
A Federated Time Distribution System for Online

Laboratories

by

Jedidiah Northridge

Submitted to the Department of Civil and Environmental Engineering
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2004

© 2004 Massachusetts Institute of Technology. All rights reserved.

Author

jZ

Certified by.....

Department of Civil and Environmental Engineering
May 19, 2004

.

Steven Lerman
Professor of Civil and Environmental Engineering

Thesis Supervisor
/1 A

Accepted by
Heidi M. Nepf

Chairman, Committee for Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUNi 24 BARKER

LIBRARIES

2

A Federated Time Distribution System for Online

Laboratories

by

Jedidiah Northridge

Submitted to the Department of Civil and Environmental Engineering
on May 19, 2004, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

The iLab project began in June of 2000 with the initial goal of creating Internet acces-
sible laboratory experiments. After the successful implementation of several distinct
laboratories, the goals of the project shifted to address the design and construction
of a generalized infrastructure capable of supporting a wide variety of laboratory
experiments. Early experiences suggested the need for a configurable experiment
scheduling system. Such a system would be particularly important in the face of
expected growth: as the number of providers and consumers grew, it would become
crucial to empower providers with the ability to enforce experiment usage policies,
to guarantee timely lab access to clients, and to maximize resource usage whenever
possible.

We will explore how the present iLab infrastructure can be modified to allow for
experiment scheduling. This system would be designed in keeping with two key prin-
ciples: generality and architectural consistency. It would have to support disparate
scheduling algorithms of varying complexity and remain faithful to the theme and pri-
orities of the existing iLab infrastructure. Design will be based on requirements gath-
ering and the analysis of existing remotely available experiments. Resulting changes
to the iLab infrastructure will be enumerated, justified, and their ramifications dis-
cussed. This design will be implemented and considered in the same fashion. Finally,
future scheduling work within the context of iLab will be described.

Thesis Supervisor: Steven Lerman
Title: Professor of Civil and Environmental Engineering

3

4

Acknowledgments

Thanks are due to the members of the iLab and Microelectronics development teams.

I am especially grateful for your willingness to stay later than expected while debating

the merits of my design.

Karim Yehia built the Service Broker discussed in Chapter 4. Our lab implemen-

tation would not have succeeded without his dedicated effort and skill.

Jud Harward was a source of insight and ongoing support. His suggestions and

design work played an integral role in both the General Ticketing mechanism and the

Scheduling Server.

Steven Lerman provided the direction and advice that formed the basis of this

thesis and guided it to completion.

Most importantly, thanks are due to my family: Michael, David, Pam, Lori, and

John. Your support made this possible.

Finally, I wish to acknowledge the intangible contribution of Laura Costello, to

whom this thesis is dedicated.

5

6

Contents

1 iLab: A Framework for Online Laboratory Experiments 13

1.1 Status Quo 16

1.2 Scheduling Changes 19

1.2.1 General Ticketing 19

1.2.2 Scheduling Server 20

1.3 Scheduling Implementation 21

2 General Ticketing 23

2.1 Central Ticket Management . 24

2.1.1 Service Broker Domains . 25

2.1.2 Entity Identifiers . 26

2.2 Ticket Description . 26

2.2.1 Ticket Usage . 29

2.3 Application Programming Interface 30

2.3.1 Service Broker Ticket Management 30

2.3.2 Service Provider Ticket Management 33

2.4 Initial Ticket Distribution . 34

2.5 Ticket Creation Permissions . 36

2.6 Ticket Creation . 37

2.7 Ticket Cancellation . 38

2.8 Creating, Giving Tickets . 38

2.9 General Ticketing, Kerberos . 39

7

3 Scheduling Server

3.1 Domain Configuration

3.2 Scheduling Server Tickets ...

3.3 Web Application Requirements

3.4 Scheduling Server Web Services

3.5 Standard Usage

4 Polymer Crystallization Lab

4.1 Introduction

4.1.1 Implementation Details

4.1.2 Scheduling

4.2 Implementation Strategy

4.3 Service Broker Domain

4.3.1 General Communication

4.3.2 Service Broker Implementation

4.3.3 Lab Server Implementation

4.4 Scheduling Server Implementation

4.4.1 Time Distributions

4.4.2 R ules .

4.4.3 Web Application Interface

4.5 Creating a Reservation, Using a Lab Server

5 Conclusion

5.1 General Ticketing Strength .

5.2 General Ticketing Weakness

5.3 Scheduling Server Weakness

5.4 Future Work

5.4.1 Dynamic Attributes. .

5.4.2 Redefining Scheduling S

5.4.3 Self Describing Rules .

5.5 Scheduling Evolution

73

. 7 3

. 7 4

. 7 5

. 7 6

. 7 6

erver Payloads 77

. 7 8

79

8

41

42

43

45

45

46

49

49

50

51

52

53

54

55

56

57

59

59

61

66

List of Figures

2-1 Service Broker Domains .

2-2 General Ticket (Unified Modelling Language)

2-3 Possible Payload of Lab Server Ticket

2-4 Soap Envelope with General Ticket Headers

2-5 Web Application URL with General Ticketing Parameters . .

2-6 iLabEntity (Unified Modelling Language)

2-7 InstallTicket () Invocation

2-8 VerifyTicket() Invocation

2-9 GrantTicketingPermission() Invocation

2-10 CreateTicket () Invocation

2-11 CancelTicket() Invocation

2-12 CreateAndGiveTicket (Invocation

Possible Lab Server Admin Payload for Scheduling Server

Possible Teacher Payload for Scheduling Server Ticket

Possible Student Payload for Scheduling Server Ticket.

Service Provider API .

Scheduling Server Redirect

Polymer Crystallization Lab Client

Scheduling Server Ticket: Lab Server Payload

Scheduling Server Ticket: Teacher Payload

Scheduling Server Ticket: Student Payload

Student Attribute Value map

Ticket . . . 44

. 44

. 44

. 45

. 46

51

. . 58

58

58

60

9

26

27

28

29

30

33

35

36

37

37

38

39

3-1

3-2

3-3

3-4

3-5

4-1

4-2

4-3

4-4

4-5

Lab Server Administrator: Main Page, No Time Distributions

Lab Server Administrator: Creating a Time Distribution . . .

Lab Server Recipient Rules .

Lab Server Sign Up Rules .

Lab Server Administrator: Main Page, One Time Distribution

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

4-15

4-16

5-1

5-2

5-3

5-4

5-5

10

Lab Server Administrator: Viewing Reservations .

Teacher: Modifying Distribution Rules

Student: Creating a Reservation

Student: Service Broker Main Page

Scheduling Server URL Redirect

<applet> Tag .

Teacher Payload Example

Scheduling Server URL Redirect

Scheduling Server URL Redirect

Recipient Rule using LASTNAME Attribute

Rule written by teacher in Groups 1.00, 1.001 . .

62

63

63

64

64

. 65

. 67

. 67

. 68

. 69

. 72

74

74

74

77

78

List of Tables

2.1 Initial Ticket Values . 35

2.2 Service Broker Ticket Values held by Scheduling Server 38

4.1 Valid Predicates . 61

4.2 Valid Attributes . 61

11

12

Chapter 1

iLab: A Framework for Online

Laboratory Experiments

The iLab project began in June of 2000 as an iCampus research project.' The initial

goal of the project was to create Internet accessible laboratory experiments. This goal

was accomplished when several online experiments were successfully implemented at

MIT. These diverse projects included the Heat Exchanger Lab, Polymer Recrystal-

lization Lab, and Microelectronics WebLab.2 After achieving its first goal, the focus

of the project shifted to address the design and construction of a generalized online

experiment infrastructure. This infrastructure would concentrate on providing solu-

tions to problems common to all online experiments. This would enable experiment

implementers to concentrate solely on the domain specific challenges of bringing their

laboratory online.

The first version of the software infrastructure debuted in January of 2004 with

full support for a single type of experiment known as a "Batched Experiment." A

Batched Experiment allows users to submit a list of instructions for the lab to execute

and then view the results as soon as the experiment has completed. In addition to

supporting this experiment type, the iLab infrastructure design provided a strong sep-

liCampus was initiated in October 1999 as a five-year, $25 million research alliance between MIT
and Microsoft Research. For more information, please visit http://icampus.mit.edu

2You can visit these projects on the web at http://heatex.mit.edu, http://polymerlab.mit.edu,
and http://ilabserv.mit.edu, respectively

13

aration between reusable, administrative components and laboratory specific compo-

nents. This division enables lab implementers to take full advantage of iLab provided

solutions for common tasks such as user authentication and result storage, while cre-

ating a well-defined interface that implementers can use to plug-in specific laboratory

functionality.

In addition to an infrastructure design, the iLab team delivered a reference im-

plementation of a laboratory experiment using their infrastructure.3 This was an

important first step for iLab, as it immediately illustrated the usefulness of the in-

frastructure and highlighted a lab that fit the Batched Experiment paradigm. How-

ever, the iLab architects recognized that not all laboratories followed the Batched

Experiment model. They understood that their infrastructure would need to support

experiments that allowed for continuous user interaction. Modifications to support an

interactive experiment would be substantial: communication protocols would need to

be rewritten, laboratory interfaces would have to be changed, and latency concerns

would become significant. Additionally, shifting from a Batched Experiment to an

Interactive Experiment would be accompanied with a shift in the standard usage

scenario. In order to provide a student meaningful access to the lab, an experiment

scheduling system would have to be created.

The goal of this thesis is to describe such a system. This system will be created

by making two major modifications to the current infrastructure. The first involves

re-writing the iLab communication mechanism. In the iLab infrastructure, exchang-

ing messages with an online laboratory is tantamount to running an experiment. At

present, the privilege of directly speaking to an online experiment is denied to stu-

dents. This design proposes to free communication paths so that anyone with the

appropriate credentials can speak directly to a laboratory. Further these credentials

will be valid only for limited periods of time. Once acquired, students will only be

able to run experiments during this period. This change will translate the problem of

experiment scheduling into an issue of requesting and creating time-based credentials

for would-be lab users.

14

3 http://ilabserv.mit.edu/ilab

The second change is the creation of a new iLab entity whose sole function is to

provide scheduling expertise to the iLab community. This entity will be known as the

Scheduling Server, and it will accept input from lab owners, teachers, and students.

It will use this input to distribute time among students by creating credentials that

grant time-specific access to laboratory experiments.

This design will modify the present infrastructure so that it is able of support

an extensible, flexible mechanism for experiment scheduling. To corroborate these

claims, we will modify an existing interactive experiment, meet their scheduling needs,

and bring the experiment into the new iLab framework.

This chapter will continue to introduce the current iLab infrastructure. It will

provide the reader with a working understanding of the Batched Experiment version

of the iLab software architecture, and a high level description of the suggested changes.

Chapter Two will describe the design of the new communication mechanism. This

mechanism will be referred to as General Ticketing, and it will become the foundation

of all communication within the iLab infrastructure. We will focus specifically on how

General Ticketing can be used to enable a student to access a laboratory during a

specified time period.

Chapter Three will describe the design of the Scheduling Server. In addition to

making itself available to accept input from lab owners, class teachers, and students,

it will support one or more scheduling algorithms, and understand how to operate

within the General Ticketing environment. It will ultimately be responsible for the

distribution of time and granting lab access.

Chapter Four will describe an implementation of the General Ticketing mechanism

and a Scheduling Server. The Polymer Crystallization Laboratory is an interactive

laboratory that allows students access to a polymer sample, a heating tray, and a

polarized light microscope. Students heat the polymer sample until it melts, and

then observe crystal growth as it cools. We will create a Scheduling Server that can

support a first come, first served reservation system for this lab. The details of the

implementation will set the stage for an analysis of the proposed design.

Chapter Five will feature an analysis of the design and associated implementation.

15

We will discuss any strengths and weaknesses that are uncovered. We will conclude

with suggestions for future work, reflecting both the theoretical nature of the design

and the practical nature of the implementation. In addition to covering the General

Ticketing mechanism and Scheduling Server, we will also discuss the evolution of

scheduling algorithms as the iLab infrastructure grows.

1.1 Status Quo

The design proposed by this thesis uses the present iLab infrastructure as a basis for

developing changes. This version of the infrastructure debuted in January of 2004

and is scheduled to be released publicly in July of 2004. In order to put the suggested

design changes into context, we must begin by obtaining an understanding of the

current infrastructure. To this end, we will supply an overview of the infrastructure

that will serve as a sufficient basis for understanding the remainder of this document.

We refer readers interested in greater detail to the iLab Application Programming

Interface documents [1, 2, 3].

The present iLab infrastructure can support Batched Experiments, where a

Batched Experiment is defined as an experiment, "that can be submitted as a single

specification and then run without further interaction with the user." [2]

There are two powerful, stand-alone entities in the iLab framework, and they are

known as the Lab Server and the Service Broker. There is an additional tool that

a student will directly interact with known as the Lab Client. Together these three

components enable a student to run an experiment.

