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ABSTRACT

In this thesis, I explore various aspects of market liquidity and analyze its effect on asset
prices. First, in a model of a limit order market I explain how to define liquidity and derive
a price impact function. Second, I show how agents who have price impact generate a
liquidity component in asset prices.

In Part I, I propose a continuous-time model of price formation in a limit-order market.
Strategic liquidity traders arrive randomly to the market and dynamically choose between
limit and market orders, trading off execution price with waiting costs. I prove the existence
of a Markov equilibrium in which the bid and ask prices depend only on the numbers of
buy and sell orders in the book, and which can be characterized in closed-form in several
cases of interest. My model generates empirically verified implications for the shape of the
limit-order book and the dynamics of prices and trades. In particular, I show that buy
and sell orders can in some cases cluster away from the bid-ask spread, thus generating a
concave price impact function.

In Part II, I lay the foundations for the model in Part I by explaining how to define multi-
stage games with perfect information in continuous time. In this version, strategies are
locally constant and have a finite number of jumps. Also, I allow for the possibility of
“stopping the clock.”

In Part III (joint with Andrew W. Lo and Jiang Wang), we analyze the effects of price impact
in a rational infinite-horizon, discrete-time consumption-investment model. We assume
that some agents’ transactions change prices via an exogenously determined price impact
function. Then the resulting equilibrium price, besides the risk premium, displays another
component, which depends on the price impact coefficient. We interpret this component as
a “liquidity premium.”

Thesis Supervisor: Andrew W. Lo
Title: Harris and Harris Group Professor of Finance
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1 Introduction

Liquidity is an important concept in financial markets, and is frequently used by academics
and practitioners alike. However, despite efforts of a large literature in market microstruc-
turel, liquidity has remained an ellusive concept. It is said that, like vulgarity, liquidity is
easy to recognize, but difficult to define. At the same time, a growing literature in asset
pricing? indicates that liquidity (defined typically as the price impact of a transaction) has
a considerable effect on asset prices.

In this thesis, I explore both the nature of liquidity, and the means by which it affects
asset prices. In the first line of inquiry, I consider a model of a specific type of market,
called limit order market, where there are no market makers and trading is done according
to a public order book. This simplifies the discussion, and allows me to give a definition of
liquidity based on the arrival rates of the various types of traders, and their relative waiting
costs. Using these basic notions, I derive an equilibrium order book and explain how it
evolves in time. Then I define (in the context of limit order markets) both an instantaneous
price impact function, as well as a price impact function relative to a given time interval.

"This approach represents a departure from the typical market microstructure literature.
In that literature, liquidity is defined as the amount of adverse selection in the market. Prices
change because suppliers of liquidity have to protect themselves from traders with superior
information. In my model, prices change because the arrival of new agents changes the
balance between various suppliers of liquidity.

In the second line of inquiry, I assume as given the price impact function, together with
the corresponding time interval. Then in a discrete-time consumption—investement model, I
show that if the agent who wants to trade has price impact, then asset prices should display,
besides a risk component, a component which depends on the price impact function. This
can be interpreted as a “liquidity premium,” and provides a theoretical justification for
the empirical findings mentioned above, which show that liquidity can significantly impact

equilibrium prices.

'See the survey book by O’Hara (1995), ch. 8.

’Brennan and Subrahmanyam (1996), Pastor and Stambaugh (2003), etc.

3However, ir recent work Parlour (1998), Foucault, Kadan and Kandel (2003}, etc., approach the problem
in ways similar to mine.



Part I

A Dynamic Model of Limit Order Markets

2 Introduction to Part I

In most classical models of market microstructure? the market maker plays a central role.
The main function of the market maker is to provide liquidity (immediacy) for those who
wish to trade, by setting bid and ask quotes. However, there exist many markets, called
order-driven, or pure limit order markets, in which there are no market makers (e.g., ECNs,
Euronext, Hong Kong, Tokyo, Toronto). In these markets every investor can supply liquidity
by placing limit orders in a limit order book.? With the recent trend towards larger and more
automated exchanges, order-driven markets have become increasingly important. There
are also hybrid exchanges (e.g., NYSE, Nasdaq, London), where market makers exist but
have to compete with other traders, who supply liquidity by limit orders. In these markets,
the number of transactions which involve a market maker is usually small.”

The study of liquidity provision when market makers do not exist or only have a limited
role is therefore very important in understanding modern financial markets.® However, it
is quite a complicated problem.® To solve it, one would need to know exactly how market
prices arise from the interaction of a large number of anonymous traders, who arrive in the

market at random times, can choose whether to trade immediately or to wait, and who can

48ee the survey book by O’Hara (1995).

5Limit orders are price-contingent orders to buy (sell) if the price falls below (rises above) a prespecified
price. The limit order book is the collection of all price-contingent orders which have not yet been executed.

6Nowadays, about half of the world’s stock exchanges are organized as order-driven markets, with no
designated market makers, while only a few exchanges completely rely on dealer quotes (see Jain (2002)).

TFor example, on the NYSE the specialists’ participation is about 13%, and even less in the case of larger
stocks (see Hasbrouck and Sofianos (1993}).

80ne can argue that market making behavior is important and may arise endogenously even in order-
driven markets. However, I know of no data to support this. Anecdotically, there seem to be many traders
who submit limit orders (thus providing liquidity), but who do not maintain a continuous presence in the
market. Consider the case of a value mutual fund who wishes to acquire a stock based on some analyst
reports. If it is willing to wait in the hope of a belter execution price in the near future, then it can do so
by placing a limit buy order. After the order is executed, the fund might not want to trade again in that
stock any time soon. And even if it does, it is not so hard to accept that the next decision to trade in that
particular stock can be thought of as being made by a different fund.

9There has been significant progress in recent years: see for example the models of Foucault et al. (2003),
Goettler et al. (2003), Parlour (1998), and also the discussion in Harris (1998). The main difficulty is not in
formulating the problem, but in obtaining a tractable model.




behave strategically by changing their orders at any time.

In this Part I propose a model of an order-driven market which reflects all the features
mentioned above. The model is tractable and produces sharp implications about (1) the
shape of the limit order book at any point in time, and (ii) the evolution in time of the
book, and in particular of the bid and ask prices. The model is in line with known empirical
facts, such as the hump shape of the limit order book. It can also explain why following a
market buy order both the bid and the ask increase, not only the ask.

I consider a continuous-time, infinite-horizon economy where there is only one asset with
no dividends. Buyers and sellers arrive to the market randomly. They either buy or sell one
unit of the asset, after which they exit the model. I assume that all traders are liquidity
traders, in the sense that their impulse to trade is exogenous to the model. However, they
are discretionary, because they have a choice over when to trade, and whether to place a
market or limit order. After a limit order is placed, it can be canceled and changed at will.
The execution of limit orders is subject to the usual price priority rule, and when prices
are equal to the first-in-first-out (FIFO) rule. All agents incur waiting costs, i.e., a loss of
utility from waiting. Depending on whether they have low or high waiting costs, traders
are patient or impatient. All information is common knowledge, including the limit order
book (which is the collection of outstanding limit orders).

In equilibrium it turns out, not surprisingly, that patient agents submit in general limit
orders, while impatient agents submit market orders. The new limit orders are always
placed inside the bid-ask spread!®, until the spread reaches a minimum level. When this
happens let us call the book “full” At that point, patient agents either place a market
order or start submitting quick (fleeting) limit orders which in effect behave like market
orders. This comes theoretically as a result of a game of attrition amongst the buyers or
the sellers.

In order to obtain intuition about the limit order book, I study in more detail a particular
case of the model, where one considers just one side of the book, e.g., the sell side: with only
patient sellers and impatient buyers. Then the solution can be expressed in closed-form.

Also, to discuss price impact and determine the shape of the limit order-book, T allow

Y0This is not unrealistic, the majority of limit orders are spread-improving: see Biais et al. (1995). One
can modify this model, so that the population of patient agents is heterogeneous. Then more patient agents
may then place orders away from the market. The model is however more difficult to solve.



for multi-unit market orders, even with very small probabilities. This assumption fixes the
levels on which agents place their limit orders, which will then be different for each agent.!!
I show that if the such orders arrive with probabilities which do not decrease too fast (or
rather that the agents do not believe so), then the book exhibits a hump shape, i.e., the
limit orders will cluster away from the bid and the ask (cf. Biais et al. (1995), and Bouchaud
et al. (2002)).

The case when there are no impatient agents can also be solved in closed-form. The
resulting equilibrium is quite interesting: buyers and sellers cannot coexist in the limit order
book. There are either a lot of sellers in the book and the buyers place market orders, or
vice versa. This shows that the existence of impatient agents is important in order for a
limit order book to function properly.

I also derive the equilibrium processes that bid and ask prices follow, and the expected
time-to-execution for limit orders.'?> The point where the limit order book is full coincides
with the time when the bid-ask spread is minimum (an interesting fact since the tick size
is zero). One may call this minimum spread the competitive bid-ask spread. Then, as in
Foucault et al. (2003), I define resiliency as the speed with which the bid-ask spread reverts
to its competitive level. I then recover their results: the resiliency of the limit order book
increases with the proportion of patient traders, but decreases with order arrival rate, etc.

An interesting empirical implication is that after a market sell order both the bid and
ask prices decrease, with the bid decreasing more than the ask.'® As a result, the spread
itself widens. The latter fact was obtained by Foucault et al., but since they do not allow
for cancellation of limit orders, did not also obtain a decrease in the ask price. The fact that
the ask also decreases is documented for example in Biais et al. (1995), who also propose

an information explanation.!?

UThe fact that agents limit trade at different levels comes from the fact that the FIFO rule breaks the
symmetry of the payoffs, which forces orders to have different times to execution.

1211 this model, since agents can switch places in the book, they can increase expected time-to-execution
while keeping utility constant (by getting a higher expected execution price). However, if one assumes that
traders preserve the relative order in which they arrived in the book, one can define a meaningful notion of
time-to-execution.

13The bid decreases mechanically, because a limit buy order is cleared from the book. The fact that the
ask decreases reflects the sellers’ realization that their reservation value (the bid) has decreased, so they also
adjust the ask.

14This implication can be generated also in a model with price discovery, such as in Glosten and Milgrom
(1985). However, I show that even in the absence of information such dynamics may occur.




The limit order book was analyzed in a variety of ways. The information models, which
consider market makers interacting with informed agents, are all static: see Glosten (1994),
Chakravarty and Holden (1995), Rock (1996), Seppi (1997) and Parlour and Seppi (2001).
Moreover, traders are restricted to placing limit orders, so they do not have a choice to
submit market orders. Dynamic models, without market makers, are studied by Parlour
(1998), Foucault (1999), Foucault, Kadan and Kandel (2003), Goettler, Parlour and Rajan
(2003). However, these models are typically not very tractable, and do not allow for strategic
cancellation of limit orders.

Although the present work was developed independently from this literature, it turns
out that it is closely related to the work of Foucault, Kadan and Kandel (2003). In their
model, waiting costs are also the driving force. An important feature of their model is the
existence of discrete prices. This allows them to make a comparison among various tick
sizes. However, discrete prices make their model more complicated, so in order to simplify
it they have to impose strong assumptions such as: (i) there is no cancellation of limit orders
(so agents only make only one decision, when they arrive); (i) a buyer must always arrive
after a seller, and vice versa ; and (iii) new orders have to be improving the existing limit
orders by at least a tick. Assumptions (ii} and (iii) make the spread the only state variable,
which allows a recursive structure for the solution. As a consequence, their model only
focuses on the bid-ask spread, and not on the evolution of the actual bid and ask prices.

An interesting related literature is on liquidity and search costs (e.g., Duffie, Garleanu
and Pedersen (2001), Vayanos and Wang (2003)), where buyers and sellers have to search for
counter-parties to trade. My contention is that on organized exchanges search costs become
one-dimensional and can be better thought of as waiting costs, which leads to the current
model."® This work is also related to the burgeoning field of econophysics (see Farmer et
al. (2003) or Gabaix et al. (2003)). See also the literature on double auctions and bid-ask
markets, e.g., Wilson (1986).

150f course, one could still argue that search costs are important, especially when stocks are traded on
more than one exchange, or when there is more than one specialist. But, more importantly, search costs
become significant when dealing with large (block) trades. Since block trades are not dealt with in my
model, it would be interesting if one could merge the two frameworks and shed more light on this issue.



3 The Model

3.1 The Market

I consider a market in an asset which yields no dividends. The buy and sell prices for this
asset are determined as the bid and ask prices resulting from trading based on the rules given
below. There is a constant range A > B where the prices lie at all times. More specifically,
there is an infinite supply when price is A, provided by agents outside the model. Similarly,
there is an infinite demand for the asset when price is B. Prices can take any value in this

range, i.e., the tick size is zero.

Trading. The time horizon is infinite, and trading in the asset takes place in continuous
time. The only types of trades allowed are market orders and limit orders. The limit orders
are subject to the usual price priority rule; when prices are equal, the first-in-first-out
(FIFO) rule is applied. If several market orders are submitted at the same time, only one
of them is executed, at random, while the other orders are canceled.'® Limit orders can be
canceled for no cost at any time. There is also no delay in trading, both types of orders
being posted or executed instantaneously. Trading is based on a publicly observable limit

order book,'” which collects all the limit orders that have not been canceled or executed.

Agents. The market is populated by traders who arrive randomly to the market, and
choose strategically between market and limit orders. They are liquidity traders, in the
sense that they want to trade the asset for reasons exogenous to the model. The traders are
either buyers or sellers; their type is fixed from the beginning and cannot change. Buyers
and sellers trade at most one unit, after which exit the model forever.

Traders are risk-neutral, so their instantaneous utility function (felicity) is linear with

16Ty justify this assumption, it is best to think of a market buy (sell) order as a limit order with limit
price equal to the ask (bid). Then if several market orders are submitted at the same time, one of them is
randomly executed, while the others remains as limit orders, which can be freely canceled.

