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Abstract

The thesis considers two fundamental questions in propositional proof complexity:
lower bounds on the size of the shortest proof and automatizability of propositional
proof systems.

With respect to the first part, we develop a new paradigm for proving lower
bounds in propositional calculus. Our method is based on the purely computational
concept of pseudorandom generator. Namely, we call a pseudorandom generator G, :
{0,1}™ — {0,1}™ hard for a propositional proof system P if P cannot efficiently prove
the (properly encoded) statement G, (zy, ..., ,) # b for any string b € {0, 1}™. We
consider a variety of “combinatorial” pseudorandom generators inspired by the Nisan-
Wigderson generator on the one hand, and by the construction of Tseitin tautologies
on the other. We prove that under certain circumstances these generators are hard
for such proof systems as Resolution, Polynomial Calculus and Polynomial Calculus
with Resolution (PCR).

As to the second part, we prove that the problem of approximating the size of
the shortest proof within factor 215" ™7 i NP-hard. This result is very robust in
that 1t holds for almost all natural proof systems, including: Frege systems, extended
Frege systems, resolution, Horn resolution, the sequent calculus, the cut-free sequent
calculus, as well as the polynomial calculus. We introduce the Monotone Minimum
(Circuit) Satisfying Assignment problem and reduce it to the problem of approximat-
ing the length of proofs.

Finally, we show that neither Resolution nor tree-like Resolution is automatiz-
able unless the class W[P] from the hierarchy of parameterized problems is fixed-
parameter tractable by randomized algorithms with one-sided error.

Thesis Supervisor: Madhu Sudan
Title: Professor of Computer Science,
Department of Electrical Engineering and Computer Science



[ —



Acknowledgments

I am very grateful to Madhu Sudan who is my supervisor for many helpful discussions.
I am indebted to Alexander Razborov as well as to the whole list of collaborators
which also includes Eli Ben-Sasson, Sam Buss, Shlomo Moran, Toniann Pitassi and
Avi Wigderson for many interesting ideas and insights that lead to the presented
results.

I would like to thank E. Ben-Sasson for his useful remarks on this text.






Contents

1 Introduction 13
L1 Structure of the Thesis . . . . . . .. ... ... .. ... . . 17

2 Preliminaries 19
2.1 Basic Notation . . ... ...... ... ... .. . ... . .. 19
2.2 Propositional proof systems . . . ... ... ... ... 20
221 Resolution . . .. .. ... ... .. .. .. ... ... 20

2.2.2  Polynomial Calculus and Polynomial Caleulus with Resolution 21

2.2.3 Frege and Extended Frege . . .. .. ... ... .. . .. .. 23

I Pseudorandom Generators in Propositional Proof Com-

plexity 27
3 Pseudorandom Generators for Resolution and PCR. 29
3.1 Inmtroduction . . . . ... ... 29
3.2 Preliminaries . ... ... ... .. ... .. ... ... .. 34
3.2.1 Combinatorial properties of the matrix A . . . . .. . .. 35

3.2.2  Hardness conditions on the base functions . .. ... . . .. 36

3.23 Encodings . . ... ... .. ... 37

3.3 Lower bounds on width and degree in the functional encoding . ... 41
3.4 Size lower bounds for linear encoding . . .. ... ... ... ... .. 47
3.5 Existence of strong expanders and hard generators . . . . . ... . .. 53
3.6 Openproblems . ...... ... .. .. .. . .. . .. 56



4 General Hardness Criterium for Polynomial Calculus 57

41 Introduction . . . . . . . .. L 27
42 Preliminaries . . . . . . .. ..o 59
4.2.1 Tautologies induced by Nisan-Wigderson generator . . . . . . 60
4.2.2 Local strategy for PC lower bounds . . . . ... ... ... .. 63

43 Mainresults . . . . . ... L 65
44 Applications . . . . . ... 73
441 Moreonexpanders . . . . . ... .. ... ... ... ... 73
4.4.2 Tseitin tautologies: Boolean version . . . . . . .. .. . .. . 75
4.4.3 Random k-CNF in characteristic2 . . . . ... ... .. ... 77
4.4.4 Collapsable functions and flow tautologies . . . .. ... . .. 78
4.4.5 [Extended Pigeonhole Principle . . . . . ... ... ... .... 79
4.4.6 Relation between robustness and immunity . . . . .. .. ... 82

45 Openproblems . . ... ... ... ... 84
II Lower Bounds on Automatizability 87

5 Hardness to Aprroximate Minimum Propositional Proof Length 89

5.1 Introduction . . . . . . .. ... 89
5.2 Monotone Minimum Satisfying Assignment . . . . . . .. ... .. .. 93
5.3 The Hardness of Refutations . . . . . ... ... ... .. ...... . 96
5.4 Main Results for Frege Systems . . . . . .. . ... ... ...... . 100

54.1 Preliminaries . . .. . .. . ... .. 0. 101

5.4.2 Hardness of Approximation for Frege Systems . . .. ... .. 102
5.5 Hardness results for long proofs . . . .. .. .. ... ... ... ... 108

6 Automatizability of Resolution and Fixed Parameterized Complex-

ity 111
6.1 Introduetion . . . . . . ... Lo 111
6.2 Preliminaries . . . . . . . . ... 114

6.2.1 Resolution and automatizability . . . . . . .. .. .. ... . 114

8




6.2.2 Parameterized complexity and MMCSA problem . . . . . . . . 115

6.3 Main reduction from MMCSA to automatizability of Resolution . . . . 117
6.4 Self-improvement and main results . . . . ... . .. .. ... 125
6.5 Open Problems . . ... ... .. ... .. ... .. .. .. . 130
7 Conclusion and Recent Developments 131



10



List of Figures

6-1 One layer of w(C, N, d)

11



12



Chapter 1

Introduction

A propositional proof system as formalized by Cook and Reckhow [CRT79], is an
algorithm A that can test in polynomial time whether an input string is a valid
“proof” of a universally true DNF 7 (also called tautology). The proof here is any
kind of certificate that allows .4 to conclude that 7 is indeed a tautology. It is
required that the propositional system be sound and complete, which means that
only tautological formulas can have proofs and there always exists at least one proof
for every tautology.

One can imagine a proof system as a non-deterministic heuristic for a coNP-
complete language. A proof in this model is a non-deterministic witness that helps
to test the membership in this language. It was shown in [CRT79] that NP = coNP
if and only if there exists a propositional proof system in which every tautology has
a proof of polynomial size.

The most fundamental question in this framework is “How large can be the short-
est proof of certain interesting tautologies for various proof systems?”’. Since it is
believed that NP # coNP for any proof system there should exist a class of hard
tautologies, that require superpolynomial size proofs. This naturally suggests the
following goal: prove lower bounds on the proof size for as strong a propositional
proof system as possible. These lower bounds are important from several aspects.
Besides the natural curiosity, it is a step toward the separation of NP and coNP.

Proving that NP # coNP may be even harder than proving P # NP, however one
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may assume the latter hypothesis and still try to prove the former. This approach
leads to so-called conditional lower bounds in propositional complexity: assuming a
certain problem computationally hard construct a family of tautologies, which require
superpolynomial proofs in certain proof systems. There are several known examples
of such results (see, for example, [Kra97] for the lower bounds based on the efficient
interpolation property).

The second reason for lower bounds in propositional comlexity is that they also
limit the performance of a wide class of algorithmic heuristics (i.e. Automated Theo-
rem Provers) that are implicitly or explicitly based on the corresponding propositional
proof system. Thus, a lower bound on the shortest proof size in the appropriate
system would yield a lower bound on the running time of the whole class of such
heuristics. Finally, lower bounds for strong systems imply independence results in
certain fragments of bounded arithmetic, an interesting problem in its own right.

While there has been a great progress during recent years in proving lower bounds
for weak proof systems, still no (even conditional) lower bounds are known for strong
systems such as Frege or Extended Frege. The situation is somewhat similar to com-
putational complexity, where no lower bounds are known for unrestricted circuits. In
fact some researchers believe that this is not a coincidence and propositional systems
are inherently dependent on the corresponding computational model, thus requir-
ing circuit lower bounds for this model to be proved first. Also, only few known

tautologies are candidates for being hard for Frege or Extended Frege.

In the first part of the thesis we propose a new paradigm for proving lower bounds
for propositional proof systems, for this we use a concept from the computational
complexity. Namely, we say that a function G : {0,1}* = {0,1}™ is a good pseudo-
random generator w.r.t. proof system P iff for every y € {0,1}™ any P-proof of the
fact y ¢ im(G) requires superpolynomial size. In otherwords, a generator G is hard
for P if and only if it cannot efficiently prove that any explicit element does not lie
in the image of G.

Inspired by the natural proofs approach ([RR97]) on one hand and by the efficient
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interpolation property on the other this definition naturally suggests one more link
between computational and propositional complexity. Our conjecture is that in some
cases classical pseudorandom generators from computational complexity may be also
hard for propositional proof systems as strong as Frege or Extended Frege. This gives
a new class of potentially hard tautologies, the plausible hardness of which is based
upon the following observation: it is usually tricky (in the ordinary mathematical
world!) to find an explicit vector that does not belong to the image of pseudo-random
generator.

Our concrete results toward this direction are however by far more modest. The
main object of our consideration is Nissan-Wigderson generators, which are one of
the main tools in derandomization techniques. We show that if the underlying func-
tion satisfies the certain (wide) hardness condition then Nissan-Wigderson generators
based on this function are hard for Resolution and Polynomial Calculus proof sys-
tems. In case of Polynomial Calculus, we develop a new technique for proving lower
bounds in non-binomial case (e.g. when the input axioms are not binomials) based

on the pseudorandom method, the latter techniques can be interesting by itself.

In the second part we address the following fundamental question about proposi-
tional proof systems, which is in a sense “orthogonal” to the efficiency of the system.
Assume that 7 is a tautology that requires a proof of size S in the propositional
system P. In what time a P-proof of 7 can be constructed by some algorithm .4? In
otherwords, can we find a short proof efficiently if we know that such a proof exists?

Our first result in this direction states that it is NP-hard to produce a proof
which is within a factor of 28" ™7 ¢loge to the optimal. The weakness of this
bound is compensated by that it is applicable to every (sufficiently natural) proof
systemn whatsoever.

In general, the complexity of the proof search was captured by the notion of qu-
tomatizability suggested in [BPRO0]. The proof system P is said to be automatizable,
if there exists an algorithm that for any tautology 7 finds a P-proof of 7 in time

polynomial in the size of the shortest proof of . This notion plays an important role
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in Automated Theorem Proving as it allows to reduce (at least on the theoretical
level) the problem of the algorithmic proof search to the question of pure existence
of the short proof.

It was shown in a sequence of works [KP95], [BPRO0], [BDG+99] that sufficiently
strong systems (which includes Frege, Extended Frege, TC°-Frege and AC° Frege)
are not automatizable modulo some cryptographic assumptions. However their tech-
niques are not applicable to weak systems, of which Resolution and Tree-like Resolu-
tion are the simplest. Since Tree-like Resolution is known to be quasi-automatizable
(which means that the proof can be found in quasi-polynomial time) it was a plausi-
ble candidate for being automatizable. Qur second result refutes this conjecture by
showing that neither Resolution nor Tree-like Resolution is automatizable unless the
parameterized complexity hierarchy is tractable. As a by product we also establish a
hardness of approximation of a NP-complete problem in the framework of parame-
terized complexity without using the PCP theorem, which might be of independent

interest.
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1.1 Structure of the Thesis

Chapter 2 contains some basic notation and the definitions of propositional proof
systems used throughout the thesis. Chapters 3 through 6 are formally independent
and can be read in any order, however we strongly advise to read Chapter 4 after
Chapter 3 and Chapter 6 after Chapter 5. Below we give a brief summary of these
chapters along with the references on the published papers that our results are based

OIl.

e Chapter 3 ([ABSRWO00], joint with E. Ben-Sasson, A. Razborov and A. Wigder-
son) contains the definition of pseudorandom generators for propositional proofs
systems. It proves several lower bounds on the hardness of generator tautologies
for Resolution and Polynomial calculus (the latter proved only in the case when

the underlying function is the XOR function).

e Chapter 4 ([ARO1b], joint with A. Razborov)
develops the algebraic machinery to show the hardness of generator tautologies
for Polynomial Calculus for a wide class of underlying functions. It constructs
many new examples of tautologies hard for Polynomial Calculus and a simplified

lower bound on the certain version of pigeon-hole principle.

We are grateful to Jan Kraji¢ek for his suggestion to consider Pigeonhole prin-

ciple in the framework of this chapter.

e Chapter 5 ([ABMPO1], joint with S. Buss, S. Moran and T. Pitassi)

o(l)n

proves that it is NP-hard to find a proof of size within 2'°6" close to the

optimal for several propositional proof systems.

We would like to thank S. Arora for pointing out that Minimum Label Cover
can be reduced to Monotone Minimum Satisfying Assignment introduced in this

chapter.

e Chapter 6 ([ARO1lal, joint with A. Razborov)
shows that neither Resolution nor Tree-like Resolution are automatizable unless

the parameterized complexity hierarchy is tractable by randomized algorithms.
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We conclude the thesis by a brief survey on the most recent developments in

Chapter 7.
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Chapter 2

Preliminaries

2.1 Basic Notation

Let z be a Boolean variable, i.e. a variable that ranges over the set {0,1}. A literal
of z is either 7 (denoted sometimes as z!) or Z (denoted sometimes as z%). A clause
is a disjunction of literals.

For any Boolean function f : {0,1}* — {0,1}, Vars(f) will denote the set of
its essential variables. An assignment to f is a mapping « : Vars(f) — {0,1}. A
restriction of f is a mapping p : Vars(f) — {0,1,%}. We denote by |o| the number
of assigned variables, |p| & lp~1({0, 1})].

The restriction of f by p, denoted flp, is the Boolean function obtained from f
by setting the value of each z € p=1({0,1}) to p(z), and leaving each z € pl(x) as a
variable.

We say that an assignment o satisfies f if f () = 1. For Boolean functions
fioo-o5 fry g we say that fi,..., fi semantically imply ¢ (denoted fi,..., fi = g), if
every assignment to V & Vars(fi)U...UVars(fi) U Vars(g) satisfying fi,..., fx,
satisfies g as well (i.e. Yo € {0,1}V(fi(@) = = fila) =1 = g(a) =1)).

For n, a non-negative integer let [n] &f {1,2,...,n}.

19



2.2 Propositional proof systems

By a formal definition of [CR79], a propositional proof system P is a polynomially
computable function

P - {0,1}" ¥ TAUT

from the set of binary strings onto the set of all tautologies (e.g. universally true
formulas) written in some fixed encoding. A string w is called the proof of a formula
7 in P if and only if P(w) = 7. The most important function associated with 7 is
the minimal proof size defined as

Sp(T) = Pr(?ui)rle |w].

In some propositional systems instead of proofs it is common to consider refuta-
tions (e.g. proofs of contradiction) of unsatisfiable CNI’s 7. To the abuse of notation,
such formulas are also called tautologies. Below we give the defintions of propositional

proof systems used throughout the thesis.

2.2.1 Resolution

Resolution is the simplest and probably the most widely studied proof system. It
operates with clauses and has one rule of inference called resolution rule that allows

to infer a new clause from two other clauses:

AvVz BVT
Av B '

A resolution refutation of a CNF formula 7 is a resolution proof of the empty clause
from the clauses appearing in 7.

The size of a resolution proof is the number of different clauses in 1t. The width
w(C) of a clause C is the number of literals in C. The width w(t) of a set of clauses
7 (in particular, the width of a resolution proof) is the maximal width of a clause

appearing in this set.
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The story of propositional proof complexity began some 35 years ago when in the
seminal paper [Tse68] Tseitin proved super-polynomial lower bounds on the size of
any resolution refutation of (what was afterwards called) Tseitin tautologies under
one extra regularity assumption on the structure of refutation. Haken [Hak85] was
the first to remove this restriction and prove exponential lower bounds for general
resolution (for the pigeonhole principle). Urquhart [Urq87] proved exponential lower

bounds on the size of general resolution refutations for Tseitin tautologies.

Ben-Sasson and Wigderson [BW99], strengthening a result from [CEI96] (cf. Sec-

tion 2.2.2 below) proved the following width-size relation:

Proposition 2.2.1 Let 7 be an unsatisfiable ONF in n variables that has a resolution

refutation of size S. Then T has a resolution refutation of width at most w(r) +

O(vnlogS).

[BW99] also established a linear lower bound on the width of resolution refutation
for Tseitin tautologies. In combination with Proposition 2.2.1 this gave an alternate

(and much simpler) proof of the size lower bound from [Urq87].

2.2.2  Polynomial Calculus and Polynomial Calculus with Res-

olution

Polynomial Calculus, introduced by Clegg, Edmonds and Impagliazzo in [CEI96]
is a proof system that models common algebraic reasoning. Despite its algebraic
nature, Polynomial Calculus (PC) turned out extremely useful for studying “pure”
propositional proof systems.

PC operates with polynomials P € Flzy,...,x,] for some fixed field F ; a polyno-
mial P is interpreted as, and often identified with, the polynomial equation P = 0.

Polynomial Calculus has polynomials 22 — z; (i € [n]) as default axioms and has two

inference rules:

P] P2
oP, 1 gp, ®P€F (Scalar Addition)

21



and

(Variable Multiplication).
I .

A polynomial calculus refutation of a set of polynomials I is a polynomial calculus
proof of 1 from I'. The degree of a PC proof is the maximal degree of a polynomial
appearing in it. The size of a PC proofis the total number of monomials in the proof.

First non-trivial lower bounds on the degree of PC refutations were proved by
Razborov [Raz98] (for the pigeonhole principle). Grigoriev [Gri98] proved linear lower
bounds on the degree of Nullstellensatz refutations (which is a subsystem of Poly-
nomial Calculus) for Tseitin tautologies. Finally, Buss, Grigoriev, Impagliazzo and
Pitassi [BGIP01] extended the latter bound to arbitrary polynomial calculus proofs.
Following [BGIP01] and the research whose outcome is presented in this thesis, Ben-
Sasson and Impagliazzo [BI99] further simplified this argument, and derived linear
degree lower bounds for random CNFs.

[CE196] proved that small size resolution proofs can be simulated by low degree
PC proofs (Proposition 2.2.1 is a later improvement of this result). [IPS99] observed
that the same simulation works also for small size polynomial calculus proofs.

Motivated in part by this similarity, [ABRWO02] proposed to consider the following
natural system PCR extending both Polynomial Calculus and Resolution. PCR op-
erates with polynomials P € Flzy,...,%n, Z1,- - -, Z,], where Z1, ..., I, are treated as
new formal variables. PCR has all default axioms and inference rules of PC (includ-
ing, of course, those that involve new variables Z;), plus additional default axioms
z;+%; = 1 (i € [n]). The size and degree of a PCR proof are defined in the same
way as for Polynomial Calculus. It should be noted that there is not much sense in
giving a separate definition for the degree of PCR, proofs since the linear transforma-
tion Z; — 1 —z; takes a PCR-proof to (essentially) PC-proof while preserving degree.
This system, however, becomes extremely convenient when it is the number of clauses
which matters (see [ABRW02]).

PCR is an extension of PC by definition. Also, PCR extends Resolution via the

following translation. For a clause C, let Cy [(C-)] be the set of positive [respectively,
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negative| literals appearing in it. Then a CNF formula 7 gets translated into the set
of polynomials T defined by I, & { (Hiec_ 2 [Lee, :z)’ Ce r}. Clearly, 7 is

satisfiable if and only if I, has a common root in F satistying all default axioms
2 o=2 s =
;=T T =T o+ I, = 1. (21)

Moreover, it is easy to see that every width w size S resolution refutation of 7 can
be transformed into a degree (w + 1) size O(nS) PCR refutations of the associated
set of polynomials T, (cf. [BG99, Section 5]). For ease of notation, we will omit the
translation and define a PCR refutation of a CNF 7 as a PCR refutation of r.. A

PC refutation of 7 is a PC refutation of the set of polynomials

re [z JJ0-2) cer (2.2)
ZeC. meCy
obtained from I'; by the linear transformation Z; — 1 — z,.

In fact all our lower bounds for PC in Chapter 3 hold also for PCR so we will
usually use the translation to PCR. and prove PCR lower bounds which imply the
hardness for PC.

[ABRW02] observed that the two simulations from [CEIgS, IPS99] can be merged

into one as follows:

Proposition 2.2.2 Let T be a system of polynomials in the variables ZT1,.--yTn,
I1,--., Iy that have no common roots in F satisfying all default axioms (2.1), and let
ar) max {deg(P) | P € T'}. Then every size S PCR refutation of T can be trans-
formed into another PCR refutation of T that has degree at most d(T)+O(y/nlogS).

2.2.3 Frege and Extended Frege

Frege proof systems are proof systems for propositional logic. A Frege proof system
is specified by its language L and a finite set of inference and axiom schemes. The

language L is a finite set of Boolean connectives, which is complete in the sense that
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any Boolean function can be represented by an I-formula. The permissible inferences

are specified schematically as inferences

AL Ay - Ag
B

which indicates that for any substitution o of formulas for variables, Bo may be
inferred from the formulas Ao, ..., Ago. We allow & = 0 in the above scheme,
which corresponds to axioms. Finally, the Frege proof system must be implicationally
complete, i.e., if Ay, ..., Ay = B then there is a derivation of B from the assumptions
Ay, ..., A using the inferences of .

We define the size or length, |C|, of a formula C' to equal the number of symbols
in €, where each occurence of a variable or a connective is counted as a symbol.
Likewise, if P is a Frege proof, then the symbol size of P, |P|, equals the number of
symbols in P. If F is a Frege system, then F \- ¢ means that there is an F-proof of
. The symbol size of a Frege proof is the total number of symbols in the proof. The
step-length (or length) of a Frege proof is the number of lines in the proof. F Py
means that there exists an [F-proof P such that |P| < n.

Typical examples of Frege system include the ‘textbook systems’ which use the
language {A,V, -, —} and have a finite set of axiom schemes and have modus ponens
as their only other rule of inference. Of course there are many possible such textbook
systems since there are many choices for the axiom schemes; however, they are all

essentially equivalent in terms of proof length. Indeed the following holds:

Theorem 2.2.3 ([CR79, Rec76, Sta77]) If 1 and Fy are Frege systems with the
same language, then they linearly simulate each other; i.e., for all @, if By ¢ then

19} .
Iy Q) @, and vice-versa.

For Frege proof systems in differing languages, it is known that any two Frege
systems F; and F, p-simulate each other, ie., that any F;-proof can be translated
into an Fy-proof in polynomial time and vice-versa; see [CR79, Rec76| for precise

definitions and proofs of this.
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Extended Frege proof systems are propositional proof systems which allow the
introduction of abbreviations of formulas on the fly. It is conjectured that the minimal
symbol size for extended Frege proofs can sometimes be exponentially smaller than
the corresponding minimal Frege proof; however, this is still open. It is known that
the length of shortest extended Frege proofs is very closely linked (essentially linearly

related to) the number of steps in Frege proofs [CR79, Rec76, Sta77].
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Pseudorandom Generators in

Propositional Proof Complexity
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Chapter 3

Pseudorandom Generators for

Resolution and PCR

3.1 Introduction

The notion of a pseudorandom generator originally introduced by Yao [Ya082] has
become by now one of the most important concepts in theoretical computer science
penetrating virtually all its subareas. In its simplest form it says the following: a
mapping Gy, : {0,1}"* — {0,1}™ is (computationally) secure w.r.t. some circuit class
C if no “small” circuit C(yy, ..., yn) € C can distinguish between the two probabilistic
distributions Gy () and y in the sense that [P[C(G,(x)) = 1] — P[C(y) = 1]| is small
(z is picked at random from {0,1}", and y is picked at random from {0,1}™).
Given the importance of pseudorandom generators for computational complexity,
it is natural to wonder which mappings G, : {0,1}" — {0, 1}™ should be considered
hard from the perspective of proof complexity? In this chapter we propose the fol-
lowing paradigm: a generator G, : {0,1}" — {0,1}™ is hard for some propositional
proof system P if and only if for every string b € {0,1}™ there is no efficient P-
proof of the (properly encoded) statement G(zy,...,2,) # b (z1,..., T, are treated
as propositional variables). A similar suggestion is independently made in the recent

preprint of Krajicek [Kra0la).
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This definition is very natural: it simply says (to the extent allowed by our frame-
work) that P can not efficiently prove even the most basic thing about the behavior
of G,,, namely that it is not an onto mapping. In fact, one a priori reasonable concern
might be exactly if this exceedingly natural requirement is not too strong, namely
whether non-trivial generators (say, with m > n + 1) can exist at all. This concern
is best addressed by exhibiting how several known lower bound results fit into our
framework; these examples also explain some of our motivations for introducing this

concept.

