Routing in Probabilistic Networks
by
Jonathan Ramsay Key
B.S. Mathematics, B.S. Computer Science, Tufts University (1998)
Submitted to the Department of Civil and Environmental Engineering
and the Operations Research Center
in partial fulfillment of the requirements for the degrees of

MABBAGHUSETTS INSTITUTE
Master of Science in Transportation OF TECHNOLOGY
oooend JUN 07 2004
Master of Science in Operations Research
at the LIBRARIES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2004

© Jonathan Ramsay Key, 2004. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document
in whole or in part.

Author I I I

Department of Civil and Environmental Engineering and the
Operations Research Center
April 28, 2004

. A e
William Weinstein

Charles Stark Draper Laboratory
Thesis Supervisor

Certified by....... . NP

Certified by........
Cgfnthia Barnhart
Professor of Civil and Environmental Engineering

Thesis Supervisog
| James B. Orlin

” C}odi@zﬁor, Op#ations Research Center
Accepted by

[Heidi Nepf
Chairman, Department Committee on Graduate Students

Accepted by

ARCHIVES

[This page intentionally left blank |

Routing in Probabilistic Networks
by

Jonathan Ramsay Key
Submitted to the Department of Civil and Environmental Engineering and the
Operations Research Center
on April 28, 2004, in partial fulfillment of the
requirements for the degrees of
Master of Science in Transportation
and
Master of Science in Operations Research

Abstract

This thesis considers the problem of routing in a network where the travel times
along the arcs are modeled as independent random variables. A standard approach
to routing in such networks is to select a path with the least expected travel time.
One of the problems with this approach is that it does not take into consideration
factors such as the travel time variance. Additionally. such an approach mmplicitly
assumes each user in the network has the same routing objective.

In this thesis we develop an approach to routing in probabilistic networks in which
these prohlems are addressed. The fundamental concept in our approach is that, for
a piven user with a set of routing options at a given node. we approximate the
distributions of travel time for these options. Using these approximate distributions.
the options are compared according to a user-specified routing objective, and the best
option is selected. The primary benefit of this approach is that one is not limited to
a particular routing objective as the computed distributions of travel time allow us
to eficiently determine an effective routing option for a arbitrary routing ohjective
that depends on factors of random fravel time other than the mean.

The distribution of travel time adopted in this thesis is the minimum travel time
probability distribution. which is the distribution of travel time over all fastest paths.
In a class of networks termed as series-parallel networks. the minimum travel time
distribution can be calculated efficiently. For general. non-series-parallel networks.
the approximation we adopt is the minimum travel time distribution obtained from
a related series-parallel network.

The performance and the benefits of this approach to routing are illustrated on
three networks. The numerical results are obtained using an efficient implementation
of the algorithms proposed in this thesis. We also consider the problem of generating
an acyclic graph from a cyclic graph, and we propose a data structure that allows for
the efficient calculation of the sum and minimum of independent random variables.

Thesis Supervisor: William Weinstein
Title: Charles Stark Draper Laboratory

Thesis Supervisor: Cynthia Barnhart
Title: Professor of Civil and Environmental Engineering

3

[This page mtentionally left blank.]

Acknowledgments

I would like to thank Professor Cindy Barnhart of the M.L'T. Center for Transporta-
tion and Logistics, and Bill Weinstein and Steve Kolitz of The Charles Stark Draper
Laboratory for making iy graduate education possible. Bill also served as myv Draper
advisor and it has been a pleasure working with hin.

I would also like to thank my M.LT. advisor. Professor Ismail Chabini. Professor
Chabini is & dedicated researcher and an excellent teacher.

Graduate school would have been very difficult without the support and friendship
of my peers at M.1.'T. and Draper. I am proud to have worked with such excellent
people.

Finally. my work would not have been possible without the love and support of
my wife. Kiri. and my family.

This thesis was prepared at The Charles Stark Draper Laboratory. Inc.. under
Internal Company Sponsored Research Project 13177,

Publication of this thesis does not constitute approval by Draper or the sponsoring
agency of the findings or conclusions contained herein. It is published for the exchange
and stimulation of ideas.

Jonathaf Ramsf_\/’Koy

(@3]

[This page intentionally left blank]

Contents

1 Introduction 15
1.1 The Problemn 15
1.2 The Motivation 16
1.3 Routing with Random Variables 16
1.4 Routing Objectiveso 18
1.5 An Approach to Routing in Probabilistic Networks 19
1.6 Thesis Contributions and Organization 20

2 Preliminaries 23
2.1 Notatlon oo 23
2.2 Network Model o 26
2.3 Assumptions L Lo 26

231 Arc Travel Time Independence 26
2.3.2 Arc Travel Time Distributions 27
233 Cyeles © .0 oL 28
2.3.4 Congestion L 28
2.4 Two Fundamental Functions of Random Variables 28
241 The Sum of Random Variables 29
2.4.2 The Minimum of Random Variables 30
2.5 The Minimuin Travel Timne Distribution 31
2.6 The Complexity of Calculating Travel Time Distributions 32
2.7 Routing in Probabilistic Networks 34

3 Relevant Research 37
3.1 Introduction 37
3.2 Specific Routing Ohjectives 37
3.3 Routing Objectives in Probabilistic Networks 38
3.4 Travel Time Distributions 39

3.4.1 Series-Parallel Graphs 40
3.4.2 Non-5Series-Parallel Graphso 41
3.5 Two-Terminal Directed Acyclic Graph Generation 47

4 Minimum Travel Time Distribution Algorithms 51
4.1 Introduction 51
4.2 Series-Parallel Graphso b2

4.2.1 TTesting for Series-Parallel Reducibility 53

4.3 Minimum Travel Time Distributions on Series-Parallel Graphs 53
4.4 Minimum Travel Time Distributions on Non-Secries-Parallel Graphs . 57
Practical Implementation and Numerical Issues 61
51 Two-Terminal Directed Acyclic Graph Generation 61
51.1 Simple Paths00 oo o 62
5.1.2 Dial’s Efficient Pathso 63
5.1.3 Fastest Paths Tree 0oL 66
514 More on Efficient Paths 7()
5.2 Numerical Routines 0 oo 75
5.2.1 Random Variable Representation 75
5.2.2 The Numerical Sum of Random Variables - Convolution . . . 77
5.2.3 The Numerical Minimum of Random Variables 84
Results and Examples 87
6.1 Performance of Numerical Routines 87
6.1.1 Numerical Convolution 38
6.1.2 Nuwmerical Mindmumo 0000 91
6.1.3 Conclusionso 94
6.2 Routing on Example Networks 96
6.2.1 A Small Networko 96
6.2.2 A Small, More Complicated Network 103
6.2.3 A Larger Network 115
Conclusions and Future Research 125
7.1 Summary 125
7.2 Future Research 126
7.2.1 Dependence of Arc Travel Time Distributions 127
7.2.2 Estimation of Are Travel Time Distributions 127
7.2.3 Computation of Minimum Travel Time Distributions 127
7.2.4 Time-Dependent Networks 128
7.2.5 En Route Routing and Real-Time Information 128
7.2.6 Numerical Analysls 128
7.2.7 Practical Infrastructure Considerations 129
A Continuity and Minimum Travel Time Distributions 131
B Example Network in Figure 6-20 135
C Comparison of Actual Travel Times in the Example Network in Fig-
ure 6-20 139

List of Figures

1-1

2-1
2-2
2-3

2-4

Comparing the Travel Time of T'wo Different Paths,

Arcs in Parallel.
Arcsin Series. e
Cycles in Probabilistic Networks
Two Travel Time Distributions from Node s to Node £,

The Wheatstone Bridge, . 0 0 0 0 00 0 00 0000000
Type-1 and Type-2 Ares.

Order of Operations Affects Independence . . 0 0 0 0 0 00 0000 .

The Wheatstone Bridge (Figure 3-1) After One Iteration of Algorithm 4.4

An Example Network.o
The Subgraphs Generated by Algorithm 5.1 on Figure 5-1 for a User
Located at Node 4 destined for Node 10.
The Subgraphs Generated by Algorithm 5.2 on Figure 5-1 for a User
Located at Node 4 destined for Node 10.
The Subgraphs Generated by Algorithm 5.3 on Figure 5-1 for a User
Located at Node 4 destined for Node 10,

Base Case Performance of the Numerical Convolution Routines
Performance of the Numerical Convolution Routines when Controlling
the Interval Width00
Performance of the Numerical Convolution Routines when Controlling
the Number of Possible Realizations

Run-time of Algorithm 5.7 over Two Different Sets of Random Variables

The Subgraphs Generated by Algorithm 5.3 on Figure 6-5(a) for a User
Located at Node 4 destined for Node 11.
Comparison of the Density Functions of Py, and P¥,,.
Routing Performance from Node 2 to Node 11 on Figure 6-5(a) usiug
the Routing Objective in Equation 6.1 with Two Different s = . . .
Routing Performance from Node 2 to Node 11 on Figure 6-5(a) using
the Routing Objective in Equation 6.2 with Two Different <
The Subgraph Generated by Algorithm 5.3 on Figure 6-5(a) from Node
TtoNode 2.

24
24
29

69

74

90

92

93
95

98
99

101

104

105

6-10 Comparison of Travel Time Density Functions from Node 7 to Node 2 105

9

6-11 The Subgraphs Generated by Algorithm 5.3 on Figure 5-1 for a User

Located at Node 3 destined for Node 10. 106
6-12 Comparison of Travel Time Density Functions from Node 5 to Node 10 107
6-13 The Application of Algorithm 4.4 to Figure 6-11(a). 108

6-14 Comparison of Travel Time Density Functions from Node 4 to Node 10 109
6-15 Comparison of Travel Time Density Functions from Node 6 to Node 10 110
G-16 Routing Performance from Node 2 to Node 10 on Figure 5-1 using the

Routing Objective in Equation 6.1 with Two Different s 112
6-17 Routing Performance from Node 2 to Node 10 on Figure 5-1 using the

Routing Objective in Equation 6.2 with Two Different s 113
6-18 Comparison of the Density Functions of Py, I3, and Fg, with

—XSB = W(g}()%) 114
6-19 Comparison of Routing Performance between Equation 6.1 (¢ = 2) and

Equation 6.3 from Node 2 to Node 10 on Figure 5-1 116
6-20 A Larger Network 118
6-21 The Subgraph Generated by Algorithm 5.3 on Figure 6-20 from Node

144 to Node 217. 119
6-22 Routing Performance from Node 214 to Node 215 on Figure 6-20 using

the Routing Objective in Equation 6.1 with Two Different 0s 121
6-23 Routing Performance from Node 214 to Node 215 on Figure 6-20 using

the Routing Objective in Equation 6.2 with Two Different 0s = 122
6-24 Routing Performance from Node 216 to Node 217 on Figure 6-20 using

the Routing Objective in Equation 6.1 with Two Different s 123
6-25 Routing Performance from Node 216 to Node 217 on Figure 6-20 using

the Routing Objective in Equation 6.2 with Two Different 8s 124
A-1 The Density Function of PZpy. - o o . o o0 oo 00 132
A-2 The Density Functionof Pyo 132
A-3 The Density Function of Py . . 000000000000 133
C-1 Actual Travel Times from Node 215 to Node 214 on Figure 6-20 using

the Routing Objective in Equation 6.1 with Two Different 6s 140
C-2 Actual Travel Times from Node 215 to Node 214 on Figure 6-20 using

the Routing Objective in Equation 6.2 with Two Different #s 140
C-3 Actual Travel Times from Node 217 to Node 216 on Figure 6-20 using

the Routing Objective in Equation 6.1 with Two Different 6s 141
C-4 Actual Travel Times from Node 217 to Node 216 on Figure 6-20 using

the Routing Ohjective in Equation 6.2 with Two Different 65 141

10

List of Tables

2.1 Notation. 25
2.1 Notation (continued). o000 26
2.2 Examples of Routing Objectives. 35
5.1 Data Structure for a Univariate Random Variable X. 77
6.1 The Calculation of 7, with Algorithm 4.3. 99

11

[This page intentionally left blank.]

List of Algorithms

2.1 Calculation of the Minimmum Travel Time Distribution.
2.2 The Routing Procedure.
2.3 The Complete Routing Procedure.
3.1 Garman’s Conditional Sampling Algorithm. . .~
4.1 Basic Procedure for Calculating 4.
4.2 Determining if a Graph is Series-Parallel Reducible.
4.3 Minimum Travel Time Distribution on a Series-Parallel Graph.
4.4 Mimmum Travel Time Distribution on a Non-Series-Parallel Graph. .
5.1 Dial's Algorithm as Applied to Probabilistic Networks.
5.2 Fastest Paths Tree.

5.4 Random Variable Scaling.

5.5 The Sum of Random Variables with Direct Convolution.
5.6 The Sum of Randoin Variables with Fast Fourter Transforms.
5.7 The Minimum of Random Variables.

13

[This page intentionally left blank.]

Chapter 1

Introduction

This thesis presents an approach to routing in probabiistic networks. In this chap-
ter, we discuss the problem. our motivation. and the merits of modeling networks
as probabilistic networks. We then introduce a routing procedure for making routing
decisions in probabilistic networks. We conclude this chapter with a summary of the
contributions and an outline of this thesis.

1.1 The Problem

This thesis considers the problem of routing in a network where the travel times along
arcs are modeled as independent random variables. We refer to such a network as a
probabilistic network. When travel time is deterministic. a user will typically select
the path with the least travel time. However. in probabilistic networks, the meaning
of “least travel time” is not clear in a deterministic sense since the path with the
least travel time depends on the realizations of the arc travel times, and an optimal
solution may include multiple paths rather than a single path.

A standard approach is to interpret the term “least travel time” as the least
expected travel time. Although this approach can be useful. there are at least two
problems with it. First, it does not take into account critical properties of the travel
time such as variance. For example, a user might prefer a path with a higher expected
travel time in exchange for a lower variance in travel time. Second. such an approach
unplicitly assuimes each user in the network has the same routing objective. While
this assumption 1s convenient for analysis, in practice different users naturally have
different routing objectives that they would like to optimize. While a conservative
user might select the path that is fastest on average. another user might prefer the
path with the fastest possible travel time (regardless of the probability of this trave]
time being realized).

This thesis develops an approach to routing in probabilistic networks that ad-
dresses these issues. The fundamental concept in our approach is that we focus on
the computation of the probability distributions of travel times, rather than being
restricted to a particular routing objective.

1.2 The Motivation

Before we elaborate on our routing problem. we discuss the practical motivation
behind it. Consider a transportation network where a user at location s wants to
travel to location {. At the highest level, we can separate the factors affecting user
travel time into two categories. The first category is composed of decisions made and
controlled by the user, while the second category is composed of all uncontrollable
external influences such as incidents. road conditions. and traffic jams. It is these
external influences that provide the primary difliculty in accurately assessing user
travel time.

If we could obtain accurate information about these external influences a priori,
then determining the optimal path would be tiivial. as any deterministic shortest
path algorithm could be used to calculate such a path. Similarly, if it is possible to
obtain updated information en route, we could use this information to re-optimize
path selection. Unfortunately, building an infrastructure with such capabilities would
be difficult and costly, if at all possible. Furthermore. even if such an infrastructure
existed, it is not clear whether such information could be delivered in a timely and
effective manner.

An alternate way to address the external influences on travel time is to use a
model of travel time. Naturally. we would like a model that closely resembles real-
ity. Therefore. such a model should he able to encompass the inherent randomness
in travel time This suggests that modeling travel time as a random variable is an
appropriate choice. In other words, travel times take on different values with different
probabilities. Using this approach, the transportation network now becomes a prob-
abilistic transportation network, where the travel time along each arc in the network
is modeled as random variable.

1.3 Routing with Random Variables

In terms of making routing decisions, the use of random variables to model travel
time creates several problems. The primary difficulty is that it is not clear what
constitutes a valid routing objective since the path with the least travel time depends
on the realizations of the arc travel time random variables. Although users typically
want to select the path with the “least travel time”, this term is ambiguous when
travel times are modeled as random variables.

To clarify this ambiguity, we consider some possible interpretations of “least travel
time”. One possible interpretation is the least expected travel time. This is a straight-
forward measure and it also makes sense that we might want to take a path that, on
average, leads to the least travel time. In this case, consider the probability density
functions in Figure 1-1(a}. Let each probability density function represent the travel
time for a particular path from location s to location t. The notation N(9, 8) refers
to a normal probability density function with mean 9 and variance 8. The notation
U(6,12) refers to a uniform probability density function from 6 to 12.

Each random variable has an expected value of 9. But which path is better?

16

0.18 : : : : . : : :
_______ - [— e
0.16} — — U6.12) 4

0121

01}

0.081 7

0.06

0.04|

0.02f

L 1 L

|
|
|
I
|
I
I

<

0 2 4 6 8 10 12 14 16 18
Travel Time

{a) The Travel Time Density Functions of Two Different Paths
from Location s to Location { with the Same Expectation.
AN(9.8) and ¢4(6.12).

0.25 T T y T . r

— N{9,3)
— - U(6,12)
02t -
0.15+ 1
0.1} -
0.05¢ -
O 1 1 1 1 il 1

0 2 4 6 8 10 12 14 16 18
Travel Time

(b) The Travel Time Deunsity Functions of Two Different Paths
from Location s to Location t with the Same Expectation and
Variance, N (9,3) and 14(6, 12).

Figure 1-1: Comparing the Travel Time of Two Different Paths.

17

Which one will get the user to location ¢ in the “least travel time™? The answer 18 not
straight-forward. Since the expected travel times are equal. perhaps the user would
prefer the path with the least variance. That is, the path with travel time distributed
according to U(6.12) would be selected. On the other hand, if the user wanted
the path with the least possible travel time, the path with travel time distributed
according to A(9,8) would be selected. If the expected values werc not equal. a
user might trade a higher expected travel time for a lower variance in travel time.
Another routing objective might be to have a certain level of confidence (expressed
as a probability) that the trip will take less than 7 time units, in which case the path
with travel time A(9, 8} would be selected.

Finally, to further complicate the notion of “least travel time”, consider Figure 1-
1(b) where the travel time random variables have the saine expectation and variance.
Which path should a user choose? It is not clear.

1.4 Routing Objectives

The previous section illustrates that. with random travel times, there may be several
different, vet valid, routing objectives in traveling from location s to location {. For a
given user with a particular set of routing options, we note that if we knew the travel
time distribution for each option « priori, then the user could specify any routing
objective, and we could efficiently determine the best routing option for the user.
This is the motivation behind the fundamental concept in this thesis; rather than
analyzing a particular routing objective, we focus on travel time distributions.

Let us define the term actual travel time distribution as the probability distribution
of the travel time that a user will actually experience. In other words. the actual
travel time distribution will be the travel time distribution of the path that the user
actually travels on. There are several difficulties in calculating the actual travel time
distribution. First. we need to enumerate and calculate the travel time distyibutions
of all possible paths, which cannot be accomplished efficiently. More importantly.
by definition, the actual travel time distribution only becomes known a posteriori:
after a full routing specification is made including the user-specified routing objective.
the relevant paths. and any other related constraints. This is a significant problem
because, as we have noted, there are several valid routing objectives in probabilistic
networks. Additionally, this is in conflict with our motivation to have the user specify
a routing objective after the travel time distributions of the routing options have been
calculated.

Although the calculation of the actual travel time distribution is awkward and
problematic, there is a related probability distribution that is a useful approximation
of the actual travel time distribution. Let us define this distribution as the wminirnum
travel time distribution. This distribution is the distribution of the travel time over
all possible fastest paths. One favorable consequence of using the minimum travel
time distribution for routing is that, since it is “composed” of the travel time over all
possible fastest paths, it implicitly “imposes” the natural routing objective of finding
the fastest path.

18

It turns out that the general problem of calculating the minimumn travel time
distribution is N"P-Hard ([45].[41]. see Section 2.6). Consequently, this problem is
usually simplified by replacing the travel time random variables with deterministic
values. The classic cholee 1s to replace each arc travel time random variable with its
expectation.

An alternate approach takes advantage of another property of the minimum travel
time distribution: in the case of a series-parallel network. the calculation of the min-
imum travel time distribution can be made exactly and efficiently [26]. Furthermore.
in this case. the expected value of the minimum travel time distribution is a lower-
bound for the expected value of the actual travel time distribution (see Chapter 4).
This suggests that the minimum travel time distribution is at least a good first-order
approximation of the actual travel tune distribution.

For a non-series-parallel network. we approximate the minimum travel time distri-
bution by calculating the minimum travel time distribution on a related series-parallel
network. This related series-parallel network is generated from the original non-series-
parallel network by conditioning on the travel times of certain arcs. Furthermore. the
expected value of this approximated minimum travel time distribution is a lower-
bound for the expected value of the actual travel time distribution (see Chapter 4).
The series-parallel property is the fundamental property that is exploited in this
thesis.

1.5 An Approach to Routing in Probabilistic Net-
works

Given that a user arrives at location ¢ and is destined for location ?. there arc two
basic approaches to routing. The first approach is to select an entire path to location
t a priori. The second approach is to select a “neighbor” of location 7 to go to next
(rather than a whole path). An example of the latter approach is the primary step
of the Bellman-Ford routing algorithm. which is:

dy = /EHNHJ}}” (dij + djt)
where N7 (1) is the set of all outgoing neighbors of location 4, d;; is the deterministic
travel time from location ¢ to location 7. d 4t 18 a deterministic estimate of the travel
time from location j to location ¢, and (i,,-, 15 a deterministic estimate of the travel
time from location 4 to location t. The decision of which outgoing neighbor 7 to select
at location ¢ is made by:

§* € argmin (d;; + dj)
GEN* (i)

where j* is a neighbor that corresponds to the minimum dy.
_ For each neighbor j of location 4, the Bellman-Ford routing algorithm calculates
d; using the travel time from location ¢ to location j, and the estimated travel time

19

from location j to location #. There is no explicit concept of a path when j7* is
selected; all that is known is that the path the user will travel on will include j*.
Note that the Bellman-Ford routing algorithm operates on deterministic values. The
use of estimates is required because. depending on the implementation, it may take
some time before the actual value, dj, is known.

The Bellman-Ford routing algorithm is useful hecause it is simple and ntuitive.
We extend this idea to develop an approach to routing in probabilistic networks. Our
intention is to use the framework of the deterministic Bellman-Ford routing algorithm
to write:

Dy = MIN (X, + Dy) _ (1.1)

JEN*()

where X;; is the arc travel time random variable from location 7 to location j. and ﬁjt
1s an estimate of the actual travel time random variable from location 7 to location i.
We denote the actual travel time distribution from location j to location t as Dy;. The
result of Equation 1.1, D,,,, is a random variable. By itself, D, is of little direct use
for routing since we eventually need to make a decision. and this necessarily involves
comparing deterministic values. To address this. we instead consider the decision:

;€ argmin (T(X,;. D;,)) (1.2)

FJEN* ()

where I' is a real-valued operator that takes as arguments, X,;; and f)jt. When we
say I is an operator, we mean that I' takes random variables as inputs and returns a
single real-value.

Intuitively, we can think of I’ as an operator that specifies the routing objective
as a function of the random travel time to neighbor j. and the random travel time
from j to . The deterministic Bellman-Ford routing algorithm can be obtained as a
special case:

F(.X,‘;,,]Ajﬁ) - Xr,’_-,' +]_“)ﬁ = d,jj + le

The henefit of this approach is that it allows us to simplify the procedure of
making routing decisions with random travel times. In particular, for each neighbor
7, it allows us to decompose Equation 1.2 into two parts: X;; and [)J-t . We elahorate
on this approach in Section 2.7.

1.6 Thesis Contributions and Organization

The contributions of this thesis are:

Survey of Routing We provide a survey of the different approaches to routing in
prohabilistic networks. We consider routing applications from both data and

transportation networks.

20

Travel Time Distributions We present prior work concerned with the caleulation
of travel time distributions in probabilistic networks. The majority of this work
is from project management literature. We adapt these methods so they can
be used in our approach to routing. To the best of our knowledge. this is the
first work in routing that is explicitly concerned with caleulating travel time
distributions to improve the quality of routing.

Routing in Probabilistic Networks We develop an approach to routing in prob-
abilistic networks that uses minimum travel time distributions to make routing
decisions. The fundamental idea is that if we know the travel time distribu-
tions of the routing options, we can efficiently calculate many different routing
objectives. Additional benefits include the ability to specify routing objectives
on a per-user basis and the ability to modify routing objectives en roufe.

Numerical Functions In our approach to routing, two functions of random vari-
ables need to he calculated repeatedly: the sum and the minimum of random
variables. In addition to discussing the efficient implementation of these func-
tions. we also present a data structure for the representation of a random vari-
able.

Practical Implementation We make an effort to keep our ideas suitable for practi-
cal implementations. We address and list the additional requirements necessary
for an on-line implementation.

The rest of this thesis is organized as follows. Chapter 2 formally defines the no-
tation, assumptions. and our routing procedure. In Chapter 3. we review the relevant
research literature. Chapter 3 considers numerous technical results from computer
science, operations research, and project management literature. Chapter 4 presents
algorithms for calculating the minimum travel time distributions. In Chapter 5, we
describe several algorithms that are necessary for the practical use of our routing
procedure. Additionally, the numerical implementations of the sum and the mini-
mum of random variables are deseribed. We illustrate our approach to routing on
two small networks in Chapter 6. Results on a larger network are also provided to
show the performance of the routing procedure in a more practical setting. We also
present the performance of the numerical routines for the sum and the minimum of
random variables. In Chapter 7. we provide a summary of the issues. our results.
and recommendations for further work. We also discuss ideas relevant for on-line
implementations.

It is our hope that this work will stimulate further research on routing with random
travel times and the calculation of travel time distributions.

21

[This page intentionally left blank.|

Chapter 2

Preliminaries

This chapter covers prelimanary work for the development of this thesis. These prelim-
inaries include our motation. assumptions, and an overview of our routing procedure.
In order to understand the difficulty of this problem. we also consider the complerity
of routing in probabilistic networks.

2.1 Notation

Let G = (N. A) be a directed graph where N is the set of nodes and A € N x N i1s
the set of arcs. Let m = |A] and n = |N| where | « | is the set cardinality operation.
The term digraph is an abbreviation to denote a directed graph. In this thesis, the
term graph refers to a digraph. A graph is also called a network.

(i.7) denotes an arc oriented from node i to node j. i and j are called the tail and
head nodes, respectively. of arc (i.7). Arc (j.1) is distinct from arc (i.j). An arc of
the form (i.) is called a self-arc or loop. 1f. for a pair of nodes ¢ and 7 in a digraph.
there exists multiple arcs from 7 to j. then we say that G is a multidigraph. If there
are multiple arcs from node i to node j§, the kth arc from i to j is denoted by (i. j}*.
If there is only one arc from node ¢ to node j. it 1s denoted (4. 7)! or as (4, 7) with the
superscript removed.

If (7,j) € A. nodes ¢ and j are said to be adjacent. If (i.j) € A. we also say j
is adjacent to i. Arc (i.7) is said to be incident with nodes ¢ and j. The outgoing
arc adjacency list for node ¢ is denoted A*(7) and is defined as the set of arcs (i.j)
where j is adjacent to i. The incoming arc adjacency list for node ¢ is denoted A~ (i)
and is defined as the set of arcs (I,7) where 7 is adjacent to I. The outgoing node
adjacency bist for node i is denoted N7 (i) and is defined as the set of nodes j where
j is adjacent to i. The incoming node adjacency list for node i is denoted N~ (7) and
is defined as the set of nodes [where 7 is adjacent to I. In multidigraphs. the size of
a node adjacency list need not he the same size as the corresponding arc adjacency
list. That is, an arc adjacency list may contain multiple arcs of the form (7, 7), while
the corresponding node adjacency list contains only distinet nodes j. For notational
convenience. let A(i.7) denote the parallel arc adjacency list. A(i,j) 1s a list of all
arcs from node i to node j. In other words, [A7(i)| = 3o niyyy [AGLJ)].

23

D -,

Figure 2-1: Arcs in Parallel.

(D

Figure 2-2: Arcs in Series.

Arcs (7, 7) and (I, k) are said to be in parallelif ¢ = [and j = k. In this case. we
also say arcs (7, j) and (/. k) forin a parallel component. Arcs in parallel are displayed
in Figure 2-1. Arcs (i,7) and (I,k) are said to be in series if j = 1.« # k, and
|A=(j)] = 1.1AT(7)| = 1. In this case, we also say arcs (i.7) and (1. k) form a series
component. Two arcs in series are displayed in Figure 2-2. A series reduction of two
arcs (4, 7). (7, k) in series replaces (i,7), (j, k) with a single arc from node ¢ to node
k. Node j is also removed. A series reduction on two arcs in series decreases m and
n by one. A parallel reduction on two parallel arcs (4. 7). (i. j)? replaces (¢. 1), (7. 5)?
with a single arc from node ¢ to node j. A parallel reduction on two arcs in parallel
decreases m by one. These definitions extend naturally to multiple arcs in series
and in parallel. If a graph G can be reduced to a single arc (¢,7) via series and
parallel reductions, the graph is said to be series-parallel reducible. When a graph is
series-parallel reducible, then it is called a series-parellel graph. For the purpose of
this thesis, this definition implies that a series-parallel graph must be acyclic. The
removal of any arc {i. 7) or any node ¢ from a graph is called a graph reduction.

A node s with [N~ (s)| = 0 is called a source or origin. A node t with [N*(t)] =0
is called a sink or destination. Source and sink nodes are also called terminal nodes.

A directed path or dipath from source s to sink # is a sequence of ares (s.4)-(¢, j)-
(7,k)-...-(h,1)-(1. 1) with the following properties:

e The directed path begins with an arc (s.:) and ends with an arc (1,1).

o With the exception of s and ¢, each head node appears once as a tail node and
each tail node appears once as a head node.

e For any arc (i.7),7 # t in a directed path, there must also be an arc (j, k) in
the path.