Y1n recent years, limit order books have become increasingly available to traders. For example, in NYSE
the OpenBook system (introduced in October 2000) allows traders—for a monthly fee of $50/month per
screen—ta see all limit orders in real time (with a 5-second delay). However, orders from the trading floor,
or stop-loss orders are not visible. Another example is Nasdaq Level II, which displays the best bids and
offers from market makers and ECNs, and which is publicly available to registered traders. However, other
limit orders from the market makers are not available on Nasdaq, except through a premium system like
PowerView or DepthView, and even there the visible depth is limited to the best five quotes. For a final
example, in Furonext traders can see the best five quotes on each side, while Euronext members have access
ta the whole limit order book, except hidden quantities and ID codes.

10




price.!® By convention, felicity is equal to price for sellers, and minus the price for sellers.
Traders discount the future in a way proportional to the expected waiting time. Thus, if 7

is the random execution time and P; is the price obtained at 7, the utility of a seller is

fr =B {Pr —r(r —t)},

Similarly, the utility of a buyer is —g; = E;{—P; — (7 — )}, where I introduce the notation

9t = E{Pr +r(r —t)}.

[ call f; the value function of the seller at ¢, and g; the value function of the buyer, although
in fact g; equals minus the utility of a buyer.

The discount coefficient r is constant, and can take two values: if it is low, the corre-
sponding traders are called patient, otherwise they are impatient. Agents’ types are deter-
mined from the beginning and cannot change.

For simplicity, I assume that the impatient agents always submit market orders. This
Is not necessary to make the model work, but it simplifies the presentation. In the Ap-
pendix, I discuss conditions for the coefficient r such that in equilibrium impatient agents
always submit market orders. Assuming this, from now on r denotes only the time discount

coefficient of the patient agents.

Arrivals. The four types of traders (patient buyers, patient sellers, impatient buyers,
and impatient sellers) arrive to the market according to independent Poisson processes with

constant arrival intensity rates

APB, Aps, AIB, AIs.

By definition, Poisson arrival with intensity A implies that the number of arrivals in any
interval of length T" has a Poisson distribution with parameter A\T. The inter-arrival times
of a Poisson process are distributed as an exponential variable with the same parameter
A. The mean time until the next arrival is then 1/A. The interval until the next arrival is

called a period.

'8 This model also works with exponential time discounting, but the resulting formulas are more compli-
cated.

11



Strategies. Because of Poisson arrivals, the game must be set in continuous time.
Since there is no universally accepted standard of continuous time game theory, I define in
Part II the game theoretic setup that seems the most appropriate to our case: stochastic
multi-stage game with observed actions, by extending a framework created by Bergin and
MacLeod (1993). All information, together with agents’ strategies and beliefs are common
knowledge.

One special feature of this model that has to be addressed comes from market orders.
Suppose at time t an agent submits a market order. Then the agent exits the model, and
the next stage of the game will be played with fewer players. But at which time will this
next game be played? No t + e > t is satisfactory, because it would imply waiting for a
positive time, during which agents lose utility. The best solution, as in auction theory, is
to “stop the clock.” Then the next game is also played at time ¢, and the clock is restarted
only when in the stage game no agent submits a market order. Allowing for clock stopping
in continuous time game theory requires some care, and it is done in Part II.

An important benefit of setting the game in continuous time is that agents can respond
immediately. More precisely, one can use strategies that specify: “Keep the limit order at
a; as long as the other agent stays at as or below. If at some time ¢ the other agent places
an order above ag, then immediately after t undercut at a+.” In the rest of this Part, I use
this type of strategies freely.

The notions of equilibrium used are sub-game perfect equilibrium, and Markov perfect
equilibrium (see Fudenberg and Tirole, ch. 13). One other notion that is important in this
framework is that of competitive equilibrium, which is a sub-game perfect equilibrium such
that at each time all buyers have the same value function (and similarly for sellers). These

are discussed in more detail in Part II.

3.2 Discussion.

1 now discuss some of the features of this model. One strong assumption is that prices lie
within a range [B, 4], and that A and B are known by everybody with certainty. Clearly, a
more realistic assumption would be to make A and B random, or even stochastic, perhaps
as prices coming from valuations of informed traders. In fact, one can think of A and B

as summarizing information about the asset, while within this range prices fluctuate due

12




to the exogenously specified order Aow (of course, one should not artificially separate order
flow from information). This interpretation would imply that empirical implications of this
model would be more believable when obtained in high frequencies, when less information
is likely to arrive.

Onme should be clear that this is not an asymmetric information model. As pointed out
by Foucault et al. (2003), in this kind of models, frictions such as the bid-ask spread are
completely determined by (i) the waiting costs of agents, and (ii) strategic rent-seeking by
patient traders. But this is not so unrealistic. Huang and Stoll (1997) for example esti-
mate that on average approximately 90% of the bid-ask spread is due to non-informational
frictions (“order-processing costs” ).

Another strong assumption is having independent Poisson arrivals. From a qualitative
standpoint, more important than the actual Poisson distribution is the independence of
the increments of the arrival process. This implies that at each point during the period
between two successive arrivals, the agents face the same market conditions, which allows

for a relatively simple description of the equilibrium.

4 Equilibrium: One Side of the Book

In this section, I analyze the sell-side of the limit order book, by assuming only two types
of traders: patient sellers and impatient buyers. With the notation given above, App =
Arg = 0. (By symmetry, one can derive similar results for the buy-side.) This case proves
to be quite tractable. Moreover, it is also useful for understanding the general case, which

can be thought as merging two one-sided models,

4.1 Main Intuition and Discussion

Here is some intuition for the equilibrium. Imagine the limit order book is empty, and a
patient seller (labeled “1”) arrives first to this market. Then, until some other agent arrives,
trader 1 optimally behaves like a monopolist, and submits a limit sell order at a; = A?

Suppose now a second patient seller (labeled “2”) arrives. Now both sellers compete for the

*T have assumed implicitly that if the only limit sell orders in the bock are at A, a market order first
clears the orders in the book, and only after relies on the infinite supply at 4.

13
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Figure 1: The limit order book with m sellers.

possibility of a market order from incoming impatient buyers. If trader 1 could not cancel
his limit order at A, then trader 2 would surely place her limit order at a3 = A—4, for some
very small §. But trader 1 can change his limit order, so a price war would likely follow.
In order for both traders to be satisfied, trader 2 needs to place her limit order at a level
ap < A low enough so that trader 1 would be indifferent between keeping his limit order at
a; (thus having a chance to become a monopolist again after trader 2’s order gets cleared),
and switching places with trader 2. Now, being indifferent in this case exactly means that
both traders get the same expected utility from their strategies. Recall that when traders
derive the same expected utility (value) from their equilibrium strategies the equilibrium is
called competitive.?? Of course, the values a1 and ag are determined in equilibrium, and
depend on what other agents will do: imagine that instead of an impatient buyer who places
a market order at a, a patient seller comes, who will place a limit order at as, etc.

To summarize the above discussion, when there are m sellers in the book, in equilibrium
it must be that some trader has a limit order at the ask an,. As long as the orders of others
are above a,,,, their exact levels do not matter (this is because the incoming market orders
are one-unit). However, if the trader at the ask tries to place the order higher, then some

other agent immediately will jump at ap,.

200ne can imagine a different scenario, when all patient sellers queue their limit orders at A until the
expected utility of the last trader equals the reservation value B. How can such a non-competitive equilibrium
be sustained? By Nash threats: Trader 1 can threaten with competitive behavior if trader 2 does not queue
behind him at A. Trader 2 is better off by complying as long as she expects trader 3 to do the same and
queue behind her. Although these other, non-competitive, equilibria are interesting in their own right, 1
focus on competitive equilibria since they are the more likely outcome of large, anonymouns order-driven
markets.

14




General Discussion

One might wonder what happens if one relaxes the assumption that agents can only
trade one unit of the asset. Then it seems that trader 2 could do better by buying trader
1 out and becoming a monopolist until the arrival of a new agent.?! In some sense, trader
2 could profit from hoarding liquidity and thus becoming an endogenous market maker.2?

The behavior of an endogenous market maker (multi-unit supplier of liquidity) is beyond
the scope of this paper, and in order to keep the model tractable, 1 will simply not allow
it. However, since I prefer to think that the most important intuitions of this paper are not
model specific, some discussion is in order.

First of all, it is not straightforward how to model the behavior of a multi-unit supplier
of liquidity. In order for some trader to hoard liquidity in the way mentioned above, the
following conditions have to be satisfied: there are no constraints on borrowing or short-
selling; the trader is risk-neutral (so there are no inventory issues); and the arrival rates are
independent of the bid-ask spread (otherwise, if the market maker tries to extract too high a
rent, then competing liquidity suppliers will arrive with a much higher probability). These
conditions are clearly unrealistic, so it is safe to assume that there are limits to endogenous
market making. Then an extension of my model where patient traders supply at most n
units of the asset (with n a low number) seems quite realistic.

Also, allowing endogenous market making raises a more sericus problem. Classical
market microstructure, which has focused mainly on the market maker, has been in some
sense forced to accept that only the arrival of new information (or at least the possibility
of new information) could move prices. Otherwise, why would the arrival of a market order
move the quotes? If new information did not change the expected value of the asset, then
presumably the market maker could just use inventory to replace the liquidity that has been
consumed, without changing quotes. This goes to the heart of the issue, and shows why
modeling the market maker is a difficult task.

There are two reasons why the market maker might move prices even in the absence

' More precisely, trader 2 can place a limit buy order at some level slightly above the expected utility of
trader 1. Then trader 1 would be better off accepting the offer immediately, and trader 2 would become a
monopolist instead of competing, so she would also be better off.

225ee Bloomfield, O’Hara and Saar (2003} for evidence of endogenous market making in experimental
arder-driven markets.

15



of information: First, since the order flow is usually positively auto-correlated (a feature
not present in this paper), a profit maximizing market maker might decide to change prices
to take advantage of the likelihood that the next market order goes in the same direction.
Second, and more importantly, is the market maker only a profit maximizer? To some
extent, a market maker fulfills also the role of an (inter-temporal) Walrasian auctioneer.
Such an auctioneer, when a demand imbalance appears (proxied by a market order in a
continuous-trading environment), would adjust market clearing prices {proxied by quotes)

in the direction of the imbalance.

4.2 Equal Arrival Rates

I assume a dynamic market clearing condition, namely that the arrival rates of patient

sellers and impatient buyers are equal:

A=Aps=Aig > 0.

Start with a competitive stationary Markov equilibrium. The idea is to find necessary
conditions for such an equilibrium to exist, and then to prove that the conditions are also
sufficient. As mentioned in the previous section, the Markov equilibrium is defined with
respect to the state variable given by the number of sellers m in the limit order book. Since
in a competitive equilibrium all agents have the same utility, denote by fp, the utility of an
agent in state m.

I enumerate a few results about the equilibrium that will be proved in Appendix A.
First, the number of states must be finite. Denote by M the largest state. As m increases,
each seller is strictly worse off. In state M it must be true that fas = B, otherwise another
patient seller would be tempted to join in. In this state the bottom seller has a mixed
strategy: at the first arrival in an independent Poisson process with intensity p, the seller
will place a market order and exit.*® Observe that from a state m = 1,..., M — 1, the

system can go to one of two states:

e m — 1, if an impatient buyer arrives—after random time 7i;

23There is another possibility for a mixed strategy, but it leads to the same formulas. See Proposition 31.
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e m + 1. if a patient seller arrives—after random time T5.

Inter-arrival times of Poisson processes are exponentially distributed, so the arrival of the
first of the two states happens at min(73,T5,), which is exponential with intensity 2)\. Then
each event happens with probability 1/2. One obtains the formula f,, = %(fmvl + frnt1) —
T ﬁ Denote by

e T
=5
The formula becomes

2fm + &= fm-1+ fm+1.
From the terminal state M, the system can go to
s M — 1, if an impatient buyer arrives—after random time T7;
e M, if a patient seller arrives—alfter random time T;
e M — 1, if a current seller places a market order and exits—after random time 73.

One can ignore the arrival of a new patient seller, since it does not affect the state (the seller
places a market order at B and exits). Then one gets the formula fay = far_1 — 7 - ﬁﬁ

Define

A
= —— ¢ (0,1].
u=315 <01

The formula becomes

fv+ue = fau-r

Define also (this will be justified later):
fo=A

All these equations can be put together in the following definition.

Definition 1. Let u € (0,1) and M > 0 an integer. A sequence f,, m=1,..., M, is called
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a (u, M)-chain if

fOZA:
2fm+e=fme1+ frn-1, m=1,... M -1

fa+ue= fy-1.

The (u, M)-chain fn, is called mazimal if fpg = B.

1)

An important intuition for a (u, M)-chain is that it f,,, decreases for m < M, after which

it starts increasing.

Proposition 1. Suppose fm is ezxtended above M wvia the middle equation of (1). Then if

1 < M 1is an integer, not necessarily positive, the following recursive relation holds:

frmict = fu-i +e(i+u).

In particular, a (u, M)-chain fp, is strictly decreasing in m if m < M and strictly increasing

ifm>M.

What was done so far was to show that the value functions for any competitive stationary

Markov equilibrium form a maximal (u, M)-chain. The next result shows that given A, B

and ¢, such a chain is unique and gives explicit formulas to calculate it.

Proposition 2. Given A > B and € > 0, there exists a unique mazimal (u, M)-chain. Any

sequence fr, that forms a mazimal (u, M)-chain satisfies the formula

fmzA—bm+§m2,

where

b=5\/(%—u)2+w=e(M—%+u).

£

The integer M > 0 and real number u € (0,1] are the unique ones for which

N R

18 an integer.
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Proof. See Appendix A. (]
I now state the main result of this Section.

