k « [\ / m/n-’
if f has cycles, f « decycle(f)
repeat:
Gy « asparse k-certificate of E}
G« E.‘fi U Gy
run augmenting paths on G’ until k paths are found or no more paths exist
f decycle(f)
if the augmenting paths step found less than k paths, return f

Figure 3.3: First algorithm for fast augmenting paths based on sparse certificates

Our first algorithm using sparse certificates appears in Figure 3.3. We terminate when G’
has fewer than k paths. So to prove that the algorithm is correct we only need to know that
G’ always has at least k paths when Gy does, and that when Gy has fewer than k augmenting
paths G’ has the same number.

Theorem 3.3.1 Let Gy be a sparse k-certificate of E}. Then E} U Gy contains i < k augmenting
paths if and only if Gy has i augmenting paths, and £3 U Gy, contains at least k paths if G contains at
least k.

Proof. The idea here is the same as that of Theorem 3.2.4, except that now we have several
spanning forests instead of one. Again G’ = E¢ U G is a subgraph of Gy, so it can have no
more augmenting paths than Gs. For the other direction, consider a minimum s-t cut of G'.
Suppose G has more capacity crossing this cut. It is impossible for the extra capacity to be
in E¢, because G’ contains all edges of E4. So there must be more capacity crossing the cut in
Ef than in Gi. But by definition of a sparse k certificate, this can only happen if more than k
capacity crosses the cut in £}, in which case at least k capacity must cross the cut in Gy. This
completes the proof. |

We now consider the running time.
Lemma 3.3.2 Let v be the number of augmenting paths that need to be found. The running time of

SparseAugment2(G, f) on a unit-capacity undirected graph is O(m+v(n\/v++/mn)). With capacities
the running time is slowed by an O(logn) factor.

Proof. We begin with the unit capacity case. By Lemma 3.2.3, the initial decycling takes O(m)
time. The sparse certificate computation at the beginning of the loop takes O(m) time per

32 CHAPTER 3. SPANNING FORESTS OF UNDIRECTED EDGES

iteration. The cost of the augmenting paths step is O(m'k), where m’ is the number of edges
in G'. The decycling step in the loop takes O(m’) time. By definition of a sparse k-certificate
and Theorem 3.1.2, m’ < 2nk + ny/v = 2¢/mn + n+/v. The number of iterations is [r/k], so
the total time is O((m + m’k) [t/k]) = O(m + r(n/v + /mn)).

With capacities, the only change is that the decycling steps may be slower by an O(logn)
factor, so the total running time is also slowed by no more than that.]

This bound is somewhat unsatisfactory, in that the cost per augmenting path becomes
vmn when m > nv. But if we knew v at the beginning, we could find a sparse v-certificate
and ensure that we only worked with nv edges for the rest of the algorithm. This would give
the amortized O(n./v) time per path that we want. It turns out that we can effectively simu-
late knowing v by taking a small guess and doubling it until we are correct. The pseudocode
for this improvement appears in Figure 3.4.

SparseAugment3(G, f)
compute a sparse connectivity certificate of unused edges of G
(we will now use G, to denote the first w forests of this sparse certificate)
w — |f]
repeat:
w minimum w’ such that |G,,#| > 2|G,]
SparseAugment2(G., T}, stopping when [f| > w
until [f| < w
return f

Figure 3.4: Final algorithm for fast augmenting paths

Notice that G, C Gz, s0 we need not start over each iteration of the loop, but can simply
continue with more of the edges from G. This is irrelevant to the time bound, but it means
that in practice work is not being wasted.

Theorem 3.3.3 The running time of SparseAugment3(G, f) on a unit-capacity undirected graph is
O(m + r/v), where 1 is the number of augmenting paths that need to be found. With capacities the
running time is slowed by an O(logn) factor.

Proof. Again, we begin with the unit capacity case. The running time of the first step is O{(m).
The running time of the i iteration is O(m; + Ti(ny/v + /mn)) by Lemma 3.3.2. (Here the
notation x; is used to mean the value of x in the i*" iteration.) Since m; doubles with each
iteration, the sum over iterations of the first term is O(m). Let k be the number of iterations.
[t must be the case that wi_; < v in order for the (k — 1)t iteration to not terminate. Thus
my_1 < 2nv. Since we attempt to double m;, ending up with at most one tree too many,
m < 4nv + 2n = O(nv). Since Y 1y = 71, the sum over iterations of the second term is
O(rn+/v). The total is O(m + Tn/v).

Since almost all the work is done by SparseAugment2, it is clear that the same O(logn)
slowdown with capacities applies. |

3.4. DETERMINISTIC ALGORITHMS USING FAST AUGMENTING PATHS 33
34 Deterministic Algorithms Using Fast Augmenting Paths

The results of the previous sections can be used in several ways to give fast flow algorithms.
Most obviously, simply using SparseAugment3 to find all the necessary augmenting paths gives
a simple, deterministic O((m + nv¥/2) log n)-time flow algorithm. On simple graphs the time
bound is slightly better: O(m + nv*/2). In the worst case, when m = @(n2) and v = @(n),
this gives an O(n®?) time bound, which is as good as the worst-case bounds of all previous
known algorithms. For smaller v this is the best deterministic algorithm known. Note that
ours is the first deterministic algorithm to achieve this bound without blocking flows, and
unlike previous blocking flow approaches it benefits from small v. For large v, we can do
better by running blocking flows until not much flow remains and then finishing with fast
augmenting paths. (See Section 2.3 for background.)

Lemma 3.4.1 On a simple graph, if we run blocking flows X times and then finish with fast augment-
ing paths, the running time is O (mk + n3,/v/k2).

Proof. Finding a blocking flow takes O(m) time, so computing k of them takes O(mk) time.
After k blocking flows on a simple graph the source-sink distance is at least k, so the remain-
ing flow is O((n/k)?). Therefore the time for fast augmenting paths is O(n3A/k?). []

It is important to point out that this result is limited to simple graphs because it uses the
Even-Tarjan [ET75] argument that when the source-sink distance is at least k, the remaining
flow is only O((n/k)?). Note that we used similar arguments in capacitated graphs to prove
that flows use few edges, but we did not show anything that would imply that little flow
would be left in a capacitated graph after k blocking flows.

We can pick k = nv!/¢/m'/3 to balance the terms and get an algorithm that runs in
O(nm?/3v1/¢) time. This algorithm also takes O(n>2) time in the worst case, but it is bet-
ter when the graph is sparse but the flow value is large. It is always at least as good as the
bound of O(n%/?m1/2) given by Goldberg and Rao [GR97b], and in general better by a factor
of (n3/mv)V/6.

Note however that, unlike the Even-Tarjan improvement, where the better running time
arose by changing the analysis of the algorithm to augmenting paths at a certain point, we
must explicitly change the execution of the algorithm at a certain point to achieve our bounds.
The reason for this difference is that we do not know how to combine our sparsification tech-
niques and blocking flows. Obviously we could take E$ plus a sparse k-certificate and find a
blocking flow in it, but the good thing about blocking flow is that it finds many augmenting
paths at once, quantified by the fact that it increases the source-sink distance. If we sparsify,
we may prevent the blocking flow from finding all the paths it might otherwise find, and
then later, when we added a new sparse certificate, we might reduce the source-sink distance,
thereby losing track of any benefit we might have obtained.

This issue of changing analysis versus execution is important, because the fact that our
algorithm must change its actions means that we need to be able to compute the switchover
point. That is, we need to know v in advance in order to achieve our bound.

34 CHAPTER 3. SPANNING FORESTS OF UNDIRECTED EDGES

There are several ways to avoid this problem. One is to use the iterative doubling trick
employed in SparseAugment3. Another possibility is to run blocking flows until the source
is far enough from the sink. In particular, if d; is the smallest number of positive capacity
edges in E¢ on a path from source to sink, then we should stop blocking flows when md¢ >

2 2
(dlf) n4/|fl + (dif) and then finish with fast augmenting paths. At that point there can

2 2
be only (dlf) flow remaining, so [f| + (dif) is an upper bound on v. Therefore, when the

2
condition is true we have md; > (dlf) n+/v. Solving for df, we get that it has to be at least

nv!'/6/m'/3, which means that the remaining flow is at most O(m?/3/v1/3). Thus the time
spent running fast augmenting paths is O(nvym?/3/v/3) = O(nm?/3y1/6).

As for the time spent finding blocking flows, we do one blocking flow computation be-

2 2
yond the point where md; < (dlf) ny/f] + (dlf) . S0 it is either the case that mds <

2 2 2
(dlf) n+/2|f| or that md; < (d%) ny/2 (dif) , depending on which term inside the square

root is larger. In the former case, since |f| < v, we again get that d¢ = O(nv/¢/m1/3). In
the latter case, solving for d¢ we get d¢ < n/m!/*. Since d; is an upper bound on the num-
ber of blocking flows we have to compute, the total time is O(nm?/3v1/¢ + nm3/4). This is
not quite as good, but nm?/3v1/8 is only better than nv3/2 when m < V2, and in this case
nm3/4 = nm#3mY12 = O0(nm?/3v'/8). In other words, in the case where we would want
to use blocking flows at all (when it is faster than the augmenting paths running time of
O(m 4 nv3/2)), this method achieves the full benefit.

Chapter 4

Sampling in Residual Graphs

In this chapter we present a maximum flow algorithm for undirected graphs based on find-
ing augmenting paths in random samples of edges from the residual graph. A preliminary
version of this work appeared in a conference paper [KL02].

The initial idea for the algorithm in this chapter is to use random sampling instead of
spanning forests. With high probability, a suitable random sampling scheme will yield a
sparse graph that has the same property of being connected. At first glance it might seem that
replacing trees with random samples is of little use, because the samples are slightly larger
and have a chance of error. But whereas directed edges are a problem for spanning trees, it
is easy to consider sampling directed edges. It turns out that this difference allows us to stop
separating directed and undirected edges and get a substantially improved algorithm.