In a digraph without any parallel arcs, we often denote a path (s,4)-(2. j)-(5, k)-
~.-(h,D)-(1. 1) as the corresponding sequence of nodes, s-i-j-k-...-h-I-t. Note that a
sequence of nodes is not sufficient to define a dipath in a multidigraph. For example,
in Figure 2-1, if we specify a dipath as the nodes i-j. we do not know whether the
path refers to arc (i.5)! or arc (i, j)%. We denote the ith path from source s to sink
t as w¥. my refers to 7l,. Let Il be the set of all paths from source s to sink . We
also refer to any path 7% as a (s.t)-path. A directed cycle or dicycle is a path 7

24

together with an arc (¢, s). In this thesis. the term path refers to a directed path. and
the term cycle refers to a directed cycle.

For a path that contains arcs (1,7) and (i.§). ({.¢) is called a predecessor are to
(i.4). Similarly. the arc (i.7) is called a successor arc to {l.i). Furthermore. for a
path that includes (i. 7). i is called a predecessor node to j. and j is called a successor
node to 1. Two nodes. s and {. are said to be connected if there exists a path 7y or a
path 7, (or both). A graph is said to be connected if every pair of nodes 15 connected.
A graph is said to be strongly connected if. for any two nodes s and f. there exists a
path m,; and a path 7.

A oraph without cycles is called acyclic. A digraph (or multidigraph) with no
directed cycles is called a directed acyclic graph and is denoted DAG. A DAG with a
single source-sink pair is called a two-terminal digraph and is denoted 7T7-DAG.

A comprehensive list of the notation in this thesis is presented in Table 2.1. Several
terms are formally defined later.

Tahle 2.1: Netation.

G A graph (network) composed of sets N and A. ¢ = (N. A).
N The set of nodes in G.

A Theset of aresin G. AC N x N.

n The number of arcs in G. m = |A|.

n The number of nodes in G. n = |N|.

G’ (' is a subgraph of . G' = (N', A"}

A A’ is a subset of the arcs in G. A’ C A.

N/ N’ is a subset of the nodes in . N' C N.

(i.) The kth directed arc from 4 to 7. (1.j)* € A. i, € N.

(4. §) (i.j)F e A k=1

& § is a source (origin) node. s € N.

i t is a sink (destination) node. t € N.

DAG Abbreviation for a directed acyclic graph.

TT-DAG | Abbreviation for a directed acyclic graph with two terminals.
11, The set of all paths from s to . s.t € N.

T ot The kth path from s to . s, € N.

Tyt TI'ft k=1.

AT (7) The outgoing arc adjacency list. {(i.j)*|(i,7)* € A.j € N}.
A~ (i) The incoming arc adjacency list. {{(7.¢}*|(4,1)* € A.j € N}.
A(i.7) The parallel arc adjacency list. {(7,7)*[(i,j)* € A}.

NT(7) The outgoing node adjacency list. {j|7 € N,(i.j) € A}.
N=(1) The incoming node adjacency list. {j]j € N, (j,i) € A}.

it A deterministic travel time from i to t. .t € N.

dyy An estimate of dj;.

X’,", The arc travel time random variable for (7,))¥ € A.

4}(7"" X :}, k=1

ij A realization of the travel time for (i. j)* € A.

Ty xh k=1

Table 2.1: Notation (continued).

1y The actual travel tinie distribution from i to £, i,t € N.
f),;, An estimate of Dy.

P The travel time distribution of 7%, s,t € N.

Py Pk k=1

P The minimum travel time distribution from s tot. s.t € V.
fz(2) The probability density function of random variable Z.
Fz(z) The cumulative distribution function of random variable Z.
E[Z] The expectation of the random variable Z.

Var(Z) The variance of the random variable Z.

MIN The minimumn function of random variables.

N(u,a?) | A normal distribution with mean p and variance o
Ula,b) A uniform distribution from a to b.

v{a, 3) A gamma distribution with parameters a and 3.

EXP(3) | An exponential distribution with mean 3.

U The set union operator.

N The set intersection operator.

\ The set difference operator.

2.2 Network Model

With this notation, we now generalize the examples in Chapter 1 to formalize our
model. We consider a network G = (N. A) with the following properties:

e (5 is strongly connected.
e (G does not contain self-arcs.

e Associated with each arc (4,) is a positive random variable X;; which is the
travel time along arc (i.J).

In this thesis, we refer to a network that satisfies these properties as a probabilistic
network. Probabilistic networks are also known as stochastic networks. Note that
this model is quite general and can be used for a variety of applications.

2.3 Assumptions

In addition to the network model presented in Section 2.2, we make several additional
assumptions:

2.3.1 Arc Travel Time Independence
We assume the arc travel times in G are independent. That 1s,
fX.,j.Xm.,,,(Iija Tiiy- -) = .fz\'g‘,’(mij)kap(-]'k/) B

26

for all arcs (i.7).(k.1).... € A. Intuitively. this means that knowing the travel time on
any arc (i. j) does not provide us with any iformation of the travel time on any other
arc (k.1). Without this assumption. calculating the minimum travel time distribution
is much more difficult. This difficulty arises because the analysis of the sum and the
minimum of random variables is much more complicated with dependent arc travel
tites. Such an analysis requires knowledge of the arc travel time joint distribution
functions. and careful random variable conditioning. This calculation is possible by
hand when the network 1s simple and the distributions are well-known and casy to
work with. However. in the context we envision our algorithms to be operating in.
we cannot assume anything about the complexity of the network or the travel time
distributions.

Note that this assumption does not mean the paths within a network are inde-
pendent. Indeed, any two paths that share a common arc (7. j) are not independent
from each other. This dependence represents onc of the core difficulties in working
with probabilistic networks,

It may be argued that arcs in numerous application networks are dependent. In
particular, it is not hard to magine a transportation network where knowledge of the
travel time on one arc suggests a travel time or range of trave] times on another arc.
However, we make the independence assumption for two reasons:

e The computational requirements can be overwhelming for networks with depen-
dent arcs. Without independent arcs. it 18 much more difficult to analvze the
sum and the minimum of random variables.

e There is limited prior research that attempts to make routing decisions based
on the explicit calculation of travel time distributions. As such, we necessarily
begin this area of research under a simplified scenario.

2.3.2 Arc Travel Time Distributions

The assumptions on the arc travel time probability density functions, fx, (z; ;). are
as follows:

o [x,(ri;) is defined over (0.oc) where fx () 2 0Vry; € [a,b] for some a,b €
R*,a < b and 0 otherwise. For the purpose of implementation. we consider
Ix, (riy) = 0if fx, (2y5) < € for some sufficiently small ¢ (ie. ¢ =~ 0). For
example, if X;; = N(10.8) is defined over [0.1.19.9], then we consider fx, (r,;)
valid since fx, (x;;) < ¢ = 0.0003Vzy; < 0.1 (and fx,,(z,;) < ¢ = 0.0003 Va;; >
19.9). The finite range [a. b] is only necessary for implementation.

o [x,, () is continuous over [2.b]. This assumption adds realism in the sense
that given any two travel time realizations z, < z7;, we assume there exists

4 e
another realization 17} such that xj; < xjj < 2.

o lim, o+ fx, (%) =0 and lim,, ;- fx,,(ri;) = 0. This is necessary to prevent
discontinuities from being introduced in the minimum travel time distributions
calculated by the algorithms in Chapter 4.

27

e The probability density functions that we work with are smooth (C! functions,
l-smooth). Strictly speaking, this is not a formal requirement, but like the
assumption of continuity. this adds realism in the sense that we would generally
expect travel time distributions to be smooth.

In Chapter b, we discuss how we represent probability density functions. Inter-
polation is essential to this representation. The most important consequence of the
these assumptions is that, under these assumptions. our use of interpolation produces
accurate results. In the context of the work in Chapter 5, Appendix A discusses the
problem that can arise if these assumptions are not met.

Note that, aside from these conditions. we do not assume any particular distribu-
tion or distribution characteristics.

2.3.3 Cycles

We assume that traversing a cvcle is never beneficial. This assumption i1s obvious in
deterministic networks. but is much more subtle in probabilistic networks. Consider
the graph in Figure 2-3. Without loss of generality, assume X; 1s a constant 1.
X;i and X;; have identical distributions ¢(1.2), and X, has distribution (3, 7).
Consider the question of whether the inequality xg; + x; + 2, + 25 > Ty + Ty 15
always true. It will always be true if the “left-hand-side” realizations of x;, x;, are the
same as the “right-hand-side” realizations of x;, r;;. However. ensuring that these
realizations are the same is tricky. In practice, there might be a time component to
the realizations. For example, a user arriving at node j at two different times might
be given two different realizations for z ;. If this is the case, then there may be some
probability that traversing the cycle will result in a faster travel time from node s
to node ¢ (particularly if x; is large the first time it is realized). In a simulation,
a random number generator may add a time component to the realizations. In any
case. we take the point of view that in practical applications. we intuitively would
not traverse a cycle. Note that this assumption only applies to our routing decisions;
we make no assumptions as to whether the underlying network 7 contains (or does
not (:ontain) cycles.

2.3.4 Congestion

In a network that is subject to congestion, the number of users of a particular arc
(i.4) affects the travel time along (4, 7). We assuine that the networks in this thesis
are not subject to congestion.

2.4 Two Fundamental Functions of Random Vari-
ables

The sum and the minimum of random variables are two functions of random vari-
ables that are used extensively in this thesis. We review these functions to provide

28

u(1,2) u(t.2)

Figure 2-3: Cvcles in probabilistic networks. We take the point of view that in
practical applications, we intuitively would not traverse a cycle. This assumption 1s
obvious in deterministic networks, but is much more subtle in probabilistic networks.
See Section 2.3.3.

the foundation for the implementation of the corresponding numerical routines (see
Section 5.2).

2.4.1 The Sum of Random Variables

The random variable. " = A + B. is the sum of the random variables A and B, and
can be obtained using convolution. The cumulative distribution of €7 is derived via
the following steps:

Fele) = Pr(C<e)
= Pr(A+ B <)

= / / f4Bnbdbda

If A and B are independent, we further calculate:

Feto) = [[iaiss) dbe
= /xjA(a)FB((—a)da

With A and B independent., the density of (", f~(c), is given by:

fele) = dF;(n_((‘)
_ /m fﬂa)% d(l
= /_.OL fala)fg(c —a)da (2.1)

This derivation is a standard part of most probability textbooks (see [6] and [31]).
Equation 2.1 is the convolution of the two probability density functions fa(a) and

29

fgb)- and 18 denoted fala) * fu(b)- The sum of independent random variables 18
associative and commut ative.

Let PE be the randomt variable of tpavel time along the kth path. mk,. from node
& to node t. Then Pt is defined as

ph= 9, Xu

u -j)e"'_l_:»t

2.4.2 The Minimuni of Random Variables

The random variable, C = MIN(A B). is the minimum of the random variables
A and B. MIN 18 capitahzed to denote that O is a random variable. The MIN
function 18 Jderived in both [24} and 6. For completeness. W€ include a Jerivation that
follows 131} The cumulative joint distribution of A and B 18 denoted Fa. gle.c) =
priA< B < ¢). The cumulative distribution of C = MIN(A B) s given by

C = MIN(A.B)
Fole) = pr((<)
= PY(MIN(AA, B) < ©)
- Pr(BsG A> B)U Pr(A<C A< B)
= P1‘(B§C.A>B)+Pr(A§r A< B)
_ 1-prA>c B> ¢)

1f A and B are independent. W€ further calculate:

Felo) = Falc) + Fplc) — Fanle.©)
Fale)+ Fglc) — Fa(c)FBlo)-

Wwith A and B independent, the denslty of C. fole). 1

ot = E
_ d(Fale) + Falc) — Faple©))
de
_ d(Falc) + Fgle) = Falc)Fe(c)
d

fale) + fale) = fa(e)Fle) — fe(e)Fale)
~ faloh - F plo)] + (ot = F Aol (2.2)

i

Like the sum of random variables, the minimumn of random variables 18 associative

30

and commutative, Furthermore. if ' = MIN(A+ 1. B+ r) for x € R. then ' =
MIN(A. B)+ & since:

= MINA+72.B+r)
Fe{e) = PriMIN(A+zr. B+1) <o)
= Pr(B+zs<cA+ar>B+r)UPr(A+r<c. A+ < B+1)
PriB<c—ur. A> B)UPr{A<¢—-1,4<B)
= Pr(MIN(A.B)<c¢—ur)
= Pr(MIN(A. B)+ux <)
C = MIN(AB)+r

2.5 The Minimum Travel Time Distribution

Let P}, denote the minimum travel time distribution from node s to node 1. One way
to think about P} is to repeatedly execute the following steps:

1. Fix each arc (7. j) € A to a random realization ;.
2. Run a one-to-one fastest path algorithm from node s to node 1.
3. Record the travel time of the fastest path to node (.

After enough iterations of these steps, the distribution of the fastest travel times
from node s to node ¢ will emerge. This 15 PJ,.

P} can be expressed using the MIN function and ||, the number of paths
from node s to node t. Formally. P, is given by:

Py = MIN(PL. P ... P

As outlined in [24]. another way to think of P} is presented in Algorithm 2.1.
The two main functions in Algorithm 2.1 are the sum and the minimum of random
variables. The order of the arguments to these functions does not matter because
these functions are commutative. Similarly, P, can be computed iteratively because
the sum and the minimum functions are associative.

While it is possible to calculate P in this manner. there are two problems with
this approach:

¢ Algorithm 2.1 requires enumerating all paths 7*, € I1,,. which is not efficient as
the number of arcs and nodes increases (G is not assumed to be acyclic).

o If any paths share arcs, then the paths are dependent. The minimum function
is much more difficult to evaluate when the random variables are dependent.
Such a calculation would require knowledge of joint distributions.

31

Imput: G =(N.A). s.t e N. X ={X;|(i.)) € A}.
Output: P,
Step 0: Initialization.
Py — Z{f,j)ewif Xij
P:t - Ps-lf
Step 1: Calculate P for each path and update the minimum travel time distri-
bution.
for all 7%, € I, \ 7}, do
I-)Z\t = Z(Lj)énét "U
P, = MIN(P;. P)

Algorithm 2.1: Calculation of the Minimuin Travel Time Distribution.

U(5.8)

@

U(10,14)

Figure 2-4: Two Travel Time Distributions from Node s to Node ¢,

Note that the actual travel time from node s to node ¢t may not be drawn from £,
To emphasize this point, consider Figure 2-4. There are two paths from node s to node
. One path has an actual travel time distribution of 4(5, 8) and the other path has an
actual travel time distribution of ¢4(10,14) so that P}, = MIN(U(5,8).U(10. 14)).
Observe that (10, 14) is dominated by U(5,8) in the sense that the highest possible
realization for U(5.8) will always be less than the lowest possible realization for
14(10. 14). This means P = U(5.8). However, D, # P since D, depends on which
path is selected, which, in turn, depends on the routing objective. In other words. if
the user selects the path with travel time /(5. 8) then Dy = U(5.8) and. similarly, if
the user selects the path with 24(10, 14) then D, = U/(10. 14). However, regardless of
what the routing objective is, P}, always equals U(5. 8).

2.6 The Complexity of Calculating Travel Time
Distributions

It turns out that calculating the minimum travel time distribution is a difficult prob-
lem. We define this problem as:

Definition (Minimum travel time distribution calculation). Given a digraph
G = (N, A), s.t € N. and an independent, positive travel time random variable X
associated with each (1.7) € A. find the minimum travel time distribution from s to
t.

In [45], Valiant shows that a related problem known as s -~ t connectedness.

32

is NP-Hard!. [35] and [34] extend and complement Valiant’'s work. Formally. the
s — t connectedness problem is defined as:

Definition (s — t connectedness). Given a graph G = (N. A) and s.t € N. find
the number of subgraphs of G where there is a path from s to t.

Lemma 1. The s — t connectedness problem applies to both undirected and di-
rected graphs and s N'P-Hard.

Proof. See |45] O

Valiant observes s — t connectedness is related to the s — t connectedness
reliability problem. The s — t connectedness reliability problem is defined as:

Definition (s — t connectedness reliability). Given a digraph G = (N. A) and
s.t € N, and the probability p of each arc (i.37) failing imdependently of other arcs.
find the probability there is at least one directed path from s to t.

Lemma 2. The s — t connectedness reliability problem applics to both undi-
rected and directed graphs and 1s N'P-Hard.

Proof. The essence of the proof is that in order to calculate the probability of a
directed path from s to {. we need to count the subgraphs where there exists a directed
path from s to t. This means that we need to solve the s — t connectedness prablem
first which is A"P-Hard. For the complete proof. see [45] for the foundation and [35].
[34] for an extended analysis. a

The s — t connectedness reliability problem provides the necessary insight to
understand the difficulty of calculating the minimum travel time distribution. To see
this. consider a modified version of the s — t connectedness reliability problem.
In this modified version, rather than each arc (i,j) failing with probability p. the
travel fime along (7. j) is set to oo with probahility p. and n € R* otherwise. This
gives rise to the following problem:

Definition (s — t finite-connectedness). Given a digraph G = (N, A). «.t € N,
and the idependent and identical probability p of each arc (i) taking travel time oo
(and n € R* otherwise), find the probability that there is at least one directed path
from s to t with finite length.

Lemma 3. The s — t finite-connectedness problem is N'P-Hard.

Proof. This follows directly from Lemma 2. Finding a path from s to ¢ with finite
length is equivalent to finding the existence of a path from s to ¢ in the s — t con-
nectedness reliability problem. O

Now we observe that the s — t finite-connectedness problem is the same as
calculating the minimum travel time distribution when the travel times on (i.7) € A
are 1dentical Bernoulli random variables. This leads to the conclusion:

'"The reference to Valiant’s work was made in [41] but an explanation was not provided. We
provide our own explanation for clarity.

33

Theorem 1. The problem of calculating the minimum travel tome distribution 1s

NP-Hard.

Proof. As noted. in the case where arc travel times are identical Bernoulli random
variables, calculating the minimum travel time distribution is equivalent to solving
the s — t finite-connectedness problem, which is AP-Hard. Furthermore, since
this problem is AP-Hard when the arc travel times are identical Bernoulli random
variables, then it must also be AP-Hard for more general arc travel times distribu-
tions.

An alternative view is to modify the s — t finite-connectedness problem to find
the probability that there is at least one directed path from s to t with finite length less
than or equal to ;2 € RT. This modified s — t finite-connectedness problem can
also be used to calculate the minimum travel time distribution. However, to do this,
we would need solve the modified s — t finite-connectedness problem for multiple
values of s, which is clearly N'P-Hard. O

2.7 Routing in Probabilistic Networks

In Chapter 1, we present an approach to routing in probabilistic networks that is
based on the ideas of the Bellman-Ford routing algorithm. In particular, we define
Equation 1.2 as:

§° € argmin (T(Xy, Djr)

JEN*+()
In order to implement this, we further decompose I to:

7 € argmin (D(®(X,,). ¥(D;)))) (2.3)

JENT(i}

where ®(.X,;) is some metric on the random variable X,;, and \P(f)jt) Is some metric
on the random variable Dj,. Unlike I', which returns a real-value. ® and ¥ are meant
to be abstractly defined; they need not return real-values and could return random
variables. Note that we have still included f)ﬁ. which 1s an estimate of the actual
travel time distribution from node j to node ¢. In Section 1.4, we observe that it is
only possible to calculate the actual travel time distribution if a routing objective 1s
specified a priori. Since one of our primary motivations is to avoid the specification
of a routing objective « priort. we instead approximate D ¢+ with the minimum travel
time distribution, P;. In some sense. P}, “encapsulates” the fastest travel times over
all the paths from node j to node t.

In Table 2.2, several possible decompositions of I" are provided. For example. in
the first objective,

T(D(Xy). O(P},)) = ®(Xy;) + U(PL) = E[X;] + E[P]
In other words, I represents the expected travel time from node i to node ¢ via node j.

34

Obj. | T(®(X,,). ¥(P})) (X)) T (P}
1 (X)) + U(P;) EIX E[P7]
2 v(Py) E|P;]
3 D(X;) + V(P E[Xy]+ 8- Var(Xy;) | E[P]+6-Var(P})
4 O(Xy;) + ¥ (P} Tij E[PR]+6-Var(P})
5 ¥ (Py) Pr(P}, < &)
6 | —Pr(®(X,) +¥() <& X Y

Table 2.2: Examples of Routing Objectives.

To solve Equation 2.3, we would need to caleulate E[Xy;]+ E[P,] for each j € N*(i).
4" is then selected such that E[X;;]+ E[F}] is the minimum of E[X,;]+ E[P},] over all
4 € N7 (7). The second objective disregards the initial arc (4. j) and is only concerned
with E[F}]. This might occur in the case where the possible realizations of X,; have
little effect on the total travel time. The third objective attempts to strike a balance
between expectation and variance. The user-specified parameter @ € RTU{0} is meant
to reflect the importance of variance to the user. If a user values low variance in travel
time. the user should choose a large value of € to reflect the relative disutility of high
variance in travel time. In the fourth objective. ®(X,;) is set to a current realization
2;; of the travel time along arc (i.7). Such a realization might be obtained by an
information svstem. This objective attempts to factor on-line. updated information
into the routing objective. In the fifth objective. W(P%) factors in the probability
that the travel time from node j to node ¢ will be less than a given value £. Note
that in the context of Equation 2.3 we take the negative of ¥(F}) since we want to
maximize U(F};). Intuitively, W(P};) represents a cerfain confidence that the travel
time will be less than €. The sixth objective is similar to the fifth objective except
that it includes X,;. Unlike the previous objectives, in the sixth objective I' cannot he
decomposed by calculating ®(X;;) and $(P},) separately. Therefore, ®(X;;) = Xj;
and W(P}) = P} and we want the probability that X;; + P is less than £ In a
similar manner to the fifth objective. we take the negative of this probability since
we want to maximize this prohability.

Clearly, there are many possible decompositions of I'. Analogous to the Bellman-
Ford routing algorithm, we can think of ®(X,;) as a metric that judges the weight of
the travel time of each adjacent arc (i.5). W(P%) is a metric that judges the weight
of the travel time distribution from node j to node t.

Alporithmically, our routing procedure is presented in Algorithm 2.2. Within this

procedure, there are two problems to address:

o (Calculating any objective in Table 2.2 is straight-forward if we know the mini-
mum travel time distribution P, for each j € N7(i). The calculation of P} is
the subject of Chapter 4.

Input: (G = (N, A). i,t € N. X = {X;]{s,j) € A}
Output: j* ¢ N*(i).

Step 0: Iuitialization.

[—oc

Step 1: Find 7 with the minimum I'.

for all j € N*(i) d

if T(®(X;). \I’(P*)) < I'* then
3T

I — IT(P(Xy;). ‘I’(Pﬁ))

Algorithm 2.2: The Routing Procedure.

Input: G = (N.A). i,t € N. X ={X;;| (i,j) € A}
Output: j* € N*(i).
Step 0: Initialization.
' —
for all j € N*(i) do
Step 1: Generate a 77-DAG G’ from (from node j to node ¢t
Step 2: Calculate P}, on G,
Step 3: Find j w 1‘rh the minimum I'.
if T(®(X,;), ¥(P;)) < I'" then
gt e
™ T(P(Xy). lIl(R;t))

Algorithm 2.3: The Complete Routing Procedure.

e A more subtle problem 1s that the calculation of P}; should be made on a

TT-DAG from node j to node t. rather than on G. In other words, the cal-
culation of P}, need only consider parts of GG that can potentially be used in
traveling from node 7 to node t. The problem of deciding what parts of G are

relevant to the calculation of P is the subject of Chapter 5

Adding these two steps to Algorithm 2.2 yields the complete Algorithm 2.3.

306

Chapter 3

Relevant Research

In this chapter. we review research relevant to routing in probabilistic networks. Work
on the calculation of distributions in probabilistic networks appears to have originated
in the early 1960s with project management research. Because of the difficulty of work-
ing with travel time distributions. most research focuses on using the least expected
travel time as the routing objective. The ideas in this chapter come from project
management. probability, and graph theory. We also touch upon issues related to the
practical implementation of our work:.

3.1 Introduction

The general problem of routing is a well-researched area and has applications in many
fields. There are many variants to the problem and, within each variant. there are
many different approaches. Examples of application areas mclude transportation.
logistics. data networking. and project management.

As outlined in Chapter 1. our particular problem is that of routing in probabilistic
networks. In researching this problem, we classify the literature into two basic ap-
proaches. The first approach focuses on a specific routing objective. For example, if
we focus on the least expected travel time. we can set X;; to E[X;;] and solve a deter-
ministic shortest path problem. The substitution effectively turns the probabilistic
network into a deterministic network. Initially. this approach makes sense hoth in-
tuitively and computationally. However. it is a simplified approach as it does not
take advantage of information that can be derived from travel time random variables.
To address this. the second basic approach attempts to calculate P,

%> the minimum
travel time distribution.

3.2 Specific Routing Objectives

Defining the proper routing objective for a probabilistic network is surprisingly diffi-
cult. A natural first step is to replace each arc travel time X,; with its expectation
E[X;] and consider routing algorithms for deterministic networks. A comprehensive
study of deferministic routing algorithms is presented in [30].

37

Further complicating the issue is the notion of systew-oriented optimal routing
and user-oriented shortest path routing, System-oriented optimal routing attempts to
achieve an optimum aggregated across an entire system. User-oriented shortest path
routing attempts to find an optimum that is user-specific. Intnitively. user-optimal
routing is equivalent to letting each user act in their own best interest. Such behavior
1s good for an individual user but may not be best for the svstem as a whole.

There is also the notion of congestion. wherely each additional user of a network
further degrades the performance of the network. We assume that the networks in
this thesis are not subject to congestion.

Additionally. there is the notion of adaptive routing where decisions are made en
route instead of a priori. If adaptive routing is used on networks sub ject to congestion.
it may be possible to create oscillating behavior by switching between alternatively
uncongested paths. In data networks, there has been work into dampening such
oscillations ([4]).

Closely related to adaptive routing is the notion of on-line and off-line systems.
On-line systems are typically used operationally where routing calculations are con-
stantly updated as new information about the network becomes available. In an
off-line system, all routing calculations are made with information that is known a
priore. Consequently, in such a svstem, the routing decisions are made before any
actual routing occurs.

3.3 Routing Objectives in Probabilistic Networks

Research in routing on probabilistic networks tends to consider a single objective
such as the least expected travel time. Recent work has started to focus on adaptive
objectives that are calculated and revised en route. Fu includes a taxonomy of the
Shortest Path Routing Problem in [15).

Fu discusses an adaptive routing algorithm that attempts to determine the best
neighbor j* € N7 (i) for each node ¢ that is traversed in a probabilistic network ([15]).
Fu assumes that at node i. on-line realizations of the travel times {ri;15 € N*(i)} are
made known. Using these realizations, Fu states the problem of finding the minimum
expected travel time from node i to node ¢ recursively as:

J* € argmin(z;; + E[Dj])
JEN (i)

Fu’s approach fits into our approach with I'(P(X;), \I!(f)_,,)) = ®(X,;) + ¥(D;,) and
D(X;;) = zi; and U(Dy,) = E[D,,].

Since Fu specifies a routing objective o priori, he can calculate D recursively.
With an appropriate boundary condition this equation forms a dynamic program. Fu
points out two difficulties with this approach. First. an acyclic network is required
to compute Dy, and this is not typical in models of practical networks. This issue
was mentioned at the end of Chapter 2. Second, and more critically, 12, needs to be
calculated iteratively. The latter problem is addressed by Fu via a “point estimate”

38

approximation method. This approximation method estimates the moments of a
function of random variables from the moments of its random variable arguments.
This reduces the complexity of the problem to discrete summations using means and
variances. From here. a label-correcting algorithm is proposed with an efliciency
cquivalent to label-correcting algorithms for the calculation of deterministic shortest
paths. Note that Fu does not explicitly calculate D, but rather estimates E[D;].

Tsitsiklis and Polvchronopoulos find the minimum expected cost with random arc
costs [32]. In this paper, it is assumed that once an arc cost realization is made, it is
fixed. Two representations of arc costs are discussed. The first represents the costs
as a known joint density function and the second represents the costs as independent
arc costs. The solution approach is based upon dynamic programming where the
stage of the program is equivalent to the amount of deterministic information that
is known about the network. The complexity of the problem leads Tsitsiklis and
Polychronopoulos to derive approximate solution algorithms.

In [2] and [3]. Bertsekas provides a comprehensive analysis of the stochastic short-
est path problem using dynamic programming. The objective is to minimize the ex-
pected cost when the termination state of the program is reached. Bertsekas provides
formal definitions of optimal policies. and discusses the use of the value-iteration and
policy-iteration dynamic programming solution methods. Bertsekas comments that
these methods may not be suitable for large svstemns and suggests two alternate ap-
proaches: Monte Carlo simulation and neuro-dynamic programming (reinforcement-
learning).

Sen et al. [3%] formulate and solve a binary program with a quadratic objective.
They make the same observations that we make in Chapter 1 and. consequently. they
consider variance in their objective. More specifically, for a source ¢ and sink ¢, they
consider a hybrid of expectation and variance:

50 ’
argmin E[P%] + §V ar(PE)

ﬂﬁrellﬁf

In the program. #¥, is decomposed into binary variables. z;; € {0.1}. that represent
whether are (4,) is included in the optimal path. The actual solution method involves
a relaxation of the binary constraints and the solving of a series of related quadratic
programs.

3.4 Travel Time Distributions

The formal concept of the distribution of time in probabilistic networks appears to
have been defined by Martin in 1965 [26]. Martin is concerned with the distribution
of time in & 77-DAG. More specifically, his work is motivated by the two project
management problems, Program Evaluation and Review Technique (PERT) and Crit-
ical Path Method (CPM). While the originators of PERT and CPM considered two
approaches 1o randomness in project duration time, neither approach is as general as
Martin's approach to calculating the random variable of project duration time. One

39

of the two original approaches is to replace the project duration time random vari-
ables with their expected values, while the other approach requires three estimates of
project duration time: one optimistic, one average, and onc pessimistic [25],9].

