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Abstract

An algorithm is presented which allows each node in a computer network to

maintain a correct view of the network topology despite link and node failures.

Reliability is achieved without transmitting any information other than the

operational status of links. Messages are only sent in response to topological

changes: periodic retransmission is not required.
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1 Introduction

At any time while a store and forward computer network is operating, one or more

of its communication links or processing nodes may malfunction or be put back

into service. The recovery of the network from such a change in its topology is an

essential part of providing reliable data communication. This paper is concerned

with the problem of keeping each network node informed of the entire network

topology when that topology occasionally changes over time. Any network which

uses decentralized adaptive routing needs to address this problem. The classic

example of this is the ARPANET, where each node maintains a map of the entire

network and uses it in making routing decisions [8]. Even networks which use some

form of hierarchical routing need to solve this problem within some level of the

hierarchy.

Topological changes may occur at any time. Since all messages sent in the

network are subject to delay, a node can never be certain that it knows the correct

topology at some instant of time. However, distributed algorithms can be designed

to guarantee that each node is made aware of the correct status of each link to which

it has a physical path, provided that the topology does not change for a sufficient

but finite time. Algorithms which accomplish this are called topology algorithms.

A topology algorithm is a set of rules governing the topology information stored

at a node, as well as the contents, transmission, and reception of algorithm mes-

sages. These messages are called topology updates or update messages. They usually

contain an indication of the operational status (up or down) of one or more network

links. When a network is started or reinitialized, the algorithm must determine the

initial network topology and communicate it to every node. Thereafter, the topology
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information must be kept current by update messages which are sent periodically

or in response to a topological change.

Although it might appear that any effective method of broadcast could serve as

a topology algorithm, there are several subtle issues which cause difficulties.

1. The links which are used to communicate topology information are themselves

subject to fail at any time. The failure of a link creates additional topology

information which must be communicated. It may also block the transmission

of previous topology information about other links, and in the worst case may

divide the network into two disconnected sets of nodes.

2. A link may experience several topology changes within a short time. Other

network nodes must eventually determine which change was the most recent.

In general, nodes must be able to distinguish between old and new information

about the status of a link.

3. While a topology algorithm is running, additional topology changes may oc-

cur. The topology algorithm must be capable of either incorporating new

information during execution, or of starting a new algorithm version. If dif-

ferent versions are used, each node must be able to determine which is the

most recent version, a problem similar to 2 above.

4. The repair of a single link can cause two parts of the network which were dis-

connected to reconnect. Each part may have arbitrarily out-of-date topology

information about the other. The algorithm must ensure that the two parts

eventually agree, and adopt the correct network topology.

Several algorithms have been designed in order to overcome these difficulties
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[1,4,5,7,8,9,11,12,13,14,15,16]. The problem of broadcasting topology changes has

been formulated in many different ways, and is often solved as part of a distributed

routing algorithm. A common approach is to include auxiliary information such as

message counters, sequence numbers, or age fields in update messages along with

the topology information itself. The sequence numbers are used to distinguish be-

tween old and new information and to stop the flooding of messages. Timers at

the nodes may be used to enforce some minimum or maximum time interval be-

tween the transmission of topology information. Age fields or time stamps may

be also be used as auxiliary information in algorithm messages to ensure that old

topology information is eventually deleted. The ARPANET algorithm [8] uses a

combination of sequence numbers, age fields, and timers. It also requires periodic

retransmission of topology information. Perlman [9] presents improvements to this

algorithm which, among other things, make it less timer dependent. Other algo-

rithms [1,4,5,7,11,12,14,15,16] do not use timers, age fields, or time stamps, and

send messages only in response to receiving other messages, or in response to topo-

logical changes in adjacent links. We call this class of algorithm event driven. Such

algorithms may still rely on bounded message counters to distinguish between old

and new information. They may respond to topological changes by rebuilding the

entire network topology as in [4], or by modifying an existing topology to reflect

the change as in [11]. Several different types of messages are sometimes used for

broadcasting information, collecting acknowledgements, and terminating the algo-

rithm.