Theorem 3. Given A, B,r, A, there ezists a unique competitive stationary Markov equilib-

rium of the game. Let e = £, and M,u, fr, as in Proposition 2. Then in equilibrium there

are at most M limit orders in the book, and the ask price in state m = 1,..., M 1is given by
am = fm-1, ifm <M, (5)
apyy = B+e (6)

The value function in state m is given by fm,. The strategy of each agent in state m is the

following:
e [fm =1, then place a limit order at a; = A.

o [fm =2 . M—1, place a limit order at any level above a.,, as long as someone

stays at am (or below). If not, then place an order at ap,.

o Ifm = M, the strategy is the same as form = 2,...,M — 1, except for the bottom
seller at apr, who exits (by placing a market order at B) after the first arrival in a

Poisson process with intensity p = % - A
e Ifm > M, then immediately place a market order at B.
Proof. See Appendix A and the discussion below. O

Notice that there is some ambiguity in the way strategies are formulated. They can
support several equilibria, all of them payoff-equivalent. For example, in one equilibrium,
in state m each agent places an order at a,,, regardless of what the others are doing. Another
equilibrium is the one in which no agent changes the order until execution. Then in state
m, the limit order book has limit orders at ai,...,amn. This is the equilibrium suggested at
the beginning of this section.

This ambiguity arises from the fact that market orders are for only one unit, so in each

state only the limit order at the ask matters. In fact, there is ambiguity also in the identity
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of the players. As mentioned above, it does not matter who has the order at the ask as long

as there is one. That divides the agents essentially into two types:
e The Bottom agent, who has the lowest offer in the book, placed at a,,.

e The Top m — 1 agents, who are placed above (or at a,, after the Bottom agent, due

to the FIFO rule).

Here is the state diagram for the Bottom seller, where £ represents exit for this agent (when

an impatient seller comes and clears the order at the ask):

E E F E E
® } : } 1
1 2 3 M-1———
1/2 1/2 1/2

And here is the state diagram for the Top sellers:

E

(T)

(11

1/2 1/2
1 / 2 / 3 M—l":.lM

1/2 1/2 1/2

(Notice that in state 1 there is no distinction between the Top and Bottom agents.) One

obtains then the equations

(B) 2.fm+5=am+fm+1v lfmzlaaM_l

(T) 2fm+E:fm—1+fm+lv lfm:2),M_1

Since the equilibrium is competitive, by definition in state m the value functions are all
equal, so it follows that a,, = fr—1 forallm =2,..., M — 1. Since in state 1 the seller is a

monopolist, a; = A. This justifies the definition: fy = A.
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Now it is clear why the strategies defined by Theorem 3 give a sub-game perfect equi-
librium: In each state m no agent wants to deviate. The bottom trader will not go lower
than ay,, because then he will lose in expectation. If he tries to go above a,,, then some
top agent will immediately become the bottom one.

One can also calculate

apy = B+e
ap—1 = B+e4 2ue,
apr—2 = B+ 32+ 3ue,
ap—3 = B4 6+ due,
a; = A.

It is interesting to see how f,,, depends on m and B:

8 fm

T~ (M —5+u)—m); (7)
Ofm m
OB M-1+u ®)

(Notice that %% < 1 when m < M.) These formulas are important to get intuition
about the equilibrium limit order book with both sellers and buyers (then in some sense
B represents the bid price). Here is a heuristic argument: suppose the system is in an

equilibrium with 7 sellers and n + 1 buyers. Then the bid price B = g, »n. One calculates

afm,n _ 8fm,n agm,'n agm,n
on 0B  on < an )

This implies that when a new buyer arrives, the sellers are better off by less than the
buyers are worse off (recall that 9m,n 1s minus the buyers’ utility). Another, more rigorous

argument, will be given in the section that solves for the equilibrium in the general case.
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4.3 Different Arrival Rates

In this section, I assume that the patient sellers arrive faster than the impatient buyers:
)\1 = )\ps > >\2 = AIB-

As in the case of equal arrival rates, one starts with a competitive stationary Markov
equilibrium, and looks for for necessary conditions. Denote by fm is the value function
of a seller in the state where there are m sellers in the book. From the results proved in
Appendix A, the number of states is finite, so there exists a largest state M. Moreover,

famr = B. From the state m =1,..., M — 1 the the system can go to one of two states:
e m + 1, if a patient seller arrives—after random time T ~ exp(A1);
e m — 1, if an impatient buyer arrives—after random time T ~ exp(Az).
The arrival of the first of these two states happens at min(T},T5) ~ exp(A1 + A2). Then the

first event happens with probability

A1 >l
AL+ Az 2’

and the second with probability 1 — w. Define

r

N VT v

One then gets the equation
fonte=wfmn+{1-w)fm1.

The characteristic equation wz? — & + (1 -w) = 0 has two roots: 1 = 1 and z2 = ¢, where

azl_—w<1.
w

Imposing the condition fo = A as in the equal arrival case, the general solution is

fm=A—-C(1l-a™)+¢efm, with C arbitrary, (10)
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where
1

2w—1"

8=

The constant C' is determined by looking at the final state M. In this state, suppose the

bottom agent has the mixed strategy to place a market order at the first arrival in a Poisson

process with intensity p. Arrival of patient seller does not matter, so one gets the equation

(Az+ w)fm + €= (A2 + p) far—1. Define

Then one gets

S +ue = frr_q.

As in the case of equal arrival rates, one can define a (u, M)-chain.

Definition 2. Let u € (0, ﬁ] and M > 0 an integer. A sequence f,, m=1,...

called a (u, M)-chain if

fO:Aa
fm+€=wfm+1+(1_w)fm—lr m=1)"‘9JMﬁ1

fv +ue = faroq.

The (u, M)-chain fn, is called mazimal if fpr = B.

(11)

As in the previous Section, a (u, M)-chain decreases for m < M and increases for

m> M.

Proposition 4. Suppose fm, is extended above M via the middle equation of (11). Then if

© < M is an integer, not necessarily positive, the following recursive relation holds:

fr—ir=fuos+e((B+u)a™ 1)+ u).

In particular, o (u, M)-chain fy, is strictly decreasing in m if m < M and strictly increasing

ifm> M.
One can also prove the following result.
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Proposition 5. Given A > B, w > % and € > 0, there ezists a unique mazimal (u, M)-

chain. Any sequence fy, that forms a mazimal (u, M )-chain satisfies the formula

frm=A—-Cy(Q —a™)+efm, (12)
where
B+u)
CM:=5%gTj%gz- (13)

The integer M > 0 and real number u € (0, =] are the unique ones for which

e(6+ u)

A—B+eBM= Y "]

(1—a™). (14)

An interesting feature of these formulas when w > % is that one can calculate the limit of
equation (12) when & — 0. To see why, notice that fyy = B, so Cum(1 —oMy=A—-B+epM.
The number o™ is of the order of ¢, so M is of the order of log%. This implies that
Cuy = A— B modulo terms of order € log %, which is of smaller order for example than £!/2,

In the end, one gets the following formula
fm=B+(A-B)d" ife=0. (15)

I now come back to the description of the equilibrium.

Theorem 6. Given A, B,r,A\1 > X, there exists a unique competitive stationary Markov
equilibrium of the game. Let €,a, 8 as above, and M, u, fm as in Proposition 5. Then
in equilibrium there are at most M limit orders in the book, and the ask price in state

m=1,...,M is given by

Am = fmfla ifm<M'> (16)

ay = B+{(1-w)e. (17)

The value function in state m is given by fm. The strategies of agents are the same as those

in Theorem 3.
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4.4 Multi-Unit Market Orders

When agents have one-unit demands, the only important limit order in equilibrium is the
one at the ask, and the others limit orders can be at any level above the ask. However,
assume that multi-unit market orders may arise even with very small probability. To be
more precise, let & be the maximum number of units that an order can have, with positive
probability. Then in equilibrium I show that the last levels in the order book are fixed.

Assume that patient sellers still arrive with only one unit to sell. Define

A = arrival rate of patient sellers;

A; = arrival rate of i-unit impatient buyers, ¢ = 1,,.. k.

Assume that

Ai>0foralli=1,... k.

Moreover, as in the previous section, one wants the sellers to arrive faster than the units

demanded by the buyers. This is equivalent to

k
AN i (18)
1=1

As before, the number of states is finite, so there exists a largest state M. Moreover,
fy = B. From the state m — 1,..., M — 1 the the system can go to one of the following

states:
® m+ 1, if a patient seller arrives;
e m—i,i=1,... k if an impatient i-buyer arrives.

In state M there is some randomization: the bottom seller may leave after the first arrival

of a Poisson process with intensity .

Definition 3. Let 4> 0 and M > 0 an integer. A sequence fm, m=1,... M, is called a
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(11, M)-chain if

fo=fa==f_=4,
(A + Zfﬂ Ai)fo + 7 = Afynyr + ELl A frn—i, (19)
OoE i+ mfar+7 =+ @) far_y + N fars.

The (u, M)-chain f,, is called mazimal if far = B.
Now one can put to use equation (18) to show the following result.

Proposition 7. A mazimal (s M)-chain f,, is strictly decreasing in m ifm < M and

strictly increasing if m > M. It satisfies the formula

fn =Co+ CroP + Chall + .. 4 Ceal’ +am,  where (20)
r
@=T—F——>0 and lo az|,. .., lag| < 1. 21
T o, laal, .. joy (21)
The complex numbers: oo = 1,ay,..., a4 are the roots of the polynomial

k k
PX) = 2X™ — 0+ Y0 x5 + STnxk
i=1 i=1
Proof. Consider the middle equation m (19} for m = M (by extending f,, to be defined for

m =M +1). Subtracting that equation from the bottom one, one obtaing

#UIM=1 = fa) = =DM(far ~ Fagsr).

Equation (18) can be used to show that the sequence ¢y, = f,, — Jm+1 Is always decreasing
in m. The above equation shows that ¢m changes sign at M.

Now the middle equation in (19) is a difference equation that has general solution Sm =
A Coaf* + Cra? + ... + Crafl’, where f0 is a particular solution, and ag = 1, ay, . .. ) QU
are the roots of P(X) (which is the polynomial corresponding to the recursive equation). If
one tries a particular solution 2 =am, one gets that indeed ¢ = Tgh Moreover, if

T2i=iA

one defines Q(X) = P(X)/(X — 1), the roots of Q(X) are oy,...,qp. One calculates

QUX) = AXY — (A1 + -+ A ) XF1 o= o1 F A)X = A
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For each i == 1,... k, consider the equation Q(a;) = 0, which is the same as A — (A +
e Ao+ (el + )\k_)ai—(k_l) + Xpa*. Suppose [@,| > 1. Then using the
previous equation one gets A < (A1 +2X2 + ...+ kM) < A, contradiction. This implies that
le;| < 1. O

The description of the equilibrium is the following:

Theorem 8. Given A, B,r, A and \;,i = 1,...,k which satisfy the mnequalities above, there
erists a unique competitive stationary Markov equilibrium of the game. Denote by ip =
min{k, m}. In equilibrium there are at most M limit orders in the book, and ifi =1,...,1g

}

then the level of the i ’th limit order (counted from bottom up) in state m < M is given by

Akfm—k T A1k + .o+ Aifmi
. — 22
ai(m) A+ A1+ N ' (22)
where by convention fo=f_1=---= f1_t = A. The value function in state m is given by

fm. The strategy of each agent in state m is the following:
e If m =1, then place a limit order at a;(1) = A.

o Ifm=2,...,M—1, look at the bottom k levels (or at all m levels ifm < k), which are
a1(m), ..., ai,(m). If any of them is not occupied, occupy it. Anything above a;,(m)

does not matter.

o I[fm = M, the strategy is the same as form = 2,... M — 1, except for the bottom
seller at apr, who erits (by placing a market order at B) after the first arrival in a

Poisson process with intensity p.
o If m > M, then immediately place a market order at B.

One can make these formulas more explicit. There are two cases, depending on whether

the k-unit market orders clear all the limit orders in the book or not.
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Case 1: m > k.

am = st
am—1 = fn
g1 = fm—k-1
Qk = fm—kv
 MSmok + A1 Fm—k+1
a1 = )

Ak + Ak—1
Mefm—te + Me—1fm—k+1 + M2 fm—k42

ar._ =
i Ak + Ap—1 + Ag2
o = MNefmet + Xk ka1 + -+ A fma
M+ o1+ + A ’
Note that the levels axy1,. - .,am Were chosen by convention, since it does not matter what
happens abave ag.
Case 2: m < k.
k
yMA
am 1:771 1 — A,
Zz’:m )‘i
_ K MA+ Aot
am-1 = %
i=m, )\z' + )\m—l
L ZEn A deafit et A
1 —_— .

Sk At Amor A
5 Price Impact of Transactions

Having now a tractable model of the limit order book, one can meaningfully talk about
price impact in this model. For example, suppose the system is in state m and a buyer
submits a market order for one unit. Then the system moves automatically to state m —1
(there is one less seller). The ask price therefore moves from a,, to am_1. If the buyer wants

now to purchase another unit, then he must do so at a different price.
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5.1 The Shape of the Limit Order Book

In this model, agents stay on different levels in the book even though they are identical.
They do this because they are indifferent between staying at one level and switching on
another level (as long as the other agents stay on the same levels). The key assumption
here is that some market orders may arrive, even with very small probability. Then it may
be optimal for agents to cluster away from the ask, to capture the incoming multi-unit
market orders. In fact, one can argue that what matters here are the ezpectations that
traders have about the arrival rates of the incoming market orders, and not the actual
values. Suppose the agents expect that large market orders will arrive. Then they will
stay at higher levels than they would normally do. Therefore, one must keep in mind that
the values A;, ..., A can be interpreted as representing what agents expect about incoming
market orders. When one analyzes the shape of the price impact function, it turns out that
a crucial factor is how fast the rates \; decrease.

To quantify price impact, I use the theoretical results obtained in Section 4.4. Recall
that A; is the arrival rate of i-unit impatient buyers (i = 1,...,k), and A > Zle iA; is the
arrival rate of patient sellers. To get some intuition, suppose A; is larger than the rest. For
example, consider a function ¢(¢) which is decreasing in 4, and some small value Ay > 0
such that

At=1 and X =Ag(i), if > 2.

Then set A = >%_ i)\ (plus some small number, so that one has indeed A > S i in

fact it can be equal, it does not change the analysis). The problem I want to investigate

is to calculate the price impact function for different choices of ¢(i), i = 2,...,k. Take for
example
. 1 . 4
¢1(1‘) - l(l + 1)) ¢2(l) - i

The price impact function in state m is defined as the change in the ask price when ¢ units

are bought via a market order of ¢ units;

Imp(i,m) = a;41(m) —ay(m), as a function of 7 (and m).