Example 1 (Tseitin tautologies) Let G = (V, E) be a connected undirected graph.
Consider the (F,-linear) mapping Tg : {0,1}¥ — {0,1}" given by T(Z), Y DesuTes
where Z € {0,1}¥ is a {0,1}-valued function on edges. Then b € {0,1}V is not
in im(G) if and only if Guevb, = 1, and if we properly encode this statement in
propositional logic, we arrive exactly at the tautologies introduced by Tseitin in
his seminal paper [Tse68]. These tautologies turned out to be extremely useful in
propositional proof complexity, and the many strong lower bounds proved for them
[Tse68, Urg87, BW99, Grig8, BGIP01, Grill, ABRWO02] never depend on the partic-
ular choice of b € {0,1}Y. This means that all of them can be viewed as showing that
the generators T are hard for the corresponding proof system, as long as the graph

G itself has good expansion properties.

Tseitin generators Tg = {0,1}F — {0,1}" make little sense from the computa-
tional point of view since the size of the seed |E| is larger than the size of the output

|V|. Our next two examples are more satisfactory in this respect.

Example 2 (Natural Proofs) Let G, : {0, 1}™* — {0,1}*" be any pseudorandom
function generator that stretches n* random bits to a Boolean function in n variables
viewed as a string of length 2" in its truth-table representation. Assume that G, 1s
hard w.r.t. 20 sized circuits. Razborov and Rudich [RR97] proved that there is
no “natural” (in the strict sense also defined in that paper) proof of superpolynomial
lower bounds for any complexity class C' that can efficiently compute Gn. Their

argument shows in fact that any natural circuit lower bound techniques fail to prove
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that a given function f, does not belong to the image of 7. Stating it equivalently,
for any function f, there is no natural proof of the fact fn & im(G,). Although in
this result we are primarily interested in the case when fn is the restriction of SAT
(or any other NP-complete predicate) onto strings of length n, the argument, like in

Example 1 absolutely does not depend on the particular choice of f,.

One might argue that Natural Proofs do not correspond to a propositional proof
system at all, and that their definition rather explicitly includes the transition “the
proof works for a single f, = it works for many f,”, which provides the link to the
ordinary (randomized) definition of a pseudorandom generator. Our next example

illustrates that this drawback sometimes can be circumvented.

Example 3 (NP-natural proofs) Razborov [Raz95a] has proposed studying the
set of tautologies ~Clircuit,(f,), expressing the fact that the function frn cannot be
computed by a circuit of size ¢. Alekhnovich noted that this tautology is actually a
generator tautology: the generator G simply sends (an encoding of) a circuit of size
¢, to the truth table of the function computed by it.

Now assume there is some proof system P-proving that some Boolean function
fn is not in the image of G. This constitutes an NP-cerftificate! of hardness of f,.
Using the derandomization machinary of the NW -generator [NW94, BFNW93, W97,
IKWO1] it follows that for e.g size t = 2" (with arbitrary ¢ > 0), such a certificate
implies that MA = NP (and in particular also BPP C NP?).

Put differently, assuming MA # NP we conclude that for the generator G above
with this choice of ¢, there are no efficient proofs that f, & im(G) for any sequence
of functions f,, in any propositional proof system whatsoever! Tt should be stresed
though, that some of the authors believe the conclusion much more than the as-
sumption. Nevertheless, the connection is illuminating another relationship between

computational and proof complexity, and the importance of generators in both.

Our final example provides us with conditional lower bounds for tautologies based

1This fits the natural proof framework above and may be called NP-natural proof, only it does
not use the so called ”largeness condition” of Razborov and Rudich.
*Follows from BPP C MA of Goldreich and Zuckerman [GZ97]
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on computationally secure generators. Unfortunately it holds only for the systems

that posses efficient interpolation property.

Example 4 (Hardness in presence of Feasible Interpolation) Let Gy : {0,1}" —
{0,1}™ be an arbitrary pseudorandom generator that is hard w.r.t. poly-size (in

m + n) circuits, and let n < m/2. Following Razborov [Raz95b], let us take bit-
wise XOR of two independent copies of this generator G, : {0,1}*" — {0,1}™

G (21, oy Tny Ty -5 ) O Gu(T1y . Zn) @ Gulzh,...,x}). Then G is hard for
any propositional proof system P which has the property of feasible interpolation.
System P is said to have feasible interpolation iff whenever there exists a polynomial
size P-proof of the formula ¢(z,y) V ¢(z,z) there also exists a polynomial circuit
C(z) that given z decides whether @(z,y) is true for all y or ¥(z, z) is true for all z.
(for more details see e.g. [Kra97] or [BP98]).

Indeed, assume for the sake of contradiction that 7, is easy for a proof system
that possesses feasible interpolation. This means that in this system there exists a
polynomial size proof of b ¢ im(G?,), for some string b € {0,1}™. Let r be picked
uniformly and at random from {0,1}™, and consider the propositional formula en-
coding the statement r ¢ im(Gy,) Vr ¢ im(Gx @b). The fact b € im(G;,) implies that
this is a tautology and thus, by feasible interpolation, there exists a polynomial size
circuit C that given = correctly tells us whether » ¢ im(G,) or 7 € im(G, ©b). One

of these answers occurs with probability at least 1/2; thus, C can be used to break

the generator G.

The study of such a keystone concept in computational complexity as pseudoran-
dom generators, but in the new framework of proof complexity, should be interesting
in its own right. As suggested by the examples above, we also keep one quite prag-
matic goal in mind: we believe that pseudorandomness is methodologically the right
way to think of lower bounds in the proof-theoretic setting for really strong proof
systems. Whenever we have a generator G : {0,1}* — {0,1}""! which is hard for
a propositional proof system P, we have lower bounds for P. If we manage to in-

crease significantly the number of output bits and construct a poly-time computable
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function generator G,, - {0,1}7" — {0,1}*" that is hard for P, we, similarly to
[RR97, Raz95b), can conclude that in the framework proposed in [Raz95a] there are
no efficient P-proofs of NP ¢ P /poly. 3

In this chapter we begin looking at a class of generators inspired by Nisan-
Wigderson generator [NW94] on the one hand, and by Example 1 on the other. Let 4
be an (mxn) 0-1 matrix, gy (zy,...,z,), ..., Im(z1,. .. » Tn) be Boolean functions such

def

that g; essentially depends only on the variables X;(4) % {zjla; =1}, and G, :

{0,1}" — {0,1}™ be given by Go(zy,... z,) & (92(z1,. .., 3y), .. S (T, z,).
Nisan and Wigderson [NW94] proved that if A satisfies certain combinatorial con-
ditions (namely, if it is a (k, s)-design for suitable choice of parameters), and the
functions g, are computationally hard, then Gr is a good pseudorandom generator
in the computational sense. In this chapter we study which combinatorial properties
of the matrix A and which hardness assumptions imposed on ¢; guarantee that the
resulting generator (3, is hard for such proof systems as Resolution or Polynormial
Calculus.

The framework of proof complexity, however, adds also the third specific dimen-
sion that determines hardness properties of G,. Namely, in our examples the base
functions g; are at least supposed to be hard for the circuit class underlying the
propositional proof system P. Thus, P can not even express the base functions, and
we should encode them using certain extension variables. Using these extension vari-
ables, our tautologies can be written as 3-CNFs, and thus can be expressed in any
proof system. The choice of encoding makes an important part of the framework.
We propose three different encodings - functional, circuit, and linear encodings, all
natural from both computational and proof complexity viewpoints.

Our results are strong lower bounds for each of these encodings (and appropri-
ate choices of base functions and combinatorial properties of the matrix A} in such

standard proof systems like Resolution, Polynomial Calculus, and PCR (which com-

®The general idea of this reduction is similar to the reduction in Example 2: the propositional
system can not prove efficiently that an explicit NP-complete function does not belong to the image
of G. However, for every particular system the details of implementation are a little bit different,
and one has to be extra careful for weak proof systems.
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bines the power of both). Naturally, the results get weaker as the encoding strength
Increases.

We strongly believe that this set of tautologies can serve as hard examples for
much stronger systems, and specifically that the hardness of the base functions in
the generators should be a key ingredient in the proof. This factor is evident 1n
our modest results above, and if extended to stronger systems, it may be viewed
as a generalization of the feasible interpolation results, reducing in a sense proof

complexity to computational complexity.

The chapter is organized as follows. In Section 3.2 we give necessary definitions
and describe precisely combinatorial properties of the matrix 4, hardness conditions
imposed on the base functions g; and types of their encodings needed for our purposes.

The next section 3.3 contains our hardness results for resolution width and polyno-
mial calculus degree that hold for the most general functional encoding similar in spirit
to the Functional Calculus from [ABRWO02]. These can be considered as far-reaching
generalizations of lower bounds for Tseitin tautologies from [BW99, BGIP01]. We also
state here size lower bounds directly implied by our results via,the known width/size
and degree/size relations.

Section 3.4 contains a stronger lower bound for the weaker linear encoding. In
Section 3.5 we consider the question of maximizing the number of output bits m =
m(n) in the generators constructed in the previous sections. For that purpose we show
that with high probability a random matrix A has very good expansion properties.

The chapter is concluded by several open questions in Section 3.6.

3.2 Preliminaries
Let A be an (m x n) 0-1 matrix,

J(A) ¥ {jen]lay =1}, (3.1)
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X;(4) % {z;17 € Ji(A) }and g1(x1,...,24),. .., gm(z1, . .., z,) be Boolean functions
such that Vars(g;) C X;(A). We will be interested in systems of Boolean equations

Gi(z1,...,z,) =1
(3.2)

In(Ty,.. ., 2,) = 1.

We want to state combinatorial properties of the matrix 4 and hardness conditions
of the base functions g; such that if we properly encode the system (3.2) as a CNF
7(A, §), then every refutation of this ONF in a propositional proof system P must
be long. This sentence has four ingredients, and the necessary definitions for each of

them are provided fairly independently.

3.2.1 Combinatorial properties of the matrix A

All hardness results proved in this chapter will be based on the following combinatorial

property generalizing the classical “edge-expansion” property for ordinary graphs.

Definition 3.2.1 For a set of rows I C [m] in the matrix A, we define its boundary
d4(I) as the set of all ; € [n] (called boundary elements) such that {a;;1i €T}
contains exactly one 1. We say that A is an (r, s, ¢)-ezpander if |J;(A)| < s for all
i € [m] and VI C [m](|I) < r = |84(1)] 2 ¢ - |1]).

Let us relate (r, s, ¢)-expanders to several other combinatorial properties already

known from the literature.

Example 5 For an ordinary graph G = (V,E), its edge-ezpansion coefficient ce(G)
is defined by
def . e(UV--T)
ce(G) = min —2— —7
=)= BB, T
where e(U, W) is the number of edges between U and W (see e.g., [Alo98] and the
literature cited therein). Let Ag be the incidence matrix of a graph G with m vertices

and n edges (i.e., G, % 1 if and only if v € e), and let d be the maximal degree of a

vertex in G. Then Ag is an (m/2, d, c¢)-expander if and only if ce(G) > c.
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Example 6 Let us turn to the combinatorial property originally used in [N91, NW94].
A matrix A is called (k, s)-design if |J;(4)| = s for all i € [m] and

[T (A) N T, (A)] < K (3-3)

for all 1 < 4, < i» < m. We have the following:
Fact 1 Every (k, s)-design is also an (r,s, s — kr)-ezpander for any parameter 7.

Proof. Let I C [m] and |I| < r. Then, due to the property (3.3), every Ji(A) with
i € I has at most k - (r — 1) elements which are not in 94(7). Hence it contains at

least s — k - (r — 1) elements which are in 0a(7).m

3.2.2 Hardness conditions on the base functions

As explained in the Introduction, we are interested in the methods which, given a
mapping Gy, : {0,1}* — {0,1}™, allow us to show that the fact b & im(Gy,) is hard
to prove for every b ¢ {0,1}™. This means that we want our lower bounds on the
refutation complexity to work uniformly not only for the system (3.2) but also for all

2™ shifted systems
91(551, e ,Cﬁn) =b

9m($17 LR | mn) = bm:
b € {0,1}™ We will enforce this simply by requiring that the conditions placed on

the base functions g1, ..., gm are symmetric, i.e., they are satisfied by some f if and

only if they are satisfied by (—f).

Definition 3.2.2 A Boolean function f is £-robust if every restriction p such that

f|, = const, satisfies |p| = £

Clearly, this property is symmetric. The most important example of robust func-

tions are the PARITY functions z1 @ --- @ x, ® b, b € {0,1}, which are n-robust.
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Our strongest hardness results for the polynomial calculus work only for this specific
function.

In fact, £-robust functions are already well familiar from the computational com-
plexity literature. [FSS84, Ajt83, Yao85, Has86] proved computational lower bounds
for £-robust functions (when £ is close to n = [Vars(f)|) w.r.t. bounded-depth cir-
cuits. (1—@)n-robust functions (where @ is meant to be a small positive constant) were
recently used in [BST98] for obtaining strong lower bounds for branching programs
(property “P(6)”). In this chapter we will use f-robust functions for constructing
generators that are hard for propositional proof systems. It is easy to see that most

functions on n-bits are (say) 0.9n-robust.

3.2.3 Encodings

Having constructed the system (3.2), we still should decide how to represent it in
propositional logic. This step is non-trivial since we are deliberately interested in
the case when the propositional system P can not directly speak of the functions
91,--.,9m. We consider three major possibilities: functional, circuit and linear en-
codings: all of them lead to CNFs that in fact w.lo.g. can be further restricted to
3-CNF's (see the proof of Corollary 3.3.5 below).

Functional encoding

This is the strongest possible encoding which is also universal in the sense that it
obviously simulates any other conceivable encoding (in fact, it is a “localized” variant

of the Functional Calculus system considered in [ABRWO02]).

Definition 3.2.3 Let A be an (m x n) 0-1 matrix. For every Boolean function f
with the property 3i € [m](Vars(f) C X,;(A)) we introduce a new extension variable
ys. Let Vars(A) be the set of all these variables. For the sake of convenience,
single variables sometimes will be denoted as x; instead of Ys,- For a clause C =
Yp V.- Vyp in the variables Vars(A4), denote by [|C|| the Boolean function in the

del rc,
- J1

variables z,, ..., x, given by |C] V...V fl
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Given Boolean functions § = (g1, . - -, §) Such that Vars(g;) C X;(A), we denote
by 7(A, §) the CNF in the variables Vars(A) that consists of all the clauses €' =

Y3 V...V yj for which there exists ¢ € [m] such that
Vars(fi)U...UVars(fe) € Xi(A) (3.4)

and

9. = IC]I- (3.5)

Fact 2 7(A, §) is satisfiable if and only 1f the system (3.2) is consistent.

Proof. If (a,...,a,) is a solution to (3.2), then the assignment which assigns every
ys to f(ay,...,an) is satisfying for 7(A, ). For the other direction, let b= (brlys €
Vars(A)) be a satisfying assignment for 7(A,g). Let a; et b;; then, using those
axioms y5 V...V yp from 7(A, §) for which fi* V...V fpr = 1, we can show by
induction on the circuit size of f that b; = f(ay,....a,) for every y; € Vars(A). In
particular, gi(ay, .. .,an) = by, = 1 (since 7(A, §) contains the axiom y,,). Thus, the

vector (ay,...,a,) is a solution to the system (3.2).m

Circuit encoding

This encoding is much more economical in terms of the number of variables than
the functional encoding. Also, it looks more natural and better conforming to the
underlying idea of the Extended Frege proof system. The tautologies under this
encoding will be polynomial-size as long as all g;’s have poly-size circuits, and thus
are potentially hard for Frege (assuming P /poly contains functions computationally

hard for NC!/poly).

Definition 3.2.4 Let A be an (m x n) 0-1 matrix, and C, ..., Cn be single-output
Boolean circuits over an arbitrary fixed finite basis, C; being a circuit in the variables
X;(A). For every i € [m] and every gate v of the circuit C; we introduce a special

extension variable y,, and we identify extension variables corresponding to input
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gates labeled by the same variable x;. Let Varss(A) be the set of all these extension
variables.

By 7(A4, é) we denote the CNF that consists of the following clauses:

Loyl V... Vyiey ys %) whenever v = (v, .. ., vg) is an instruction of one

of the circuits Cy,...,Cp, and € € {0,1}¢ is an arbitrary vector;
2. yy, when v; is the output gate of C;, for all i € [m).

For a circuit C, let ||C|| be the Boolean function it computes.

Fact 3 7(A4,C) is satisfiable if and only if the system ||Ch]] = ... = |Cul| = 1 s

consistent.

Proof. Similar to the proof of Fact 2.m

Fact 4 There ezists a substitution o of variables from Varsz(A) by variables from
Vars(A) such that o(m(A,C)) is a subset of the set of clauses (4, ]|C|). In par-
ticular, every refutation of 7(A, C") in every “reasonable” propositional proof system
can, be transformed (by applying o) into a refutation of T(A, ||C||) in the same system

which 1s simpler w.r.t. any “reasonable” complezity measure.

Proof. Let o(y,) o Yllol}» where ||v|| is the function computed by the gate v.m

Linear encoding

This encoding makes sense only when the functions ¢; are F,-linear forms (for histor-
ical reasons, this special case of NW-generators is often referred to as Nisan genera-
tors). In some cases it is more economical than the functional encoding in terms of the
number of variables. Also, it is much better structured, and we will take advantage

of this in Section 3.4.

Definition 3.2.5 Let A be an (m x n) 0-1 matrix. For every J C [n] such that
Ji € [m](J C J;(A)) we introduce a new extension variable y; (with the intended

meaning y; ~ @;esx;). Let Varsg(A) be the set of all these variables.

39



Given a Boolean vector b € {0, 1}™, we denote by 7(A, b) the CNF in the variables

Varsg(A) that consists of the following clauses:

1. ¥ V... Vy5, whenever there exists ¢ € [m] such that J, U...UJy C Ji(A),

the symmetric difference J; & ... A Jyis empty and & & ... @ & = 1;
2. yl}’;_(A), for all 7 € [m].
Let us denote by (A, b;) the Boolean function €B,¢j,4) %; ® b;.

Fact 5 7o(A,b) is satisfiable if and only if the system T1(A, b)) = Ea(A ) = ... =

Y (A, by) =1 of linear equations over Fy s consistent.

Proof. TFollows from the observation that the conjunction of clauses y5, V...V Y5

for all & @ ... ® & = 1 is semantically equivalent to the formula @f:l ys, =0.m

Fact 6 There erists a substitution o of variables from Varsg(A) by variables from
def

Vars(A) such that o(tg(A,D)) is a subset of the set of clauses (A, 5(A,b) =
T(A, Zl(A, bl), EQ(A, bg), P ,Zm(A, bm))

def
Proof. o(y;) = Y@, e ;M

It might be instructive to look at the place occupied in our framework by original
Tseitin tautologies (cf. Examples 1,5). Let Ag be the incidence matrix of an undi-
rected graph G. Then our framework provides three different ways? to talk of Tseitin
tautologies for graphs G of arbitrary degree. All these possibilities are reasonable in
the sense that although the resulting CNF 7 may have a huge size, it always possesses
a sub-CNF of polynomial size that is still unsatisfiable. The fourth (unreasonable!)
encoding is primitive: we allow no extension variables at all and simply represent the
functions %,(4,b;) themselves as CNFs of exponential size. For graphs of bounded

degree (which is the only case researchers were interested in prior to this research), the

4For the circuit encoding we additionally have to fix some natural circuits computing the functions
=i(A,b;).

40



subtle differences between the four encodings disappear, and the whole rich spectrum
of various possibilities collapses to ordinary Tseitin tautologies.

In fact, the unreasonable primitive encoding can in principle be considered in our
framework as well. Namely, as we will see in Section 9, good (r, s, ¢)-expanders exist
even for large constants s (say, s = 10). And for constant values of s results proved in
any of our reasonable encodings can be translated to the primitive encoding with only
constant time increase in the size of the tautology. The primitive encoding, however,
is very counterintuitive to the main idea that the base functions g;’s should be hard
for the circuit class underlying our propositional theory, and to the hope of using
these tautologies for stronger proof systems. For this reason we do not discuss here
neither the primitive encoding itself, nor the trade-off between the tautology size and

the bounds appearing in this encoding when s — occ.

3.3 Lower bounds on width and degree in the func-
tional encoding

In this section we establish strong lower bounds on the resolution width and PC
degree in the most general functional encoding, and derive from them some size lower
bounds. Our results in this section can be viewed as a far-reaching generalization of
the corresponding lower bounds for Tseitin tautologies from [BW99, BGIP01)].

But first a word about important and less important parameters. The parameters
8,¢,1 of the defining tautologies will feature in most of the calculations (recall that
s 15 the number of 1’s in each row of the matrix A, which is also the number of
arguments to each function g;, ¢ is the expansion factor of the matrix A, and £ will
lower bound the robustness of the 9i’s). We will show in Section 3.5 that almost
all matrices satisfy ¢ > 0.9s. Similarly, most functions satisfy £ > 0.9s. Assuming
this, Theorem 3.3.1 and Theorem 3.3.7 provide £2(r) lower bounds on the width of
Resolution and degree of Polynomial Calculus, respectively (recall that 7 is the key

parameter defining what size sets expand, and can be taken to be essentially n/s;
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see Section 3.5 for details). Our corollaries for the size lower bounds implied by the

width and degree lower bounds will be stated (for simplicity) only for this situation.

Theorem 3.3.1 Let A be an (r, s, c)-ezpander of size (m X n), and gu,. .., gm be -

robust functions with Vars(g;) C X;(A), where c+ £ > s+ 1. Then every resolution

r{ct+{—s)

refutation of T(A, §) must have width > = —;

Proof. The proof follows the ideology developed in [BW99]. We define a measure
1 with sub-additive growth on the clauses, we show that the measure of the empty
clause is large (p(0) > r), hence there must be a clause with medium size measure
(r/2 < p(C) < 7). We show that such a clause must have large width.

Fix an (r, s, ¢)-expander A of size (m x n) and f-robust functions g1, ..., gm with

Vars(g:) € X;(A), where c+£ > s+ 1.

Definition 3.3.2 For C a clause in the variables Vars(A), define u(C) to be the

minimal size of I C [m] such that the following pair of conditions hold:
Vy; e C el (Vars(f) C X;(A)); (3.6)

{giliel}I[C] (3.7)
Claim 3.3.3 1. For a clause C with /2 < u(C) <7, w(C) 2 rlettos)

2. u(0) >r.

Proof. Part 1) Let I be a set of minimal size satisfying Definition 3.3.2. Since
11| < r, we get [0a(T)] = ¢ [I]. Let us partition I into Iy, any minimal subset
satisfying (3.6), and I; = I \ Jo. Notice that by the minimality of I, removing any
row from I; will ruin property (3.7).

We claim that for any 4, € Iy, Ji; (A) has small intersection with 84(I). Namely,

[7i, (A) Noa)] < s — £ (3.8)

42



Indeed, as we noticed above, {g;|i € I\ {i1}} I~ |C|. Let a be any assignment
such that g;(a) =1 (1 € I\ {i1}) but |C|{a) = 0. Let p be the restriction given by

p(:t:) def Of(-rj) if j & as(1) N J; (A4)
’ wif § € 8a(I) N Ji, (A).

Then, since p is totally defined on Vars(g;) for ¢ # ¢, and also on Vars(|C|) (by
(3.6) and 4, & Iy) we have g/, = 1 (¢ # i) and C|, = 0. Hence, using (3.7), we
conclude that ¢;, |, = 0. Since g;, is £-robust and |.J;, (A)| < s, this implies the desired
inequality (3.8).

Now we may sum up:

c- |1

IA

[0a(1)]

< s ||+ (s — O] Y (3.9)

= (s=Ol|+ £ L]

(A

(s=OI+ £ w(C),

/

which implies w(C) > m%ei) Recalling that |I| > r/2, we get our bound. Part 1)
is proven.

Part 2) Suppose the contrary, that is 4(0) < r. Then we can repeat the first
part of the above argument (since that part did not use the condition |I| > r/2) and
still get (3.9). But now [ = 0, hence (3.9) alone implies a contradiction with the

expansion property. This proves part 2).m

Claim 3.3.4 Any resolution refutation of (A, §) must include a clause C withr/2 <
u(C) <r.

Proof. p is sub-additive, i.e. if C' was derived from Cj, C| by a single resolution

step, then p(C) < p(Ch) + p(Cy). Additionally, for any axiom C, u(C) = 1. The
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statement now follows from Claim 3.3.3(2).m
Theorem 3.3.1 is immediately implied by Claims 3.3.4, 3.3.3(1).m

In order to see which size lower bounds are implied by Theorem 3.3.1 via Propo-
sition 2.2.1, we consider only the typical (and most important) case c+£—5 = Q(s),

for which our width lower bound is Q(r).