The four issues mentioned earlier can make it quite difficult to prove the cor-

rectness of topology algorithms, especially when the algorithms are complex. For

4



example, it was recently shown in [14] that the topology algorithms in [4] and [12]

can fail to operate properly in some unusual circumstances. The problem with

the algorithm in [4] went unnoticed for nearly ten years. This argues for topology

algorithms which can be easily shown to be correct.

In this paper we take a rather unconventional approach to solving the topol-

ogy problem. The algorithm which we present, called the Shortest Path Topology

Algorithm (SPTA), uses no auxiliary information at all. The update messages con-

sist only of topological information, i.e. link status information. The algorithm is

purely event driven in that nodes transmit messages only in response to receiving

a topology update message from a neighbor, or to detecting a status change in an

adjacent link. It does not rely on periodic retransmission of messages, or use timers,

counters, or clocks of any kind. The update messages are used by a node to modify

its existing topology, and there are no special cases for reconnection of disconnected

parts of the network. The simple message structure allows a theoretical proof of

correctness that is rather straightforward.

There are two main motivations for constructing an algorithm with the above

characteristics. Although the use of auxiliary information is a logical way to deal

with the four difficulties mentioned earlier, it also introduces additional problems

[9]. For example, if sequence numbers are used, the finite bit field used to store

them may eventually wrap around. While this can be avoided by choosing a large

bit field, some provisions should still be made for resetting the numbers [14]. The

introduction of auxiliary information into update messages usually leads to increas-

ing complexity. An algorithm which avoids auxiliary information entirely avoids

also the complexities and difficulties associated with it. Apart from this, there is
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the academic question of whether topological information alone is sufficient to solve

the topology problem. SPTA shows that although auxiliary information may be

desirable in some circumstances, it is not required in topology algorithms. By ex-

changing only link status information, the network nodes can arrive at and maintain

a correct topology.

When a single link changes operational status, the performance of SPTA is sim-

ilar to traditional approaches such as the ARPANET update algorithm. However,

when many links change status in a very short time, SPTA can send a large number

of messages in worst case situations. These performance issues are addressed in

section 3.

2 The SPTA Algorithm

The main idea behind SPTA is that each node is viewed as trying to construct

the network topology based on reliable information that it has about the status of

adjacent links, and possibly unreliable or inconsistent information (in the sense that

it might be outdated) that it has received from neighboring nodes. When a node

receives contradictory information about the status of a link from two or more of its

neighbors, it resolves the conflict by 'believing' the neighbor which it calculates to

be closest in hops to the link in question. While hop length is not a unique metric

for resolving such conflicts, it results in a fairly simple algorithm.
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2.1 Assumptions

The correct operation of any topology algorithm depen:ds strongly on the way in

which link status changes (failures and repairs) are detected by the network nodes.

Each link is considered to be bidirectional. There is a data link control protocol

operating at each end node of a link which decides whether the link is up (operating)

or down (not operating). Due to communication delay, the decisions made by the

two end nodes of a link may be nonsimultaneous. The following assumptions are

made about the operation of the data link control protocol.

Al) When a link is down at one end node, it must eventually be called down at

the other end node, before either end node can call it up again.

A2) If a link is called up at one end node, then within finite time, either the

opposite end node must call it up or the first must call it down again.

A3) If a message sent by a node i on link (i,j) does not arrive correctly at node j

within a finite time, then link (i,j) will be called down by both i and j in a

finite time.

A4) Links preserve the order of transmitted messages.

The following assumptions are made about the operation of the network nodes.

A5) A node failure is represented by the (perhaps nonsimultaneous) failure of the

links adjacent to the node.

A6) While they are operating, nodes maintain the integrity of the data and mes-

sages stored in their memory.
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Data link control protocols for achieving assumptions Al thorough A4 are non-

trivial. Examples of such protocols may be found in [2]. Section 3.1 discusses the

operation of SPTA when the above assumptions are violated.

2.2 SPTA Data Structures and Rules

Each node i in the network maintains a topology table T i called its main topology

table. A topology table is a list of the operational status of each link in the network.

We refer to the single bidirectional link between nodes m and n as either (m, n)

or (n,m), which ever is more convenient. T i contains an entry Ti(m,n) for each

link (m, n), and reflects node i's current best estimate of the network topology.