Lab Server: A Lab Server represents the laboratory experiment. It is a Web Service

that enables a Service Broker to submit experiments, retrieve results, and query

the status of the lab. It directly interacts with lab equipment.

Only a Service Broker can communicate with a Lab Server, and both must

participate in a registration process before this can happen. The relationship

between Lab Servers to Service Brokers is many to many.

16

Service Broker: A Service Broker is the entity responsible for authenticating stu-

dents and enabling them to access Lab Servers. A Service Broker is both a Web

Application and a Web Service.

As a Web Application, the Service Broker provides a means for students to

authenticate themselves and indicate their interest in running experiments.

As a Web Service, a Service Broker hosts methods that enable users to submit

experiments, retrieve results, and query the status of the lab. These methods are

identical to those supported by the Lab Server, and are "pass through" methods.

This means that any time a Lab Client invokes one of them, the Service Broker

responds by invoking the corresponding method on the Lab Server. By forcing

a Lab Client to speak to a Lab Server in this manner, the Service Broker can

insure appropriate control over all student to Lab Server communication. When

a Lab Server trusts a Service Broker, it implicitly trusts all of the students the

Service Broker authenticates.

Lab Client A Lab Client is a tool that allows a student to create experiment in-

structions and interpret experiment results. Instructions to run an experiment

are known as Experiment Specifications. Requesting an experiment to be run

is known as submitting an Experiment Specification.

When a Lab Server has finished running an Experiment Specification, it will

return a domain-specific Experiment Result. Lab Clients are responsible for

interpreting this result for a student.

Using the knowledge of these three pieces, we can view the high level steps involved

when a student runs an experiment. This use case is important to understand as it

will change significantly under the interactive experiment paradigm.

1. A previously registered student directs their Internet Browser to the Service

Broker. Students utilize the Web Application to authenticate themselves with

a username and password.

17

2. After successfully authenticating themselves, the student navigates the Web

Application of the Service Broker to indicate that he or she wants to run an

experiment. This action requires that a Lab Client be launched.

3. The student starts a Lab Client. He or she will use this tool to author and submit

Experiment Specifications. When the student is ready to start an experiment,

he or she will direct the Lab Client to submit an Experiment Specification. The

Lab Client will submit this to the Service Broker.

4. The Service Broker receives the Experiment Specification, and, because it has

previously authenticated the student, it will submit the Experiment Specifica-

tion to the Lab Server.

5. The Lab Server receives the Experiment Specification, and because it has previ-

ously registered the Service Broker, it will accept the Experiment Specification.

The Lab Server will enqueue the Experiment Specification and execute it as

soon as possible. The Lab Server will immediately return a Submission Report

indicating, among other things, the estimated completion time of the experi-

ment.

6. When the Lab Server finishes running the corresponding experiment, it will

notify the Service Broker of the completion.

7. Upon being notified of the experiment completion, the Service Broker will collect

the results from the Lab Server and will save them for later access by the Lab

Client.

A general comprehension of the roles played by the Service Broker and the Lab

Server is sufficient to understand the motivation behind upcoming design decisions.

Several details that are important to the iLab infrastructure, but not important to

our proposed design have been omitted. Again, interested readers are referred to the

iLab Application Programming Interface documents [1, 2, 3].

It is important to recognize what happens in the scenario where many Lab Clients

submit Experiment Configurations at the same time. Each Experiment Specification

18

will be accepted by a Service Broker, forwarded to a Lab Server, and then enqueued

at the Lab Server. With each Lab Server acceptance, the Lab Server will return an

estimated time to completion. If a student feels this completion time is too long to

wait for, he or she is free to suspend their iLab activity and resume it at a later time.

When the Lab Server finishes running Experiment Configurations, it will notify the

Service Broker. The Service Broker will save the results and make them available to

the students. This means that a student can leave instructions for an experiment and

be guaranteed that whenever he or she chooses to return to the Service Broker, the

results, if ready, will be available for analysis.

With a Batched Experiment, the student's entire laboratory experience is con-

tained in the creation of the Experiment Specification and the interpretation of the

results. Even if the Lab Server is busy, both of these items can be saved, allowing for

the laboratory experience to be revisited at the student's leisure. This is not at all

the case with interactive experiments, and indicates why scheduling functionality is

integral in supporting a new usage scenario.

1.2 Scheduling Changes

With an understanding of the present infrastructure, we can take a closer look at

the changes suggested by our design. The first change affects the communication

mechanism and will be known as General Ticketing. General Ticketing will enable

time-restricted, credential-based communication with a Lab Server. This will be-

come the basis on which scheduling is implemented, and a new entity known as the

Scheduling Server will use General Ticketing to allow access to Lab Servers.

1.2.1 General Ticketing

As we have seen, only two entities types exist in the iLab infrastructure, a Service

Broker and a Lab Server. After they have registered with one another, a Service

Broker can invoke methods on a Lab Server, and a Lab Server can invoke methods

on a Service Broker. Once this communication path has been created, it allows for

19

unrestricted, non-expiring communication.

Our design proposes to eliminate this static communication path, and allow any

Web Service to be invoked so long as the invocation is accompanied with a set of

credentials. These credentials will be known as Tickets and will be used to identify

the invoker and their associated permissions. Tickets will accompany all Web Service

invocations, but will enable scheduling functionality when they accompany Lab Server

invocations. In particular, Lab Server Tickets will contain information indicating a

time period when the Ticket is valid. For example, a Ticket could be created that

would grant access to a Lab Server and it might be valid between 2 and 3PM EST on

April 19th, 2020. Under General Ticketing, such a Ticket could be created months

in advance or just seconds before the Lab Server was to be accessed. As long as the

Ticket is valid, the Lab Server will grant access to the holder. Greater details on

General Ticketing will be provided in Chapter 3, including how Tickets are created

and validated.

1.2.2 Scheduling Server

Without introducing any new entities, either the Lab Server or the Service Broker

must be responsible for creating and distributing Tickets. However, both of these

choices force each entity to take on functionality outside of its boundaries. Instead,

we claim that the creation of a new entity, the Scheduling Server, is in keeping with

the architecture to date and an efficient way to proceed.

A Scheduling Server will be an optional component of the iLab framework, and it

will specialize in using scheduling algorithms to distribute time on Lab Servers among

lab clients. It will have the ability to create Tickets that lab clients can use to access a

Lab Server. A Scheduling Server will provide its functionality both as a Web Service

and a Web Application. It will use Web Services to support Ticket management and

distribution.

As a Web Application, it will allow administrators of Lab Servers along with stu-

dents and teachers from Service Brokers the ability to provide input to the scheduling

process. For example, a Lab Server Administrator could indicate when the Lab would

20

be available. A teacher could indicate rules that their students must follow when sign-

ing up for time. And, finally, a student could indicate times that fit best into their

schedule.

At a minimum, a Scheduling Server will implement a single scheme for distributing

time. The details of how people interact with the Scheduling Server will be decided

by its implementers. It will tie into the iLab framework by issuing Tickets that are in

keeping with the General Ticketing mechanism. As such, the Scheduling Server enjoys

a strong layer of abstraction. It can choose to implement any scheduling algorithm

it deems necessary in order to create Tickets, and this is particularly important,

because, while present scheduling needs are simple, we expect them to greatly grow

in complexity as more iLabs come into existence.

1.3 Scheduling Implementation

To test our proposed scheduling design, we will implement it for an interactive exper-

iment. We will take an existing, functioning lab and bring it into the iLab framework.

This lab is known as the Polymer Crystallization Lab, and it initially came into exis-

tence during the Spring of 2002. It provides remote, real-time access to a microscope,

a heating stage, and polymer samples. It was most recently used during the Fall of

2003 to teach the class 10.467: Polymer Science Laboratory at MIT.

In completing this implementation, we hope to ascertain the strengths and weak-

nesses of the proposed design. Finally, we'll analyze these aspects, and propose future

work in three distinct areas: the General Ticketing mechanism, as it relates to schedul-

ing, the implementation of the Scheduling Server, and general scheduling algorithms

in the iLab Framework.

21

22

Chapter 2

General Ticketing

iLab experience to date suggests that operators of Lab Servers are not necessarily

interested in the details of individual students. Instead, a Lab Server is willing to

trust a Service Broker with the task of student authentication. In the present version

of the iLab infrastructure this relationship is enforced by protocol: Lab Servers will

not respond to requests made by students.

General Ticketing supports a distributed authentication model in a different man-

ner. Under General Ticketing all communication must be accompanied with a set of

credentials. These credentials, known as Tickets, are created at the request of iLab

Entities, such as a Service Broker or Lab Server.1 A Ticket simply represents a re-

source. They are created often and generally have a short lifespan. A Service Broker

could create and give a Ticket to a student that would enable them to communicate

directly with a Lab Server.

Tickets enable all communication within the iLab infrastructure. However, we will

concentrate on how they form the foundation for providing time-based access to Lab

Servers, and in turn, serve as the basis for experiment scheduling. This chapter will

provide a detailed look at the General Ticketing mechanism, and the next chapter will

describe how the Scheduling Server will use this mechanism to schedule experiment

time.

'A Ticket in the Kerberos authentication protocol is not related to a General Ticket. Section 2.9
discusses the similarities and differences between them.

23

2.1 Central Ticket Management

The Service Broker handles the administrative details surrounding Ticket manage-

ment. This centralized structure was selected to minimize the functionality Lab

Servers and Scheduling Servers would have to implement in order to support Ticket-

ing. The burden of managing Tickets is significant; in a heavily utilized iLab system,

thousands of Tickets may be created each day, and each Ticket has the potential to

have an infinite lifetime. With centralized Ticket management, all iLab entities must

be aware of how Tickets are used to access resources, and some iLab entities must

be aware of how Tickets are created, but only the Service Broker is responsible for

implementing the details supporting Ticket creation, verification, and persistence.

To better understand Ticket usage, we can examine the high-level steps involved

when one iLab Entity wants to create a Ticket to be redeemed on another. Specifically,

we will consider the situation when a Scheduling Server wants to create a Ticket to

be redeemed on a Lab Server. We will continue to flesh out this scenario with greater

detail as we progress through the chapter.

1. A Scheduling Server contacts a Service Broker with the request that a Ticket

be created. It indicates that this Ticket should be redeemable on a specific Lab

Server, during a certain time period.

2. The Service Broker creates the Ticket as requested, and returns it to the

Scheduling Server. Even though the Ticket has been given to the Schedul-

ing Server, the Service Broker will store all of the information associated with

it. In the future, having this information will allow the Service Broker to verify

the contents of the Ticket. Tickets are assigned an expiration date when they

are created, and the Service Broker is responsible for storing a Ticket until it

has expired. While most Tickets expire in a relatively short period of time, they

have the potential to exist indefinitely.

3. Later, a student wants to access the Lab Server. He or she acquires the Ticket

created in Step 2, and presents it to the Lab Server along with a request for

24

access. 2

4. The Lab Server receives the Ticket along with the student's request for access.

As in the previous version of the iLab infrastructure, the contents of each Web

Service invocation are encrypted. However, the Lab Server may fear that the

student has tampered with or forged their Ticket. It can verify the Ticket

content by contacting the Service Broker.

5. The Service Broker receives a Ticket verification request from the Lab Server,

and responds authoritatively with the contents of the Ticket. These contents

provide the Lab Server with the information it requires to process the student's

request.

In the scenario above, we say that the Scheduling Server is the Ticket Writer

or Sponsor. We say that the Lab Server is the Ticket Redeemer. As the scenario

indicates, Ticket Writers need only understand how to write Tickets and how to

request that they be created. Ticket Redeemers need only comprehend Tickets and

how to verify their contents. All other administrative details surrounding Tickets are

handled by the Service Broker.

2.1.1 Service Broker Domains

We define a Service Broker Domain to be a collection of iLab Entities that co-operate

with a single Service Broker (SB) to provide experiment access to students. Every

domain contains a Service Broker, and no domain can contain multiple Service Bro-

kers. Figure 2-1 contains two Service Broker Domains: Domain A is composed of a

Service Broker, a Lab Server (LS), and a Scheduling Server (SS), and represents the

three Entities from our scenario above. Domain B is composed of a Service Broker

and a Lab Server. The Service Broker is the Central Ticket Manager for each domain,

and the Tickets it issues can only be redeemed on entities within the domain.

With the exception of Service Brokers, iLab Entities can belong to multiple do-

mains. It is expected that a Lab Server will provide its services to many Service
2We will answer the question, "How does the student acquire the Ticket?" in Chapter 3.

25

Domain B

SS
/%

DomnainA -momIS i B

Figure 2-1: Service Broker Domains

Brokers; for example, the Lab Server in Figure 2-1 serves both Domain A and B.

The concept of a Service Broker Domain allows us to define a meaningful scope for

Tickets and avoid confusion. As we will learn in Section 2.2, each Ticket contains

information indicating which domain it belongs to.