The formal problem Martin addresses is essentially the same as our problem of
calculating P given nodes j and t. A TT-DAG is assumed with source s and a sink
t. Since Martin is motivated by PERT/CPM networks. cach arc (4, j) represents a
project activity. Associated with each arc (4. j) is an independent random variable X ;;
of the activity duration time. Martin is concerned with calculating the distribution
of the marimum project duration time. The activity duration time on each arc is
analogous to our nofion of arc travel time. Even though Martin focuses on the
distribution of maximum project duration time, we can directly apply Martin's ideas
to our problem of calculating of the minimuin travel time distribution.

For the purpose and claritv of this thesis. we reclassify Martin’s work as research on
minimum travel time distributions. If we replace every application of the maximum of
random variables in Martin’s work with the minimum, then the problem of calculating

P}, is exactly equivalent to Martin’s.

3.4.1 Series-Parallel Graphs

One of Martin's observations is that the minimumn travel time distribution can be
calculated exactly and efficiently on series-parallel graphs. The key point is that for
any two arcs in series, an equivalent travel time distribution can be calculated by
convolving the density functions of the travel time random variables of the arcs in
series. For any two arcs in parallel, the minimum travel time distribution can be
calculated by taking the minimum of the travel time random variables of the arcs in
parallel.

Given a source s and sink ¢, Martin describes an efficient algorithm that recur-
sively traverses a series-parallel 77-DAG G’ and reduces it to a single arc (s, 1) with
X = P4 Whenever arcs in series are encountered. they are replaced by a new,
single arc whose travel time density function is the result of the convolution of the
density functions of the travel times of the arcs in series. Whenever parallel arcs are
encountered, they are replaced by a new, single arc whose travel time is the minimum
of the arc travel timne random variables of the arcs in parallel. Intuitively, it not hard
to see that the repeated application of these series and parallel reductions will reduce
G’ to a two-node. single arc network with X = Pj.

Relevant work by Duffin [8] and later by Lawler, Tarjan, and Valdes [44] clarifies
the conditions for a graph to be series-parallel reducible. An extensive analysis of this
problem is provided in [43]. A D.AG subgraph G’ of G is homeomorphic to a DAG
G if the subgraph G’ can be obtained by repeatedly removing arcs and performing
series reductions on G. Given this definition, the following result is proved in [44] but
is based on [8]:

Theorem 2 (Series-Parallel Reducibility of Graphs). A digraph G is series-
parallel reducible if and only if G is not homeomorphic to the graph in Figure 3-1.

40

Figure 3-1: The Wheatstone Bridge.

In the literature, the graph in Figure 3-1 has several names including the Wheat-
stone Bridge. the interdictive graph. and the forbidden subgraph. In this thesis. we
refer to Figure 3-1 as the Wheatstone Bridge. Intuitively. this theorem states that a
graph (i is not series-parallel if the Wheatstone Bridge is “embedded™ in G. In [44].
Lawler. Tarjan, and Valdes present an efficient algorithm to determine if a graph G
is series-parallel reducible.

3.4.2 Non-Series-Parallel Graphs

If a graph 7 is homeomorphic to Figure 3-1, then Theorem 2 tells us (5 is not series-
parallel. In this case, the analysis of the minimum travel time distribution becomes
much more difficult. This difficulty is evident in the calculation of the minimum travel
time distribution on the Wheatstone Bridge.

We have the following travel times distributions for the three possible paths
{r), 7% 73} from node s to node ¢:

Py = Xi+Xu
P«,zr X 5 + Xjr,
P;jt = X+ Xr;/ +)(_',if

The minimum travel time distribution is given by:
P, = MIN(PL P2 F3).
Using the cumulative distribution function with travel time realization ¢:
Fpe(¢) =1=Pr(Py > c. Py >c. P)>c)
and expanding:
Fpo(c) =1 ~Pr(Xu+ Xy > X+ Xj >0, Xa + Xy + Xy > ¢)

41

In general, this statement caunot be separated turther due to the dependence among
PL. P% and PP3 . However, if X,; is fixed to a value of 2 and X is fixed to a value
7 j. then all the remaining random variables become independent. In other words.
we have:

Fg:t(c) =1—Pr(Xy >c—24, X > =t Xiy > 0=y — Ljel2g. T50)
and, separating.

Fp:(¢) =1 =Pr(Xy > ¢ — wglag 2) Pr(Xy > c - Tl Lgi.t)
Pr(X,; > c— 2y — TjlTsi, Tjt)

1O de.3 X oc
Fp:(c)=1— / / / Ixu (Jf'zr)df'if/ Fxo(Tgy)das
J—o J—ox Jo—wui =I5t

/ f;\'” (;If,l‘j)(i.'l,‘,l'j f)(]i (il?ﬁ)fX“- (.’Iﬁm)dﬂfmd.’l'ﬁ (31)

— T Ty

This example shows that even in “simple” non-series-parallel graphs like the
Wheatstone Bridge. the analytical calculations are quite complicated. These diffi-
culties have led to a variety of approaches in the analysis of minimum travel time
distributions on non-series-parallel graphs.

Building from the work on series-parallel graphs, Martin generalizes his approach
to non-series-parallel graphs. A method is proposed to transform a non-series-parallel
TT-DAG to a series-parallel 77-DAG by adding “dual” arcs. “Dual” arcs are du-
plicates of arcs that are not 1n series or in parallel. Analytically, this transformation
is problematic since the “dual” arcs are not independent of each other. To solve this
problem, Martin is forced to calculate the joint distributions of the “dual” arcs. and
the joint distribution of all paths in each parallel subnet in the transformed series-
parallel TT-DAG. In the worst case. the calculation resulting from the “dual” arc
transformation hecomes large and inefficient.

Hartley and Worthain develop an algorithm that reduces a network until a Wheat-
stone Bridge structure is found [18]. This Wheatstone Bridge can then be reduced
according to Equation 3.1. After removing the Wheatstone Bridge. the algorithm
continnes until the network is either reduced entirely or another Wheatstone Bridge
is found.

In [12], Frank considers the calculation of the minimum travel time distribution
on directed graphs. Frank’s approach is more general in that it does not assume arc
travel time independence, acyclic graphs. or any kind of series-parallel reducibility.
However. knowledge of the arc travel time joint distribution function is assumed.
Frank proceeds by observing for a source s and sink ¢:

P=X"4
where P is the one by |I1,| vector P = [P P2, P3, . ..] of the travel time distributions

42

I1,] indicator matrix with each entry é, € {0. 1} depending
on whether the /th arc (i. ;) is part of the Ath path P%. Xisam by oue vector of the
arc travel time distributions (and X7 is its transpose). Note that = MIN (13).
Frank notes this large computation can be reduced by using characteristic functions.
The resulting calculation (as a characteristic function) is then a multi-variable inte-
gral in m-dimensions. The problem with this approach is that the calculation can
hecome very time-consuming and the inversion of the final characteristic function
must still be performed. The difficulty of the inversion depends on the rank of 4. Af-
ter this calculation is made, the final calculation of P = MIN(PL. P5. Py,) is
performed. Frank and Hakimi have a preceding paper that also outlines this approach
with random arc capacities rather than random arc travel times [13].

for each path. disam by

Because of the above difficulties. Frank resorts to Monte Carlo simulation to ob-
tain the minimum travel time distribution. Straight-forward or Crude Monte-Carlo
sampling can be used to approximate the cumulative distribution function. Fp; of
Py It cach arc travel time random variable X, is fixed to a particular realization x5,
let 77, be the deterministic fastest path associated with the particular realizations
xi;. For a given value I, Frank defines the function A(I, 7},) as:

R AT Lot ey, i <1

St) otherwise

If each arc (7.j) i1s sampled and fixed to a x;; (' times. (' fastest paths can be
calculated. For a particular value [. Fp- ({) is then approximated hy:

«
Fry () = 2 32 ML 7))
c=1

where 77,(¢) 1s the travel time of the fastest path for the cth set of arc realizations.
The cumulative distribution F p- 18 then differentiated to obtain f P:,-

Alternatively. fp. can be calculated directly by sampling values for each arc,
running a deterministic fastest path algorithin, and recording the value of the fastest
path. If this process is repeated, an approximation of fp- can be obtained.

Frank also covers two statistical based methods, but most related work builds off
Monte Carlo sampling or Martin's series-parallel work.

Burt and Garman make the observation that Monte Carlo sampling every arc is
not necessary [20]. They present a method referred to as Conditional Monte Carlo
where one only need sample the “non-unique” arcs. For a given source s and sink ¢.
non-unique arcs are arcs that are contained in more than one path from s to t. When
the non-unique arcs are conditioned on Monte Carlo samples, the (s, t)-paths in the
network become independent. Consequently, in this conditioned network, the condi-
tional mininm travel time distribution can be calculated by taking the sum and the
minimum of independent travel time random variables. The unconditional minimum
travel time distribution can then be estimated by iterating over a set of Monte Carlo
samples. Burt and Garman report that Conditional Monte Carlo sampling produced

43

a better estimate of the correct distribution on the Wheatstone Bridge (Figure 3-1)
than Crude Monte Carlo sampling,.

To illustrate Couditional Monte Carlo sampling. consider Figure 3-1. The non-
unique arcs are (s.7) and (j.1). Conditional Monte Carlo proceeds by conditioning
on each of these arcs and computing P, = MIN (P}, P;. P}). where:

1 -
ng = rg T -)\it
2 -
Pa = Xy+ay
3 s
Pst = I+)\,'J‘ + Ty

Conditional Monte Carlo can be thought of as a middle ground hetween Crude
Monte Carlo sampling and a direct analytical solution.

Garman adds a follow-on work in [17] to even further reduce the number of Monte
Carlo samples required. Garman observes that by conditioning on cerfain arcs, a
network can be reduced to a series-parallel graph where the (conditional) minimum
travel time distribution can be calculated using Martin's algorithm. Furthermore,
Garman provides a theorem that states a property of series-parallel reducibility.

Theorem 3 (Properties of Series-Parallel Reducible Graphs). A TT-DAG
G which cannot be reduced to a single arc via servies and parallel reductions will
possess (1) at least one arc (1i) that has more than one successor while each of (14)'s
successors has only (11) as its predecessor. and (2) at least one are (i.j) that has more
that one predecessor and each of (i.j)’s predecessors has only (i) as its successor.

The arcs in part (1) of Theorem 3 are referred to as Type-1 arcs and the arcs in
part (2) of Theorem 3 are referred to as Type-2 arcs. Figure 3-2(a) shows a Type-
1 arc and Figure 3-2(b) shows a Type-2 arc. Using this terminology, the proof of
Theorem 3. as presented in [17], is:

Proof Given a TT-DAG GG’ which is not series-parallel reducible and a source s and
sink 7. Consider all outgoing arcs {(s, 7)|7 € N*(s)} from the source s. It must be
the case that a Type-1 arc exists. Otherwise. a parallel reduction is possible or the
network is cyelic, both of which are not true. Next, consider all incoming arcs to the
sink 1. It must be the case that a Type-2 arc exists. Otherwise, a paralle]l reduction
is possible or the network is ¢yclic. both of which are not true. O

Using Theorem 3, Garman presents an algorithm that calculates a conditional
minimum travel time distribution fp: @,,..) where (xi;...) represents the arcs that
are conditioned upon. The algorithin is listed in Algorithm 3.1. After fpx|,,..) 18
calculated, fp. can be calculated by Monte Carlo simulation over the conditioned
arcs.

Approximately twenty vears after Garman's work, Bein et al. address the same
subject with a more theoretical approach [1]. Bein et al. independently come to same
conclusions. One concept that Bein et al. define is s — ¢ D.AG complezity, which
is a measure of how “series-parallel” a T7-DAG is. Technically, the s — t DAG

44

(i)

(a) (I.4) 15 a Type-1 Arc,

9

(i)

(b) (i.7) is a Type-2 Arc.

Figure 3-2: Type-1 and Type-2 Arcs.

(D

Input: G'is a TT-DAG. G' = (N A). s.t e N'. X = {X};
Output: fpeia,.)-
Step 0: Initialization.
while |A'| # 1 do
Step 1: Perform any possible series and parallel reductions.
Step 2: Find a Type-1 or Type-2 arc and condition on it.
if {A'| # 1 then
if a Type-1 arc (I.4) is found then
for (i.7) € A*(¢) do

(i) € AT,

A=A uU(l.y)
Xy =15+ Xy
A=A\ (2. 7)

A=A\ (L.7)
else if a Tvpe-2 arc (4.) is found then
for (I.7) € A (7) do
A=A Ul))
Xy = Xy + @y
A= A\ (.1}
A=A\ (i.))

Algorithm 3.1: Garman's Conditional Sampling Algorithm.

complexity of a graph G is the minimum number of nodes (and adjacent arcs) that
need to be removed to make G’ series-parallel reducible. They present an algorithm
to find the s — + DAG complexity of G'. This algorithm is very similar to Garman’s
algorithm, except the graph in question is first transformed to an “auxiliary graph”.
The auxiliary graph is a graph that identifies all embedded Wheatstone Bridges. From
the auxiliary graph. a minimum vertex cover is calculated and is input into what 1s
equivalent to Garman’s algorithm.

Kulkarni considers the special case where arc costs are independent and expo-
nentially distributed [23]. A continuous time Markov chain is constructed. The key
observation in this work is that the set of minimum cuts in the network corresponds
to the state-space of the Markov chain. Using this approach, Kulkarni presents al-
sorithms to calculate the shortest path distribution and the associated moments.
This approach suffers from exponential state-space growth as the size of the network
lncreases.

Robillard and Trahan [36] present a bounding approach for the distribution of
the project duration time in PERT/CPM networks. Rather than concern themselves
with the dependence between paths, Robillard and Trahan observe that by ignoring
dependence considerations. lower-bounds can be derived for the project completion
time distribution using Bonferroni inequalities. 1f H, are events such that H = U, H;,

46

then the Bouferroni inequalities are:

Pr(UH;) < Y Pr(H,)

Pr(UH) > > Pr(H) =Y Pr(H; N Hy)
PrUH) < > Pr(H,) - Pr{H,NH)+ > Pr(H;NH;N Hy)

i< i<j<k

One can use the Bonferroni inequalities to derive an upper-bound for the minimum
travel time distribution. Robillard and Trahan compare their bounds to previous
analytical calculations and find decent results. Similar ideas and approaches are also
presented in [21].

In [14]. an in-depth analysis is provided for networks where the arc travel times
are independent and identically distributed. Both Sigal et al. [39] and Fishman [11]
calculate the mimmum travel time distribution via a cut-set approach. Elmaghraby [9]
provides an excellent summary of the issues and approaches in PERT /CPM networks.
Aside from covering the material in this section, Elmaghraby also discusses antithetic
variates and control variates. which are two statistical methods. These statistical
methods utilize positive and negative correlation to calculate the project completion
time distribution.

3.5 Two-Terminal Directed Acyclic Graph Gener-
ation

As noted at the end of Chapter 2. it may not be necessary to consider all of ¢ in the
calculation of PY. Instead, we should only consider a 77-D.AG subgraph G’ of G
whose arcs have some potential to be used in the fastest path from node s to node
t. This problem is exaggerated in probabilistic networks. where it 1s more difficult to
determine if a particular arc (¢.) will be used in a fastest path.

One way to generate such a 77-DAG G’ in a deterministic network is to take some
union of the & shortest paths from node s to node . The k& shortest paths problem is a
well studied variant of the single shortest path problem (see [10]). Within the general
k shortest paths problem, there are two major variants; the k& shortest simple paths
and the & (possibly cyelic) shortest paths. The former problem is more difficult to
solve than the latter problem. In [10]. Eppstein studies the & shortest paths problem
when the paths are not restricted to be simple. An eflicient algorithm is presented
and its impact on several applications is studied. The primary result in the & shortest
simple paths problem is an efficient algorithm in & due to Yen [47]. In the context
of this thesis. note that G’ is not necessarily acyclic if G’ is generated by the simple
union of the &k shortest simple paths from node s to node ¢.

In [7], Dial considers methods to calculate multiple (s,¢)-paths in a determinis-
tic transportation network. Dial’s motivation is to avoid the congestion problems

47

associated with an all-or-nothing traffic assignment. To do this without performing
an inefficient path enumeration. Dial discusses an approach for the identification of
“efficient paths™. Dial’s definition of an efficient path is a path where every arc (i, j)
has node ¢ closer 1o source s than node j and node j closer to sink ¢ than node i. A
consequence of this approach is that, for a given source s and sink ¢. Dial’s algorithm
generates a 77-DAG subgraph ' of ¢ where each arc in G’ is part of at least one
efficient path from s to f. The five stated goals of Dial’s algorithm are:

1. All efficient paths from node s to node t should have a positive probability of
being used.

2. All efficient paths of equal travel time should have an equal probability of being
nsed.

3. Between two efficient paths with unequal travel times, the faster path should
have a higher probability of being used.

4. The user of the model should have some control over the probabilities.

5. Path enumeration should be avoided.

Dial’s algorithm achieves these goals by working with arcs rather than paths. The
general idea is to assign each arc (i.7) a likelihood, L(¢, j). of being used in a fastest
path from source s to sink ¢. The likelihood of an arc (¢, j) is calculated using the
(deterministic) travel times from source s to nodes 7 and j, and from nodes 7 and j to
sink ¢. Dial conjectures that the probability of a using a path is proportional to the
product of the likclihoods of the arcs in the path. However. Dial does not explicitly
construct the efficient paths. Instead. a graph is built where every path is efficient.

The algorithm initializes by running two algorithms; a one-to-all fastest paths
algorithm from source s and an all-to-one fastest paths algorithm to sink ¢ The
fastest paths labels from source s to node ¢ are denoted dg; and the fastest paths
labels to sink ¢ from node i are denoted d;;. Using these travel time labels. each arc
1s assigned a likelihood L(i. 7) using the following equation:

Iy exp?da—dsitzii) ifdy < dy dj < dy
(1.3) = 0 otherwise
where z;; is the deterministic travel time of arc (i,7). Note that by simply taking
all arcs with L(¢,j) > 0 we are not guaranteed a 77-DAG. In the next step of the
algorithm, Dial constructs the graph of efficient paths by calculating arc “weights”.
The weights arve used to recursively construct G’, the graph of efficient paths. The
arc weight w(s, j) is calculated by traversing each arc (¢, j) in increasing order of d:

w(i,j) = {L“

. iti=s
L. 7) 2 (wypen—) w(u,i) otherwise

48

At this point. if we take all arcs (¢.7) with w(i.j) > 0 we will have a T7-D.AG of
efficient paths. Since Dial is concerned with assigning traffic to the arcs, an additional
step is performed. The traffic volumes «(i. j) are assigned in descending order of d,;
for each arc (i.j):

wu(iLg) o

LALRLLT - ifj=t
o(i) = Z((\u;.v)n,ew—m“'(“f-”(N ‘
A D)= wing e 0 .

GIENTID) otherwise

Lwpen o wlu)

where y is the demand from source s to sink 1.

For the purpose of this thesis. the key contribution of Dial's algorithm is that it
constructs a 77T-DAG G’ from a (possibly cyelic) graph G without path enumeration.
Furthermore, using Dial’'s definition. GG’ is composed entirely of efficient paths.

Dial also discusses an alternative. but similar. definition for an efficient path. In
the alternafive case, an efficient path is defined as a path composed of ares (i.j)
where node 7 is closer to source s than node j. This definition effectively changes the
algorithm from a (s, {)-path algorithm to a “s-to-all” algorithm. The calculation of
the likelihoods and the arc weights remains the same. However. becaunse it is now
a one-to-all algorithm, we cannot construct a 77-DAG from source s to sink ¢ by
simply taking {(z. 7)}|w(i. 7) > 0}. The final step of traffic assignment is different since
there are multiple sinks. We omit this final step as it is not relevant to the work in
this thesis.

As an extension to the algorithm. Dial also suggests a method to calculate the
probability distribution that a path from source s to sink ¢ takes a discrete travel time
. Although this is similar to the notion of the minimum travel time distribution. it
is a substantially less complex problem since the arc travel times are deterministic.

Let p, (1) be the probability that a path from source s to sink { takes a discrete
value of {. Dial determines p, (1) by recursively calculating pr (). Each node j is
selected in ascending order of dg; until j = t. The steps are as follows:

1. (Initialization) p, (0) = 1. p, {I) = 0V discrete path travel times [> 0

2. (Recursive) pr, (1) = 32 iyjien—i) Pra (L — 245) tR)

C L tupuen -y witnd)

49

[This page intentionally left blank.]

Chapter 4

Minimum Travel Time
Distribution Algorithms

In this chapter. we describe how to calculate the minimum travel time distribution in a
probabilistic network. As noted, the concept of a series-parallel network is fundamen-
tal to this calculation. First. we discuss how to determine if a graph is series-parallel
reducible. If a groph is series-parallel reducible. the minwmum travel time distribu-
tion can be coleulated eractly and efficiently. If the graph is not series-parallel. the
mansmum travel time distribution can be approximated in an efficient manner.

4.1 Introduction

In this chapter. we assume we are given a 77-DAG. ', with source s and sink 1.
As noted in Chapter 2, we also assume the arc travel time random variables, X,
are independent. If G’ is series-parallel, then we proceed with an algorithm that is
based upon the work of Lawler, Tarjan, and Valdes (see Chapter 3). If G’ is not
serles-parallel. then we proceed with an algorithm primarily based on Algorithm 3.1
(see Chapter 3). This basic procedure is outlined in Algorithm 4.1.

Input: ' = (N A"). G'"1saTT-DAG. s,t € N’
Output: F}.
Step 1: Determine if G’ is series-parallel.
if G’ is serles-parallel then
Step 2a: P}, «+ Use an exact series-parallel method.
else
Step 2b: ?}, — Use an approximation method.

Algorithm 4.1: Basic Procedure for Calculating PJ,.

o

i <

o

{a) A Series-Parallel Network.

(b) Figure 4-1(a) After a Parallel Reduction.

Figure 4-1: Order of operations affects independence. By choosing an appropriate
order of series and parallel reductions in Figure 4-1(a), we maintain independence
among travel time random variables. For example, by performing the parallel re-
duction P; = MIN (X}, X}) first, we get Figure 4-1(b) where the arc travel time
random variables are still independent. See Section 4.2.

4.2 Series-Parallel Graphs

To build intuition for series-parallel graphs. we consider the calculation of Pj in
Figure 4-1(a). There are two different ways to calculate P. In the first approach.
we calculate:

Pr= MIN(Xq+ XL+ X Xa + X7+ X5) (4.1)

Note that even if X,;. X}J; Xf,‘;X;jr, are independent. the path travel time random
variables P}, = X,; + X; + X1, P% = X, + X2 + X are not. Since the arguments
to the MIN function are not independent. we cannot easily evaluate it. However,
we can also evaluate P}, as:

PL=Xg+ MIN(XL X2+ X, (4.2)

We evaluate Equation 4.2 by performing the parallel reduction Py = MIN (X}, X2)
first. Note that the arguments to the MZAN function are independent and. con-
sequently, we can evaluate it as described in Section 2.4.2. The parallel reduction
removes arcs (i.7)',(4.7)? and adds a new arc (i.j) with X;; = MIN(X}, X})
as the arc travel time. Figure 4-1(h) is the graph after the parallel reduction.
In this graph, all arcs are independent. and in series. Therefore, we can calculate
P:t =Xy + X”' + Xﬁ.

Both Equation 4.1 and Equation 4.2 calculate the same random variable, Pg.
However, by choosing the correct order of operations the independence among the
random variables is maintained, and Equation 4.2 becomes easier to evaluate than
Equation 4.1. In fact, the order of operations forms a non-unique binary tree [43].

The graph in Figure 4-1(a) is casy to evaluate because it 1s series-parallel re-

52

ducible. In the case of a non-series parallel graph like the Wheatstone Bridge. we
cannot maintain independence. However. if we can efficiently identifv series-parallel
subgraphs of non-series-parallel graphs, we can reduce the complexity of calculating
P in non-series-parallel graphs.

4.2.1 Testing for Series-Parallel Reducibility

To test whether or not a graph is series-parallel reducible, we use a slightly modified
version of the algorithm presented in [44]. [43]. The modifications are only concerned
with the choice of data structures and do not affect the general approach of [44], [43].

The algorithm is presented in Algorithm 4.2. The key data structure in this
algorithm is the queue. denoted . The algorithm initializes by adding all ¢ € N’ ¢ #
5.1 # 1 to (. At each iteration. a node 7 is selected from the front of () via the queue
operation pop_front(). Next. we perform incoming and outgoing parallel reductions
with node 4 as the tail and head node respectively.

Note that we “short-circuit” the removal of outgoing (incoming) parallel arcs if
node 7 has at least two distinct successors (predecessors). In other words. we stop
processing the outgoing (incoming) parallel arcs of node 7 if [N*(7)| > 2 (|[N~(i)| > 2)
since we know we will not be able to remove node ¢ with a series reduction at this
time. Therefore. node ¢ may still be incident with parallel arcs at the end of each
iteration. As long as (G’ is series-parallel reducible. the parallel arcs will be removed
at a later time. Note that the short-circuit is not part of the algorithm from [44].
[43]. However, it allows for run-time improvement since we only remove parallel arcs
when necessary. Also note that the short-circuit does not affect the correctness of the
algorithm; it only changes the order of the parallel reductions.

In the context of the algorithin, the parallel reduction is implemented by removing
all parallel arcs except the first arc for a given pair of nodes 7 and j. If. after these
parallel reductions, [N~ ()| = 1 and |[N*(i)| = 1. then a series reduction is possible.
In this case. node 7 is removed from G’. along with the iucoming arc (1,7} and the
outgoing arc (i.j): arc (I, 7) is added. Nodes ! and j are added to Q via the enqueue()
operation. provided I # s.j # s.1 # {.j # { and nodes /. j are not already in Q. If
a series reduction 1s not possible. the next iteration begins and a new node selected.
Aslong as (7' is series-parallel reducible. then node 7 will be removed from the graph
in a later iteration.

Once @ becomes empty, we can check to see if the graph is series-parallel by
checking |[N']. If |N'| = 2 then the two remaining nodes must be s and 7 since s and
{ are never added to (. Any remaining arcs can only take the form of (s.t) since
G’ is assumed to be a TT-DAG. If |A(s.t)] > 1. we could perform more parallel
reductions, but this is inconsequential: G” has effectively been transformed to a single
arc by series and parallel reductions and thus. must be series-parallel reducible.

To see the correctness of this algorithm we consider the two possible results of
Algorithm 4.2. In the case that TRUE 1s returned, then we know there are two
remaining nodes in ' and. since nodes s and ¢ arc never added to (). these nodes
must be s and {. In the case where FALSE is returned, we know there are inore
than two nodes in G’, each of which has either at least two distinct predecessors

|4

53

Input: G'=(N"A"). G'isaTT-DAG. 5,1 € N'.

Output: Return TRUE if G’ is series-parallel reducible.
Step 0: Initialize by adding all nodes i € N, i # s.t to ().
for : € N do

if i #£ 5 AND i # ¢ then
Q.enqueve(i)
while Q).length() > 1 do
i — Q.pop_front()
Step 1: If possible. remove all parallel arcs with ¢ as the head node.
if IN*(i)| < 2 then
for j € N*(i) do
for k €2...|A(1.j)] do
Al — AT\ (i,)F
Step 2: If possible. remove all parallel arcs with 7 as the tail node.
if IN~(i)| < 2 then
for j € N~{i) do
for k€2...|A(y,¢)| do
AT AN\ (5.0)F
Step 3: If possible, perform a series reduction.
if N=(i) =1 AND N*(i) =1 then
j = N*¥()
[— N~(i)
A= AN\ (1)
A" — A"\ {1,1)
Al — AU (I.))
N’ — N\
if [¢ AND [# s AND/ # ¢ then
Q.enqueue(l)
if 1 ¢ @ AND j # s AND j # t then
Q.enqueue(J)

if |N'| =2 then
returtn TRUFE
else

return FALSE

Algorithm 4.2: Determining if a Graph is Series-Parallel Reducible.

(N7{i) = 2) or at least two distinct successors (N(¢) > 2). The latter point implies
that the graph cannot be reduced further, and 1s therefore not series-parallel reducible.

The finiteness of the algorithm is seen by analyzing the size of (Q and. thus.
counting the number of possible iterations of the loop. Let n = |[N'| and m = |A'].
Initially. 7 — 2 nodes are added to (). Parallel reductions do not add anv nodes to
(2, but series reductions potentially add two nodes to). Thus. the maximum size of
Q is bounded by (n — 2) + 2(n — 2) and. consequently. the algorithm is finite. The
number of nodes removed from @ will be at most (n —2)+2(n—2). There are m arcs
i A" imtiallv. Although arcs arc not added with the parallel reduction. the scries
reduction does add a single arc. However. the series reduction also removes two arcs.
for a total decrease of m by one. Therefore, the total time we spend removing arcs
from A’ is bounded by O(m). Combining this with the total time we spend removing
nodes from N and we sec the complexity of this algorithm is O(n + m).

4.3 Minimum Travel Time Distributions on Series-
Parallel Graphs

If (77 is series-parallel reducible, then the minimum travel time distribution can he
calculated according to Algorithm 4.3. This algorithm is essentially the same as
Algorithm 4.2 with the only effective modification being the addition of the sum and
the minimum functions.

Although we still check for [N7(i)| < 2 and |[NT(i)| < 2, it is of no practical
consequience since G’ is series-parallel (see Section 4.2.1). It is only included here to
lustrate the similarity to Algorithm 4.2

Since the only additions to Algorithin 4.2 are the sum and the minimum of random
variables. the calculation of P} can be achieved efficiently as long as these functions
can be implemented efficiently. Let the complexity of the sum of random variables be
denoted C and let the complexity of the minimum of random variables be denoted
M. Then the complexity of Algorithm 4.3 is O(nC’ +m2M). We assume the sum and
the minimum routines run in pseudo-polynomial time. and we analyze the complexity
of our implementation of these routines in Chapter 5.

In light of Algorithm 4.3. we have the following result, which shows that for a given
graph ('. P} is as good as any path from source s to sink ¢ in terms of expectation.

Theorem 4. Let Py represent the travel time of a path wy from source s to sink t
in a series-parallel graph G'. Then E[P}] < E[Py]| V7 € Iy where Pl is calculated
according to Algorithm 4. 8.