It is the official topology that would be used by a routing algorithm operating at

node i. In addition to its main topology table, node i maintains a port topology

table Tj associated with each neighboring node j. The entry in this table for link

(m, n) is denoted Tj (m, n). The information stored in table Tj' is the latest topology

information received by node i from node j. The tables stored at node i are shown in

Figure 1. When a node's main topology table changes, it sends a message notifying

each of its neighbors of the change. Therefore, Tj' is merely a delayed version of

node j's main topology table, T j .

Most algorithm messages consist of a single link name, (m, n) together with

the link's status (up or down). However, when a link becomes operational, its end

nodes exchange their entire main topology tables. The contents of a table is sent

as a single message.

SPTA consists of a set of rules for sending messages and updating the topology

tables described above. The following rules are followed by each network node.
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Figure 1: The Main and Port Topology Tables for a Simple Network.

Communication Rules

R1) When a link status entry in a node's main topology table changes, a message

containing the new value is sent on each operating adjacent link.

R2) When the link protocol at a node detects that an adjacent link has become

operational, the node transmits its entire main topology table over that link.

Topology Table Update Rules

R3) When the link protocol at a node detects that an adjacent link has failed, the

failed status is entered in the node's main topology table.

R4) When a node receives a single link status message from a neighbor, it enters

the change in the port topology table associated with that neighbor.

R5) When a node receives an entire main topology table from a neighbor, it enters

the changes in the port topology table associated with that neighbor. It also
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lists the link on which the message was received as up in its main topology

table.

R6) When the application of rules R3, R4, or R5 causes an entry in a node's main

or port topology tables to change, the node updates its main topology table

by using the main topology update algorithm described below.

2.3 Main Topology Table Update Algorithm

The following algorithm is used by each node i to construct its main topology table

T' based on its knowledge of the status of adjacent links, and the information stored

in its port topology tables. It consists of iterations which are very similar to those of

Dijkstra's shortest path algorithm [3] when all the links are taken to have a length

of 1. The following variables are used by the algorithm by each node i:

Pk: (for k > 1) the set of nodes whose shortest hop path to node i has k links, using

only links which are up in topology Ti.

Lk: (for k > 1) the set of links (m, n) such that the shortest hop path from node i

to the closer end node of (m, n) has k links, using only links which are up in

topology TV.

N(m): a neighbor of node i that is the first node on a shortest hop path from node

i to node m, using only links which are up in topology T i. N(m) is referred

to as the label of node m.

s(i, m): node i's current operational status for adjacent link (i, m). This is provided

by the data link control algorithm operating at node i.
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The purpose of the kth iteration of the algorithm is to enter into Ti the status

of those links contained in Lk. This is done by selecting, for each link (m, n) E Lk,

a port topology table to believe concerning link (m, n)'s status. The status entry

for link (m, n) in this port table is then entered in Ti.

At the start of the 1st iteration of the algorithm. T' contains the status of each

link adjacent to i. For completeness, we define Po = {i}. P1 is the set of neighbors

of i connected by working links. In general, at the start of the kth iteration the

sets Pk and Pk-l have already been defined. The set Lk can be constructed from

Pk and Pkl by chosing those links which have at least one end node in Pk, but no

end node in Pk-1. For each link (m, n) E Lk, we chose an end node m such that

m E Pk. Then N(m) is a neighbor of i which lies on a shortest hop path from i

to link (m,n). The port topology table associated with this neighbor is the one

that will be believed concerning the status of link (m, n). If link (m, n) is up and

n , Pk then n E Pk+1, and m is on a shortest path from i to n. We can set N(n)

equal to N(m), and construct the set Pk+1 in preparation for the (k + 1)St iteration.

The algorithm terminates when Pk = 0. This indicates that the status of each link

connected to node i has been entered in Ti.l

In the following more formal presentation of the main topology update algo-

rithm, all of the sets Pk are assumed to be initially empty.

Main Topology Update Algorithm at node i

Ti(m, n) = s(m,n) for each link adjacent to i

down for other links

1A link 1 is connected to a node i if there is a path of operating links connecting i with one of the

end nodes of 1.