2.1.2 Entity Identifiers

The General Ticketing mechanism requires that every iLab Entity be associated with

a globally unique identifier. These identifiers mirror the concepts of Lab Server and

Service Broker GUIDs from the previous iLab infrastructure.3 When implemented, an

Entity ID will likely be a string of characters similar to 0921bf 1379r-da5id-a9e8j7d,

but our examples will use simpler, more easily distinguished names. We assign the

Service Broker, Scheduling Server, and Lab Server from Domain A in Figure 2-1

Entity IDs of mitServiceBroker, mitSchedulingServer, and mitLabServer for use

in upcoming examples.

2.2 Ticket Description

A Ticket is a small collection of immutable information, and Figure 2-2 is a repre-

sentation of one in the Unified Modelling Language. Only a basic understanding of

3 See [2, p. 3] for a description of GUIDs

26

Figure 2-2: General Ticket (Unified Modelling Language)

the Unified Modelling Language is needed to comprehend Figure 2-2, but interested

readers can read more about it at [4]. Figure 2-2 describes a Ticket as a methodless

class with seven public fields.

The issuer-id field of a Ticket identifies the Entity ID of the Service Broker that

created it. The ticket-id field is produced by the Service Broker and is guaran-

teed to be unique within its Service Broker Domain. Consequently, the combination

of ticket-id and issuer-id uniquely identifies any iLab Ticket. Any Ticket cre-

ated by the Service Broker in Domain A from Figure 2-1 will have issuerid =

mitServiceBroker

Tickets are associated with a passkey, and a holder must have the ticket-id,

issuerid, and passkey to redeem a Ticket. The passkey field plays a role similar to

the Outgo ingServerPasskey and IncomingServerPassKey from the previous version

of the iLab infrastructure. 4

Tickets can only be created at the request of iLab Entities. The sponsor-id

field identifies the iLab Entity that requested a Ticket be created by referring to its

Entity ID. A Ticket created at the request of the Server in Figure 2-1 would have

sponsor-id = mitSchedulingServer, and we would say the MIT Scheduling Server

is the Sponsor of the Ticket.

The redeemer-id field identifies the entity that the Ticket can be used at. If the

Scheduling Server created a Ticket to be redeemed on the Lab Server from Figure 2-1,
4 See [3, p. 7] more information on ServerPasskeys

27

Ticket

+ticketid: int
+passkey string
+issuerid : string
+sponsor._id : string
+redeemerid : string
+expiration : DateTime
+payload : string

<payload>
<starttime>632194823532323948</starttime>

<endtime>632194859532323948</endtime>

<user_id>jsmith</userid>

<groupid>10.467</group_id>

<payload>

Figure 2-3: Possible Payload of Lab Server Ticket

it would have redeemer-id = mitLabServer and we would say the MIT Lab Server

is the Redeemer of the Ticket.

The expiration field identifies a the time after which the Ticket is no longer

valid. The type of the expiration field is DateTime, which uses a positive number

of 100-nanosecond units beginning at midnight on January 1, 0001, Common Era to

represent an instant in time. If this value is -1, the Ticket will never expire.

The payload field can contain a string of characters that indicates the purpose and

privilege of a Ticket. The contents of this string are assigned at creation time by the

Ticket Writer. There is no defined format for a payload, and it is possible for a Ticket

Writer to create a payload that is meaningless to a Ticket Redeemer. The General

Ticketing mechanism takes the approach that no single payload, or list of payloads,

will be acceptable to all iLab implementers. Consequently, Ticket Writers are allowed

to create Tickets with any payload, and Ticket Redeemers are free to accept or reject

payloads as they see fit. We expect that implementers of a Ticket Redeemer will

decide upon a list of acceptable payloads and then publish their decision to anyone

who wants to use their service.

Though intentionally undefined, Figure 2-3 contains a payload that could poten-

tially be used in a Lab Server Ticket. This payload is encoded in the Extensible

Markup Language. The start-time and end-time elements represent the number of

100-nanosecond units that have occurred since January 1, 0001, Common Era. The

other two elements identify a user and their effective group, which are meaningful in

the context of a particular Service Broker Domain.

28

<?xml version="1.0" encoding="utf-8">
<env:Envelope xmlns :env="http: //schemas .xmlsoap. org/soap/envelope/">

<env: Header>

<g:GeneralTicketHeader xmlns:g="http://ilab/GeneralTicketHeader">

<ticket_id>100</ticket_id>

<passkey>10OPasskey</passkey>

<issuerid>mitServiceBroker</issuerid>

</GeneralTicketHeader>

</env: Header>

<env:Body>

</env: Body>

</env: Envelope>

Figure 2-4: Soap Envelope with General Ticket Headers

2.2.1 Ticket Usage

Tickets are used as credentials to enable communication. They are primarily used to

enable Web Service invocations. However, they can also be used to begin Web Appli-

cation sessions. When Tickets are used, their ticket-id, passkey, and issuer-id are

sent to a recipient. The recipient is then free to invoke VerifyTicket(ticket-id,

passkey) on the Service Broker that issued the Ticket. VerifyTicket 0 returns

the authoritative contents of the Ticket. All Web Service invocations in the iLab

framework are protected by Secure Socket Layer encryption.

Web Service Usage: The iLab infrastructure invokes Web Services using the SOAP

protocol in combination with HTTP. A SOAP message is composed of an En-

velope, a Header, and a Body. A Ticket is associated with a Web Service

invocation by including its ticket-id, passkey, and issuer-id in the Header

of the SOAP Message. Figure 2-4 contains a SOAP Message with a Header

containing Ticket information.

HTTP Usage: If a Web Application wants to use Tickets for authenticating users,

the Tickets can be included as parameters in the Web Application's URL as in

Figure 2-5

29

https: //ilab/index.html?ticketid=1&passkey=test&issuerid=mitSB

Figure 2-5: Web Application URL with General Ticketing Parameters

The concepts of Web Services, SOAP, and HTTP are heavily utilized within the

iLab infrastructure, and readers are assumed to be comfortable with them. Interested

readers can learn more about these concepts at [8, 9, 10].

2.3 Application Programming Interface

In order to support the General Ticketing mechanism, changes will be made to the

Web Service Application Programming Interfaces of the Service Broker and all Service

Providers. The existing interfaces are described here [2, 3]. The methods in the next

two sections are described in an object oriented manner. Each method can be thought

of as an instance method on a singleton object whose type is one of ServiceBroker,

LabServer, or SchedulingServer. This description style is inherited from the earlier

iLab Application Programming Interfaces, and interested readers are referred to [2, 3].

2.3.1 Service Broker Ticket Management

The following methods are implemented by the Service Broker to support central

Ticket management. They address issues concerning Ticket creation, destruction,

verification, and delivery. These methods will be invoked on the Service Broker by

either the Lab Server or the Scheduling Server. When any of the methods are invoked,

the Header of the accompanying SOAP Message must be filled with information iden-

tifying a Service Broker Ticket. This type of Ticket will be described in Section 2.4,

but it suffices to know that it will allow the Service Broker to determine the identity

of the method invoker.

Ticket CreateTicket(string redeemerid, DateTime expiration,

string payload)

This method can be used to create a Ticket. The resulting Ticket will have its

30

ticket-id and passkey generated by the Service Broker. The issuer-id of the

Ticket will be the Entity ID of the Service Broker. The sponsor-id will be the En-

tity ID of the invoker of CreateTicket 0. The parameters of this method determine

the redeemerid, expiration, and payload of the resulting Ticket. See Section 2.6

for more information.

boolean CancelTicket(int ticket-id)

When this method is invoked, the Service Broker will attempt to cancel the Ticket

identified by ticket-id. If no such Ticket exists, this method will return false. A

cancelled Ticket is no longer redeemable for resources. It is possible that a Ticket

cannot be cancelled. As detailed in Section 2.3.2, each Service Provider has their

own CancelTicket 0 method. When CancelTicket 0 is invoked on a Service Bro-

ker, the Service Broker will invoke CancelTicket () on the Redeemer of the Ticket.

The Redeemer will return a boolean indicating if the Ticket can be cancelled. If

the Redeemer returns true then the Service Broker will return true, otherwise the

Service Broker will return f alse. If the Redeemer is unavailable, the Service Broker

will return f alse. See Section 2.7 for more information.

Ticket VerifyTicket(int ticket-id, string passkey)

This method will return the authoritative version of the Ticket identified by

ticket-id and passkey. If no such Ticket exists or if the ticket-id and passkey

do not match, null will be returned.

int CreateAndGiveTicket(string redeemer-id, DateTime expiration,

string payload, string recipient-id)

This method can be used to create a Ticket and have it delivered to an iLab Entity.

The iLab Entity will then use the Ticket for communicating with other iLab Entities.

The Service Broker will create a Ticket using the redeemerid, expiration, and

payload in the same manner as CreateTicket 0 would. Next, the Service Broker

will invoke InstallTicket() on the iLab Entity identified by recipient-id. The

31

recipient-id must match an Entity ID in Service Broker Domain. The Service

Broker will return the ticket-id of the created Ticket. See Section 2.8 for more

information.

boolean GrantTicketingPermission(string role, string entity-id)

One iLab Entity can use this method to inform the Service Broker that another

iLab Entity can invoke CreateTicket () and CreateAndGiveTicket () on its behalf.

This method can also be used to enable an iLab Entity the power to invoke Cancel ()

on Tickets that are redeemable on it. The role parameter is a string that must be

one of Create, CreateAndGive, or Cancel. The role will be granted to the iLab En-

tity associated with entity-id. The entity-id must match an Entity ID in Service

Broker Domain. For example, consider a Lab Server with Entity ID mitLabServer

that wants to allow a Scheduling Server with Entity ID mitSchedulingServer the

ability to create Tickets that will be redeemable on it. The mitLabServer can invoke

GrantTicketingPermission(Create, mitSchedulingServer). See Section 2.5 for

more information.

boolean RemoveTicketingPermission(string role, string entity-id)

An iLab Entity can use this method to disallow another iLab Entity from invoking

CreateTicket() or CreateAndGiveTicket() on the Service Broker, and

CancelTicket() Tickets for it. The entity-id must match an Entity ID in Ser-

vice Broker Domain. For example, if mitLabServer wanted to take the ability

to create Tickets away from mitSchedulingServer, the mitLabServer can invoke

RemoveTicket ingPermission(Create, mitSchedulingServer). See Section 2.5 for

more information.

iLabEntity[] GetiLabEntities()

This method enables iLab Entities within a Service Broker Domain to discover

other members that are in the same domain. An iLabEntity is a collection of in-

formation common to all iLab Entities, and is represented in the Unified Modelling

32

Figure 2-6: iLabEntity (Unified Modelling Language)

Language in Figure 2-6.

2.3.2 Service Provider Ticket Management

The following methods must be implemented by all Service Providers in the iLab

infrastructure. At present, that includes the Lab Server and the Scheduling Server.

These methods provide a mechanism for the Service Broker to deliver and destroy

Tickets. When any of the methods are invoked on the Service Broker, the Header of

the accompanying SOAP Message must be filled with information identifying a Ser-

vice Broker Identification Ticket. This type of Ticket will be described in Section 2.4,

but it suffices to know that it allows a Service Provider to identify the Service Broker

as the method invoker.

void InstallTicket(Ticket t)

iLab Entities use Tickets to communicate, just as students do. For example, a

Lab Server must have a Service Broker Ticket in order to invoke methods on a Ser-

vice Broker. This method can be used to give a Ticket to an iLab Entity. See the

definition of CreateAndGiveTicket () in Section 2.3.1 and the use case in Section 2.4

for more information.

boolean CancelTicket(int ticket-id)

A Service Broker can use this method to request that a Service Provider cancel

33

iL abE ntity
+entityid : string
+description : string
+infourl: string
+contact-email: string
+web applicationurl : string
+web se rv ice uri : string

the Ticket identified by ticket-id. The Service Provider must return true if it can

cancel the Ticket. See Section 2.7 for more information.

DateTime GetCurrentTime()

This method is used to return the current time according to a Service Provider.

The iLab infrastructure does not demand that iLab Entities synchronize their time,

and this method provides a mechanism to handle time-sensitive Tickets.

2.4 Initial Ticket Distribution

When a Service Broker is first brought online, it will not be aware of any other iLab

Entities. This section focuses on how iLab Entities become aware of one another using

General Ticketing. We will examine the process by which a Service Broker initiates

communication with a Lab Server. This process can be repeated for any number of

additional Lab or Scheduling Servers.

We begin by assuming a certain level of person-to-person interaction: a teacher

must somehow learn that a Lab Server exists and contact the owner of it. During their

initial conversation, the teacher and lab owner must exchange information equivalent

to what is included in an iLabEntity, as seen in Figure 2-6. With this knowledge,

the Service Broker creates two Tickets:

Service Broker Ticket: This Ticket will be used to identify the Lab Server to

the Service Broker in all future Web Service invocations. The ticketid,

passkey, and issuer-id of this Ticket will be included with any invocations

of CreateTicketO, CancelTicketo, or VerifyTicketO. The issuerid,

redeemer-id, and sponsor-id of this Ticket will be the Entity ID of the Service

Broker.