We start with the sampling scheme given by Benczir and Karger [BK96] (See Section 2.5
for background.) The hope is that we can use a sample of size O(nlog n) for each augmenting
path. But of course we need to account for the effect of the flow in the residual graph. To
see the basic idea, consider a residual graph when |f| = v/2. The cuts are the same as in the
original graph, but each cut may have lost as much as half of its capacity. If we were sampling
with uniform probability, the expected number of edges chosen would be smaller by half, but
we could easily compensate by doubling the sampling probability. More generally, we can
compensate by increasing the probability by one over the fraction of flow remaining: -
This argument is insufficient for non-uniform probabilities, because the flow might take away
the high probability edges and leave the low probability ones, thereby greatly changing the
expected value. For example, if a cut has v/2 edges of strength 1 and v/2 edges of strength
v/2, the initial expected value is roughly v/2log n. If the flow uses the v/2-strong edges, then
doubling the sampling probability just makes the expected value larger—roughly vlog n. But
if the flow uses the strength 1 edges, then even with the doubling the expected value drops to
roughly 2log n, which is a huge reduction. Notice, however, that the expected value is still at
least log n, so all hope should not be lost. We show that the method works anyway, essentially
because, as mentioned above, the highest strength edges in a cut are sufficient to give a high
expected value. So if the flow uses low strength edges we will have enough high strength
edges to make the argument work anyway, and if the flow uses low strength edges then with
the extra probability the expected values will simply increase.

36 CHAPTER 4. SAMPLING IN RESIDUAL GRAFPHS

Having given the idea, it is now time to state the algorithm itself, which is far simpler
than the reasons why it works. We will then give the analysis in full detail.

4.1 The Algorithm

Our algorithm is easy to state. With the possible exception of the first step, it ought to be
correspondingly easy to implement. It is, however, difficult to tell whether it might perform
well in practice without actually implementing it.

SampleResidual (G)
compute modified strengths, k'
o=1
while an <m
sampling according to weights us(x,y)/k’(x,y), pick a sample of an edges
search for an augmenting path in the sample
if no path is found, double «
repeatedly search for augmenting paths in the residual graph until no more are found

Figure 4.1: Maximum flow algorithm based on sampling the residual graph

The pseudocode appears in Figure 4.1. The correctness of the algorithm is obviously guar-
anteed by the last step.

One important point about the algorithm is that we are sampling directed edges. The
background section discussion of Bencztir-Karger only discusses the idea for undirected unit-
capacity graphs, because it is simpler to understand that way. Our algorithm must take into
account the directed edges and capacities of the residual graph.

4.2 The Analysis

The foundation of our analysis is the following theorem, closely related to the main theorem
of Benczur and Karger [BK96]:

Theorem 4.2.1 Let B = 281 [f 5 sample of 8pn residual edges is chosen according to weights
VIl p g 4 &

us(x,y)/k’(x,y), then with high probability there is an augmenting path in the sample.
Corollary 4.2.2 The running time of SampleResidual is O(m log3n + nv log®nlogm/n).

Proof. Given the theorem, we can easily add up the times for each step to prove the corollary.
The first step runs in O(mlog;3 n) time [BK96). In each iteration of the loop we need to select
O(pn) edges and search for an augmenting path. If we order the edges arbitrarily, put them
all in a binary search tree and maintain at each tree node the sum over edges in the subtree of
us(x,y)/k’(x,y), we can easily pick an edge in O(logn) time. (Start at the root. Pick a subtree

4.2. THE ANALYSIS 37

to descend according to total weight (pick a subtree of weight x over a subtree of weight y
with probability % x+y)- Continue down the tree this way until reaching a leaf. Consider the
leaf chosen and remove it from the tree.) So the random sampling will take only O(fnlogn)
time. Searching for an augmenting path in O(fn) edges takes only O(fn) time. In order to
be able to sample in the next iteration, we need to put the chosen edges back in the tree, with
their capacities updated as appropriate. This takes another O(logn) time per edge chosen.
So the total time per iteration is O(Bnlogn). Thus the time to halve the remaining flow—the
time to find (v — [f|)/2 more paths—is O(nv log n), at which time we will be due to double
«. We can double « only Ig{m/n) times before an > m, so the total time for the loop is

O(nvlog? nlogm/n). When o = m/n, it must be the case that v/(v — |f|) = Q(m/nlogn),
sov — [f| = O((nvlogn)/m), which means that the time for the last step is only O(nvlogn).
Therefore the total running time is O(mlog® n 4+ nvlog? nlog m/n). []

Observe that unlike in the previous chapter, we would get no benefit from running block-
ing flow for a while and then switching to our new algorithm to find the remaining paths.
The reason is that it always takes O(nv) time to halve the remaining flow, regardless of how
much flow is left. So we would get the same running time even if another algorithm had been
used to find a lot of flow initially.

The proof of the theorem turns out to be a bit tricky. We would obviously like to sim-
ply use Karger’s result [Kar99] that sampling such that the minimum expected number of
edges is ()(log) will preserve connectivity. But that result relies crucially on the graph be-
ing undirected. Fortunately, it works by taking a union bound over all the cuts. So what we
do is bound the probability of each cut surviving our sampling scheme (i.e. not losing all of
its edges) by the probability of the same cut surviving the Benczur-Karger sampling scheme
in the original graph. We can then bound the probability our sampling fails to produce an
augmenting path by the probability that Benczar-Karger fails.

This plan is not as easy to execute as it sounds, because of the fact that the flow may
use up low strength edges first, thereby greatly reducing the probability that a sampled edge
crosses the cut. To see how dramatic the difference can be, consider a cut that has a few edges
with strength one. Choosing these edges is a near certainty, so the probability of failure is
practically zero. But the flow can quickly use them up and then, while the probability of
failure may still be small, it can be far larger than it used to be. It is also worth noting that
flow can cause damage without using up edges—cycles have no net effect on the capacity
crossing a cut, but they can easily move capacity from low strength edges to high strength
edges, increasing the chance that no edge crossing the cut will be chosen.

We escape these problems by arguing that for every cut there is always a k-strong compo-
nent in which the flow has not caused damage. That is, for each cut, for some k, the sampling
weights of k-strong residual edges still compare reasonably to the original weights. So we
in fact make our argument by analyzing sampling not just in the original graph, but in each
k-strong component of the original graph. Fortunately the k-strong components nest, so there
can only be 2n of them, which means that we can tolerate an extra union bound over compo-
nents.

38 CHAPTER 4. SAMPLING IN RESIDUAL GRAPHS

4.2.1 Supporting Lemmas

Before we can prove the main theorem, we need some supporting results. The first such is the
result by Benczir and Karger [BK96] that sampling an undirected graph with probability in-
versely proportional to strength preserves cut values well. The result that we need is slightly
different from what they state, so we will state precisely what we need and provide a proof
of it.

Note that it is common to refer to a cut as a non-empty set of vertices Y that is a proper
subset of the vertices. However, when we discuss cuts our interest will be in the edges cross-
ing the cut, and only the edges crossing in one direction at a time. So, for convenience, in our
proofs in this chapter we use a shorthand of referring to a cut by the set of edges that cross the
cut in a given direction, for which we have used the symbol X. In particular, in several cases
where we wish to sum over the edges that cross a cut in a given direction, we write Z(x,y) X
Observe that the direction means that when we sum over all cuts in an undirected graph, we
are counting each cut twice.

Theorem 4.2.3 In a connected undirected graph,

(d+2) i1
Z e Z(x yleX - k‘ELxxg‘-]J “Tx < _2(d—+2)

dnd
cuts X

To see how this theorem relates to sampling, consider sampling every edge with proba-
bility 4u(x,y)log n/k(x,y). For a given cut X, the probability that no edge is chosen is

I 1_M < T e 55 e Do ML
k(x,y) T

(x,y)ex x,y)EX

Taking a union bound over all cuts, we get the quantity in the theorem and find that the
probability that any cut has no edges chosen is at most 4/n°.

To prove this theorem we also need a theorem proved by Karger and Stein [KS96]:

Theorem 4.2.4 In an undirected graph with minimum cut value c, the number of undirected cuts of
value «c is at most n2*

We can now prove our restatement of the Benczur-Karger result.

Proof. Consider the weighted graph with the same vertices and edges as G and weight
w(x,y) = (d + 2)u(x,y)Inn/k(x,y) assigned to edge (x,y). Order the undirected cuts of
this graph in increasing order by value, cy,c2,... ,cm-1_1. Since we want to bound the sum
over directed cuts, our goal is to bound

4.2. THE ANALYSIS 39

For any cut of the original graph, consider the maximum k of an edge crossing it. By
definition of strength there must be at least k capacity crossing the cut, so the value of the
cut in the weighted graph is at least (d + 2)Inn. Since this is true of every cut (note that no
cut has no edges), the minimum cut of the weighted graph must be at least (d + 2) Inn. By
Theorem 4.2.4, ¢; > S8t 50 we can bound our sum as

2lnn’
2! -1 cylni Ini
<2Ze’°‘ +2) e Tmn
i=n2
nz o0 S ns
< ZZ e*(dJrZ)lrl‘n._*_z Z eﬁ('ﬂ-z) ni
i=1 i=n?
1)
< 2n2—(d+2] +2 Z i—'l—d/Z
i=n?2
)
<2/m8 +2J x 17423x
x=n?2
2(—d/2)
n
<2/md+2—
< 2(d+2)
= dnd

The other supporting result we need is a little combinatorial lemma. This lemma will be
used to argue that the flow cannot wreck our argument by using up low strength edges first.

Lemma 4.2.5 Given positive real numbers wy ... wy in decreasmg order, for any real numbers
. X1 such that Z i—1Xi > 0, there exists aj € {l .1} such that le] wixy > 0.

Proof. Consider the largest j such that Zh:j xnp > 0.

iz;wmzz (wLth W i Xh)

i=j h=i+1

1— 1
= w; Z xnt Y ((ww -wi)) "h)

h=j i=j h=i+1
The first term is non-negative by the choice of j. This choice also implies that for all i > j we
have Y| i+1 Xh < 0, so the inner sum of the second term is always negative. Since the w; are

in decreasing order, w41 — w; is non-positive, which means that the second term is a sum of
non-negative numbers. So the entire expression is non-negative.]

4.2.2 Proof of the Main Theorem

We now have all the pieces necessary to prove the main theorem. The basic idea is to compare
the residual graph to the original graph, which Theorem 4.2.3 gives us a handle on. As a

40 CHAPTER 4. SAMPLING IN RESIDUAL GRAPHS

result of being a residual graph, at least a ‘%l—ﬂ fraction of the capacity of each cut is still

available. What we are trying to say is that we can compensate for the missing capacity by
increasing the sampling probability by a factor of ;- . Looking at an individual cut, this is not
immediately obvious because the flow is not necessarily spread out evenly among the edges
of different strengths. In particular, the flow might use up the high weight edges, in which
case the probability that at least one edge crossing the cut is chosen can decrease significantly.
However, if there is one edge that has low weight then there must be many, so if the flow
only uses up the high weight edges, the many low weight edges that remain will be sufficient
to make it very likely that some edge crossing the cut is chosen. We will use Lemma 4.2.5 to
formalize this idea. We now give the full details.