Corollary 3.3.5 Let € > 0 be an arbitrary fized constant, A be an (7, s, €s)-ezpander
of size (m x n), and g1, . .., 9m be (1 — €/2)s-rodbust functions. Then every resolution

refutation of T(A, §) must have size exp (Q (—mT—;T)) /2°.

Proof. Fix a resolution refutation of 7(A, §) that has size S. It is easy to see that
every axiom in 7(4, §) contains a sub-clause of width < 2° which is also an axiom of
7(A, §). Moreover, this latter clause can be easily inferred in O(2%) steps from those
axioms in 7(A4, §) that have width < 3. This allows us to replace the original refuta-
tion by a refutation that may have a slightly bigger size O(S - 2°) but uses only those
axioms from (A, §) that have width < 3. In this new refutation we infer all clauses of
7(A, §) that were used in the original refutation from width 3 clauses and then apply
the original refutation itself. Hence, by Proposition 2.2.1, 7(A, ) also has a reso-
lution refutation of width O (\/|VaTs(A)| -log(S - 25)) <0 (\/77 22° - log(S - 25)).

Comparing this with the lower bound of Q(r) that comes from Theorem 3.3.1, we

finish the proof of Corollary 3.3.5.m

We can obtain much better size lower bounds (i.e., get rid of the disappointing
term 2% in the denominator) for the circuit encoding. We further confine ourselves

to the optimal case when the circuits C1, ..., Cp, have size O(s).

Corollary 3.3.6 Let ¢ > 0 be an arbitrary fived constant, A be an (r, s, es)-expander
of size (m x n), and Cy,...,Cn be single-output Boolean circuits over arbitrary fized
finite basis such that C; is a circuit of size O(s) in the variables X;(A), and all

functions ||Cil| are (1 — €/2)s-robust. Then every resolution refutation of (A, C)
must have size exp (Q (:n—zs))
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Proof. By Fact 4 and Theorem 3.3.1, every resolution refutation of 7(A4, é) must
have width Q(r). Since [Varsa(A)| < O(ms), the required bound immediately follows

from Proposition 2.2.1.m

Our second major result in this section generalizes the bound from [BGIPOI].
Unfortunately, it also inherits all the limitations of their technique: essentially the
only base functions ¢, . . . 9m we can handle are F,-linear forms, and for char(F) = 2
our approach fails completely (cf. [Gri98]). On the positive side, note that although
we do require the linearity of the base functions, the bound itself still holds for the

most general functional framework.

Theorem 3.3.7 Let A be an (r, s, c)-ezpander of size (m % n), and bi,...,b, €
{0,1}. Then every PCR refutation of T(A,E(A, b)) over an arbitrary field F with
char (F) # 2 must have degree > <.

Proof. Asthe first step toward proving Theorem 3.3.7, we show one simple reduction
to a lower bound problem about PC refutations in the originael variables Tiy..., Ty,

This step is very general and does not depend on the linearity of the base functions

;.

Definition 3.3.8 For a Boolean function f(z,, ... »Zn), Pr(T, ..., x,) is the (unique)

multi-linear polynomial such that

0if fla)=1
Prla) = _
Lif f(a) =0
for all o € {0, 1},
Lemma 3.3.9 Fyr any (m x n) 0-1 matric A and any functions gy,... 9. with

Vars(g;) C X;(A), every degree d PCR refutation of 7(A, §) can be transformed into
a PC refutation of the system

Py=..=P, =0 (3.10)
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(1n the original variables z,,...,z,) that has degree < s - d.

Proof of Lemma 3.3.9. Let us consider some PCR refutation 7 of 7(4, ). Sub-
stitute in 7 the polynomial Py (z1,...,,) for every variable y5. Since deg(Pj) < s
for any f(zi,...,2,) such that Vars(f) C X;(A) for some i € [m], the degrees of
all lines resulting from this substitution are at most s - d. Moreover, any axiom from
7(4, §), as well as default axioms, gets transformed into a polynomial P such that
fof some ¢ € [m] P contains only variables from X;(A), and is a semantical corollary
of P, on {0,1}*4). Hence, it can be inferred from P, in degree < s, using only
variables from X;(A). Appending these auxiliary inferences to the beginning of the
transformed refutation m, we obtain the required PC refutation of the system (3.10).

Lemma 3.3.9 is proved.m

Thus, in order to complete the proof of Theorem 3.3.7, we should establish the
T lower bound on the degree of any PC refutation 7 of the system (3.10) for ¢; =
(A, b).

The proof is based on the elegant connection between PC-degree and Gaussian
width found in [BI99]. With this connection in hand, we may quote here, word by

word, Theorem 3.3 from [BI99], plugging in our current parameters.

Theorem 3.3.10 For A an (r, s, c) expander, {g;} linear equations mod 2, and F a
field of characteristic # 2, any PCR refutation of Py, = ... = P, = 0 has degree

rc
> 5.

Theorem 3.3.7 follows.m

Corollary 3.3.11 Let e > 0 be an arbitrary fized constant, A be an (r, s, €s)-ezpander
of size (m x n) and b, ..., b, € {0,1}. Then every PCR refutation of 7(A, L(A, b))
over an arbitrary field F with char(F) # 2 must have size exp (Q (;};-5)) /2.

Proof. Identical to the proof of Corollary 3.3.5, using Proposition 2.2.2.m
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Corollary 3.3.12 Let € > 0 be an arbitrary fized constant, A be an (r, s, €5)-expander
of size (m x n), by,..., b, €{0,1}, and Cy,...,C,, be single-output Boolean circuits
over arbitrary fized finite basis such that C; is a circuit of size O(s) in the variables
X;(A) that computes the function T;(A,b,). Then every PCR refutation of 7(4,C)
over an arbitrary field F' with char(F') # 2 must have size exp (Q (ﬁ))

ms

Proof. Identical to the proof of Corollary 3.3.6, using Proposition 2.2.2.m

3.4 Size lower bounds for linear encoding

In this section we show better lower bounds (although our requirement on the expan-
sion rate is somewhat stronger) on the size of PCR, refutation for the more structured
linear encoding than those provided by Corollaries 3.3.11, 3.3.12. We will apply the
random restrictioﬁ method for killing large clauses rather than directly refer to the
general degree/size relation from Proposition 2.2.2. In this sense our approach is

similar in spirit to that of [BP96].

Theorem 3.4.1 Let A be an (7, s, %s)—empander of size (m x n), and let by, ..., b, €
{0,1}. Then every PCR refutation of 7¢(A, B) over an arbitrary field F with char(F) #

2 must have size exp (Q (5))

Proof. As the first step toward proving Theorem 3.4.1, we show how to get rid of
the variables y; for large (= of size > s/2) sets J. For technical reasons, we also

switch during this step from the linear encoding to the functional one.
Definition 3.4.2 For an (mxn)-matrix A, the set of variables Varsg(A) C Vars(A)
def

consists of those y; € Vars(A) for which f has the form D,cs ;. Let also %@(A) =

{y(®jerj) € Varsg(4) | |J] < 3/2}.
T (A, b) [To (A, b)] is the set of those axioms in (A, i(A, b)) that contain variables

only from Varsg(A) [from Ws@ (A), respectively].

It is worth noting that 74(A, b) possesses the following clean algebraic description:

it g; = ¥;(a,b;), and fi,..., f, are F»-linear forms then (3.5) holds if either the system
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of linear equations fi = &, ..., fu = &, is inconsistent or the vector space spanned

by these equations contains g;.

Lemma 3.4.3 Suppose that A is an (2, s, %s)—empander. Then every PCR refutation
of Te(A, b) can be transformed into o PCR refutation of 7o (A, b) that has the same

size.

Proof of Lemma 3.4.3. For every two distinct rows 4; and i, we have [04 ({41, i2})] >
35 which implies |J;, (4) N Ji,(A)] < s/2. Hence, for every J C [n] with |J| > s/2
there can exist at most one row i € [m] such that J C J;(A). Therefore, the following

mapping:

Yozl jesy if 7] < 8/2
YDz, jesians} D bi if [ J] > /2 and J € Ji(A)

Yg

is well-defined. Tt is easy to see that it takes every axiom from 74(A,b) to an axiom

from 74(A, b) which proves Lemma 3.4.3.m

Now, for a monomial m = y3 .. -y in the variables %@(A), we define its
A-degree deg ,(m) as the minimal cardinality of a set of rows I with the property
Vars(f)U...UVars(fs) € U,es Xi(A). The A-degree of a polynomialis the maximal
A-degree of a monomial in it, and similarly the A-degree of a PCR proof is the
maximal A-degree of a polynomial in it. The following lemﬁla rephrases Theorem

3.3.7 for deg 4:

Lemma 3.4.4 Let A be an (r, 5, ¢)-ezpander of size (mxn), and by, ..., by € {0,1}.
Then every PCR refutation of T(A, S (A, b)) over an arbitrary field F with char(F) #

2 must have A-degree > 2.

Proof of Lemma 3.4.4.
The only difference from Theorem 3.3.7 is that we consider here A-degree instead
of ordinary one. It is easy to see by inspection that this change does not affect the

reduction in Lemma 3.3.9, and the same proof applies here as well.m
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Lemmas 3.4.3 and 3.4.4 determine the strategy of the rest of the proof (cf. [BP96]).
We want to hit the prospective refutation of 75(A4,b) by a random restriction p in
such a way that p preserves the structure of T(A,E(A, b)), and, if the size of the
original refutation is small, with a high probability also kills all monomials in the

variables Iar/s@(A) that have high A-degree.

Definition 3.4.5 For a set of rows I, let us denote by M; the set of all restrictions
p such that p~'({0,1}) = |J,.; X:(4) and p satisfies all equations X;(A4, b;) = 1 for all
tel.

Note that if [7| < r, then, since A is an (r,s, Is)-expander, the linear forms
D {zjlz; € Xi(A)} = Zi(A, b) @ b; (i € I) are linearly independent (because every
its subset has a form that contains a boundary variable) and thus M; is a non-empty
linear subspace.

Let A|; be the result of removing from the matrix A all rows 7 € I and all columns
3 € Uier Ji(A). Any restriction p € M, can be naturally extended to the variables
from Vars(A) by letting p(y,) « Yf),- p takes variables from Vars(A) to variables
from Vars(A|r). Moreover, those y; for which 3i € I (Vars(f) C Xi(A)) are set to
a constant. Finally, p always takes axioms from 7(4, §) to axioms from 7(A|, §|,).
The only remaining problem is that A|; may not inherit good expansion properties:
it is easy to get an example showing that it may even contain an empty row! We
circumvent this difficulty by further removing all rows that have large intersection
with | J),.; Ji(A), and show in the following lemma that this can always be done in an

efficient manner.

Lemma 3.4.6 Let A be an (r, s, c)-ezpander. Then every set of rows I with |I| < r/2
can be eztended to a larger set of rows I D I such that 1] < 2-|I| and Al; is an

(r, 3,3c — 2s)-expander.

Proof of Lemma 3.4.6. Let us recursively add to I new rows (one row i, at a

time) with the property |J;,(A) N (Ujep Ji(4))| > 2(s — ¢), where I' is the current
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value of I. We claim that this process will terminate (i.e., no new row can be added)
in less than |I| steps.

Suppose the contrary, and let I be the set of cardinality 2 - |I| reached after |/
steps. Then every row ip € I\ I contains less than |J;,(A) —2(s - ¢)| < (2¢ — s)
boundary elements from 84(1). Hence, |84(I)| < s |I| + (2¢ = s) - |I| = 2¢- ]I}, a
contradiction.

We choose as our { the result of termination of this process. Let I be a set of
rows in A|; (e, [y N1 = B) of cardinality at most 7. Then O4),(Io) = da(lo) \
Ui Ji(A). Since for every @ € I, | io (A) M (Uses Ji(A))| < 2(s — ¢), we have the
bound |BA|I.(IO)| > [0a(Io)| — 2(s —¢) - |[Io| = ¢ - |To] — 2(s — ¢)|To| = (3¢ — 2s) - |Iy|.

Lemma 3.4.6 is proved.m

Now we are ready to finish the proof of Theorem 3.4.1. Fix a PCR refutation
7 of F5(A,b). Assume w.lo.g. that 18 divides r, and pick at random a set of rows
I of cardinality /3 (we are using boldface to stress that it is a random variable).
Choose arbitrarily I D I according to Lemma 3.4.6, i.e., such that lfl < 2{ and A'f
is an (r, s, s/4)-expander. Pick p € M 7 at random, and apply this restriction to our
PCR-refutation 7. This will produce a PCR-refutation p(w) of %EB(A|I~, p(S(A,b)).
By Lemma 3.4.4 (with ¢ = s/4), p(m) must contain a non-zero monomial p(m) of
A|I~-degree > r/18. Thus, 7 contains a monomial m that has A-degree > r/18 and

is not killed by p. In order to finish the proof, we only have to estimate from above
the probability P[p(m) # 0] for every individual monomial m with deg,(m) > r/18.

Fix any such m = yi .. .y}i, and recall that fi,..., fs are Fy-linear forms of
weight < s/2. W.lo.g. assume that fi,..., f; form a linear basis of the space
Span(fi,..., fa). ThenJ!_, Vars(f,) = ULI Vars(f,) and, therefore, deg4(y5, - .. y}}) =
deg,(m) > r/18. Hence, w.lo.g. we can assume from the very beginning that
fi,..., fq are linearly independent.

Let us now introduce one variation of the notion of A-degree. Namely, for m =
yi - yp, let deg’s(m) be the minimal cardinality of a set of rows I such that these

rows “cover” m in the stronger sense Vv € [d]F € I(Vars(f,) € X;(A)). Clearly,
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deg,(m) < deg);(m) (and < deg(m)). Also, deg’, is “continuous” in the sense that
for every monomial m, and every variable y%, degs(m) < deg); (m-y5) < degly(m)+1.
Therefore, we can gradually remove variables from the monomial m, one variable at
a time, until we find in it a sub-monomial m’ such that deg!y(m') is ezactly equal
to r/18. For ease of notation, assume w.l.o.g. that deg’,(m) = 7/18 for the original

monomial m.

Fix now any set of rows Iy with |I;| = r/18 and such that
Vv € [d]Fi € I)(Vars(f,) C Xi(A)). (3.11)

We estimate the probability P[p(m) # 0] as follows:

100m [T)=r/3

2
o 12 g

P[p(m)#O]SP[[IoﬂI|< i J+ max  P[p(m) # 0| |I = I|].

Since |Ip| = r/18 and |I| = r/3, we can estimate the first term by Chernoff inequality

as

?‘2

P[umI[ < IOOm] <exp (-0 (r?/m)). (3.12)

For estimating the second term, fix any individual I such that || = r/3 and
[oNI| > ﬁ, andlet f D I bea corresponding set of rows satisfying the conclusion
of Lemma 3.4.6. We want to estimate P[p;(m) # 0], where p; is picked at random
from M; (thus, p; is a random variable that results from p after revealing I = ). |

Let Iy = Iy 1, I = {i),...,is}; £ > 72/100m. Since I, is minimal with the
property (3.11), for every v € [£] we can choose f € {fi,- .., fa} such that Vars(f) C
X, (A) but Vars(f) € X,(A) for any other i € I, Hence, we can assume w.l.o.g.
that Vars(f,) C X; (A) forv=1,... ¢

Now, let V; o Span(fi,..., f¢) be the F,-linear space generated by the linear
functions fi,..., fs, and let V & Span ({@jEJi(A) T; ( 1€ f}) Plp;(m) #£ 0] <
Plpi(y5 .. .y7) # 0], and the latter probability is less or equal than 2-(%%%n?) (here

(Vo:Vpn) ¥ dim(Vp) — dim(V,N V) is the standard co-dimension of linear spaces).
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To see this, note that p; gives {0, 1}-values to all variables of fi,..., fe. Let k= (Vy:
VonV). We can choose k linear forms f;, fi;, ---; fi. € {f1, .-, f¢} such that the family
fi - Ji, 18 linearly independent modulo V. Then the values p;(fi,), ..., pj(fi,) are
independent, each equal 0 with probability 1 /2. Thus, the probability that no vy, is
killed is less or equal 2%,

Clearly, 2~ (W¥0V) = 9dim(VoV)~£  Hence, we only have to upper bound dim(Vp N
7). Let us denote by I+ the set of all rows 5 € I which appear with coefficient «; # 0

in at least one sum of the form
Po-| P = (3.13)

that happens to belong to V4, and let 7+ Span ({GajeJi(A) T4 € I+ }) Then
VoV C VNV by our choice of i+, and dim(Vo N V) < dim(V+) < |7+,

In order to bound from above |IT|, we apply the expansion property to I(’)Uf + (its
cardinality does not exceed r/18+2r/3 < r). We get {0a( sOIT)| > 3s-|IUI*|. Note
that rows from I*\ I} may not confain elements from 94 (I{UI) at all; otherwise, the
corresponding variable would not cancel out in the sum {3.13), and this would prevent
the latter from being in Vo (note that for any form f € Vo, Vars(f) € User Xi(A)).

The key observation is that every row 4, from It N I} may also contain only
a relatively small number of boundary elements, namely, at most (s/2). Indeed,
|Vars(f,)] < s/2 (see Definition 3.4.2). Therefore, if .J;, would have contained > s/2
boundary elements, then at least one boundary variable z; € X;, (A) would not belong
to Vars(f,), and would once more prevent the sum (3.13) from lying in Vg (since j
belongs to the boundary, z; may not occur in other forms appearing in this sum).

Summing up the above remarks, we have the upper bound 104(I,U )| < s- |5\

)+ 550 [¥|. Comparing it with the lower bound given by expansion, we get

3

RRIAT BT U T < s- [T\ TH] + % It I,
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I OB AVA ETTI AVATENI b ol

and

1
—Slf+| < 5 I\ T + NIty

which implies |I1| < ol = 2.

Therefore, dim(Vy N V) < % and Plp;(m) # 0] < 2743 < exp (— (r?/m)). To-
gether with (3.12) this implies Plp(m) #0] < exp(—(r?/m)). Hence, ® must
contain at least exp (2 (r*/m)) monomials (of A-degree > r/18) since otherwise we
could find a restriction p that kills all of them, contrary to Lemma 3.4.4. The proof

of Theorem 3.4.1 is complete.m

3.5 Existence of strong expanders and hard gen-
erators

All our hardness results in the previous two sections are based upon the notion of
an (r,s,c)-expander. As we noticed in Introduction, one of our eventual goals is
to be able to stretch n seed bits to as many output bits m as possible so that the
resulting generator is hard for as strong propositional proof systems P as possible. In
this section we will see what I/O ratio can we achieve with the results from the two

previous sections.

All explicit constructions of (r, s, ¢)-expanders we know of are based upon Exam-
ples 5, 6 from Section 3.2.1. Unfortunately, the resulting expanders turn out to be
virtually useless for our purposes since they can not even break the barrier m = n.
Let us turn instead to a simple probabilistic argument. We note that in the context
of proof complexity, there is not that much advantage to having explicit constructions

of hard tautologies over existence proofs.

Theorem 3.5.1 For any parameters s,n there exists an ( (n/s) - n=0/9) ’ZS)'

ezpander of size (n? X n).

53



Proof. Let us construct a random (n? x n) matrix A as follows. For every i € [n?],
let J;(A) df {jiry---»Jis}, where all g, (i € [n’],¥ € [s]) are picked from [n]
independently and at random (in fact, we would also obtain the same result by letting
Ji(A) be uniformly and independently distributed over all s-subsets of [n], but with

our choice of J;(A) calculations become simpler). We wish to show that
P[A is not an (r, s, 3s/4)-expander] < 1,

for some r > Q(n/s) - n~%0/%). Let p, be the probability that any given £ rows of the

matrix A violate the expansion property. Then, clearly,

P[A is not an (r, s, 3s/4)-expander] < Z n*p,. (3.14)

=1
Fix an arbitrary I of cardinality £ < r. Since every column j € | J,o; Ji(A)\d 4 (1)
belongs to at least two sets J;(A), we have the bound |\J,c; Ji(A)| < 1847 +
1 (e (A) - 104(1)]) < 3(sf+104(1)]). Hence 84 (I) < 35¢ implies also
|UZ€I J(A | < gsf, and p; can be estimated by the union bound as

pes (zzg) ' (Z—E) < (O(stfn))™"* < (O(sr /)"

8

Substituting this bound into (3.14), we obtain

r sf/8
P[A is not an (r, s, 3s/4)-expander] < ane : (O (%)) . (3.15)
=1

The sum in the right-hand side is the geometric progression with the base n? -

(O(sr/n))™®). Hence, if r = (en/s)-n"'/*¢ for a sufficiently small ¢ > 0, the right-hand
side of (3.15) is less than (1/2) which completes the proof of Theorem 3.5.1.m

Corollary 3.5.2 There exists a family of (m x n) matrices A" such that for every

b = (biy..,bm) € {0,1}™, any PCR-refutation of (AR (A b)) over an

m

arbitrary field with char(F) # 2 must have size exp (
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Proof. Since for m > n? the bound becomes trivial, we can assume that m < n?.
Apply Theorem 3.5.1 with s = %log2 log, , and cross out in the resulting matrix all
rows but (arbitrarily chosen) m. This will result in an (r, s, 3s)-expander A(™n) of
size (m x n), where r > n!=0(l/leelogn)  Now we only have to apply Corollary 3.3.11

and notice that 2% = 2viegn < p1/loglogn o

Corollary 3.5.2 shows that in the functional encoding we can stretch n random
bits to n? C0/18l8n) hits 50 that this generator will be hard for (polynomial size)
PCR-proofs over an arbitrary field F with char(F) # 2. In particular, it is hard for

Resolution.

Corollary 3.5.3 There ezists a family of (mxn) matrices A™™ sych that lJi (A(m’"))l <
logyn for all i € [m] and for every b = (by,...,by) € {0,1}™ we have the following

bounds.

1. Let C\,...,C,, be single-output Boolean circuits over an arbitrary fized finite
basis, where C; is a circuit of size O(logn) in the variables X; (AT that
computes the function Z;(AT™ b,). Then every PCR-refutation of 7( Amm) é)
over an arbitrary field with char(F) # 2 must have size exp (Q (—2—))

n
m(logn)3

2. Buery PCR-refutation of 7¢(A™™),b) over an arbitrary field with char(F) # 2
must have size exp (Q (—2)) .

k12
m(log n)?

Proof. Same as the proof of Corollary 3.0.2, only this time we let s = log, n.
Namely, Theorem 3.5.1 provides us with an (r, s, 2s)-expander for r > Q(n/logn).

The proof now follows by Corollary 3.3.6 and Theorem 3.4.1.m

Corollary 3.5.3 allows us to construct generators stretching n bits to m = o(n?/(logn)*)
bits in the circuit encoding, and to m = o(n2/(log n)%) bits in the linear encoding

which are hard for poly-size PCR-proofs in odd characteristic.
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3.6 Open problems

Can we reduce the devastating 22° factor in our size lower bounds for the functional
framework (Corollaries 3.3.5 and 3.3.11)? One way to approach this would be to look
for generalizations of the basic Proposition 2.2.1 that would take into account the
structure of the variables y; (which can be originally divided into m large groups).

Find explicit constructions of (1, s, c)-expanders with parameters that would be
sufficient for (at least, some of} the applications in the current chapter and in [Raz02b]
(as we remarked above, one step in this direction was made in [CRVWO02]).

More open problems representing the next generation of tasks faced by this theory

can be found in [Raz02b].
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Chapter 4

General Hardness Criterium for

Polynomial Calculus

4.1 Introduction

The propositional proof systems which recently received much attention are so-called
algebraic proof systems simulating the most basic algebraic facts and constructions.
The idea to use algebraic machinery in the proof complexity originally appeared in
[BIK*94] who defined the Nullstellensatz refutation system motivated by Hilbert’s
Nullstellensatz. [CEI96] introduced an even more natural algebraic proof system that
directly simulates the process of generating an ideal from a finite set of generators,
called Polynomial Calculus (PC for short). This system is a potential candidate for
automatic theorem provers [CEI96]; thus it seems interesting and important to prove

lower bounds for Polynomial Calculus.

Known approaches to the lower bounds on the degree of Polynomial Calculus use
the idea of locality (discussed in Section 4.2.2), with one notable exception [Kra01b).
First papers [Raz98, IPS99] devoted to Pigeonhole principle involved also rather tech-
nical and specific calculations (pigeon dance).

Recently [Gri98] came up with a simple idea how to avoid completely such calcu-

lations and prove 2(n) degree lower bounds by using Tseitin tautologies. The original
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proof in [Gri98] embraced only Nullstellensatz proof system, then it was generalized
to PC in [BGIPO1] and further developed in [BI99, Gri0l, ABSRWO00]. One draw-
back of this idea is that it essentially uses the representation with binomial ideals and
can be applied only to binomial functions as the base functions. But there are very
few binomials; if we insist on Boolean relations 72 — 2 = 0, we have only PARITY
functions, and in characteristic 2 there are no binomials at all (this restriction can
be sometimes circumvented by using low degree reductions [BGIP01] but not always,
see for example the case of random k-CNF in characteristic 2 in Section 4.4.3 below).