Service Broker Identification Ticket: This Ticket will be used to identify the

Service Broker to the Lab Server in all future Web Service invocations.

The ticket-id, passkey, and issuer-id of this Ticket will be included with

34

Field Ticketi Ticket2

ticket-id 100 200

passkey 100Passkey 200Passkey

issuer-id mitServiceBroker mitServiceBroker

sponsor-id mitServiceBroker mitServiceBroker

redeemer-id mitServiceBroker mitLabServer

Table 2.1: Initial Ticket Values

ticketid : 200

passkey : 200Passkey

issuerid : mitServiceBroker

InstallTicket(Ticket1);

Figure 2-7: InstallTicket () Invocation

any invocations of InstallTicket() or CancelTicket(). The issuer-id and

sponsor-id of this Ticket will be the Entity ID of the Service Broker. The

redeemer-id of this Ticket will be the Entity ID of the Lab Server.

If the Entity IDs of the Service Broker and Lab Server are mitLabServer and

mitServiceBroker, then the contents of these two Tickets are described in Table 2.1.

We will refer to these two tickets as Ticketi and Ticket2. We omit both the

expiration and payload as these items are not necessary for our present discus-

sion. In an actual implementation, these Tickets will be easily distinguished from one

another by their payloads; for now we can differentiate between them based on their

redeemer-id. Ticketi is the Service Broker Ticket because its redeemer-id indi-

cates that it will be used when invoking methods on the Service Broker. Ticket 1 will

be included in the SOAP Header of any method the Lab Server invokes on the Service

Broker. Ticket2 is the Service Broker Identification Ticket because its redeemer-id

indicates that it will be used when invoking methods on the Lab Server. Ticket2

will be included in the SOAP Header of any method the Service Broker invokes on

the Lab Server.

Once these Tickets have been created, the Service Broker will invoke

InstallTicket 0 on the Lab Server. It will include the ticket-id, passkey, and

issuer-id of Ticket2 in the Header of the invocation (see Figure 2-7).

35

ticketid : 100

passkey : 100Passkey

issuerid : mitServiceBroker

VerifyTicket(200, 200Passkey);

Figure 2-8: VerifyTicket() Invocation

We use this notation of Figure 2-7 to denote that InstallTicket () was in-

voked, and the Header of the SOAP Message indicated ticket-id = 200, passkey

= 200Passkey, and issuer-id = mitServiceBroker.

When InstallTicket () is invoked on Lab Server, it examines the Header and rec-

ognizes that it has never seen a Ticket with issuer-id = mitServiceBroker before.

In this special case, it assumes that the Header information identifies a Service Broker

Identification Ticket and the parameter of InstallTicket (Ticket 1) is a Service Bro-

ker Ticket that it should use for future communication with mitServiceBroker. Fur-

ther, from the previous person-to-person conversation, it can associate the issuer-id

with a target for Web Service invocations. The next step is for the Lab Server to

confirm that the Ticket included in the Header of InstallTicket () is legitimate. It

does this by invoking VerifyTicket () on the Service Broker (see Figure 2-8).

When Verif yTicket () is invoked as in Figure 2-8, the Service Broker can examine

the Header information and identify that Ticket it gave exclusively to mitLabServer

is being used. It recognizes the Ticket and returns a full copy of Ticket1. If it did

not recognize the Ticket, it would return null. This scenario can be repeated for

additional Lab or Scheduling Servers.

2.5 Ticket Creation Permissions

When an iLab Entity first joins a Service Broker Domain it is only allowed to create

Tickets that are redeemable on it.5 However, it may wish to allow another iLab En-

tity to create Tickets on its behalf. Any iLab Entity can invoke GetiLabEntities()

5 This even holds true for the Service Broker. Even though it is the Central Ticket Manager, iLab
Entities must explicitly grant the Service Broker Ticket creation permissions.

36

ticketid : 100

passkey : "100Passkey"

issuerid : mitServiceBroker

GrantTicketingPermission("Create", mitSchedulingServer);

Figure 2-9: GrantTicketingPermission() Invocation

ticketid : 300

passkey : "300Passkey"
issuerid : mitServiceBroker
CreateTicket(mitLabServer, exp, pay);

Figure 2-10: CreateTicket () Invocation

on the Service Broker to query all of the other iLab Entities that are in the Ser-

vice Broker Domain. In particular, the iLab Entity now knows all the Entity IDs

of every entity in the domain. With this information, an iLab Entity can use

GrantTicketingPermission() to inform the Service Broker that another iLab En-

tity should be able to manage its Tickets. For example, imagine a Lab Server

with Entity ID mitLabServer wants to allow a Scheduling Server with Entity ID

mitSchedulingServer to invoke CreateTicket() its behalf. To accomplish this,

the Lab Server invokes GrantTicketingPermission() as in Figure 2-9. After the

method is invoked the Service Broker will allow the Scheduling Server to invoke

CreateTicket() and specify that redeemer-id = mitLabServer.

2.6 Ticket Creation

At the beginning of this Chapter, we described a scenario in which a Scheduling

Server was interested in creating a Ticket to be redeemed on a Lab Server. If iLab

implementers followed the steps in Sections 2.4 and 2.5, this could be accomplished

with a single method invocation, as seen in Figure 2-10. This invocation assumes

that Service Broker Ticket held by the Scheduling Server is described in Table 2.2.

In Figure 2-10, exp is a DateTime indicating the expiration of the Ticket, and pay

is a string described in Figure 2-3.

37

Field Ticket3

ticket-id 300
passkey 300Passkey

issuer-id mitServiceBroker

sponsor-id mitServiceBroker

redeemer-id mitServiceBroker

Table 2.2: Service Broker Ticket Values held by Scheduling Server

ticket-id : 200

passkey : 200Passkey

issuerid : mitServiceBroker
CancelTicket (1001);

Figure 2-11: CancelTicket () Invocation

2.7 Ticket Cancellation

A Ticket can be cancelled by contacting the Service Broker that created it and passing

the ticket-id of the Ticket to the CancelTicket() method. If the Lab Server that

we described earlier wants to cancel a Ticket created by the Service Broker with

ticket-id = 1001, it will invoke CancelTicket() as seen in Figure 2-11.

When CancelTicket() is invoked on a Service Broker, the Service Broker will

examine the Header information and associate it with an iLab Entity. If the iLab

Entity requesting that the Ticket be cancelled is not the Redeemer of the Ticket, the

Service Broker will check to see if the Entity has the "Cancel" role for the Redeemer

of the Ticket. If so, the Service Broker will invoke CancelTicket () on the Redeemer.

If the Redeemer returns true, the Service Broker will consider the Ticket cancelled

and it will return true. Otherwise the Service Broker will return false.

2.8 Creating, Giving Tickets

In Chapter 4, we will learn of a situation where a Scheduling Server might want to

give a Ticket to a Lab Server. This Ticket would enable a Lab Server administrator

to access the Scheduling Server and provide input into the scheduling process. In this

situation, the Scheduling Server wants the Lab Server to have a Ticket, but does not

38

ticketid : 300

passkey : "300Passkey"
issuerid : mitServiceBroker

CreateAndGiveTicket(mitSchedulingServer, exp, pay, mitLabServer);

Figure 2-12: CreateAndGiveTicket () Invocation

want to grant the Lab Server Ticket creation permissions. This can be accomplished

using the CreateAndGiveTicket () method.

The invocation of CreateAndGiveTicket () in Figure 2-12 indicates that the

mitSchedulingServer is the Redeemer of the Ticket and the mitLabServer is the

Entity that this Ticket should give given to. As a result, a Ticket will be created and

then used as the only argument for the InstallTicket () method on the Lab Server.

The values for exp and pay are not important for understanding the mechanics of

how this method works.

2.9 General Ticketing, Kerberos

The Kerberos authentication protocol also supports credential based communication

using the concept of a Ticket. However, Kerberos Tickets are not the same as General

Tickets, and it is worthwhile to discuss the differences between them.

Kerberos Tickets enable users to authenticate themselves to kerberized service

providers. Authentication is the first step in communicating with a kerberized service.

Once a user's identity has been determined, the kerberized service will grant access

to its services based on it. As such, a Kerberos ticket is used exclusively for user

authentication.

General Tickets can be used for user authentication, but they can also be used in

other ways. General Tickets represent resources and can be associated with individual

identities, but this is not required. They describe the resources they represent with

their payload. However, the content of a payload is not defined, and this allows

a General Ticket to be used in a variety of ways. It is possible that the payload

of a General Ticket will determine the authorization that should be granted to its

39

bearer. This, the main difference between a Kerberos Ticket is a General Ticket is

that a General Ticket is extensible and has the ability to encapsulate authorization

information.

40

Chapter 3

Scheduling Server

A Scheduling Server is an iLab Entity that provides experiment scheduling services

to Lab Servers and Service Brokers. It delivers this functionality through a Web

Application and Web Services. The Web Application allows lab owners, teachers, and

students to interact with the scheduling process. Exactly how these users interact

with the scheduling process is decided by the implementers of the Scheduling Server.

For example, if a Scheduling Server supports an auction based system, it may have a

Web Application that would allow a lab owner to create an auction and indicate a list

of Service Brokers that will be allowed to participate in it. This same Web Application

might allow a teacher on a participating Service Broker to supply details regarding

the rules of this newly created auction. For example, the teacher might indicate that

graduate students should receive twice as many bidding points as undergraduates.

Finally, students could use the Web Application to place bids and view results.

Regardless of the scheduling algorithm employed, the goal of a Scheduling Server is

to distribute available lab time to students. Under the General Ticketing mechanism,

this is formally accomplished with the creation of a Lab Server Ticket. When the

appropriate time arrives, the Scheduling Server supports a Web Service that allows

Lab Server Tickets to be programmatically claimed by the students they were created

for.

General Ticketing is used for all communication with the Scheduling Server. As

we learned in Chapter 2, before this communication can take place, a series of Tickets

41

or ticketing permissions must be created. Section 3.1 will cover the details of how a

Service Broker Domain must be configured before it can interact with a Scheduling

Server.

The Scheduling Server grants access to its Web Application and Web Services

through Tickets. As a consequence, implementers of a Scheduling Server must define

a payload, or list of payloads, that they will support. These payloads are intentionally

undefined, but there are certain rules they must adhere to. We will discuss these

requirements and provide several examples in Section 3.2.

Scheduling Server Web Applications will vary greatly depending on the algorithms

that they support. However, there are some basic requirements that all Web Appli-

cations must meet. These will be detailed in Section 3.3.

A Scheduling Server is a Service Provider in the iLab Framework, and it must

support the Service Provider API. In addition to these standard methods, it also

supports a method that allows students to claim Lab Server Tickets created on their

behalf. The Web Services supported by the Scheduling Server will be presented in

Section 3.4.

Once we have been introduced to the main pieces of the Scheduling Server, we will

conclude by examining how a Scheduling Server will be used by a student to schedule

and access lab time.

3.1 Domain Configuration

A Scheduling Server can provide its services to many different Service Broker Do-

mains, and a single Service Broker Domain can contain many Scheduling Servers.

For simplicity, we will consider how a Scheduling Server will interact with just a sin-

gle Service Broker and Lab Server. Before it can be used, the following Tickets must

be created and ticketing permissions granted:

* The Service Broker will create Service Broker Identification Tickets that it will

use identify itself when it invokes Web Services on the Lab Server and Schedul-

ing Server. Next, the Service Broker will create Service Broker Tickets for

42

the Lab Server and the Scheduling Server. The Service Broker will invoke

InstallTicket () on the Lab Server and Scheduling Server to deliver each Ser-

vice Broker Ticket. These two entities will use their Service Broker Ticket when

they invoke Web Services on the Service Broker.

" The Scheduling Server must grant the Create and Cancel permissions to the

Service Broker. This will allow the Service Broker to create Tickets for stu-

dents and teachers, and then allow them to access the Scheduling Server's Web

Application.

" The Lab Server must grant the Create and Cancel permissions to the Schedul-

ing Server. This will allow the Scheduling Server to create Lab Server Tickets

that grant time to a student.

" The Scheduling Server must have a Ticket created and delivered to a Lab Server.

The Lab Server Administrator will use this Ticket to access the Scheduling

Server's Web Application and provide input into the scheduling process.

These steps will have to be repeated for every Service Broker or Lab Server that

will utilize the functionality of a Scheduling Server.

3.2 Scheduling Server Tickets

Tickets will be used to access the Web Application and Web Services of a Scheduling

Server in the manner indicated by Section 2.2.1. The payload of these Tickets is not

formally defined, but the chosen format must:

1. Provide a means for the Web Application to categorize the holder of the Ticket

as either a lab owner, teacher, or student.