Proof. Consider a cut X in the residual graph. Group the edges of the cut by strength, and
arrange the groups in increasing order by strength. Associate with the i*h group

Wi = —

ki

x; = > (uf(x,y) —~ V_Tmu(x,y))

(x,u)EX:K(x,y)=ki

Thus the sum of the x; is the residual capacity of the cut minus "%'ﬂ times the original capacity
of the cut. The residual capacity of every cut is at least a "_Tlﬂ fraction of the original capacity,
so this quantity is always non-negative. Applying Lemma 4.2.5 we find that there exists a j
such that Z}:j xiw; > 0; or, rephrased in terms of the graph, we find that there exists a k such

that

S (w - Y) 20

(xyleXkixy)>k

)y Buslx,y))3 (v —[f)Bulx,y)

(e y)eXk(xy)>k ko) (e w)EXikixy)>k vk(x,y)
- Z Ju(x,y}lnn
k(x,y}

(x,W)eXk(xy)>k

Since by definition of modified strengths the total weight of edges is at most 8n, the prob-
ability that we fail to choose any of these k-strong edges is

ug(x,y) \ 3P

2 () EXk(xy)>k T y)
én

< 1-

-3 Bug(x,y)
< @ AoulEXkix)k Kk y)

_Z Buglx,u)
<e (qy)EX:k(x,y)>k " kix,y)

_z du{x,y)lnn
< e (x,y)eX:k(x)=k k(x,y)

4.2. THE ANALYSIS 41

So with each cut we associate a k-strong component such that the probability we fail to
choose an edge from the component is at most exp(— _ . .,\ex %) By Theorem 4.2.3,
summing this quantity over all cuts that have the same component is at most 4/n2. Since
there can be only Zn distinct components, the probability that we fail to choose an edge from

any cut is at most 8/n.

If every s-t cut in the residual graph has a residual edge crossing it, then by the max-flow
min-cut theorem there is an augmenting path. |

Observe that some corollaries to the main theorem are clear from the proof. In particular,
if we had sampled every edge with probability BJ‘EX";;) instead of randomly choosing a set of
8fn edges, then the probability of failing to pick any k-strong edge from cut X would be

— us(x,y}
I I (] L y)) < e_z(,‘.y)ex:k(x.y)zk%

kl —_
(xy)eXk(x,y)>k (x,y)

which we were already using as a bound. Likewise, in the proof we upper bound 1/k’ by 1/k,
so the theorem also holds if sampling is done according to the k instead of the k'.

42

CHAPTER 4. SAMPLING IN RESIDUAL GRAPHS

Chapter 5

Minimum k-Way Cuts

In this chapter we present better algorithms for finding minimum k-way cuts for k < 6. A
preliminary version of this work appeared in a conference paper [Lev00].

A minimum k-way cut is a partition of the vertices into k sets that minimizes the total
weight of edges with endpoints in different sets. For convenience, when talking about a k-way
cut {Vy,..., Vi, let us assume that Vy is the V; with minimum c(V;). A common approach to
the problem is to use the following observation: if the minimum k-way cutis {Vy,... , Vi}and
one knows Vy, then{V;, ... , Vi} can be computed by finding the minimum (k — 1)-way cut in
the subgraph induced by the vertices V — V;. More generally, if one can identify a collection
X of cuts that contains V;, then |X| minimum (k — 1)-way cut computations suffice to find
the minimum k-way cut. So one can approach the problem of finding k-way cuts by finding
candidate 2-way cuts and then finding refinements of those 2-way cuts.

Burlet and Goldschmidt [BG97] show that for the minimum 3-way cut {V1, V3, V3}, if X
is the minimum cut, V; must be a %-mim'mum cut in either the original graph, the vertex
induced subgraph X or the vertex-induced subgraph V—X. That is, V1 is either a small cut, or
itis contained in one side of a small cut and is small in that vertex-induced subgraph. A graph
can have only O(n?) %-minimum cuts [NNI94], and we need only consider as candidates for
V; the %-minimum cuts of V, the ‘3—‘-min_imum cuts of X, and the %-minimum cuts of V — X,
so the total number of V; candidates is O(n?). (Note that it is not a problem if the minimum
cut of V is not unique. In that case, it suffices to only consider 3-minimum cuts of V.) Near-
minimum cuts can be computed efficiently, so Burlet and Goldschmidt’s O(mn?) running
time follows from the time to compute V; and V; (with a minimum 2-way cut algorithm) for
each of the O(n?) candidate V;. Notice that if they had been willing to give a randomized
algorithm, they could have used Karger’s O(m)-time algorithm for minimum 2-way cuts and

claimed a time bound of O(mn?).

Nagamochi and Ibaraki [NI99] tighten this result by showing that if the 2-way cuts are
sorted in increasing order of value, one only needs to consider (as candidates to be V) cuts
up until the point that the current cut crosses some previously considered cut. Deferring def-
inition of crossing for a moment, the relevant point is that among any 2n — 2 cuts at least
two cross, so their method only needs to consider O(n) cuts. Unfortunately, the best known

4 CHAPTER 5. MINIMUM K-WAY CUTS

algorithm to find the first n cuts in order takes O(n3m) time [VY92].

We use Burlet and Goldschmidt’s result, together with fast algorithms for finding near-
minimum cuts to find a superset of the cuts that Nagamochi and Ibaraki would consider, and
then process them according to Nagamochi and Ibaraki’s algorithm so that we need perform
only O(n) minimum 2-way cut computations. In this way we avoid the bottleneck of both
algorithms.

Note that some of the results in this chapter are effectively explained twice, once with
pictures and once with math. To be convinced that the results are correct, read the math and
skip the pictures. To just get the ideas, read the pictures and skip the math.

5.1 Background

The following is a summary of definitions, notation and background for k-way cuts.

A k-way cut is a partition of the vertices into k sets {V1,V3,... , Vi]. For convenience, we
will always assume that the order of the indices is such that ¢(V4) < c¢{V;) < --- < ¢(Vi). The
value of a k-way cut is %(C(V]) +¢(V2)+---+c¢(Vy)). Observe that this value is the total weight
of the edges whose endpoints are in different sets, so this definition is a generalization of the
definition of the value of a cut. In fact, a “cut” and a “2-way cut” are the same thing.

The minimum k-way cut is the k-way cut of minimum value. We refer to this value as cy.
We will sometimes consider cuts in vertex-induced subgraphs, in which case we will write
ck{X) for the minimum k-way cut in the graph induced by X.

Notice that since ¢ = 12(c(Vi)+c(Va)+ - - - +¢(Vi)) and we have imposed an order on the
Vi, it must always be the case that ¢, > kc(V1)/2. Or inverted, ¢(V1) < 2cx/k. Furthermore,
since by definition c; < ¢(V1), we have ¢ > kca/2 and ¢; < 2¢i/k.

It is useful to notice that the cut value function is symmetric, ¢(X) = c¢(V — X), and
submodular, c(X} + c¢(Y) 2 c¢(XNY)+c(XUY) (cf. [NI9)]). It follows immediately that
c(X)+ce(Y) > ce(X=Y)+c(Y=X).

Two sets are said to overlap if they intersect, and neither is a subset of the other. A collec-
tion of sets that do not overlap is called laminar. Laminar collections have some nice proper-
ties. Restating the definition, two sets in the collection can only intersect if one is a subset of
the other. Furthermore, if X is a subset of Y and of Z, then since Y and Z intersect in X one
must be a subset of the other. This means that if any sets contain X, there is a well defined set
of smallest cardinality that contains X. It follows that the sets can be represented as a forest:
the parent of X is the smallest cardinality set Y that contains it. See Figure 5.1 for an example.
All the descendants of X are sets contained in X, and all of the ancestors are sets that contain
X. If the ground set has s elements, then there can be at most s leaves in this forest, and since
each node in the forest has at least two children, there can be at most 2s — 1 nodes. Therefore
a laminar collection of sets on a ground set of size s can have at most 2s — 1 sets.

Cut X is said tocross cut Yifallof XNY, X —Y,Y — X and V — (XU Y) are non-empty. In
words, they intersect, neither is a subset of the other, and the union is not all of V. We say that
a collection of cuts is non-crossing if no two cuts in the collection cross.

5.2, MINIMUM 3-WAY CUTS 45

Figure 5.1: The tree corresponding to a laminar collection

Observe that if we wanted to store a cut X, we could instead store the other side, V — X,
with no loss of information. Suppose we wanted to store a collection of non-crossing cuts. We
could fix a node vy, and plan to store the sides of the cuts in the collection that did not contain
vi. At this point, no two cuts in the collection could overlap, because neither contains vy, so
if they did overlap they would cross. Thus if we take a collection of non-crossing cuts, fix a
vertex v, and choose the side of each cut that does not contain v, the collection is laminar.
The ground set now has only n — 1 nodes, so we see that a collection of non-crossing cuts can
have cardinality at most 2n — 3.

5.2 Minimum 3-Way Cuts

The key to our algorithm for minimum 3-way cuts is simultaneously exploiting the structural
results of Burlet and Goldschmidt and those of Nagamochi and Ibaraki. We begin with those
results, and then give the algorithm in detail.

5.2.1 Structural Results

The following lemmas restate the key claims proved by Nagamochi and Ibaraki [NI99]. The
first one shows that two cuts of small value that cross give a 3-way cut of small value. The
second one shows that either V; of the minimum 3-way cut is itself a small cut, or a 3-way cut
given by the crossing of two small cuts will be the minimum.

Lemma 5.2.1 For any two crossing cuts X and Y with c¢(X) < c(Y), one of

V—X,X=Y,XNY}
V—Y,Y=X,XNY)}
YV, X=Y,V—(XUY)}
X,Y=X,V—(XUY)}

is a 3-way cut of value at most %(C(Y) +c(X)) <€ 5c(Y).