To calculate the price impact function, one can apply the theoretical results of the
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previous section in the following way: Equation (19) shows that f, satisfies a recursive
formula with initial conditions fo = f-1 = fi_x = A. This fixes k coefficients of f,, in
equation (20). To fix the last coefficient, one should use the bottom equation in (19). For
simplicity, I choose a different method: Let B become a free parameter, and choose another
parameter § > 0, so that

f=A-4.

This fixes all coefficients C;, so one can determine M as the first m for which f,, starts
increasing {(according to Proposition 7). Then one determines B by B = fy. So in the
analysis that follows and in Figure 2, instead of B, I use the parameter J.

In Figure 2, I compare the graphs of the price impact function Imp(i,m) for the two
functions ¢; = 1/i(i+1) and ¢ = 4/2°. In both cases the maximum number of sellers is 41
(so m < 41), and I display the results when the book has m = 10,20, 30, 40 limit sell orders.
All the graphs shown are for k& = 20, which means that the sellers in the book believe that
market buy orders for more than 20 units appear with zero probability. In the first case
(for ¢1), the sellers believe that the arrival rate A; of --market orders does not decrease very
fast in ¢, while in the second case they believe that the arrival rate decreases exponentially.
The top four plots refer to ¢, and the bottom four to ¢;.

Notice that in the case of ¢, the price impact function Imp(i) is concave when 7 < k
units are purchased (recall that & is the maximum size of a market buy order that sellers
in the book expect to occur). So when m itself is less than k, the price impact function is
concave everywhere, which is the case of the first two graphs. The intuition for this finding
is the following: each seller above the ask up to level k& believes that his limit order will
be cleared by a market order with a probability which is not too small. Then instead of
clustering near the ask, they prefer to take advantage of the large market orders and cluster
above the ask. This leads to a concave price impact function. Above the level & or when the
probability of a large market order decreases too fast, the price impact function is linear,
and even convex. This is the case for all the graphs for ¢7, and in the region where i > &
for ¢ .

Overall, the conclusion seems to be that for smaller orders the price impact function

should be mildly concave, and for larger orders it should be mildly convex. This reflects
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Figure 2. The instantaneous price impact function Imp(i) = a;+1 — a; plotted against 1.
(Imp(i) is the difference in the level of the i+ 1’st limit sell order above the ask and the ask
price.) The values of parameters are A = 1,7 = 0.001,8 = 0.04, k = 20, and the arrival rates
are A = 1; Ay = Adb(2),5 = 2,...,k, where \g = 107%; \ = Zle iA;. The top four plots
correspond to the weight function ¢(j) = 1/j(j + 1); the bottom four plots to ¢(j) = 4/27.
Each set of four graphs is considered for the case when there are m = 10, 20, 30,40 sell
orders in the book. The number k is the maximum number of units that market buy orders
can have, and ¢(7) indicates how fast the arrival rate of i-market orders decreases with i.
For the top four plots (when ¢(i) does not decrease too fast), notice the concave shape of
the price impact function Imp(Z) in the region where i < k. For the other regions notice
either linearity or convexity of price impact.
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the existing differences of opinions in the literature, which has not said yet the final word

whether the price impact is concave, linear, or convex, and in what range.

5.2 Theoretical vs. Observed Price Impact

In the preceding discussion about price impact, I introduced what might be called “the-
oretical” price impact, which represents the instantaneous reaction of the ask price to a
large market order. When one estimates price impact from data, one should also take into
account that agents who submit market orders may strategically want to divide the market
order in smaller pieces. Then, the “observed” price impact might be different from the
theoretical one.

To understand better this difference, I give an example set in the framework of Sec-
tion 4.3 (with patient sellers arriving faster than impatient buyers). Suppose the system is
in state M, and a strategic agent wants to place a market buy order for two units. Then the
first market order for one unit will be placed immediately, and the system moves to M — 1.
Then a dilemma arises: should the agent place a market buy now for the price of apr—1, or
wait until the system goes again to state M and place a market buy for aps < apr—17 That
depends on the patience of the agent, and on the time the agent has to wait.

For this, one has to calculate the mean expected (first) passage time from state M — 1
to M: tpr1,m- In general, the mean passage time t;; from state ¢ to j can be calculated

from the following system of equations:

tiy=1-Py+ 3 (1+tx;)Pi,
ki
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where P is the Markov transition matrix (with states 0,1,..., M):

l-w w 0 0 0 0
1—w w 0 0 0
0 1—w w 0 0
P= 0 0 1-w O 0 0 (23)
0 0 0 o - 0 w
0 1] 0 0 - 1-w w

To calculate t;; in general, one looks at the column #/ formed with ti;. Let 15'] be the matrix
obtained from P by replacing the j'th column by zero. Let e be the column vector formed

with ones. Then ¢/ can be obtained from the formula:
t=e+ Pt/

In our case tp, 3 satisfies a recursive formula in m, and one calculates

Jo) M 1—w 1
tm,M:ﬁ(M_m)_aT_l(am_a )7 a:_w_’ﬂ:z.d*l.
So tpr—im = B - Ba™M =~ 5. Now the mean passage time is calculated in units of time

= ﬁ)\z Denote by rg the time discounting coefficient of the agent, and by

Y

€0

The choice is then between aps_; and aps + €p3. If the agent who places market orders can
place limit orders instead, then the choice is between fy;_; and fra + €08 But fyog =
fu +ue. So the agent waits until £ar-q as if and only if ru > rgd. I have assumed s = 0 for

simplicity (so in the state M there is no mixing). Then the agent waits if and only if

2w—1
’f‘g<7‘1

— W
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6 Equilibrium: The General Case

For simplicity, I analyze the general case, when all arrival rates are equal
A=App=2Aps=Xg=MNs5>0.

Later on, I indicate how similar results can be obtained when the arrival rates are different
(the most important case is when A\; = App = Apsg is larger than A2 = A1g = Mis).

To get some intuition about the equilibrium, consider a setup similar to that of the
one-sided case, but suppose that after after a patient seller (which has a limit sell order
at A) a patient buyer arrives to the market. Then the buyer behaves as a monopolist
towards the potential incoming impatient sellers, and places a limit buy order at B. In this
situation, if the reservation value of the seller is larger than the reservation value of the
buyer, they will not be tempted to make offers to one another, and would rather wait to
trade with future impatient agents (this happens for most values of the parameters of the
model). It follows that patient buyers and sellers behave very much like in the one-sided
case, where new patient agents just keep placing bid-ask improving limit orders until it
is better to trade immediately rather than wait. Thus, patient agents form two queues, a
descending one starting from A, and an ascending one starting from B (see Figure 3 below).
However, at some point, the two queues get close to each other, and the patient traders at
the bid and the ask may want to trade with each other immediately instead of waiting for
impatient agents to place market orders. In this case, I say that the limit order baok is
full (or saturated). To get a quantitative solution of this problem, one must describe more

precisely when the book becomes full.

6.1 Theory

As in the one-sided case, I start by assuming that the system is already in equilibrium,
and try to find necessary conditions. This is the difficult part, and at the first reading
one may want to skip to the second part of Theorem 9, which is the one most useful for
applications. The second part of the Theorem says that, given the solution of some system

of partial difference equations in the plane, one can construct a stationary Markov perfect
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Figure 3: The limit order book with m sellers and n buyers.

equilibrium (MPE) of the game. This allows one to give a lot of examples of an equilibrium
limit order book. However, if one wonders in what sense the equilibrium is unique, the
following analysis is important.

So assume that the system has reached a competitive, stationary Markov perfect equi-
librium. (See Part II for definitions. The Markov structure is given by the pair (m,n) of
the number of sellers and buyers.) In state (m,n) at time ¢, dencte by fmn the expected
utility of the sellers and by gm » the expected utility of the buyers (they do not depend on

t because this is a stationary equilibrium). By definition
frnn = max B P*(r) — r(r - 1)},
where P°(7) is the selling price at the stopping time 7. Similarly,
g = min E{PH(r) + r(r — 1)),

where Pb(T) is the buying price at 7 (recall that gmmn Tepresents minus the utility of the

buyers in state (m, n)). Define by am , the ask price, and by bm,n the bid price.

Definition 4. A state is (m,n) is called regular if in equilibrium traders stay for an

ezpected positive time. Define the state region  as the collection of all regular states.
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A state in which some agent can exit via a mized strategy is called partial. If the mizing
behavior happens as in Corollary 32, I call the partial state rigid (this means that mizing
is done only by the bottom agent). The boundary v of ) is the set of partial states. A

state in which the system stays for zero time is called fleeting.

Also, a point in Q not on + is called “interior.” Proposition 33 implies that all interior
points represent states in which agents wait until the arrival of a new agent. As shown in
Proposition 33, the partial states only appear when the book becomes full, so partial states
will indeed lie on the geometric boundary v (see Figure 4).

Now Proposition 33 shows that if one starts at each point in {2 and goes along the main
diagonal, there is at most one partial state on the boundary ~y. If for all starting points in
Q, the corresponding boundary state is partial rigid, I call the equilibrium rigid. In words,
having a rigid equilibrium means that when the limit order book becomes full, traders
always use mixed strategies; moreover, mixing is done in such a way so that all agents have
the same value function. (Using Corollary 32, one can show that in a partial rigid state
(n,n) the value functions for the buyers and sellers are equal: fmn = gmn- This in fact is
the main reason why I use rigid partial states.)

From now on I assume the system has reached a rigid competitive stationary MPE.

Then the resulting state space satisfies Lemma 30, and this implies the existence of a non-
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Figure 5: Types of points in the state region €.

increasing shape function ¢ that completely characterizes . Using the shape ¢, one can
show that the points in € can only be of one of the types described in Figure 5 (use also
Corollary 33). (In principle, there is one more type of boundary point, where the shape
function ¢ takes the value zero more than once, but it is easy to show that this behavior
cannot appear in equilibrium.)

Now, as in the one-sided case, it is a good idea to find a recursive structure for the value

functions f and g. From state (m, n) the system can go to the following neighboring states:

e (m —1,n), if an impatient buyer arrives; also, if a patient buyer arrives and submits

a fleeting limit order;
o (m+1,n),if a patient seller arrives and submits a (non-fleeting) limit order;

e (m,n—1), if an impatient seller arrives; also, if a patient seller arrives and submits a

fleeting limit order;

e (m,n+ 1), if a patient buyer arrives and submits a limit order;
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e (m—1,n—1), if after a positive expected time in state (m, n) a pair of existing patient

traders, a buyer and a seller, trade with each other via a fleeting limit order.

From an interior state (m,n) (of Type 1) the system can go only to the states (m — 1,m),
(m + 1,n), (m,n — 1), or {m,n+1). The arrival of the first of these four states happens
after a random time, which is exponentially distributed with parameter 4A. Then each
event happens with probability 1/4. One obtains the formula fn, = L—i( fm—in+ fm+1n +

fmn—1+ fmnt1) — T ﬁ. Denote again by

>

The formula becomes

4fm,n +e= fm—l,n + fm+l,n + fm,n—l + fm,n+1-

This type of reasoning works for all the other states in 2.
I now describe the equilibrium. The relevant parameters are A, B and € = r/A, i.e., the

ratio between the time discount coefficient and the arrival intensity.

Theorem 9. Consider a competitive stationary Markov equilibrium of the game with both
buyers and sellers, where all types of traders arrive at equal rates. Assume that the equilib-
rium is also rigid. Then there exists a state region 2 as described in Lemma 30, and drawn
in Figure 5. For a state S = (m,n) in €1, the corresponding value functions f and g satisfy
the following equations:

o If S is of Type 0,

f0,0 = A7 (24)
00 = B; (25)
o IfS is of Type 1,
4fm,n +e= fm—l,n + fm+1,n + fm,n—l + fm,n+1r (26)
4Qm,n —&€=0gm-1mn + Gm+1n + Gm,n—1 + gmon+1; (27)

e If S is of Type 1s, then for some smn 2 0,

(4 + Sm,'n)fm,n +Ee= fm——l,n + fm-{—l,n + fm,n—l + fm,n+l + Sm,nfmfl,n—la (28)
(4 + Sm,n)gm,'n —€=Gm-1nt Imiln T 9mmn-1 + Gmmn+1 + Smadm—-1mn—1, (29)
fm,n = Omn; (30)
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® If 8 is of Type 2a,

fO,n = 4, (31)
390n — € = gon-1 + Gons1 + g1p; (32)
and similarly for Type 25,
* If S is of Type 3a,
fO,n = A! (33)
(2+3s0n)g0m —e= (1 + 50,0)90,n—1 + §1n; (34)

and similarly for Type 36.

® If S is of Type {a, then for some S$mn > 0,

(4 + Sm,n)fm,n teé= fm—l,n + 2fm,n—1 + fm,n+1 + Sm,nfm—l,n—l» (35)
(4 + Sm,n)gm,n TE&E=gm_1n+ 29m,n-1 + 9mn+1 + Sm,n9m—1n-1, (36)
fm,n = 9mn; (37)

and similarly for Type 4b.
® IfS is of Type 5, then for some s,,, , >0,

(4 + Sm,n)fm,n +e= 2fm—l,ﬂ + 2fm,'n—1 + Sm,nfm—l,nﬁla (38)
(4 + Sm,n)gm,n — €& = 29m—1,n + 29m,n—1 + Smndm—1n-1, (39)
fm.,n = Gmyn, (40)

Conversely, for each solution of the system above with Smpn 2 0 and fr, o >

2 Om,n there erists
a corresponding rigid competitive stationary Markov equilibrium,

Proof. See Appendix A. O

I call the numbers Sm,n Slack variables. They equal Smyn = ftmn/A, where Hmn s the
Poisson exit rate in the partial state (m,n) on the boundary. The direct implication of
Theorem 9 is useful mainly for questions relating uniqueness of equilibria (so far, it seems
that equilibria are very close to each other, or perhaps even unique). However, the more
Important implication is the converse one. Suppose there is a region 2 of the type mentioned
abave, such that for all (m,n) € Q there exist numbers f,, .., 9m,n; Smn which satisfy the
equations of Theorem 9, Then the Theorem guarantees the existence of an equilibrium of
the game. To understand what kind of strategies give this equilibrium, one needs to define

two set of numbers b,, ,, (bid prices), and a,, ,, (ask prices) for each (m,n) € Q.
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Proposition 10. Consider a competitive stationary Markov equilibrium as in Theorem 9,
and let S = (m,n) be a state in Q. Then the corresponding bid price bmn and ask price
Um.n SGLISfY

e IfS is of Type 1,

Qmn = fmél,n: (41)
bm,n = gm,n—1, (42)
e IfS is of Type 2a,
agn = 4, (43)
bp,n = Go,n—1; (44)

and similarly for Type 2b.

e If S is of Type 5, then for some smp > 0,

Amn = (1 + Sm,n)fm—l,n - Sm,nfm,ny (45)
bm,n = (1 + Sm,n)gm,n—l — Sm,n9m,n; (46)

The formulas for the other types of boundary points are similar.