2. Provide a means for the Web Application to consistently identify a user between

Web Application sessions.

43

<payload>

<role>LabServerAdmin</role>

<entity id>mitLabServer</entity-id>

<payload>

Figure 3-1: Possible Lab Server Admin Payload for Scheduling Server Ticket

<payload>
<role>Teacher</role>
<entity-id>mitServiceBroker</entityjid>
<group-id>10.467</group-id>

<payload>

Figure 3-2: Possible Teacher Payload for Scheduling Server Ticket

We have provided three concrete implementations of Scheduling Server payloads

in Figures 3-1, 3-2, and 3-3. These implementations are encoded in the Extensible

Markup Language, and differentiate between lab owners, teachers, and students using

the <role> tag. They rely on the <user-id> tag to identify students between sessions.

If a person requested access to the Web Application of a Scheduling Server, and

presented a Ticket with the payload in Figure 3-1, the Scheduling Server would know

to treat the holder as an administrator associated with mitLabServer. Similarly, if

he or she presented a Ticket with the payload in Figure 3-3, the Scheduling Server

would know to treat the holder as a student from the mitServiceBroker who has

group-id = 10.467 and user-id = jsmith. It is important to note that the payload

of a Scheduling Server ticket is the only context from which a Scheduling Server can

learn about its users.

<payload>

<role>Student</role>

<entity-id>mitServiceBroker</entity-id>

<group-id>10.467</group-id>

<display.name>John Smith</displayname>

<userid>jsmith</userid>
<payload>

Figure 3-3: Possible Student Payload for Scheduling Server Ticket

44

void InstallTicket(Ticket t)

boolean CancelTicket(int ticketid)

DateTime GetCurrentTime()

Figure 3-4: Service Provider API

3.3 Web Application Requirements

Due to the abstract nature of the Web Application, there are no strict requirements

for it. The goal of the Web Application is to provide an interface into the scheduling

process. However, this will manifest itself very differently if the Scheduling Server is

supporting a auctioning system versus a first come, first served sign up process.

There are two general requirements of the Web Application. The first is that it

must allow a Lab Server to indicate the times they wish to have scheduled. Lab

Servers are free to utilize more than one Scheduling Server and, in order to avoid

conflicts, Scheduling Servers must only distribute time that they have been told is

available. If a Lab Server uses multiple Scheduling Servers, it must insure that the

time intervals it offers to each are disjoint.

The second requirement is that the Web Application must provide a mechanism

for a student to see the time that has been reserved for them. In theory, a Scheduling

Server could be produced that would randomly schedule time among users without

accepting any input from them. This Scheduling Server would be acceptable, so long

as students could log into it and view the time that had been given to them. This is

necessary because the Scheduling Server's Web Services do not provide any means to

programmatically query for existing reservations.

3.4 Scheduling Server Web Services

The Web Service Application Programming Interface of the Scheduling Server sup-

ports the standard Service Provider methods. These are listed Figure 3-4 and de-

scribed in Section 2.3.2.

The Scheduling Server supports one additional Web Service named GetTicket (.

45

http://schedserv/index.html?ticket-id=&passkey=pw&issuer-id=mitSB

Figure 3-5: Scheduling Server Redirect

Ticket GetTicket()

This method can be invoked to claim a Lab Server Ticket for a user on a partic-

ular Lab Server. The Header of the SOAP Message in this Web Service invocation

must include a ticket-id, passkey, and issuer-id of a Ticket whose payload in-

cludes information adequate to identify the student and the Lab Server he or she

wants a Ticket for. When this method is invoked, the Scheduling Server will invoke

GetCurrentTime () on the Lab Server and use this time to determine if a reservation

is active. If so, a Lab Server Ticket will be returned. If not, null will be returned.

3.5 Standard Usage

Now that we have been introduced to the basic functionality of the Scheduling Server,

we can take a closer look at how it will be used within a Service Broker Domain. The

scenario below details the steps that a student will take in order to schedule lab time

and then use a lab server.

1. The Student authenticates themselves at the Service Broker and uses its Web

Application to indicate that he or she wants to schedule time on a particular

Lab Server.

2. The Service Broker creates a Scheduling Server Ticket for the user and then

redirects them to the Scheduling Server's Web Application with ticketid,

passkey, and issuer-id in the parameters of the URL. If the URL of the

Scheduling Server was http://schedserv/index.html and the ticket-id,

passkey, and issuer-id were equal to "1", "pw", and "mitSB", respectively,

then the redirect would appear as in Figure 3-5.

46

3. When the Scheduling Server's Web Application receives a request for usage, it

parses the parameters and determines the associated ticket-id, passkey, and

issuer-id. It invokes VerifyTicket (1, pw) on the Service Broker identified

by "mitSB", and learns the content of the Ticket. After parsing the payload,

it grants the student access to the Web Application so he or she can schedule

time. The Web Application may or may not offer immediate feedback to the

student. If not, the student can repeat Steps 1 and 2 until he or she has finalized

a reservation.

4. When the student's reservation time comes, he or she will log back into the Ser-

vice Broker and request to launch the Lab Client. The Service Broker will create

another Scheduling Server Ticket as it did in step 2, and invoke GetTicket ()

on the Scheduling Server with this newly created Ticket in the Header. The

Scheduling Server will verify the contents of the Ticket, and use its payload to

determine the student's identity and the lab server he or she wants a Ticket for.

5. The Scheduling Server will invoke GetCurrentTime () on the Lab Server and

determine if the student has an active reservation. If so, it will return a Lab

Server Ticket to the Service Broker.

6. If GetTicket () returns a Ticket, the Service Broker can give it to the Lab

Client. If not, the Service Broker will know that the Student does not have

access to the Lab Server presently.

7. The Lab Client can use this Ticket to access the Lab Server and run an exper-

iment.

This scenario depicts how a student can reserve lab time, and then gain access

to the Lab Server. With the steps clearly outlined, it is important to notice what

each entity is responsible for. The Service Broker authenticates students and writes

Tickets for them so they can use the Scheduling Server. The Scheduling Server accepts

students redirected by the Service Broker and allows them to schedule time. The Lab

Server waits until someone with a valid Lab Server Ticket wants to run an experiment.

47

There is clear separation of functionality between the entities, and each entity only

delivers a single piece of functionality. By creating a Scheduling Server and using

the General Ticket mechanism, we have introduced experiment scheduling without

imposing a significant burden on the Service Broker or Lab Server.

48

Chapter 4

Polymer Crystallization Lab

We have re-implemented an existing online laboratory in order to ascertain the effec-

tiveness of the designs we have proposed. The main goal of this work is to explore

a specific Scheduling Server implementation that communicates using the General

Ticketing mechanism. The online laboratory we chose to implement is known as the

Polymer Crystallization Lab. It is interactive, and utilizes a first come, first served

scheduling system. This chapter will begin by providing a general introduction to the

lab. We will describe how the lab is presently utilized and enumerate its scheduling

requirements. To support the lab, we needed to create a Service Broker and Lab

Server, and we describe the most important aspects of each implementation. Finally,

we will dedicate the majority of this chapter to describing our Scheduling Server im-

plementation. We will indicate how it can be used, and how it operates within this

new, interactive iLab infrastructure.

4.1 Introduction

The Polymer Crystallization Laboratory provides remote access to a polarized light

microscope, a heating stage, and a digital camera. Students use these tools to heat

a polymer sample above its melting point and then make observations as it subse-

quently cools. Specifically, these observations monitor crystal growth rates versus

temperature. This "allows users to experimentally determine such properties as the

49

activation energy, the fold energy for the growing crystals, and the Avrami exponent

of thin film crystallization." [5, p. 13]. This laboratory was implemented by Daniel

Talavera, and is closely documented in his Master's Thesis [5]. His implementation

is based on earlier work by Nasser [6] and Kuchling [7].

The lab was most recently used in the MIT course 10.467: Polymer Science Labo-

ratory taught during the Fall of 2003. This course used the lab for a single, two-week

long assignment. During this period, a total of 20 students were instructed to form

groups of two to three people, and each group used the lab for approximately 4 hours.

The 10.467 staff support the lab on a 24 hour per day basis, and the lab was conse-

quently used for a total of 28 hours over a 338 hour (two week) period. This course

is only taught in the Fall, and the lab goes unused for the remainder of the year.

4.1.1 Implementation Details

The Polymer Crystallization Laboratory (PCL) is delivered to students using a sys-

tem of components. This system can be divided into three distinct parts: a Web

Application, a Microscope Server, and a Graphical Lab Client.

Web Application: The laboratory uses a Web Application to authenticate users,

reserve lab time, and provide access to the lab client. Student can interact with

it using any standard web browser.

Microscope Server: The PCL provides a single software interface to its hardware

using a component known as the Microscope Server. The server supports a

text-based protocol, which can be used to convey both incoming commands

and outgoing status updates. All communication with the server is sent over

standard TCP/IP sockets using the Graphical Lab Client. The Microscope

Server can only accommodate one user at a time.

Graphical Lab Client: Students use a graphical client to interact with the Micro-

scope Server. This client is pictured in Figure 4-1. The job of the client is to

accept input from the student in the form of pressing buttons and moving slid-

ers and translate it into appropriate messages within the Microscope Server's

50

Fie r TempPraic [e"p

This area will be used to display microscope status informalion-
Getting Image from Microscope..
Done capturing image.

CAPTURE

w :

wJ
Capture Single Snapslwts

SVideo Stream

Apere: &95

00 025 0.5 0.75 0.96

Feld Stqp 1.0

00 0.25 0.6 0.75 0.95

®Waene

O Anr*er

O DIC RED

Expomare Tinme ms

0 5 10 15 20 25 30 35 40
CwreIt T enmpolafre &Epe,.ot

Temp. Rate (Cniin) Target Temp. (C) Holk Thne (sec)
28.0 C

Figure 4-1: Polymer Crystallization Lab Client

protocol. The client also listens for status updates from the Microscope Server

and updates itself to match the state of the Microscope Server.

4.1.2 Scheduling

The Polymer Crystallization Laboratory allows students to create advance lab reser-

vations using a first come, first served scheduling system. Students interact with the

scheduling system through the Web Application, and can create reservations to use

51

the lab 24 hours a day, 7 days a week. Any request they make is granted provided

that it does not break either of the following rules:

* There can be only one active reservation at any time.

" The duration of a reservation must be equal to or less than 90 minutes.1

Finally, once a reservation has been created it cannot be cancelled. This summa-

rizes the functionality offered by the PCL scheduling system. Even though it is fairly

simple, it meets the needs of the PCL staff and their students. While our main goal is

to create a Scheduling Server that can match this functionality, we are also interested

in exploring mechanisms that can enhance this system. For example, this system can

be abused: a pathological user could reserve an extended period of time by creating

several consecutive reservations, as long as each individual reservation is less than

90 minutes. We will attempt to address this issue by building a simple language

that administrators can describe rules with. Rather than providing administrators

with a finite list of enforceable rules that they can turn on or off, we will give them

ability to dynamically create rules as they see fit. Before we discuss the specifics of

our Scheduling Server implementation, we must first understand the environment in

which it operates.

4.2 Implementation Strategy

To implement this online experiment, we took four major steps:

" Created a Scheduling Server. This Scheduling Server supports first come, first

served reservations. Its functionality exceeds that of the existing scheduling

system.

" Created a Service Broker. This Service Broker will support the Service Broker

API as documented in Section 2.3.1. In addition to writing and verifying Tick-

'The combination of a 90 minute maximum and 4 hours required to complete the assignment
means that 10.467 students had to create multiple reservations to finish their work.

52

ets, the Service Broker is capable of: authenticating students, redirecting them

to the Scheduling Server, and providing a Lab Client to the student.

" Modify the Remote Microscope Server. It will support the Service Provider

API as documented in Section 2.3.2. Most importantly, the Microscope Server

will be modified so that it can process Lab Server Tickets and grant lab access

appropriately.

" Modify the Graphical Lab Client. It will be able to consume Web Services and

use Tickets. It must be able to receive a Lab Server Ticket from the Service

Broker and use it to communicate with the Lab Server.

The primary focus of this chapter is to discuss our implementation of a Scheduling

Server. However, it is closely related to both the Service Broker and the Lab Server.

Thus, we must first understand how these entities interact and communicate with

one another. These interactions and communications can be specified by describing

the Service Broker Domain that we implemented.

4.3 Service Broker Domain

We created a Service Broker Domain that was composed of a Service Broker, a

Scheduling Server, and a Lab Server. The Entity IDs assigned to these servers were

mitServiceBroker, mitSchedulingServer, and mitLabServer, respectively. Listed

below are the configuration changes that we made after bringing our Service Broker

Domain online:

* The Service Broker created Service Broker Identification Tickets and used these

to identify itself when it invokes Web Services on the Lab Server and Scheduling

Server. It also created and delivered a Service Broker Ticket to the Lab Server

and the Scheduling Server. Each entity uses their Service Broker Ticket when

they communicate with the Service Broker.