[S119%}

46 CHAPTER 5. MINIMUM K-WAY CUTS

G
A
5

Figure 5.2: Crossing cuts

The idea behind this lemma is that the crossing of X and Y defines four non-empty pieces,
and by merging two of the pieces into one, we get three pieces that define a small 3-way
cut. Figure 5.2 shows the two cuts, the four pieces and the edges that cross among the four
pieces. The 4-way cut defined by these pieces clearly has value at most ¢(X) + ¢(Y). To get
a 3-way cut we need to merge two pieces. If we pick the endpoints of the largest of the six
“edges” to merge, we certainly eliminate % of the weight and therefore get a 3-way cut that
has value at most %(C[X) +¢(Y)). But we have overcounted, because the diagonal edges in the
picture are counted twice. All this lemma really says is that since both cuts count the diagonal
edges in the picture, we can pick two pieces to merge such that the 3-way cut has value only

%(C(X] + ¢(Y)). Observe that this is now tight, because it is the best we can do for a 4-cycle.

Proof. Adding up the values of the four cuts listed above, and recalling that ¢(X) = C(V —X),
we get

%(eV —X) +¢(X=Y) +c(XNY))
£l c(V—Y) +e(Y=X) +e(XNY))
+%(cY) +e(X—Y) +e(V—(XUY)))
%[c(X) +c(Y —X) +e(V—(XuY)))
= X)) 4clY) 4eX—Y) +c(Y=X) +c(XNY) eV —(XUY)))

Since the cut function is symmetric and submodular, c(XNY) + ¢c(V — (XU Y}) < ¢(X) +¢(Y)
and c(X—=Y)+c(Y —=X) < c(X) +¢(Y), so our total is at most 3(c(Y) + c(X)). Therefore one of
the four 3-way cuts listed above has value at most %(C(Y) +c(X)) < %C(Y). []

Lemma 5.2.2 Consider all the cuts of the graph in non-decreasing order of cut value: X1, Xz, ... with
c(Xy) < ¢(Xz) < Let r be the smallest index such that X, crosses some Xq with q < rv. The
minimum 3-way cut is either

5.2. MINIMUM 3-WAY CUTS 47

o given by {V1, V3, V3}, where Vi = X or V — X, for some s < 1

e one of the cuts that follow from the crossing of X, and Xq and lemma 5.2.1

Proof. If V1 = X; or V — X; for some s < r, then we are done, so suppose not. This means
that c(V4) > ¢(X;). Ascz > Zc(\/1) by definition of V, this implies that ¢3 > 2c(X) But by
Lemma 5.2.1, one of the cuts listed in the statement of the lemma has value at most 3 ((X:) +
c(Xg)) < 2c(X). Therefore this cut is a minimum one. n

The following lemmas restate the key claims proved by Burlet and Goldschmidt [BG97).
The first says that V| cannot cross a minimum cut unless it is a minimum cut. The second
uses the first to say that V; is either a small cut, or is contained in one side of the minimum
cut and is a small cut in the subgraph induced by the side of the minimum cut.

Lemma 5.2.3 For a minimum 3-way cut {V1, V3, Vi), no cut with value at most c(V1) crosses any
cut with value less than c(V7).

Proof. Suppose there is a cut X such that ¢(X) < ¢(V;) and X crosses a cut Y with value
c(Y) < ¢(V4). By lemma 5.2.1, there exists a 3-way cut with value at most 3 ((X) 4+ c(Y)) <
%(C(Vﬂ +c(Y)) < 2c(V])—a contradiction to the fact that c3 > 2c(V1) [

Lemma 5.2.4 Let X be a minimum cut. There exists a minimum 3-way cut {V1, Vy, V3} such that V,
is a 3-minimum cut in one of V, X or V — X.

The idea here is basically that c(V1) can be large only if the minimum cuts of X and V — X
are large, in which case V is contained in one of X or V — X and is still small in that vertex-
induced subgraph.

Proof. Suppose Vj is not a ;—'-minimum cut in the original graph (c(Vy) > %cz), because
otherwise we are done. Recall from the definitions section that %C3 > c(V;y). It follows that
c3 > 2¢. Let the smaller of the minimum cut in X and the minimum cut in V — X have value
c¢’. Using this cut and the minimum cut we get a 3-way cut of value c2+c’,soc3 <cy+c’.
Smce we already found that c3 > 2c;, it must be the case that ¢’ > c;. Now, since ¢(V7) <
2c3 < Z(c2+¢’) and ¢! > ¢z, we have that ¢(V)) < e’

So we now know that the value of Vj is small compared to the minimum cut of both X
and V — X. Since the value of V) in a vertex-induced subgraph can only be smaller than its
value in the original graph, all we need to do to complete the proof is show that either V; or
V — Vi is actually contained in X or V — X. Alternately phrased, all we need to do is show that
V; does not cross X, which follows immediately from lemma 5.2.3 and the fact that we have
already handled the case when c(V4) = ¢; (in fact when ¢(V;) < %cz). [

5.2.2 The Algorithm

The outline of the algorithm is given in Figure 5.3. We defer full specification of some of the
steps to the analysis.

48 CHAPTER 5. MINIMUM K-WAY CUTS

MIN3WAYCUT(G)
find a minimum cut X and all the %-minimum cuts
if |X| > 1, find all the %—minimum cuts in X
if [V — X} > 1, find all the $-minimum cuts in V — X
for each cut Y found, compute the value c(Y) in the original graph
sort all the cuts in non-decreasing order by value
while not all cuts have been processed, process the next cut X in sorted order:
if X crosses any cut Y previously processed
look at the 4 cuts arising from lemma 5.2.1
return best 3-way cut seen so far
else
if |X| > 1, find the minimum cut Y in X and look at {V — X,Y,Y — X}
if [V —X| > 1, find the minimum cut Yin V — X and look at {X, Y, (V—X) — Y}
return the best 3-way cut seen so far

Figure 5.3: Minimum 3-way cut algorithm

5.2.3 Correctness

Theorem 5.2.5 MIN3WAYCUT always returns the minimum 3-way cut.

Proof. Our algorithm only considers as candidates for V; the 3-minimum cuts, the 3-
minimum cuts in X (a minimum cut) and the %-minimum cuts in V — X. By Lemma 5.2.4,
this list of candidates is sufficient. That is, if the while loop processes all of the candidates,
then we necessarily see the minimum 3-way cut.

Otherwise the while loop is stopped because we find a cut X that crosses a smaller cut.
By lemma 5.2.2, either one of the four 3-way cuts given by this crossing is the minimum, or
c(V1) < ¢(X). We look at all four of the cuts given by the crossing, so in the former case we
succeed. In the latter case, since we processed cuts in sorted order, we have already seen the
minimum, so we succeed. []

5.24 Running Time Analysis
Theorem 5.2.6 MIN3WAYCUT can be implemented to run in O(mnlog® n) time.

Proof. Karger’s minimum cut algorithm can find all O(n?) %-minimum cuts in O(n?logn)

time [Kar00]. The algorithm obviously computes cut values for all of the cuts it finds as it is
finding them; when we are finding cuts in a vertex-induced subgraph we need to add a step
to compute cut values in the original graph. The value of a cut in a vertex-induced subgraph
is different from its value in the original graph by the total weight of edges connecting nodes
in the cut to nodes not in the subgraph. In linear time we can compute for each node of the
subgraph the total weight of edges to nodes not in the subgraph. To compute the corrected
cut values we just need to add up, for each cut, these values over the nodes in the cut. At first

5.2. MINIMUM 3-WAY CUTS 49

glance it would seem that this will take n? time, but we can do better for the same reason that
Karger’s algorithm does not take that long—the cuts found by Karger'’s algorithm can all be
described by at most two subtrees of one of O(logn) trees. We can easily compute the sum of
node weights for all subtrees by a recursive postorder tree walk in O(n) time per tree. So in
O(nlogn) time we can compute enough information that we can correct the value of each cut
in O(7) time. Thus the entire operation of computing near minimum cuts and their values in
the original graph can be done in O(n?logn) time. Since there are only 0(n?) cuts, we can
also sort them in O (n?logn) time.

Testing crossing is the trickiest part. We will now explain how to do this in O(n) time per
test (for a total of O(n?) time). Recall from the definitions section that if we have a collection of
cuts that do not cross, and we pick the side of each cut that does not contain some fixed vertex
vy, then the collection is laminar. Recall also that a laminar collection can be represented by a
forest. We will accomplish our crossing test by explicitly maintaining this forest.

It is convenient to begin by pretending that each individual vertex (except v;) and the set
of all vertices (except v;) are in the collection initially. This way the forest starts as a flat tree,
with each vertex as a leaf and the set of all vertices as the root. None of these cuts can possibly
cross any other cut, so this does no harm.

The nice thing about starting this way is that the vertices contained by a cut will now be
precisely the leaves in its subtree. Inserting a cut is the only operation we need to implement.
If the cut does not cross any previous cut it should be inserted, and if it does the insertion
should fail. To attempt to insert X, we will first go through the list of vertices in X and mark
the corresponding leaves in the tree “subset of X”. The total time to do this marking is O(n).
We would now like to compute, for every node in the tree, whether it too is a subset of X.
This can be easily accomplished with a recursive postorder tree walk (in O(n) time), because
anode is a subset of X if and only if all of its children are.

Figure 5.4: Attempt to insert X = {b, c, d}. Shaded nodes are “subsets of X”. They do not have
a common parent because X overlaps Y. Observe that for a different X, such as {a, b, ¢}, where
there are containments but no overlap, the subsets of X would have a common parent.

At this point the key claim is that X overlaps some set in the tree if and only if the subtrees
marked “subset of X” do not have a common parent. Figure 5.4 has a picture of this situation.
If X overlaps some set Y, then some of Y’s descendants will be subsets of X, but Y will not be.
Furthermore, some other sets that are not descendants of Y will be subsets of X. Therefore

50 CHAPTER 5. MINIMUM K-WAY CUTS

Y prevents subtrees that are subsets of X from having a common parent. Now we argue the
other direction. If the subtrees that are subsets of X do not have a common parent, then
consider Y, the parent of one of these subtrees. Since Y is not itself a subset of X, but intersects
X, and does not contain X, Y overlaps X.

Our insertion procedure should now be clear. We do the marking as described above. We
then check each node that is not a subset of X to see if it has children that are subsets of X. If
we find only one such node Y, we add a new node corresponding to X as a child of Y, and
make all of the children of Y that were subsets of X into children of X. Otherwise we fail. The
total time per insertion is clearly O(n).

Finally, Karger ‘s minimum cut algorithm can find one minimum cut in O(mlog® n) time.
We need to do this 2 times per iteration, and there are only O(n) iterations, so the total time
spent on these operations is O{mnlog>n). Thus the total time is O(mn 10g3 n)j. u

5.3 Minimum 4-Way Cuts

The minimum 4-way cut algorithm is an extension of the minimum 3-way cut algorithm.
Nagamochi and Ibaraki’s result covered 4-way cuts, but Burlet and Goldschmidt’s result did
not. Fortunately, however, there is a suitable extension.