This situation is in a sharp contrast with the situation for Resolution where in
Chapter 3 we gave a hardness criterion (robustness) satisfied by a random function
and showed that the induced tautologies are hard provided the underlying structure
has sufficient expansion. The ideology there is similar to that of Natural Proofs in
[RROT7]: every lower bound proof which works for a single function must also work

for a large class of functions specified by a constructive combinatorial property.

In this chapter we fill this gap by giving a hardness criterion (immunity) and
proving linear lower bounds for PC refutations of wide class of tautologies based
on immune functions. It is worth noting that over fields of positive characteristic p
immunity coincides, up to negation, with the notion of weak MO D,-degree introduced
(for not necessarily prime p) in [Gre00] as an integral part of attempt to understand
the computational power of multi-linear polynomials.

As some applications of our results, we consider mod, Tseitin tautologies from

2
3

[BGIPO1] in the Boolean framework (i.e., when our ideal contains the axioms z; =
x;) and prove their hardness over fields of characteristic different from p. Next we
introduce the analog of Tseitin tautologies in characteristic 0 (called Flow tautologies)
and show that they are hard over any fleld. The most important impact of our
approach, however, is that we can work directly with the field F, which is the most
interesting case. In particular, we can do random k-CNF over this field, thus we prove

the conjecture from [BI99].

Also, we consider the Pigeonhole principle and prove a hardness result for its
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version EPHPT introduced in [BW99]. This result follows from [Raz98] but our
proof is conceptually simpler since it does not use the technique of pigeon dance at
all. At the end we show a weak relation between robust functions from Chapter 3
and immune polynomials in characteristic zero which allows us to get some lower
bounds for the polynomial calculus (also in characteristic 0) based on the robustness
of underlying functions.

The chapter is organized as follows. Section 4.2 contains the necessary definitions
and the intuition of the lower bound technic based on locality. We prove our main
hardness results in Section 4.3 and show the implied lower bounds in Section 4.4.

Finally we present some open questions in Section 4.5.

4.2 Preliminaries

Fix an arbitrary field F. We will be working in the F-algebra S, (F) which results
from factoring the polynomial ring Flz,, . . . Z5) by the ideal generated by the relations
22 —x; (1 <i<n). Every element f € S, (F) has a unique representation as a multi-
linear polynomial (which determines its degree deg(f)), and a unique representation as
a IF-valued function on {0, 1}". We will be alternately exploiting both representations.
All polynomials considered in this chapter (unless the opposite is stated explicitly)
will be multi-linear so we sometimes omit this word.

For a polynomial f, Vars(f) will denote the set of its essential variables. An
assignment to f is a mapping o : Vars(f) — {0,1}.

For historical reasons, when studying a system of algebraic equations one is inter-
ested in the set of its roots. Thus an assignment « satisfies a polynomial f iff « is
the root of f. Accordingly, every Boolean function g uniquely defines the multi-linear
polynomial p, which is equal to 0 on the assignment o if g(a) = 1 and to 1 if g(a) = 0.

If ¥ = {vy,..., v} is a tuple of variables, and ¢ € {0, 1}* then by x&(V) we denote
the multi-linear polynomial which is equal to 1 if ¥ = € and to 0 otherwise (formally,

x&(7) def I (1 — v — € + 2v;€;)). The following identity is obvious but extremely
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useful:

f= 5 xl® - (fld) (4.1)

£c{0,1}*
(7 = € is the restriction which assigns all v; to & and leaves all other variables
unassigned).

Let Span(fi,- .., fi) be the ideal generated by fi,..., fi. We say that fi,..., fx
semantically imply g (denoted fi,..., fx = g), if g equals zero on the set of roots of
ideal Span(fi, ... fi) (Le. Yo € {0,1}V(fi(e) = --- = fula@) = 0 = g(a) = 0), where
V =Vars(fi)U...UVars(fi) UVars(g)).

Denote by T, the set of all multi-linear terms, i.e., products of the form x;, z;, . . . z;

d

with 1 < iy < ig < ... < iqg < n. The degree deg(t) of a term t is the number of
variables occurring in it. Let T, 4 d=ef {t € T, | deg(t) < d}, and Sy 4(F) © FT,4 be
the linear space of all multi-linear polynomials of degree at most d. We write t € f if

a term % is contained in polynomial f with non-zero coefficient.

4.2.1 Tautologies induced by Nisan-Wigderson generator

In this section we define the general structure of our tautologies. We use the notion
of expander matrix introduced in Section 3.2.1.
Let A be an (mxn) 0-1 matrix, which is (r, s, ¢)-expander and Ji(A) © (e nllay;
Let X,(A) & {z;]5 € Ji(A) }and fi(z1,. . Ta)s-- -, fm(z1, ..., 2n) be polynomi-
als such that Vars(fi) C Xi(A). We will be interested in the system of equations

fl(.’,l?l, NP ,In) =0
(4.2)

fm(T1,y- o, @n) =0
It was proved in Section 3 that if (the characteristic functions of the set of roots of)
fi’s posses certain hardness property called robustness and A is a sufliciently good

expander, then the system (4.2) is hard for Resolution. Based upon the machinery

developed in [Gri98, BGIP01], we also showed that the system (4.2) is hard for Poly-
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nomial Calculus when f;’s correspond to the PARITY functions and char F # 2. In
this chapter we introduce a general hardness condition on fi which will imply that

this system is hard for Polynomial Calculus.

Definition 4.2.1 A polynomial f is called ¢-immune iff for any non-zero polynomial
g, f g implies deg(g) > ¢. A Boolean function 9 1s £-smmune over a field if its

associated polynomial p, over this field is {-immune.

This definition says that a polynomial is hard iff it has no non-trivial semantic
corollaries of small degree. Clearly, a polynomial is f-immune if and only if the
characteristic function of the set of its roots is so.

Let ﬁs now relate immunity over fields of positive characteristic p with the follow-

ing notion:

Definition 4.2.2 ([Gre00]) The weak MOD,-degree of a Boolean function g(z1,. . ., z,)

is the smallest degree of a non-zero multi-linear polynomial f(z,...,z,) with integer

coefficients such that g(a) =0= f(a) =0 mod p, for all & € {0,1}".

We need one elementary lemma.

Lemma 4.2.3 A polynomial f(z1,... ,ZTn) over a field F is £-immune if and only
if for any non-zero multi-linear polynomial g(z1,...,z,) with integer coefficients

f = g implies deg(g) > ¢.

Proof. Part “only if” is obvious. For another direction, suppose for the sake of
contradiction that gy € S,(F), f = g, and deg(go) < €. We want to find an integer
polynomial g with the same properties.

Introduce F-valued variables g;, where t € T}, corresponding to the (unknown)
coefficients of g. The condition f = ¢ is equivalent to the system of linear equations
{ZteTﬂ get(@) = 0] f(a) = 0} over g, with integer coefficients. Let us add the con-
ditions g, = 0 for all terms ¢ with deg(t) > £ and gy, # O for an arbitrary term to

appearing in g.
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We defined the system of uniform linear equations and inequalities with integer
coefficients which has a solution in . It follows from the basics of algebra that it also

has a solution over integers, and this solution defines the desired g.m

Corollary 4.2.4 1. A Boolean function is £-immune over a field F with char F =

p > 0 if and only if the weak MOD,-degree of its negation is at least {.

2. A Boolean function g(xy,...,zy) is {-immune over a field F with char F = 0 if
and only if the smallest degree of @ non-zero multi-linear polynomial f(xy,...,z,)
with integer coefficients such that Va € {0,1}"(g(a) =1 = f(a) = 0) is af least
L.

Thus, in positive characteristic immunity is the same (up to negation) as weak
degree, and the main reason why we introduced this new terminology is because
the usage of the term “weak degree” in characteristic 0 (see [ABFR94]) is totally
incompatible with our purposes.

The following simple lemma shows that the notion of immunity behaves well with

respect to restrictions.

Lemma 4.2.5 1. If [ is £-immune then, for any restriction p, f|, is (£ — |p|)-

IMIMune.

2. Let V C Vars(f), and assume that for every restriction p with p™'(x) =V, f|,

is £-immune. Then f is £-immune.

Proof. Part 1) Suppose that p assigns vy,...,vx to €1,...,¢€, and assume the
contrary, that is f|;—z |= g, where g # 0 and deg(g) < £ — k. We can assume w.l.o.g.
that Vars(g) N {v1....,v} = 0. Then, clearly, f = x#(¢) - g and x&(?) - g # 0, a
contradiction.

Part 2) Assume the contrary, that is f |= g, where g # 0 and deg(g) < £. Pick
up an arbitrary restriction p with p~'(x) =V and such that g|, # 0. Then f|, = g/,,

contrary to the assumption that f|, is £-immune.m
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4.2.2 Local strategy for PC lower bounds

Now we briefly describe how the idea of locality can help in proving lower bounds
on the degree of PC refutation. First, let us recall some standard notions from

commutative algebra (adapted to the special case of the ring S, (F)).
Definition 4.2.6 An ordering < of 7, is admissible if:
1. V1,10 € To(deg(ty) < deg(tz) = ) < ty).
2. If t; X ¢5 and ¢ € T;, does not contain any variables from #;, ta, then tt; < tt,.

Fix an admissible ordering < on T,,. For f € S,(F), LT(f) € T, is the leading
term of f w.rt. <. Part 1 of Definition 4.2.6 implies that deg(LT(f)) = deg(f).

Definition 4.2.7 For an ideal V the term ¢ is called reducible mod V (and with
respect to some admissible ordering <) if V' contains some polynomial f such that
LT(f) = t. The set of irreducible terms A is linearly independent modulo V and the

algebra S,(F) can be represented as the direct sum
S.(F) =FA @ V.

The operator of projection onto the first coordinate, called reduction operator (and
denoted Ry) maps each term ¢ to the unique polynomial Ry(t) € FA such that
t—~ Ry(t) € V.

[CEI96] were the first to consider these classical notions in the case when V is a
pseudo-ideal, i.e. not necessarily closed under the multiplication rule. This leads to
the following chain of definitions.

For fi,..., f;m € Sn4(F), denote by V, 4(fi,..., fm) the set of all g € S,4(F)
that are provable from fi,..., f, by a polynomial calculus proof of degree at most
d. Due to the presence of the addition rule, Vaa(fi,- ., fm) is a linear subspace in
Sna(F). Aterm t € T, 4 is called reducible if t = LT(f) for some feVaalfi,..o, fm),

and trreducible otherwise. Denote by Ana(fi,.-., fm) the set of all irreducible terms
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in Tpq- Terms from Ang(f1, .- . fn) are linearly independent modulo Voa(f1,-- -

fm), and analogously with the classical case we have the representation

Sn,d(IF) = IFAn,d (flu sy f'm) ® Vn,d(fl: R fm) (43)

of S, 4(F) as the direct sum. Denote the projection onto the first coordinate (also

called reduction operator) by Rnaf, .. fm-

In order to prove that 1 & V,, 4(f1, ..., fm) one has to show that

R”yd:fla'--afm(l) # O

For doing that it suffices to produce a non-trivial linear operator R on Sn.a(IF) which

is stronger than R, 47 ., in the sense that
Ker(Rn,d,fl,...,fm) - Ker(R)

and show that Ker(R) # S, 4(F). The following lemma states what need be checked
for that.

Lemma 4.2.8 ([Raz98)) Suppose thot fi, ..., fm are azioms, and d < n. If there

exist a linear operator R # 0 on S, 4(F) such that:
1) Vi R(fi) = 0;
2) Vt,z; (deg(t) < d — R(z; - t) = R(z; - R(1)))
then there is no PC refutation of {f1, ..., fm} with degree less or equal thon d.

[Raz98] proposed to construct the operator R from the previous lemma locally:
def
R(t) = Ry (1), (4.4)

where Ry is the classical reduction operator of the ordinary ideal V (t) generated

by some “small” subset of axioms dependent on t. The advantage we gain in this way

64



is that the structure of classical reduction operators is much better understood, and,
unlike their counterparts for pseudo-ideals, they can be also studied by semantical
means.

If R is any operator satisfying assumptions of Lemma 4.2.8, then every polynomial
f =2, ait; derivable from {f1,..., f»} in degree < d can be alternatively represented

as the sum

f= Zai(ti - R(t;)).

If, moreover, R(t) is given by (4.4), then t;’s are leading terms in (t; — R(t,)), there
1s no cancellation between them, and each polynomial ¢; — R(#;) is a corollary of
a “small” number of axioms. Thus the idea of locality says that any polynomial in
Vad(f1, -, fm) can be represented by the sum of corollaries of small number of axioms
without leading terms cancellation or, informally, everything we can infer in small

degree we can also infer locally.

4.3 Main results

In this section we prove that for any (r, s, ¢)-expander A and ¢-immune f;’s any PC
refutation of the system (4.2) has degree greater than r(£/4— (s —c)) (Theorem 4.3.8).
This bound presumes that £ > 4(s — ¢) and thus it is not applicable to expanders
with small constant s and c¢. We managed to strengthen the degree lower bound to
rc/2 in the case when f;’s have maximal immunity s (Theorem 4.3.13). This bound
will allow us to estimate the hardness of refutation of the random k-CNF for small
in the fields of characteristic 2 (Section 4.4.3).

The heart of our proof is the following theorem.

—

Theorem 4.3.1 Suppose that §, 7,7 is a partition of {zy,...,z,}; P= 13(17, 7), Q =
Q(¥, Z) are polynomials over U ¥, ¥U Z respectively, where Q is (2|17] + 1) -smmune.
Suppose that a term t(y, V) free of z-variables is reducible mod Span(ﬁ, Q) w.r.t some

fized admissible ordering. Then t is reducible mod Span(p) w.r.t. the same ordering.

Proof. The naive idea would be to apply an arbitrary homomorphism of the form p:

65



7 — ,}‘7(17) which kills Q to 0 and therefore has the property ¢ = p(RSpan(ﬁ,Q)(t)) mod
S pcm(ﬁ) (such a homomorphism always exists since @ is (|U] + 1)-immune and hence
none of x#(¥) in ¥ x:(¥)Qlo=e = & is its corollary). This does not work in general
because the degree of some terms in R, p"Q)(t) may increase under p and become
more than deg(t). Still as we show below this idea suffices in the partial case when ()
has the maximal immunity (Lemma 4.3.14). But in the general case we have to use
more complicated methods.

In Definition 4.3.2 and the following chain of lemmas we assume that ¥, U, Z, 13, @)
satisfy assumptions of Theorem 4.3.1, and all reduction operators are taken w.r.t.

some fixed admissible ordering <. Let & 3.

Definition 4.3.2 (Operator R?) The linear operator R% is defined on T, in the

following way:

def s
Re(t) = Z Xe(¥) * Rspan(@lo_s) (tlo=2),
gc{o,1}k

and extended to S, () by linearity.

The intuitive meaning of the operator R¥ is that it tries to reduce z-degree of
the term ¢ locally and independently within the subcubes specified by all possible
assignments to 7. It ignores y-variables (since they do not appear in @), but it can

in general increase the number of v-variables.
Lemma 4.3.3 For any polynomial f, f = R2(f) mod Span(Q).

Proof. Due to linearity, we only need to prove that Q = ¢ — R9(t) for every term
¢. This semantic inference holds if and only if for any tuple € the polynomial Q|z=¢
implies

(t — R(t))lv=z = (tls=¢ — Rspan(@loca) (tls=c));
and the latter clearly takes place.m
Lemma 4.3.4 If [Vars(t) N Z| < k then R9(t) = t.

Proof.
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We need to check that two polynomials ¢ and R(t) are equal. For this it is
sufficient to check the equality of #|;—; and ROt |s=e = Rspan(qly_) (t|ls=¢) for each
tuple €€ {0,1}*. But since @ is (2k + 1)-immune, Qs is (k + 1)-immune by Lemma
4.2.5(1); therefore the term ¢|5—z of degree < k is irreducible mod Span(Q|s=z).m

The following lemma is the heart of the whole argument.

Lemma 4.3.5 Suppose that f is a polynomial and P,Q & f. Then P E RO(f).

Proof. Asusual, we only have to prove that for any tuple ¢, ﬁ'g:g = RP(f)|4=e Since
P.Q E f, by Lemma 4.3.3 we have P,Q = R9(f), hence Jﬁlf,‘:g, Rla=c E R2(f)|s=e.
Fix an arbitrary tuple é for 7 such that Pls—e(6) = 0. We have

Qlo=e F B*(Ny—epss (4.5)
and we have to show that
RQ(f)’*:e, j=&

is actually equal to 0. But RQ(f)Ig:agzd- = Rsmn(le_{)(fl,;:g)b:g. Since all terms in
Rspan(Qls_s) (flo=z) are irreducible mod Span(Q|z=z), and the set of irreducible terms

is closed downward, the same is true for

RSPGH(Q|15=E) (f |17=E-) |g‘=5—-

Along with (4.5) this implies R%( FNs—es—5 = 0 and completes the proof of Lemma
4.3.5.m

Lemma 4.3.6 Suppose that P = fo+32, ez 2 fi, where fy is free of z-variables. Then
P f.

Proof. Apply the restriction which maps all 2; to 0.m

Let us now finish the proof of Theorem 4.3.1. Let f & Rgponip g)(t) and J’ &
RO(f).
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By Lemma 4.3.5, P = R9(t — f), and by Lemma 4.3.4, RO(t) = t. Thus, PE
(t— f). Our goal is to show that all terms in f' are either less than t or contain some
z-variables, after that we can apply Lemma 4.3.6 and show that ¢t can be reduced
mod Span(P).

Let us divide the terms in f into two groups:

G, = {t||[Vars(t)nZ] <k}
G, = {t||Vars(t)ynz|>k}.

Consider some monomial #, € f such that |Vars(t}) N 2] = 0. Clearly, #} € RC(ty)
for some term t; € f. If {; € Gy then, since G is invariant under R9 by Lemma 4.3.4,
! =1, <t. Assume that t; € G5. Then deg(t}) = \Vars()NT|+|Varst)Ng) < k+
[Vars(t)Nng] = k+|Vars(t)Ny| < [Vars(t,)Ng|+|Vars(t) Nz < deg(t:) < deg(t).

Thus all monomials in f which are free of z-variables either are contained in f
or have degree less than deg(t). Hence Lemma 4.3.6 implies that ¢ is reducible by P.

Theorem 4.3.1 is proved.m

Corollary 4.3.7 Under the assumptions of Theorem 4.3.1,
RSpan(I;,Q)(t) = R_S'pan(l_:") (t)

Proof. Obviously, all terms in Rspan(ﬁ)(t) are free of z-variables. Therefore, by

Theorem 4.3.1 all of them are irreducible also mod Span(P,Q).m

Theorem 4.3.8 Assume that A is an (r,s,c)-ezpander, £ is an integer such that
s<r(lj/d—(s—c)) and fr,..., fm are L-immune polynomials over an arbitrary field
such that Vars(fi) C Xi(A). Then any PC refutation of the system f = ... = fm =0
has degree greater than r(£/4 — (s —¢))-

Proof. The idea of the proof is to construct a linear operator R which behaves locally

like the reduction operator modulo the corresponding ideal, and use Lemma 4.2.8
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after that. To describe R it is sufficient to define it on the set of terms ¢ with

deg(t) < r(¢/4 — (s — ¢)). First we need to give some more notation.

Definition 4.3.9 Assume that A is an (m x n)-matrix and fi, ..., f,, are polynomials
with Vars(f;) C X;(A). For a term ¢ denote by J(¢) the index set {7t contains z;}.
For a set of rows I C [m] let Span(I) & Span({f)i € I}).

Now we are ready to define our linear operator R. Fix A fiyoooy fm, 1 8, ¢, £ satisty-
ing assumptions of Theorem 4.3.8. For a term ¢ we define a set of axioms Sup(t) C [m]

and then reduce ¢t mod Span(Sup(t)):
Definition 4.3.10 For a term ¢ define the following inference relation b, on the set

[m] of rows of A:

¢
Ihyi= > 7 (4.6)

J;(4) N {U Jo(A)U J(t)J

el

Let the support Sup(t) of t be the set of all rows which can be inferred via F, from

def

the empty set. Define R(t) = Rspan(sup(ey(t)-

The rest of the proof is devoted to checking that R satisfies conditions 1) and 2)

of Lemma 4.2.8. First we need to estimate the cardinality of Sup(t).

Lemma 4.3.11 For a term t with deg(t) < r(£/4 — (s — c)), |Sup(t)| < r.

Proof. Assume the contrary. Then there exists a set | — {i1,...,1.} of distinct
rows such that {i,....41} F 4, (1<v < 7). By Definition 3.2.1 it has at least cr
boundary elements. By (4.6), each row i € I has strictly less than s — £/4 boundary
elements not contained in J(t). Thus, J(t) has more than er — (s —£/4) =r(¢/4 —

(s — ¢)) elements. We got contradiction, which proves Lemma 4.3.11.m

Lemma 4.3.12 Assume that s—c < £/4, t is a term and I is a set of rows such that

I2 Sup(t) and |I| < 7. Then

Rspan(l) (t) = RSpan(Su;p(t))(t)'
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Proof. Let us apply the expansion property to the set I\ Sup(t). Tt will yield a row

i € I\ Sup(t) with at least ¢ boundary elements. In other words,
Ji(A) N [Usen(supeupy Jo(A)] < s —c
Also, since Sup(t) is closed under I, we have
Ji(A) N [Usesupn Jr (A) U T (1)] < £/4.
Altogether it implies that
Ji(A) N [Upennda (AU TR < (s — o) + £/4 < £]2.

Let us now set in Theorem 4.3.1

g = {.’L‘l,,’L‘n}\J,,(A)
7 = J(A) N [UrengJe(4) U J ()]
Z = LA\ Uren o (A) U (@)

P o= {fs]deI\{i}}
Q = fi)

and apply in this situation its Corollary 4.3.7. We conclude that Rgpan(n)(t) =

Rspan(\iipy (t)- We continue this elimination process until we descend to Rgup(s)(t).m

Now we finish the proof of Theorem 4.3.8. We have produced an operator R on T,
and we consider its restriction on Ty r(g/a—(s—c))- Let us check that it indeed satisfies
the conditions of Lemma 4.2.8.

To see that R(f;) = 0 for each axiom f;, let ¢; © ] X:(A). Recall that deg(t;) <
s < r(f/4 — (s = c)). Thus |Sup(t;)| <r (by Lemma 4.3.11) and for any term t in f;
clearly Sup(t) C Sup(t;). Next, i € Sup(t;). By Lemma 4.3.12, R(f)) = Rsupt)(fi) =
0. Thus 1) is satisfied.
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To check the second condition, consider a term t with deg(t) < r(€/4 — (s -
c) — 1 and a variable z;. By Lemma 4.3.11, |Sup(x;t)] < r. By Lemma 4.3.12,
Rgup(ty(t) = Rsup(z;s)(t). For any term ¢’ € Rsupy(t), Sup(z;t") C Sup(z;t). To see
this, 1t 1s sufficient to notice that J(¢') C Uz.,EsUp(t) Jir(A)UJ(t). Thus Reyp(s,e(z;t’) =

Rsup(z,1)(z;t') and
R(z;R(t)) = Rsup(z,1)(T;Rsup(e,1(t)) = Rsup(a;t) (z;t),

where the last equality follows from the fact that TjRsup(z;1)(t) and z;t are equal
modulo the ideal Span(Sup(z;t)).

Finally, [;(4)] > £ for every < € [m] (since f; is f-immune), hence Sup(l) = 0
and R(1) = 1.

Theorem 4.3.8 is proved.m

The bound proved in Theorem 4.3.8 is not applicable in the case when ¢ is small
(say, ¢ < 1). We will see in Section 4.4.1 that for sufficiently large constant s “good
expanders” (that is, with ¢ close to s) do exist but for small s the question about
the hardness of the system (4.2) remains open even for random matrices. When ¢
is small, we succeeded in proving lower bounds only in the partial case, when all f;
have the maximal immunity £ = s. It is easy to see that the class of polynomials with

maximal immunity consists exactly of polynomials having the form o - x(7), a € F*.

Theorem 4.3.13 Assume that A is an (r, s, c)-ezpander and let &0 ¢ {0,1}X%:(4)
(i € [m]). Then any PC refutation of the system {xz0(X;(A)) | i € [m]} has degree
greater than (rc/2).

Proof. Analogous to the proof of Theorem 4.3.8, but in this partial case the state-

ment of Theorem 4.3.1 can be strengthened while the proof becomes trivial:

Lemma 4.3.14 Suppose that i, 7,7 is a partition of {x1,...,Ta}; P = ﬁ(gj‘, 17),. Q@ =

Q(7, Z) are polynomials over 7UT, 7UZ respectively, where Q is divisible by (z—¢) for
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somez € Z, €€ (0,1} Suppose that @ term t(7, V) free of »-variables 18 reducible mod

Spcm(ﬁ,Q) w.r-t some fized admissible ordering. Then t is reducible mod S'pcm(l;).