- -- - -- -· -~------------------- -------------------- --11--



Po := {i}

P1 := {n I T'(i,n) = up}

for each n n E P1

N(n) := n

k := 1

do while Pk 5~ 0

begin

Lk := {(m, n) I m ¢ Pk-l and n ¢ Pk-l and (m E Pk or n E Pk)}

for each link (m, n) E Lk

begin

(assume without loss of generality that m E Pk)

Ti (m, n) := T(,) (m, n)

if Ti(m,n) = up and n c Pk and n ¢ Pk+l

then N(n) := N(m); Pk+l := Pk+l I {n})

end

k :=k+1

end

stop

Notice that when an adjacent link (i,j) fails, the algorithm at node i does

not include node j in the set P1 . Because of this, for each node m, N(m) # j.

Therefore, node i effectively disregards all information which is stored in the port

topology table To.

When two or more neighbors of i are at a minimum hop distance k from some

link (m, n) E Lk, the algorithm must choose which neighbor to believe concerning
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link (m, n)'s status. The way in which ties are resolved depends upon the order in

which the members of Lk are processed, and upon the end node of (m, n) which is

selected if both m and n are in Pk. The tie breaking rule used does not affect the

correctness of SPTA.

2.4 Correctness Proof of SPTA

Assume that at some time t, a network is in steady state. This means that for each

node within a connected component of the network, the main topology tables are

correct for each link which is adjacent to a member of the component. In addition,

no algorithm messages are being transmitted. Note that a node is in steady state

immediately after being reinitialized. Between time ts and some later time to an

arbitrary number of link topology changes occur. For a sufficient but finite time

interval after to assume that no further topology changes occur. The required length

of this interval will be addressed in section 3. We wish to show that at some later

time tf > to steady state has been reestablished. Let T* be the correct network

topology that an omniscient observer would see upon examining the network after

to. We say that node i "knows the correct topology" if its main topology T' agrees

with T* for all links that are connected to i. Node j is called an active neighbor of

node i if link (i,j) is operating according to T*. We begin by showing the following

theorem.

Theorem 1. SPTA works correctly in the sense that, under the preceding assump-

tions, there is a finite time tf after which each node knows the correct topology.

Proof. In what follows, we say that a link I is at distance n away from i if in

the graph defined by T* the shortest path from i to the closest end node of 1 is n
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hops long. We will show by induction that for each integer n > 0 there is a time

tn ts after which, for each node i, T' agrees with T* for all links that are at a

distance of n or less from i. The induction hypothesis is clearly true for n = 0 since

each node i knows the correct status of its adjacent links and records them in its

main topology table T i. We first establish the following lemma.

Lemma 1. Assume that the induction hypothesis is true for time t,. Then there

is a time t +1 > t, after which the port topology table TJ, for each active neighbor

j of node i, agrees with T* for each link at a distance n or less from j.

Proof. Consider waiting a sufficient time after tn for all messages which were

sent from j to i before tn to arrive. By rules R1, R2, R4, and R5 of the algorithm, T2i

agrees with T i for all links which are not adjacent to i. Therefore, by the induction

hypothesis T; agrees with T* for each link at a distance of n or less from j which is

not adjacent to i. By rules R3 and R5 the correct status of links adjacent to i are

recorded in Tji. Therefore, Tj' also agrees with T* for all links adjacent to i. This

proves the lemma.

To complete the proof of Theorem 1 we must show that there is a time tn+1 >

t +1 such that for all t > t+l1 and nodes i, T i agrees with T* for each link I which

is at a distance n + 1 from i. Consider the first time that link I is processed by

the main topology update algorithm after the conditions of Lemma 1 are satisfied.

Then, link I will belong to the set Ln+1. Also, the closest end node of I to node i will

belong to the set P,+1, and will have a label which is one of the active neighbors of

i (say j) that is at distance n from 1. By Lemma 1, the entry of Tj for link 1, which

will be copied into T i when link I is processed, will agree with the corresponding

entry in T*. Since Lemma 1 holds for all time t > t+' , the entry for link I in T'
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will be correct at all subsequent times when link I will be processed by the main

topology update algorithm. This completes the proof of Theorem 1.