Proof. Algorithm 4.3 is composed of two functions: the sum and the minimum of
random variables. w, is necessarily composed of arcs that will be identified as arcs
In series or arcs in parallel by Algorithm 4.3. Therefore, to show E[P}] < E[Py]. it
is enough to show 1) E[X ;] < E[X;;] + E[X,4] for two arcs (4, 7). (4. k) in series and
2) E[Xy] € EJMIN(X};, X72)] for arcs (1. 5)'. (i.7)* in parallel.

First, when Xix = X, + X, E[Xi] = E[Xy;]+ E[X k] by linearity of expectation.

D5

Input: G'= (N, A’). (is a series-parallel TT-DAG. st € N'.
Output: P, .
Step 0: Initialize by adding all nodes ¢ € N'.i # s, 1 to ().
for alli € N do
if i £ s AND ¢ # ¢ then
Q.enquene(i)
while Q.length() > 1 do
i — Q.pop_front()
Step 1: If possible. remove all parallel arcs with ¢ as the head node.
if INT(i)] < 2 then
for all j € N*(i) do
X5 = X,Elj
for all k€ 2...|A(2.j)| do
Xy = MIN (Xi@. X))
A G
X, o X;
Step 2. If possible, remove all parallel arcs with ¢ as the tail node.
if [N~ (4)] <2 then
for all j € N~(7) do
Xji — X]:'lvz
for all k€ 2...{A(j.4)| do
X5 = MIN(X;‘,WX;,)
A A (1

if N-(1) =1 AND N*(i) =1 then
j—= NT(i)
[— N™(i)
A= A\ (i)
Al — A\ (1.4)
N — N'"\i
Xy — Xu+ Xy
A — A'u(l,)
if 1 ¢QAND I # s AND!#t then
Q.enqueue(l)
if ¢ Q AND j # s AND j # ¢ then
Q.enqueue(y)
Step 4. Remove all remaining parallel arcs from s to £.
X5 — X5,
for allk € 2...]A(s,t)| do
X5 — MIN(XE X3
A — AN (5,1)F
Py — X4

Algorithm 4.3: Minimum Travel Time Distribution on a Series-Parallel Graph.

When X;; = MIN(X]. X2). we can write the cumulative distribution function
as Fx, (¢) = Fxlll)((‘) + F,\—;.;((') - F{\—‘1J((')FX;~3((?). If we vewrite this as Fx (¢) =
F_X-ilj((-) + FX;{, (e)(1 — inlj((')). we see that Fx (c¢) > F"'}J (¢) if F/\'y]‘)((') > Fxsi((-).
and Fy (Xj;) > FXIQJ((') if FX'IJ((") < FX]‘;}(('). Another way to see this 1s to observe
that since 1’7;\-;.:),((')(] — FX:"',((')) 2 0 then Fy (c} > Fy: (¢). If we rewrite Fy, (c) =
Fxi (¢)+ Fyz (¢) = Fxa ()Fxa (b) s Fx,,(¢) = Fya () 4 Fy (0)(1 = Fys (¢)) then by
similar reasoning we have F ,\-,J((‘) > F X—;;}(('). The consequence of these observations
is that E[X;;] < E[XL] and E[X;;] € E[X2]. Therefore. we conclude that E[P] <
EPg|Vry € Iy, 4

4.4 Minimum Travel Time Distributions on Non-
Series-Parallel Graphs

Garman’s theorem (Theorem 3) provides the framework for an efficient approximation
of P, in non-scries-parallel graphs. The algorithm presented in Algorithm 4.4 is
composed of Algorithm 4.3 and Algorithm 3.1 from Chapter 3. At each iteration, the
algorithm first calls a modified version of Algorithm 4.3 to perform series and parallel
reductions on (G'. Since G’ is non-series-parallel, the modification is the removal of
Step 4. which is the final calculation of P,. After Step 1 of Algorithm 4.4. there
are two possible cases. In Step 2a. (' consists of ouly the two nodes. s and ¢, and
parallel arcs from s to 1. [’ is calculated and returned. This unplies that in the
alternative Step 2b. G’ cannot be reduced to a single arc with series and parallel
reductions. Following Algorithm 3.1, we condition on an arc. This is done by finding
and conditioning on a Type-1 or Type-2 arc (i.j). In Garman's original work, arc
(i.7) 1s conditioned on a Monte Carlo sample. In our work. we instead condition on
the value E'[X,;]. This is done for three reasons:

e In the larger context of routing, we are concerned with the overall computational
overhead. Monte Carlo sampling can be time intensive and thus, inefficient in
practical settings.

o Conditioning with E[X;;] is straight-forward.

¢ By conditioning with E[X,,], we can guarantee F[P}] < E[Py] V7 € 1. See
Theorem 5. This is the same result as with series-parallel graphs.

The finiteness and efficiency of Step 1 and Step 2a has already heen covered. Let
m = |A'| and n = |N’|. In Step 2b, m is decreased by one. Therefore, Algorithm 4.4
will terminate within a finite number of iterations. In the worse case. Step 2b must
iterate through all » nodes to find a suitable node 7. For each node i, it takes O(mn)
to find a Type-1 arc (or Type-2 arc). Once a suitable node 7 is found, O(m) arcs
are added and removed from (. Therefore, we can bound Step 2b in O(nm). As
Step 1 and Step 2 are efficient, this means Algorithm 4.4 is also efficient.

57

Input: ' = (N', A"). (G’ is a non-series-parallel TT-DAG. s.t € N'.
Output: P}
loop
Step 1. Perform as many series and parallel reductions as possible.
G’ — Call Algorithm 4.3 on G’ (without Step 4)
if |[N'| =2 then
Step 2a: If the graph is reduced. return P.
X3, X}
for all k€ 2...|A(s.1)| do
Xop MIJV(X.-#-, X:r)
Al A\ (s. 1)F
FPo— X4
return P
else
Step 2b: Find a Type-1 arc or a Type-2 arc and condition on it.
for all i € N' do
if [IN*(1)] > 1 AND [N~ (1)} =1 AND Vj € N*(1),
l— N7(i)
for all (i.7) € A*(4) do
A — A'U (L))
Xy — E[Xul+ Xy
Al — A\ (i 7}
A= AN\ (1.4)
break
else if [N"(#)] =1 AND [N (i) > 1 AND Vi € N~ (i),
7 — f\H—(’I:)
for all (/.¢) € A~ (i) do
A AU (L)
)(}j —)('17' + E[X,J]
Al — A"\ (1)
A — A"\ (i,))
break

N7(j)| =1 then

Nt =1 then

Algorithm 4.4: Minimum Travel Time Distribution on a Non-Series-Parallel Graph.

(a) The Resulting Graph.

Arc Travel Time
(5*.j)l E[Xﬂ} +X1j
(57)2 X.s-]'
(s.t) | E[Xu]l+ Xy
(J-1) | Xy

{b) Arc Travel Tiine Ran-
dom Variables.

Figure 4-2: The Wheatstone Bridge (Figure 3-1) after one iteration of Algorithm 4.4.
Figure 4-2(a) displays the resulting graph and Table 4-2(D) lists the corresponding
travel time random variables,

Although the correctness of this algorithm generally follows from Garman's work,
there is one difference in our implementation. As we noted in Section 4.2.1. we short-
circuit the parallel arc removal when [N*(i)| > 2 (or [N~ (i)| > 2). This effectively
changes the order of parallel reductions from Garman's original algorithm. However,
it does not change the resulting minimum travel time distribution P}. To see this.
consider a node ¢ with two outgoing parallel arcs. (4. 4)!. (1. 4)%. If these parallel arcs
are removed before Step 2. and an arc (/.1) is selected as a Type-1 arc in Step 2,
Algorithm 4.4 will add a new arc (1. j) with X;; = E[X,] + MIN(X};. X72). If these
parallel arcs are not removed before Step 2. and an arc (1,7) is selected as a Type-1 arc
in Step 2. Algorithm 4.4 will add two new arcs, (1. j)'. (1. j)? with X}; = E[X;]+ X},
and X7 = E[Xp] + X7. When arcs (I, j)%. (I j)* are removed later with a parallel
reduction. the resulting arc (/, 7) will have X;; = MIN(E[X;] + X} B[Xy] + X3).
We know that E[X;] + MIN(X};. X7) = MIN(E[Xy] + X} E[X5] + X?) (see
Section 2.4.2). Therefore Xj; is the same even if we short-circuit the parallel arc
removal in Step 1. A similar argument holds for Type-2 arcs.

In the case of the Wheatstone Bridge in Figure 3-1, Algorithm 4.4 identifies arc
(5.4) as a Type-1 arc, and removes it to obtain the graph in Figure 4-2(a). In this
new graph, the arc travel time random variables have been modified to the values in
Table 4-2(b). After conditioning on arc (s,), the graph in Figure 4-2(a) is now series-
parallel reducible. In the next iteration, P}, will be calculated and the algorithm will
terminate.

As with Algorithm 4.3, we have the following result for Algorithm 4.4:

Theorem 5. Let Py represent the travel time of o path 7y from source s to sink t
a non-series-parallel graph G’ Then E[P%] < E[PylV7y € Ly where P}, is calculated
by Algorithm 4.4.

Proof. Algorithm 4.4 is composed of two functions: the sum and the minimum of
random variables. and the operation of conditioning a Type-1 ar Type-2 arc on its
expected value, 7, is necessarily composed of arcs that will be identified as arcs in
series, ares in parallel. Type-1 arcs, or Type-2 arcs. Therefore. to show E[Py] <
E[P,). it is enough to show 1) E[Xi] < E[X;] + E[X;] for two ares (i,), (. &)
in series and 2) E[X,,] € E[MIN(X}, X2)] for arcs (i.4)".(7.7)* in parallel 3)
E[Xy] < E[Xu] + E[Xu]. (i.k) € AT() for all Type-1 arcs (I.7) and 4) E[Xyy] <
E{Xw] + E[X;;], (k.i) € A7(i) for all Type-2 arcs (i.j).

In the proof of Theorem 4. we show 1) and 2). To show 3), we note that for a
Type-1 arc {I,i) and Y(i. k) € AT(i). we replace arcs (1,4). (i. k) with a new arc (1, k).
and we set X = E[X;] + Xy, Thevefore, E[Xy] = E[Xy] + E[Xi). A similar
approach for Type-2 arcs can be used to show 4). O

Note that with a small modification of Algorithm 4.4 we can create upper and
lower bounding distributions for the minimum travel time distribution. Let UV By
be an upper-bound for the possible realizations of a Type-1 arc (I.¢) and let UB;;
be an upper-bound for the possible realizations of a Type-2 arc (4. 7). If we modify
Algorithm 4.4 so that X = U By + Xy for all Type-1 arcs (I,1), and X;; = Xy +U By,
for all Type-2 arcs (i. 7). then the resulting distribution P}, is an upper-bounding
distribution for the minimum travel time distribution. Similarly, let LBj; be an lower-
bound for the possible realizations of a Type-1 arc (l.7) and let LB;; be an lower-
bound for the possible realizations of a Type-2 arc (i, j}. If we modify Algorithm 4.4
so that X = LBy + X, for all Type-1 ares (1.7), and X;; = Xj; + LB, for all Type-2
arcs (i.7). then the resulting distribution P is a lower-bounding distribution for the
minimum travel time distribution.

60

Chapter 5

Practical Implementation and
Numerical Issues

In this chapter. we address two issues related to the implementation of Algorithin 2.5.
First, we discuss methods to generate an acyclic network from a possibly cyclic net-
work. This 1s necessary to use our routing procedure in practical scenarios. Second,
we consider the efficient numerical tmplementation of the sum and the minimum func-
tions. Efficient smplementations of these functions are necessary for the calculation
of minimum travel time distributions on large networks.

5.1 Two-Terminal Directed Acyclic Graph Gener-
ation

The minimum travel time distribution algorithms presented in Chapter 4 address
Step 2 of Algorithm 2.3. One of the requirements of these algorithms is that the
input graph ' is a T7T-DAG.

In most practical applications, such a T7-DAG (' needs to be generated from
a directed graph G. which is the network model of the application. This is Step 1
of Algorithm 2.3. In each execution of Algorithm 2.3, a TT-DAG G’ needs to be
generated for cach j € N*(i). However. depending on the method used to generate
G'. it may be possible to generate these graphs a priori. This is the approach we take
in this thesis.

In [15], it is observed that generating such a TT-DAG m probabilistic networks
1s not a trivial task. A natural approach to generating (' is to remove arcs from
until no cycles exist in G. Intuitively, such a graph reduction would remove all arcs
that have no probability of being used to reach the sink ¢. However, determining the
probability that an arc (i. j) is used to reach a sink is not obvious. nor it is clear
what an optimal acyclic graph generation entails. or even if such a graph generation
exists.

Given these observations and a source s and sink £ our goal is to generate a
TT-DAG (& from G where (' is composed of all arcs that have some potential of
being used to travel from source s to sink ¢. We use the informal term potential to

61

Figure 5-1: An Example Network.

emphasize that we do not formally calculate a probability that an arc will be used. As
suggested in Section 3.5, one approach is to take some union of the k shortest simple
paths from source s to sink r. We do not use this approach for two reasons. First, it
is not clear how to appropriately select k. Second. taking the union of simple paths
does not guarantee the resulting graph will by acyclic.

Instead. our approach is to perform the generation via an algorithm similar to
Dial’s (see Section 3.5). In an analogous fashion to Dial. we present our goals for
such an algorithm:

1. The algorithm should include all arcs (7, j) that have a potential to be used to
tyavel from source s to sink t. This implies there should be no cycles in G’ (see
the assumption in Section 2.3.3).

2. The algorithm should attempt to include as many ares as possible in G'. Since
it is difficult to say which arcs have no potential to be used, we attempt to
include as many arcs as possible.

3. Consider a 77-DAG G from source s to sink t with i € N'(G' = (N'. 4’)). An

application of the algorithm from node 7 to sink ¢ should generate a graph 7"

such that G” is a subgraph of G".
4. The algorithm should avoid path enumeration.

. The algorithm should run efficiently.

(]

If the graphs generated by an algorithm with these goals become too complex, an
additional goal for the algorithm could be to generate series-parallel graphs or graph
components. In this chapter, we discuss four different algorithms and we illustrate
the algorithms on the graph in Figure 5-1.

5.1.1 Simple Paths

For a given source s and a sink t, a simple approach to generating a 77-DAG G' Is
to fix the arc travel times to x;; = E[X,;] and run a one-to-one fastest path algorithm

62

from source s to sink t. (&' can then he constructed by adding all arcs in the fastest
path from source s to sink {. Oune of the primary benefits of this approach is that G
can be generated rapidly. Another benefit is that P, can be calculated exactly and
efliciently since G’ is composed of arcs in series from source s to sink 7. At the same
time. the primary problem with this approach is that. since (7 is only composed of a
simple path. it excludes other ares that might have some potential of being used in
the tastest path. We do not illustrate this algorithm on Figure 5-1 since, for a given
source s and sink t. G' can be determined by inspection.

5.1.2 Dial’s Efficient Paths

In Section 3.5, we discuss Dial's algorithm for the assignment of traffic to multiple
(s.1)-paths. One key aspect of the algorithm is the definition of an efficient path.
Dial defines an efficient path as a path where every arc (4, 7) has node i closer to
source s than node j and node j closer to sink t than node i. For this thesis. the
most important aspect of Dial's algorithm is that it generates a 77-D.AG subgraph
7 of G where each arc in G’ is part of at least one efficient path from source s to
sink ¢. We do not consider the final step of Dial’s algorithm (the assignment of traflic
to arcs).

Algorithm 5.1 presents Dial’s algorithm as we apply it to probabilistic networks.
In this case, we redefine an efficient (s, 1)-path as a path where, for every arc (i,).
the expected travel time from source s to node 7 is less than the expected travel time
from source s to node j, and the expected travel time from node j to sink ¢ is less than
the expected travel time from node 7 to sink £. In this thesis, we discuss some of the
problems and ambiguities associated with the use of expected travel times. However,
for the algorithms in this chapter, the use of expectation is not as problematic since
we only usc expectation to generate a 7TT-DAG G’ from which we calculate P}. In
other words. we onlv use expected travel time to determine a subgraph G’ of G whose
arcs have some potential of being used.

Initially. all arc travel times are set to their expected values. Using these values.
an all-to-one fastest path algorithm is executed in Step 2 to compute a fastest path
tree oriented toward sink . Let E[Dj;] be the expected travel time from node 7 to
sink £. In Step 3. a one-to-all fastest path algorithm is executed to compute a fastest
path tree from source s. Let F[D] be the expected travel time from source s to
node 7. In Step 3. the likelihoods of each arc are calculated. When an arc meets our
definition of being efficient, we assign it a likelihood of 1. This is suggested in [7] for
the case when we are only interested in efficient paths (and not traffic assignment).

In the final step. the arc weights are calculated. Arcs with non-zero weights are
added to G’. In the implementation, Q is a queue that contains the nodes of (7 in
increasing crder of the expected travel time from source s. At each iteration. a node ¢
is taken from the front of () and each arc (i.j) € A*(i) is considered. If 7 = 5. w(i, 7)
is set to the likelihood L(3, j). If ¢ # s w(i.) is calculated iteratively according to
Dial’'s algorithmn (see Section 3.5). Finally, if w(i, j) > 0 then arc (i.7) is added to
G

We observe that Algorithm 5.1 performs a finite number of steps since we only

63

Input: G = (N.A). s,te N.
Output: (/= (N" A). ' is a TT-DAG from s to t.
Step 1. Initialization.
for all (¢.j) € A do
i — E[Xy)
Step 2: Run an all-to-one fastest path algorithm to ¢ using 1,;.
Step 3: Run a one-to-all fastest path algorithm from s using ;.
Step 4. Calculate the likelihoods.
for (i.j) € Ado
if E|Dy) < E[D,,] AND E[D;,] < E[D] then
L(i.j) —1
else
L(i.j) =0
Step 5: Calculate the weights and create (7.
N 1}
A g
() — Sort i € N Dby increasing values of E[/1),;]
while Q.length() > 1 do
i — Q.pop_front()
for (i,7) € A*(¢) do
if i # s then
w(i.j) < 0
for (u.i) € A~ (i) do
w(t. j) = wli.j) +w(ui)
w(i.j) — Lz,) -w(i. j)
else
w(i, j) — L{i, §)
if w(¢.j) > 0 then
N — N
N — N'uUy
A e AU (1, 7)

Algorithm 5.1: Dial's Algorithm as Applied to Probabilistic Networks.

64

{(a) Subgraph Generated from Node 3 to Node 10.

{(b) Subgraph Generated from Node 5 to Node 10.

{¢) Subgraph Generated from Node 7 to Node
10.

Figure 5-2: The Subgraphs Generated by Algorithm 5.1 on Figure 5-1 for a User
Located at Node 4 destined for Node 10.

remove nodes from (). The running time of Algorithm 5.1 is dominated by the
complexity of the fastest path algorithms. If FP is the complexity of the fastest path
algorithm that is used. then the complexity of Algorithm 5.1 15 O(FP).

For completeness. we verify that G’ is a T77T-DAG from source s to sink (.

Lemma 4 (Directed Acyclic Graphs with Algorithm 5.1). Algorithm 5.1 gen-
erates a TT-DAG from source s to sink t.

Proof. To show this, we need to show that G” is acyclic and that it only has a single
source s and sink . By the specification of Algorithm 5.1, every arc in G’ will be
efficient such that E[Dy] < E[Dy;] and E[Dy] < E[D;]. Therefore, every path in G
is also efficient and. by definition, cannot contain a cycle. No arc (i, s) will ever be
added to G’ since E[Dy] > E[D,,] = 0. Similarly, no arc (z, 7) will ever be added to
(' since E[Dj;] > E[Dy] = 0. Therefore, [N~ (s)] = 0 and [N™(#)| = 0. O

To illustrate the generation of G’ with Algorithm 5.1, we consider the network
depicted in Figure 5-1. Suppose a user is located at node 4 with a final destination
of node 10. According to Algorithm 2.3, we need to generate three directed acyclic
graphs: one for each 7 € NT(¢). Therefore, we run Algorithin 5.1 three times with
source-sink pairs (3. 10). (5. 10). and (7, 10). In practice. we would naturally omit the
adjacent node where the user just came from. The resulting graphs alter executing
this algorithmm are depicted in Figure 5-2(a) (node 3). Figure 5-2(b) (node 5), and
Figure 5-2(c) (node 7).

We can modify the definition of Algorithm 5.1 in two ways. First, Dial discusses
the removal of the condition that E[D,,] < E[Dy]. This produces a larger graph
G’ and there may be more (s.1)-paths, but we can no longer gnarantee that 7 will
be a TT-DAG from source s to sink . G will still be acyclic, but there may be
multiple sources and sinks. Therefore, we would also need to change Algorithm 5.1
to recursively remove any extra sources and sinks.

Another modification might be to allow arcs with E[Dy] < E[D,;] and E (Dj] <
E[Dy)]. This would also produce a larger graph G’ but we can no longer guarantee G’
is acvclic (or that there will be a single source and sink). We would need to modify
Algorithm 5.1 to account for these problems.

5.1.3 Fastest Paths Tree

It is hard to say which arcs have no potential in being used on the fastest path from
source s to sink 7. In a deterministic network, Dial attempts to address this by
introducing the notion of an efficient path. In the previous section. we alter Dial’s
definition so it applies to probabilistic networks.

As stated, one of our goals in the construction of G’ is to include as many arcs
as possible. The requirements for an arc to be included in G’ by Algorithm 5.1
are relatively strict. For comparative purposes, it is useful to consider other, more
permissive, methods for the generation of a 77-D.AG in a probabilistic network.

It seems like it would make sense to include every node i € N in a simple path
from source s to sink t. Intuitively, this would ensure a large number of paths and,

66

consequently. include a large number of arcs in G'. If we set the (positive) arc travel
times to the expected travel times as before, it also seemns like this can be accomplished
by taking the union of the fastest path tree from source s with the fastest path tree
to sink £. In this case, we would have a path from source s to every node « € N. and
a path from every node ¢ € N to sink . However. just taking the union of these two
trees does not guarantee the resulting graph will be a 77-D.AG. Furthermore. the
arcs selected would still have to meet relatively strict requirements.

Instead. we proceed as follows. Rather than calculate the one-to-all fastest paths
from source s. we only calculate the all-to-one fastest paths to sink /. This ensures
that every node i € N has a path to sink 7. G’ is iuitialized to include the fastest
paths tree to t. We want to add as many additional arcs to G provided that G’
remains acyclic. In particular. since it is difficult to determine which arcs have no
potential. we explicitly ignore the characteristics of the travel time on any additional
arcs. We also need GG’ to have a single source and sink.

One way to achieve this is to assign a topological order to the nodes in GG’ using
the fastest paths tree to sink t. Once we have a topological ordering of the nodes, we
can add all arcs that obey the topological ordering and still guarantee (7 is acyclic.
We ensure (7' has a single source by recursively removing all other sources.

The algorithm 1s presented in Algorithm 5.2. Like Algorithm 5.1. Algorithm 5.2
15 imitialized by setting all arc travel times to the corresponding expected arc travel
times. This is followed by the generation of the fastest path tree to sink t using an
all-to-one fastest path algorithm. Let suce(i) be the successor node of node ¢ in the
expected travel time fastest path tree oriented toward sink ¢ (suce(i) is closer to sink
t than node 7). We assign an order to each node based on a “breadth-first-walk™ of
the fastest path tree to sink f. Using this topological ordering, we add all arcs (i. 7)
such that order(i) < order(j). where order(i) is the topological order of node 7. We
know that there can only be one sink in G’ since, by the construction of the fastest
path tree to sink ¢. all nodes ¢ # { must have |[N7(¢)| > 0. We recursively remove
all sources by removing all nodes ¢ # s with [N~ (¢)] = 0. @ is a generic queue data
structure.

As hefore, we consider the network depicted in Figure 5-1 with a user at node
4 destined for node 10. According to Algorithm 2.3, we need to run Algorithm 5.2
three times with source-sink pairs (3. 10). (5,10), and {7.10). The resulting graphs
tor node 3. node 5. and node 7 are presented in Figure 5-3(a), Figure 5-3(b), and
Figure 5-3(¢) respectively.

Algorithm 5.2 generally includes more arcs than Algorithm 5.1. However. the
key part of Algorithm 5.2 1s the topological ordering. The topological ordering is
somewhat arbitrary. and different topological orderings can have an impact on the
structure and size of 7.

We observe that since every step of Algorithm 5.2 is finite. the algorithm must also
e finite. The running time of this algorithm is again dominated by the running time
of the fastest path algorithm. If F'P is the complexity of the fastest path algorithm
that is used. then the complexity of Algorithm 5.2 is O(F P). However, we note that
a useful property of this algorithm is that the specification of the source node s is
only necessary for Step 6. Therefore, if the results of Step 1-Step 5 are cached, G’

G7

Input: G = (N, A). s, €N.
Output: G'= (N A). (' is a TT-DAG from s to .
Step 1: Initialization.
for all (i.j) € A do
Lig < E[,X,‘J‘]
Step 2: Run an all-to-one shortest path algorithm to ¢ using ;.
N «— N
A —{}
Step 3: Add all arcs in the fastest path tree to t to G/ = (N, A").
for alli € N do
J «— succ()
A AU F)
Step 4: Create a topological ordering for ¢ = (N', A").
@.engueune(l)
order_number «— |N'|
order(t) = order _number
while Q.size() > 1 do
i — Q.pop_front()
for all j € N~ (i) (in ') do
order _numbcr «— order _number — 1
order(j) = order_number
Q.enquere(y)
Step 5: Add any arcs from G that satisty the topological order.
for all (i.j) € Ado
if order(i) < order(yj) then
A — AU (i])
Step 6: Recursively remove all nodes in G" with [N~ (¢)| =0, 7 # s.
Q.clear()
for alli € N\ s do
if [N (i)| =0 then
Q.enqueue(i)
while Q.size() > 1 do
i« Q.pop_front()
for all j € N*(i) do
for ke 2...]A(i,j)| do
A AN (i)k
if 7% 5 AND |N~(j)| =0 then
Q.enqueue(y)
N — N'\i

Algorithm 5.2: Fastest Paths Tree.

G8

{a) Subgraph Generated from Node 3 to Node 10.

(b) Subgraph Generated from Node 5 to Nade 10.

{¢) Subgraph Generated from Node 7 to Nade 10.

Figure 5-3: The Subgraphs Generated by Algorithm 5.2 on Figure 5-1 for a User
Located at Node 4 destined for Node 10.

can be calculated in linear time for every post-initial execution of Algorithm 5.2
For completeness. we also verify that Algorithm 5.2 does produce a T7-DAG G’
from source s to sink 7.

Lemma 5 (Directed Acyclic Graphs with Algorithm 5.2). Algorithm 5.2 gen-
erates a TT-DAG from source s to sunk t.

Proof. A directed graph G’ is acyclic if and only if there exists a topological ordering
of . Initially. Algorithm 5.2 creates a tree to sink t. Any tree is acyclic and.
thus, has a topological ordering. By only adding arcs to the free that obey the
topological ordering. we cannot create a cycle. Therefore, the graph G’ generated
by Algorithm 5.2 must be acyclic. To see the graph has two terminals, it suffices
to note that all nodes i with [N~ ()| = 0 are recursively removed from ’. By the
construction of the fastest paths tree, the only node ¢ with |[N*(¢)| = 0 is the sink
L. O

5.1.4 More on Efficient Paths

The arcs included by Algorithm 5.1 need to meet relatively strict requirements. Algo-
rithm 5.2 is more permissive and attempts to include more arcs. The main problem
with Algorithm 5.2 is that the structure of the resulting 77-DAG G’ depends on
the precise topological ordering. In this section, we consider another approach. The
intent of this third approach is to generate a T7-D.AG G’ that is larger than the
TT-DAG produced by Algorithm 5.1. We also want to avoid the arbitrary nature of
the topological ordering in Algorithm 5.2.

In [7], Dial discusses the removal of E[D ;] < E[Dy] in the definition of an efficient
path. In a similar fashion. we consider the removal of the condition, E[D;] < E[Dy].
In other words, an arc (i. j) will only be declared efficient if node jf is closer to the sink
t than node i in expected travel time. In general, more arcs will be efficient because
this criteria represents a relaxation of the previous efficient path definition. If we use
Algorithm 5.1 with this new criteria, we cannot guarantee the resulting graph will be
a TT-DAG since it is possible to have multiple sources. However. bv adding arcs in
an appropriate manner, we can “grow” a 77-DAG from source s to sink £.

In addition to including arcs with E[Dj] < E[D;,]. consider the special case of
adding the arc (i.5) when E[D;] = E[D,]. Algorithm 5.1 will not add arc (. j) to

Y. but should it? E[Dy] = E[Dj] implies that sometimes the actual travel time
from node i to sink { will be better than the actual travel time from node j to sink
t. and other times the actual travel time from node ¢ to sink ¢ will be worse than the
actual travel time from node 7 to sink £. In other words, it seems that arc (i, j) has
some potential to be used in a fastest path from source s to sink ¢. We note that, in
practice, this special case of E[D;y] = E[Dy] is unlikely to occur. However, we include
it here because E|D;] < E[Dy] is a relaxed condition compared to E[Dj] < E[Dq]
and because, even though less likely, F[D,,| = E[D,] still can occur.

Using this intuition, we formally redefine an efficient path to be a path where each
arc (i.) in the path satisfies the criteria E[Dj,] < E[Dj]. There are, however, some
subtleties in this definition. The same logic that we use to justify the addition of arc

70

(4,7} when E[D;] = E[Dy], also justifies the addition of arc (j.7) (it it exists in G).
If both arc (i.j) and arc (j.+) are added to G”. then G’ will not be a T7T-DAG since
G’ will contain a cyvcle. Therefore. we need to further differentiate hetween arc (4. j)
and arc {j.7). At the same time. we observe that this differentiation might become
quite complex as we will have to compare more and more characteristics of the arcs.
Furthermore. depending on the level of detail and tvpe of comparison. there is still
some chance that arc (4, 7) will be considered an equal of arc (j.7). In such a case,
we resort to a arbitrary selection of one of these arcs.