Proof. Consider any polynomial f st P.QET and t = LT . Applying the
restriction z = €, W€ ohtain ﬁ\z:e,Q\z,—:e = flo=e. SInCE P does not depend on Z and
Qli=e =0 P = fli=e and clearly t = LT(fl=c)-®

Now we build our operator R in the same way ag in Definition 4.3.10, but this

time we use another inference relation (notice that this relation infers a set of rows

at a time rather than a single Tow):

Definition 4.3.15 For a term t define the following inference relation - on the set

[m) of rows of A:

icl
Let the support Sup(t) of t be the set of all rows which can be inferred via - from

the empty set, and R(t) ] Rspan(Sup(t)) (t).
Lemma 4.3.16 For a term t with deg(t) < (cr/2), \Sup(t)] = T /2

Proof. Assume the contrary, and choose a chain of subsets I, 12 such that
L. Ul b, I, and \U,,I,,\ > r/2. Let L be the srnallest index for which \U’Z;l Iu\ >
r/2. Then, clearly, \U'Z:l I,,\ < r (since \L| < r/2). Therefore, \aA (U';Zl I,,)\ >
(ref2). On the other hand, (4.7) implies that every new boundary element that results
from appending via - some set of rows must belong to J(t), therefore 0a (U’:le I ,,) -

J(t). This contradiction with the assumption deg(t) < (er/ 9) proves Lemima 4.3.16.»

The following 1s analogous to Lemma 4.3.12.
Lemma 4.3.17 Asgsume that t is o term, and I 18 @ subset of rows such that I 2
Sup(t) and I} < r/2. Then
Repan(n)(t) = Fspan(Sup) (t)-
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Proof. Since Sup(t) W I\ Sup(t), by (4.7} some row @ € I\ Sup(t) contains an
element from 84(I) \ J(t). Thus we can remove ¢ by Lemma 4.3.14. In such a way

we consequently get rid of all the axioms in [ \ Sup(t).w

The rest of the proof is quite analogous to that of Theorem 4.3.8.m

4.4 Applications

In this section we describe some concrete lower bounds that can be proved using
the results of Section 4.3. For applications in this chapter we need good expanders
with parameters slightly different from those considered in Chapter 3. We start with

constructions of these expanders.

4.4.1 More on expanders

[CS88] in their work introduced the notion of a sparse hypergraph which in our
language (rows correspond to edges, columns correspond to vertices) looks as follows:
an (m x n) 0-1 matrix A is (z,y)-sparse if for every J C [n] with |J| < zn we have
{ie[m]| J(A) CIH <y -] |. They also established (implicitly and for the case
¢ = 1/2) the following connection between sparsity and expansion (union bound)
which was later utilized in [BP96, BKPS98, ABSRWO0]: any (m % n) (r%;ﬁ, &E)'
sparse matrix in which every row contains exactly k ones is an (r, k, ¢)-expander, for
arbitrary parameters 1, k, c.

[CS88, Lemma 1] gave a sufficient condition for a random (An x n) matrix (in
which every row has exactly k ones) to be (z,y)-sparse. They considered only the
case when the parameters k, 3, A (the latter is denoted in [CS88] by ¢) are constants.
We need the following simple generalization of their lemma.

Let k be an integer constant, y = y(n) be any real parameter such that (k—1)y > 1

and A = A(n) be an arbitrary integer parameter satisfying

A=o (n(k—lﬂy'”) : (4.8)
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Then a random (Anxn) matriz in which every row has ezactly k ones is (2 (A-v/(E=y=1)) ,Y)-
sparse with probability 1 — o(1).

The proof literally follows the proof of [CS88, Lemma 1]; we only need to change
the values of their bounds f(n), g(n) to

y
f(n) def o (E) (=172 | Av/2
. y 1

o(n) & (n- A1)

The necessary asymptotics f(n) — 0, g(n) —» oo then follow from (4.8).

Putting things together by setting y © 7, we have:

Lemma 4.4.1 Assume that k > 3 is a fived integer constant, 0 < ¢ = ¢(n) <
L — 2 is an arbitrary real parameter, and A = A(n) is an arbitrary integer parameter
satisfying A = o (n®~c=2/2). Then a random (An x n) matriz A in which each
line J;(A) is chosen from all (2) k-subsets of [n] independently and at random is

(Q (KZ—/(T"_W) K, c)—ea:pander with probability 1 — o(1).

Now let us turn to another source of good expanders. For an ordinary graph

G=(V,E)and r > 1let

where e(U, W) is the number of edges between U and W. This is a minor gener-
alization of the edge-expansion coefficient cg(G) = cz(|V]/2,G) previously studied
in graph theory (see e.g. [Al098] and the literature cited therein). Clearly, the in-
cidence matrix Ag of a graph G is an (7, d(@), cg(r, G))-expander for an arbitrary r
(cf. Example 5), where d(G) is the maximal degree of a vertex.

Suppose now that the graph G I d-regular. Then, clearly, cg(r,G) = d —
max|y|<, ad(G|v), where G|y is the subgraph induced on U, and ad is the average

degree. [BCS78] proved the following bound on this quantity in terms of the second
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eigenvalue A,(G) of the graph G-

[Ul(d — X2(G))

ad(Glu) <

+ M (G).

This implies

ce(r,G) > d (1 - ﬁ%) — 2(G).

Recall that a Ramanujan graph is a d-regular graph G with A(G) < 2v/d —1;
explicit constructions of such graphs were given in [LPS88, Mar88]. Summing up the

above, we have:

Lemma 4.4.2 The incidence matrir of any d-regular Ramanujan graph G on n ver-

tices is an (r,d,d(1 — r/n) — 2v/d — 1)-ezpander for any parameter r > 0.

4.4.2 Tseitin tautologies: Boolean version

A Tseitin tautology is an unsatisfiable CNF capturing the basic combinatorial princi-
ple that for every graph, the sum of degrees of all vertices is even. These tautologies
were originally used by Tseitin [Tse68] to present the first super-polynomial lower
bounds on refutation size for a certain restricted form of Resolution (regular resolu-
tion).

In the sequence of works [Gri98, BGIP01, BI99) their authors studied the hardness
of Tseitin tautologies for Polynomial Calculus. This research was essentially depen-
dent on the fact that the tautologies can be written in the form of binomial ideals.
Then the arguments proposed in [BGIP01] (and simplified in [BI99]) show that any
PC-refutation of Tseitin tautologies has degree £(n).

[BGIPO1] generalized Tseitin tautologies to the case when each vertex in the graph
contains MOD, function and used them to lower bound the refutation degree of the
counting principle Count,. Their definition, stated informally in terms of a flow on
a graph, says the following: each directed edge e has the corresponding variable z,
which ranges over {0,...,p — 1}; the intuitive meaning of z, is the value that flows

along the edge e. The mod,, Tseitin principle says that the sum of flows in all vertices
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is equal to 0 mod p. ’

This definition is a natural generalization of the usual mods Tseitin tautologies.
[BGIPO1] proved an €}(n) lower bound on the refutation degree of these tautologies
in the version of Polynomial Calculus in which the relations z? — z; (hardwired in
our definition of S,(F)) are weakened to 2} — ;. They also observed that a Boolean
version can be obtained by repeating every edge of the underlying graph p times.
We would like to propose another Boolean version which is more straightforward and
does not involve any encodings.

In our variant the variable z, written on the directed edge e can have only Boolean
values 0 and 1. There are two different constants Fy and Fy from {0,...,p— 1} which
define the amount of flow along e when z, is equal to 0 and 1 respectively. One can
easily see (by applying an affine transformation) that the exact choice of constants is

not essential; for definiteness we set Iy := 0, F1:=1.

Definition 4.4.3 (mod, Tseitin Formulas) Let G be a finite oriented graph and
o : V(G) = {0,...,p—1} be an arbitrary function. Assign a distinct Boolean variable
2. to each directed edge e € E(G). For v € V(G) denote by MOD,(G, 0, v) the

following Boolean predicate:

Z Tewp> — Z Topuw> = U(’U) mod p.

{w| <wv>€E} {w| <vw>€EE}

The mod, Tseitin formule of G and o is defined as

T,(G,0) € N\ {MOD,(G.0,v)}.
veV(G)

It is easy to see that Ty(G, o) coincides with ordinary Tseitin tantologies. We
prove that for graphs G with sufficiently large edge-expansion T,(G, o) requires large
refutation degree in fields F with char F # p.

Theorem 4.4.4 The Boolean function in d variables which outputs 1 on oy, ..., 04

if and only if 2?:1 e;jo; = o mod p, where €; € {1} and 0 € {0,1,...,p— 1} are
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arbitrary, 18 [Z(E‘f_—nj-immune over any field F with char F # p.

Proof. We can assume w.l.og. ¢ =€ = ... =€, =1, €41 = ... = €¢g = —1

and d; > d/2. Given Corollary 4.2.4(1), the main result from [Gre00] (Theorem 3.4)

implies that for every o € {0,1,...,p—1}, MOD, ,(z1,...,%4,) is LZ(PdiI)J > L4(pd_1)J—
immune over any field with char F ¢ {0, p}. By Corollary 4.2.4(2), this bound can be
also extended to fields F with char F = 0. Theorem 4.4.4 now follows from Lemma

4.2.5(2) applied to V o {Tgy41,-.., 24}

Theorem 4.3.8, Lemma 4.4.2 and Theorem 4.4.4 imply

Corollary 4.4.5 For any fized prime p there ezists a constant dy = do(p) such that
the following holds. If d > dy, G is a d-regular Ramanujen graph on n vertices
(augmented with an arbitrary orientation of its edges), and char F # p, then for

every function o every PC refutation of T,(G,0) over F has degree Q(dn).

4.4.3 Random k-CNF in characteristic 2

An interesting test for a propositional proof system is how effective it behaves on the

random input.

Definition 4.4.6 (Random k-CNF’s) Let F ~ Fp® denote that F is a random
k-CNF formula on n variables and A - n clauses, chosen by picking A - n clauses
independently and at random from the set of all (Z) - 28 clanses, with repetitions. A

is called the clause density.

[CS88] showed that the random 3-CNF with n variables and A -n clauses requires
exponential refutation in Resolution, for an arbitrary constant A. [BI99] proved that
the random 3-CNF requires Polynomial Calculus refutation of degree {2(n) over any
field F with char F # 2, provided A = A(n) is small enough. They used binomial
technics proposed in [BGIP01] and the fact that the random CNF has good expansion
properties proved in [CS88|. [BI99] conjectured that the same lower bound on the
degree holds for 3-CNF’s over the fields F with char F = 2 as well. We give a positive

answer to their conjecture.
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Using Theorem 4.3.13 and Lemma 4.4.1 with ¢ = 1/ In(A +2) we immediately get
the following

Corollary 4.4.7 Let F ~ F°, where k > 3 is a fized integer and A = A(n) is
an arbitrary parameter satisfying A < o (n(k‘2)/2). Then every Polynomial Calculus
refutation of F over an arbitrary field F has degree €2 (M) with probability
1—o(1).

4.4.4 Collapsable functions and flow tautologies

In this section we define a wide class of collapsable functions and prove that they have
strong immunity. Then we introduce the analog of Tseitin tautologies in characteristic
zero, in which each vertex contains a linear inequality over R. The principle says that
the flow can not be positive in all vertices of the graph. We call this family flow

tautologies.

Definition 4.4.8 A Boolean function [ is £-collapsable iff for any subset of variables
S C {z1,...,zn} with | S| < £ there exists a restriction p which leaves variables from S
unassigned and such that f|, = 1. A polynomial is £-collapsable iff the characteristic

function of the set of its roots in {0,1}" is £-collapsable.

In other words, a polynomial f € S,(F) is £-collapsable iff for any choice of n—£+1
variables we can satisfy it (make equal to 0) by some restriction of these variables to

0 and 1. It turns out that collapsable polynomials have strong immunity.

Theorem 4.4.9 FEvery {-collapsable polynomial f is £-tmmune.

Proof. Assume that f |= g and deg(g) < £. Let us choose any term ¢ in g of maximal
possible degree. Let S = Vars(t). By the definition of Z-collapsable polynomial, there
exists a restriction p which sends f (and hence g) to 0 and does not touch ¢. But g/,

still contains ¢ and hence is non-zero. This contradiction proves Theorem 4.4.9.m

One good example of collapsable functions is made by threshold functions ) 7 | z; >

k. In particular, the majority function M AJ, defined by the predicate Y 7 z; > n/2
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is n/2-collapsable. To see that, assume that a subset of variables S with |S| < n/2
1s given. Assign the rest of variables to 1, it will satisfy the function. Thus, we have
shown that MAJ, is n/2-immune over any field (another, more direct proof of this

result can be also easily extracted from the proof of [Tsa96, Theorem 4.1])

Now we are ready to define the analog of Tseitin principle in the characteristics 0.
Recall that in the case of mod, Tseitin tautologies we have an oriented graph G with
Boolean variables corresponding to its edges, and the axioms in each vertex v saying
that its flow is equal to o(v) mod p. If instead of fixing the low mod p we demand

that it is positive in each vertex, we get flow tautologies.

Definition 4.4.10 (Flow tautologies) Let G be a finite oriented graph. Assign a
distinct Boolean variable z, to each directed edge e € E(G). For v € V(G) denote
by PosFlow(G,v) the following Boolean predicate:

Z (1- 2Tcwus) > Z (1= 2zcps).

{w| <w,w>€E} {w| <v,w>cE}

The Flow tautology of G is defined as (the negation of)

FI(G)E N PosFlow(G,v).
veEV(G)

It is easy to see that, up to negating some variables, PosFlow(G,v) coincides
with the majority function in d(v) variables and hence is d(v)/2-collapsable. Thus by

Theorem 4.4.9 and Lemma 4.4.2 we have

Corollary 4.4.11 If G is a d-regular Ramanujan graph on n vertices with d > 255
(augmented with an arbitrary orientation of its edges) then every PC refutation of

FU(G) over an arbitrary field has degree Q(dn).

4.4.5 Extended Pigeonhole Principle

In this section we prove degree lower bounds for PC refutations of Extended Pigeon-

hole principle defined in [BW99).
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The Pigeonhole principle with m pigeons and n holes states that there is no 1-1
map from [m] to [n], as long as m > n. This can be stated by a formula on mn

variables z;;, where z;; = 1 means that ¢ is mapped to j.

Definition 4.4.12 PHP™ is the conjunction of the following clauses:

def .
e P, = Vlgjgn‘rij for1<i<m

o o .
o Hl, = &y Vi forl<i<i’<m1<j<n

The problem with this classical definition is that the clauses F; can not be ex-
pressed as polynomials of low degree. That is why in case of Polynomial Calculus one
usually considers a stronger version of PHP;" in which no pigeon can simultaneously
“fy” into two different holes (which in particular implies that the big disjunction can
be replaced with a linear function, see e.g. [Raz98]). There is, however, still another
way to state PH P™ in order to express it by a family of low degree polynomials which

is perhaps more natural in our framework developed in Chapter 3.

Definition 4.4.13 ([BW99]) For f(Z) a Boolean function, a nondeterministic ez-
tension of [ is a function g(Z, %) such that f(&) = 1 iff 3y ¢(Z,§) = 1. T-variables
are called original variables and ij-variables are called eztension variables.

EPHP™ is obtained from PHP;" by replacing every row axiom P; with some
nondeterministic extension CNF formula E P; using distinct extension variables g; for

distinct rows.

Now, we express Pigeonhole principle as a family of polynomials by encoding every
clause C of EPHP™ with the corresponding polynomial pc. Since EF; can be chosen
as 3-CNT, this eliminates the problem with the degree of axioms.

Our main result in this section is the new proof of the following theorem. The

advantage of this new proof is that it does not use any specific calculations.

Theorem 4.4.14 For m = O(n) any Polynomial Calculus refutation of EPHFP

must have degree Q(n).
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Proof.

Let us consider some PC refutation P of EPHP™, Choose any m x n (r,s,¢)-
expander A with constant s, ¢ and r = Q(n) (for example, we can take the random
expander from Lemma 4.4.1). Let us restrict our Pigeonhole principle so that the
pigeon ¢ may “fly” only into holes j € J;(A4). Namely, let us apply to P the restriction
p that sets z;; = 0 for all j & J;(A).

Our next goal is to eliminate all extension variables from the proof. For that,
consider the ith extension axiom EP)|, in the refutation P|,. By definition, B(z;) =1
ff 37 g(2, %) = 1. Clearly the dependence of ; on 7, can be made deterministic in
the sense that there exist functions 7;(Z;) s.t. Pilo(3:) = 1iff (EB)| (&, hi(w:)) = 1.
Since we restricted all but s variables of Z; to zero, every h; essentially depends on at
most s variables. Let us replace in the proof P| o each extension variable y;; € ¥; with
the polynomial 1 — py,,. Clearly the degree of P| » Will increase by at most a factor
of s. Thus in order to prove the theorem it is sufficient to estimate the degree of this
new refutation.

It is easy to see that initial polynomials corresponding to the axioms E P, will be
mapped into the polynomials that semantically correspond to the clauses vV jedia) Tig-
Thus w.l.o.g. we can assume that they are mapped into polynomials fi L HjeJi(A)(l_

i;) so we have a PC refutation of the system
{fiss fnd Uiy 2 |0 £ 4, § € Ji(A) N T (A)}

that has degree at most s - deg(P).

In order to finish the proof, we need a multi-valued version of Theorem 4.3.13 (cf.
[ABRWO02]). Namely, suppose that instead of Boolean variables z; we have multi-
valued variables Z; € {1,...,d} that are represented by tuples of Boolean variables
Zj = (1), .., Tgj) with the intended semantical meaning 7 (£; = €). Like in the
boolean case, for a tuple €€ {1,..., d}* let xe(Z), 2, ..., 7)) & Hj’zl(l — e, 5)

Suppose that at the top of equations fil@n, o 2n) = .00 = fuldy,...,5) =0

with the same meaning as before our system additionally contains the equations
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zeyire; = 0 for all j € [n),1 € £ < ¢ < d. We adjust Definition 4.3.9 for the

multi-valued case as follows:

J(t) & (|t has a non-empty intersection with Z;}

and

Span(l) % Span({f:li € I} U {zgzesli € | JTi(A), 1< < <d}).
il
Then the analogue of Theorem 4.3.13 in this multi-valued framework looks like this:
Assume that A is an (r, s, ¢)-ezpander, and let &t e {1, ..., d}*4), Then any PC
refutation of the system {xzo(X:(A))]i € [m]} U{meze;lj €n], 1 <L << d} has
degree greater than (rc/2).
In this form Theorem 4.3.13 can be directly applied to our case (the multi-valued

variable ; runs over {1 € [m]|j € J;(4)}). Theorem 4.4.14 follows.m

4.4.6 Relation between robustness and immunity

In this section we discuss the relation between the hardness condition considered
in Chapter 3 and that of the current chapter. We show that every (s — k)-robust
function (see the definition below) is also w(1)-immune in the fields of characteristic
0 (k = const, s — 00). This estimate is extremely week but still even sufficiently large
constant immunity gives non-trivial lower bounds on the degree of PC refutations.
Recall, that a Boolean function f is £-robust if every restriction p such that f|, =
const, satisfies |p| > £. This notion is clearly invariant under negations. In order
to compare it with non-invariant immunity let us call the function f £-semi-robust
if f], = 0 implies |p| > £. Thus, a Boolean function is ¢-robust iff it is {-semi-
robust and so is its negation. Every f-immune Boolean function is f-semi-robust by
Lemma 4.2.5(1), therefore the notion of immunity is stronger. As the example of the
MOD, function shows, in positive characteristic immunity can be a much stronger

requirement than (semi-)robustness.
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In the opposite direction the following estimate holds:

Theorem 4.4.15 Assume that char F = 0, k is a constant. Then every (s — k)-semi-

robust Boolean function f in s variables has immunity w(l) when s — co.

Proof. By Corollary 4.2.4(2), we may assume w.l.o.g. that F = Q. We will need

the following classical definition of Ramsey numbers.

Definition 4.4.16 The Ramsey number Ry(l, .. ., l;) is the smallest n such that if
all k-subsets of [n] are coloured in r colours, then there exists a colour v and an

¢,-subset of [n] all of whose k-subsets have colour v.

Let Ny (d) be the smallest s such that for every non-zero polynomial ¢ € Q[zy, ..., z,]
with deg(g) < d there is a restriction p such that |p| < s— k& —1 and gl, does not have
(0 — 1) roots. Thus, this is the inverse function to what we are studying: namely,
if g is a semantic corollary of the polynomial pr (where f is a (s — k)-semi-robust
Boolean function), then Ny(deg(g)) > s. N; is monotone and we need to prove that
Vd Ni(d) < oo. Clearly, N (0) = k+1. Our result follows from the following recursive
bound:

Ni(d) < Ry(2"+1d, 2M1d, Ny(d - 1)).

In order to see this, let s > Ry(25+1d, 2¥+1d, Ny, (d—1)) and suppose that deg(g) <
d. Colour all d-subsets of [s] in three colours, +, —, 0, according to the sign of the
coeflicient in front of the corresponding monomial in g. Let us denote m = 2F+14.
According to the definition of Ramsey numbers, we have two cases.

Case 1. For some m variables, say, Ty, ..., Tm, g contains all monomials Ty
with I € [m]%, and it contains them with the same stgn. Consider k& + 1 vari-
ables Tyi1, Tmy2, ...y Trnake1. If there exists a restriction p to all variables except
Tm+1, Tmt2; -+ Tmtk+1 8-t g|, does not have (0 — 1) roots, then our recursive bound
follows. Otherwise for any assignment of Vars(g) \ {Zm+1, Tmi2, -, Tmars1} there
exist values for Z,,11, Zmy2, ..., Trnyrqr Which map ¢ to 0. In other words, at least one

of the functions
gl(xm+1=61 s T kb 1= €pop1)
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is equal to 0 on the chosen assignment or, equivalently,

H gl($m+1=€1,---,Im+k+1=€k+1) =0 in SS(Q)

€e{0,1}k !

This, however, is impossible since all monomials z; with I € [m]? still appear in all
9l (@msr=e1,emirsi=er 1) With the same sign, and therefore the monomial [];~, 2; has
a non-zero coefficient in this product.

Case 2. For some Ni(d — 1) varaiables, soy, T1,...,TNy(a-1), 9 contains no
monomial z; with I € [Nx(d — 1)]%. In this case we simply apply any restriction to

the remaining variables that does not kill g completely (which reduces the degree),

and then apply the inductive assumption.
Theorem 4.4.15 is proved.m

According to the convention made in Section 4.2 (cf. Definition 4.2.1), we say that
a polynomial f is £-semi-robust if the characteristic function of the set of its roots 1s

S50.

Theorem 4.4.17 For any fized integers k, a there exists an integer so s.t. for any
s > sg, (15,5 — a)-ezpander A and fi,..., fm (s — k)-semi-robust polynomials over
an arbitrary field of characteristic 0 with Vars(f;) C Xi(A), any PC refutation of the
system fi = ... = fm = 0 has degree Q(r).

This theorem follows from Theorems 4.3.8 and 4.4.15. Using the construction of
random expanders from Lemma 4.4.1 we can build various families of hard tautologies

based on (s — k)-semi-robust functions.

4.5 Open problems

The most interesting of remaining questions is what can be said about the system
(4.2) in the case of small expansion factor ¢ > 0? Can one show its hardness provided
that f; are sufficiently immune, otherwords is it possible to combine our Theorems

4.3.8, 4.3.13 into one general statement?
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Does there exist a relation between robustness and immunity stronger than that

of Theorem 4.4.15?
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Part 11

Lower Bounds on Automatizability
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Chapter 5

Hardness to Aprroximate
Minimum Propositional Proof

Length

5.1 Introduction

This paper proves lower bounds on the hardness of finding short propositional proofs
of a given tautology and on the hardness of finding short resolution refutations. When
considering Frege proof systems, which are textbook-style proof systems for proposi-

tional logic, the problem can be stated precisely as the following optimization problem:

Minimum Length Frege Proof:

Instance: A propositional formula ¢ which is a tautology.
Solution: A Frege proof P of .

Objective function: The number of symbols in the proof P.

For a fixed Frege system F, let minp(¢) denote the minimum number of symbols
in an F-proof of ¢. An algorithm M is said to approximate the Minimum Length
Frege Proof problem within factor «, if for all tautologies ¢, M(¢) produces a Frege

proof of ¢ of length < & - minp(¢). (Here, @ may be a constant or may be a function
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of the length of .)