After tf a node i's main topology table will not change. Since a node only

transmits messages when its main topology changes, node i will not transmit any

messages after tf. A finite time later a condition of steady state will be reestablished.

This completes the correctness proof of SPTA.

3 Algorithm Characteristics

There are several criteria which can be used to evaluate the efficiency of a topology

algorithm. These include the number of messages which the algorithm sends, the

amount of time which it takes to terminate, the amount of processing which is

required at the network nodes, and the amount of node memory which the algorithm

and its data consume. The performance of an algorithm with regard to the first

three of these criteria is usually dependent on the particular topology change event

under consideration. By far the most important event is a status change in a single

link. Since links which do not have a common end node can be expected to change

status somewhat independently, the probability of many nearly simultaneous link

status changes is very small. Therefore, the efficiency of topology algorithms when

many links change status is a secondary consideration. A node status change can

cause nearly simultaneous status changes in the links adjacent to the node, but since

most networks are sparse this typically involves only a small number of links. In

the remainder of this section we consider the efficiency of SPTA, when operating on

a network of N nodes and L links, with an emphasis on single link status changes.

To evaluate the amount of time which SPTA takes to run, we introduce the
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notion of time complexity described in [6]. The time complexity of an algorithm

is the number of units of time required if each communication of a message over

a link requires at most one time unit and computation requires negligible time.

We are interested in the amount of time that the algorithm requires to terminate

following a set of status changes involving K links. It is shown in Appendix A that,

subject to a few assumptions on the operation of link transmission queues, the time

complexity, T, for SPTA is O(N + K), and in fact T < 2(N + K). Since the final

status of each of K links must be communicated across the diameter of the network,

this is an optimal result for the order of T. For single link topology changes, this is

the same result as for the ARPANET update algorithm[8].

In the correctness proof of SPTA it was assumed that no topology changes oc-

curred for a "sufficient but finite time." It can be seen that the algorithm terminates

in a time which is roughly equivalent to the message propagation time across the

network. Assuming that no status changes occur during this time is equivalent to

assuming that the average time between status changes is much larger then the

message propagation time across the network.

The communication complexity of an algorithm is the sum, over all network

links, of the number of messages sent on each link. For single link topology changes,

this can be established by examining rule R1 of SPTA. When a node's main topol-

ogy table changes, it sends a message on each of its adjacent links. This results

in 2L messages being sent on an L link network and gives O(L) communication

complexity. This is the same result as for the ARPANET update algorithm.

When multiple link status changes occur over a short period of time, the cal-

culation of communication complexity for SPTA is complicated. A general bound
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on communication will not be presented, but it is shown by example in Appendix

B that in some situations the number of messages sent by a node can grow expo-

nentially in the number of status changes. Such behavior is clearly undesirable, but

it can be obtained only by very carefully choosing the message and status change

timing. In practical situations, the ability to remove obsolete messages from queues,

the low probability of many nearly simultaneous status changes, and the stochastic

variation in message transmission time would tend to reduce the number of messages

sent.

The amount of processing required by the algorithm can be calculated by exam-

ining the main topology update algorithm. Since each link is processed exactly once

by this algorithm, its computational requirement is O(L). As stated in section 2.2, a

node runs the main topology update algorithm each time a message is received, or a

status change is detected in an adjacent link. In many situations this is unnecessary,

since the algorithm only modifies the main topology table when status information

is received over a shortest hop path. For the case of a single link topology change,

if the main topology update algorithm is only run when a message arrives on a

shortest path (or when an adjacent link changes status) then each node runs the

algorithm exactly once. This gives O(L) computations per node, and is similar to

the requirements of the ARPANET update procedure. The methods described in

[8] for reducing the computational requirements of the ARPANET algorithm by

maintaining a shortest path tree can also be applied to the main topology update

algorithm of SPTA.

The memory requirement of SPTA at each node i is O(LBi) where Bi is the

number of neighbors of node i. Bi is usually a small integer, but can be as large as
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N -1 for a fully connected network. SPTA requires more memory than algorithms

such as the ARPANET update procedure, due to its use of multiple topology tables

at each node.