53

* The Scheduling Server was granted the Ticketing permissions "Create" and

"Cancel" for the Lab Server. The Scheduling Server will use these permissions

to create Lab Server Tickets when students make reservations, and cancel them

if requested to. The Scheduling Server supports cancelling reservations even

though the original PCL scheduling system does not.

" The Service Broker was granted the Ticketing permission "Create" for the

Scheduling Server. The Service Broker will use this permission to create Schedul-

ing Server Tickets that allow students and teachers to be redirected to the

Scheduling Server's Web Application.

" A Scheduling Server Ticket was created and given to the Lab Server. This

ticket will enable the Scheduling Server to access the Scheduling Server's Web

Application.

4.3.1 General Communication

In the previous Batched Experiment architecture, a Service Broker allowed a student

to launch a Lab Client. When the student ran experiments, the Lab Client would

submit them to the Service Broker and the Service Broker would submit them to a

Lab Server. In the new interactive experiment architecture this has changed. The

new steps that a student will take to run an experiment are:

1. The student authenticates himself or herself at a Service Broker.

2. The Service Broker understands that the student needs to create a reservation

on the Scheduling Server before he or she can access the Lab Server. At the

student's request, the Service Broker creates a Scheduling Server Ticket and

redirects him or her to the Scheduling Server's Web Application with the Ticket.

3. The student arrives at the Scheduling Server with a Ticket. The Scheduling

Server verifies the Ticket with the Service Broker, and grants the student access.

The student interacts with the Scheduling Server's Web Application and creates

54

a reservation. When a reservation is created, the Scheduling Server creates a

Lab Server Ticket on the students behalf. The Scheduling Server will remember

the student's reservation and the associated Lab Server Ticket.

4. When a student's reservation time arrives, the student returns to the Service

Broker and indicates that they want to use the Lab Server.

5. The Service Broker has no knowledge of the student's reservation. However, it

understands that the Scheduling Server will know if the student has a reser-

vation. The Service Broker contacts the Scheduling Server and requests a Lab

Server Ticket for the student.

6. The Scheduling Server remembers the student's reservation, and returns the Lab

Server Ticket associated with it. If no such reservation exists, the Scheduling

Server will not return a Ticket.

7. Upon receiving a Lab Server Ticket from the Scheduling Server, the Service

Broker gives it to the student. Now the student can run an experiment because

he or she can directly communicate with the Lab Server.

This is a high level view of how a student reserves time and then uses a Lab

Server to run an experiment. Once we have been introduced to the details of our

implementation, Section 4.5 will retrace these steps again in greater detail.

4.3.2 Service Broker Implementation

The Service Broker we implemented supports the Service Broker APIs discussed in

Section 2.3.1. All of the methods that were previously used as "pass through" methods

have been removed because they are no longer necessary in an interactive experiment

architecture.

In the previous version of the iLab infrastructure, a Service Broker acknowledged

two separate roles: users and administrators. Our implementation of the Service Bro-

ker needs to recognize a new role in addition to these two: teachers. Teachers will be

55

associated with groups just as students are and they will not be granted any admin-

istrative abilities on the Service Broker. However, the Service Broker must provide a

means by which a teacher can visit a Scheduling Server. When the teacher exercises

this ability, the Service Broker creates a Scheduling Server Ticket that identifies him

or her as a teacher. When he or she arrives on the Scheduling Server, he or she will be

empowered to define rules that will affect the sign up process for all of the students

in their group.

4.3.3 Lab Server Implementation

The Lab Server we implemented supports the Service Provider APIs discussed in

Section 2.3.2. All other Web Service methods were removed from the API as they

are not necessary for an interactive experiment.

It was determined that Web Service based communication would not be able to

support the high-bandwidth requirements of the Polymer Crystallization Lab. As a

consequence, it was decided that Web Services should be used at the beginning of

an experiment to serve as a "handshake," but further communication will rely on

a TCP/IP socket based connection. This combination allowed us to rely on the au-

thentication scheme of General Ticketing, while taking advantage of the faster, legacy

communication mechanism. A new Web Service was introduced to the Lab Server

API named Connect O.

string Connect(o

This method will be invoked by a Lab Client. The Lab Client will include infor-

mation identifying a Lab Server Ticket in the Header of the method invocation. A

Lab Server will be able to verify the content of this Ticket with the Service Broker,

and use the results to determine if a user should be granted access to the lab. If

so, the Lab Server will return a string to be used as a password. The Lab Client

will then open up a socket connection to a well-known port on the Lab Server and

authenticate itself by providing the string result.

56

4.4 Scheduling Server Implementation

Our Scheduling Server can be used by Lab Server administrators, teachers, and stu-

dents. Lab Server administrators can use a Scheduling Server to describe the times

that they want to make available. For example, a Lab Server administrator could say,

"My lab will be available Monday through Friday, between 9AM and 5PM starting

on February 3rd and ending on May 13th." They can also tell the Scheduling Server

who should be able to receive this time as in, "Any student from MIT can use the

lab, and students from CalTech that are in the course CHEM147: Polymer Chem-

istry should also be allowed to use the lab." We will refer to this type of rule as a

Recipient Rule. Finally, a Lab Server administrator could tell the Scheduling Server

rules that it wants every reservation to conform to, such as "At a minimum, people

must sign up for 30 minutes of time, but they should never exceed 90 minutes." We

will refer to this type of rule as a Sign Up Rule. Once a Lab Server administrator has

specified this information, the Scheduling Server can now be used by teachers and

students. A Scheduling Server refers to the combination of a time period, Recipient

Rules, and Sign Up Rules as a Time Distribution. Time Distributions are created by,

and ultimately belong to, Lab Server administrators.

To use a Scheduling Server a teacher or student must be redirected to it and

supply a valid Scheduling Server Ticket. Figures 4-3 and 4-4 contain Scheduling

Server payloads we used in our implementation to identify teachers and students.

By parsing these payloads, a Scheduling Server can associate information such as the

Service Broker or Group with each user. This information can be used to determine if

the user meets the criteria specified by the Recipient Rules of a Time Distribution. If

a user does meet this criteria, we say that the user qualifies for the Time Distribution.

In our example, a teacher redirected to the Scheduling Server would have to be

from MIT or from CalTech and associated with CHEM147 to qualify for the Time

Distribution. Once a teacher qualifies for a Time Distribution, they can view all

of the information pertaining to it, including the Recipient and Sign Up Rules. A

teacher can append additional Recipient and Sign Up Rules to the Time Distribution.

57

<payload>
<role>LabServerAdmin</role>

<entity-id>mitLabServer</entity-id>

<payload>

Figure 4-2: Scheduling Server Ticket: Lab Server Payload

<payload>
<role>Teacher</role>

<entityjid>mitServiceBroker</entityid>

<group-id>10.467</group-id>

<payload>

Figure 4-3: Scheduling Server Ticket: Teacher Payload

For example, the teacher could say, "I know my assignment is very short and none

of my students will need more than 60 minutes in the lab." Any rules supplied by

a teacher will only be applied to students that are from their Service Broker and in

their Group.

In order for a student to qualify for a Time Distribution, they must meet the

criteria specified by the Recipient Rules supplied by a Lab Server administrator and

those specified by a teacher from their group. If they qualify, they will be allowed to

sign up for time.

To gain a better understanding of how our Scheduling Server implementation

works, we will formalize the concepts of Time Distributions, Recipient and Sign Up

Rules.

<payload>
<role>Student</role>

<entity-id>mitServiceBroker</entityjid>

<group-id>10.467</group-id>

<displayname>John Smith</displayname>

<userid>jsmith</userjid>

<payload>

Figure 4-4: Scheduling Server Ticket: Student Payload

58

4.4.1 Time Distributions

The Scheduling Server allows Lab Server administrators to create Time Distributions

by specifying a period of time, a list of Recipient Rules, and a list of Sign Up Rules.

The rules specified by a Lab Server administrator affect everyone who interacts with

a Time Distribution. In particular, the Recipient Rules determine which teachers can

interact with it. Each teacher that qualifies to interact with the Time Distribution

can attach Recipient and Sign Up Rules of their own to it. The rules specified by

a teacher only affect students that are from the same Service Broker and share the

same group as the teacher. If a Lab Server administrator fails to specify any rules,

then anyone can receive time and create reservations.

The time period described in a Time Distribution is composed of a start date,

and end date, and a weekly recurrence pattern. In the example above, the start and

end dates would be February 3rd, 2004 and May 13th, 2004. The recurrence pattern

would be 9AM to 5PM on Monday through Friday with no time available on Saturday

and Sunday. February 3rd, 2004 is a Tuesday, so the first time available in this Time

Distribution would be at 9AM. May 13th, 2004 is a Thursday, so the last reservation

would have to end at 5PM.

A Scheduling Server will allow a Lab Server to create multiple Time Distributions,

so long as the available times allowed by the individual Time Distributions do not

overlap. For example, the Lab Server administrator might create a Time Distribution

that was active only on the weekends between February 3rd and May 13.

4.4.2 Rules

When a teacher or student begins a new session with the Scheduling Server's Web

Application, their Ticket payload is parsed and inserted into a map data structure.

For example, if a student arrived at the Scheduling Server with a Ticket containing

the payload in Figure 4-4, then the map in Figure 4-5 would be created. This map

links general attributes of every user to specific values of a particular user. It is known

as an Attribute Value map.

59

I
"USERID" -> "jsmith",
"GROUPID" -> "10.467",
"DISPLAYNAME" -> "John Smith",
"SERVICEBROKERID" -> "mitServiceBroker"

}

Figure 4-5: Student Attribute Value map

Recipient Rules and Sign Up Rules are specified using a simple text format. An

example of a rule is (SERVICEBROKERID EQUAL-TO "mitServiceBroker"). All rules

follow the general format (Attribute Predicate Value), and evaluate to either

true or f alse. Rules must be evaluated within the context of a user's Attribute Value

map. To evaluate a rule above within the context of Figure 4-5, we query the map for

the key associated with SERVICEBROKERID and receive "mitServiceBroker". We

then apply the EQUALTO predicate to both strings, and the rule evaluates as true.

The Scheduling Server supports eight predicates that can be used in rules, and they

are listed in Table 4.1. All of the predicates operate on strings and all of them return

either true or f alse. The predicates BEFORE and AFTER can be used with input that

represents a date, but it must match the "MM/DD/YYYY" format.

It also supports six attributes listed in Table 4.2. When rules are specified, they

are either Recipient Rules or Sign Up Rules. Recipient Rules are enforced when

a user first arrives at the Scheduling Server. A Recipient Rule can use the all of

the attributes except DURATION. In the Recipient Rule context, the DATE attribute

is assigned the current date. Sign Up Rules are enforced when a student request to

create a reservation. They can contain all of the attributes. The DURATION attribute

represents the number of minutes the student has requested to reserve. In the Sign

Up Rule context, the DATE attribute is assigned the date of the requested reservation.

Regardless of context, DATE will always be converted in a properly formatted string

so that it can be used with BEFORE or AFTER.

Finally, If b and # are rules, then (0 AND #) and (4 OR #) are rules as

well. (4 AND #) evaluates to true if and only if both V) and q evaluate to true,

60

Name Function Usage Example

EQUALTO String Equality (GROUPID EQUALTO
"10.467")

NOTEQUALTO String Inequality (GROUPID NOT-EQUALTO
"10.467")

LESSTHAN Numeric or String (DURATION LESSTHAN "90")

Comparison
LESSTHANOREQUALTO Same Similar to above

GREATERTHAN Same Similar to above

GREATERTHANOREQUALTO Same Similar to above

BEFORE Date Comparison (DATE BEFORE "5/17/2004")

AFTER Date Comparison (DATE BEFORE "5/17/2004")

Table 4.1: Valid Predicates

Attribute Value

SERVICE-BROKER-ID User's Service Broker ID
USERID User's User ID
GROUPID User's Group ID
DISPLAY-NAME User's Display Name
DATE Context Dependent
DURATION Duration of Requested Reservation

Table 4.2: Valid Attributes

(4 OR #) evaluate to true if either 0 and # evaluate to true.

Now that we have a deeper understanding of Time Distributions, Recipient Rules,

and Sign Up Rules, we will examine how the Scheduling Server allows this information

to be entered.

4.4.3 Web Application Interface

Whenever anyone arrives at our Scheduling Server, he or she is presented with a list

of Time Distributions. Students and teachers are shown all of the Time Distributions

for which they qualify. It is possible that he or she will not qualify for any Time

Distributions, in which case they cannot interact with the Scheduling Server. Lab

Server administrators are presented with a list of Time Distributions that they have

61

Welcome..

Y04 han "t @**d 'w Y& Tr" OftwbhgoIs

'Cb* m ocat e ineDsrb~

Figure 4-6: Lab Server Administrator: Main Page, No Time Distributions

created. If they have not created any Time Distributions, they will be allowed to

create a new one (See Figure 4-6).