We are interested only in polynomial time algorithms for solving this problem.
However, there is a potential pitfall here since the shortest proof of a propositional
formula could be substantially longer than the formula itself,! and in this situation,
an algorithm with runtime bounded by a polynomial of the length of the input could
not possibly produce a proof of the formula. In addition, it seems reasonable that
a “feasible” algorithm which is searching for a proof of a given length ¢ should be
allowed runtime polynomial in ¢, even if the formula to be proved is substantially
shorter than #. Therefore we shall only discuss algorithms that are polynomial time
in the length of the shortest proof (or refutation) of the input.

Note that an alternative approach would be to consider a similar problem, Min-
imum Length Equivalent Frege Proof, an instance of which is a Frege proof of
some tautology ¢, and the corresponding solutions are (preferably shorter) proofs
of . While our results are all stated in terms of finding a short proof to a given
tautology, they hold also for that latter version where the instance is a proof rather
than a formula.

A yet different approach could be studying algorithms which output the size (i.e.,
number of symbols) of a short proof of the input formula, rather than the proof itself.
In this case it is possible for an algorithm to have run time bounded by a polynomial
of the length of the input formula, even if the size of the shortest proof is exponential
in the size of the formula. In the final section of this paper, we show that strong
non-approximability results can be obtained for algorithms with run time bounded
by a polynomial of the length of the formula for a variety of proof systems.

A related minimization problem concerns finding the shortest Frege proof when

proof length is measured in terms of the number of steps, or lines, in the proof:

Minimum Step-Length Frege Proof:
Instance: A propositional formula ¢ which is a tautology.

Solution: A Frege proof P of ¢.

15 is known that NP # coNP implies that some tautologies require superpolynomially long
Frege proofs.
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Objective function: The number of steps in the proof P.

Resolution is a propositional proof system which is popular as a foundation for
automated theorem provers. Since one is interested in finding resolution refutations

quickly it is interesting to consider the following problem:

Minimum Length Resolution Refutation
Instance: An unsatisfiable set I" of clauses.
Solution: A resolution refutation R of T,

Objective function: The number of inferences (steps) in R.

The main results of this paper state that a variety of minimum propositional proof
length problems, including the Minimum Length Frege Proof, the Minimum Step-
Length Frege Proof and the Minimum Length Resolution Refutation problems, cannot
be approximated to within a factor 2\’ """ n by any polynomial time algorithm unless
P = NP (we use here the recent result of [DS99], see section 5.2). Our results apply
to all I'rege systems, to all extended Frege systems, to resolution, to Horn clause
resolution, to the sequent calculus, and to the cut-free sequent calculus; in addition,
they apply whether proofs are measured in terms of symbols or in terms of steps
(inferences), and they usually apply to either dag-like or tree-like versions of all these
systems.

We let F IJ-C(,D mean that ¢ has an F-proof of < k symbols. One of the first prior
results about the hardness of finding optimal length of Frege proofs was the second
author’s result [Bus95a] that, for a particular choice of Frege system F; with the
language A, V, — and —, there is no polynomial time algorithm which, on input a
tautology v and a k > 0, can decide whether F, # ¢, unless P equals NP. This result
however applies only to a particular Frege system, and not to general Frege systems.
It also did not imply the hardness of approximating Minimum Length Frege Proofs.

A second related result, which follows from the results of Kra Jicek and Pudlék [KP95],
is that if the RSA cryptographic protocol is secure, then there is no polynomial time
algorithm for approximating the Minimum Step-Length Frege Proof problem to within

a polynomial.
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Another closely related prior result is the connection between the (non)automatizability

of Frege systems and the (non)feasibility of factoring integers that was recently dis-
covered by Bonet-Pitassi-Raz [BPR97]. A proof system T is said be automatizable
provided there is an algorithm M and a polynomial p such that whenever T Eo
holds, M(y) produces some T-proof of ¢ in time p(n) (see [CEI96]). Obviously the
antomatizability of Frege systems is closely related to the solution of the Minimum
Length Frege Proof problem: if a proof system S is automatizable, then the mini-
mum length proof problem for S can be approximated to within a polynomial factor.
The two concepts are not equivalent since automatization is a property of the search
problem, whereas the minimum length proof problem concerns the associated deci-
sion problem. Qur theorems give a super-linear lower bound on the automatizability
of the Minimum Proof Length problem based on the assumption that P # NP. It
has recently been shown by Bonet-Pitassi-Raz [BPRI7] that Frege systems are not
automatizable unless Integer Factorization is in P, and more recently, that bounded-
depth Frege systems are also not automatizable under a similar hardness assumption
[BDG199|. These results give stronger non-approximability conclusions, but require
assuming a much stronger complexity assumption.

For resolution, the first prior hardness result was Iwama-Miyano’s proof in [IM95]
that it is NP-hard to determine whether a set of clauses has a read-once refutation
(which is necessarily of linear length). Subsequently, Iwama [Iwa97] proved that it
is in NP-hard to find shortest resolution refutations; unlike us, he did not obtain an
approximation ratio bounded away from 1.

In section 5.2, we introduce the MMSA and Circuit MMSA problems and dis-
cuss the relevant prior results about the hardness of approximating NP-optimization
problems. Section 5.3 discusses the main results about the hardness of approximating
minimum length of refutations on the example of Resolution. Section 5.4 contains
the main results about the hardness of approximating minimum length Frege proofs.
The proofs in sections 5.3 and 5.4 depend critically on the hardness of approximation

of (Circuit) MMSA problem.
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5.2 Monotone Minimum Satisfying Assignment

In this section we introduce the Monotone Minimum Satisfying Assignment (MMSA)
problem and show a few structural results about its complexity from the point of
view of the hardness of approximation. In fact for our further sections it is enough
to use the recent result of [DS99] (Theorem 5.2.2 below) which shows that MMSA is
hard to approximate within 2°¢" """ factor unless P = NP. This result appeared
after submission of our paper thus we prefer to keep the content of the section to give
more global picture.

The reader can find a general introduction to and survey of the hardness of ap-
proximation and of probabilistically checkable proofs in [Bel96] and [AL96]. Recall
that an A-reduction, as defined by [KST97], is a polynomial-time Karp-reduction
which preserves the non-approximating ratio to within a constant factor.

Consider the following NP-optimization problems:

Monotone Minimum Satisfying Assignment:
Instance: A monotone formula ¢(zy,...,2,) over the basis {v,A}.
Solution: An assignment (v, ..., v,) such that p(vy,...,v,) = T.

Objective function: The number of v;’s which equal T.

We henceforth let (¢) denote the value of the optimal solution for the MMSA
problem for ¢ i.e., the minimum number of variables v; which must be set True to
force ¢ to have value True.

We will also consider the Circuit MMSA problem which is to find the minimum
number of vafiables which must be set True to force a given monotone circuit over
the basis {A, V} evaluate True. It does not matter whether we consider circuits with
bounded fanin or unbounded fanin since they can simulate each other. It is apparent
that Circuit MMSA is at least as hard as MMSA.

Recall the Minimum Hitting Set problem, which is:
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Minimum Hitting Set:
Instance: A finite collection & of nonempty subsets of a finite set U.
Solution: A subset V of U that intersects every member of S.

Objective function: The cardinality of V.

It is easy to see that MMSA is at least as hard as Minimum Hitting Set: namely
Minimum Hitting Set can be reduced (via an A-reduction) to the special case of
MMSA where the propositional formula is in conjunctive normal form. Namely,
given S and U, identify members of I/ with propositional variables and form a CNF
formula which has, for each set in S, a conjunct containing exactly the members of
that set.

Lund and Yannakakis [LY94] noted that Minimum Hitting Set is equivalent to
Minimum Set Cover (under A-reductions). Furthermore, it follows from [RS97] that
the problem of approximating Minimum Set Cover to within Q(lnn) factor is not in
polynomial time unless P = NP.

We can get stronger results than the above reduction of Minimum Set Cover to
MMSA if we use a construction due to S. Arora [private communication] to reduce

MMSA to the Minimum Label Cover problem.

Minimum Label Cover: (see [AL96])

Instance: The input consists of: (i) a regular bipartite graph G = (U, V, ), (ii) an
integer N in unary, and (iii) for each edge e € FE, a partial function II. :
{1,...,N} = {1,..., N} such that 1 is in the range of Il..

The integers in {1, ..., N} are called labels. A labeling associates a nonempty
set of labels with every vertex in U and V. A labeling covers an edge e = (u,v)
(where u € U, v € V) iff for every label £ assigned to v, there is some label £
assigned to u such that IL(f) = .
Solution: A labeling which covers all edges.

Objective function: The number of all labels assigned to vertices in U and V.

A TI4-formula is a propositional formula which is written as an AND of OR’s of

AND’s of OR’s.
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Theorem 5.2.1 (S. Arora) There is an A-reduction from Minimum Label Cover to

MMSA such that the instances of Label Cover are mapped to Ty formulas.

Proof. Suppose we have an instance of Label Cover (G, N, {IL,}). Let m = |U|
and k= (V]. For1 <¢:<mand1</¢<N, let uf be a propositional variable with
the intended meaning that uf = T iff £ is one of the labels assigned to vertex i € U.
Likewise, for 1 < 7 <mand 1 < ¢ < N let vf denote the condition that ¢ is one
of the labels assigned to vertex j € V. We shall construct a formula ¢ involving
the variables u} and 'uf so that the minimal satisfying assignments for ¢ are precisely
those truth assignments which correspond to minimal weight labelings which cover

all edges. We define ¢ to be

kN

AVigr AV

j=1 f=1 il )EE  HTe(1)=¢
The formula ¢ clearly is a monotone Il4-formula and has size polynomial in N, m, k.
It is easy to verify that any minimum satisfying assignment for ¢ corresponds to
a labeling which covers all edges and which has a minimum number of labels: to
see this, one should note that any minimum size labeling, as well as an minimum

satisfying assignment, will have exactly one label assigned to each vertex V.m

It was proved in [ABSS93] that Minimum Label Cover is not approximable within
a 296" n factor unless NP C QP. An immediate corollary of Theorem 5.2.1 is
that MMSA enjoys the same hardness of approximation, even when restricted to

[14-formulas.

Recently [DS99] improved both the factor and the hypothesis of Label Cover. They
considered the case of MMSA for I1; formulas and showed its hardness directly from
some strong version of PCP-Theorem. They also show how to inverse the reduction
of Theorem 5.2.1 and reduce MMSA for II; to Label Cover.

We will use their result in further sections:
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Theorem 5.2.2 (I. Dinur, S. Safra, [DS99]) IfP # NP, then there is no polynomial
time algorithm which can approzimate MMSA (and hence Circuit MMSA) within o

1-0(1)
factor 218 n,

If one only demands the circuit compute a monotone function (instead of being
monotone) then stronger bounds for non-approximability are known [Uma99]. How-
ever our results essentially require that C' be monotone. In the next sections we reduce
the Circuit MMSA problem first to the Minimum Length Resolution Refutation prob-
lem and then to other problems on minimum proof length. This will establish the

same hardness of approximation results for these proof length optimization problems.

5.3 The Hardness of Refutations

In this section we prove the simplest hardness result which can be applied to any
“reasonable” refutation system. Very informaly the only requirements from the sys-
tem are its soundness and completeness and each formula in the refutation should
be the corollary of a finite number of formulas. All such natural systems as Resolu-
tion, Polynomial Calculus, (Bounded Depth) Frege refutation posses these required
properties.

We give the proof only for Resolution but it is quite analogous for the other
refutation systems. Also, the Hardness Theorem for Resolution shows the intuition
of the reduction from Circuit MMSA which will be used in the next sections when

we consider the inferences of tautologies.

We shall be concerned exclusively with the propositional resolution systems. Re-

call that the resolution rule allows an inference of the form

Cu{py Dulp}
CuD

It is well-known that resolution is sound and complete as a refutation system; namely,

a set T is unsatisfiable if and only if the empty clause can be derived using only
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resolution inferences from the clauses in T.

A Horn clause is a clause which contains at most one positive literal.

A resolution refutation consists of a sequence of clauses, ending with the empty
clause. We can measure the length or size of a refutation in terms of either its step-
length or its symbol-length. The step-length of the refutation is just equal to the
number of clauses in the refutation. The symbol-length is defined to equal the sum
of the cardinalities of the clauses appearing in the refutation. (Unlike the situation
for Frege proofs where proof length is traditionally defined in terms of symbol-length,
there seems to be no fixed convention on how to measure the length of resolution
refutations: thus, we shall always explicitly include one of the modifiers ‘step-’ or
‘symbol-’.)

A refutation can be either tree-like or dag-like: unless it is explicitly stated oth-
erwise, refutations are considered to be dag-like. We shall obtain the best possible
results in that our upper bounds on length will apply to tree-like refutations and our
lower bounds on length will apply to dag-like refutations. In the introduction, we
introduced the Minimum Length Resolution Refutation problem: henceforth we’ll be
more precise and talk about the Minimum Step-Length Resolution Refutation and

the the Minimum Symbol-Length Resolution Refutation problems.

Theorem 5.3.1 There is an A-reduction from the Circuit MMSA problem to the
Minimum Length Resolution Refutation problems. This reduction works for both tree-
like and dag-like refutations and for both step-length and symbol-length. Furthermore,

the reduction produces only sets of Horn clauses.

Together with Theorem 5.2.2 this yields

Corollary 5.3.2 If P # NP, then there is no polynomial time algorithm which can
approzimate Minimum Step-Length (Symbol-Length) Resolution Refutation to within
glog! W 7 factor.

These hardness results apply to both dag-like and tree-like resolution. In addition,
the hardness results apply to Horn resolution, where all the input clauses are Horn

clauses.
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To prove Theorem 5.3.1, we shall construct the reduction from Circuit MMSA to
Minimum Length Resolution Refutation problems. Let C be an instance of Circuit
MMSA; we define a set of clauses I'c which will be an A-reduction to the Minimum
Length Resolution Refutation problems.

Enumerate the subcircuits of C as Cy, ..., Cy, where the input variables are first
in the enumeration and where each C; is listed only after all of its own subcircuits
are enumerated, and thus C, is C. Obviously the number £ of subcircuits is less than
the number of symbols n in C. We introduce new propositional variables y1,..., %,

and define the set T'c to contain the following clauses:

a. The clause {7z} is in I'c.
b. For each i < ¢, if C; is (C; A Cy), then the clause {7, Uk, v} is in I'e.

c. For each i < ¢, if C; is (C; V Cy), then the clauses {g;, yi} and {7, v:} are in I'c.

The above clauses describe the evaluation of C; however, note that they say
nothing about the truth of the input variables 1, ...,z, of C. For each variable z;
of C, we introduce new variables z;; for j = 1,2,...,m, and further include in I'c

the following clauses:

d. For each i < p, the clauses {z;:} and {Tim, y:} and

{m,l‘i,j_H} forj=1,...,m—1

are included in ['c. These clauses are said to be associated with x;.

That completes the definition of I'c. Informally, T'¢ asserts that there exists a truth-
evaluation to all subcircuits of C such that: the truth evaluation given to the output
circuit is 0, the truth evaluation given to all input variables is 1, and the truth eval-
uation is consistent with all intermediate gate values. Clearly, this is an unsatisfiable
formula since C' is monotone.

Our next plan is to show that the price to infer the literal y, and hence get
contradiction is nearly equal to v(C) multiplied by the price to infer any of “input”

literals y;, 7 < D-
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Lemma 5.3.3 Let C be an instance of Circuit MMSA and let v equal the cardinality

of the minimum satisfying assignment for C.

(1) Tc has a dag-like refutotion with symbol-length (and hence step-length) equal to
O(ym + n).

(2) Tc has a tree-like refutation of symbol-length O(ym+n?) and step-length O(ym+

Proof. (a)Let 7 C {x1,...,z,} specify a satisfying assignment for C of cardinality .
The dag-like proof proceeds by first deriving the clause {y;} for each z; € I. Each {ui}
is derived in m steps using the clauses associated with z;; this part of the refutation
takes ym steps. The refutation then derives clauses {v:} starting with smaller values
of ¢ and ending with {y¢} (e.g., the subcircuits of C' are processed in a bottom-up
order). This takes O(n) steps. One further resolution with the input clause {72}
completes the refutation. Each clause in the refutation contains a constant number
of (in fact, at most three) literals. Hence the symbol-length of the refutation is also
O(ym +n).

(b) The above proof is clearly not tree-like. To form a tree-like refutation, we use a
top-down procedure to generate the refutation. The first phase of the refutation starts
with the clause {7} and derives successively clauses of the form {Uk1» Tha» - - - » Ur, ¥ With
kv > ky > --+ > k;. Such a clause is resolved with one of the (at most two) clauses
that contain y, positively. This continues until we have a clause which contains
only literals g; corresponding to input z; of C. Tt is possible to do this so that the
remaining clause is just {7; : z; € I'}. For the second phase of the refutation, derive
the clauses {y;}, for z; € I, with-ym steps, and for the third phases, use v resolutions
to derive the empty clause.

There are obviously O(n) steps in the first and third phases of the derivation,
so the whole refutation has O(ym + n) steps. Furthermore, each clause in the first
and third phase contains at most n literals. The second phase contains ym clauses
each with a constant number of literals. Therefore, the symbol-length of the tree-like

refutation is O(ym + n?).m

99



Lemma 5.3.4 Let C and v be as above. Then any resolution refutation (dag-like or

tree-like) must have step-length, and hence symbol-length, of at least ym.

Proof. Let R be a resolution refutation. An input variable z; is defined to be
R-analyzed if every one of the (m + 1)-clauses associated with z; is used in the
refutation R. Obviously it will suffice to prove that at least v input variables are
R-analyzed. In fact, if I is defined to equal the set of R-analyzed variables, then
I implies a satisfying assignment for C.

This last fact is almost immediate. To prove it formally, we define a truth assign-
ment 7 as follows: (1) 7 assigns truth values to variables y; according to the value
I assigns to C; (2) 7 assigns True to z; iff each clause {z;1} and {Fij, @i w1} for
1 < j < kis used in R. If I doesn’t satisty C, then 7 would satisfy all the clauses
used in the refutation R, which is impossible. Therefore, I is a satisfying assignment

for C.m

Let us choose m sufficiently large with respect to n? say m = n>. These two
Lemmas establish that ¢ — T[¢ is an A-reduction; namely, it is easy to see that
the constructed reduction transforms a sufficiently large gap g(n) between hard and
easy instances of Circuit MMSA into a gap g (n) in Minimum Length Resolution
Refutation, hence if Minimum Length Resolution Refutation is approximable with
some factor f(n) then Circuit MMSA is approximable with O(f(n®M)). This proves
Theorem 5.3.1.

5.4 Main Results for Frege Systems

In this section we prove the existence of A-reduction from the Circuit MMSA to the
Minimum (Step) Length Frege Proof problem. We prove it for both tree-like and
dag-like versions. This will imply the hardness of approxiomation of Minimum (Step)

1-o(1) n

Length Frege Proof within 2'8
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5.4.1 Preliminaries

We next define the notion of “active” formulas in a proof, which will be useful for
proving lower bounds on the lengths of proofs. Recall that an inference in a proof
must be a substitution instance of an axiom scheme, i.e., each inference must be of

the form
Ao - Ao

Ak+10

(I)

Consider a particular occurrence of a formula C as a subformula of a formula A,o in
the inference (I). If the principal connective of € is present already in the formula A;,
then we say C is active wr.t. the inference (I). Otherwise, C' occurs as a (not
necessarily proper) subformula of zo for some variable z, and C is not active w.r.t.
inference (I).

If a formula C has some occurrence in a proof P which is active with respect to
some inference of P, then C is said to be active in P. (The terminology is potentially
confusing: it is important to note that an active formula of P may never occur as a
formula in the proof P, but instead only as a subformula of formulas in P)

The next theorem lets us obtain a lower bound on the length of P, |P|, in terms

of the lengths of the active formulas of P.

Theorem 5.4.1 (see [Bus95b]) Let F be a Frege proof system. There is a constant e
such that if P is a Frege proof and we let ¢ range over active formula-occurrences

in P, then

1Pl > e ol
¢

Proof. A formula can be viewed as a tree with nodes labeled by connectives from I,
The depth of a formula is defined to equal the height of this tree, namely the maximum
number of connectives along any branch of the tree. Let d equal the maximum depth
of the depths of the formulas which occur in the inference schemes of F, and set
¢ = (1/d). Clearly, any active occurrence of a formula in P must have its principal
connective at distance at d — 1 from the root of the formula’s tree. Thus, any given

single symbol @ occurring in P can occur inside at most d active occurrences of
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subformulas. From this, we immediately get

d-1P] 2 Y _l¢!

and the theorem follows immediately.m

As mentioned earlier, the step-length of a proof P 1s equal to the number of steps
or inferences (counting axioms as nullary inferences) in the proof. There is a linear
relationship between the number of formulas active in P and the step length of P;

namely,

Theorem 5.4.2 Let F be a Frege proof system. Then there is a constant € so that of
P is a proof and m is the number of distinct active formulas in P, then the step-length

of P is > em.

Proof. We let a equal the maximum number of subformulas that can be active in

any given formula in P. For 1nstance, if every inference scheme has depth bounded

d

by d and r is the maximum arity of connectives in the language of F, then @ =} ;¢ rt

works. Clearly Theorem 5.4.2 is true with ¢ = 1/c.m

It is an interesting (albeit trivial) observation that if no formula is repeated in P,
then the number of steps in P is also linearly upper bounded by the number of distinct

formulas active in P.

5.4.2 Hardness of Approximation for Frege Systems

Theorem 5.4.3 There is an A-reduction from the Circuit MMSA problem to the
Minimum (Step) Length Frege Proof problems. This reduction works for both tree-like

and dag-like inferences.

Together with Theorem 5.2.2 this yields

Corollary 5.4.4 If P # NP, then there is no polynomial time algorithm which can
approzimate Minimum (Step) Length Frege Proof to within 218" "™ factor.
These hardness results apply to both dag-like and tree-like Frege Systems.
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The outline of our proof looks like the following: Suppose we have circuit C with
inputs z,,. .., z; given as a set of instructions z; := ;. OPz;,  fori e th+1,..., nt,
where OP is A or Vv, where j; || Jiz < % and where Tn is the output node. We construct

a tautology
Yo = ( /\ ((J:Ji,IOiji.z) - 732)) = Zn,
i=k+1

where z;,... 7, are replaced with some hard “independent” tautologies 7, .. .y Th.
Then we claim that the complexity of inference of 1 is about, ¥(C) multiplied by the
complexity of a single “hard” tautology 7; (the intuition is that we need to spend “g,
lot” to infer some ¥(C) tautologies of r, . .. » & Which force C' to trye and then we

need “few” steps to infer ¥ by evaluation of our circuit),
We use the construction of [Bus95a] to define this set of hard tautologies

Definition 5.4.5 et Po; D1 - - . be propositional varighles. Let 1 be the contradiction
Po A =po, and let 70 be the tautology (—p; v p;). Define

W=V Ly
Z;;;LBS

Note that |7}| = O(g).

The problem is that our language probably doesn’t contain the connectives V, A, .
Thus we need to express it with help of the connectives we have. Let ys now fix some
Frege proof system F, with language L. We wish to construct L-formulas ’rf’L which
are analogues of the formulas 7f. To do this with similar size bounds, we need the

following lemma:

Lemma 5.4.6 (Reckhow [Rec76]) There are L-formulas NOT(z, z), AND(z,y, z),
OK(z,y,z), and IMP(z,y, 2) such that

(1) NOT(z, z) contains one occurrence of x, and AND(z,y, 2), OR(z,y,2), and IMP(z,y, z)

contain ecactly one occurrence of each of x and Y.
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(2) The four formulas represent the Boolean functions ~z, (zAy), (zVy) and (z — y);
in particular, the truth values of the formulas are independent of the truth value

of z.

Proof. The side variable z acts merely as a placeholder whose truth value is irrelevant:
in fact, if the language L contains a constant symbol, then the use of the variable z is
unnecessary. We shall assume that the constant symbols T and L are included in L;
this may be assumed without loss of generality since the symbols T and 1 may be
replaced everywhere by L-formulas equivalent to the formulas (zV —z) and (2 A —z),
respectively. |

Let N be an L-formula containing only the variable z which represents the propo-
sitional function —z: N exists since L is a complete set of connectives. If N contalns
n occurrences of z, we write N = N(z, %, ..., z) with each occurrence of z separately
indicated. Let T¢ denote a vector of i occurrences of T, and define 1% similarly. By
choice of N, N(T™) has value False and N(L") has value True. Therefore, there is
some 0 < i < n such that N(T?, L") has value True and N(T**', 177%1) has value
False. Thus, we can take NOT(z) to be the formula N(T*, z, Anil),

To prove the remainder of the lemma, it will suffice to find an L-formula X (z,y)
which has one occurrence of each of x and y, and which has appearing in its truth
table either three values True and one value False, or three values False and one
value True. (Note that conjunction, disjunction and implication are three of the
eight propositional functions whose truth table has this property.) This will suffice
since AND, OR and IMP can be readily defined from such a formula X and from
NOT.