I now briefly describe the corresponding equilibrium strategies. Let (m,n) be a state
which does not necessarily belong to Q (one must also describe what happens in the fleeting

states). Then define the following strategy profile:

e If (m,n) is in £ but not on the boundary -, each seller plays the strategy: place a limit
sell order at a,, . The seller can also place the limit order at any point above, but
in that case some other seller must have a limit order at amn; otherwise, immediately

drop to amn. The strategy works in a similar way for buyers and by -

e If (m,n) is in v, let fmn = ASmn. Then the strategy is similar to the one above,
except that the seller at the ask may randomly change the limit order from amn to
fmn at a Poisson rate of pmq, and the buyer at the bid will immediately accept by

placing a market order.

o If (m,n) is a fleeting state with m,n > 0, then define the value functions fr, » and gmn
by looking at the values from the corresponding state on along the main diagonal.

(If the main diagonal does not intersect -y, but one of the coordinate axes, simply
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define fr, n = gm.n to be either 4 or B depending on whether it is the z-axis or the
y-axis, respectively.) Then the strategy for each seller is to place a limit order at fmn
and for some buyer to instantly accept it by placing a market order. Which order gets

executed is determined randomly.

o If (m,n) is a fleeting state with n = 0, define fmn = 9mmn = B. Then the strategy for
each seller is to place a market order at B (so that only one of them is execluted, at

random). A similar description is for fleeting states (rn,n) with m = 0.

Given the equations that all these numbers satisfy, it is not hard to see that the strategy
profile just defined is an SPE, and indeed a competitive stationary Markov equilibrium.
Coming back to the expression for the equilibrium in Theorem 9 one can see that both
frn and gm , satisfy some finite difference equations, so one may ask if in the litnit, when ¢
is very small, whether f and g do not satisfy some differential equations. It turns out that
the answer is yes. Let ¢ = 6%, z = md and y = nd. Define the functions f and g at the

discrete values (z,y) = (md, nd) by

f(2,9) = fone 92, %) = gmn.

Then one gets the following asymptotic result:
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Theorem 11. The solution of the model converges when € = r/X is small to the solution

of the following system of partial differential equations with a free boundary -y:

;

Af=1, Dg= -1,

F(0,y) = A, g9(x,0) = B, )
| %ewo-o 20,y) =0,
\%%-l-%i:Oat’y; gg-+g:3:0at'y;

where the free boundary ~ is determined by the condition

f=gat.

The problem has a unique solution, which is symmetric in z and y. The curve 7y 1s slightly

concave-down, and passes approzimately through the points (2,0) and (0,2).
Proof. See Appendix A. O

This is a Poisson equation in a closed region with mixed-derivative conditions at the
boundary. The condition f = g at the boundary determines the free boundary -y, where the
limit book is saturated. Since the oblique derivative is never tangent to 7, the problem is

well posed, and one can write an algorithm to solve it, using for example finite differences.

6.2 Numeric Results

Having described the equilibrium, one may wonder how to actually find it. This is not a
trivial problem: for each value of A, B and €, one needs to find the state region Q (or
equivalently the boundary ) and solve the system given in Theorem 9. One could take the
brute force approach and for each € within reasonable values try to solve the system. For ¢
small however, the complexity of this approach becomes daunting. The reason is that this
is a system of equations with a free boundary v, and one needs to simultaneously find the
solution of the system and the shape of the boundary.

To find the state region {2, one uses the intuition coming from the asymptotic result in
Theorem 11. One sees that the asymptotic boundary is slightly concave, so it 1s a good idea

to try regions state regions {2 which are close to being triangular (bounded by the coordinate
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Table 1: Solution in the general case with both buyers and sellers, for A = 1,B=0,¢ =0.09
Left bottom corner corresponds to state (0,0). The number in position (m, n) represents the
value function fr, , for the sellers in state (m, n). The shape function is ¢=10,1,1,2,2,2,3],
which leads to the state region (2 as in Figure 4. The vector s collects the slack variables
along the boundary, starting from (0,6) down to (6,0). The value function gm,n for the
buyers is given by the formula gn, = 1 — fnm. The bullets in positions (3,4) and (4,3)
(which are not in ) indicate the departure of the shape of ) from the triangular one.

1.000 0.965

1.000 0.905 0.824

1.000 0.828 0.726 .

1.000 0.770 0.616 0.500 .

1.000 0.726 0.526 0.384 0.274 0.176

1.000 0.697 0.468 0.300 0.177 0.095 0.035

1.000 0.682 0.440 0.260 0.131 0.045 0.000

5 =1[0.21,3.97,0.99,34.34, 2.50,0.30, 3.47, 0.30, 2.50, 34.34, 0.99, 3.97, 0.21).

axes and the line X +Y = R). As one increases the size of 2, one will be forced to take
out a few points from the triangle; otherwise, there would be no solution to the system of
equations. Indeed, in the examples I computed, the shape of € is close to being triangular
only when ¢ is relatively large. As ¢ gets smaller, points on the diagonal X + Y = R start
missing (see Table 1).

[ revert now to the more general case when A\ = Apg = Aps may be different from
A2 = A;g = Ars. Define the parameter w as the percentage of patient traders that arrive to

the market;
Ay
w= )
AL+ A2

(48)

So far L only discussed the case w = 1/2. But the case when w > 1/2 is even more important.

First, it corresponds to empirical evidence (see Biais et al. (1995)), which shows that more
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limit orders than market orders arrive to the market.?? And second, w > 1/2 has the
desirable implication that there is pressure for spreads to revert to small values. If instead
impatient agents arrived faster, then there would pressure for spreads to widen towards the
value A — B.

When patient traders arrive faster than impatient traders, it is reasonable to expect that
the waiting costs of patient agents increase. That implies that the limit order book will be
more “rarefied” than in the case w = 1/2. The first guess is that the regions Q for which
one can find solutions are more concave than for w = 1/2. Indeed this is the case, as can
be seen numerically. This is consistent with the limiting case w = 1 from the next Section,
where I show that, if only patient people arrive to the market, the region Q collapses to the

coordinate axes.

7 Equilibrium: The Homogeneous Case

An interesting case to study is when all agents are equally patient (A\;g = A;p = 0). For

simplicity, I also assume that the arrival rates of patient sellers and patient buyers are equal:
A= Aps=Apg > 0.

It turns out that in this case the limit order book cannot accommodate both buyers and
sellers. The reason this happens is because traders lose their incentive to wait. In the
one-sided case, secllers were waiting to extract rents from impatient buyers. Now, when
all agents are equally patient, they cannot extract rents from each other, so a bargaining
game follows. In principle, there can be many equilibria, unless one puts more structure
on the bargaining problem. 1 do not follow this path here. Instead, I give an example of
a competitive stationary Markov equilibrium, which seems to be the prototype for all such
equilibria. For simplicity, assume A = 1, B = 0 (this can be done without any loss of
generality). Define as before £ = 7/A.

As in the general case from the previous Section, one can talk about the state region.

In order to describe an equilibrium, one also has to describe what happens in each state

24The same empirical research indicates that when the spread is wider the percentage of submitted limit
orders increases. However, for technical reasons I do not model spread-dependent arrival intensities.
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Figure 6: The state region in the homogeneous case. (Surrounding fleeting states are marked
with a circle}.
(m,n).

Definition 5. Let M, u, fm,a,, be as in the Theorem 3 applied to A = % and B =0 (for
the bottom half of the limit order book). Define also g, = 1 — fr, and by, = 1 — am, the
symmetric values with respect to 1/2. For m > M extend f, = 0 and g, = 1. Let Q) be the
collection of points (0,m) and (m,0) form =10,..., M.

Theorem 12. Consider any state (m,n) in the plane. Then a competitive stationary
Markov equilibrium of the game is given by the follouring strategy profile:

o Ifm =0 orn =0, apply the same strategy as in the one-sided case. For erample,
in state (0,n) with 0 < n < M at least one buyer places a limit buy order at b, (and

expects that an incoming seller will place a market order).

e If m > n > 0, place immediately a limit buy (sell) order at fo_n (and expect that

some seller (buyer) will immediately accept it).
o Ifn>m >0, place immediately a limit buy (sell) order at gn-.im.

o Ifm=mn >0, place immediately a limit sell (buy) order at fo = go = 1/2.
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Note that in each state (m,n) with m,n > 0, one has f,, » = gm.n. This is because the
offers are made at this level, so those who exit get fm n in expectation. Also, those who did
not get the offer, move to the state (m — 1,n — 1) on the same diagonal, where the value

functions are the same as in state (m, n).

Proof. Using the one-deviation property, assume that in all other states except (m, n) agents
behave as mentioned above, and show that for each agent behavior in state (m,n) is optimal.
If (m,n) lies above or below the main diagonal, the proof is straightforward. The interesting
case is on the diagonal, for example if (m,n) = (1,1). Then as in Proposition 31, define
fq the expected payoff of the sellers if they all wait, and by g7 the same notion for the
buyers. One calculates

(fig+ f2r) = %(91 + fi) = %,

r| =

=

since fi1 + g1 = 1 (by definition f and g were chosen symmetric with respect to %) Then
the discounted value to time zero is fQ | = f& — § for the sellers, and g9, = g% + § for the
buyers. Since fﬁl < 9(1],1v it follows that both the buyer and the seller prefer not to wait,

and would make each other an offer in the interval [ — £, % + §]. In particular fo = go = :

O

belongs to this interval.

Notice that other offers can be made in that interval, and it depends on agents beliefs.
That suggests that the equilibrium is not unique. However, one can show that it is essentially
unique. Recall that a rigid equilibrium has all boundary states partial rigid, i.e., in those
states only the bottom traders use mixed strategies—which implies that the value functions

are equal for the buyers and the sellers.

Proposition 13. Any rigid equilibrium in the homogeneous case must collapse onto the

coordinate azres.

Proof. The boundary of the state region is by definition formed only with partial rigid
states, where f = g. Now from a state (m,n) the system can only go to (m,n + 1) or
(m+1,n), 50 2fmmn +€ = fm+1n + fmns1, which means that f keeps increasing as it
moves closer to the boundary. Similarly, g is decreasing towards the boundary. But at the

boundary f = g, so in state (m, n) it must have been that f < g, which means that it is not

46




optimal for agents to wait in state (m,n). So there are no states in Q except for the partial
ones. But then the same argument can be used for a partial state, so it is not optimal to

wait there either. O

8 Empirical Implications

8.1 Market Orders and the Spread

An interesting implication of the equilibrium in the general case is that a market sell order
leads to an decrease in both the bid and the ask, but the decrease in the bid is larger. The
intuition for this is given in Proposition 28: the departure of one limit buyer makes the
buyers better off, and the sellers worse off (because of future possibility of trading with
each other when the book becomes full). But that possibility is remote enough so that the
decrease in the value function of the sellers is less than the decrease in the value function of
the buyers (recall that the value function is minus the utility for the buyers). This intuition
also appears in the analysis of the one-sided case, cf. equation (9).

This implication was noticed by Biais, Hillion and Spatt (1995), in their analysis of the
order flow in the Paris Bourse. Their analysis goes as follows: “The downward shift in
the book has two components, the decrease in the bid, merely reflecting that the large sale
consumed the liquidity offered at that quote, and the subsequent decrease in the ask, reflecting
the reaction of the market participants to the large sale. The decrease in the bid could be
a transient decrease in the liquidity on this side of the book, or a permanent information
adjustment. In our one-lag analysis, we cannot differentiate the two hypotheses. In contrast
to the behavior of the bid, the decrease in the ask is likely to reflect the information effect.”

I argue that the decrease in the ask need not reflect an information effect. Indeed,
it can simply be regarded as an adjustment made by the limit sellers, who, after the bid
decreased, realize that they now have to wait more to execute their orders, and lower their
offers accordingly. It is however quite hard to distinguish between the waiting costs story
and the information story.

One may still argue that if information acquisition is not homogeneous across agents,
there is actually a way of distinguishing between the two stories. Namely, consider the

information story. If a large market sell order occurs, and this conveys information, then it
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is reasonable to expect more new agents than current ones to take advantage of the change.
This is because it is presumably harder for current sellers in the book to change their beliefs
about the value of the asset. Also, they may prefer not to cancel their limit orders, since
this operation involves some costs (private and sometimes financial). So in the information
story one should expect more new agents to arrive, and fewer limit order cancellations. This
means that, if market sell orders are followed by a lot of cancellations on the ask side of the
book, then that would reinforce more the waiting costs story.

And it turns out that this is true: cancellations on the ask side of the book are particu-
larly frequent after market sell orders. This in fact is one of the strongest findings of Biais
et al. besides the diagonal effect (which is just serial correlation of different types of orders).
They suggest a possible explanation based on hidden orders in the book at the Paris Bourse,

but as I explained above, the waiting costs story seems to be a likelier explanation.

8.2 The Distribution of the Bid-Ask Spread

Consider again the context of Section 4.3 (with patient sellers arriving faster than impatient
buyers). The market is a Markov system with transition matrix P as in equation (23). To
calculate the distribution of the bid-ask spread, one needs to know the stationary probability

that the system is in state m. Denote this by . Define

w 1l—w 1
o =5 Aot

Consider the row vector X with entries z,,. From the theory of Markov matrices, one
knows that XP = X. Solving for X, one gets (1 — w)Tm41 = wxy for all m, hence
T = C($2%)™ = Ca™. The components ,, must sum to one, so (' = —#rr—- Then

am+1 —a™

Ty = ————— =
m aM+1l _ 1

To calculate the spread a,, — B, use the formula fm_1 —~ fm = aM="e(B + u) — .