5.3.1 Structural Results

The following lemmas are extensions of those for 3-way cuts. The first two restate claims
proved by Nagamochi and Ibaraki [NI99]. The rest are new.

Lemma 5.3.1 For any two crossing cuts X and Y with c(X) < c(Y), the 4-way cut {XNY,X-Y,V—
(X UY),Y — X} has value at most ¢(X) +c(Y) < 2c(Y).

Proof. It follows immediately from the fact that the cut function is symmetric and submodular
that the value of this 4-way cut is at most ¢(X) +c(Y) € 2¢c(Y). Itis also trivial to see by looking
at Figure 5.2. n

Lemma 5.3.2 Consider all the cuts of the graph in non-decreasing order of cut value: Xy, Xz,... with
c(Xy) < C(Xz) < Let 7 be the smallest index such that X, crosses a Xq with q < 7. Either the
minimum 4-way cut is given by {V1, V2, V3, Va}, where Vi = X or V — X, for some s < ¥, oritis
X N Xg, Xy —Xgq, V — (Xr UXq), Xq — X}

In short, the minimum 4-way cut is either a refinement of a small 2-way cut, or it is given
by the crossing of two small cuts.

Proof. If V| = X or V — X, for some s <7, then we are done, so suppose not. This means
that c(V1) > c¢(X;). Since ¢4 > 2c{Vy), this implies that ¢4 > 2¢(X;). But by Lemma 5.3.1,

5.3. MINIMUM 4-WAY CUTS 51

{X: N Xq, Xy —Xgq,V = (Xr UXq), Xq — X:} has value at most c(X;) + c{Xq) < 2c(X;). Therefore
this cut is a minimum one. [|

We now generalize Burlet and Goldschmidt’s results to 4-way cuts.

Lemma 5.3.3 For a minimum 4-way cut {Vy,V,, V3, V4}, no cut with value at most ¢(V) crosses
any cut with value less than c(V7).

Proof. Suppose there is a cut X such that ¢(X) < ¢(V)) and X crosses a cut Y with ¢(Y) < ¢(V;).
By lemma 5.3.1, there exists a 4-way cut with value at most c(X) + c(Y) < ¢(V;) +¢(Y) <
2c(Vy)—a contradiction. []

Lemma 5.3.4 Let X be a minimum cut such that the minimum cut of the subgraph X is less than the
minimum cut of the subgraph V — X, that is, that c3(X) < c2(V — X). Let Xy be a minimum cut in X
such that ¢3(X1) < c2(X — Xy). There exists a minimum 4-way cut {Vy, Va, V3, V4) such that Vy is a
%_——mim'mum cut inone of V, X,V —X, X7, X — X;.

Note that Figure 5.5 may be helpful in keeping track of all the pieces in this lemma and
proof.

Proof. If c(V1] < zcz then we are done, so suppose not. Recall from the definitions section
thatc(V,) < ZC4 It follows that ¢4 > 3c;.

Let X be as in the statement of the lemma. By lemma 5.3.3, since ¢(V;) > ¢z we know that
V1 does not cross the minimum cut, so either V; or V—V is contained in one of X or V—X. We
have defined X such that c2(X) < c2(V — X); therefore if c(V;) < %c;_(X) we are done (recall
that restricting to a vertex-induced subgraph can only reduce the value of a cut), so suppose
not. It follows that c4 > 3c;3(X).

Taking the minimum cut in V, the minimum cut in X, and the smaller of the minimum cut

in X; and the minimum cut in V—X, we get a 4-way cut of value c3+c;(X)+min{c2{X1), c2(V—

X)}. Since we already found that ¢4 > 3c; and c4 > 3c3(X), it must be the case that the third

term is largest, that is, that ¢4 < 3min{c;(Xy), c2{V — X)}. Furthermore, since c(V;) < 2C4, we
getthatc(Vy) < 3 mlIl{Cz(X] J,ea(V—X)}

Either ¢(X1) or ¢(X—X1) has value at most ¢z(X) +¢2/2 in the original graph (this is easmst
to seeby Iooklng at Figure 5.5). Since we have already restricted to the case where c(V;) > cz
and c(V4) > cz(X) it must be the case that V; has a larger value than the smaller of c(X1]
and c(X — X) So by lemma 5.2.3 V; cannot cross whichever of X; or X — X; has the smaller
value. But neither can Vj cross the minimum cut, so Vi or V — V; must be contained in one
of X1, X — X; or V — X, and since Vy has value at most % times the minimum of the minimum
cut values of these three sets, it is a z-minimum cut in one of them. [

5.3.2 The Algorithm

The outline of the algorithm is given in Figure 5.6. We defer full specification of some of the
steps to the analysis.

52 CHAPTER 5. MINIMUM K-WAY CUTS

Figure 5.5: Either c(X;) or ¢(X — X1) has value at most c2(X) + ¢2/2

Note that we switch algorithms for finding small 2-way cuts, now using Karger and
Stein’s algorithm [KS96] instead of Karger’s [Kar00]. We made this change largely as a matter
of clarity. Karger’s algorithm ought to be able to find a-minimum cuts in O(nl2atel) time,
but no paper spells out how to do this for « > 3/2. Karger and Stein’s algorithm is clearly
specified for finding c-minimum cuts in O(n?*) time. So Karger’s algorithm is clearly prefer-
able for «x = 4/3, which we needed for the minimum 3-way cut algorithm; however, the
running times are comparable for x = 3/2, which we need now, and since Karger's algorithm
is not clearly specified for this case we felt it was preferable to state our algorithm with the
Karger-Stein algorithm as a subroutine.

5.3.3 Correctness

Theorem 5.3.5 MINAWAYCUT always returns the minimum 4-way cut.

Proof. The cuts we consider as candidates to be Vy are only those specified in Lemma 5.3.4,
but by that lemma those candidates always contain V;. This means that if the algorithm
processes all of the cuts found, then we must see V1. Given V), the other sets V3, V3, and
V, are clearly given by the minimum 3-way cut in V — Vj, so we have necessarily seen the
minimum 4-way cut.

Otherwise the algorithm stops because it finds a cut X that crosses a smaller cut. By
lemma 5.3.2, either the 4-way cut given by this crossing is the minimum, or ¢(V;) < ¢(X]. In
the former case we look at that cut, so we succeed. In the latter case, since we processed cuts
in sorted order, we have already seen the minimum, so we succeed. [}

5.3.4 Running Time Analysis

Theorem 5.3.6 MINAWAYCUT can be implemented to run in O(mn? log® n) time.

Proof. The Karger-Stein minimum cut algorithm can find all 3-minimum cuts in O(n? logZn)
time. By keeping track of the original graph edges through the contractions, cut values in the

5.4. MINIMUM 5-WAY CUTS, 6-WAY CUTS AND BEYOND 53

MIN4AWAYCUT(G)
find a minimum cut X and all the %-minimum cuts
if [X| > 1, find all the 3-minimum cuts in X
if [V — X| > 1, find all the 3-minimum cuts in V — X
if c2(X) > c2(V — X}, swap the names X and V — X
Let X; be the minimum cut in X
if [X4] > 1, find all the %-mim’mum cuts in X
if X —Xq| > 1, find all the %-minimum cutsin X — X;
for each cut Y found, compute the value c(Y) in the original graph
sort all the cuts in non-decreasing order by value
while not all cuts have been processed, process the next cut X in sorted order:
if X crosses any cut Y previously processed
look at {XNY,X—-Y,V—(XUY),Y-=X}
return best 4-way cut seen so far
else
if X| > 1, find the minimum 3-way cut {V3, V3, V4} in X and look at
{V—=X,V3,V3,Vy}
if [V —X| > 1, find the minimum 3-way cut {V3, V3, V4} in V — X and look at
{X,V2,V3,V4}
return the best 4-way cut seen so far

Figure 5.6: Minimum 4-way cut algorithm

original graph can be computed at the same time, with no asymptotic loss in performance.
There are only O (n?) cuts, so we can sort them in O(n? logn) time. As we described for 3-way
cuts, testing crossing can be done in O(n) time per check by maintaining the tree of cuts; this
adds up to O(n?) time. The algorithm from the previous section can find minimum 3-way
cuts in O(mnlog® n) time. We need to do this O(1) times per iteration, and there are only
O{n) iterations, so the total time spent there is O(mn?log®n). So the total is O(mn?2 log® n)
time. u

54 Minimum 5-Way Cuts, 6-Way Cuts and Beyond

The extension of our results to 5-way and 6-way cuts follows trivially from the algorithm
of Nagamochi, Katayama and Ibaraki [NKI99], because the time to find the first O(n) cuts
in sorted order ceases to be the bottleneck. Rather, the bottleneck in their minimum 5-way
cut algorithm is that it must call a minimum 4-way cut algorithm O(n) times. In particular,
denoting the time to find a minimum k-way cut as Cy(n, m), they prove the following result:

Lemma 5.4.1 [NKI99} For k < 6, Cy(n, m) = O(m2F(n, m) + nCx_1(n, m) +n3).

Plugging in our results that C4(n, m) = O(mn?log3n), we get that fork < 6, Ci(n,m) =
O(mn¥—2log>n).

54 CHAPTER 5. MINIMUM K-WAY CUTS

Note that it is fortunate that finding the cuts ceases to be a bottleneck, because it does
not seem like the Burlet-Goldschmidt type results would extend any further. Specifically, for
k > 5 it ceases to be true that no small cut can cross V;. Figure 5.7 gives a counterexample.
The cut defined by the triangle on the left has value 11, and crosses Vi, which has value 12.

Figure 5.7: Small cuts can cross V; for k > 5

Chapter 6

Conclusion

6.1 Maximum Flow

We gave two algorithms for finding augmenting paths in undirected graphs, both based on
exploiting the fact that undirected graphs have very sparse subgraphs that capture connec-
tivity information.

It is natural to ask whether our techniques can be extended further. The best performance
improvement we could hope for from the technique of Chapter 3 is reduction of m to n/v; we
achieve this reduction for augmenting paths, but only get part way when blocking flows are
involved. It would be nice to find a way to sparsify for a blocking flow computation. In par-
ticular, if we could achieve a full reduction to n/v edges when blocking flows were involved,
it would imply a deterministic O(nyvn*?) = O(n?'6)-time algorithm. It is interesting to
note that the structure theorem—that a flow does not use many edges—holds for directed
graphs, but this fact is of no use to us, because the point of the theorem was to show that not
too many edges of the residual graph were directed. It would of course be wonderful to find
a sparsification technique for directed graphs, but then one would not need our theorem.