In this third approach to generating a 77-DAG. we perform the differentiation
by caleulating an additional metric H{7) for each node i. For a given sink t, H (i) is
the number of arcs from node 7 to sink . Using H (7). we redefine an efficient path.
Au are (7,7) is efficient if E[Dy,] < E[Dy] or E[Dy] = E[Dy) with H(j) < H(i).

While this latter condition is still somewhat arbitrary, we use it for three reasons:

e Given two paths with equal expected travel times. in some situations we can
make the case that a user will prefer the path with fewer arcs. For example,
in a transportation network, a path with fewer arcs (roads) will have fewer
nodes (intersections). Though we do not explicitly model delays at nodes, fewer
intersections means fewer influences on travel time (such as delays related to
merging).

e Tle purpose of defining efficient paths is to generate a “reasonable”™ 77T-DAG

7. (' is one component of a larger routing procedure. We should not make
the generation of G’ overly complex or time-consuming. With random travel
times. there is an almost infinite number of ways to compare arc (7. j) with arc
(7.1). A useful property of 71(z2) is that we can determine H(¢) V¢ € N in linear

time with a Breadth-First-Search (BFS).

e /(i) is only used in a special case. In practice, it 1s unlikely that E[D,;] will be
exactly equal to E[D,].

If E|D;| = FE[D;] with H(j) = H(%). then we arbitrarily judge arc (i, j) and arc
(7.4) by an ordering of the node names. For example, if the node names are numeric
with i = 4.7 = 5 and E[Dy] = E[Dy] with H(j) = H(:). then we add arc (4,5)
rather than arc (5.4).

Grven these observations. Algorithm 5.3 implements our redefinition of an efficient
path. Though it is similar to Algorithm 5.1. Algorithmn 5.3 “grows” a T7-D.AG from
source s and does not calculate arc likelihoods L(z, 7). In the first step, E[D;] is
calculated for each ¢« € N. Similarly, in Step 2. H(/) is calculated for each 1 € N.
Based on onur redefinition of an efficient path. there are three ways to add an arc (4. 7)
to G'. First. we include arcs (4, j) with E[Dj] < E[D;] (node j is closer in expected
travel time to sink ¢ than node 7). Second. in the special case of E[D;,] = E[D;].
we include arc (4.) if H(j) < H{i). Third, if E[D;] = E[Dy] and H(j) = H{i). we
arbitrarily declare arc (i, j) to be efficient if the node name of ¢ precedes the node
name of 7 in some type of ordering. In the implementation in Chapter 6, the node

71

names are numeric so we will include arc (i. j) it E[D;,] = E[Dy], H(j) = H(¢) and
1< .

We add arcs to G’ by starting at source s and “growing” G’. With each iteration.
the first node i in the queue Q is removed and all arcs (i.5) with (i.j) € A*(i) are
considered for addition to 7. If an arc (7. j) meets any of the three criteria for being
considered efficient, (7, 7) is added to 7. Node j is only added to) if it has not been
placed in (Q before. This 1s accomplished by setting the marked flag for each node.
Note that since) is a queue. G’ is constructed in a breadth-first manner.

Since each node i is added to only once and the calculation of H (i) takes O(m)
time with a BFS. the complexity of this Algorithm 5.3 is dominated by the complexaty
of the fastest path algorithm. Therefore, Algorithm 5.3 runs in O(FP).

We also ensure that Algorithm 5.3 produces a T7-DAG from source s to sink .

Lemma 6 (Directed Acyclic Graphs with Algorithm 5.3). Algorithm 5.5 gen-
erates a TT-DAG from source s to sink t.

Proof. Suppaose a cycle (7 is created when arc (i,7) is added to G'. Then there cxists
a path 7;; from node j to node i. There are three ways to add arc (4.) to G’ with
Algorithm 5.3.

In the first case. suppose arc (4,7) is added to G’ because E[D;] < E[Dy].
Each arc (k.I) € 7, has the property that E[Dy] < E[Dp]. which means that
E[D4} < E[Dj). But this is not possible since we assumed arc (i.j) was added
because E[D;;| < E[Dy].

In the second case, suppose arc (7, 7) is added because E[D;,] = E[D;] and H(j) <
H (). It must be the case that each arc (k.l) € 7; has the property that E[Dy] =
E[Dy,). Tt must also be the case that each arc (k1) € m; has the property that
H(l) < H(k). This means that H(z) < H(j), but this is a contradiction since we
assumed arc (7, j) was added because E{Dy] = E[Dy) and H(j) < H(7).

In the third case. suppose arc (i, j) is added because E[D;,] = E[Dy]. H(j) = H(1)
and ¢ < j. It must be the case that each arc (k1) € 7 has the two properties
E[Dy] = E[Dy] and H(k) = H(l). It must also be the case that each arc (k.[) € 75,
has the property that & < . This means that j < 4, but this is a contradiction since
we assumed arc (i, j) was added because E[Dy] = E[Dy]. H(j) = H(i) and ¢ < j.

Since all three cases have contradictions, our assumption that a cycle (7 exists is
incorrect and G/ must be acyclic. To see there are only two terminals, it is enough to
observe that (&’ is constructed from source s to sink 1. O

As before, we consider the network depicted in Figure 5-1 with a user at node
4 destined for node 10. According to Algorithm 2.3. we need to run Algorithm 5.3
three times with source-sink pairs (3,10), (5.10). and (7.10). The resulting graphs
for node 3, node 5, and node 7 are presented in Figure 5-4(a), Figure 5-4(b). and

Figure 5-4(c) respectively.

72

Input: == (N.A). s.t € N.
Output: ¢/ = (N A"). (¢/isa TT-DAG from s to (.
for all (+.5) € A do
Xy E[J\’,j}
Step 1: Run an all-to-one fastest path algorithm to (using a;.
for all (i.j) € Ado

— 1

i
(o

Ty
Step 2: Run an all-to-one fastest path algorithm to f using r;;.
N {)
A)
for all+ € N do
marked(i) = FALSE
Step 3: Add all (i.j) € At (¢) where arc (4,) is efficient.
Q.engqueve(s)
marked(sy = TRUE
while Q.length() > 1 do
i Q-pop-front()
for (i.7) € A*(?) do
if E[D;] < E[Dy] then
N — N Ui
N — NUy
Al — AU g)
if marked(j) = FALSE then
Q.enqueve(y)
marked(j) = TRUE
else if £[D;] = E[D;] AND H(j) < H(i) then
N «— N'U«
N — N'Uj
A — AU (e])
if marked(y) = FALSE then
Q.enqueue(y)
marked(j) = TRUFE
else if E[D;| = E[Dy] AND H(j) = H(i) AND ¢ < j then
N — NuUi
N — N'Ujy
Al — AU (4, 4)
if marked(j) = FALSFE then
Q.enqueue(y)
marked(j) = TRUFE

Algorithm 5.3: More on Efficient Paths.

(a) Subgraph Generated from Node 3 to Node 10.

(b) Subgraph Generated from Node 5 to Node 10.

(¢) Subgraph Generated from Node 7 to Node
10.

Figure 5-4: The Subgraphs Generated by Algorithm 5.3 on Figure 5-1 for a User
Located at Node 4 destined for Node 10.

5.2 Numerical Routines

The second problem this chapter addresses is the implementation of numerical rou-
tines to perform the sum and the minimum of random variables. The importance
of efficient implementations cannot be overstated: these routines will be repeatedly
executed and, aside from our assumptions. cannot assume any special characteristics
of the random variables. Before these routines can be addressed. we need to consider
how to discretely represent continuous random variables. Recall that we model arc
travel times as continuous random variables.

5.2.1 Random Variable Representation

It is not clear how to represent random variables such that functions of random vari-
ables can be repeatedly performed in a time and space efficient manner. Interestingly.
in the research reviewed, Martin [26] appears to be the only one to explicitly con-
sider this question. His approach is to approximate probability density functions with
polvnomial functions. This is similar to the PERT/CPM approach of using the bheta
distribution with optimistic. pessimistic. and average value parameters.

There are three issues to address in the representation of random variables:

o We must decide what aspect of the random variable to characterize. For exam-
ple, we can characterize a random variable as a probability density function. as
a cumulative distribution function, or as various statistics. Naturally, using the
probability density function or the cumulative distribution function allows us to
completely represent a random variable. In this thesis, we use the probability
density function.

e Second, once we have decided on which aspect to characterize, we must de-
cide how to represent it. For example, we can represent a probability density
function with Martin's polynomial representation. a more general polyvnomial
representation. or symbolically. A fourth method is to use a pair of arrays.
In this case, one array consists of the possible realizations of the random vari-
able, while the other array consists of the corresponding densities. The actual
probability density function can then be reconstructed with interpolation.

e Third. we cannot develop a representation without an understanding of several
numerical algorithms. This is because the representation determines which nu-
merical algorithms can be used and. conversely. the arpuments to the numerical
algorithms determine how the random variables can be represented. For exam-
ple, if each random variable is characterized by its probability density function,
we will need to perform an integration to obtain the cumulative distribution
function. Similarly, if cach random variable is characterized as a cumulative
distribution function, we will need differentiation to get the probability density
function. Of course, we could avoid integration and differentiation altogether
by storing both the density function and distribution function. Numerical inte-
gration and differentiation routines typically take functions as arguments.

T

5

A final consideration is that our methods should be able to be used on-line. In
such a situation, rather than knowing the arc travel time distributions a priori. we
might want to estimate the arc travel time distributions with values that are observed
during the course of operation. By definition. probability density estimators take an
array of sampled values as Input.

Given these observations, our solution is to use an approzimate random wvariable to
discretely represent a continuous random variable. An approximate random variable

with p possible realizations is composed of an ordered array x = [w) 7y ... T,
Ty < 1y < ... < a, w € RY Y€ {1,....p}, and the array y = [y1 y2 -],
y; € R U {0} Vi € {1,...,p}. Furthermore. for i € {1.....p — 1}, we assume that

the distance between any two consecutive elements ;. ;41 in x 15 the same.

In this representation. X is an array of possible realizations of the random variable
and y is an array of the corresponding densities. Note that we do not assume that
we necessarily know the density function fx(z); we just have the outputs y = fx(x).
We can construct fx(x) by interpolating over x and y. In other words. for a random
variable X, we represent X as:

|:Xj|_|:]‘1 e'I'/,}N[X _I: .y Iy Ly
yi lwm w2 o oy x| | Sxle) Sx(xe) oo fx(xy)

For the complete implementation, we propose the data structure in Table 5.1. In
addition to the two arrays mentioned. the data structure also records the finite min-
imum and maximum values for x and y (denoted min(x). max(x). min(y). max(y)).
Under the assumptions in Chapter 2, we have ¢ = min(x),b = max(x). This means
we assume y; = 0 Vr; ¢ [min(x), max(x)]. Strictly speaking, it is not necessary
to record min(x) and max(x) since x is ordered and, therefore, min(x) = z; and
max(x) = z,. However, for clarity in presentation. we include min(x) and max(x) in
the data structure.

We also define the scalar d(x) = m’“"/}%”(x) as the anterval width. Since we
assume that the distance between any two consecutive elements r;, x4, in X is the
same. 6(x) is 244, — 2; Vi € {1....,p— 1}. Intuitively. §(x) represents how “finely”
a random variable is represented. In our implementation, the number of possible
realizations p of a random variable depends on how the random variable is created.
For each arc travel time random variable X;; that is defined as part of the network
model, p is assumed to be given. In this case, the choice of p depends on a variety of
factors including the interpolation routine that is used. the desired accuracy of the
approximation of fx, {x;;), and the computational resources that are available. The
other way we create a random variable is as the result of the sum or the minimum of
random variables. In this case, p is determined by the number of possible realizations
of each argument to the sum and minimum routines. Note that this data structure
applies to univariate arc travel time random variables. These ideas extend naturally
to multivariate random variables.

For the sum of random variables. this array-based approach allows for the use
of several fast convolution algorithms which are primarily taken from the field of

76

Type | Data Comnient

array | X The array of possible realizations

array |y The aray of densities

scalar | min(x) | The finite minimum of all possible realizations
scalar | min(y) | The finite minimum of all possible densities
scalar | max(x} | The finite maximuimn of all possible realizations
scalar | max(x} | The finite maximum of all possible densities
scalar | §(x) The interval width

Table 5.1: Data Structure for a Univariate Random Variable X.

signal processing [29]. Two efficient algorithms include direct convolution and Fast
Fourier Transform-hased convolution. The minimum of random variables is not as
well-researched as convolution. and we resort to an efficient calculation based on the
definition of the minimum. With two random variables. the resulting equation in-
volves the multiplication of the density and distribution functions (see Section 2.4.2).
Numerical integration and interpolation are two fundamental routines that are re-
peatedly used in our implementation of the sum and minimum functions.

5.2.2 The Numerical Sum of Random Variables - Convolu-
tion

We consider two approaches to convolution using the data structure in Table 5.1.
The first approach uses a linear time-invariant (LTT) filter to implement a direct
convolution. In the second approach. we take the characteristic function of each
random variable and use Fast Fourier Transforms. A third approach would be to use
the definition of the sum of random variables and convolution explicitly. However.
we do not pursue this approach as the LTI filter approach is very similar in terms of
complexity, and faster in practice.

Random Variable Scaling

Using the data structure in Table 5.1. we say two random variables A, B are on the
same scale if

a(x) = §(xFh
max(x?) = max(xP)
min{x) = min(x'®)

where the superscript () denotes the random variable that the data structure refers
to. In other words, for the random variables A and B to be on the same scale.
then they have the same range of realizations with the same interval width. Note
there is no reference to the corresponding density values y, y® in our definition

77

of scale. This means that if 4 and B are on the same scale, it is not necessarily
the case that y.fA] equals y_i(B)A By setting A and B to the same scale before we
convolve the corresponding density functions. we can simplify the operations required
for convolution.

Algorithm 5.4 is the scaling routine that is run before convolution. First. it cal-
culates &, the interval width of each random variable after being scaled. In Algo-
vithm 5.4. §(x4)) and 8(xB) are each set to the larger of §(x!V)) and d(x'®). Next,
the range of realizations for each random variable is expanded and reset to be the
same. LB is the lower-hound on this range. and UB is the npper-bound on this
range. Finally, for both A and B, we recalculate the arrays of densities y A and yt
by interpolating over the new set of possible realizations.

In terms of complexity, the major operation in Algorithm 5.4 is interpolation. The
complexity of the interpolation depends on the interpolation routine that is used. In
this thesis, we use cubic spline interpolation since we assume the arc travel times
are continuous and the distance between any two consecutive realizations z;, iy
inx (¢ € {1,...,p— 1}) is the same. With cubic spline interpolation the array
of realizations x is equivalent to the array of interpolation “knots™. Cubic spline
interpolation requires an initialization which takes O(p) to solve a tridiagonal system
of equations [33]. The lookup of an interpolated value involves a bisection search on a
table generated by the initialization [33]. In the worst case. there are p = Lﬁ‘(—xﬁ—B +1
bisection searches. Each bisection search takes O(log,p) so the total complexity of this
routine is O(plog, p). However, since 27 is incremented sequentially in Algorithm 5.4,
the search can sometimes be achieved in linear timne using an interpolation routine
that caches previous lookups.

Direct Convolution

Direct convolution is common in several procedures from digital signal processing. In
the end, it is similar to computing a convolution by definition, but more efficient in
practice. If we want to filter the array z by an array ¥ (element-wise division), then
we can solve the following LTI difference equation to get the resulting array w [29]:

vl |u]

E 'L'A~'llr'J+]_k- = E ‘U.I'Zj+1_.,'
k=1

=1

where we denote the number of elements in the array v (u) as |[v| (Ju|). Note that

if [v| =1 and v; = 1. this equation reduces to:

lu

’U!j = Z’lL.[Zj+1._i (51)
i=1

Recall that the convolution equation derived for the density function of C = A+ B

78

Input: 4.3 are random variables.
Output: A’. B’ are random variables with the same interval width and range of

realizations.
Step 1: Calculate the interval width 6.
if 6(xV) > §(x®) then

§ — o(x))
else

§ — 8(x'E)
Step 2: Set the range of realizations to be the same for A and B.
if min(x‘*} < min(x?’) then

LB « min(x(")
else

LB « min(x'®)
if max(x') < max{x'#)) then

/B « max(x'#))
else

U B «— max(x)
Step 3: Recalculate the densities y for the rescaled A and B.
S(x1)) - 6
S(x'B) 6
te—1
x; — LB
while 2} < UB do

if 7/ < min(x*)) then

gyt =0
else if 2! > max(x*') then
=0

else

y,-(A’) — interpolaie{r; x4y

4D
€L
if 2/ < min(x'?)) then

g =0
else if z/ > max(x'¥)) then

(B

y, =10
else

yf‘H) — interpolate(z!, x'B), yB))
B
1 e
!

7
- Ii

Algorithm 5.4: Random Variable Scaling.

79

is:

smax(xt4)
ey = [pala)fae =) da (52)

nin(x(41)
If we discretize this equation for implementation using the trapezoid approximation.
we have:

max(x A1)

foley =8 Y fala)fule —a) (5.3)

min{x{4)
where the random variables A and B are on the same scale and 4 is the inter-

val width. To see the correspondence between convolution and the LIT difference
equation, we rewrite Equation 5.3 using our random variable data structure:

14
C A) (B
T RS

i=1
where p is the number of possible realizations for A and B. Therefore, if we take ygm =
u:j,yf‘“ = /t:.l,;yﬁf}ﬁi = z;11_; then Equation 5.1 is exactly the same as Equation 5.3

without 8. Using a Direct Form II Transposed “filter” [29], we can solve Equation 5.1
for w in O(|ul?). which means we can solve for y? in O(p*). Note that although
this is theoretically equivalent to calculating a convolution by definition, it 1s faster
in practice since there is less overhead in the Direct Form II implementation.

The complete convolution routine is presented in Algorithm 5.5. Initially, we put
the random variables 4 and B on the same scale. With A’ and B’ on the same scale
with o’ possible realizations. there are 2p’ — 1 possible realizations for C' = A + B!
Therefore. we need to “right-hand-side” pad A’ and B’ with enough zeros so that
x(] = 2 — 1,|x#)| = 2p' — 1. Next. the filter is used to convolve the two
densities. We normalize the output with an element-wise multiplication of y'©) by
§(x(CH). In the next step, we need to set the range of possible realizations. Since this
is a convolution. the minimum possible realization of C is min(x*”) +min(x#") and
the maximum possible realization is max{x“") + max(x‘5").

As noted, the complexity of this operation is O(p®) where p is the number of
realizations of each random variable after being scaled. In this thesis, p is a user-
defined parameter. If p is very small, then the mnterval width §(x) = &x(};%{"w is
large. Intuitively, this means the realizations are well-separated. which could lead to
erroneous interpolations. At the same time, since there would be fewer realizations,
the convolution would run faster.

1Let A4 and B be on the same scale. If we add a single possible realization of A to each possible
realization of B. there are p’ possible realizations for C. Now if we add a second possible realization
of A to each possible realization of B, there is only one new possible realization for C. Coutinuing
on, we see there are 2p' — 1 possible realizations for €',

80

Input: 4 aud B are random variables.
Output: (' — A+ B.
Step 1: Put A and B on the same scale.
A’ B" — Scale A. B with Algorithmn 5.4

Step 2:]Pa‘(’l A and t} with zeros.
f— nmx'lxu;[z(_‘;};i:](x(‘q S {Note: The choice of A’ is arbitrary}

i—p+1 ‘ l

whi[lf, 1 <22p" - 1do

2

REI
1—1+41
Step 3: Perform the convolution.
§(x1) 6(x)) {Note: The choice of A’ is arbitrary}
Y — filter(y). y#Y)
¥y — y' O §(x'9) {Note: Element-wise normalization}
Step 4: Set the range of possible realizations for (.
min(x'“") — min(x“7) + min(x&")
max(x!) — max(x1") + max(x‘?))
i — 1
a! min(x{)
while 2/ < max(x(©) do
e
T, ! '
2l — ! + 8(x()
te—t+1

Algorithm 5.5: The Sum of Random Variables with Direct Convolution.

81

Fast Fourier Transform Convolution

Though direct convolntion is relatively efficient with a O(p”) complexity. a Fast
Fourier Transform (FFT) convolution runs in O(plog, p). To get a feel for the size of
this improvement. consider the sum of two random variables, each with 1000 possible
realizations (p = 1000). A direct convolution would take on the order of 1000000 oper-
ations, while an FFT-based convolution would take on the order of 10000 operations,
which is a significant iinprovement in run-time.

Given a probability density function fx (), its characteristic function, ¥, is defined
as:

Wt = [" (@) da

[».9)

which is a particular case of the Fourier Transform of fx(2) (denoted FFT (fx(x))):

FFT([x(a ,/(271 f e i (:

with a = 1 and b = 1 (see [31] and a summary in [46]). From an implementa-
tion standpoint, we naturally use the discrete Fourier Transform. The fundamental
observation for an FFT-based convolution is the Conwolution Theorem which says:

C = A+ B
fele) = fala)* fp(b)
FFT(fc(e)) = FFT(fala)) - FFT(fp(b)) Element-wise multiplication
fole) = FFTHFFT(fala)) FFT(fp(b))) Element-wise multiplication

where FFT ! is the inverse Fourier Transform. The Convolution Theorem says
we can calculate fo(c) by taking the inverse Fourier Transform of the element-wise
product of the Fourier Transforms of f4(a) and fg(b). Calculating these Fourier
Transforms can be accomplished in O(plog, p) time with the FFT [33].

Algorithm 5.6 presents an FFT-based convolution routine. Like Algorithm 5.5,

we first put the random variables A and B on the same scale. The padding procedure
is also the same, except that we pad out to the largest power of two greater than
25" — 1, which is denoted p*. This is done so the FFT can operate without any addi-
tional memory overhead. The convolution is calculated according to the Convolution
Theorem, except we take the backwards FFT rather than the inverse FFT. The back-
wards FFT is an unscaled inverse FFT. Therefore, we need to normahze the result

50 fo(c) = y'©) is a proper density fun(tion. This is done by dividing y(“? by the

max(x(

normalization constant K = jmm) fC() de. K can be evaluated by a combined

interpolation and numerical 1nteg1ahon routine. If the density functions are known
not to have any values greater than 1, we can replace the calculation of K with p™.

82

Input: 4 and B are random variables.
Output: ' — 4+ B.
Step 1: Put A and B on the same scale.
A’ B" « Scale A, B with Algorithm 5.4
Step 2: Pad 4 and B with zeros up to a power of two.

(- “m(x(J:(Lz;\'f:i)"(x(Al]) + 1 {Note: The choice of A’ is arbitrary}
pre—=2
while p* < (29 = 1) do
po— ()
i—p +1
while ¢ < p* do
:1‘,:;'41) — 0
.'11;;31) — 0
i—1+1

Step 3: Perform the convolution.
§(x') — §(x1)) {Note: The choice of A’ is arbitrary}
min(x“?) — min(x4") + min(x#7)
max(x'“)) — max(x*?) + max(x{8)
vy — FFT HFFT(y) FFT(y'")) {Note: Element-wise multiplication}
K — integrate(interpolate(x' 7).y min(x()), max(x()))
y©/K {Note: Element-wise normalization}
Step 4: Set the range of possible realizations for .
i1
1 — min(x'))
while 2! < max(x'“) do
.'IT,:’C) —
&),y — x) + 6(x'Y)

t—1+1

Algorithm 5.6: The Sum of Random Variables with Fast Fourier Transforms.

83

Controlling Convolution Run-time Let p') refer to the number of possible
realizations of the random variable ', where (' is the result of A + B. In both
convolution routines. the consequence of scaling and padding A and B is that pte)
can become large, especially over a series of convolutions. More critically, after A and
B are put on the same scale with p’ realizations, the number of possible realizations
for C is p\¥) = 2p' — 1. In a series of convolutions, p'“? determines the run-time of
the next convolution, so with cach iteration the convolution routine runs slower. One
useful observation is that we can make p'*) smaller by removing realizations that
have an extremely low probability of being realized. In fact, the zero-padding of A
and B will create a relatively large number of realizations with this property.

We can also control large growth in p(©) by readjusting Pl after ¢ has been
calculated. In Chapter 6. we compare two different methods for controlling Pl
In the first approach, we fix the interval width §(x() to a constant value. Since
6(){((7'}) _ max(x(m;:;nm(x(m
realizations (max(x{) — min(x'“?)). In the second approach. we explicitly fix ple)

:zi(_(’.’,’;“(xm) + 1, the growth of §(x'“7) is
controlled by the range of possible realizations (max(x¢') — min{x(©))). Generally
speaking, as the density functions of more random variables are convolved (and the
range of possible realizations increases). fixing p(“) to a constant value has the effect
of increasing 6(x!?). The advantage of this approach is that every convolution will
have a similar run-time.

We have suggested controlling p'“) as a means to control the run-time of the
convolution routine. Note that in limiting p{?. we may lose some accuracy in the
representation of the random variable C. The actual effects of limiting p!? depend on
the interpolation routine used in the convolution routine. In general, any artempt to

!, the growth of p!@ is controlled by the range of possible

max(x!

to a constant value. Since p!) =

control p(©" involves balancing the effects of p“) on the run-time and the accuracy of
the convolution routine. In Section 6.1. we discuss the practical impact of controlling
o) in our convolution routines.

5.2.3 The Numerical Minimum of Random Variables

There is little prior work on the numerical calculation of the minimum of two random
variables. As such. the approach in this thesis is to use the definition and Equation 2.2:

C = MIN(A.B) & fc(c) = falc)]l = Fele)] + fa(@)l = Fa(c)]

The numerical procedure to calculate this equation is presented in Algorithm 5.7.
In Step 1, the interval width and range of realizations for C are calculated to put
A and B on the same scale. The minimum possible realization is the minimum of
min{x) and min(x'®)), while the maximum possible realization is the minimum
of max(x?) and max(x(F'). In Step 2, we recalculate the arrays of densities y{4)
and yB! by interpolating over the new set of possible realizations. We also calculate
the arrays Y and YB. Y and Y) correspond to arrays of the cumulative
distributions of A and B respectively. The calculation of Y@ and Y& requires

84

a combined interpolation and numerical integration routine. Once the values of y
and Y are known for A and B. these arravs are multiplied together in accordance
with Equation 2.2 to obtain y'“). The complexity of this routine is O(p?) where
p = "'HX(X(;:irf_,’;"(x((U 4 1. This is due to the O(p) complexity of the combined
interpolation and numerical integration routine.

Let p'< refer to the number of possible realizations of (7, where (7 is the result of
MIN(A. B). Note that. unlike the convolution routines. after 4 and B are put on
the same scale, onr minimum routine does not further increase p!©). The practical
impact of this property is that Algorithm 5.7 does not slow down as much as either
Algorithm 5.5 or Algorithm 5.6 over a series of calls. Consequently. it is not necessary
to consider methods to control p!“) in our minimum routine.

Input: A and B are random variables.
Output: ' = MIN(A. B).
Step 1: Set the interval width and the range of possible realizations.
if 5(xV) > 6(x'®)) then
S(x() — §(x!)
else
S(x() — 5(x(B))
if min(x) < min(x'?) then
min(x(“?) « min(x)
else
min(x(?) « min(x!#))
if max(x) < max(x'¥#)) then
max(x(©} «— max(x{4)
else
max(x{?) — max(x'®)
Step 2: Calculate the densities y and cumulative distributions Y.
11
7!« min(x{“))
while z/ < max(x'“)) do
if 2/ < min(x*)) then
Yz(A) . y}A) -0
else if z; > max(x)) then
Y'£<A) — 1. yff’l) —0
else
v — integrate(interpolate(x), y“ min(x), 17))

1 1
yi(A) — interpolate(x], x4 y4)
if 7/ < min(x'¥)) then
Y7 0,47 —0
else if r/ > max(x'?’) then
v L
else
Y'B integrate(interpolate(x®). y'®) min(x'B)), x}))
y§B) — interpolate(x). x'B} y(B))
aihy = a2l +6(x)
t—1+1
Step 3: Calculate fo(¢) = fa(e)[l — Fe{c)] + fa(c)[1 — Fa(c)] for all c.
1e—1
J:EC) — min(x!?)
while ;z:l(.m < max(x“)) do
RS RI VD Al R RN B ()

o 1.',,(-(") + 3(x)

i1

1e—1+1

Algorithm 5.7: The Minimum of Random Variables.

86

Chapter 6

Results and Examples

Chapter 2 presents our approach to routing in probabilistic networks. and Chapters 4-
5 discuss the key concepts in our approach. In this chapter. we illustrate how these
ideas are actually applied to routing. and how we can improve the quality of routing
i probabilistic networks. First, we discuss the performance of the numerical tmple-
mentations of the sum and minimum functions. Efficient implementations of these
routines are required for routing on large networks where we have to caleulate the sum
and the minimum of many random variables. We then illustrate the routing procedure
on three networks. The first network is small and its structure is simple. The second
network 15 small, but has a more complicated structure. Relative to these two small
networks. the third network is much larger. This third network is a modified model of
the Amsterdam A-10 beltway. and it is composed of 200 nodes and 522 arcs.

6.1 Performance of Numerical Routines

The efficiency of the sum and the minimum functions is the critical component in de-
termining the run-time of the minimum travel time distribution algorithms described
in Chapter 4. Examining the practical performance of these functions is necessary for
understanding the effectiveness and limitations of our routing procedure. In addition
to understanding the run-time of the direct convolution routine and the Fast Fourier
Transform convolution routine, we also examine the effects of controlling p, which is
the number of possible realizations of a random variable.

Our implementation of the sum and minimum functions used interpolation and
numerical integration routines from a scientific librarv. All algorithms were imple-
mented in C++4 and were run with debugging and error-checking functions enabled,
and without compiler optimizations. Therefore, the run-times reported should be
used comparatively and not be considered as the fastest possible run-times. The ma-
chine used to obtain the results in this section was a 933 MHz Pentium 3 CPU with
256M of RAM, and the Linux 2.4 kernel.

87

6.1.1 Numerical Convolution

In Chapter 5 we describe two routines to calculate the density function of €' = A+ B.
Let p be the number of possible realizations of A or B after A and B have been put
on the same scale. A direct convolution implementation runs in O(p?) and a Fast
Fourier Transform convolution implementation runs in O(plog, p).