From this point forward assume that there is no randomization in state M (so s = 0 and
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u= ﬁ) Then one gets the formula fm_1 ~ fn = (@™ ™+ — 1)e3, which implies

apqy — B = ef(a—1),
arp_1— B = 5ﬁ((a—1)+(a2—1)),

amM—2—B = &8 ((a—-1)4(a® - 1) + (a® - 1)),

Notice that these spreads appear with stationary probabilities approximately equal to 1 —
a,a — o, 0 —a®,. .., respectively. It would be interesting to compare this distribution
with the empirically observed one (especially at the tails of the distribution).

I give an example of calculating the first moment of the distribution, which may be of
empirical interest. The exact formula for the bid-ask spread § is

€0

(a — 1)(aM+T =

5= 5 (M +1)a™*? — (M +3)aM ™2 + (M +3)a — (M +1)).

This can be very well approximated by
S =~ eflaM.

Now I give an asymptotic formula for M when ¢ is small. Recall from (14) that M is
obtained by solving A — B+¢3M = %(1 —a™). When ¢ is small, M is large, so a™ is
much larger than M. Then one can drop M from the above formula, and also approximate

1 — o™ with zero. One then obtains

So the average spread S =~ 3 lo‘;aalog %, which implies that asymptotically

1
S ~clog -,
€

Compare this with Farmer et al. (2003), where § ~ £3/4, (Notice that their £, which they

call “granularity parameter” is the same—up to a constant—as our €, if one assumes that
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the patience r of agents trading in different stocks is the same.)

Part 11

Multi-Stage Games in Continuous Time

In this Part the strategic interaction of agents is modeled as a multi-stage game with
observed actions,?® but in continuous time. The framework I use borrows heavily from the
theory of repeated games in continuous time, as developed by Bergin and MacLeod (1993).
Since there are also stochastic moves by Nature and entry decisions by new players, I extend
their framework by using an idea from Simon and Stinchcombe (1989).

Since this is a trading game, one may wonder why I consider simultaneous moves (orga-
nized in the “stage game” at each time t), and not have only successive moves by players.
(Indeed, on organized exchanges there is a strict priority of both market and limit orders.)
The reason is that it is technically easier to describe a game in continuous time where
agents move simultaneously; otherwise, the submission order would have to be decided by
a randomization procedure. Also, one may want successive actions to happen “instantly”,
which would force one to consider them all at the same ¢.

There is however a cost to be paid: extra care has to be taken about market orders. To
see why, suppose at some time ¢ a trader submits a market buy order, and simultaneously
the bid and ask prices are determined by the limit orders placed by the other players. Then
in equilibrium all sellers would compete to place a limit order at the top price A. This
contradicts the intuition that the market order should be executed at the existing ask—
which was set right before t—and not at the new ask set at t. One way to get around this
problem is to demand that market orders have to be cleared at the bid or ask prices set right
before ¢ (of course, one will have to define precisely what “right before” means in continuous
time). The other problem with market orders is that they reduce the number of players
in the game. Since I want this event to happen at a definite time, I require that when a
market order is submitted at ¢, the game between the remaining players takes place also at

t. One way to get around this problem is by introducing “layered times” (see below), i.e.,

25Qee Fudenberg and Tirole (1991), chapter 4.
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by allowing multiple games to played at a discrete set of times in [0,00). This is reminiscent
of auction theory, and the notion of “stopping the clock.”

Now I discuss multi-stage games with observed actions in continuous time. I start with
the case of pure strategies, and later in the section I deal with mixed strategies. Game
theory in continuous time is not a straightforward extension of game theory in discrete
time. There are a few conceptual difficulties, as pointed out by Simon and Stinchcombe
(1989), or Bergin and MacLeod (1993). To understand why, suppose one tries to replicate

a typical punishment strategy from discrete time repeated games:

Continue to cooperate if the other player has not defected yet; if the other
player defected at any point in the past, immediately defect and continue to

defect forever.

The difficulty to make this strategy precise is two-fold. First, in continuous time there is
no first time after ¢, which makes it difficult to “continue” a certain course. One way to
get around this problem is to allow strategies to have inertia. But this creates a second
problem, since the other players can take advantage of inertia.?® One way to allow players
to react “immediately” is to enlarge the concept of strategy to include sequences of faster
and faster responses. The mathematical concept that allows us to do that is completion
with respect to a metric (see below).?7

A third problem that arises in continuous time is that there is no first time before . This
issue is important when one needs a description of the game right before ¢. For example,
in a trading game, suppose a trader submits a market buy order at t. This market order
is supposed to be very fast, and not give time for the existing traders to change their limit
orders—otherwise, all sellers would try to change their limit order at the highest possible
level A. One can then model this by allowing the market order to be placed “immediately
before” t, and the game at ¢ will be played with one less player, namely the trader whose
limit order was cleared. Since there is no first time before t, it is not obvious at which price
the market order is to be executed. The solution of this problem is to allow only strategies

that “behave well” immediately before any time t. The technical concept, borrowed from

280ne could force the players to all have the same inertia, but then this would be equivalent to forcing
the game to take place in discrete time.

27 Another way to define immediacy is by using infinitesimal numbers, which is the mathematical field of
non-standard analysis.
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Simon and Stinchcombe (1989), is of a strategy with a uniformly bounded number of jumps
(to be defined below).

In order to define a game, one must define the spaces of actions, outcomes, and strategies.
The definitions follow closely those of Bergin and MacLeod (1993). I extend their framework
in several directions: (i) there is a well-defined description of the game right before any time
¢; (ii) I allow for entry decisions of new agents; and (iii) I account for the possibility of having
more than one game played at the same time. I start with an infinitely countable set of
players I. Since they arrive according to independent Poisson processes, with probability
one at each point in time there are only finitely many traders. I want to include the case
where at some times ¢ the game is played more than once. I do this by taking the product
of the time interval [0, o) with the set of natural numbers N, to indicate how many time a

game has been played at some time ¢. Define
T=[0,00) xN

the set of times at which players can move, counted with multiplicity. Notice that if < is
the lexicographic order, (7, <) is a totally ordered space. Denote the element (0,00 T
also by 0. Define intervals in 7 in the usual way: for example, if T = (t,n) € T define
0,T) = {T' € T| 0 < T' < T}. When there is no danger of confusion, write instead of

(t,n). Also, define a measure on [0, co) so that bounded measurable functions are integrable:
p(dt) = e"tdt.

In general, I want the action space for player ¢ to be a compact complete metric space
(Xi,d;). Typically, X; is a compact subset of B" and d; is the inherited metric. In the

present case, the action space for player ¢ € I can be defined as a subset of R?:
X; = ((B, 4] x {0, 1}) U {out},

where out is some point in R? which does not lie on [B, A] x {0,1}. An action (ziy1) € X;
is interpreted as a limit order at z; € [B, Al. An action (z;,0) € X is interpreted as a

market sell (buy) order, in which case z; is the current bid (ask) price, respectively. The
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action z; = out indicates that either (i) player i has not entered the game yet; or (ii) player
¢ exited the game before. One could also allow agents to exit freely at time ¢. This will
not happen in equilibrium if the utility from exiting is very small, so in order to simplify
the description of the game I do not allow free exit. Define also projections on the first and
second factor, my : X; - [B, A]U {out} and m : X; — {0,1} U {out}, in the obvious way.
I now define outcomes of the game. Let By, and By be the Borel sets of X; and
X = [lie; Xi, respectively; and let B be the Borel sets of [0,00). A function v : [0,00) — Nis
said to have finite support if v is zero everywhere except on a finite set My = {t1,...,tx} (its
support). One also associates the set M = {(t1,n1),...,(tk,nK)}, where all nj, = v(ty) > 0.
Vice versa, for any such set M one can define a function vy ¢ [0,00) — N with finite support

by sending ¢ € [0, 00) to zero if t ¢ My; and to ny if t = tr € M.

Definition 6. Let X be a space with measure. A Junction f : T — X is called layered
if there exists a function v : [0,00) — N with finite support such that Vt € [0,00) and
Vn,n' > v(l) one has f(t,n) = f@n'). If f: T — X is layered, associate a function
fro[0,00) — X by f7(t) = f(t,v(t)). Isay that f is a layered measurable function if f¥ is

measurable. An outcome for player i is a layered Borel measurable function hy . T — X;.

So an outcome is like a regular measurable function h; : [0,00) — Xi, except that at a
finite set {t1....,tx} (the support of v) it can take several values, up to the integer number
v(ty). This corresponds to the idea that at some times tx the game can be played more
than once (in my case, if some agent places a market order).

I call the function v the layer of f. Sometimes I also call the layer of f the associated set
M = {(t1,m),...,(tx,nK)}, with n; = v(t). Also, if fi and f, are two layered functions
with layers v1 and v, one can take the combined layer of f1and f> to be v = max {1y, 5}
This is useful for situations where one has to compare f1 and f». Consider a layer v. Then
[ define: 7", the set of layered times associated with v H;, the space of outcomes for player

t; and HY, the space of outcomes associated with

T ={(t,n) e T | n < w(t)},
Hy={h;: T — X;| h; layered measurable},

H = {hi: T — X; | h; layered measurable with layer v/}.
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This is a metric space with the metric D; : HY x H — Ry given by

K vt
Di(hs, 1) —/ di(h (), R () u(dt) + 30 S dilhalt, n), (b, m)).
10,00

k=1 n=0

Rewrite this as

Di(ha, bL) = / di(1a(T), K (T)) (D).

Since the space of measurable functions f; : [0,00) — X, is compact and complete, so is
HY. Now, if v < ¢/, there is an inclusion H — H{". Also, one knows that for every two
layers v1 and v one can take their maximum v = max{v,v2}, which satisfies v1,v2 < v.
This means that one can regard H; as the limit of HY when v becomes larger and larger.
Because of this, H; is a metric space, but it might not be either complete or compact.

I now define the space H of outcomes of the game. For this, let H” = [[;c; HY the
product space with the metric D = [[;¢; FD It is a standard exercise in measure theory
to see that HY is compact and complete. As before, if v < v, there is an inclusion HY — HY .
I then define H as the union of all HY for all layers ». This is still a metric space, but it
might not be complete or compact. To justify this definition, consider an outcome h € H.
Since h belongs to a union of HY over all layers v, there must exist a particular v so that
h € H” (in which case, I say that v is the layer of h). This corresponds to the fact that all
agents are in the same game, played at the times described by the layer v.

Also, if Z C TV is layered measurable, and A;, hl € HY, define a metric relative to Z
by Di(ki, b}, Z) = [, di(hi(T), WA(T)) p*(dT). Define also a metric D on H relative to Z in
the same way it was done for the product metric above.

Now I define strategies. In discrete time, pure strategies map histories to actions, while
mixed strategies map histories to probability densities over actions. For technical reasons
it is easier to think of a history as an outcome of the game together with a time t at which
history is taken. This way, one can define a strategy as a map from {outcomes X times} to

{actions}. Formally, a strategy for agent ¢ is a map
S§i HxT— Xi

which satisfies the following axioms
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A1l. The function s; is layered measurable on H x 7.
A2. Forallh,h' € Hand T € T such that D(h, #’, [0,T)) = 0, one has s;(h, T) = s;(k’, T).

The second axiom ensures that future does not affect current decisions. Rewrite
h~p b < D(h,K,[0,T)) = 0.

As it was discussed above, these two axioms alone do not ensure that strategies uniquely
determine outcomes. For that, one needs some inertia condition. If ¢ € [0,00) and v is a

layer, denote by t* = (¢,v(¢)), and t = (¢,0).
A3. The function s; displays inertia, i.e., for any h € H" and any t € [0,00), there exists
€ > 0 and z; € X, such that

Di(si(h'),z, [t“,t +€)) =0

for every h' € H" such that A ~u A’

Denote by &; the set of functions s; on H x T which satisfy Al, A2, A3. Denote by
S = Ilier Si- The next theorem shows that a strategy profile s = (8:)i, i.e., a set of
strategies s; for for each player i € I, uniquely determine an outcome on every subgame.

More precisely one has the following result:

Proposition 14. Let s € §. Then for every h € H and T € 7T, there exists a unique
(continuation) outcome h € H so that h ~p h and D(s(h), h, [T, o)) = 0.

Proof. The proof is the same as in Bergin and MacLeod, but one has to make sure that one

works in HY for some layer v. O

Given (h.T) € H x T and s € S, denote by o(s,h,t) the outcome which agrees with
hoon [0,7) and is determined by the strategy s on [T, oo). Let s;, 5, € S;. I now define a

metric on S

Pi(Si,SD = sup D(G((Si73—¢)>h‘7T)7U(<S;)S—i)ahaT))'
HxTxS_;
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One also has to introduce an axiom which ensures that for each t the outcome of the
game right before t is well defined. One way of doing this is to restrict to strategies s; that

lead to locally constant outcomes with a uniformly bounded number of jumps.

Ad4. For the strategy s; there exists M (depending only on s;} such that for any strategies
s_; of the other players, the outcome cri((si, 5i), h,t) for player 4 is locally constant

and has at most M jumps.

Redefine S; to include on the strategies that satisfy A4. Now recall that at each t € [0,c¢)
the strategies have inertia for some ¢ (depending on t). 1 want inertia to be infinitesimal,
because I want to allow for immediate responses. This can be done by completing the space
of strategies: Denote by S} the completion of S; with respect to the metric p;, and by
§* = [l;e; Si- Completion is done so that the upper bound for the number of jumps is
the same for all. More precisely, a point in S} corresponds to a Cauchy sequence (87')n of
strategies in S;, and one demands that there exists M so that for each n, s jumps at most
M times, regardless of the other players’ strategies. The following result shows that to each

strategy in S* one can associate a unique outcome in H.

Proposition 15. For every s € S* and every (h,T) € H X T, there ezists a unique h* such

that o(s™, b, T) — h* for any Cauchy sequence (s")n in S converging to s.