Our result of O(m+nv) time given in Chapter 4 is a natural stopping point for algorithms
for small maximum flows in undirected graphs, but it is not necessarily the end of progress
on the problem. First, it is randomized, and better than our deterministic results given in
Chapter 3, so there is still the question of how well a deterministic algorithm can do. Perhaps
there is a better way to apply Nagamochi-Ibaraki sparse certificates [NI92b] in a residual
graph than ignoring the edges that carry flow. Second, we showed in Chapter 3 that flows
need only use O(n/v) edges. Therefore, while some augmenting paths can require n — 1
edges, most of them are much shorter. Thus O(m + n./v) would be another natural time
bound to hope to achieve. And of course one can always hope for linear time.

It is interesting to note that both of our algorithms are very simple, although the proofs
that they have good running times are not so simple. Our work suggests that it may be worth
looking for complicated reasons why other simple algorithmic ideas for finding flows might
give performance improvements.

56 CHAPTER 6. CONCLUSION

The major open questions at this point are whether it is possible to give faster algorithms
for directed graphs or graphs with large flow values. Note that these questions are not entirely
separate. It is possible to reduce the problem of finding a minimum s-t cut in a directed
graph to that of finding a minimum s-t cut in an undirected graph [Que]. However, the cut
and flow values will be larger. Therefore a faster algorithm for finding flows in capacitated,
undirected graphs would immediately imply a faster algorithm for finding minimum s-t cuts
in capacitated, directed graphs. For reference, the idea of the transformation is to replace
directed edge (x,y) of capacity u with undirected edges {s, u}, {x,y} and {x, t} each of capacity
u/2. This change increases all s-t cuts by u/2, but has the desired property that cuts with x on
the s side and y on the t side are u larger than other cuts. So cut values in the new graph are
different (larger) than in the original, but the ordering of cuts by size is preserved. The idea
can be refined slightly by observing that if one reduces the capacities of {s, x} and {x, t} by the
smaller of the two, then all cuts lose the same amount of capacity, so the ordering of cut values
is again preserved. This refinement means that when one converts from a directed graph to
an undirected graph it is not necessary to increase all cut values by the total edge weight—it
is sufficient to increase all cut values by the sum over nodes of the difference between total
incoming capacity and total outgoing capacity. Thus in a directed graph where every node
has the same incoming capacity as outgoing capacity, the minimum s-t cut can be found by
solving a maximum flow problem in an undirected graph with the same number of edges
and the same flow value. Likewise, if one applies this transformation to a graph in which
the capacities are symmetric (in other words, an undirected graph), nothing changes. And if
one applies this transformation to the residual graph of an undirected graph, one recovers the
original undirected graph.

In sampling from residual graphs, we have shown that random sampling in directed
graphs is not entirely hopeless. Perhaps there is a suitable replacement for edge strength
in a directed graph that would allow random sampling in directed graphs. Also, it is intrigu-
ing that a random sample, while sloppier than a structure like a spanning forest, might be
preferable because it is more robust against changes to the graph. Perhaps there are other
situations where a simple deterministic structure is not as useful as one would hope, and a
random sample would do a better job.

As for trying to extend our results to capacitated graphs, one cbvious goal would be to
replace m by n in general. That is, what we did was show that it is possible to work with
O(n) edges on average when searching for augmenting paths, thereby effectively replacing
the m in the O(mv)-time augmenting paths algorithm with an n. Accordingly, for capacitated
graphs, attempting to replace m by n in the running time of some algorithm seems like an
appropriate target. We note that our sampling theorem applies perfectly well to capacitated
graphs. As long as an € fraction of flow is left, a sample of size O(“—l‘fﬂ) edges will have
an augmenting path. It might be possible to construct an approximation algorithm from this
result, but once the remaining flow is a small fraction of the original, we do not see how
to proceed. We also note that it is possible to prove a compression theorem for a residual
graph (see Appendix B): sampling with probabilities proportional to 1/k. and multiplying
the capacity of sampled edges by ke preserves all cut values reasonably well. It might be
possible to use this result to give an approximation algorithm like that of Benczar-Karger
[BK96] that has a slightly better dependence on €, but again, we do not see how to get a good

6.2, MINIMUM K-WAY CUT 57

exact algorithm for general capacities.

One other surprising implication of our results has to do with bipartite matching. A bi-
partite matching problem can be reduced to a flow problem in a directed graph, and this flow
problem can actually be solved in O(m4/n)-time. This is better than what is known for flow in
simple, directed graphs, so bipartite matching has long seemed a little easier than flow. Our
results invert this, saying that flow in undirected graphs is easier than bipartite matching. The
standard reduction from bipartite matching to flow does not work if the graph is not directed
[Gol97] (see Figure 6.1), and the reduction mentioned above from directed s-t cut problems to
undirected s-t problems would increase v to m if applied in this case, but our work opens the
question of whether bipartite matching can be reduced to undirected flow or, more generally,
whether the time for bipartite matching is really correct.

Figure 6.1: With edges directed from left the right, this graph is a flow problem representing a
maximum bipartite matching problem,; if the edge directions are removed then the flow value
increases, no longer corresponding to a matching.

6.2 Minimum k-Way Cut

There are also a number of open questions about the minimum k-way cut problem. For one,
does Cy(n,m) = O(mn*2) hold for any constant k? for all k? This would be true if Nag-
amochi, Katayama and Ibaraki’s recurrence held for all k. It is also natural to wonder if min-
imum 3-way cuts can be found any faster. Since, up to logarithmic factors, minimum 2-way
cuts cannot be found faster, this would seem to require either finding a way to consider fewer
candidates for V; or finding a way to reuse information, such that over the O{n) 2-way cut
computations, the amortized cost of each was less than O(m). More generally, one can ask if a
minimum (k+1)-way cut computation must really cost n times more than a minimum k-way
cut computation. There is likely to be an exponential dependence on k, since the problem is
NP-complete for general k, but it is not clear that it must be a function like n*, as opposed to,
say, 2.

58

CHAPTER 6. CONCLUSION

Appendix A

Randomized Algorithms Using Fast
Augmenting Paths

As mentioned in the introduction, the fast augmenting paths algorithms given in Chapter 3
can be combined with prior techniques to obtain other randomized algorithms. At the time
these algorithms were discovered, they were the fastest known for dense undirected graphs
with small flow values. However, they are both slower and more complicated than the al-
gorithm given in Chapter 4, so it is not clear that they are of much interest anymore. We
include this appendix only because the techniques used in it might be of independent inter-
est. To avoid unnecessary complication, we describe these algorithms for simple undirected
graphs. Using Karger’s graph smoothing technique [Kar98] they can immediately be ex-
tended to undirected graphs with capacities.

A.1 New Tricks for an Old DAUG

Our fast augmentation can improve the running time of the “divide and augment” algorithm
(DAUG) given by Karger [Kar99]. This result is of relatively minor interest in itself, but we
make good use of it in the next section.

The idea of DAUG is that if we randomly divide the edges of a graph into two groups, then
about half of the flow can be found in each group. So we can recursively find a maximum flow
in each half, put the halves back together, and use augmenting paths to find any flow that was
lost because of the division. In the original version, the time spent finding augmenting paths
at the top level dominated the running time, so it is natural to expect an improvement with
faster augmentations. The original algorithm is given in Figure A.1.

The key fact that makes DAUG work is that random sampling preserves cut values fairly
well as long as all cuts are large enough. (See Theorem 2.5.2 in Section 2.5.)

Thus when we divide the edges into two groups (effecting p = 1/2 in each group), the
minimum s-t cut in each group is at least (1 — O(y/logn/c)) with high probability. So the
flow in each half has at least this value, giving us a flow of value at least v(1 — O(4/ logn/c))

60 APPENDIX A. RANDOMIZED ALGORITHMS USING FAST AUGMENTING PATHS

DAUG(G)
if G has no edges, return the empty flow
randomly divide the edges of G into two groups, giving Gy and G>
f] +—DAUG (G 1)
f, —DAUG(G3)
f—f+1
(*) use augmenting paths to turn f into a maximum flow
return f

Figure A.1: The original “divide and augment” algorithm

when we put the two halves together. This leaves only O(v4/logn/c) augmenting paths to
be found in Step (*). It turns out that this step is the dominant part of the running time (the
time bound for DAUG is O(mv4/log n/c)), so it makes sense to use our fast augmenting paths
algorithm from Chapter 3. We refer to this new algorithm as newDAUG.

Now, by Theorem 3.3.3, the time to find the augmenting paths is O(m + nv4/vlogn/c).
So a recurrence for the running time of newDAUG is

T(m,v,¢) = 2T (m/2,v/2,¢/2) + O (m + v/ logn/c)

This solves to O(m + nv,/v/c), but unfortunately, because of the randomization in the algo-
rithm, the problem reduction is expected, not guaranteed, so solving this recurrence does not
actually prove anything about the running time of newDAUG. We need to look at the recur-
sion tree (Karger [Kar99] has a full discussion of this issue). This proof is more technical than
interesting, and goes the same way as in the original [Kar99], so we just sketch it.

Theorem A.1.1 The running time of newDAUG on a c-edge connected graph is O(m + nv,/v/c).

Proof. (Sketch) As in the original algorithm, the depth of the recursion tree is O{log m), and
the time spent looking unsuccessfully for augmenting paths is O(mlogm). It remains to
bound the time spent in successful augmentations. Consider a recursion node N at depth
d. Each edge of the original graph ends up at N independently with probability 279, so the
graph at this node is equivalent to one obtained by sampling with probability 29,

Consider the nodes at depths exceeding log(c/logn). By Theorem 2.5.2, at these nodes
the flow is O(v/c). So by Theorem 3.3.3, the total time spent on successful augment-
ing paths is C)(nv\/\%). At the nodes at depth d < log(c/logn), Karger’s argument
[Kar99] continues to apply, showing that the number of augmenting paths that need to
be found is O(v4/logn/2d9c). Since the value of the flow is O(v/29), the time taken is
O((vy/T/cin/v/29) = é(nv\/\%/Zd). Adding this up over the whole recursion, we get
the claimed bound. [

Note that this time bound is very good if v is not much bigger than c. In particular, we get
the following easy corollary:

A.2. O(M 4+ NV5/4)- AND O(M + N'V?V)-TIME ALGORITHMS 61

Corollary A.1.2 In a simple graph where v = O(c), the running time of newDAUG is O(m + nv) =
O(m). (Note that m > nc/2 in a c-edge connected simple graph.)