If a Lab Administrator follows the link in Figure 4-6, he or she will be redirected

to a page where they can enter information necessary to create a Time Distribution.

This includes specifying a time period, Recipient Rules, and Sign Up Rules. Figure 4-

7 displays a page that has been completed by a Lab Server administrator so that it

represents Time Distribution we described at the beginning of this chapter.

This Lab Server administrator has associated both Recipient and Sign Up Rules

with this Time Distribution. These Rules are displayed in Figures 4-8 and 4-9 to

allow for closer inspection. The Scheduling Server provides some limited rule input

checking. It will not allow you to enter ill-formed rules, use invalid predicates, or use

invalid attributes.

As a side note, as soon as the Lab Server administrator saves this information,

students from MIT and CalTech in the CHEM147 will be able to sign up for time.

Additionally, teachers from MIT and the CalTech CHEM147 will be able to append

their own rules to the Time Distribution.

After saving the Time Distribution, the Lab Server administrator is returned to

the page they began on. This page previously indicated that no Time Distributions

had been created by the Lab Server administrator, but now it has been updated to

62

Create a New Time Distribution..

-Camer pnoi 2004

Weekdays betWen 9AM end '5M 4nrIn the Spiring 2004 semester *t MIT.

y students from MIT and Caltech students in CHEM 147 can parvtdpat.,

FMifmuM retervak~i* 30 Milhuts., M**iffnvM 90 rMhhuttt, :1

/ D13/2004

T15

j PM 2j

Wed 1Thu

[i] I

!5 PM 1 P

1]PM

ftecipent RuWLsj

(SERVICESROKERJD EQUALTo 'mrtServwerroker") 0R

($ERVCRQKERJD EQUIAL,.TQ "geh *rv.$k r") ANID (6RQUP-ID Q4UAL_TO CHEM147')

(OURATEON GREATIER_THAN OREQUALTO "30")
AND

(OUPLAVON LE SS.THAN REqUALTO '90-)

canca Sa

Figure 4-7: Lab Server Administrator: Creating a Time Distribution

((SERVICEBROKERID EQUALTO "mitServiceBroker")

OR

((SERVICEBROKERID EQUALTO "caltechServiceBroker")
AND
(GROUPID EQUALTO "CHEM147")))

Figure 4-8: Lab Server Recipient Rules

63

"egin 0001 2/3/2004

f S"n W mot,

[F -P ~73
start

stop

((DURATION GREATERTHANOREQUALTO "30")

AND

(DURATION LESSTHANOREQUALTO "90"))

Figure 4-9: Lab Server Sign Up Rules

Welcome,"

M cf your *dW ,on Time Distritwtiont rw littd bet**. F*flt th oppropiat linkt to viev
ftlerv4"M 00 or mod0 th* Pmi*1 ##dlae it ah 00*.

Aftemativ*ey, vou can dk hM- to aeate a now Ttrn* -iributin

Tim& Disibutons

Name: Spring 2004 Lob Server: mitLtbServer

Desnipon: Weekdays betwcn 9AM and 5PM dunng the Spring
2004 semeter at MIT. Any studenut from MIT and Caltech students
in CHEM 147 con posricipate. Minimwn reservation 30 morntos,
maximunm 90 minutes,

Start Date: 2/3/2Ot4 End Date: S/13/2004

View Reservations RUl0

Figure 4-10: Lab Server Administrator: Main Page, One Time Distribution

summarize the newly created Time Distribution (see Figure 4-10).

If the Lab Server administrator follows the "Modify Rules" link, they will be able

to update the Recipient and Sign Up Rules associated with the distribution. If they

select the "View Reservations" link, they will be allowed to view the reservations that

have been made that day. Reservations are displayed in a tabular format, and a Lab

Server administrator can see all of the information associated with every reservation

(see Figure 4-11).

Lab Server administrators, teachers, and students all view reservations in the

format presented in Figure 4-11. However, a teacher will only be able to see the

details associated with students from their group; if a teacher is associated with the

group 10.467 and he or she views the page in Figure 4-11, they would only see the

word "Reserved" during Jane Doe's reservation times. Students are only allowed to

64

-May2aOz
Sun
21

221

140n 'Tuje Wad* ~Fj
2&

12
24

22
4

11
12

25~

12
:25

22

27

2U
ai

Wednesday, May 12th, 2004

9:30 AM - 11:00 AM
Reserved for lane Do@

User ID-. idoe Gro-up/ID: CHEM47
Service Broker caftechServioeBroker Cancel

11;-0C AM - 1:0-0 PM
Reserved for John Smith

User ID: jsmith Group 10: 10.467

Figure 4-11: Lab Server Administrator: Viewing Reservations

65

L

see reservation details for reservations they have previously made. Anyone who can

view a reservation can cancel it. In effect, a Lab Server administrator can cancel

any reservation in one of their Time Distributions, a teacher can cancel any of their

student's reservations, and students can only cancel their own reservations.

When a teacher arrives at the Scheduling Server, he or she will be presented

with a list of Time Distributions that he or she meets the Recipient Rules for. This

will look very similar to 4-10. If they select "Modify Rules", for a particular Time

Distribution, he or she will be taken to a page that describes the Time Distribution

and allows them to add or modify Recipient and Sign Up Rules (see Figure 4-12).

This figure shows a teacher that has created an additional Sign Up Rule. This rule

makes it impossible for her students to create reservations that are longer than 60

minutes.

When a student arrives at the Scheduling Server, they will see a list of all the Time

Distributions that they qualify for, just as the teacher did. However, they will not

have the option to "Modify Rules" for any distribution, instead "View Reservations"

from Figure 4-10 will be replaced with "Create Reservations." Clicking on this link

will lead the student to the view the same reservation view page that is in Figure 4-11.

The student can create a new reservation by select the "Sign up" link on any time

period that is available. When they select this link, the link text changes to a plain

label that reads "Enter Duration," a drop down list appears to the right of the label,

and a "Create Reservation" link appears to the right of the combo box. The student

can select from the drop down box to indicate the duration of their reservation. They

can select the link to create the reservation (see Figure 4-13).

4.5 Creating a Reservation, Using a Lab Server

The previous section explained how Lab administrators, teachers, and students inter-

act with the Web Application. Now that we have an understanding of how a Time

Distribution can be specified and are more familiar with what the Web Application

looks like, we will follow the steps that a steps that a student will take to create a

66

View Time Distribution..

fnmea sptitg -2004

DesaMpUani Weekdovs betv**n 9AMand SPN during e Sprng 2004 z n* 0
AnM stwUdntihm MIT ad Cakch wtd*nt in CHEM 147 can p

rWON46M~o ikmnoe, aimm mlnutes,

6*gin Dteti Fubtutry 3M, 200_

W*e*kly Retudrnc* i

Sun

W/Astalt

SWO

9 AM

5 PM

,LAb Strver Aeddent Rules; (SERVICE_BR0MRD rQATO "mtrim kerO
((S1RVICEjWKEf7_' EQUAo" AND (GRCUPID iQftO

AddtonaRc lent Rules-

Lab Servr Sign Up Reta (DURATION GRIATERT .ORj ALTO 03W) AND
(DURATRN Lis9_TKAN_0REQUAT0 -9W)

AdditUORil Sin UE Rulows
(UPATINH LES-6HA0-)UALTO "O)

Figure 4-12: Teacher: Modifying Distribution Rules

9:00 AM - 9:30 AM

Enter Duration: 115 Min Create Reservation

Figure 4-13: Student: Creating a Reservation

67

Sun

W|A

Fri

I) A

5 P"

Tue ThuWed

V AM 19 A

S PM 5 PM,

welcome jsmith. You logged in at 5/16/2004 6:59:31 AM

Lab ClIent Remote Polymer Crystallization lab-dwent

Version; 1,0

Description: The Lab Client is a lava applat used to control an polariedlight
microscope to perform Remote Polymer Crystallization experiments

Lab Server Time: 5/1612004 7:01:21 AM

[Go to scheduler 1 Launch ocuents

I b

Figure 4-14: Student: Service Broker Main Page

reservation for lab time and redeem it on the Lab Server using our implementation.

These steps mirror those that were presented in Section 4.3.1, but they are described

in more detail below.

1. The student authenticates themselves at the Service Broker. After successfully

logging in, he or she is presented with the page in Figure 4-14. The student

belongs to the group 10.467 that is on the mitServiceBroker.

2. The student knows that he or she needs to schedule time before they can launch

68

https://ilab/m.html?ticketid=10&passkey=pw&issuerid=mitServiceBroker

Figure 4-15: Scheduling Server URL Redirect

the Client, so he or she clicks the "Go to scheduler" link.

3. The Service Broker creates a Scheduling Server Ticket for the student. The pay-

load exactly matches Figure 4-4. The Service Broker redirects the student to the

Scheduling Server's URL, supplying the ticketid, passkey, and issuer.id

as parameters of the URL. The resulting URL will be similar to Figure 4-15.

4. The Scheduling Server receives a request to display a page, and it parses the

parameters of the URL to determine information that can identify the embedded

Ticket. The Scheduling Server does not know what the payload of the Ticket

contains, so it invokes VerifyTicket (10, "pw") on the Service Broker.

5. The Service Broker responds to the Verif yTicket () invocation by returning

the Ticket it created for the student.

6. Now the Scheduling Server understands the meaning behind the Ticket. It

creates an Attribute Value map for the student, exactly as seen in Figure 4-5.

7. The Scheduling Server then checks to see if the student qualifies for any Time

Distributions. The student qualifies for one, so they are shown a screen similar

to Figure 4-10. The only difference is that information identifying the student

appears the upper left hand corner and the links "Click here to create a new

Time Distribution" and "Modify Rules" are not visible. The "View Reserva-

tions" link reads "Create Reservation," and the student selects it.

8. The Scheduling Server redirects the user to a page that looks like Figure 4-11.

The student can create a new reservation by select the "Sign up" link on any

time period that is available. When they select this link, the link text changes

to "Enter Duration," a drop down list appears to the right of the link, and

a "Create Reservation" link appears to the right of the combo box. The drop

69

down list allows the user to indicate the duration of the reservation in 30 minute

intervals.

9. The student selects 60 minutes and selects the "Create Reservation" link.

10. The Scheduling Server recognizes that a 60 minute reservation is being requested

on the Time Distribution. It adds DURATION -> "60" to the student's At-

tribute Value map and begins to evaluate the Sign Up rules. The Sign Up

Rules associated with the Time Distribution by the Lab Server administrator

are evaluated first. These rules are listed in Figure 4-9, and they evaluate to

true because the student's requested reservation is greater than or equal to 30

minutes and less than or equal to 90 minutes. Next, the Scheduling Server eval-

uates the Sign Up Rules that were associated with the Time Distribution by the

teacher who belongs to Group 10.467 in Figure 4-12. These rules also evaluate

to true because the student's requested reservation is less than or equal to 60

minutes.

11. The student has satisfied the Sign Up Rules associated by both the Lab Server

administrator and his teacher. The Scheduling Server will create the reservation.

The Scheduling Server contacts the Service Broker and invokes CreateTicket (

"mitLabServer", exp, pay) where exp is an expiration date, and pay is a

Lab Server Ticket payload with the reservation's start and end times, and the

student's user id and group. The Scheduling Server records the student's reser-

vation information, along with all of the information pertaining to the Lab

Server Ticket.

12. The student waits for the time of their reservation. Once it arrives, he or she

revisits the Service Broker and sees the page in Figure 4-14. They select the

"Launch" button.

13. The Service Broker has no knowledge of the student's reservation. However, it

understands that the Scheduling Server will know if the student has a reserva-

tion. The Service Broker creates another Scheduling Server Ticket that contains

70

a payload as seen in Figure 4-4. Then the Service Broker invokes GetTicket 0

on the Scheduling Server, inserting the newly created ticket-id, passkey, and

issuer-id into the Header of the invocation.

14. The Scheduling Server extracts the Ticket identifying information out of the

Header of the GetTicket () invocation. The Scheduling Server does not know

what the payload of the Ticket contains, so it invokes VerifyTicket 0 on the

Service Broker.

15. The Service Broker responds to the VerifyTicket() invocation by returning

the Ticket it created for the student. This gives the payload seen in Figure 4-4

to the Scheduling Server.

16. Now the Scheduling Server understands the meaning of the Ticket. It checks to

see if it has previously recorded a reservation for the user, and it has. It returns

the Lab Server Ticket that it created when the reservation was made.

17. Upon receiving a Lab Server Ticket from the Scheduling Server, the Service

Broker allows the student to launch a Graphical Lab Client. It does by creating

a new browser window and writing a custom <applet> in it. The tag it writes

contains the ticketid, passkey, and issuer-id of the Lab Server Ticket (see

Figure 4-16).