Procedure

Both of our convolution routines (Algorithm 5.5 and Algorithm 5.6) take two random
variables as arguments. For example, to sum five random variables we need to make
four calls to a convolution routine. To understand the performance of Algorithm 5.5
and Algorithm 5.6, we numerically convolved the density functions of & independent
AN(10.2) random variables with both routines. where k varied from 2 to 7. Each
distribution had min(x) = 5 and max(x) = 15. Furthermore, for each random
variable, the number of realizations p was set to a uniform random value between 800
and 1800.

Before discussing the convolution results, we consider the quality of the represen-
tation of the random variable A with our two array representation x4, y'4). Let E[4]
and ﬁ(A) be the values of E[A] and Var(A) under the two array representation.
If Ais distributed according to A(10,2) with p*) = 1024, then our representation
calculates E[A] = 9.99593 and ﬁ(A) = 2.02897. Furthermore. if we calculate the

relative error as lE[AgIﬁ AN and |‘-"a-7'(,f3:(‘_;‘;"('4) | we find |—E[‘g—[“ﬁ[—ﬂ = (0.000406 and

‘-V‘"-(—ﬁ;;(‘;{;ﬂ = 0.014487. Expressed in percentages, this means the relative error in
calculating the expectation is less than 0.1% and the relative error in calculating the

variance is approximately 1.5%.

Convolution Run-time Base Case

An efficient. implementation of a convolution routine is needed for routing on large
networks where we have to sum many random variables.

Figure 6-1{a) compares the run-time of the convolution routines. Unlike the next
two sections, in this base case we did not control p, the number of possible realizations.
As is evident, the FFT-based convolution routine runs much faster than the direct
convolution routine, especially as the number of the random variables in the sum
increases (and p increases).

Table 6-1(b) compares the accuracy of the numerical convolution routines with
the equivalent theoretically convolved density functions. Each row corresponds to
the convolution of the density functions of a number of independent N (10,2) dis-
tributions. For example. the row with A(30,6) in the second column corresponds
to the theoretical convolution of the density functions of three independent A(10, 2)
random variables. For each of the two numerical convolution routines, there are three
sub-columms in Table 6-1(1). The first sub-column is the relative error in expectation
of the convolution routine. the second sub-column is the relative error in varlance,
and the third sub-column is the mean squared error (MSE). In our case, we define

83

~i=1
and x,.y; are the ith elements of the two array representation of N (E. Var) obtained
by numerical convolution. In other words. r; is an element of the array of possible re-
alizations of N(E.Var). and y; is the corresponding density calculated by numerical
convolution.

MSE as %E‘p (farevary(2i) — ¥i)* where fapiar 15 the relevant density function.

It is evident that both the direct convolution routine and the FFT-based routine
produce accurate results. In both routines the relative error in expectation and vari-
ance is small. although the relative error in expectation is slightly smaller for the
direct convolution routine. In terms of percentages. no relative error exceeds 0.55%
for either convolution routine. The MSE is also small for both numerical convolution
routines. Note that, in some cases, the values appears to be exactly equal between
convolution routines. However. these values are rounded; the actual values differed
shightly.

Controlling the Interval Width

In Section H.2.2. we discuss two methods to control the run-time of a series of con-
volutions. As p is the principle factor in determining the run-time of both the direct
convolution routine and the FFT-based convolution routine. both methods attempt
to control the growth of the number of possible realizations p. The first method in-
plicitly controls p by setting the interval width 8(x) to a constant value in Step 1 of
the random variable scaling procedure (Algorithm 5.4). Since d(x) = W'xp)%“(x)
the growth of p is controlled by the range of possible realizations (max(x) — min(x)).

Figure 6-2(a) compares the run-time of the two convolution routines. As expected.
the FFT-based convolution routine runs much faster than the direct convolution rou-
tine, especially as the number of the random variables in the sum increases. In general,
as the number of random varables in the sum increases. the range of possible realiza-
tions of the resulting random variable increases. This means p will also increase. If we
compare Figure 6-2(a) to Figure 6-1(a). we see that this method of controlling p does
improve the run-time when compared to the hase case of not controlling p. However.
this improvement only appears to be on the order of a constant improvement.

Table 6-2(b) compares the accuracy of the numerical convolution routines when we
set the interval width 6(x) in the random variable scaling procedure (Algorithm 5.4).
As hefore, each row corresponds to the convolution of the density functions of a
number of independent A/(10. 2) distributions. Similarly, for each of the two numerical
convolution routines, there are three sub-columns in Table G-2(b). The first sub-
column is the relative error in expectation of the convolution routine, the second
sub-column is the relative error in variance, and the third sub-column is the mean
squared error (MSE). After some experimentation. §(x) was set to 0.01955 = 2.

As is the case in Table 6-1(bh). it is evident that both the direct convolution routine
and the FFT-based routine produce accurate results. In both routines, the relative
error 1 expectation and variance is small, although the relative error in expectation
is slightly smaller for the direct convolution routine. Note that for direct convolution.
the relative error in expectation and variance is approximately constant. In terms of
percentages. no relative error exceeds 0.54% for either convolution routine. The MSE

29

2500 T T T ——

—— Direct Convolution
— — FFT Convolultion

2000+ 4
I
@
w

£ 1500t 1
[1}]
S
}—
c

£ 1000}
o §
(5]
0
>
w
5001
0 L I L e — — T]
2 3 4 5 6 7
Number of Random Variables in the Sum
(a) Run-time.
Type of Convolution
Theoretical Direct Fast Fourier Transform
N(E V(”") |- E| |Var—\Var| MSFE, |E—FE) [Var-Var| MSE
s : Tar Var

N(20,4) 0.00%001 0.063218 < 107¢ 0.00%001 0.005418 | < 107
N(30,6) | <107% | 0.005406 | < 107% | < 107% | 0.005406 | < 108
N(40,8) < 107% | 0.005400 | < 107% | < 107% | 0.005400 | < 107#®
N(50,10) | <1075 | 0.005397 | < 107° | < 10°% | 0.005397 | < 10~*
N(60,12) | < 107% | 0.005399 | < 1079 | 0.000036 | 0.005318 | < 10~?
N(70,14) | <107% | 0.0056393 | < 107 | 0.000049 | 0.005293 | < 10~

=1 S O Wb

(b) Error.

Figure 6-1: Base case performance of the numerical convolution routines. Figure 6-
1(a) compares the run-time of the direct convolution routine with the FFT-based
convolution routine. Table 6-1(h) compares the relative error in expectation and
variance, and the MSE of the two convolution routines.

90

1s also small for both numerical convolution routines.

Controlling the Number of Possible Realizations

The second method of controlling the run-time of the convolution routines is to ex-
plicitly set p. In general. as more random variables are summed, the range of possible
realizations of the resulting random variable will increase. Therefore. setting p to a
constant value has the effect of increasing the interval width §(x). Intuitively, this
means the random variables will become less “finelv” discretized. The primary ad-
vantage of expliaitly setting p is that every convolution will have a relatively similar
run-time.

Figure 6-3(a) compares the run-time of the two convolution routines. As expected.
the FFT-based convolution routine runs faster than the direct convolution routine.
Unlike the previous two sections. both the direct convolution routine and FF'T-based
convolution routine have reasonable run-times. Note that the direct convolution run-
time appears to increase linearly as the number of random variables in the sum
increases. Although. from theory, we would expect the convolution run-times to be
relatively constant. this small increase in run-time is due to the overhead of the scaling
procedure (Algorithm 5.4). In any case, the direct convolution routine run-time is
still quite fast. If we compare Figure 6-3(a) to Figure 6-1(a) and Figure 6-2(a). we
see that this method of controlling p offers a large improvement in run-time.

Table 6-3(b) compares the accuracy of the numerical convolution routines when
we explicitly set p in the random variable scaling procedure (Algorithm 5.4). As
before, each row corresponds to the convolution of the density functions of a number
of independent A (10.2) distributions. Similarly. for each of the two numerical con-
volution routines. there are three sub-columns in Table 6-3(b). The first sub-column
1s the relative error in expectation of the convolution routine, the second sub-column
is the relative error in variance. and the third sub-column is the mean squared error
(MSE). After some cxperimentation. we set p = 1024.

As is the case in Table 6-1(h) and Table 6-2(h), it is evident that both the direct
convolution routine and the FFT-based routine produce accurate results. In both
routines. the relative error in expectation and variance is small, although the relative
error in expectation is slightly smaller for the direct convolution routine. Note that for
direct. convolution. the relative error in expectation slightly increases as more random
variables are summed. In terms of percentages, no relative error exceeds 0.55% for
either convolution routine. The MSE is also small for both numerical convolution
routines.

6.1.2 Numerical Minimum

In Chapter 5 we describe the routine we use to calculate the minimum of random
aariables. If p is the number of possible realizations of A or B after A and B have
been put on the same scale, then the minimum routine (Algorithm 5.7) runs in O(p?).
Like the convolution routines, Algorithm 5.7 takes two random variables as arguments.

91

1500 T T
—— Diract Convolution
— = FFT Convolultion
n
& 1000}
£
Q
E
|_
c
2
5
® 500
>
L
O L 1 o= =
2 3 4 5 B 7
Number of Random Variables in the Sum
(a) Run-time.
T'vpe of Convolution
Theoretical Direct Fast Fourier Transform
IE—E| [Var—Var| y |E-E| |Var—Var|
N(E, Var) — MSE — MSE

E E
N(20,4) | 0.000003 | 0.005387 | < 1073 | 0.000487 | 0.003440 | < 1077
AN(30,6) | 0.000003 | 0.0056387 | < 10~% | 0.000715 | 0.002920 | < 1077
N(40.8) | 0.000003 | 0.005387 | < 107* | 0.000602 | 0.003359 | < 1077
N(50,10) | 0.000003 | 0.005387 | < 107 | 0.000515 | 0.003680 | < 1077
N(60.12) | 0.000003 | 0.005387 | < 10-% | 0.000446 | 0.003923 | < 107°
N(70,14) | 0.000003 | 0.005387 | < 107" { 0.000391 | 0.004112 | < 107®

=1 O U ok O |

(b) Error.

Figure 6-2: Performance of the numerical convolution routines when controlling the
interval width. Figure G-2(a) compares the run-time of the direct convolution routine
with the FFT-based convolution routine. Table 6-2(b) compares the relative error in
expectation and variance, and the MSE of the two convolution routines.

92

12

Execution Time (in sec.)

— Direct Convolution | |
— - FFT Convolultion

Number of Random Variables in the Sum

(a) Run-tiwe.

Type of Convolution
Theoretical Direct Fast Founier Transtorm
k| N(E. Var) 'E}EE' “'“"’{;:’”"" MSE £ ;E | “"“E:f’""l MSE
2| A(20.4) |0.000001 | 0.005418 | < 10™% | 0.000001 | 0.005418 | < 10~°
3| A(30.6) |0.000001 | 0.005387 | < 107% | 0.000651 | 0.003440 | < 10=7
4| AN(40.8) |0.000002 | 0.005333 | < 107% | 0.000488 | 0.003860 | < 10~7
51 AN(50,10) | 0.000002 | 0.005235 | < 107" | 0.000385 | 0.004176 | < 10~ ®
6| AN(60,12) | 0.000007 | 0.005182 | < 1072 | 0.000316 | 0.004280 | < 107®
7| N(70.14) | 0.000014 | 0.005060 | < 107% | 0.000263 | 0.004271 | < 10~¥

Figure 6-3: Performance of the numerical convolution routines when controlling the
number of possible realizations. Figure 6-3(a) compares the run-time of the direct
convolution routine with the FF'T-based convolution routine. Table 6-3(h) compares
the relative error in expectation and variance, and the MSE of the two convolution

routines.

(b) Error.

93

Therefore. to take the minimum of five random variables we need to make four calls
to Algorithm 5.7.

To understand the run-time of Algorithm 5.7, we took the minimum of & indepen-
dent A(10.2) random variables, where & varied from 2 to 7. Each distribution had
min(x) = 5 and max(x) = 15. Furthermore, for each random variable. the number
of realizations p was set to a uniform random value between 300 and 1800. Figure 6-
4(a) displays the run-time of our minimum routine. As is evident. the implementation
runs quite well even as the number of random variables increases. Although we could
control p(©). there is no practical benefit of doing so.

Note that in Figure 6-4(a), the run-time is more linear than quadratic. This 1s
hecause, as noted in Section 5.2.3, after A and B are put on the same scale. our
minimum routine does not further increase p“?. Furthermore. in this case, each of
the input random variables has a relatively similar number of possible realizations.
The practical impact of this property is that Algorithm 5.7 does not slow down much
over a series of calls.

To see the impact of p'*7 more clearly, we took the minimum of & independent
N (10, 2) random variables a second time. As before, we set min(x) = 5 and max(x) =
15. Unlike before, for each random variable, we set the number of realizations p to
a multiple of 1024 such that the number of possible realizations for each random
variable differed much more than before. Figure 6-4(b) displays the run-time of our
minimum routine over this new set of random variables. With these random variables
Algorithm 5.7 runs closer to its O(p*) complexity.

Note that we do not compare the numerical minimum routine with the theoretical
minimum as we are already using the definition of the minimum function to implement
Algorithm 5.7

6.1.3 Conclusions

The numnerical results for the sum and the minimum routines confirm the following
points:

e For a given number of realizations p. the FFI-based convolution routine has
a faster run-time when compared with the run-time of the direct convolution
routine.

e The density functions of the random variables produced by the FFT-based con-
volution routine are relatively accurate (provided the input random variables
are also accurate). Relative to the direct convolution routine, the percent rel-
ative error in expectation generally increased with the FFT-based convolution
routine, but was still small. The percent relative error in variance generally
decreased with the FFT-based convolution routine. The mean squared error
increased slightly with the FFT based convolution routine. but did not exceed
107",

e Both methods of controlling the number of possible realizations p improve the
run-time of both convolution routines.

94

2.4 T T T T

Execution Time {in sec.)

0.4 " . . .
2 3 4 5 6 7

Number of Random Variables in the Minimum Function

(a)

T
L

25

Execution Time (in sec.)

0 1 1 1 1
2 3 4 5 6 7

Number of Random Variables in the Minimum Function

)

Figure 6-4: Run-time of Algorithm 5.7 over two different sets of random variables.
Figure 6-4(a) is the run-time of Algorithm 5.7 where. for each random variable, the
number of realizations p was set to a uniform random value hetween 800 and 1800.
Figure 6-4(b) is the run-time of Algorithm 5.7 where, for each random variable. the
number of realizations p was set to a multiple of 1024.

e As implemented i Algorithm 5.7, the minimum routine runs well. There does
not. appear to he any need to control the number of possible realizations p to
unprove run-time.

In small networks it is not necessary to have efficient sum and minimum rou-
tines to implement our routing procedure. However. in the larger networks that are
typical of practical applications, the efficiency of the sum and the minimum routine
is the critical component in determining the run-time of the minimum travel tune
distribution algorithms described in Chapter 4.

6.2 Routing on Example Networks

Our basic routing approach is described in Algorithm 2.3. Chapter 4 discusses Step 2
and Chapter 5 discusses Step 1 of Algorithm 2.3. Chapter 5 presents several methods
to generate a 77-D.AG G’ from a possibly cyclic graph G- For the example networks
in this section, we use Algorithm 5.3 to generate G'. Chapter 5 also presents the-
oretically efficient implementations of the sum and minimum functions of random
variables. Section 6.1 demonstrates the practical etliciency of these implementations.
Of the two convolution routines discussed in Chapter 5, we use the Fast Fourier Trans-
form convolution routine for the example networks in this section. Furthermore, the
number of possible realizations p for each random variable is not controlled.

Now that we have all the components of Algorithm 2.3. we illustrate how this
algorithm works on three different networks. The first network is a small. simple
network. The second network is a small. but more complicated network. Relative to
these two small networks. the third network is much larger. It is composed of 200
nodes and 522 arcs. This third network is a modified model of the Amsterdam A-10
beltway.

The results in this section were obtained by simulating each of the three networks
using a network simulator. All algorithms were implemented in C++. The machine
used to obtain the results in this section was a 933 MHz Pentium 3 CPU with 256M
of RAM. and the Linux 2.4 kernel.

6.2.1 A Small Network

Consider the small network depicted in Figure 6-5(a). All arcs have travel times
distributed according to N(10.2) or N(10.8). except for arcs (2.4). (4,2) and arcs
(10,11).(11,10). all of which have a constant travel time of 0.1. Strictly speaking,
the arcs (2,4), (4.2), (11,10), and (10, 11) are not necessary: these arcs are just used
to delineate node 2 and node 11 from the rest of the network since node 2 and node
11 are the source and sink nodes in our simulation. Similarly, the exact travel time
along arcs (2,4).(4,2),(11.10), and (10,11) has no effect in our routing procedure
since a user destined for node 2 must always traverse arc (4,2). and a user destined
for node 11 must always traverse arc (10,11). For illustrative purposes, we set the
travel time along these arcs to be 0.1.

96

The first thing to notice about this network is its structure. Formally it is not
a series-parallel network. However. informally, we see the underlving structure has
several series and parallel components. Therefore. the 77-DAGs we generate for
routing will. for the most part. be series-parallel. As a consequence. it 1s relatively
easy to calculate the mimimum travel time distributions on this network.

Suppose a user located at node 4 is destined for node 11. What node j € N*(4)
should the user he routed on? Applying Algorithm 2.3. we see that since N7(4) =
{3.5}. we need to calculate P, and F7y;.

First. we consider the calculation of P ;. Before we can calculate P7 ;. we need to
generate a T7-DAG subgraph G’ of G from node 5 to node 11. Using Algorithm 5.3.
the resulting T7-D.AG G’ from node 5 to node 11 is presented in Figure 6-5{1). Note
that G’ is series-parallel.

Now that we have a T7T-DAG G’. we need to check whether (7 is series-parallel.
This is done with Algorithm 4.2. In this case, it 1s a trivial observation to see that G’
is series-parallel. Now that GG’ has been identified as a series-parallel graph. we can
calculate Py, by running Algorithm 4.3 on (/. We initialize the algorithm by adding
all nodes to @ except for node 5 and node 11 so that (¢ = {9.7.8.10}. Node 9 1s
selected as the first node to perform series and parallel reductions on. In Step 1 of
Algorithm 4.3, we attempt to remove all outgoing parallel arcs from node 9, but there
are none. In Step 2 of Algorithm 4.3, we attempt to remove all incoming parallel
arcs to node 9. but there are also none. In Step 3 of Algorithm 4.3, we check to sce
i |N*(9)] = 1 and if (N~(7)| = 1. Since only |N~(7)| = 1, we do nothing and instead
select the next node (node 7) from (). Like node 9. node 7 does not have any incoming
or outgoing parallel arcs. However. in Step 3 of Algorithm 4.3, since node 7 has one
Incoming arc and one outgoing arc, we can perform a series reduction. Arcs (9, 7)
and (7. 8) are replaced by a new arc (9, 8) with travel time equal to Xgy = Xg7 + Xox.
Since X7 is distributed as A{10,8) and Xy is distributed as A(10,8), then Xg; is
distributed as the sum of A(10,8) and A(10,8), which equals A(20.16). Node 9 is
also added hack to).

Now there are two parallel arcs from node 9 to node & and @ = {8.10.9}.
Node 8 is selected from (). Node 8 has no outgoing parallel arcs. but has two in-
coming parallel arcs from node 9: one from the original network, and one added
from the prior series reduction of node 7. These two arcs from node 9 to node 8
are replaced with a single new arc (9,8) that has travel time MIN(XJ,, X3) =
MIN(N(20,16). N(10,2}). Note that nearly all possible realizations of A/(10, 2) are
better than the smallest realizations of A'(20.16). which means that the difference
between MIZN(A/(20,16), A(10.2)) and N (10.2) is small. For the purposes of this
example, we take MZAN (N(20,16), M (10,2)) = N(10.2).

In Step 3 of Algorithm 4.3, we see that node 8 now has one incoming arc and
one outgoing arc, so a series reduction can be performed. Arcs (9,8) and (8. 10) are
replaced by a new arc (9. 10) with travel time A/(20.10) which is the sum of N(10.2)
and AV(10. &). @ is now {10.9}. Node 10 is selected and has hoth a single incoming arc
and a single outgoing arc. So in Step 3 of Algorithm 4.3, arcs (9.10) and {10. 11) are
replaced with a single new arc (9, 11) with travel time A(20.1, 10} since arc (10.11)
has travel time 0.1. Node 11 is not added to @ since node 11 = t. @Q is now {9}.

97

{b) Subgraph Generated from Node 5 to Node L1.

(¢) Subgraph Generated from Node 3 to Node 11.

Figure 6-5: The Subgraphs Generated by Algorithin 5.3 on Figure 6-5(a) for a User
Located at Node 4 destined for Node 11.

Iteration Q Node Selected (i) | N*(7) | N {¥)
0 {9.7.8,10} 9 2 1
1 {7.8.10} 7 1 1
2 {8.10.9} 8 1 2
3 {10,9} 10 1 1
4 [9} 9 1]

Table 6.1: The Calculation of F},; with Algorithm 4.3

0.12

>
--P 3,1
— 51

01

0.08f

0.06f

0.04

0.02

50 60

Travel Time

Figure 6-6: Comparison of the Density Functions of Pj,; and PZ;.

Node 9 is selected and has a single incoming and single outgoing arc. Arcs (5,9) and
(9.11) are replaced with a new arc (5,11) with travel time A(30.1, 12). which is the
sum of N(10. 2) and A/(20.1.10). This is P7 ;. A summary of the calculation of Pr,,
1s listed in Table 6.1.

To use Algorithm 2.3. we also need Fj,;. The subgraph from node 3 to node
11 is the simple path of nodes in series in Figure 6-5(c). We note Py, can simply
be evaluated as PJ, = X6 + Xgs + Xsi0 + Xyo1. which yields the distribution
N(30.1,24). P;,, and PZ,; are plotted in Figure 6-6. We see that both Pj,) and P7
have the sane expectation. but P7) has less variance. Also note that E[P}] = 30.1
and E[PZ,;] = 30.1, which is consistent with the result in Theorem 4.

Now that Py, and Py, are known. the user can select a routing objective. For
example. suppose the user is intcrested in taking a path from node 4 to node 11 that
has a low expected travel time with low variance. If we take ®(X,;) = E[X;;] + ¢ -
Var(Xy;) and W(P)) = E[P}] + 6 - Var(P}), then we have the following equation to
describe the routing objective:

J* € argmin(E[X,;] + 6 - Var(Xy;) + B[Pl + 0 - Var(F})) (6.1)

JENT ()

99

where 6 is a user-defined parameter such that § € R* U {0}. From an optimization
perspective. # can be interpreted as a penalty or weight that reflects the importance
of variance in travel time to the user. From a behavioral perspective, 8 reflects the
user-perceived disutility of variance in travel time. In other words, if a user values
low variance in travel time. the user should choose a large value of 6 to reflect the
relative disutility of high variance in travel time. If the user is indifferent to variance
in travel time. then € should be set to (.

In the case where @ = 0. the routing decisions are based solelv on expectation. A
higher value of # will generally use paths with lower variance. For adjacent node 3 and
8 = 0, we have E[Xg]+6-Var(Xg)+E{P;]+60-Var(Xz1) = 10430.1 = 40.1. For
adjacent node 5 and 6 = 0, we have F[Xy +6-Var(Xe)+ E[FPL | +60-Var(Xs) =
10 + 30.1 = 40.1. Although in our simulation node 3 is selected, it also could have
been node 5. In the case where # = 2, node 3 yields 10 + 2(8) + 30.1 +2(24) = 104.1
and node 5 vields 10 + 2(2) + 30.1 + 2(12) = 68.1. Thus, node 5 will be selected
due to its lower variance (and since nodes 3 and 5 have the same expectation). Also
note that with this routing ohjective. the same node j will always be selected for a
particular source 4 and sink #. In this sense, this calculation can be performed off-line.

In the simulation. there was a source-sink pair from node 2 to node 11 and a
source-sink pair from node 11 to node 2. The simulation ran ten times for each value
of 0: each run contained a different seed for the random number generator. In each
run, 100 users traveled between each source-sink pair (200 users total in the network).
Therefore, over ten runs. each source-sink pair had a total of 1000 users. Figure 6-7(a)
shows the paths traversed from node 2 to node 11 under the two different values ot 0.

Next. consider the actual realized travel times from node 2 to node 11 in Figure G-
7(b). When 6§ = 0. the sample expectation F of the actual travel time from node 2 to
node 11 is 39.8117. The corresponding sample variance Var is 33.4444. When 0 = 2,
the sample expectation E of the actual travel time from node 2 to node 11 1s 40.0890.
The corresponding sample variance Var is 14.3420. Relative to the expectation and
variance when 6 = 0, this represents a 0.7% increase in expectation and a 57.1%
decrease in the variance of the actual travel time.

As expected. the distribution of travel times for # = 2 has less variance than
when 6 = 0. This is important because a decision based solely on expectation does
not provide the user with enough information to make a more informed choice when
travel times are random. For example, if a user is at node 4 and it is very important
for the user to arrive at node 11 in approximately 40 time units, the user would want
to select adjacent node 5 (corresponding to 6 = 2) since there is less variance in travel
time. On the other hand, if a user is interested in a travel time of less than 30 end is
willing to accept the possibility of a travel time greater than 50, then the user would
want to select node 3. which corresponds to # = 0. Note that there is almost no
possibility of achieving a travel time of less than 30 by selecting node 5. Intuitively.
this corresponds to the classic concept of “risk versus reward”; the user must accept
the risk of a very high travel time if the user wants the reward of a very low travel
time.

To show the flexibility of this approach to routing, suppose we have a system

100

1000 T y

9001 CJe=2|]
800+ 1

700+ 1

600+ 1

500+ 1

Path Count

400+
300+
200+ 1

1001 1

4-3-6-8-10 4-5-9-8-10
Path

{(a) Paths Traversed. Each path begins at node 2 and ends at
node 11.

400 T T r T - . T

3501 [1o=2

300t T

250+ 4

200+ 1

1501 1

Travel Time Count

100 1

50t

15 20 25 30 35 40 45 50 55 60
Travel Time

(b) Travel Times.

Figure 6-7: Routing performance from node 2 to node 11 on Figure 6-5(a) using
the routing objective in Equation 6.1 with two different #s. Figure 6-7(a) displays
the paths traversed and Figure 6-7(b) displays the corresponding travel times. For
0 =0.E[Dy1] = 39.8117 and Var(D,1,) = 33.4444. For 6 = 2, E[Dy,] = 40.0890
and Var(Dy1,) = 14.3420.

101

where the travel times on the adjacent arcs are known immediately before the arc
is traversed (for example. see [15]). In a transportation network, such information
might come from an Intelligent Transportation System (ITS). In this case. we can take
O(X,;) = 2y (the actual travel time realization) and ¥(P;,) = E[P)] +6- Var(P}).
The routing objective is similar to the objective in Equation 6.1 except for the use of
the realizations of the travel time of the adjacent arcs:

§* € argmin(xy; + [P} + 0 Var(Py)) (6.2)
ieNF () |

For each j € N*(i). we can interpret this equation as a routing objective that is
conditioned on the known travel time r,;. We can interpret this conditioning as a shift
of P}, by z;;. This means that E[P}+ua;] = E[P}]+x,; and Var(P+uai;) = Var(Pp).
whl(h aprees with Equation 6.2. In this sense, the knowledge of x;; only affects the
expected travel time to node 7 through node j: it does not affect the variance of the
travel time to node ¢ through node j.

When € = 0 in the routing objective described by Equation 6.1, we only select
7* = 3. With the routing objective described by Equation 6.2, hoth node 3 and node
5 can be selected depending on the realization of wy;. If, from the realizations. we
have 243 > T45. then we know x4y + E[Pjy;] > wg + E[PZ;)]. A similar equation
follows for x43 < a45. For € = 2. node 5 is still always selec'red. In other words, no
realization of x4y can convince the user to select node 3.

Figure 6-8(a) shows the paths traversed when routing with Equation 6.2. The
associated actual travel times are also presented in Figure 6-8(b). When 6 = 0, the
sample expectation E of the actual travel time from node 2 to node 11 is 38.8874. The
correspondmo sample variance Var is 22.2661. When 6 = 2, the sample expectation
E of the actual travel time from node 2 to node 11 is 40. ()348 The corresponding
sample variance Var is 13.4408. Relative to the expectation and variance when § = 0,
this represents a 3.0% increase in expectation and a 39. 6% decrease in the variance
of the actual travel time.

With Equation 6.2, the actual travel times produced when 6 = 0 are more similar
to the travel times to @ = 2. This follows from the fact that when 6 = 0. node 5 is
selected approximately half the time. Note that a realization of xg; was so small, it
resulted in a user taking a path with a high expected travel time (path 2-4-5-9-7-8-
10-11).

Note that when routing with Equation 6.2 and § = 0 the expected travel time
decrcased 2.3% relative to the expected travel time when routing with Equation 6.1
and @ = 0. There are almost no realizations larger than 45. Similarly, the variance
of the actual travel time decreased by 33.4%. These percentages represent a certain
value of information; in this case, the knowledge of the adjacent arc realizations
appears to allow the user to decrease the variance in travel time even when the user
is indifferent to the variance in travel time (# = 0). When # = 2. the same path

was always traversed for both Equation 6.1 and Equation 6.2 and there is minimal
change in the expected travel time (0.1% decrease) or variance of travel time (6.3%
decrease). In this case, the relative disutility of high variance in travel time cannot

102

be offset by the knowledge of the adjacent arc realizations.

Although the subgraphs in Figure 6-5(h) and Figure 6-5(c) are series-parallel
graphs. it is not necessarily the case that Algorithm 5.3 will always gencrate a scries-
parallel graph for this network. If we consider generating a 77-D.AG from node 7 to
node 2. Algorithm 5.3 generates the non-series-parallel subgraph in Figure 6-9.