A2 O(m+mv4)-and O(m + n'"?v)-Time Algorithms

The algorithm of the previous section is only an improvement over the O(m + nv3/2)-time
algorithm if c is large. Nevertheless, we can take advantage of it by using ideas from another
paper by Karger [Kar98]. In that paper, a number of ideas are put together to get a fast flow
algorithm, CompressAndFill, that runs in O(vy/mn) time on any undirected graph. For our
purposes, that algorithm can be summarized with the following theorem:

Theorem A.2.1 [Kar98] Let T(m,n,v,c) denote the time to find a maximum flow of value v in a
c-edge connected undirected graph with m edges and n nodes. Given flow algorithms Ay and A,
(A1 must handle capacities), with running times Ty and T, respectively, it is possible to define a flow
algorithm A3 with expected running time (up to log factors) given by

T3(m) n’ vl C) S T] (nk’ nl v) C] + TZ(m) T]')v) k) + Tz(ml n) k) k)
+ time to find O(v/v/'k) augmenting paths

(There is a technicality that the bound of T, must be “reasonable”—Q(m + n)— for this theorem to
be true.)

CompressAndFiil results from picking k ~ m/4n, using CompressAndFill (recursively) for A,
and using DAUG (with runtime O(mv/v/k)) for A;. Thus the recurrence for the running time
is

T(m,n,v, C) S T(m/zan)vn C) + O(mV'\/E) + é(m‘\/r(-) + é(mV\/E)
< T(m/2,n,v,c) + O(vy/mn)
< Ofv mn)

We improve on this algorithm by replacing the subroutines A; and A; and the augment-
ing path step appropriately. In particular, we use newDAUG instead of DAUG for A, and we
find augmenting paths at the end with SparseAugment. We also consider two possibilities for
A;: CompressAndFill and the O(mn2/3)-time algorithm of Goldberg and Rao. Note that we in-
vestigated using a recursive strategy again, but we were unable to get an improvement that
way.

Theorem A.2.2 On undirected simple graphs, we can find a maximum flow in expected time O(m +
nb/4),

Proof. Use Theorem A.2.1 with A; = CompressAndFill, A; = newDAUG, and SparseAugment to
find the augmenting paths at the end. The resulting time bound is

O(vy/(mk)n) + O(mv¥2 /K2y 4 O(nwv) + O(nv/ - v/vk)

62 APPENDIX A. RANDOMIZED ALGORITHMS USING FAST AUGMENTING PATHS

= O(wnvk + m)?’/z/k]ﬂ)

Picking k = /v completes the proof. =

Theorem A.2.3 On undirected simple graphs, we can find a maximum flow in expected time O(m+
11/93)
n V).

Proof. Use Theorem A.2.1 with A; = the O(mn?3)-time algorithm of Goldberg and Rao
[GR97a}, A2 = newDAUG, and SparseAugment to find the augmenting paths at the end. The time

15
O((nk)n?3) + O(nv*2/k1/2) + 3~ O(nw) + O(nv/v - v/vk)

= O(kn®3 + nv¥/2/K1/?)

Picking k = v/n*/? completes the proof. |

Appendix B

Compression of Residual Graphs

As discussed in Section 2.5, the original Benczir and Karger [BK96] result showed com-
pression. That is, they showed that by sampling with probabilities inversely proportional
to strength and increasing the capacity of a chosen edge by one over its sampling probability,
with high probability the cuts in the sample have capacity close to their original value. In
Chapter 4 we do similar sampling in a residual graph, but prove a weaker result—we only
show that the sample contains an augmenting path. In this section we show that it is also pos-
sible to compress a residual graph. This result is stronger than what we state in Chapter 4, but
the proof is somewhat messier and not necessary for that algorithm, so we have just included
it in this appendix for reference.

Compression is more difficult to show for two reasons. First, recall that our proof in
Chapter 4 worked by arguing that there would be an edge in some k-strong component.
Naturally we would also expect cut values to be preserved in that k-string component, but
that is not sufficient. We want to show that cut values are preserved everywhere. The second
difficulty is that we cannot appeal to the undirected graph results as cleanly. It would be nice
to say that the probability of cut value deviation looks like e~ 2 '/k(*¥), a5 the probability of
picking no edges did. But whereas it was easy to analyze the probability of picking no edge
even when the sampling probabilities were different, it is less easy to do so when analyzing
deviation. Our likely tool for analyzing deviation is the Chernoff bound, and that does not
accommodate different weights on the edges so smoothly.

The theorem is as follows.

€

(x,u) of Gy is chosen with probability p(x,y) = min{T, ﬁl,y_l} and given capacity]Tl,g—] if chosen,

then with high probability the value of every cut in the sample is within a (1 + 2€) factor of the value
of the cut in Gy.

Theorem B.0.4 Let v = %ﬂlz—lgz—mv_"l 7 Given a unit-capacity graph G and a flow f, if each edge

Note that we only state the theorem for unit-capacity graphs. It can be applied to integer
capacities by treating each edge of capacity x as x parallel unit-capacity edges. In fact, the the-
orem can reasonably be applied to real capacities, because one could round the real capacities
off to integers, such that cut values are preserved to within ¢/2, and then sample. Of course

64 APPENDIX B. COMPRESSION OF RESIDUAL GRAPHS

you would still not want to make x random choices for one edge of capacity x. But Karger
[Kar99] shows how to overcome such problems by instead picking a number from 1 to x from
a suitable distribution.

B.1 Supporting Definitions and Lemmas

As was the case in Chapter 4, our foundation is Karger and Stein’s [K596] proof that the num-
ber of a-minimum cuts is only n’*. We will show a related result that takes vertex induced
subgraphs into account. We begin with a definition:

Definition B.1.1 Two cuts are k-indistinguishable if they have the same set of nodes incident to
k-strong edges crossing the cut.

Observe that k-indistinguishability is an equivalence relation.

Definition B.1.2 The value of an equivalence class of k-indistinguishable cuts is the number of k-
strong edges that cross the cuts in the class.

Note that the above makes sense, because any two cuts that are k-indistinguishable have
the same k- strong edges crossing them.

Lemma B.1.3 The number of equivalence classes of k-indistinguishable cuts of value 1 is at most
21/
ne/,

This proof is very similar to the one given by Karger and Stein, except that now we look
only at the k-strong edges. This means that we only have a collection of k-connected sub-
graphs, not a k-connected graph, which in turn means that the number of small cuts can
increase dramatically. Suppose that n/2 vertices were in their own component. Then for any
cut of any size in the remaining vertices, there are 2"/2 cuts of that size, because each individ-
ual vertex can go on either side. However, these cuts are all k-indistinguishable, so they are
only one equivalence class.

Proof. Fix an equivalence class of k-indistinguishable cuts of value 1 and consider running a
modified contraction algorithm on the graph of only the k-strong edges: while there are more
than 2l/k vertices, if there is an isolated vertex contract it into a random vertex, otherwise
pick a random edge and contract it.

Each time we contract an edge we reduce the number of vertices by 1, and we run the
risk of destroying the chosen class. Letting m’ denote the number of remaining edges, the
probability the class survives a step is (1 —r/m’). Contraction can never reduce connectivity,
so at all times we know that the degree of each non-isolated vertex is at least k. This means
that when the number of vertices is n’ and none are isolated, we always have m’ > kn’/2.
So if we never came across the case of an isolated vertex, the probability that the class would
survive all the contractions is

B.2. THE PROOF 65

2r/k+1

H 1—#/2=(T]L)

i= 2r/k.

At this point only 22"/%~ classes remain, and since a fixed class survives to this point with
at least the above probability, there can only be (,7,)27/%=" < n"/* such classes.

Now observe that when an isolated vertex occurs, we get to reduce the number of vertices
without risking the equivalence class, so we get a step with survival probability 1. Thus
the calculation above is still a lower bound on the survival probability, so the bound on the
number of classes holds in general.]

B.2 The Proof

We are now ready to prove the theorem.

Proof. We will consider a slightly different sampling experiment for which the probability
that cut values are preserved is obviously no better than the experiment given in the theorem.
The modified experiment is as follows:

Let Go be G¢. Fori from 1 to 1 = [lg(m/v)], let k = 2' 2y and construct G; by taking all of
the k-weak edges from G;_; and a random sample (with p = 1/2) of the k-strong edges from
Gi_1 with their capacities doubled.

Observe that in this experiment the probability that an edge is kept is 2-l'8(Zk(xu)/M)] <
v/k(x,y), so if the probability is good that this experiment preserves cut values, then the
probability is at least as good that our original experiment does.

We will now prove that the new experiment preserves cut values with high probability by
induction.

Inductive hypothesis: with high probability, all cuts in G; have capacity within (1 +
€/lgm)* times their original capacity.

Observe that our final bound comes from Gy, which will have cut values within (1 £
€/ 1g m)! of their original value. As long as € < 1/2, we have

(T4 —)8% < (1+ - Jem < e < (14 2¢)

lgm lgm
(1— lgem)lg% > (1= lg€m)1gm > o2 > (1 —2¢)

So cuts are preserved as desired.
We now proceed with the proof by induction.
Base case (i = 0): Gp = Gy, so it’s trivially true.

Inductive step: Suppose the inductive hypothesis holds for G;. It suffices to show that
with high probability the capacity of every cutin G, is within (1+e/ lg m) times the capacity
in Gi.

66 APPENDIX B. COMPRESSION OF RESIDUAL GRAPHS

Observe that all remaining k-strong edges in G; have capacity 2'. For each equivalence
class of k-indistinguishable cuts in G, associate the cut that has the least k-weak residual out-
bound capacity. The reason for doing this is that the cut with the minimum capacity is the one
that would deviate first. That is, the amount of deviation we can tolerate in the sampling of
our k-strong edges is dependent on how many k-weak edges we can count on being present.
Specifically, consider a cut with s residual capacity and in a class with s; residual edges. If the
number of edges chosen is within {1+ ﬁfg—m) of the expected value, then since the expected
value is s1/2 and the new weight of each edge will be 2!, the deviation in cut value is only
es/ lg m. If we consider another cut that uses the same strong edges but has more weak edges,
then it will have a larger s, so this deviation will be acceptable for it as well. Therefore, for a
given class, we need only worry about satisfying the cut with the smallest residual capacity.