Let A be an L-formula containing only the variables z and y which represents the
propositional function (x Ay). Assume A= A(z,...,2,y,-..,y) has m occurrences
of z and n occurrences of y, each occnrrence separately indicated. Define A; 1 to be
the formula A(T*, L™ %, T") and A; 1 to be A(T?, 4m% 1™). Now Ap7 and Am
have different truth values, and Agt and Ag 1 have the same truth value. Clearly,

there is a value 0 < i < m so that A, v and A; | have the same truth value, but so that
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Aiy11 and A;q, 1 have different truth values. Fix such an i and let B — B(z,y,...,v)
be the formula A(T?,z, L™""! y,...,y). Note that B has one occurrence of z and
n occurrences of y, each indicated separately. Let B;(z) be the formula B(z, T, L),
From the definition of B, the multiset of the four truth values of By(T), By(1), B,(T)
and B, (L) contains either three Trues and one False, or one True and three Falses
Therefore, there is some value 0 < § < n so that the multiset of the truth values of
B;(T), Bj(L), B;;1(T) and B;,,(L) enjoys the same property. Letting X(z,v) be

the formula B(z, T?,y, 1»7~1) gives the desired formula.m

For simplicity of notation, we shall henceforth suppress mentioning the occurrences

of the side variable z.

Definition 5.4.7 If ¢ 1s a formula over the basis {=, AV, =}, then its L-translation, |
", is the L-formula obtained by replacing the connectives =, A, V, and — with the
formulas NOT, AND, OR and IMP in the obvious way. Because of the condition that
T and y occur at most once in the formulas NOT, AND, OR and IMP, the size |pT|
of " s O(lg|).

We write 'rf’L to denote (t})7; thus |77F| = o(?).

The next lemma will be used to give upper bounds on the lengths of F-proofs.

Lemma 5.4.8 ([Bus95a]) 7% has an F-proof of length O(2%) (step-length O(£)).

This lemma is proved by noting that F can derive successively TiU’L il Bl

v i D

, etc.,

until Tf L is derived. O

Suppose that we are given the circuit C. Let us take the formula e defined in

the begining and translate to our language:

djé‘ = l:( /\ ((Iji.lOiji,z) — 1‘1)) - an ;

r=k+1
where 1, ...,z are replaced with /™" ... T for sufficiently large m (it will be

enough to let m = n3). We claim that ¥¢ is the reduction of Circuit MMSA instance
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C' to Minimum (Step) Length Frege Proof problem. We are going to show that
minimal proof length of % is about v(C) - m? (step-length of ¥k is about y(C) - m).

Lemma 5.4.9 %§ has a tree-like B-proof of length O((C) - m? +m -n*logn) (step-
length O(v(C) - m + nlogn)).

Proof. Suppose that {v;} is the minimal satisfying assignment for C' and that I 1s
the index set of all v; such that v; = T, |I| = y(C). First we infer all the tautologies
imL, i € I in length v(C) - m? (step length v(C) -m) by Lemma 5.4.8.

Letri,rg,...,7s = n bethe increasing sequence of indices such that z,,, Zyy,s - - 5 Tr,

are made true by the truth assignment ¢. Then, it is straightforward to construct a

tree-like Frege proof of the formulas

L

n

o= A (0P =20 = |
i=k+1

which proceeds by proving these successively with £ =1,2,3,...,5 using TZ"’L, 1el

as basis. To make our inference tree-like on each step ¢ we independently prove

formulas

, L
[(/\ Q:n) - (mjre+1leP$jT£+1»2)}
i=1

Together with v, it will infer ¢y in O(1) steps. Since the conjunctions all have
O(n) inputs and since the formulas have symbol-length O(m - n) if one is careful and
uses balanced conjunctions [Bon91], on each step the inference v, from 1, can have
length O(m - nlogn) (step-length log n).

Finally the overall proof has length at most O(v(C) .m*+m-n®logn) (step-length
O(v(C) - m + nlogn)). Lemma follows.m
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Definition 5.4.10 Let 9 be a formula and consider a particular Tf’L. We define
w/(Tf’L) to be the formula obtained from <) by replacing every occurrence of Tf’L as a
subformula of 3 with the formula L. Note, that if £, < {, then 2L 1Ty s ot o
tautology anymore.

If P 1s a proof, then we define P/(r"") be a sequence of formulas obtained by
replacing every ¢ in P with /(r°"). Note that P/(rPY) will not, in general, be a

valid proof.

Lemma 5.4.11 Let P be a proof of ¥ and suppose that the formula Tf’L 15 not active
in P. Then, ¥/(t/") is a tautology.

The proof of Lemma 5.4.11 is immediate by the fact that if 7o' is not active in P,
then P/(7%) is identical to P, except that it may use a different substitution of

formulas for variables, and hence it is still a valid proof. O

Lemma 5.4.12 Any F-proof of v% has length Qy(C)-m?) (step-length Q(v(C)- m)).

Proof. Suppose that v(C) = p. Let P be some F-proof of ¢£. Let I be the index
set of all 7 such that Tf’L is active in P for all 0 € ¢ < m. For 7 ¢ I, choose j,
so that 'rjj”L is not active in P. By Lemma 5.4.11 we have that, after replacing all

T_?'r:

J L with L for all 7 & I, the formula 9% remains a tautology. Hence the circuit

C' is satisfied by the truth assignment corresponding to the characteristic function
of I, hence |I| > p. Thus [P| = Q(p - m?) by Theorem 5.4.1 and the fact that the
total length of the formulas Tf’L, foricel, 0 <L<m,is Qp-m?). Analogously by
Theorem 5.4.2 the step length of P is Q(p - m).m

Altogether Lemmas 5.4.9, 5.4.12 imply that the mapping C ~» 9% is A-reduction.
Theorem 5.4.3 follows.
Remark. All of our hardness results for approximating step-length and symbol-
length of Frege proofs also apply to extended Frege systems. To see this, it suffices
to note that all the upper and lower bounds on the length of Frege proofs which

were obtained in the proof of Theorem 5.4.3, also apply to extended Frege proofs.
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Of course it is obvious that the upper bounds apply since every Frege proof is an
extended Frege proof. The lower bounds also apply, since Theorems 5.4.1 and 5.4.2

are also true for extended Frege systems ([Bus95b]).

5.5 Hardness results for long proofs

In the previous sections we proved that it is NP-hard to approximate the mini-
mal propositional proof length by any constant factor, and that if NP is not in P
then minimum proof-length cannot be approximated (in polynomial time) within a
olog =W n gator. The tautologies used in the proofs of these results had “short”
proofs (or refutations); that is, proofs whose length is polynomial in the size of the
formula. However, if NP # coNP, then for any proof system S, there are tautologies
whose shortest S-proof is of super-polynomial length. It is therefore interesting to ask
whether better non-approximability results can be achieved when the proof lengths
are not bounded, and when the run time of the algorithm is required to be polynomial
time in the length of the input formula only.

The following simple intuition implies that in this case, no polynomial time algo-
rithm can guarantee a polynomial time approximation for the shortest refutation of
a given unsatisfiable formula, unless NP ¢ P/poly:®

Given an input formula 1 of length n, reduce it to a formula ¢ = ¥ A7, such
that 7 is unsatisfiable but its shortest refutation is larger than the refutation of any
unsatisfiable formula of length n by a super-polynomial factor. Then v is satisfiable
iff on input ¢, a supposed polynomially bounded approximation algorithm returns a
number smaller than the size of the shortest refutation of ¢. This implies a polynomial
time circuit for recognizing SAT. To make the above argument formal, we need few

more definitions.

Definition 5.5.1 For a proof system 8 and an unsatisfiable formula ¢, ming(p)

is the mintmum length of a refutation of ¢ in §. For an integer n, MAXs(n) =

2We present the results in terms of finding short refutations of unsatisfable formulas, but equiv-
alent definitions and results are easily obtained for finding short proofs of tautologies.
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max{mins(¢)}, where ¢ ranges over all unsatisfiable formulas of length < n.

We say that a non-decreasing function f has super-polynomial growth if for every
polynomial 7, f(n) > r(n) for almost all positive integers n. The function f has a
smooth super-polynomial growth if in addition there is a constant D such that for
each n thereis 1 < d < D such that f(n?) > f(n). [If we write f(n) = n®™, then the
first condition states that e(n) is not bounded from above, and the second condition
states that for each n there is m, n < m < nP, such that e(m) > e(n).]

Assume, for simplicity, that S contains the connective A. Formulas 1 and 7 are

said to be disjoint if their underlying sets of variables are disjoint.

Theorem 5.5.2 Assume that NP ¢ P/poly, and let S be a proof system which

satisfies:

1. For every pair of disjoint formulas + and n, where 7 s unsatisfiable, the follow-

wng holds:
(a) If ¥ is unsatisfiable, then mings (4 A 1) < ming (1) + (Y| + |n)) for some
(fized) polynomial r.

(b) If i is satisfiable, than ming (v A n) > ming(n);
2. MAXs(n) has a smooth super-polynomial growth.

Then for any polynomial q, there is no polynomial time g-approximation algorithm

for the minimum length proof in S.

Observe that property 1 above holds trivially for all proof systems mentioned in this
paper. Property 2 is known to hold for resolution, since in this case M AXg(n) < 37
for all n, and by [BP96], for each n there is an e, 1 <e<3st. MAXs(n®) > 2%,
thus property 2 holds for D = 3 for all large enough n’s. We conjecture it to be valid

for any known proof system in which the proot lengths are not polynomially bounded.

Proof. We show that the existence of a polynomial time g-approximation algorithm,

AL, for S, implies polynomial time circuits for solving SAT.
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Let j be such that g(n) < n’ for almost all n, and let ) be the constant guar-
anteed by the smooth super-polynomial growth of MAXg. Since M AXs has super-
polynomial growth, for all large enough 7 it holds that r(n+n2P) < MAXs(n). Fix
an integer no for which this inequality holds. Since the super-polynomial growth of
MAXg is smooth, there is a number d, 2j < d < 27D, such that [MAXs(no)l* <
MAXs(m), where m = no?. Let 7m be a formula of size < m such that ming(7m,) =
MAXs(m). An input formula ¢ of size ng is reduced to ¢ = ¥ A n,, where the
variables of 7,, are disjoint from these of ¢ (note that ¢ is unsatisfiable and its size is
polynomial in that of 4). We claim that ¢ is unsatisfiable if and only if AL on input ¢
will output a number k < MAXg(m). To see this, observe that if 1) is unsatisfiable,
then by property (la) above, mins() < mings(¢) + (9] + 17ml) < 2MAXs(no).
Hence, by the assumption on AL, AL must produce an output k< (2MAXg(ng)) <
MAXs(m) = ming(nm,). On the other hand, if % is satisfiable, then, by property
(1b), ming(¢) > ming(nm) = MAXs(m).=
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Chapter 6

Automatizability of Resolution and

Fixed Parameterized Complexity

6.1 Introduction

"The analysis of potential usefulness of proof search heuristics and automated theorem
proving procedures based on a proof system P amounts (on the theoretical level) to

the following two basic questions:
Question 1. Which theorems in principle possess efficient P-proofs?

Question 2. How to find the optimal (or, at least, nearly the optimal) proof of a

given theorem in P?

The traditional proof complexity mostly dealt, and still deals with the first question.
Recently, however, there has been a growing interest in the second one, too. An
additional motivation to study the complexity of finding optimal proofs comes from
deep connections with efficient interpolation theorems; we refer the reader to the
excellent survey [BP98] for more details about this and also as to a good starting

point for learning more about propositional proof complexity in general.

One convenient framework for the theoretical study of Question 2 was proposed in

[BPR00]. Namely, they called a proof system P automatizable if there exists a deter.
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ministic algorithm A which, given a tautology 7, returns its P-proof in time polyno-
mial in the size of the shortest P-proof of 7. The definition of a quasi-automatizable
proof system is given in the same way, but we only require the algorithm A to run in
time which is quasi-polynomial (in the same parameter).

One advantage of this definition is that it allows us to completely disregard the
first basic question on the ezistence of efficient P-proofs and indeed concentrate on
finding efficient proofs provided they exist. In particular, the notion of automatizabil-
ity makes perfect sense for those (weak) proof systems for which hard tautologies are
already known. Moreover, the weaker is our system the more likely it seems to be
automatizable. One possible explanation of this phenomenon comes from the connec-
tion between automatizability and efficient interpolation (every automatizable proof
system has efficient interpolation, and the property of having efficient interpolation
is indeed anti-monotone w.r.t. the strength of the system). Anyway, given this con-
nection, the results from [KP95], [BPR0O] imply that Extended Frege and TCO-Frege
proof systems respectively are not automatizable assuming some widely believed cryp-
tographic assumptions. [BDG*99] extended the latter result to bounded-depth Frege

but under a much stronger assumption.

We are primarily interested in the automatizability of Resolution and tree-like
Resolution. It is worth noting that both systems possess efficient interpolation,
therefore their non-automatizability can not be proved via techniques similar to
[KP95, BPR0O, BDG*99]. Nonctheless, {Iwad7] proved that it is NP-hard to find
the shortest resolution refutation. In Chapter5 we prove that if P # NP then the
length of the shortest resolution refutation can not be approximated to within a factor

glog! =M m (both for general and tree-like Resolution).

In the opposite direction, [BP96] observed that tree-like Resolution is quasi-
automatizable. Thus, it is unlikely to show that this system is not automatizable
modulo P # NP conjecture, because it would imply quasi-polynomial algorithms for
NP (in case of general Resolution this goal seems also tricky at the moment because

there is only one known example [BG99] for which proof search algorithm of [BW99)
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is working in more than quasi-polynomial time). Therefore, for any method of es-
tablishing non-automatizability which is applicable to tree-like Resclution, one needs
to invoke some complexity framework in which the asymptotics n®M and nloen are

essentially different.

One natural example of such a framework is parameterized complezity by Downey
and Fellows (see [DF98]) in which algorithms working in time f (k)n°D) and n* are
considered different from the point of effectiveness (here k is an integer input parame-
ter that is supposed to be an “arbitrarily large” constant). In this paper we prove that
neither Resolution nor tree-like Resolution is automatizable unless the class WIP] ly-
ing very high in the hierarchy of parameterized problems is fixed-parameter tractable
by a randomized algorithm with one-sided error (Theorem 6.4.3). Our proof goes by a
reduction from the optimization problem MINIMUM MONOTONE CIRCUIT SAT-
ISFYING ASSIGNMENT (MMCSA for short) whose decision version is complete for
the class W[P]. An alternative hardness assumption is that there is no deterministic
fixed-parameter algorithm which approzimates MMCSA within any constant factor
(Theorem 6.4.2). It is worth noting in this connection that we were able to relate
to each other the hardness of finding ezxact and approzimate solutions for MMCSA
without using the PCP Theorem (see the proof of Theorem 6.4.3). This result can

be interesting in its own.

‘The paper is organized as follows. Section 6.2 contains necessary preliminaries and
definitions, in Section 6.3 we present our core reduction from MMCSA to automatiz-
ability of Resolution, and in Section 6.4 we use (sometimes non-trivial) self-improving
techniques to prove our main results, Theorems 6.4.2 and 6.4.3. The paper is con-

cluded with some open problems in Section 6.5.
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6.2 Preliminaries

6.2.1 Resolution and automatizability

Recall that Resolution operates with clauses and has one rule of inference called

resolution rule:
AVzx Bvz

Av B

A resolution proof is tree-like if its underlying graph is a tree. A resolution refutation
of a CONF 7 is a resolution proof of the empty clause from the clauses appearing in 7.
For an unsatisfiable CNF 7, S(r) [Sr(7)] is the minimal size of its resolution
refutation [tree-like resolution refutation, respectively]. Clearly, S(7) < Sp(7).
For a CNF 7, let n(r) be the overall number of distinct variables appearing in
it, and let |r| be the overall number of occurrences of variables in 7, i.e., |7| W

S e, w(C). For an unsatisfiable CNF 7, w(r F §) will denote the minimal width of

its resolution refutation.

We will recall the general definition of automatizability from [BPROO] for the

special cases of Resolution and tree-like Resolution.

Definition 6.2.1 Resolution [tree-like Resolution] is (quasi-)automatizable if there
erists a deterministic algorithm A which, gwen an unsatisfiable CNF T, returns its res-
olution refutation [tree like resolution refutation, respectively] in time which is (quast-

Jpolynomial in |r| + S(7) [It| + Sr(T), respectively/.

Remark 6.2.2 Note that we do not require that all clauses from T must necessarily
appear in its refutations, therefore, we can not a priori ezpect the inequality S(r) =
|7|. This is why we must introduce the term 7| into the bound on the running time of
A when adapting the general definition of automatizability from [BPROO] to the case

of Resolution.
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6.2.2 Parameterized complexity and MMCSA problem

We refer the reader to [DF98, Fel01] for a good general introduction to the topic of

parameterized complexity.

Definition 6.2.3 ([DF98, Definition 2.4]) The class FPT (that stands Jor fixed
parameter tractable) of parameterized problems consists of all languages L C 3* x N
for which there ezists an algorithm ®, a constant ¢ and a recursive function f : N —»

N such that:
1. the running time of ®((z,k)) is at most f(k) - |z|¢;

2. (z,k) € L iff ®((z, k)) = 1.

Thus an algorithm is considered to be feasible if it works in time polynomial in
n and f(k), where k is supposed to be much smaller than n, and f is an arbitrarily
large (recursive) function. A similar feasibility issue arises in the theory of polynomial
time approximation schemes (PTAS) for NP-hard problems: assume that we have
an algorithm that approximates a given problem within arbitrary error € > 0 working
in time nP0/9)  Ig it possible to get rid of 1/e in the exponent and do it in time
F(1/€)n®® (the algorithms which obey the latter bound on the running time are
called EPTAS, efficient polynomial time approximation schemes)?

It turns out that this question is highly related to the fixed parameter tractability.
Namely, the existence of EPTAS for a given problem implies an eract algorithm for

the corresponding fixed parameter version (see [Baz95, CT97)).

To study the complexity of parameterized problems, special paremeterized re-
ductions (that preserve the property of being in FPT) are used. For any ¢ the
parameterized problem WEIGHTED ¢-NORMALIZED SATISFIABILITY is defined
by restricting the classical SATISFIABILITY to a certain class of Boolean formu-
las, the parameter k£ bounding Hamming weights of the satisfying assignment we are
searching for. The complexity class W[t] consists of all problems that can be reduced

to WEIGHTED-t--NORMALIZED-SATISFIABILITY via parameterized reductions,
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and the class W[P] (where P stands for polynomial) includes all problems reducible
to WEIGHTED CIRCUIT SATISFIABILITY. These definitions lead to the following

parameterized hierarchy, in which every inclusion is believed to be strict:

FPT C W[1] C W[2]... € W[P].

In our paper we construct a randomized parameterized reduction from the au-
tomatizability of Resolution to the following optimization problem (MMCSA in what

follows) that was introduced in Section 5.

Monotone Minimum Circuit Satisfying Assignment:
Instance: A monotone circuit C in n variables over the basis {A, V}.
Solution: An assignment a € {0,1}" such that C(a) =1.
Objective function: v(a) defined as the number of a;’s which are equal to 1.
By 7(C) we will denote the optimum value y(a) of a solution a for an instance C

of MMCSA. We need the following easy observation (“self-improvement”).

Proposition 6.2.4 For every fized integer d > 0 there ezists a poly-time computable
function 7 which maps monotone circuits into monotone circutts and such that y(7(C)) =

Y(C)e for all C.

Proof. For a circuit C define a “composition” circuit
def
CxCE CC(z1, s Tn), C(Z1, oy Tn), -, CT1; 1) Tn)).

It is easy to verify that v(C x C) = 7*(C). It is left to iterate this construction d

times.m

The decision version of MMCSA was considered in [DF98] (under the name
WEIGHTED MONOTONE CIRCUIT SATISFIABILITY) in the context of param-
eterized complexity and was shown to be complete in the class W[P].

In order to formulate our main result, we need to introduce the obvious hybrid of

the classes R and FPT:
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Definition 6.2.5 The class FPR of parameterized problems consists of all languages
L C ¥* x N for which there ezists a probabilistic algorithm ®, a constant ¢ and a

recursive function [ : N — N such that:
1. the running time of ®((x,k)) is at most f(k) - |z|;
2. if (z,k) € L then P[®((z,k)) = 1] > 1/2;

3. if (x,k) & L then P[®({z, k)) = 1] = 0.

6.3 Main reduction from MMCSA to automatiz-
ability of Resolution
This section is entirely devoted to the proof of the following lemma.

Lemma 6.3.1 There exists a poly-time computable function T which maps any pair
(C,1™), where C 1s a monotone circuit and m is an integer, to an unsatisfiable CNF
7(C,m) such that:

Sr(r(C,m)) < |C| - mPmin{r(C)logm})

and

S(T(C, m)) > mﬂ(min{—y(C),logm})_ (61)

We begin the proof of Lemma 6.3.1 with describing CNFs that form the main
building block in 7(C,m) and establishing their necessary properties. From now on
fix a monotone circuit C in n variables py, ..., p,. Let £ be another parameter, and let
A C {0,1}¢. We will call vectors from A (usually represented as columns) admissible
and call an 0-1 matrix with £ rows A-admissible if all its columns are so. Consider
the following combinatorial principle Pc,a:

Pc,ar every (€ x n) 0-1 A-admissible matriz A contains a row i € [4] such that
Clan, a2, ..., 0:) = 1.

Let us formulate one sufficient condition for Pc 4 to be true in the real world.
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Definition 6.3.2 d;(A) is the mazimal d such that for every d vectors from A there

exists a position i € [€] in which all these vectors have 1.

dy(A) can be also easily characterized in terms of minimum covers. Namely, if we
ax

associate with every | : | € A the subset {¢ € [{]|a; = 0} of [{] then d;(A) + 1 1s

(g
exactly the minimal number of such sets needed to cover the whole [£].

Lemma 6.3.3 If v(C) < di1(A) then Pc 4 is true.

Proof. Let A be an (¢ x n) 0-1 A-admissible matrix. Let @ = (ay,...,a,) be

alj

such that C(ay,...,a,) = 1 and y(a) = (C). Let Ag def : a; =1

Qg
Since |Ag| < y{a) = 7(C) < di(A), there exists ¢ € [£] such that a;; = 1 whenever

a; = 1. This means a;; > a; for all j € [n] and implies C(a;1, ..., ain) =1 since A is

monotone.m

The proof of Lemma 6.3.3 suggests that the optimal propositional proof of the
principle P 4 should work by the exhaustive search through all | A|"(?) possible place-
ments of admissible vectors to the columns {j|a; =1} and thus have size roughly
|AC). Qur task is to find an encoding of (the negation of) Pca as a CNF so
that we can prove tight upper and lower bounds on Sr(7(C,.A)) and S(7(C, A)) of
(roughly) this order. The encoding will also involve auxiliary surjective functions
Fi,...,F, . {0,1}Y — A, f1,..., fe: {0,1}° — [r], where f;s are possibly partial,
and s, 7 are some new parameters. They will be used for encoding vectors from A
and elements from another finite set of r controls by binary strings of length s. These
complications will be needed for the lower bounds purposes.

In order to not obstruct the proof with irrelevant details, we will define our CNF's
T(C,A,F‘, ﬂ and establish their necessary properties in a situation which is more
general than what will be actually needed for completing the proof of Lemma 6.3.1

(see page 124). If the reader prefers, he/she may think during the course of the proof
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that £ = m and A is an arbitrary set of vectors such that d;(A) > Q(logm) and (see
Definition 6.3.7) do(A) > 2(logm). Furthermore, r = logm, s = O(logm) and Fj, f;

will be (logm)-surjective in the sense of Definition 6.3.6.

Definition 6.3.4 Let C(py,...,p,) be a monotone circuit, A C {0,1}¢ be a set of
vectors and Fy,..., F, : {0,1} — A, fi,..., fo: {0,1}° —> [r] be surjective func-
tions, where f;s are possibly partial. For every j € [n] and v € [s] we introduce a
propositional variable x¥, for every i € [€] and v € [s] introduce a variable y¥, and for
every 1 € [£], every “control” ¢ € [r] and every vertex v of the circuit C introduce the
variable z5,.

Forj € [n] and @ € A, let us denote by [ Column; = a] the predicate Fy(x}, ..., 25) =
@. Likewise, fori € [€] and ¢ € [r], let [Control; = c] denote the predicate fi(y},...,y5) =
c.