Proof. If (h,T) € H x T, there exists a layer v so that h € H” and T' € T%. The result

then follows easily since H" is compact and complete. O

I have just showed that for s € S* one can associate a unique outcome of the (whole)
game, which I denote by o*(s). Because completion is done using the same upper bound
for the number of jurnps, the following result is straightforward. The result allows one to

talk about the outcome of a game right before some time ¢.
Proposition 16. The outcome *(s) associated to a strategy s € S* is left continuous.

I am almost done in defining the game. The only thing that is left is to describe the
payoff for some strategy s € S* in a subgame defined by a history (h,T) € H x T. Since
strategies uniquely define outcomes in every subgame, as long as there exists some payoff

u;(c*(s, h, T)) for each agent i. Define now the equilibrium concept:
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Definition 7. A strategy profile s € S* is an e-Nash equilibrium (e-NE) if for any h € H
ui (0% (s, h,0)) > wi(c*((s}, 5-4),h,0)), Viel, vz,e St

A strategy profile s € S* is an e-subgame perfect Nash equilibrium (e-SPE) if for any
(h,T)e HxT

ui{o*(s, h, T)) > ui(o*((si,8-4), R, T)), Viel, Vo e S}

For ¢ = 0 in the above inequalities one obtains the concepts of Nash equilibrium (NE)

and subgame perfect Nash equilibrium (SPE). One has the following important result.

Proposition 17. A strategy profile s € S* is a subgame perfect equilibrium if and only if
for any Cauchy sequence (s™), converging to s, there is a sequence €™ — 0 such that s" is

an e™-subgame perfect equilibrium.

I now discuss mixed strategies, or rather, as they will be called, “pure-mixed.” For
simplicity of discussion I omit the presence of layers, so one takes 7 = (0,00). Consistent
with this philosophy of locally constant outcomes and inertia strategies, [ want to have
mixed strategies randomly switch over a small interval. More formally, let X; be the space
of actions for player ¢, and [0, 0o] the metric space with metric d(z,y) = |e7® —eY|. Define

a mixed strategy to be a layered measurable function
sit HxT — X; x X; x [0, 0],

where the first component of s; is the initial action in Xi; the second component is the
action to which s; will switch in the interval of time right after t; the third component is the
Poisson intensity of switching. I call this type of strategy pure-mixed, because randomness
only comes from the time of switching, while the actions before or after switching are
deterministically chosen. One could in principle also allow for randomization over these
actions, in which case one has to replace X; by ®(X;), the set of probability densities over
X, i.e., the set of non-negative integrable functions on X; with total integral equal to one.

But then the analysis would become much more complicated, and these strategies are not

57



really necessary for the games considered in this thesis.

I say that the strategy s; has inertia in a similar way as before, but one adds the
requirement that after switching the value to which player i switched will be also held
constant for a small period of time. Then one has to modify the description of outcomes,
which are now stochastic processes and are built in a very similar way to Poisson processes.
The space of strategies is also constructed by taking a completion, in the same way it was
done for pure strategies.

To see how a pure-mixed strategy works, consider the case of Nature, which moves at
each time f. The space of actions for Nature is the set 2! of all subsets of T (in principle
I allow Nature to add or remove any players from the game). Nature plays the following
strategy: if (h,t) € Hx7T is the history at ¢, the first component of sy (k, t)istheset J = I,
of players right before ¢; the third component is the sum A = Apg+ Apg + A5 + Ajs of the
arrival intensities of all four types of traders (patient sellers, etc.); the second component is
a density over 2/ given by ¢(J U {PB}) = A‘}ﬂ, ¢(JU{PS}) = A‘f‘i, ¢(JU{IB}) = Aﬁﬁ-,
dp(JU{IS}) = A}\i, and ¢(Z) = 0 for any other set Z ¢ 2.

I now briefly discuss the notions of equilibrium employed in this thesis. The main one
is that of a sub-game perfect equilibrium (SPE), which reflects the dynamic nature of the
game. But, in order to formalize some other intuitions which are important for this game,
I also consider several refinements. As discussed before, there can be many SPE of this
game, for example the ones based on Nash threats {as in the theory of repeated games).
However, if one focuses on “competitive” equilibria, i.e., equilibria where agents do not take
into consideration what effect their action has on the other players’ strategies, one sees that
the the competitive equilibria are essentially unique (very close to each other).

In this context the notion of competitive equilibrium is very close to that of a Markov
perfect equilibrium?® (MPE), where the state variable is (m,n), with m the number of
sellers and n the number of buyers active in the game at a particular time. A Markov or

equilibrium is stationary if the value function only depends on the state (m,n) and not

*Let k¢ be a variable which summarizes what one wants to know about a game at time ¢. Suppose k:
evolves according to a Markov process with transition function g(k:taclke,at), which gives the probability
that the next period’s state is k¢1a: conditional on its being k¢ at time ¢ and on playing the actions a:. By
definition, if two histories lead to the same k;, a Markov strategy maps them to the same action. A Markov
perfect equilibrium is a perfect equilibrium in Markov strategies. Notice that the concept of MPE depends
on the particular state variable chosen. See Fudenberg and Tirole (1991, ch. 13).
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on time ¢.

Competitive equilibria are important in a trading game framework, because they give
the main intuition for the equilibrium limit order book. One can think of a competitive
equilibrium as a Bertrand-type competition among patient traders for the stream of market
orders of the impatient traders. Since execution of limit orders is subject to the FIFO
(First-In-First-Out) policy, it follows that traders have different times-to-execution for their
orders, and that means that in order to compete (and get the same expected payoff ), patient
agents have to place limit orders at different levels in the book. I then say that an SPE is
competitive if at each time ¢ all agents have the same value function (possibly depending
on t). T want to stress the fact that this definition is quite ad-hoc and is only valid in my

context, where the symmetry of the payoffs is broken by the FIFO policy.

Part III
A CAPM with Price Impact (joint with
A.W. Lo and J. Wang)

9 Introduction to Part III

The existence of large traders changes puts under question one typical assumption of asset
pricing, namely that traders are price takers. The existence of price impact of transactions
is a well-known fact in financial markets, and most large traders often consider the question
of how to choose their trading strategies when taking into account their price impact. In
this work, we investigate how the existence of price impact changes the consumption and
investment behavior of such rational large agents.

We start by considering a market where there exist large traders who are assumed to
have price impact, which is common knowledge. The setup of the model is very similar
to a standard investment—consumption portfolio problem in discrete infinite time. We as-
sume that all agents have constant absolute risk aversion, and asset returns are normally

distributed. There is no information asymmetry in our model, so in order to give agents a

99



reason to trade, we assume that some agents receive shocks to wealth each period, shocks
which are correlated to dividends. This is a reasonable assumption, since in reality agents’
wealth may also have a non-financial component, which is nevertheless correlated with div-
idends.

The only nonstandard feature of our model is that some agents have a price impact of
trading, while the rest do not. Price impact is modeled by a price function which is linear
in demand. While the coefficients of demands in the price function are assumed exogenous,
the constant term is determined in equilibrium. For tractability, we also assume that the
agents who receive the wealth shock are the same as the ones with price impact.

We show that in equilibrium average prices display a liquidity premium, which depends
on the price impact coefficient. An interesting phenomenon, in contrast with the intertempo-
ral CAPM model, is that the holdings of the agents with price impact matter in equilibrium,
even though all agents have absolute risk aversion (so wealth and asset holdings should not
matter). In our model, the large agent holdings become a state variable, and prices in each
period depend on the holdings of the large agents in the previous period. A subtle point of
our analysis is that it is hard to disentangle the liquidity premium from the risk premium
in our model. However, a Taylor series expansion can be made to do just that.

We show that the results are similar those in the transaction costs literature, where
small transaction costs determine only small changes in equilibrium prices, but possibly
large variations in equilibrium portfolio holdings. Indeed, we show that in the two-asset
case, the equilibrium holdings in one asset might even be negative. The transaction costs
literature assumes that, with each transaction, a trader incurs costs which are typically
fixed or proportional to the size of the order. While realistic, this assumption leads to
complicated technical problems, mainly given by the fact that either if a trader buys or
sells an asset, the costs go in the same direction, so they depend on the absolute value of
the size of the trade. Our approach has the advantage that the pricing function depends
linearly on the size of the order, so it makes the solution of the model much easier, while

preserving the intuition.
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10 The model

The economy has a single good that can be used either for consumption or investment, and
it can be regarded as numeraire. The model is a discrete time, infinite horizon model, which
means that trading takes place at discrete times t = 1,2,3,.... There is no final period,

and investors are infinitely lived.

A. INVESTMENT OPPORTUNITIES

There is one riskless asset in the economy, with an infinitely elastic supply at a positive
constant rate of return 7. Denote by R =1 4 r its gross rate of return.

There are also n risky assets (stocks) in this economy, each with fixed supply normal-
ized to one. Each share of the risky asset i = 1,...,n pays a random dividend D;; at
time £. Denote by D, the (column) n-vector [ Dy ... Dy, }T. We assume that D, is

independently and identically distributed (iid.), and we write
Dy =D+ epy, (49)

where D is a constant vector, and ep, is a zero-mean vector of “disturbances,” whose exact
distribution will be specified when we discuss the distributional assumptions. We will see
later that different specifications for the dividend process (for example random walk, or

AR(1)) would not lead to qualitatively different results.

B. INVESTORS

There are two agents in this economy, one which we call C (the competitive agent), and
one which we call N (the non-competitive agent). Both have constant absolute risk aver-
sion (CARA}, with absolute risk aversion coefficients c¢ and oy, respectively. Their time
discount coefficients are, respectively, fc and By, both numbers between 0 and 1. This
means that the “felicity” function of agent ¢ = C, N is u(c) = —exp(—ayc), and that in

each period ¢ agent ¢ maximizes expected intertemporal utility of consumption:

E: {— Zﬁf exp(-aicgﬂ)}. (50)

5=0
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We further assume that agent N has price impact in the risky assets (hence the term
“non-competitive”), while agent C' does not have any price mmpact. The exact mechanism
of price impact will be described shortly. We also note that, since agent C is a price
taker with CARA utility, the representative agent framework holds, so that having only one
competitive agent in our model is general enough.

To give investors rational incentives to trade, we assume that agent N receives a shock
to wealth F} every period t. The shock arrives prior to trading at ¢, and is public knowledge.

We assume the following functional form for the shock:
Fy = Ay €Ry, (51)
where the “amplitude” A; of the shock is an AR(1) process given by
Ay =asAi_1+Eay, withas €[0,1). (52)

Here £y, and €4 are assumed to be iid.

C. EQUILIBRIUM MECHANISM

Denote by X}¥ the n-vector of risky asset holdings of agent N after trading at ¢, and by
X{ the total risky asset holdings of agent C'. Denote by ¥ the net demand of agent N at
t, and similarly define z¢ for agent C. To simplify notation, we will omit the superscript
N. We have the formula XN = X; = Xi—1 + 2.

Denote by P, the n-vector of (ex-dividend) prices of risky assets at which investors trade

in period t. We assume that P is of the form

where V; is an n-vector determined in equilibrium, and A is a constant n x n matrix deter-
mined exogenously to the model. We call A the price impact coefficient. A consequence of
this functional form for B is that in the dynamic optimization problem for agent N, the
variable T; becomes a control variable, so this is the sense in which we can say that N has

price impact.
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One may object to the fact that P, is not determined by some market mechanism, and
that instead we impose a functional form on it. However, one can make this mechanism
result endogenously as follows: Suppose agent N submits a market order for x; shares, and
agent C' submits the whole demand function, which we assume is linear in price: z¥(p) =
a — bp (true if C has CARA utility and returns are normal). Then a Walrasian auctioneer
will set the price p so that demand equals supply, te, a —bp+ xy = 0. This implies
p=z+ %:ct, which is of the desired form. However, we prefer to be agnostic as to the
source of the price impact, and start with our specification (53) for the pricing mechanism,
with A exogenous. Then we can concentrate on how the equilibrium prices change as we let
A vary, which is the main point of this approach.

Another justification of the above price specification can be given by looking at a one-
period model with the same type of price impact. Assume there are only two agents in this
model, which have both CARA utility with the same coefficient of absolute risk aversion
7. As above, we assume that N has price impact, and € does not. There exists a riskless
asset with gross rate of return R, and one risky asset (a stock) with normally distributed
final-period payoff, ¢ ~ N (g, a?). The price mechanism is the same as above. Denote by S
the supply of the risky asset, by h the initial stock holdings of agent NV (before trading), by
« the net stock demand, by X the final stock holdings, and by P the trading price. Then

one can calculate

S _
= —2 54
1+,\—,2f;’ (54)
1, 4§ 5,0 A 5-h
P= _ -2 = 39
R(q 2Uq) 21+A2R ( )

When A = 0, one finds that z = % —h,and X = g, which represents the usual optimal risk
sharing. However, as A becomes very large, = becomes close to zero, indicating that there
will be very little trade due to adverse large price impact. This suggests that the above
price specification does induce agents to behave as we would expect them to. Notice also
that the equilibrium price P converges to a finite value when A goes to infinity, which is a
phenomenon that also appears in the infinite period model.

Define @, to be the excess share return of the risky assets. This is the n-vector given
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by the formula
Qi=P +D¢— RR_1. (56)

Each component of (; represents the return on one share of the corresponding stock, minus
the cost of financing at the riskless rate. Note that @ is not the same thing as the excess
rate of return. To obtain the latter, one should divide the share return Q¢ by the price F_;.
Since after we make our distributional assumptions it may be the case that P;_ is zero, we

prefer not to divide by price, and work with the share return Q: instead.

D. DISTRIBUTIONAL ASSUMPTIONS

T
We denote by &; the (n+2)-vector of random shocks, &; = [ EDt EAt EFy ] . We assume

that ; is i.i.d. multivariate normal, with zero mean and covariance matrix

opD o CDF
Y= E{EtE;r} = oT TAA 0 . (57)

T
opr 0 OFF

The notation oxy = E{e the::r’,t} represents the covariance matrix of ex; with ex:. The
covariance matrix opp is n x n, while opp isnx 1, and 044, oFF are scalars. Note that we
assumed that ep¢ and €4, are uncorrelated (o is the zero vector), while ep; and ep; are
agsumed to have covariance matrix opg.