3.1 Fault Tolerance

In practice, it is difficult to guarantee that the assumptions made in section 2.1

are always valid. For example, errors may occasionally occur in a node's memory,

violating A6. Like all event driven algorithms, SPTA has no ability to recover

from undetected database errors. Without periodic retransmission, an undetected

database error can persist for an arbitrary amount of time. Another possibility is

for one or more nodes to temporarily violate the assumptions, and behave in an

unpredictable manner. Such a situation has occurred on the ARPANET [10]. Once

the nodes begin to faithfully execute SPTA once again, it is desirable for a condition

of steady state to reestablish itself.

Although SPTA does not rely on periodic retransmission for correct operation

under assumptions Al through A6, periodic retransmission can be used to provide

recovery from situations where the operating assumptions are temporarily violated.

Consider augmenting SPTA such that each node periodically transmits its entire

main topology table to each active neighbor. Let to be a time after which the

assumptions Al through A6 are valid and no further topology changes occur. A

finite time after t8 each node i will successfully transmit its main topology table T i

to each active neighboring node j. This implies that T i and Ti7 will be consistent.

This fact combined with a node's knowledge of the status of its adjacent links is

sufficient to prove Lemma 1. The rest of the correctness proof of SPTA follows as
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before. Therefore, when periodic retransmission is used, SPTA will converge to the

correct topology a finite time after its operating assumptions are valid. Because

it does not use sequence numbers or age fields, SPTA is immune to the type of

problem which has occurred on the ARPANET [10].

Appendix A: Time Complexity

Consider some sequence of status changes involving at most K links. Each of the

K links may change status one or more times at either or both end nodes. We wish

to show that if all status changes cease by time 0, then all nodes will know the

correct topology by time 2(K + N). To obtain this result, we make the following

assumptions:

1. The links of the network are numbered consecutively from 1 to L, and this

numbering is known to all nodes.

2. If a node i has several status changes to send to a neighbor, it sends the

status changes for the closest (in hops) links to i first. For links at the same

hop distance, it sends the status change for the lowest numbered link first.

(Link hop distances are available to a node from the main topology update

algorithm.)

3. If a link changes status in a node's main topology table before the old status

has been sent on a neighboring link, then the old status is deleted from the

queue of messages waiting to be sent.
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4. If node i starts to send a status message to neighbor j at time t, j will have

received it by time t + 1.

5. For convenience, the transmission of a nodes main topology table over a link

when it first comes up is considered as part of the link initialization procedure.

Let h(i, 1) be the hop distance of link I from node i in the final topology T*. At

each node i, we assign each link I that has changed status a distinct index number,

m(i, 1), from the set {1,2,... K}. The links are indexed in order of increasing hop

distance, h(i, 1). Links at the same hop distance are indexed in order of increasing

link number.

Lemma Al. If j is a neighbor of i, and j is on a shortest path from i to link 1,

where I is a link that has changed status, then m(j, 1) < m(i, 1).

Proof. Let I' be any other link that has changed status for which m(j,l') <

m(j, ). We show first that

m(i, I') < m(i, I) (Al)

There are two cases to consider:

Case 1: h(j, ') = h(j, 1).

Then the link number of 1' is less than the link number of 1. We have

h(i,l') < h(j,l') + 1

= h(j,l) + 1

= h(i,l)

so (Al) is satisfied.
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Case 2: h(j,l') < h(j,l).

We have

h(i,l') < h(j,l') + 1

< h(j,l) +1

= h(i,l)

so (Al) is satisfied again.

Now observe that there are m(j,l)- 1 choices of 1' for which m(j, ') < m(j, ).

For each of these, m(i,l') < m(i,l). Since the numbers m(i,l') are all distinct,

m(i, l) > m(j, ). Q.E.D.

Now define

t(i,l) = 2[m(i, I) + h(i, 1)] (A2)

Theorem Al. By time t(i, 1) and beyond, node i has the correct status for link I

in its main topology table, and has transmitted that status to all its neighbors.