The CNF 7(C, A, F‘, f') consists of all clauses that result from the expansion of the
following Boolean predicates as CNFs:

(y},...,y5) € dom(f;), for all i € [f]; (6.2)

([C’Olumn] = []:] A [ContTOLj = C]) D zic’pj

» (6.3)

for alld € A, i € [{] such that a; =1 and all j € [n], c€ [r];

([Control; = €] A (25, % 25,4)) D 25,

for all i € [€], c € [r] and all internal nodes v (6.4)
corresponding to the instruction v < v' xv", x € {A,V};
7
[Control; = c| D Z; ., where ugy is the output node of C. (6.5)
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Informally, every assignment t0 r-variables encodes an A-admissible matrix A
and every assignment to y-variables satistying (6.2) encodes controls ¢1,...,ce (one
control per row). The axioms (6.3) and (6.4) inductively state that z5 is greater or
equal than the result of computation of the node v on the ith row of the matrix A.
Thus, 7(C, AF, f) is unsatisfiable (for arbitrary surjective F, f) if and only if Po.a

is true.

Remark 6.3.5 If we are interested in general Resolution only, the construction of
7(C, A, F, f) can be a bit simplified. Namely, we do not need the controls, and we can
encode the value attained by a node v on the ith row in the same simple way as we
did with [Column; = d|. Then lower bounds from Lemma 6.3.8 will still go through,
but the upper bound will become problematic for the tree-like case [although, it will

still hold for general Resolution).

The only thing we need from F, f is that their ontoness is preserved under re-

stricting not too many variables.

Definition 6.3.6 We say that an onto (possibly partial) function g - {0,1}s — D

is r-surjective if for any restriction p with |p| < 7 the function g|, is still onto.

Finally, for the lower bound purposes we need a notion dual to d;(A).

Definition 6.3.7 do(A) is the mazimal d such that for every d positions iy, ... ig €

[¢] there exists @ € A such that a;, = ... = a;; = 0.

Now we are ready to formulate our main technical lemma.

Lemma 6.3.8 Let C be a monotone circuit in n variables, A C {0, 1}¢, | A} = m and
Fr, .. Fyi {01 — A fue fo:{0,1} — [r] be r-surjective functions, where
f;s are possibly partial; £,m, 7,8 arbitrary integer parameters. Then the following

bounds hold.
a) If y(C) < di(A) then Sp(r(C, A, 7, 7)) <o (o) 0@,
b) w(r(C, A, F, [y - 0) > 5 -min{7(0), do(A)}.
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Py

¢) S(r(C, A, F, f)) > exp (Q (é-min{n,(C),do(A)})).

Proof of Lemma 6.3.8. Part a). By formalizing the proof of Lemma 6.3.3. Let

g o v(C) and ay, ..., a, be such that C(as,...,a,) = 1 and y(a) = k. Assume for

simplicity that a; = ... = ax = 1, ag+; = ... = a, = 0. Fix arbitrary admissible
a;1 Ak

vectors @; & : U 19 & : and, using the inequality d;(A) > k, pick
Qg1 Q¢k

up an arbitrary 7 € [¢] (depending in general on d,...,dx) such that a; = ap =

... =a;; = 1. We want to infer from 7(C, A, 13“, f) all clauses in the CNF expansion
of
[Column; # @] V...V [Columny # @] V [Control; # ¢] (6.6)

for all ¢ € [r]. It is fairly obvious how to do this efficiently in general Resolution.
Namely, let V be the set of all nodes of the circuit C' that are evaluated to 1 by the
assignment (1*,0"*). Then we may proceed by induction on the construction of C

and subsequently infer
([Column; = @] A ... A [Columng = @] A [Control; = ¢]) D 25,

for all v € V until we reach vg,.

In order to get a tree-like proof, however, we should employ a dual (top-down)
strategy. Namely, enumerate the set of vertices in some order which is consistent with
the topology of C: V = (v; = p1,v2 = P2, -+ ., Uk = Diy Ukt1, Vkt2s- - -, Ut = Ugp); all
wires between vertices in V' go from the left to the right. Then, by a reverse induction
on p=t,t—1,...,k we infer (all clauses in the CNF expansion of) [Control; = ¢] D
(5f,v1 V...V Eﬁ,%). For 4 = ¢ this is (a weakening of) (6.5), and for the inductive
step we resolve with the appropriate axiom in (6.4). Finally, when we descend to
[Control; = ¢} D (Zfﬂ V...V 212,;:;;)7 we consecutively resolve with the corresponding
axioms (6.3) to get rid of 2§, and arrive at (6.6). Clearly, this resolution inference

of every individual clause in (6.6) is tree-like and has size O(|C/).
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Finally, for every i € [£], every clause in the variables {y} |1 <v <s} appears
in one of the CNFs resulting from the predicates { [Control; # ¢]| ¢ € [r]} or in (6.2),
and every clause in the variables {24 |1 < v < s} appears in one of [Columﬁj # a@;].
This gives us an obvious tree-like refutation of the set of clauses (6.6) that has size
O(25%+1), Combining this refutation with previously constructed inferences of (6.6)

from 7(C, A, F, f), we get the desired upper bound.

Part b). We follow the general strategy proposed in [BW99]. Let Row; be
the set of axioms in 7(C, A, F , f) that correspond to this particular row :. For a
clause C, let p(C) be the smallest cardinality of I C [{] such that {Row;|i eI}
(semantically) implies C'. As in the previous proofs, u(C) is subadditive, that is
u(C) < p(Cy) + p(Cz) whenever C is obtained from 1, Cy via a single application of
the resolution rule. It is also obvious that u(A) = 1 for any axiom A in 7(C, A, F, f)

We claim that u(@) > do(A). Indeed, fix any T C [¢] with |[[| < do(A). We
need to construct an assignment that satisfies all axioms in {Row; |:e I} Pick a
accordingly to Definition 6.3.7 in such a way that Vi € I(a; = 0). Assign every z

%) = d; assign

to oy, where ajl-, ...,0f is an arbitrary vector such that Fj(a}, Yo
y¥ in an arbitrary way with the only requirement that they satisfy (6.2), and assign
all z-variables to 0. This assignment will satisfy all axioms in {Row; |¢ € 1} which
proves u(l) > do(A).

Thus, any resolution refutation of 7(C, A,F’ , f) must contain a clanse C with
do(A) < p(C) < do(A), and we only need to show that this implies w(C) >

- min{k, do(A)}. Fix I C [£] such that ldo(A) < 1| < do(A), {Row; |t €1}

31 R B o

semantically implies C and I is minimal with this property.

If for every i € [I] the clause C contains at least r variables amongst {yV|v e [s]}U
{z&,| c € [r], vis anode}, we are done. Thus, suppose that this is not the case for
some ip € I. Fix an arbitrary assignment « that satisfies all axioms in {Row; |t € I'\ {io}}
and falsifies C' (such an assignment exists due to the minimality of I ).

Let J, consist of those j € [n] for which the clause C' contains at least r variables
from {z¥|v € [s]}. If |Jo| > k, we are also done. If this is not the case, we will

show how to alter the assignment e so that it will satisfy all axioms in {Row; lee I}
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(including Row;,) but still falsify €, and this will give us the contradiction.
According to Definition 6.3.7, there exists @ € 4 such that a; =0forallzel

We alter a as follows.

1. For every j # Jo we, using that F} is r-surjective, change the values of the
variables {:z:]” | v € [s]} not appearing in C in such a way that Fy(z}, ..., z5) =

a.

2. Pick any control ¢y € [r] such that no variable z;,» appears in C. Using the
fact that f;, is r-surjective, change the values of variables {vi|ve(s]} not
appearing in C in such a way that f;, Wy -- -, Yi,) = co. Finally, re-assign every
Zjy» t0 the value computed by the node v on the characteristic vector of the

set Jo. Note that 2;° is set to 1 for j € J; whereas 220 is set to 0 since
1]

20,04 20,Vfn
|Jo] < 4(C).

With the remarks made in this description, it is easy to see that the altered
assignment will satisfy all axioms in {Row; | € I'}. Also it will falsify C since we
have not touched variables appearing in C. This contradiction with the fact that

{Row; | i € I'} implies C completes the proof of part b).

Part c). We apply the standard argument with width-reducing restrictions (cf.
[BP96]). For doing this we observe that the CNFs of the form T(C,AF, f) well
behave with respect to certain restrictions. Namely, let d < r and R C [r] be an arbi-
trary set of controls. Denote by R4 g the set of all restrictions that arbitrarily assign
to a Boolean value d variables in every one of the groups {z¥lvelsd}, {ylvels}
with j € [n], 4 € [€] as well as all variables 2¢, with ¢ ¢ R. Then it is easy to see that for
p € Rg g, every non-trivial clause in 7(C, A, ﬁ? j-')|p, after a suitable re-enumeration
of variables and controls, contains a subclause from T(C, A, Fl,, (f] »)|g) (the partial
function (fi|,)|r is obtained from f;|, by restricting its domain to {vil filo(v;) € R}
and range to R).

Pick now p uniformly and at random from R, /0. R> where R is picked at random

from [r]"/2. Then Filp, (filp)l g will be (r/2)-surjective. Therefore, by the already
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proven part b), for every refutation P of 7(C, A, F, f), p{P) will contain a clause of
width Q (r - min{y(C), do(A)}}) with probability 1.

It is easy to see, however, that every clause of this width is killed by p with
probability > 1 — exp (—Q (% -min{y(C), do(/l)})). Therefore, the size of P must
be at least exp (Q (ISE - min{~(C), dO(A)})) since otherwise a random restriction p
would have killed all such clauses with non-zero probability, which 1s impossible.

Lemma 6.3.8 is completely proved.m

Proof of Lemma 6.3.1. Qur construction of 7(C,m) proceeds in polynomial time
as follows.

1. We may assume w.l.o.g. that m is a prime. Let Py be the (m x m) 0-1 Paley
matriz given by a;; = 1 if and only if § # ¢ and (5 —14) is a quadratic residue mod
m. Set £% m_ and let A C {0,1}™ consist of all columns of F,. Then |A] =m and
do(A), dy(A) > Llogm (see e.g. [Alo95]).

9. TFix any poly-time computable Fy-linear code L C {O,l}h“‘)gm] of dimen-
sion [logm] and with the minimal distance > [logm], where h > 0 is an abso-
lute constant. Then the linear mapping G : {0,1}Mle™l — {0,1}Me™! which

is dual to the inclusion L — {0,1}*M°e™ is [logm]-surjective. Set r ' [logm)

and s < h[logm]. Consider arbitrary (poly-time computable) surjective mappings

IM: {0,1}*ee™ — A, : {0,1}"°™ — [r], and let F} S Goll, f; Y Gor for
all 2, 5.
3. Construct 7(C, A4, F , f_ﬁ. Note that the size of this CNF is polynomial in

|C|, £,2° which is polynomial in |C],m due to our choice of parameters.

At this point, Lemma 6.3.8 c) already implies (6.1) for 7(C, A F, f) The only
remaining problem is that a priori we do not have the condition ¥(C) < di(A) needed
for part a) of Lemma 6.3.8. We circumvent this by the following trick.

Let 7,, be a fixed unsatisfiable (poly-time constructible) CNF with 5 (Tmn), Srl{Tm) =
mPlee™) (for example, one can take the Pigeonhole principle with V1ogm pigeons)
and such that its set of variables is disjoint from the set of variables of 7(C, A, F , f_").
We finally set 7(C,m) Y (C, A F,[)A T
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Since both 7(C, A, F, f) and 7, satisfy the lower bound in (6.1), Efficient Inter-
polation Property for Resolution implies that 7(C, m) satisfies this bound, too.

Lastly, if 7(C) < §logm then, since di(A) > }logm, we can apply Lemma 6.3.8
a) to get the required upper bound Sy (7(C,m)) < |C| - m@OE) . If, on the other
hand, v(C) > Ylogm, the necessary upper bound S7(7(C,m)) < m®Ue™) simply

follows from the upper bound for 7,,,. This completes the proof of Lemma 6.3.1.m

6.4 Self-improvement and main results

In this section we combine Lemma 6.3.1 with some non-trivial self-improvement tech-
nique. This will show non-automatizability of Resolution and tree-like Resolution
modulo plausible assumptions about the intractability of the parameterized hierar-
chy. First we need to get rid of the dummy parameter m in the statement of Lemma

6.3.1.

Lemma 6.4.1 If either Resolution or tree-like Resolution is automatizable then there
exists an absolute constant h > 0 and an algorithm ® working on pairs {C, k), where

C is a monotone circuit and k is an integer such that:
1. the running time of ®({(C, k}) is at most exp(O(k?)) - |C|°0);
2. if y(C) < k then ®((C,k)) = 1;

3. if v(C) > hk then ®((C,k)) = 0.

Proof. Combining the reduction in Lemma 6.3.1 with an automatizing algorithm for
either Resolution or tree-like Resolution, we get an integer-valued function S(C,m)

computable in time (|C] - m™n{r{C)loe m})ho and such that

mf»min{'y(C),logm} < S(C, m) < (|C| _mmin{’y(C),logm})hl
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for some absolute constants €, hg, Ay > 0. Set the constant h in the statement in such
a way that
h
h? > ?I(h +1). (6.7)

Qur algorithm ® works as follows. We set

at | 2™ if k> /log|C],

m =
oh(log|Cl/k)  gtherwise.

Note that in any case logm > hk. ® simulates (|C]| - m")hlJ steps in the computation
of S(C,m), outputs 1 if the computation halts within this time and its result S(C, m)
satisfies the inequality S(C,m) < (1C]- m’“)hl, and outputs 0 in all other cases.

Our choice of m ensures that m* < max{2**,|C|}", which implies property 1).

The upper bounds we have imposed on the running time and the output value
of the algorithm @ are the same as the bounds known for the underlying algorithm
computing S(C,m), the only difference is that we have replaced v(C) by k. This
observation implies property 2).

Finally, since logm > hk, v(C) > hk implies that S(C,m) > m®", and elemen-
tary calculations show that, along with (6.7), this gives us S(C,m) > (|C|- m’c)hl.
Thus, if v(C) > hk, the algorithm @ outputs the value 0.

Lemma 6.4.1 is proved.m

Combining this lemma with Proposition 6.2.4, we immediately get our first main

result.

Theorem 6.4.2 If either Resolution or tree-like Resolution is automatizable then for
any fized € > 0 there exists an algorithm © working on monotone circuits C' which
runs in time exp (7(C)°W) - |C|°M) and approzimates the value of ¥(C) to within a
factor (1 +¢).

Proof. Firstly we extract from Lemma 6.4.1 an algorithm which meets the bound on

the running time and achieves the ratio of approximation h. For doing that we con-
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secutively run the algorithm @ from that lemma on the inputs (C, 1), ..., (C,k), ...,
and output the first value & for which we get the answer 0.
Combining this algorithm with the self-improving reduction from Proposition 6.2.4

(for d = {21nh]), we get approximating algorithm with the required properties.m

In the established terminology, what we have seen so far under the assumption of
automatizability of (tree-like) Resolution is a PTAS (polynomial time approximation
scheme) for MMCSA in the context of parameterized complexity (the latter referring
to the term exp (y(C)°™) in the bound on the running time). As we noted in
Section 6.2.2, in this context efficient polynomial time approximation schemes lead
to ezact algorithms. The task of converting an arbitrary PTAS into an EPTAS
seems to be hopeless in general even in the context of parameterized complexity. We
nonetheless can perform it for the specific problem MMCSA using a much trickier
self-improvement construction. This construction which appears in the proof of the

next theorem might be of independent interest.

Recall Definition 6.2.5 of the class FPR.

Theorem 6.4.3 If either Resolution or tree-like Resolution is automatizable then

WIP] C co— FPR.
Proof. Let C be a monotone circuit in » variables and & be an integer such that
10 < k < e(logn/loglog n)? (6.8)

for a sufficiently small constant ¢ > 0 (we will remark later how to get rid of this
condition). Our goal is to construct in polynomial time a randomized monotone
circuit w(C, k) and an integer a(k) (deterministically depending only on k) such that

@ i3 recursive and the following conditions hold:

NC) £k = Ply(n(C,k)) < afk)] = 1; (6.9)
NC) > k+1 = Ply(w(C, k) > 2a(k)] > 1/2. (6.10)
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Firstly we apply to C the reduction from Proposition 6.2.4 with d = 2. Re-
denoting k% back to k, we may assume w.lo.g. that in (6.10) we have a stronger

premise:

$(C) > k+2VE = Ph(w(C,k)) > 2a(k)] > 1/2. (6.11)

Figure 6-1: One layer of w(C, N, d)

Now comes our main reduction. Let N,d be two parameters (to be specified later).
The randomized circuit 7w(C, N, d) in (nN) variables consists of d layers. Each layer
consists of N independent copies of the circuit C' (see Fig. 6-1); thus, it has (nN)
inputs and N outputs. We connect input nodes at the (i + 1)st level to output nodes
at the ith level at random. Finally, we pick up an arbitrary output node at the last
dth level and declare it to be the output of the whole circuit w(C, N, d).

Clearly, this construction is polynomial in |C|, N,d. Also, an obvious induction
on d shows that y(mw(C, N,d)) < v(C)* with probability 1. In order to get a lower
bound on y(m(C, N, d)), we need the following easy lemma.

Lemma 6.4.4 Let x : [N] x [n] — [N] be a randomly chosen function, and k,a be
any parameters. Then P[EJV e [NFF(Ix(V x [n])| < kn — a)] < Nk (41?12)0‘.

Proof of Lemma 6.4.4. This event takes place if and only if there exist V ¢ [IV]F
and disjoint Dy, ..., D, €V x [n] such that |D|,...,|D:| 22, 37, (IDi| - 1) = a
and x|p, = const for all ¢ € [r]. Since the two first properties imply S 1Dl £ 2a,
the overall number of all choices of (D1, .., D;) does not exceed N* - (2kn)**. On
the other hand, for every fixed choice we have

N7

p, = const] = N N

P(x|p, = const,...,Xx
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Lemma 6.4.4 follows.m

Now we can complete the description of our reduction. Namely, we set N o n®,
4% VE and let 7(C, k) & 7(C,n?, V&), a(k) & kVE,

(6.9) follows from the remark made above.

In order to check (6.11), denote by x; : [N] x [n] — [N] the function used for
connecting input nodes at the (¢ + 1)st level of 7(C,n% V%) to the output nodes at
the ith level. Let k; & (k + Vk)@=i. Let us call w(C, N, d) bad if for at least one
of these functions x; there exists a set V' of circuits at the (i + 1)st level such that
V| = kipa and |x:(V % [n])] < kiy1(n — V). Using Lemma 6.4.4 and (6.8), we get
the bound

a1 ak2, n2\ Vike
Pln(C,N,d)isbad] < S Nk . [ 0etl
LCETETIEDY ()
d-1
> 4k},
. nl-3/vVk

VEkiq
) <1/2.

On the other hand, it is easy to see by induction on ¢ = d,...,1 that if y(C) >
k+2vk and w(C, N, d) is good then every satisfying assignment a should satisfy at
least k; output nodes at the ith level. Indeed, the base ¢ = d is obvious. For the
inductive step, assume that a satisfies the output nodes of a set V of circuits at the
(1 +1)th level, |V| = kiy1. Then at least (k+ 2v/k) - ki1 input nodes to these circuits
should be satisfied. Since x; is good, there are ai most vk - k; 11 collisions between
the (k +2vk) - k4, wires leading to these nodes from the ith level. Therefore, at least
(k +2Vk) - kiza — Vk - kiyy = k; output nodes at the ith level should be satisfied.

In particular, at the first level we will have > (k + vk)?~! satisfied circuits and
> (k+ 2\/.*;) - (k + vk) V-1 2a(k) satisfied input nodes. This completes the proof
that our probabilistic reduction 7 (C, k) has the properties (6.9), (6.11).

Now we finish the proof of Theorem 6.4.3. Suppose that either Resolution or
tree-like Resolution is automatizable. Since WEIGHTED MONOTONE CIRCUIT
SATISFIABILITY is W[P]-complete (see [DF98, Chapter 13]), we only have to show
that the language {(C, k) | v(C) < k} isin co— FPR. Given an input (C, k) we check
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the condition (6.8). If it is violated, we apply the straightforward brute-force algo-
rithm with running time O(|C|-n*) < |C|- f(k)-n°. Otherwise we simply combine our
probabilistic reduction {m, ) with the deterministic algorithm for deciding whether
¥(mw(C, k) < a(k) or y(7(C, k)) = 2cx(k) provided by Theorem 6.4.2. Theorem 6.4.3

is completely proved.m

6.5 Open Problems

The main problem left open by this paper is whether general Resolution is quasi-
automatizable. Since the width algorithm by Ben-Sasson and Wigderson [BW99]
finds a resolution refutation of any unsatisfiable CNF 7 in time n®® (") 4 negative
solution to this problem must involve a construction of a broad and “tractable” family
of CNF 7 for which S(r) is much smaller than 2™ . Such families are not so easy
to come by (e.g. our techniques involve showing the opposite in the proof of Lemma
6.3.8 ¢)), and it seems the only tautologies of this kind we have at the moment come
from the somewhat isolated example [BG99].

We were not able to de-randomize the proof of Lemma 6.4.4. In the terminology
of Chapters 3, 4, we need explicit constructions of (N x N) 0-1 matrices which would
be (k,m,n — O(k))-expanders for n > N and an arbitrary function k = k(N)
tending to infinity. Explicit constructions based on Ramanujan graphs seem to give
only (k,n,n — k'**)-expanders for any fized ¢ which is not sufficient for our purposes.
Can we weaken the hardness assumption in Theorem 6.4.3 to W[P] # FPT by an

explicit construction of better expanders (or by using any other means)?
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Chapter 7

Conclusion and Recent

Developments

In the first part of the thesis we give more questions than answers. In particular,
the hardness of constructed tautologies is believed to have a bigger potential, than
illustrated in the thesis. Thus, more research in this direction is anticipated in the
future. Since the preliminary version of [ABSRW00] was disseminated, many open
problems asked there have been solved, and many other related developments have
occurred.

The principles expressing that Nisan-Wigderson generators are not onto studied
in this paper bear a striking similarity to the pigeonhole principle PHP™ (with the
same meaning of the parameters m,n). At the time the research was done, one of
the most interesting open problems, both for NW-generators and for PHP™, was to
break through the quadratic barrier m > n? for (at least) the resolution size. This
has been solved in both contexts.

The pigeonhole principle PHP]" was the first to yield. Raz [RanRaz02] proved
exponential lower bounds on the size of its resolution refutations when m > n.
Razborov [Raz02a] gave a simpler proof of a somewhat better bound that also holds
for the more general functional onto version of this principle.

The quadratic barrier for pseudorandom generators did not stand for much longer.

Razborov [Raz02b] constructed Nisan generators (that is, when the base functions
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g; are Fy-linear forms) that allow m > n¥oem) output bits and are exponentially
hard not only for Resolution, but also for its extensions Res(elogn) (operating with
(elogn)-DNF instead of clauses) and PCR when char(F) # 2.

Another question asked in the earlier version of || was whether any structural the-
ory of pseudorandom generators is possible in the framework of proof complexity. In
particular, we asked if it is possible to formulate and prove any reasonable statement
that would say, possibly in a restricted way, that the composition of hard generators
is hard (for a given propositional proof system). This was satisfactorily answered by
Krajicek [Kra02] who showed that this is indeed the case provided hardness is re-
placed by a stronger notion of s-iterability (inspired by the so-called counter-example
interpretation).

It was also conjectured in the earlier version that such a composition result might
provide an alternate approach to the quadratic barrier problem (but for more com-
plicated generators). This has indeed turned out to be the case. Krajicek [Kra02]
proved (independently of [Raz02b]) that our generator from Section 3.4 can be iter-
ated with itself once, which immediately allowed him to get as many as m = n®~*
output bits. The Nisan generator from [Raz02b] turned out to be particularly suitable
for Krajicek’s notion of s-iterability, and it can be composed with itself exponentially
many times while preserving hardness. In this way [Raz02b] constructed a function
generator with m = 2" outputs which is hard for Res(elogn) and for PCR with
char(F} # 2. Along the lines outlined in the discussion after Example 3, this imme-
diately implied that neither of these systems possess efficient proofs of NP € P /poly
(the same conclusion for Resolution had already followed from [RanRaz02, Raz02a]).

Finally, [CRVWO02] took an important step toward constructing explicit expanders
(called there and in [Raz02b] “lossless”) with very good expansion properties (even

if not sufficient yet for many of our purposes).

There also has been a future progress on better understanding the automatizability
of weak systems since the results of Chapters 5 and 6 were published. Pavel Pudlak

[Pud01] suggested the following natural question: does there exist an extension of
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Resolution which is automatizable. He considers the problem from the point of view
of canonical NP-pairs, which is an important characteristics of propositional systems.
This direction was further investigated by Atserias and Bonet [AB02], who showed
that there exists an automatizable extension of Resolution if and only if the system
Res(2) has feasible interpolation property. Also, [AB02] constructed more examples
of tautologies that require large refutation width, but small size in Resolution, that

we have asked for in Section 6.5.
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