If we caleulate P2, on Figure 6-9 using Algorithm 4.4, we get the dashed curve
in Figure (-10. (An illustration of the execution of Algorithm 4.4 is presented in
Section 6.2.2). The other three curves represent the possible path travel time dis-
tributions from node 7 to node 2. For example. path 7-9-5-4-2 has a travel time of
N(30.1.12), path 7-8-9-5-4-2 has a travel time of A(40.1.14). and path 7-8-6-3-4-2
hias a travel time of A(40.1, 32).

Note that Figure 6-10 is consistent with Theorem 5. It also provides intuition as
to how F7, encapsulates the travel time from node 7 to node 2.

6.2.2 A Small, More Complicated Network

The simple structure of the network in Figure 6-5(a) makes it useful for illustrative
purposes. But what 1s the routing performance in a slightly more complicated net-
work? Consider the network shown in Figure 5-1. Suppose a user is located at node
3 and 15 destined for node 10. Since N*(3) = {4.5,6}. three acyclic subgraphs need
to be generated. These subgraphs are depicted in Figure 6-11(a). Figure 6-11(b), and
Figure 6-11(c).

Since N*(3) = {4,5.6}. we need to calculate P, P2y, and Pf . We consider
B\ first. The graph corresponding to this calculation is series-parallel and is depicted
i Figure 6-11(b).

For F,. we initialize the algorithm by adding all nodes to Q except for node 5
and node 10 so that Q = {9,7.8}. Node 9 is selected as the first node to reduce.
For node 9. we see that [N"(9)] = 1 and |[N7(9)] = 1. so node 9 is series reducible.
We replace ares (5,9).(9.8) with a new arc (5.8)? (now there are two arcs from node
5 to node §). We also set the travel time X2, = A/(10.8) + N(10.8) = A(20.16).
The next node in @ is node 7. Like node 9, we have [N=(7)| = 1 and [N*(7)] = 1.
s0 node 7 is also series reducible. We replace arcs (5.7), (7,8) with a new arc (5, 8)*
(now there are three arcs from node 5 to node 8). We also set the travel time
X3 = N(10.8) + N(10.2) = A(20,10). Now. node 8 is selected since it is the only
node remaining in . There are three incoming arcs to node 8 from node 5. so we
perform a parallel reduction and replace (5.8)", (5.8)%. and (5.8) with a single arc
(5.8). The travel time of Xz is set to MIN(XL. X2 X3,). After this paraliel
reduction 1s performed, node 8 has [N7(8)] = 1 and |[N*(8)] = 1. We can then
perform a series reduction with arcs (5, 8) and (8. 10) so the network only contains a
single arc (5.10). P, = X510 = X5s + Xg10 = MIN(XL, X4 X%) + 0.1. Note
that although the ordering of the elements in @ determines a particular order of
operations, we will find the same P, for any ordering.

Unlike the previous section, we cannot solve MIN (X}, X2, X%) by inspection.
Figure 6-12 compares 7, with the travel times of several paths from node 3 to node
10. With respect to Figure 6-11(b), there are three possible paths from node 5 to node

103

1000 T 7 T

Hlo-0
900 E]9=21
800 1
700+ 1
‘é BOOr T
O 500}
~
5 ool
o 400 k
300+ T
200 4
100+ B

4-3-6-8-10 4-5-9-8-10 4-5-9-7-8-10
Path

{a) Paths Traversed. Each path begins at node 2 and ends at
node 11.

350 T ' T — —

300+ C Je=2|,

250 1

200}

1501

Travel Time Count

100+

50

20 25 30 35 40 45 50 55
Travel Time

(b) Travel Times.

Figure 6-8: Routing performance from node 2 to node 11 on Figure 6-5(a) using
the routing objective in Equation 6.2 with two different 6s. Figure 6-8(a) displays
the paths traversed and Figure 6-8(b) displays the corresponding travel times. For
6 = 0. E[Dy1] = 38.8874 and Var(Dy,,) = 22.2661. For 6 = 2. E[Dy 3] = 40.0348
and Var(Dy1) = 13.4408.

104

Co=C2 <
Co—C oD

Figure 6-9: The Subgraph Generated by Algorithm 5.3 on Figure 6-5(a) from Node
7 to Node 2.

0.12 T

0.1}

0.081

0.061

0.041

0 10 20 30 40 50 60 70
Travel Time

Figure 6-10: Comparison of travel time density functions from node 7 to node 2. The
dashed curve is the density function of the minimum travel time distribution PZ,. The
other three curves are the travel time density functions of the possible paths from
node 7 to node 2 on Figure 6-9. For example. the travel time along path 7-9-5-4-2
is distributed as A(30.1, 12). the travel time along path 7-8-9-5-4-2 is distributed as
AN (40.1.14), and the travel time along path 7-8-6-3-4-2 is distributed as A7(40.1, 32).

(a) Subgraph Generated from Node 4 to Node 10.

(1) Subgraph Generated from Node 5 to Node 10.

(c) Subgraph Generated from Node 6 to Node 10.

Figure G-11: The Subgraphs Generated by Algorithm 5.3 on Figure 5-1 for a User
Located at Node 3 destined for Node 10.

106

0.16 T

014

o2t

01r

0.08f

0.061

0.04r

0.02r

0 5 10 15 20 25 30 35 40
Travel Time

Figure 6-12: Comparison of travel time density functions from node 5 to node 10.
The dashed curve is density function of the minimum travel time distribution P
Of the two remaining curves. one curve is the density function of the travel time along
path 5-7-8-10 (A/(20.1.10)). The other curve is the density function of the travel time

along both path 5-9-8-10 and path 5-8-10 (A(20.1. 16)).

10; 5-9-8-10. 5-8-10. and 5-7-8-10. Both path 5-9-8-10 and path 5-8-10 have a travel
time distribution of A/(20.1, 16). while path 5-7-8-10 has a travel time distribution of
N(20.1.10). We note that E[P?] is less than the expected value of any other path
from node 5 to node 10 in Figure 6-11(h). This is consistent with Theorem 4.

Next, we necd to calculate Py, We first see the subgraph in Figure 6-11(a)
is not series-parallel reducible. Because of this, we need to use Algorithm 4.4 to
approximate Ff,,. Step 1 of Algorithm 4.4 performs a series reduction with arc
(5.9) and arc (9,8). A new arc (5.8)? is added with X2, = A/(20.16). The resulting
graph is in Figure 6-13(a). Although there are two parallel arcs from node 5 to node
8, the algorithm does not perform a parallel reduction since N*(5) > 2. This is the
short-circuit discussed in Section 4.2.1.

Since |[N'] > 2. we need to find and condition on a Tvpe-1 or Type-2 arc. Arc
(4.5) is a Type-1 arc, so we set Xy5 to E[X,;5]. Now we can remove arc (4,5) and
add new arcs (4,8),(4,8)% and (4.7)%. X}, is set to E[Xus] + X2 = A(30.16).
X5 = E[Xus] + X2 = N(30,16), and X2 is set to E[Xy5] + Xs7 = N(20.8). The
resulting network is shown in Figure 6-13(D).

At this point, the graph has now become series-parallel reducible. In the next
execution of Step 1 of Algorithm 4.4, G will be completely reduced to a single arc
(4.10). Ares (4,8)",(4.8)? are removed with a parallel reduction and replaced with
a new arc (4.8} with Xas = MIN (X}, XE) = MIN(N(30.16), N (30.16)). Arcs

(4. 7)1 (4,7)% are also removed with a parallel reduction and replaced with a new

107

{b) Figure 6-13{a) after the Removal of Node 5.

(¢) Figure 6-13(b) after the Removal the Parallel Arcs.

Figure 6-13: The Application of Algorithm 4.4 to Figure 6-11(a).

are (4,7) with X4z = MIN (X} X§) = MINN(10, 2). N (20,8)) = N(10,2).
Figure 6-13(¢) shows the network after these parallel reductions.

Arcs (4,7) and (7, 8) are in series so we perform a series reduction and add the new
arc (4. 8)2 with){‘%B = X47+X?3 = MIN(N(IU 2).N(2U, 8))+N(10, 8) ~ ./\/‘(10, 2)+
N(10,8) = A(20,10). Now ares (4,8)" and (4. 8)? are in parallel so they are removed
and arc (4,8) is added with Xy = MZN(N(20, 10), MIN(N(30,16), N(30,16))).
Finally, arc (4,8) is in series with arc (8, 10) so arcs (4. 8).(8,10) are replaced with a
new arc (4, 10) with X110 = Xag +0.1. Since arc (4.10) is the only arc left X419 is
Pl

The density function of the minimum travel time distribution Py, is shown with
a dashed line in Figure 6-14. The other curves in Figure 6-14 are the density functions
of travel time for the possible paths from node 4 to node 10 in Figure 6-11(a). These
paths are 4-5-9-8-10, 4-5-8-10. 4-5-7-8-10, and 4-7-8-10.

By symmetry, the calculation of Py, involves the same order of operations as for
P}, However, because the distributions are not the same, Pg,, s different from
P .. Figure 6-15 shows the minimum travel time distribution P;m as a dashed line.

108

0.2r

0.18

Ll

0.16
0.14r
o2t

c.08r
0.06
0.04
0.02 -

cl 1 1 i 1 1
10 12 14 16 18 20 22 24 26 28 30

Travel Time

Figure 6-14: Comparison of travel time density functions from node 4 to node 10.
The dashed curve is the density function of the minimum travel time distribution
P{1p- The three remaining curves correspond to the travel time density functions of
path 4-5-9-8-10 and path 4-5-8-10 (A/(30.1.24)). path 4-5-7-8-10 (A/(30.1.18)). and
path 4-7-8-10 (A(20.1,4)).

Like Figure 6-14. the other curves represent the density functions of travel time of
the other possible paths from node G to node 10 in Figure 6-11(c). These paths are
0-5-7-8-10. 6-5-8-10, 6-5-9-%-10. and 6-9-8-10.

Now that Pf . Fy o and Py, are known. the user selects a routing objective. As
before, we consider the two different routing objectives corresponding to Equation 6.1
and Equation 6.2.

In the simulation. there was a source-sink pair from node 2 to node 10 and a
source-sink pair from node 10 to node 2. The simulation ran ten times for each value
of #: each run contained a different seed for the random number generator. In each
run, 100 users traveled between each source-sink pair (200 users total in the network).
Therefore, over ten runs, each source-sink pair had a total of 1000 users.

Figure -16(a) shows the paths traversed when routing according to Equation 6.1
and two different values of f. The actual realized travel times are presented in Fig-
ure 6-16(b). When # = 0, the sample mean of the actual travel time E-'[Dg_m] is
30.0179. The corresponding sample variance V/E;'(Dg.m) is 23.1403. For 6§ = 2. the
sample mean of the actual travel time E[Dgﬂl()] 18 29.9877. The corresponding sample
variance 175:;'([)2_10) 1s 5.5293. Relative to the expectation and variance when ¢ = 0,

109

o
-

c o
c ©
@ ©
il

o

o

o)
T

o

o

N
T

0 L i
0 5 10 15 20 25 30 35 40
Travel Time

Figure 6-15: Comparison of travel time density functions from node 6 to node 10.
The dashed curve is the density function of the minimum travel time distribution
Fg 1o- The three remaining curves correspond to the travel fime density functions of
path 6-5-9-8-10 and path 6-5-8-10 (A(30.1.24)). path 6-5-7-8-10 (N(30.1,18)), and
path 6-9-8-10 (N(20.1, 16)).

110

this represents a 0.1% decrease in expectation and a 76.1% decrease in the variance
of the actual travel time.

Figure (-17(a) shows the paths traversed when routing according to Equation 6.2.
The associated actual realized travel times are presented in Figure 6-17(h). When 6 =
0. the sample mean of the actual travel time £ [D210] 18 26.5448. The corresponding
sample variance ‘Fn—,‘r(_DE‘m) 15 14.83394. For 8 = 2. the sample mean of the actual
travel time E [Ds10) 18 29.5791. The corresponding sample variance \7(;"(.02_10) 18
9.7600. Relative to the expectation and variance when ¢ = 0. this represents a 11.4%
ncrease in expectation and a 34.2% decrease in the variance of the actual travel time.

We see from these figures that when ¢ = 0, multiple different paths are traversed.
However, as soon as variance is factored into the routing objective (hy setting 6 = 2).
a single path is generally used (path 2-3-4-7-8-10 is path “2” in Figurce 6-17(a}). Note
the sample variance of the actual travel times is lower when 6 = 2 relative to when
8 = 0. However. the sample expected travel time is higher. Therefore, for a user who
sets 6 = 2. the utility of low variance in travel time outweighs the higher expected
travel time.

Comparing routing performance across routing objectives, we see that when rout-
mg according to Equation 6.2 and 6 = 0 the expected travel time decreased 11.6%
relative to the expected travel time when routing according to Equation 6.1 and 6 = 0.
There are almost no realizations larger than 45. Similarly, the variance of the actual
travel time decreased by 35.9%. As in Section 6.2.1. the knowledge of the adjacent
arc realizations appears to allow the user to decrease. in this case, both the expected
travel time and the variance in travel time. even when the user is indifferent to the
varlance in travel time (¢ = 0}. Thercfore. when @ = 0, there is value in knowing the
adjacent arc travel time realizations.

When 6 = 2. there is minimal change in the expected travel time (1.4% decrease)
from Equation 6.1 to Equation 6.2. However, the travel time variance increases by
76.5%. Path 2-3-4-7-8-10 is the path with the lowest variance in travel time and is
traversed the most when routing with Equation 6.2 and 6 = 2 (this path corresponds
to path nuinber 2 in Figure 6-17(a)). However. several other higher-variance paths
are also traversed from node 2 to node 10, and this increases the overall variance in
travel time. This is because some adjacent arc realizations are small enough that the
disutility of high variance is offset. Although, in this example. the user obtains some
utility for travel times with low variance, the user is also willing to accept higher
variance in travel time when the adjacent arc realizations suggest a lower travel time.
Note that. in this example, if the user is not willing to accept higher variance in travel
time. the user must increase the disutility parameter ¢ appropriatelv.

The Performance of a “Confidence-Based” Routing Objective

As noted. the pritary benefit of our routing procedure is that any routing objec-
tive can be calculated easily and efficiently. To emphasize this point. we consider a

111

1000

900

N
1

800

700

600

500

Path Count

400
300
200

100

3-5-8 3-4-7-8
Path

(a) Paths Traversed. Each path begins at node 2 and ends at
node 10.

450 T T T T —

400} [Me=2 |

aso}

300 (7

250 L

200

Travel Time Count

150| 1

100}

15 20 25 30 35 40 45 50
Travel Time

(b) Travel Tiues.

Figure 6-16: Routing performance from node 2 to node 10 on Figure 5-1 using the
routing objective in Equation 6.1 with two different fs. Figure 6-16(a) displays the
paths traversed and Figure 6-16(b) displays the corresponding travel times. For 8 =
0, E[Dy0] = 30.0179 and Var(Dyo) = 23.1403. For § = 2, E[Dy 0] = 29.9877 and
Var(Da0) = 5.5293.

112

1000 T r T T T r r r T T

900 16=2]
800

700+ J
600 4

500+ 1

Path Count

400} 1
300} 4

200} 4

100 J

0 — p—y ol

1 2 3 4 5 6 7 8 9 10
Path Number

{a) Paths Traversed.

400

3501

300

250+

200

150

Travel Time Count

100

50

0
10 15 20 25 30 35 40 45
Travel Time

(b) Travel Times.

Figure 6-17: Routing performance from node 2 to node 10 on Figure 5 1 using the
routing objective in Equation 6.2 with two different s, Figure 6-17(a) displays the
paths traversed and Figure 6-17(b) displays the corresponding travel times. For # =
0. B[Dy19] = 26.5448 and Var(Dy,0) = 14.8394. For 6 = 2, E[Da 0] = 29.5791 and
Var(Dy10) = 9.7600.

113

0-18 T L T T T T

/'\ -7 P'5,10
0.16¢ i Pl

0.14 b — G-wﬁ

0.12

0.081
0.06

0.04r <

, :
0.02f O
N\

0 5 10 15 20 25 30 35 40
Travel Time

L

Figure 6-18: Comparison of the Density Functions of PJ,,, Fiy,. and P}, with X55 =
2

different type of routing objective that is described by the following equation:

J" € argmin(— Pr(X;; + P}, < £)) (6.3)

FENA (3)

This routing objective represents a certain confidence (expressed as a probability)
that the travel time from node 7 to node ¢ through node 7 with be less than or equal
to £.

Consider the case of a user located at node 3 destined for node 10 on the network
in Figure 5-1. Furthermore, for illustrative purposes, let Xyg = Xgs = (3, Gf) (a non-
symmetric distribution)'. ~(«, 3) denotes a gamma distribution with parameters o
and 3. The expectation of such a gamma distribution is a3 or, in our case, E[X5s] =
20 as before. We now need to recalculate Ff, . 5, and B, since Xsg is diflerent
from hefore. The new distributions are displayved in Figure 6-18. The effect of X353 =
7{(3,62) is most prevalent on Py g

If £ = 30, we see that Pr(X;;+ P}, < &) is the largest for j = 52. In Figure 6-19(a)
the path traversed with this routing objective is compared to the path traversed with
the routing objective in Equation 6.1 with ¢ = 2. As is evident, the actunal path
traversed changes from path 2-3-4-7-8-10, which has low variance in travel time, to
path 2-3-5-8-10, which has the largest probability (confidence) of the travel time being

I This modification is made to emphasize the potential impact on performance of routing according
to Equation 6.3
2This can be seen through inspection by adding Xs5 to P P, and Pg g in Figure 6-18,

114

less than 30.

To appreciate the impact of routing with Equation 6.3, consider the corresponding
realized travel times in Figure 6-19(b). The white bars correspond to Equation 6.1
with & = 2 and the hlack bars correspond to Equation 6.3. With Equation 6.1 the
sample mean of the actual travel time £ [Ds10] 18 29.9877. The sample mean of the
actual time with Equation 6.3 is quite siinilar with E[Dzilo] = 29.8192.

If a user were to make routing decisions solely on the expected travel time then
there would be no preference for path 2-3-5-8-10 over path 2-3-4-7-8-10. However. the
actual travel times are distributed quite differently over these two paths. By inspec-
tion. we see that there is low variance in the actual travel times with Equation 6.1
and ¢ = 2. On the other hand. we observe that the actual travel times are positively
skewed with Equation 6.3.

More formally. the sample variance of the actual travel times with Equation 6.1
(with # = 2) is Var[Da1p] = 5.5293 and the sample variance of the actual travel
times with Equation 6.3 is @{DQ‘]U] = 134.7661. This agrees with the use of path
2-3-4-7-8-10 when routing with Equation 6.1 and 8 = 2. If we calculate the sample
skewness of the actual travel times with Equation 6.1 (and # = 2) and Equation 6.3
we have -0.0441 and 0.9971 respectively. The positive skewness of the actual travel
times along path 2-3-5-8-10 agrees with the selection of j* = 5 at node 3.

As an additional note, in Chapter 2 we assume that each X,; has the property
that im,, _.q« fx,,(2;;) = 0 and lim, _, fx,, (xi;) = 0. If this assumption does not
hold. the intermediate distributions calculated by Algorithm 4.3 and Algorithm 4.4
might not he continuous. Without the assumption of continuity. the interpolation
routine could produce unexpected results. In Appendix A, we illustrate this problem
further.

6.2.3 A Larger Network

The approach to routing presented in this thesis is computationally challenging. As
such. it is important to understand performance in the context of larger and more
practical networks than those discussed in Section 6.2.1 and Section 6.2.2. Consider
the network in Figure 6-20. This network contains 522 arcs and 200 nodes. As noted.
this 18 a moedified model of the Amnsterdam A-10 beltway. We modified the original
model of the Amsterdam A-10 network so that arc (j.i) € 4 if arc (i.j) € A. The
purpose of this modification is to provide a check on the performance of our routing
procedure. This is necessary because the network is sufficiently large and it is not
trtvial to manually confirm the results. By adding arc (5.4) to A if arc (i.j) € A,
the actual travel times from a source s to a sink ¢ should be similar to the actual
travel times when 1 is the source and s is the sink. For completeness. this property
15 confirmed in Appendix C. Four additional source and sink nodes were also added
to the original model of the Amsterdam A-10 beltway. Appendix B contains the
complete network.

We omit discussion of the calculation of any minimum travel time distribution P,
as this network is large and complex enough such that any discussion would provide

115

Path Count

(a) Paths Traversed. Each path begins at node 2 and ends

1000

900

800

700

600

500F

4001

300t

2001

1001

node 10.

Travel Time Count

600

3-5-8

3-4-7-8
Path

at

500t

4001

300}

200

100}

10

20

30 40

Travel Time

(b) Travel Times.

50

-

i

60

70

80

80

Figure 6-19: Comparison of routing performance between Equation 6.1 (# = 2) and
Equation 6.3 from node 2 to node 10 on Figure 5-1. The black bars correspond to

Equation 6.3. With Equation 6.1, E[Ds10] is 29.9877. With Equation 6.3, £[Dy 0]

29.8192. With Equation 6.1, Var{Ds 0] = 5.5293. With Equation 6.3 I‘/Tz;'[Dz'w] =

134.7661.

116

little insight. The examples in Section 6.2.1 and Section 6.2.2 are much better suited
for gaining insight into our routing procedure. To gain a feel for the T7-D.AGs
generated by Algorithm 5.3 on this network. Figure 6-21 presents the 77-DAG
generated from node 144 to node 217. For the rest of this section. we focus on the
performance of our routing procedure.

In the simulation. there were four source-sink pairs: node 214 to node 215. node 216
to node 217, node 215 to node 214, and node 217 to node 216. The simulation ran ten
times for cach value of #: each run contained a different seed for the random number
generator. In each run. 100 users traveled between each source-sink pair (400 users
total in the network for each run). Therefore. over ten runs, each source-sink pair had
a total of 1000 users. The routing objectives in Equation 6.1 and Equation 6.2 were
used. For o particular routing objective and a particular random number generator
seed. the simulation took approximately 40 minutes. This includes the calculation
of all the necessary minimum travel time distributions and the generation of the
necessary 7 7-DAGs. The simulation does not calculate any minimum travel time
distributions or 77-D.AGs for nodes that are not visited by a user. When possible,
the minitnum travel time distributions were cached so as to avoid repeating the same
calculation. On the other hand. the 77-D.AGs were not cached as they are computed
much more efficiently than the minimum travel time distributions.

Figure -22 and Figure 6-23 show the results of routing from node 214 to node
215 with Equation 6.1 and Equation 6.2 respectively.

When routing according to Equation 6.1 and ¢ = 0, the sample mean of the actual
travel time F[ng 215) 18 49.9732. The corresponding sample variance \/ur(DZM 215)
15 21.6779. For # = 2. the sample mean of the actual travel time E[DQM.QU,] is
55.0334. The corresponding sample variance @'(Dzm.ma) is 13.4035. Relative to the
expectation and variance when 8 = 0, this represents a 10.1% increase in expectation
and a 38.2% decrease in the variance of the actual travel time.

For Equation 6.2 and # = 0. the sample mean of the actual travel time E[DzH 215)
is 50.0032. The corresponding sample variance \/m(DZM 015) 18 21.6349. For 6 = 2.
the sample mean of the actual travel time E[DZM 215) 15 53.9420. The corresponding

sample variance Var(DzM 215) 18 19.0718. Relative to the expectation and variance
when ¢ = (. this represents a 7.9% increase in expectation and a 11.8% decrease in
the variance of the actual travel time.

Comparing routing performance across routing objectives, we see that when rout-
g with Equation 6.2 and € = 0 the expected travel time increased (0.06% relative to
the expected travel time when routing with Equation 6.1 and 6 = 0. The variance
of the actual travel time decreased by 0.2%. If we examine the paths traversed when
= 0, we see that path number 2 is used almost exclusively regardless of whether
Equation 6.1 or Equation 6.2 is used as the routing objective. Path number 2 is so
dominant in expected travel time that almost no other other path is traversed even
though the adjacent arc realizations are known.

When 6 = 2, there is minimal change in the expected travel time (2.0% decr ease)
from Equation 6.1 to Equation 6.2. However. the travel time variance increases by
42.3%. These results are analogous to the results in comparing Equation 6.1 to

117

Figure 6-20: A larger network. This a modified model of the Amsterdam A-10 beltway
and contains 522 arcs and 200 nodes.

118

Figure 6-21. The Subgraph Generated by Algorithm 5.3 on Figure 6-20 from Node
144 to Node 217.

119

Figure 6-24 and Figure 6-25 show the results of routing from node 216 to node
217 with Equation 6.1 and Equation 6.2 respectively.

When routing according to Equation 6.1 and and 6 = 0. the sample mean of
the actual travel time E[Dzmgn] is 80.1845. The corresponding sample variance

Equation 6.2 in Section 6.2.2, and the same analysis follows.

V/B}(Dm;_gn) is 15.0585. For # = 2, the sample mean of the actual travel time
E[Dzw,gh—] is 80.0151. The corresponding sample variance f\a'r{Dm;ng) is 16.2935.
Unlike the users traveling from node 214 to node 215, the same path is traversed
regardless of whether § = 0 or 6 = 2 in Equation 6.1. In this case, path number 2
has both a low expected travel time and low variance in travel time. Therefore, in
this case, the user disutility for high variance 1s inconsequential in the result of the
routing decision.

When routing according to Equation 6.2 and 6 = 0, the saple mean of the actual
travel time F [Da16.217) 1s 78.2601. The corresponding sample variance Var(Dyig217)
is 14.1328. For 6 = 2. the sample mean of the actual travel time E{Dygn] is
78.5087. The corresponding sample variance @'(Dgw,gn) is 14.7434. Relative to the
expectation and variance when # = 0, this represents a 0.3% increase in expectation
and a 4.3% increase in the variance of the actual travel time. We see from Figure 6-
25(a) that the distribution of paths traversed 1s relatively similar for both # = 0 and
6= 2.

If we compare the routing performance across routing objectives, we see that
when routing with Equation 6.2 and 6 = 0 the expected travel time decreased 2.4%
relative to the expected travel time when routing with Equation 6.1 and § = 0. The
variance of the actual travel time decreased by 6.1%. Though the sample expected
travel time and sample variance slightly decreased, the real value of knowing the
adjacent arc travel time realizations is that the actual travel times are distributed
similarly to Figure 6-24(D), but over a greater range of paths. Such a property might
be useful to distribute the load in a network subject to congestion. Similar results
and observations follow for # = 2: the sample expected travel time decreases 1.9%
and travel time variance decreases by 9.5% from Equation 6.1 to Equation 6.2.

120

1000

900+

-

8001
700
600

5001

Path Count

400+

300

2001

100+

i
Path Number

(a} Paths Traversed.

350

300

250

200

150}

Travel Time Count

100+

50

30 35 40 45 50 55 60 65 70
Travel Time

(1) Travel Times.

Figure 6-22: Routing performance from node 214 to node 215 on Figure 6-20 using
the routing objective in Equation 6.1 with two different #s. Figure G-22(a) displays
the parhs traversed and Figure 6- 22(1)) displays the corresponding travel times. For
=0, E[DA4 Ar] = 49.9732 and Vm(DZM 213) = 21.6779. For 6 = 2, E[Dayg015] =
55.0334 and V m"(DZH_ZL,) = 13.403.

121

1000 — —

900 0
800} — i

T D
no
o

7001 4
600 1

500 T 1

Path Count

400} 1
300 i
200t 7

100 1

ol—mwml _ | "]
1 2 3
Path Number

{a) Paths Traversed.

300

25071

200}

150

Travel Time Count

100

50

35 40 45 50 55 60 65 7.0
Travel Time

(b) Travel Times.

Figure 6-23: Routing performance from node 214 to node 215 on Figure 6-20 using
the routing objective in Equation 6.2 with two different 0s. Figure 6-23(a) displays
the paths traversed and Figure 6-23(b) displays the corresponding travel times. For
6 = 0. E[Daygzs] = 50.0032 and Var(Daiazs) = 21.6349. For 6 = 2, E[Dyjams] =
53.9420 and Var(Dayga15) = 19.0718.

122

1000

900

800
700
600
500

Path Count

400

300

200

100

Path Number

(a) Paths Traversed.

300 T T r T T

250+ 7

200+ 7

150+ g

Travel Time Count

100+ 4

50+ 1

65 70 75 80 85 a0 95
Travel Time

(L) Travel Times.

Figure (-24; Routing performance from node 216 to node 217 on Figure 6-20 using
the routing ohjective in Equation 6.1 with two different fs. Figure 6-24(a) displays
the paths traversed and Figure 6-24(b) displays the corresponding travel times. For
8 = 0. E[Dag.217] = 80.1845 and m'{ng_gn) — 15.0585. For @ = 2, E[Daygoi7] =
80.0151 and Var(Dag.a17) = 16.2035.

123

350 T T T T T

300+ M e

250+ J
200}] .

150} i

Path Count

100} i

50}]

1 2 3 4 5
Path Number

(a) Paths Traversed.

300 r — — .

250} 1

200r .

150+ 1

Travel Time Count

100+ 4

50~ -

65 70 75 80 85 a0 95
Travel Time

{(b) Travel Tunes.

Figure 6-25: Routing performance from node 216 to node 217 on Figure 6-20 using
the routing objective in Equation 6.2 with two different #s. Figure 6-25(a) displays
the paths traversed and Figure 6-25(h) displays the corresponding travel times. For
0 = 0, E[Dygo17) = 78.2601 and Var(Dagarr) = 14.1328. For 0 = 2, E[Dyjgm7] =
78.5087 and Var(Dugor7) = 14.7434.

124

Chapter 7

Conclusions and Future Research

In this chapter, we provide a summary of the work in this thesis. We consider the
results and the limitations of this thesis. We also discuss arcas of future research.

7.1 Summary

Travel times in certain types of networks are inherently probabilistic . Transportation
and data networks are examples of such networks. Even with advanced technologies
and information systems, travel time is likely to be predictable at best with uncer-
tainty. For example. in the case of transportation networks. there will always be
random factors affecting travel time in the form of incidents. road conditions. and
weather.