Proof. We use induction on the value of t(i, 1). For the basis of the induction,

note that m(i, ) + h(i,l) > 1 for all i and 1. Consider any node i which has an

adjacent link status change. If I is the lowest numbered link adjacent to i that

changes status, then m(i, ) + h(i,l) = 1. By time 1, whatever status change was

being sent at time 0 is completed, and node i will start to send the final status

change for link I to all neighbors. By time 2, this status change will have been

transmitted.

Now consider an arbitrary i, I for which t(i,l) = t. By the induction hypothesis,

we assume that the theorem is valid for all j, I' such that t(j, I') < t-2. Consider each

neighbor j of i that is on a shortest hop path to 1. By lemma Al, m(j,l) < m(i,l),
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and by definition h(j,l) = h(i,l) - 1. Therefore, t(j,l) < t - 2. Together with the

induction hypothesis, this implies that, by time t - 2, node i has received the final

status for link I from every neighbor j which is on a shortest path to 1. Also by

time t - 2, node i will have the final status for link I entered in its main topology

table.

To complete the proof we must show that node i will be able to transmit the

status of link 1 to each neighbor by time t. Note that i has the correct topology

by t - 2 for all I' such that m(i,l') < m(i,l) (since m(i,l') < m(i,l) implies that

h(i, I') < h(i, 1)). By time t - 2, i has transmitted the final status changes for all

such 1'. Therefore, no matter what node i is transmitting at time t - 2, it can start

transmitting the final status change for I by time t - 1, and all neighbors will have

received it by time t. Q.E.D.

Appendix B: Communication Complexity Exam-

ple

We show by example that there are unusual situations where the number of messages

sent by the algorithm can grow exponentially in the number of status changes.

Figure 2 illustrates one such situation involving 2 link status changes. Node 1

decides that link A is down when it receives a message on link B. When link B

fails, node 1 decides that link A is back up. Then, when a messages finally arrives

from node 3, node 1 again decides that link A is down. Notice that node 1 sends

three messages to node 3 concerning link A, whereas A's status has actually changed

only once.
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Figure 2a. An Example Network. All links are initially up. Link A fails. Shortly
afterward, link B fails.

Event I Description

1 Link A fails.
(2-+1, At) and (2-+3, At) sent and received.

2 (3-+2, At), (1-+3, At), and (1-+2, At) sent and received.
(3-+1, At) sent but not yet received.

3 Link B fails.
(1-+3, Bt), (1-43, At), and (2-*3, Bt) sent and received.

4 (3-+1, At) that was sent in Event 2 arrives.
(1-+3, At) sent and received.

Figure 2b. Sequence of Events. The table shows the messages sent in response to
the change in status of links A and B. Notation: "(i-+j, 1J)" indicates a
message sent from node i to node j saying that link 1 is down.

Event T1 T2 T,1 T2 T2 T T42 T3 T13 T23 T T24
1 du du uu du du du du du uu du du du
2 du du uu du du du du du du du du du
3 ud dd ud dd dd dd dd dd ud dd du du
4 dd dd dd dd dd dd dd dd dd dd du du

Figure 2c. Topology Table Contents. All topology table updating is assumed to
take place immediately following an event. Notation: "du" means that in
the indicated topology table, the entry for link A is down and the entry for
link B is up.

Figure 2: SPTA Operation for Multiple Link Failures.
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Link C Link B Link A

Figure 3: An extension of the network in Figure 2a.

Now consider extending the network of Figure 2a by adding two nodes to the

left of node 1. The resulting network is shown in Figure 3, and involves three links

which change status. Let links A and B fail as before. Node again 1 experiences

three status changes concerning link A. It sends three messages to node 5 along

link C, and along the path through node 6. Let the messages sent over link C arrive

at node 5 before those sent via node 6. When they are received, node 5 has three

status changes concerning link A. Now let link C fail. Node 5 examines its port

topology table associated with node 6 and decides that A is up. Now let the three

messages sent above by node 1 arrive at node 5 via node 6. This results in three

more topology changes at node 5 concerning link A, for a total of seven!

Consider continually extending the network of Figure 3 as before, such that

each extension adds another link which changes status. If there are k links which

change status, then the leftmost node can have 2k - 1 status changes concerning

the rightmost link. Since a node sends a message each time its main topology table

changes, the number of messages sent in this example increases exponentially with

the number of links which change status.
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