18. The Graphical Lab Client can parse this parameter information, and use it to

invoke Connect() on the Lab Server.

19. The Lab Server extracts the Ticket identifying information out of the Header of

the Connect (invocation. The Lab Server does not know what the payload of

the Ticket contains, so it invokes VerifyTicket(36, "p$y4o5x-k6jq8{w7bm")

on the Service Broker.2

20. The Service Broker responds to the VerifyTicket() invocation by returning

the Lab Server Ticket. The payload of this Ticket indicates that start and end
2 "p$y4o5xJk6jq8{w7bm" is a Ticket passkey directly from our actual implementation

71

<applet>
<param name="archive" value = "signedapplet.jar"/>
<param name="code" value = "client/scopeformapplet.class "/>

<param name="ticketid" value="36"/>
<param name="passkey" value="p$y4o5x-k6jq8{w7bm/"/>
<param name="issuerid" value="mitServiceBroker"/>

</applet>

Figure 4-16: <applet> Tag

times that the user can access the Lab Server for.

21. Now the Lab Server understands the meaning of the Ticket. It checks to see

that its current time is between the start and end time of the ticket. Seeing

that it is, it allows the student to run the experiment by returning a password.

The Lab Client uses this password to connect to the TCP/IP based socket of

the Lab Server.

72

Chapter 5

Conclusion

We learned a number of important lessons from implementing our design. Many of

these resulted in expected strengths, but we also discovered areas that need additional

work.

5.1 General Ticketing Strength

The greatest improvement of our design was the General Ticketing mechanism. The

extensible nature of Ticket payloads allows Tickets to be used in many different

ways. For example, Lab Server Tickets form the basis of scheduling by enabling

experiment time to be commoditized and distributed. Simultaneously, Scheduling

Server payloads allow a Service Broker to collect user information and transfer it

to a remote Web Application. The Scheduling Server is a fully functioning Web

Application without a login screen. This is achieved using Tickets. Once aware of

the user's information, a Scheduling Server can process student requests and enforce

specified rules. Finally, the most fundamental Tickets we implemented were those

associated with a Service Broker Ticket and Service Broker Identification Tickets.

These Tickets were used simply to authenticate the identity of a Web Service invoker.

From a design perspective, we believed that General Ticketing would be powerful due

to its flexibility; however we were surprised at how the flexibility enabled us, as

implementers, to quickly develop meaningful payloads through for iLab Entities.

73

<payload>
<role>Teacher</role>

<entityjid>mitServiceBroker</entity-id>

<groupid>10.467</group_id>

<payload>

Figure 5-1: Teacher Payload Example

https://sched/index.html?ticketid=1&passkey=test&issuerid=mitSB

Figure 5-2: Scheduling Server URL Redirect

5.2 General Ticketing Weakness

However, the General Ticketing mechanism is not perfect. During our implementa-

tion, it became clear that the mechanism could be made more efficient. Consider

the situation where the Service Broker has written a Scheduling Server Ticket for

a teacher and is redirecting them to the Scheduling Server. The payload of the

Scheduling Server Ticket can be seen in Figure 5-1. The URL redirect can be seen in

Figure 5-2.

When the Scheduling Server receives the request to view the URL, it will parse the

parameters and invoke VerifyTicket (1, test) on the Service Broker. The Service

Broker will respond by returning a Ticket that has the payload described in Figure 5-

1. Now that the Scheduling Server has the contents of the Ticket, it recognizes that

the user is a Teacher associated with 10.467. If the Service Broker is trusted by the

Scheduling Server, it should be able to deliver this information directly to it. For

example, it should be able to redirect the teacher to the Scheduling Server as seen

in Figure 5-3. In this URL redirect, the Service Broker contacts that the user and

directly indicates that a Teacher who belongs to group 10.467 is being redirected..

Based on our implementation, this extra round trip did not introduce any notice-

able latency, but all of our iLab Entities were located very close to one another (in

https://sched/index.html?role=Teacher&group=10.467

Figure 5-3: Scheduling Server URL Redirect

74

the network sense). This particular issue should be considered closely before Gen-

eral Ticketing is accepted as an official part of the iLab infrastructure. Further, we

wonder whether or not investigating public key encryption could benefit our Ticket

verification system. Tickets could be modified to contain an additional signature

field, which would contain the Service Broker's private key signature of the infor-

mation contained in the Ticket. Newly received Tickets could be verified without a

network round trip.

5.3 Scheduling Server Weakness

After designing and implementing the Scheduling Server, we feel its design and re-

quirements could benefit from further definition. The design defines only two general

requirements, and both are open to interpretation. This results in wide latitude for

implementers of a Scheduling Server, but it also fails to provide any helpful imple-

mentation guidelines. One of the general requirements for the Scheduling Server from

Chapter 3 is that "it must allow a Lab Server to indicate the times they wish to have

scheduled." When we implemented this aspect of the Scheduling Server, we decided

to describe time periods using a start date, and end date, and a weekly recurrence

pattern. This decision was made in an arbitrary fashion: the results suited our pur-

poses, it was easy to describe time intervals, and it was simple to implement. Because

of the requirement that a Lab Server must be able to indicate their available time,

anyone who implements a Scheduling Server will encounter this problem.

When we initially approached the problem of describing a time period, we looked

at the functionality provided by the Internet Calendaring and Scheduling Core Ob-

ject Specification [11]. This specification was first proposed in 1998 by the Internet

Engineering Task Force, and has since become an industry standard. It is used in

popular programs such as Apple's iCal and Microsoft's Outlook. The specification

covers more than how to describe a period of time, but a portion of the standard is

explicitly devoted to this problem [11, Sec 4.3.9].

Standardizing time descriptions may provide more benefit than delivering a spe-

75

cific guideline to a Scheduling Server implementers. If all Scheduling Servers use the

same descriptions of time, then we will have a means for programmatically discover-

ing what Lab Server times are available from Scheduling Servers. To date, the iLab

infrastructure has not considered scalable solutions towards the goal of automating

lab discovery. Research in this area may provide some interesting insight.

5.4 Future Work

The design of our Scheduling Server implementation was based on the requirements

of three existing online laboratories. The Residence Exchanger, the Heat Exchanger

administered by Siddharta Sen, and the Polymer Crystallization Lab administered by

Derik Pridmore. 1 Each of these online experiments required a scheduling system and

when we examined the systems they had created, we found three distinct implementa-

tions of an HTML based, first come, first served sign up system. Further, all of these

systems offered very basic functionality and it became clear that lab implementers

want to focus their efforts on enabling online labs and solving domain dependent

issues in that vein. They are not interested in building scheduling systems.

In terms of immediate work, we will benefit ourselves and our community by cre-

ating a well-tested, professionally implemented version of a first come, first served

Scheduling Server. This Scheduling Server become a freely available reference imple-

mentation that is part of the iLab suite. If we consider the functionality demonstrated

by the Scheduling Server prototype of Chapter 4 as a base line, then we have a number

of suggestions in mind for implementation specific extensions:

5.4.1 Dynamic Attributes

We implemented a number of attributes that could be used in both Recipient and

Sign Up Rules. In our opinion, the most interesting attribute we put forth was

DATE because its value was generated dynamically. The Scheduling Server knows

'For more information on these labs, see http://www.vs-c.de/, http://heatex.mit.edu, and
http://polymerlab.mit.edu, respectively

76

(((LAST-NAME LESSTHANOREQUAL "N") AND (DATE BEFORE "2/14/2004"))

OR

((LASTNAME GREATERTHAN "N")

AND (DATE AFTER "2/14/2004")))

Figure 5-4: Recipient Rule using LASTNAME Attribute

everything about reservations that have been created, and this knowledge can be

made available to us through attributes. As an example, let's consider a new attribute

named TOTAL-MINUTES that only exists in a Sign Up Rule context. When a student

submits the request to create a reservation, the Scheduling Server knows what day

he or she wants the reservation to begin on. The Scheduling Server looks through all

of the reservations on that day and tallies up the minutes from all of the reservations

held by the student on that day. This value is put into TOTALMINUTES. Once this

attribute exists, it can be used by a teacher to limit how much time a student using

a rule like (TOTAL-MINUTES LESS-THANOREQUAL-TO "90").

5.4.2 Redefining Scheduling Server Payloads

Including More Student Information

As we have defined them, the payload of a Scheduling Server ticket determines most

of the information the Scheduling Server knows about an incoming user. If these

payloads are augmented to include more information, then the Scheduling Server

can create more attributes to be used in enforcing Recipient Rules. For example, if

payloads contained the last name of a student and this were stored in the attribute

LASTNAME, then a Recipient Rule could be created as seen in Figure 5-4. This would

only allow students whose last name begins with A through N to sign up for time

before February 14th, 2004. Students with last names beginning with 0 through Z

could sign up for time after February 14th.

77

((GROUPID EQUALTO "1.001")))

OR

(((GROUPID EQUALTO "1.00") AND (DATE BEFORE "2/14/2004"))

Figure 5-5: Rule written by teacher in Groups 1.00, 1.001

Multiple Groups for Teachers

If a teacher belongs to more than one group and the Scheduling Server allows them

to define Recipient Rules and Sign Up Rules for each of their groups, then we can

empower a teacher to coordinate details between groups. For example, if a teacher was

in both group 1.00 and group 1.001 they could specify a Recipient Rule that would

allow one class to sign up for time whenever they wanted, but would limit another

class so that they could only sign up for time until February 14th (see Figure 5-5).

5.4.3 Self Describing Rules

Sign Up Rules must be satisfied any time a student attempts to create a reservation.

However, in our prototype students cannot see any of the rules associated with a

Time Distribution. They can only learn of them by inference when they attempt to

sign up for time and violate one. Even if they could see the rules associated with a

Time Distribution, they are not likely to understand our rule language.

It would be useful if rules could be translated to English and displayed to the

student. For example, as "The maximum time allowed for a reservation is 90

minutes". A simple but possibly problematic solution to this would be to alter the

definition of a Rule so that it contains this translation: (DURATION LESSTHAN "90"

"The maximum time allowed for a reservation is 90 minutes").

This is problematic because errors would be easy to make and hard to detect. For

example, the text associated with the rule above is incorrect, the explanation should

read "The maximum time allowed for a reservation is 89 minutes". It may

be useful to research a solution to this by writing code to parse Rules and translate

them into meaningful statements.

78

5.5 Scheduling Evolution

At present, first come, first serve scheduling appears to be the only mechanism that

lab implementers are interested in. However, there are clearly more efficient ways to

distribute resources. A major hurdle is that lab implementers want to enable exper-

iments, not support the next generation of scheduling algorithms. We recommend

creating a reference implementation of a first come, first served Scheduling Server.

However, we also recommend designing this Scheduling Server to support schedul-

ing algorithms in a modular fashion. In the beginning, it will only have the first

come, first served scheduling module. However, we can work to identify courses that

face non-traditional scheduling challenges, and provide solutions to them by creating

modular scheduling extensions. They will support themselves by using our reference

implementation with a non-standard plug in. If we follow this path, a Lab Server ad-

ministrator will be able to contact a Scheduling Server and not just choose what time

he or she wants to make available, but how he or she wants it to be made available.

79

80

Bibliography

[1] D. Zych, Client / Service Broker API, [Online Document], September 2003,

Available HTTP: http://web.mit.edu/jedidiah/ilab/index.html

[2] J. Harward, Service Broker / Lab Server API, [Online Document], October 2003,

Available HTTP: http://web.mit.edu/jedidiah/ilab/index.html

[3] J. Harward, D. Zych, Service Broker Administrative API, [Online Document],

November 2003, Available HTTP: http://web.mit.edu/jedidiah/ilab/index.html

[4] M. Fowler, UML Distilled, Addison-Wesley, Second Edition, 1999.

[5] D. Talavera, On-Line Laboratory for Remote Polymer Crystallization Exper-

iments Using Optical Microscopy, Masters Thesis, Massachusetts Institute of

Technology, 2003.

[6] P. Nasser, Remote Microscope for Polymer Crystallization Web Lab, Masters of

Engineering Thesis, Massachusetts Institute of Technology, 2002.

[7] A. Kuchling, Internet Access to an Optical Microscope, [Online

Document], November 1998, Available HTTP: http://www.mems-

exchange.org/software/microscope/publications/ipc7-abstract.html

[8] T. Berners-Lee, Hypertext Transfer Protocol : HTTP/1.1, [Online Document],

Available HTTP: http://www.w3.org/Protocols/rfc2616/rfc2616.html

[9] D. Booth, Web Services Architecture, [Online Document], Available HTTP:

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

81

[10] N. Mitra, Soap Version 1.2 Part 0: Primer", [Online Document], Available

HTTP: http://www.w3.org/TR/2003/REC-soapl2-partO-20030624/

[11] D. Booth, Internet Calendaring and Scheduling Core Object Specification, [Online

Document], Available HTTP: http://www.ietf.org/rfc/rfc2445.txt/

82