Under probabilistic conditions. routing systems typically focus on achieving the
least expected travel time. Such an objective is natural. but one of the problems
with this approach is that it does not take into account the fact that a user might
prefer routing options with better attributes such as a higher expected travel time
in exchange for a lower variance in travel time. A second problem is that such an
approach implicitly assumes each user in the network has the same routing ohjec-
tive. Consequently, in probabilistic networks, a routing system that addresses these
problems will further advance the quality of routing.

In this thesis we develop an approach to routing in probabilistic networks that
addresses these problems. We address the inherent difficulty of routing in proba-
bilistic networks by proposing a routing procedure that quantifies the quality of a
roufing option. and allows for different user routing objectives. More formally. the
fundamental concept in this thesis is, for a given user with a set of routing options,
we approximate the distribution of travel time for each routing option. We are moti-
vated by the observation that if we knew the travel time distribution for each routing
option. we could determine the best routing option for any user routing objective.
Furthermore, user routing objectives would need not be specified a priori, but could
be made adaptively as the user travels through the network.

The routing system we propose is presented in Chapter 2. This systein is executed
every time a user arrives at a node ¢ destined for a node . Rather than selecting

125

an entire path for the user, the system only determines the next “neighbor™ node j*.
j* € N*t(i). for the user to travel to. Ideally, we would know the actual travel time
distribution. D}, from each node j € N7 (i) to sink t. Dy, is the distribution of travel
time over the path traversed from node 7 to node (. However, hy definition. Djy only
becomes known a posteriori. In light of this, we choose to approximate D, with P},
which is the minimum travel time distribution from node j to node t.

For cach j € N*(i). we initially generate an acyclic subgraph G’ of G from node
j to sink t since we do not assume the underlying network G is acyclic. Next, we
determine whether (' is series-parallel or non-series-parallel. If G is series-parallel,
% using an algorithm taken primarily from [26] and [43]. If (7 is non-
series-parallel. we approximate P by using an algorithm based on [17].

Once cach P}, has been calculated, the selection of j* € N7 (i) is done by a straight-
forward comparison. User routing objectives are specified in the form of a general
routing objective, represented by the real-valued operator [, with two other metrics.
@ and ¥, as arguments. ® operates on arc travel time random variables (X;;) and ¥
operates on minimum travel time distributions (P;“,) On-line or updated information

*

can be incorporated into the objective by modifying Xi; or Fj appropriately. For

we calculate

example, if the travel time z;; of arc {(¢,7) is known with some certainty. ® can be
set to x;;. Taken together, T, @, and ¥ are used to determine a single real-value that
represents each j € N*(4).

The primary benefit of this approach to routing s that, by computing adequate
travel time distributions at nodes, we are able to improve the quality of routing de-
cisions. We need not assume a particular routing objective. Additionally. once a
routing objective is selected, the user is not hound to that routing objective and can
switch objectives en route. We discussed several different routing objectives. Com-
putational results demonstrate that we are able to make effective routing decisions
with routing objectives that are based on the least expected travel time, a hybrid
of expected travel time and travel time variance, and the probability of the travel
time being less than a certain value. We also show how to incorporate adjacent arc
travel time realizations into these objectives. However. the primary significance of
this approach is that we are not limited to a single routing objective. In essence,
under this routing svstem, the set of possible routing objectives is infinite.

On the other hand. there are limitations to our approach as the quality of the
routing depends on the quality of P, which depends on the computation of an acyclic
graph G from a possibly cyclic graph G, and on whether (/ is a non-series-parallel
network. We are also limited to approximating Fj; on non-series-parallel networks.
We would prefer to be able to calculate P, exactly on non-series-parallel networks,
but such a calculation quickly becomes difficult and inefficient.

7.2 Future Research

In terms of future research. one useful property of our approach to routing is that
the components of our routing procedure are modular. That is. we can replace each
component without affecting the other steps of the routing procedure. For example.

126

if we decide there is a better algorithm to calculate P}, then we can just replace
our current algorithm for caleulating 2}, with the new algorithm. This modularity is
useful because each component can be studied. improved. and replaced independently.

7.2.1 Dependence of Arc Travel Time Distributions

In this thesis. we assume that the arc travel time random variables X ; are independent
and known for each arc (v. j) € A. The primary problem with this assumption is that
the arc travel times may be dependent. With dependence among arc travel times,
the sum and minimum functions arve not as easily analyzed. Efficient methods and
approaches that consider partial or full arc travel time dependence would be beneficial.

One approach to dependence that could easily be incorporated into our routing
system is the notion of conditional independence. When a user that originates at
node s arrives at node i. the travel times of arcs that have not yet heen traversed
could be conditioned on the travel time realizations of the arcs used from node s to
node ¢ Similarly. in a network subject to congestion, the travel times of arcs that
have not yet been traversed could be conditioned on the levels of congestion of the
traversed arcs. If the arcs not yet traversed are conditionally independent given the
travel times of the traversed arcs. then we can still use the methods in this thesis
to calculate P%. In the implementation, this would amount to a table lookup of
the conditioned arc travel time distributions hefore calculating P} The notion of
conditional independence within a transportation network has some similarities to
Bayesian networks [37].

In some sense. we have already addressed a form of conditioning in this thesis. In
Equation 6.2, we assume the travel times on the adjacent arcs are known immediately
before the arc is traversed. By setting ®(X;;) equal to the known travel time z,,. we
effectively shift the minimum travel time distribution P% by z;; to obtain a better
approximation of the actual travel time distribution.

7.2.2 Estimation of Arc Travel Time Distributions

Another area of possible research is the initial estimation of the arc travel time dis-
tributions. In this thesis. we assume the arc travel time distributions are known a
priori. However. they could also be generated from historical data or using sophisti-
cated prediction models. Additionally. the densities could be estimated on-line using
updated travel time information (obtained through an information system). Both
[19] and [40] cover density estimation.

7.2.3 Computation of Minimum Travel Time Distributions

In this thesis, we approximate P}, when the underlying graph G is not series-parallel.
This is achieved by conditioning on certain arcs and reducing G’ to a series-parallel
graph. In the case when we have the option of conditioning on different arcs, it would
be useful to study the consequences of intelligently selecting the arc to condition on.
In this thesis, arcs were chosen arbitrarily.

127

Additionally. in [1]. Bein et al., define s — t DAG complexsty, which i1s a measure
of how “series-parallel” a TT-DAG is. This measure is defined as the minimum
number of nodes (and adjacent arcs) that need to be removed to make (' series-
parallel reducible. While Bein et al. develop an eflicient algorithm to find the s — ¢
DAG complexity, it would also be useful to bound the s — { DAG complexity relative
to the size of G'.

7.2.4 Time-Dependent Networks

There is a growing body of research in routing on time-dependent probabilistic net-
works (see [28], [27). [16], [22]). A time-dependent probabilistic network is a proba-
hilistic network where the arc travel time distributions change with time. It would
be useful to consider the benefits and the problems of applying this thesis to time-
dependent probabilistic networks.

7.2.5 En Route Routing and Real-Time Information

The primary benefit of using travel time distributions is that, once the travel time
distributions are known. the calculation of any routing objective becomes straight-
forward. One useful consequence of this is that a user is not bound to a particular
routing objective for the duration of a trip. The user-specified routing objective
can be changed en route with no additional computational overhead. For example,
consider a user traveling from location s to location ¢ for an important meeting.
At the outset of the trip. the user might have the objective of arriving in the least
expected time. Suppose, however. that along the way there are delays. In this case,
due to the importance of the meeting, the user might want to change the objective to
be the least possible travel time in order to have some hope of arriving at the meeting
in time. Alternatively, the user might change the objective to compute the highest
probability of arriving at the meeting in time.

In this thesis, we do not explicitly consider changing routing objectives en roufe.
though it is already possible with our routing procedure. Some areas of study could
include the identification of situations where the user would want to change the
routing objective en route, and how the use of on-line information could affect the
selection of the routing objective.

7.2.6 Numerical Analysis

We discuss numerical implementations of the sum and minimum of random variables.
Though it is not the explicit focus of this thesis, efficient implementations of these
functions are necessary for the caleulation of travel time distributions. Fundamental
to the implementation of these functions is the discrete representation of random
variables. We represént random variables as arrays of the possible realizations and
the corresponding densities. This representation was motivated algorithmically as
it is convenient for use in the sum and minimum routines. Our results suggest this

128

representation also produces accurate results. Future research in this area would
analyze this representation (or alternative representations) with numerical analvsis.

The basic approach to computing the sum of random variables is to take the
convolution of the corresponding probability density functions. Two basic convolu-
tion methods are direct convolution and Fast Fourier Transform convolution. These
methods are well-defined and studied in a varicty of fields. On the other hand. the
efficient implementation of the minimum of random variables is not as well-studied.
and deserves further research to develop a more efficient numerical implementation.

7.2.7 Practical Infrastructure Considerations

A favorable property of the routing svstem proposed is that it lends itself to be
implemented as a decentralized infrastructure where the routing decisions are made
at cach node. In this case, each node needs to know the network topology and the arc
travel time random variables of every arc in the network. Aside from this knowledge,
each node can operate independently.

In implementations of the Bellman-Ford routing algorithm on computer networks,
each node In the network maintains a distence-vector. The distance-vector of node
records the distance from each adjacent node j € N*(i) to each destination in the
network. In practice. the Bellman-Ford routing algorithm can be implemented in a
decentralized manner where each node communicates its distance-vector to each of
its adjacent nodes. Further research would modify this communications scheme to
apply to our routing system.

Both [5] and [42] consider the practical benefits of decentralized computation.
Three observations are emphasized here:

Scalability With a decentralized algorithm. it is easy to add a node to the underly-
ing network. With a centralized algorithm there i1s need for confisuration and
coordination setup. This is the primary reason why computer networks employ
a certain degree of decentralization. It is too hard to add a node to the network
and maintain a centralized routing infrastructure.

Communications If a routing decision needs to be executed before the results of
a centralized algorithm can be communicated. then such an algorithm is of no
use. For probabilistic networks. it is imperative to consider the costs of data
collection and calculation.

Single Point of Failure If a centralized implementation is disrupted, then so are
all locations within the infrastructure. Decentralizing decision making allows
for continnous network operation, even when a subset of the network has failed.

129

[This page intentionally left blank |

Appendix A

Continuity and Minimum Travel
Time Distributions

Consider the network in Figure 5-1 where Xgq is set to EXP(20) (the exponential
1

distribution with mean 20 and A = &) £XP(20) is continuous over [0.ac), but
lm, o+ fxge(zss) # 0. To understand the consequences of this. suppose Xgg is
shifted 10 units to the right. This might occur in Step 2b of Algorithm 4.4. With
such a shift Xgy is no longer defined for r55 < 10. Furthermore. this shift makes X4
non-continuous over [0, 00) as lim, 19+ fx..(r5s) = 0.05 and lim,_.;o- Txealasg) = 0.

If we consider the case of a user located at node 3 going to node 10, the density
functions of the resulting minimum travel time distributions P, Prig. and Pb*m
are shown in Figure A-1, Figure A-2, and Figure A-3 respectively. For PZ,. X is
not shifted. and Fy o is not affected by Xz = EXP(20). For P;,. Xss is shifted
by E[Xys| = 10 since arc (4,5) is a Type-1 arc in Algorithm 4.4. This has the
effect of making the density function of P}, non-continuous at 10. The effects of
a discontinuity at 10 are mitigated since any potential interpolation problems can
be avoided hy defining Py, over [a,b] where @ = 10. This is not the case for P 10
Figure A-3 shows the density function of I 6 10 18 non-continuous at 10. However, we
cannot define an interval [a.b] where the density function of F¢ o 1s continuous. In
this case, it is fortunate that the discontinuity is introduced in the final step of the
calculation of £, ,. In general, if a discontinuity is introduced during an intermediate
step of Algorithm 4.4 (or Algorithm 4.3). the interpolation routine could produce
unexpected results.

The purpose of the assumptions lim,, ;—at Sx,; (ri5) = 0 and lim,, b= Ix; (2i) =0
1s to prevent the introduction of a disc on‘rmmtw thdt could corrupt the calculation of
the minimum travel time distribution.

131

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.1
0.09
0.08
0.07
C.06
0.05
0.04
0.03
0.02

0.01

—_

i

[

5

10

15

20

25

30

35

Figure A-1: The Density Function of P .

40

I

I

10

15

20
Travel Time

25

30

35

Figure A-2: The Density Function of Pf,,.

132

40

012

0.1

0.08

0.06

0.04

0.02

5 10 15 20 25
Travel Time

Figure A-3: The Density Function

133

30 35

of P}y

40

[This page intentionally left hlank.]

Appendix B

Example Network in Figure 6-20

Head | Tail Head | Tail Head | Tail Head | Tail Head | Tail
101 18 48 101 213 | 201 201 | 213 174 | 49
49 174 49 175 175 | 49 51 52 52 51
a7 48 48 47 48 49 49 48 49 50
50 49 43 44 44 43 44 45 45 44
45 46 46 45 103 | 45 45 103 44 173
173 | 44 172 44 44 172 45 104 104 | 45
52 53 53 92 99 51 51 99 51 100
100 51 176 | 52 52 176 n2 177 177 52
b 57 57 55 Y 506 56 of 56 H4
54 50 98 57 57 98 56 178 178 56
67 68 68 67 68 69 69 68 68 91
91 68 54 211 211 54 57 54 54 57
90 68 68 90 189 | 69 69 189 69 190
190 69 84 82 32 84 82 81 81 82
82 192 192 82 210 | 80 80 210 80 86
86 30 88 89 39 88 89 77 i 89
89 36 86 80 79 84 84 79 87 78
78 87 83 80 30 83 33 87 87 83
212 &3 83 212 86 85 8h 86 84 87
87 84 165 | 167 167 | 165 167 5 5 167
5 6 6 b 6 168 168] 68 16
16 168 17 170 170 17 | 17 9 9 7
105 16 16 105 18 11 11 18 11 10G
106 11 105 11 11 105 19 17 17 19
16 15 15 16 12 14 14 12 168 | 169
169 | 168 169 12 12 169 12 171 171 12
169 | 170 170 | 169 170 | 171 171 | 170 12 11
11 12 105 | 106 106 | 105 106 9 9 106
9 107 107 9 20 107 107 20 171 172
172 171 172 173 173 172 173 174 174 173

o]

Head | Tail Head | Tail Head | Tail Head | Tail Head (| Tail
174 175 175 174 175 176 176 175 176 177
177 | 176 177 3 3 177 3 4 4 3

4 178 178 4 178 | 179 179 1 178 179 180
180 | 179 180 | 181 181 | 180 188 | 189 189 | 188
63 64 64 63 64 65 65 64 65 66
66 65 92 64 64 92 64 93 93 64
187 65 65 187 65 185 188 i) 187 138
188 187 181 186 186 | 181 186 | 187 187 1 186
61 59 59 61 59 97 97 59 96 60
60 96 60 62 62 60 59 180 180 { 59
179 | 60 60 179 182 | 183 183 | 182 183 | 184
184 | 183 184 | 185 185 | 184 94 183 183 | 94
183 | 95 95 183 181 | 184 184 | 181 184 | 186
186 184 190 | 212 212 180 69 70 70 69
159 190 190 189 212 192 192 212 192 193
193 192 75 194 194 75 193 75 75 193
193 194 194 193 207 | 200 206 | 207 206 71
71 200 71 72 T2 71 195 71 71 195
71 196 196 71 194 | 195 195 194 195 196
196 195 196 | 197 197 | 196 197 | 155 155 197
197 | 203 203 | 197 203 | 200 2000 | 203 151 154
154 1561 150 32 32 150 32 153 153 32
200 | 156 15G | 200 33 32 32 33 32 | 200
200 | 32 200 | 34 34 1200 154 | 155 155 | 154
153 | 154 154 | 153 153 | 152 152 | 153 155 | 166
166 | 155 200 | 208 208 | 205 208 | 209 209 | 208
209 210 210 209 73 74 74 T 74 7H
79 74 208 74 74 208 74 209 209 74
75 76 70 75 210 77 77 | 210 77 81
81 77 81 90 90 31 90 91 91 90
91 92 92 91 92 93 93 92 93 94
094 93 94 95 95 94 95 96 96 95
96 97 97 90 97 08 98 97 08 1
1 98 1 2 2 1 2 99 99 2
99 100 100 99 100 101 101 100 101 102
102 101 43 102 102 48 102 103 103 102
103 | 104 104 | 103 104 105 105 104 107 7
7 107 7 8 e, 7 8 108 108 8
108 109 109 108 109 110 110 109 29 27
27 29 27 28 23 27 28 30 30 28
28 21 21 28 21 22 22 21 165 21
21 165 22 23 23 22 22 167 167 22
23 24 24 23 24 29 25 24 25 26
26 25 26 27 27 26 108 25 25 108

136

Head | Tail Head | Tail Head | Tail Head | Tail Head | Tail
206 109 109 26 110 | t11 111 | 110 163 | 114
114 | 163 112 | 113 113 | 112 113 | 114 114 | 113
114 | 115 115 | 114 114 | 164 164 | 114 110 | 113
113 | 110 113 | 111 111 | 113 111 | 119 119 | 111
119 | 120 120 | 119 161 | 162 162 | 161 139 | 140
140 | 139 142 | 139 139 | 142 140 | 141 141 | 140
162 | 139 139 | 162 140 | 119 119 | 140 163 | 164
164 | 163 164 | 165 165 | 164 120 | 121 121 | 120
123 | 128 128 | 123 128 | 127 127 | 128 127 | 126
126 | 127 159 | 127 127 | 159 127 | 129 129 | 127
129 | 160 160 | 129 129 | 133 133 | 129 133 | 143
143 | 133 143 | 144 144 | 143 144 | 145 145 | 144
145 | 134 134 | 145 134 | 143 143 | 134 134 | 135
135 | 134 135 | 161 161 | 135 121 | 130 130 | 121
132 | 130 130 | 132 130 | 128 128 1 130 128 | 122
122 | 128 144 | 147 147 | 144 120 | 136 136 | 120
145 | 146 146 | 145 135 | 136 136 | 135 136 | 131
131 | 136 131 | 132 132 | 131 132 | 133 133 | 132
121 | 122 122 | 121 160 | 161 161 | 160 122 | 148
148 | 122 158 | 159 159 | 158 159 | 160 160 | 159
162 | 163 163 | 162 148 | 149 149 | 148 149 | 150
150 | 149 150 | 151 151 | 150 152 | 202 202 | 152
151 | 152 152 | 151 203 | 156 156 | 203 156 | 157
157 | 156 157 37 37 157 37 158 158 37
148 36 36 148 36 149 149 36 35 36
36 35 36 37 37 36 37 38 38 37
157 | 158 158 | 157 201 | 203 203 | 201 201 | 202
202 | 201 202 | 204 204 | 202 204 | 205 205 | 204
204 | 2006 206 | 204 206 | 205 205 | 206 214 | 49
49 214 215 | 103 103 | 215 216 | 143 143 | 216
217 | 35 35 217

137

[This page intentionally left blank]

Appendix C

Comparison of Actual Travel

Times in the Example Network in
Figure 6-20

In Section ¢.2.3. we note that we modified the original model of the Amsterdam A-10
beltway to include arc (7,4) in A if arc (+.j) € A. The purpose of this modification
was to provide a check on the performance of our routing procedure. This is necessary
because the network is sufficiently large and it is not trivial to manually confirm the
results. By adding arc (j.7) to A if arc (i,j) € A. the actual travel times from a
source $ to a sink ¢ should be similar to the actual travel times when f is the source
and s 1s the sink.

In this appendix, we confirm this property holds by inspection. Figure C-1 and
Figure C-2 show the actual travel times when routing from source node 215 to sink
node 214 with Equation 6.1 and Equation 6.2 respectively. Figure 6-22(b) and Fig-
ure 6-23(h) show the actual travel times when routing from source node 214 to sink
node 215 with Equation 6.1 and Equation 6.2 respectively. As is evident. the distri-
bution of actual travel times is similar.

Figure (-3 and Figure C-4 show the actual travel times when routing from source
node 217 to sink node 216 with Equation 6.1 and Equation 6.2 respectively. Figure 6-
24(b) and Figure 6-25(b) show the actual travel times when routing from source node
216 to sink node 217 with Equation 6.1 and Equation 6.2 respectively. As is evident.
the distribution of actual travel times is similar.

139

400 T T —

350+ [18

300 1

250+ 1

200+ 1

1501 9

Travel Time Count

100+ q

) 1 (i

30 35 40 45 50 55 60 65 70
Travel Time

Figure C-1: Actual trave] times from node 215 to node 214 on Figure 6-20 us-
ing the routing objective in Equation 6.1 with two different fs. For 6§ = 0,

E[DQ]S.Q}_/}] = 50.1151 and L/(l‘l'(Dglr,_gm) = 22.1952. For 6 = 2. E[D215_214] = 55.0833
and Var(Days014) = 14.0806. These results agree with the results in Figure 6-22(Db).

300 T —

T
CJe

0
2

250 (M

200 r

150}

Travel Time Count

100+

35 40 45 50 65 60 65
Travel Time

Figure C-2: Actual travel times from node 215 to node 214 on Figure 6-20 us-
ing the routing objective in Equation 6.2 with two different 6s. For 6 = 0,
E[Da1s.214] = 49.8359 and Var(Dysa) = 18.4830. For @ = 2, E[Da1s.014] = 53.7591
and \7&}-(1)21,.-,_214) = 19.3611. These results agree with the results in Figure 6-23(b).

140

300 T T L

=0
[Jo=2
250+
€ 200 .
]
Q
Q
[e}]
E 150¢ .
=
B
-
&
~ 100+ .
50+ .
0 JH—.D——D~
65 70 75 80 85 90 95

Travel Tirmne

Figure C-3: Actual travel times from node 217 to node 216 on Figure 6-20 us-
ing the routing objective in Equation 6.1 with two dlfferen‘r fs. For & = 0.
F[Dgl, 216] = 79.96068 and ‘/(17 (Dzl 21(,) = 16.9835. For 8 = E[Dzl‘ 21(,] = 80.0642

and Vm(Dzmgw) = 16.5233. These results agree with the I‘Phllltb in Figure 6-24(h).

300 T T L T T
Bl o=0
[Je=2

250+

200

160

Travel Time Count

1001

501

65 70 75 80 85 90 95
Travel Time

Figure C-4: Actual travel times from node 217 to node 216 on Figure 6-20 us-
ing the routing objective in Equation 6.2 with two different #5. For 6 = 0.
E[[)gl, 216] = 78.1010 and V(zr(Dzl o16) = 14.5568. For 6 = 2, E[Dgl 216) = T8.8317
and Vrz‘r(Dlm‘zm) = 15.6214. These results agree with the results in Figure 6-25(h).

141

[This page intentionally left blank.]

Bibliography

[1]

9]

[10]

[11]

[12]

[13]

Wolfgemg W. Bein. Jerzy Kamburowski. and Matthias F. M. Stallman. Opti-
mal Reduction of Two-Terminal Directed Acyclic Graphs. SIAM Journal on
Cormputing. 21:1112-1129, 1992.

Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, Volume 1.
Athena Scientific. Belmont. MA, 2000.

Dimitrt P. Bertsekas. Dynamic Programming and Optimal Control, Volume 2.
Athena Scientific, Belmont. MA. 2000.

Dimitri P. Bertsekas and Robert Gallager. Data Networks. Prentice-Hall. Upper
Saddle River. NJ, 1992.

Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computa-
tion: Numerical Methods. Athena Scientific. Belmont. MA. 1997.

Dimitri P. Bertsekas and John N. Tsitsiklis. Introduction to Probability. Athena
Scientific. Belmont, MA, 2002,

Robert G. Dial. A Probabilistic Multipath Traffic Assigninent Nodel which
Obviates Path Enumeration. Transportation Research. 5:83-111, 1970.

R.J. Duffin. Topology of Series-Parallel Networks. Journal of Math Analysis and
Applications, 10:303 318. 1965.

Salah E. Elmaghraby. Activity Networks: Project Planning and Control by Net-
work Models. John Wiley and Sons, New York. NY. 1977.

David Eppstein. Finding the & Shortest Paths. SIAM Journal on Computing.
28(2):652-673, 1998.

George S. Fishman. Estimating Network Characteristics in Stochastic Activity
Networks. Management Science, 31(5):579-593, 1985.

H. Frank. Shortest Paths in Probabilistic Graphs. Operations Research, 17:583—
599, 1969.

H. Frank and S.L. Hakimi. Probabilistic Flows Through a Communication Net-
work. JEEE Transactions on Circuit Theory, CT-12:413-414, 1965.

143

[14]

[18]

[19]

[21]

[22]

[23]

[24]

[26]

[27]

AM. Frieze and G.R. Grimmett. The Shortest Path Problem for Graphs with
Random Arc Lengths. Discrete Applied Mathematics, 10:57-77. 1985.

Liping Fu. An Adaptive Routing Algorithm for In-Vehicle Route Guidance Sys-
tems with Real-Time Information. Transportation Research B. 35:749 765, 2000.

Song Gao. Routing Problems in Stochastic Time-Dependent Networks with Ap-
plications in Dynamic Traffic Assignment. Master’s thesis, Massachusetts Insti-
tute of Technology, 2002.

Mark B. Garman. More on Conditioned Sampling in the Simulation of Stochastic
Networks. Management Science, 19(1):90-95, September 1972.

H.O. Hartley and A.W. Wortham. A Statistical Theory for PERT Critical Path
Analvsis. Management Science. 12(10):B469-B481, 1966.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Sta-
tistical Learning: Data Mining. Inference. and Prediction. Springer Verlag, New
York, NY. 2001.

John M. Burt Jr. and Mark B. Garman. Conditional Monte Carlo: A Simulation
Technique for Stochastic Network Analysis. Management Science, 18(3):207-217,
November 1971.

Peter Kall and Stein W. Wallace. Stochastic Programmang. John Wiley and
Sons, New York. NY, st edition, 1994.

James Seong-Cheol Kang. Algorithms for Routing Problems in Stochastic Time-
Dependent Networks. Master’'s thesis. Massachusetts Institute of Technology.
2002.

V.G. Kulkarni. Shortest Paths in Networks with Exponentially Distributed Arc
Lengths. Networks, 16:255-274, 1986.

Richard Larson and Amedeo Odoni. Urban Operations Research. Prentice-Hall,
Upper Saddle River, N.J. 1981.

D G. Malcolm. J.H. Roseboom. C.E. Clark, and W. Fazar. Applications of
a Technique for Research and Development Program Evaluation. Operations
Research, 7(5):646-669, 1959.

1.J. Martin. Distribution of the Time through a Directed, Acyclic Network.
Operations Research, 13(1):46-66, 1965.

E. Miller-Hooks and H. Mahmassani. Least Possible Time Paths in Stochastic,

Time-Varying Networks. Computers and Operations Research, 25:1107-1125,
1998.

144

[28]

[29]

[30]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

E. Miller-Hooks and H. Mahmassani. Optimal Routing of Hazardous Materials
in Stochastic, Time-Varying Transportation Networks. Transportation Research
Record, 1645:143-151. 1998.

Alau V. Oppenhiem. Alan S. Willsky. and S. Hamid Nawah. Signals and Systems.
Prentice-Hall Signal Processing Series. Prentice-Hall, Upper Saddle River. New
Jersey. 2nd edition, 1997.

James B. Orlin, Thomas L. Magnanti. and Ravindra K. Ahuja. Network Flows:
Theory. Algorithms. and Applications. Prentice-Hall, Upper Saddle River, New
Jersey, 1993,

Athanasios Papoulis and S. Unnikrishna Pillai. Probability. Random Variables.
and Stochastic Processes. McGraw-Hill. New York. NY. 4th edition. 2002.

George H. Polychronopoulos and John N. Tsitsiklis. Stochastic Shortest Path
Problems with Recourse. Networks. 27:133 143. 1996.

W.H. Press. S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical
Recipes in C (The Art of Scientific Computing). Cambridge University Press.
New York, NY. 1992.

J. Scott Provan. The Complexity of Reliability Computations in Planar and
Acyclie Graphs. SIAM Journal on Computing, 15(3):694-702, August 1986.

J. Scott Provan and Michael O. Ball. The Complexity of Counting Cuts and
of Computing the Probability that a Graph is Connected. SIAM Jouwrnal on
Computing. 12(4):777--788. November 1983.

Pierre Robillard and Michel Trahan. The Completion Time of PERT Networks.
Operations Research. 25:15-29. 1977.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall. Upper Saddle River, New Jersev. 2nd edition. 2002.

Suvraject Sen. Rekha Pillai. Shirish Joshi, and Ajav K. Rathi. A Mean-Variance
Model for Route Guidance in Advanced Traveler Information Systems. Trans-
portation Science, 35(1):37 49, February 2001.

C. Elliott Sigal. A. Alan B. Pritsker. and James J. Solberg. The Stochastic
Shortest Route Problem. Operations Rescarch. 28(5):1122-1129. 1980,

B. W. Silverman. Density Estimation for Statistics and Data Analysis. CRC
Press, Boca Raton, FL, 1986.

Timothy Law Synder and J. Michael Steele. Handbooks in Operations Research
and Management Science, Volume 7. chapter Probabilistic Networks and Net-
work Algorithms, pages 401-424. Elsevier Science. New York, NY. 1995,

145

[42] Andrew S. Tanenbaum. Computer Networks. Prentice-Hall. Upper Saddle River.
NJ. 1981.

[43] Jacobo Valdes. Parsing Flowcharts and Series-Parallel Graphs. Technical Report
STAN-CS-78-682. Stanford University Computer Science Department, 1978.

[44] Jacobo Valdes. Robert E. Tarjan. and Eugene L. Lawler. The Recognition of
Series Parallel Digraphs. In Proceedings of the Eleventh Annual ACM Sympostumn.
on the Theory of Computing. pages 1-12. ACM. 1979.

[45] Leslie G. Valiant. The Complexity of Enumeration and Reliability Problems.
SIAM Journal on Computing, 8(3):410-421, 1979

[46] Eric W. Weisstein. Fourier Transtorm. World of Mathematics
(http://mathworld.wolfram.com/ Fourier Transform.html).

[47] Jin Y. Yen. Finding the & Shortest Loopless Paths in a Network., Management
Science, 17(11):712-716. July 1971.

146