A Chernoff bound says that if we sample sy edges with probability p, the probability of
deviation by is at most e P$15°/4, Therefore, the probability that a cut with s residual edges
in a class with s; residual edges deviates too much is

2
1 __€s
25](2151151“) __se? s ___sé?
e 4 = =e B-Z‘lgzm2‘s1 < e W_m

We now have two cases.

Case1: k < 2v

Since every cut has value at least v — |f|, the probability of failure in any of the niv/k
smallest classes is at most ,
(v—Ifl)e
n4v/ke_3,li g2 m

. 2
Recalling that k = 2V 2y, and vy = 2561_n€rzlu vfl f, We can rewrite this bound as

8vinmn
n4"/ke*7k _ n—4v/k < 1/n2

We know from inverting Lemma B.1.3 that the j*" largest class must have value at least
X} In particular, the n*/*th largest class must have value at least 2v. So the number
of residual edges in the associated cut is at least half the original number of edges, which
is of course larger than the value of the class. Therefore the probability of failure over

all large classes is at most

_ E_zklni _2vinj __2v
E e 322 lanlgZ m — E e vl —= E] v—I[f]
j>n4v/k j>n4v/k j>n4u/k
co 2v —] 4\/(2v -l]
< j vTdj = 5 nR T v
. A%
j=ndv/k v +1

2v

Since (Tm — 1) is at least one, the total is at most n—*"/¥

, which is at most 1/n?.

B.2. THE PROOF 67
Case2: k > 2v

Since every class has at least k capacity in the original graph, it has at least k/2 capacity
in the residual graph. Since all the cuts we are sampling have at least half their original
capacity, this case essentially follows from the fact that sampling in an undirected graph
works.

For completeness, we state the details. The probability of failure in any of the n? smallest

classes is at most

ke"'

n2e 162t1gZm
Again substituting for k and v, we get
2 4vinn

nfe v < nin~? =1/n?

The probability of failure in any of the larger classes is at most

_ &2kinj 2vinj v 0
Z e 322 nnlglm — Z e~ VIt = Z v < Z 372 SJ i72dj = 1/n?

g2
j>n2 j>n2 j>n? j>ni =n

Since each step of the induction fails with probability at most 1/n?, and there are only
O(log m) steps, the desired result holds with high probability. []

68

APPENDIX B. COMPRESSION OF RESIDUAL GRAPHS

Bibliography

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti and James B. Orlin. Network Flows: The-

[BG97]

[BK96]

[Din70]

[EK72]

[ET75]

[FE56)

[GH94]

[Gol97]

[GR972a]

[GR97b]

[GT88]

ory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs, New Jersey,
1993.

Michel Burlet and Olivier Goldschmidt. A new and improved algorithm for the
3-cut problem. Operations Research Letters, 21:225-227, 1997.

Andrés A. Benczur and David R. Karger. Approximate s—t min-cuts in O(n?)
time. In Proceedings of the 28" ACM Symposium on Theory of Computing, pages
47-55, May 1996.

Efim A. Dinitz. Algorithm for Solution of a Problem of Maximum Flow in Net-
works with Power Estimation. Soviet Mathematics Doklady, 11:1277-1280, 1970.

Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. Journal of the ACM, 19:248-264, 1972.

Shimon Even and Robert E. Tarjan. Network Flow and Testing Graph Connectiv-
ity. SIAM Journal on Computing, 4(4):507-518, 1975.

Lester R. Ford, Jr. and Delbert R. Fulkerson. Maximal flow through a network.
Canadian Journal of Mathematics, 8:399-404, 1956.

Oliver Goldschmidt and Dorit Hochbaum. A polynomial algorithm for the k-cut
problem for fixed k. Mathematics of Operation Research, 19:24-37, 1994.

Andrew V. Goldberg. Personal communication, October 1997.

Andrew V. Goldberg and Satish Rao. Beyond the flow decomposition barrier. In
Proceedings of the 30™" Annual Symposium on the Foundations of Computer Science,
pages 2-11, October 1997.

Andrew V. Goldberg and Satish Rao. Flows in undirected unit capacity networks.
In Proceedings of the 30'™ Annual Symposium on the Foundations of Computer Science,
pages 32-35, October 1997.

Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum flow
problem. Journal of the ACM, 35(4):921-940, 1988.

70

[GY95]

[HdLT98]

[HKR97]

[HO94]

[HS85]

[Kap96}

[Kar73]

[Kar97]

[Kar98]

[Kar99]

[Kar(00]

[K1.98]

[KLO2]

BIBLIOGRAPHY

Zvi Galil and Xiangdong Yu. Short length versions of Menger’s theorem (ex-
tended abstract). In Proceedings of the 27" ACM Symposium on Theory of Computing,
pages 499-508, May 1995.

Jacob Holm, Kristian de Lichtenberg and Mikkel Thorup. Poly-logarithmic de-
terministic fully-dynamic graph algorithms for connectivity, minimum spanning
tree, 2-edge and biconnectivity. In Proceedings of the 29™™ ACM Symposium on The-
ory of Computing, pages 79-89, May 1998.

Monika Rauch Henzinger, Jon Kleinberg and Satish Rao. Short-length Menger
theorems. Technical Report 1997-022, Digital Systems Research Center, 1997.

Jianxiu Hao and James B. Orlin. A faster algorithm for finding the minimum cut
in a directed graph. Journal of Algorithms, 17(3):424-446, 1994.

Dorit S. Hochbaum and David B. Shmoys. An O{|V|?) algorithm for the planar
3-cut problem. SIAM Journal on Algebraic and Discrete Methods, 6(4):707-712, 1985.

Sanjiv Kapoor. On minimum 3-cuts and approximating k-cuts using cut trees. In
Proceedings of the 5™ Conference on Integer Programming and Combinatorial Optimiza-
tion, pages 132-146, June 1996.

Alexander V. Karzanov. O nakhozhdenii maksimal'nogo potoka v setyakh
spetsial'nogo vida i nekotorykh prilozheniyakh. In Matematicheskie Voprosy Up-
ravieniya Proizvodstvom, volume 5. Moscow State University Press, Moscow, 1973.
In Russian,; title translation: On Finding Maximum Flows in a Network with Spe-
cial Structure and Some Applications.

David R. Karger. Using random sampling to find maximum flows in uncapaci-
tated undirected graphs. In Proceedings of the 29'" ACM Symposium on Theory of
Computing, pages 240-249, May 1997.

David R. Karger. Better random sampling algorithms for flows in undirected
graphs. In Proceedings of the 9™ Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 490—-499, January 1998.

David R. Karger. Random sampling in cut, flow, and network design problems.
Mathematics of Operations Research, 24(2):383—413, 1999.

David R. Karger. Minimum cuts in near-linear time. Journal of the ACM, 47(1):46—
76, 2000.

David R. Karger and Matthew 5. Levine. Finding maximum flows in simple undi-
rected graphs seems faster than bipartite matching. In Proceedings of the 29™" ACM
Symposium on Theory of Computing, pages 69-78, May 1998.

David R. Karger and Matthew S. Levine. Random sampling in residual graphs.
In Proceedings of the 3374 ACM Symposium on Theory of Computing, May 2002.

BIBLIOGRAPHY 71

[KRT94]

[KS96]

[KWY973]

[KWY97b]

[Lev00]

[NI92a]

[NI92b]

[NI99]

[NKI99]

[NNI94]

[Que]

[ST83]

[SV95]

[VY92]

Valerie King, Satish Rao and Robert E. Tarjan. A faster deterministic maximum
flow algorithm. Journal of Algorithms, 17(3):447-474, 1994.

David R. Karger and Clifford Stein. A new approach to the minimum cut problem.
Journal of the ACM, 43(4):601-640, 1996.

Yoko Kamidoi, Shin’ichi Wakabayashi and Noriyoshi Yoshida. Faster algorithms
for finding a minimum k-way cut in a weighted graph. In Proceedings of the IEEE
International Symposium on Circuits and Systems, pages 1009-1012, June 1997.

Yoko Kamidoi, Shin’ichi Wakabayashi and Noriyoshi Yoshida. A new approach
to the minimum k-way partition problem for weighted graphs. Technical Report
COMP97-25, Institute of Electronics, Information and Communication Engineers,
1997.

Matthew S. Levine. Fast randomized algorithms for computing minimum
{34,5,6}-way cuts. In Proceedings of the 11*" Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 735-742, January 2000.

Hiroshi Nagamochi and Toshihide Ibaraki. Computing edge connectivity in
multigraphs and capacitated graphs. SIAM Journal on Discrete Mathematics,
5(1):54-66, 1992.

Hiroshi Nagamochi and Toshihide Ibaraki. Linear time algorithms for finding k-
edge connected and k-node connected spanning subgraphs. Algorithmica, 7:583—
596, 1992.

Hiroshi Nagamochi and Toshihide Ibaraki. A fast algorithm for computing mini-
mum 3-way and 4-way cuts. In Proceedings of the 7*" Conference on Integer Program-
ming and Combinatorial Optimization, pages 377-390, June 1999.

Hiroshi Nagamochi, Shigeki Katayama and Toshihide Ibaraki. Faster algorithm
for computing minimum 5-way and 6-way cuts. In 5th Annual International Con-
ference on Computing and Combinatorics, pages 164-173, July 1999.

Hiroshi Nagamochi, Kazuhiro Nishimura and Toshihide Ibaraki. Computing all
small cuts in an undirected network. Technical Report 94007, Kyoto University,
1994.

Maurice Queyranne. Personal communication with David Karger.

Daniel D. Sleator and Robert E. Tarjan. A data structure for dynamic trees. Journal
of Computer and System Sciences, 26(3):362-391, 1983.

Huzur Saran and Vijay V. Vazirani. Finding k cuts within twice the optimal. SIAM
Journal on Computing, 24(1):101-108, 1995.

Vijay V. Vazirani and Mihalis Yannakakis. Suboptimal cuts: Their enumeration,
weight, and number. In Proceedings of the International Colloquium on Automata,
Languages and Programming, pages 366-377, July 1992.

7 BIBLIOGRAPHY

[ZNI01] Liang Zhao, Hiroshi Nagamochi and Toshihide Ibaraki. Approximating the min-
imum k-way cut in a graph via minimum 3-way cuts. Journal of Combinatorial
Optimization, 5:397—410, 2001.