The reason we want £p ¢ and £, to be correlated is that otherwise the shocks F; would
be uncorrelated to the dividends, and so they would have no impact on portfolio decisions.

That would imply that there is no trade after the first period.

E. ORDER OF EVENTS

The order of events that happen at time ¢ is as follows: First, all agents receive their
dividends per share Dy, and ep; is revealed. Then agent N receives the wealth shock Fy,
and er; and €4, are revealed. At this point agents make their consumption-investment
decisions, and consume ¢, i = N,C. Then both agents submit their demands zt, when
their stock holdings are X} ;. At the same time with agents’ submission of z}, the market
maker (who is a Walrasian auctioneer) announces V;. The actual trading price P; is then

determined by the formula P, = V; + A - z;. After trading takes place, the stock holdings
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become X;. We recall that there is no asymmetric information in this model, so all news is

public knowledge.

11 Equilibrium

We now solve for the equilibrium of the model in Section 3. Since the problem is not very
different from a standard Merton intertemporal portfolio choice problem, we are only going
to dwell on the points where our model differs.

The general idea is to start with some parametric guesses for the price process and
the value functions for agents N and C. Then, from the optimization problems for the two
agents plus the market clearing equation in each risky asset, we should determine the values

of those parameters and show that our guesses were correct.

A. THE EQUILIBRIUM PRICE

We begin by making a guess about the price process. We assume that it must be linear
in a set of variables that influence both agents’ demands. Now, agent C has CARA utility
and is a price taker, which means that once the price process is determined, C'’s optimal
demand will depend on whatever the price depends on, and no other variables are needed to
determine C’s choice. Therefore, the price process is guided by the variables that determine
the optimal demand of agent N. We are going to discuss this issue in more depth below,
when we analyze the optimization problem of agent N. For now, we just give some intuition
in order to justify our guess for the price process.

First, since all agents have CARA utility, N’s wealth process is not going to affect the
price process, although it is a state variable for N's optimization problem (that’s one of the
reasons, besides tractability, why we chose CARA utility in the first place). Since N’s wealth
shock at t + 1 has amplitude A, and is correlated with dividends, N’s hedging demand at ¢
depends on A, so we assume that A4; is one of the state variables that influence the price
process. Also, since N has price impact, we should expect one more state variable: Xi-1,
N’s stock holdings before trading at ¢. The precise reason why X, 1 is a state variable will
be explained when we discuss the wealth process of agent NV, as part of finding N’s optimal

portfolio.
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In what follows, by state variable we mean one of the variables that determine the
price process and agents’ optimal demands and value functions at each time ¢. We saw in
the above discussion that A4; and X;_ are state variables. To simplify notation, we also

introduce the constant 1 as a state variable. So the (n + 2)-vector of state variables is
T
Z-[1 A x| (58)
In the next theorem we show that there exists an equilibrium vector of stock prices P; which

depends linearly on Z;. The state variables also evolve in a linear fashion.

Theorem 18. The economy described in the previous section has a stationary®® equilibrium

vector of stock prices given by
P =p1 +padi +px X1 = pZs, (59)

where py and pa are constant n x 1 vectors, and px 1is a constant n x n. matriz. The state

variables Z; evolve according to the eguation
Ziy1 = azZi +bzery, (60)

where ag and bz are constant (n+ 2) x (n + 2) matrices.
Proof. See Appendix B. O

This result describes prices in terms of the state variables, and shows how the state
variables evolve in time. Notice that the only part of Z;+1 that we did not know how it
evolves is X;, the vector of N’s stock holdings after trading at . We can directly give a
recursive formula for X, or equivalently we can give a formula for the net stock trading
vector, ry = X; — X1t

T =q + Al + ax Xi-1 = 92 (61)

Now that we know both P, and z;, we can also determine the equilibrium value for V4,

29There can be also non-stationary equilibria, as we shall see in Appendix B. These equilibria are also
linear in the state variable Z; and have finite mean, but their variance blows up when ¢ becomes large.
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which is the vector present in the price mechanism equation (53):
Vi=P -, =(p— M) Z,. (62)

B. OPTIMAL PORTFOLIOS

We now discuss the optimal demands and value functions of agents N and C. As in any
dynamic optimization problem, we need to find for each agent a set of state variables, a set
of control (choice) variables, and, since there is uncertainty in the problem, a set of random
disturbances. These variables are related through the state equation, which shows how the
system evolves in time.

In a standard Merton portfolio problem, the state variables include those variables that
determine the investment opportunities set (Z¢ in our case), together with the investor’s
wealth process W;. By wealth one means total wealth, i.e., the total dollar value of holdings
n both the stocks and the riskless asset. Since in a standard model there is 1o price impact
of trading, total wealth is a well-defined concept (trading does not change the total value
of holdings). Denote by ¢; the consumption of an investor before trading at ¢, and by X,
the investor’s vector of stock holdings right after trading at ¢. Clearly ¢; and X; are control

variables. Then total wealth evolves according to the following formula
Wip1 = (We—c)R+ (X:) T (Pey1 + Diyr — RP).

This is part of the state equation (the other part describes the evolution of the other
state variables, such as Z;). Notice that instead one could choose the net demand It =
X: — X: ., as a control variable. But in that case, we get an extra state variable, X, ;,
which unnecessarily complicates the problem.

Coming back to our model, notice that the above wealth equation suffers from two
problems in the case of agent N. One is that, by equation (53), P, now explicitly depends
on x4, which is a control variable. This means that we cannot avoid X;_1 becoming a state
variable anymore. But, more seriously, it does not make sense to consider W, as a state
variable, since it depends on z; (or X;), which is a control variable contemporaneous to W,.

This reason induces us to look for a state variable which does not depends on ;.
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I. Optimization for N

An appropriate state variable for the optimization problem of agent N is wy, the before-
trading cash wealth, calculated immediately before trading at time ¢. The cash wealth

incorporates the shock Fy = A;_1€py, hence it satisfies
Wiy = (wy — ¢y — zg B)R+ (Xio1+ 71) Dy + AseFpn- (63)

This formula shows that ws, A; and X;_; are indeed state variables, z; and ¢; are control
variables, and €p 41, EFt+1 are random disturbances.

To complete the state equation for agent N, we also need to describe how the other state
variables evolve, i.e., to give a recursive formula for Z;,;. But Zii=|1 A XtT }T’
so we only have to give a recursive formula for X;. One may think that we already did this
in (61), which implies that in equilibrium X = q + gad: + (gx + I)X—1. However, this is
not how agent N regards the evolution of X;, since N has control over it. More precisely,
X; depends on X;_; via the control variable z;: X, = Xi_1 + z;. This gives a different

equation for N, of the form
Ziwr = aY Zy + bYer + Yz, (64)

(The exact formulas for the coefficients will be given in Appendix B.) Together, equa-
tions (63) and (64) form the state equation for agent N.

For the next result, we make the guess that the value function of agent N at t is log-linear
in cash wealth and log-quadratic in Z;. Then using the Bellman principle of optimality?°,

one calculates the optimum consumption and stock holdings.

Theorem 19. Let w¥ = w; be the cash wealth of agent N before trading at time t, e his
consumption, =i = 1, the net stock demand, and JtN his value function. His optimization

problem is

[o o]
I (wn, Z2) = max, E {- > Blexp (—OfNCﬁrs)} :

5=0

30gppose that we want to solve the dynamic optimization problem Eq maX(z,), Loeeo f ki, Tt), such that
the state equation ki+1 = g(ke, z¢,ue) holds for all t. Here k: is the state variable, x; is the control variable,
and u; is a random disturbance. The value function is defined as Ji(ke) = maxq, E. 3.2, flks,zs), subject

to the state equation. Then Bellman’s principle says that Ji:(k:) = max (f(kt, Te) + E1J¢+1(kt+1)).
N
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subject to the state equations (63) and (64), and a transversality condition. It has the

following solution

JtN = —ﬁﬁv exp(—’yNwi - %ZtTUNZt), (65)
e = un- glgh(rBvin)+ 2y 3274V 2, (66)
Iy = hNZtJ (67)

where yv = an§ and 8y are scalars, vV and g™ are constant symmetric (n+2)x(n+2)

matrices, and h" is a constant n x (n +2) matriz.

Proof. See Appendix B. O

II. Optimization for C

Agent C behaves as in the standard Merton portfolio problem, so as we discussed at the

beginning of this section, we can use total wealth WE and Z, as state variables, and the

vector of stock holdings X and consumption ¢’ as control variables. The recursive formula

for the total wealth of C is
.
W = (WE — )R+ (XF)' (Piya+ Do — RR). (68)

This is the first part of the state equation. The second part describes the evolution of Z;
from agent C’s perspective Since C has no control over Zt, the recursive formula for Z;,,

is the same as (60), which is the equilibrium one.

Theorem 20. Let Wtc be the total wealth of agent C, ctC his consumption, XtC the total

stock holdings after trading at t, and JC his value function. His optimization problem 1s
o0
C C
0.2 - g & { St (-aci )
: -

subject to the state equations (68) and (60), and a transversality condition. It has the
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following solution

JC = —ghexp(—ycWF - 32/°2), (69)
¢ = RWC - glpin(rBodc) + aim 32 97 %, (70)
Xtc = hCZtv (71)

where y¢ = acf and dc are scalars, v and g¢ are constant symmetric (n+2) x (n +2)

malrices, and hC is a constant n x (n+ 2) matriz.

Proof. See Appendix B. O

C. FINAL EQUATIONS

We now briefly show how to solve explicitly for the equilibrium described in Theo-
rems 1820 (the full details will be given in Appendix B). We have to choose a set of
unknowns which describes the solution, and indicate how to find equations that determine
these unknowns. A natural choice for the set of unknowns should be based on the guesses
we made, so we choose p, ¢, v"¥ and vC. The (n + 2)-vector p comes from equation (59):
P, = pZ,; the (n + 2)-vector g comes from equation (61): z; = ¢Z;; and the (n + D x(n+2)
matrices vV and v€ come from the value functions JV and JC in equations (65) and (69).

The first set of equations comes from the formula for the optimal net stock demand of
agent N, which is x; = AN Z,. The second set of equations comes from market clearing,
which is XN + XF = u, where u is the n-vector of ones (we normalized stock supply to one).
Then we have two sets of equations for vY and v€ coming from the Bellman principle. We

finally get the following system of equations:

g = h",

fu = (AN + fx) +RC, (72)
N = J,l—agN—an (%(rﬁNéN)l/R) E

¢ = kg% -2In (% (TBCJC)I/R> E

where f, and fx are constant n x (n + 2) matrices (defined in Appendix B); and E is the

(n+2) x (n+2) matrix which has the top left entry equal to one and all others equal to zero.
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In order solve for the equilibrium, one hgs to find a solution to this nonlinear system
of equations. How many unknowns do we have? In the last two sets of €quations, v, 4
and E' are symmetric matrices, so only above-diagonal elements matter. In conclusion,
we have in tota] 2(n+2) 4+ 2(n + 2)(n+3)/2 = (n+2)(n + 5) independent equations, with
the same nympey of unknowns.

We discuss the solution to this system of equationg in the next section, as we algo

interpret the results.

12 Analysis of Results

discuss the stationarity of the equilibrium processes F and X;. As we shall see below, the
solution to oy nonlinear systern is unique as long as we require that the resulting processeg

£ and X, be Stationary.

A, STATIONARITY

We are interested ip has the form

P o= p + paA, +px X, (73)

X: = ¢+ a4y + @ Xe_y, (74)

where @y = gx + 1. Denote by Tt = €at. Recall that A is an AR(1) process given by
A = vA | + - We want to describe X, and Boas ARMA brocesses, so we demean
them, which means that we ignore the free terms p, and 71- Start with the equation
Xi — ¢ Xy, = 944:. Subtract from this the Same equation, byt lagged by one and
multiplied by Y. We get

X~k + )X, + Yax Xt-2 = qam, (75)
which means that X; is an AR(2) process. A standard time series result implies that X, is
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stationary if and only if the polynomial 4(L) = 1 — (gx + ¥)L + g h?* has roots outside
the unit circle. In our case, since v € (0,1), it follows that X; is stationary if and only if
dy € (-1,1).

To describe P, denote by A; = X;—vX;_1, and by By = P,—~F;_1. From equation (75),
we get that A;— gy Ai—1 = gam:, 50 At is an AR(1) process. But P, = paAi+px X¢—1,s0if we
subtract the same equation lagged by one and multiplied by -+, we get By = pam+p x A1,
We can now calculate By — ¢y Bi—1 = pam + (Pxqa —paqy )n—1. But since By = P, —~P_,

we can finally write

P, — (g5 + 7 Pi—1 + vdx P2 = qam + (px 24 — PAGX )1, (76)

which shows that P: is an ARM A(2,1) process.

We have the same conditions for the stationarity of P; as for X; (the right hand side of
an ARM A process does not matter for stationarity). Also, it is clear from the description
of P, above that the excess share return @y = P, + Dy — (1 + r)P—1 is an ARMA(2,2)

process.

B. SOLVING THE SYSTEM

In the previous section we saw that a linear solution to our model of price impact can be
found via Theorems 18-20 by solving the system (72) of nonlinear equations. We denote the
unknowns by x, which is a vector composed by the vectors p, q, and the super-triangular
parts of the symmetric matrices vV and v®. The system then can be written under the form
F(x) = 0, where the vector F(x) is composed by F v, Frmit, and the super-triangular part

of F,u~ and F, ¢, which are defined by

Fouv = q—h",

Frkt = fu— (B +fx)—hC, (77)
Fouv = vV —1g¥+2In (%(rﬁNaN)”R) B,

Foe = ©— 4o¢ +2mn(B(rfcoc) ") BM.

The first set of equations F, v = 0 comes from the optimization problem of agent N; the
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second set of equations F,,x; = 0 comes from market clearing; the third and fourth set of
equations come from the Bellman equation for the value functions of agents NV and C;

Let us look at the case when there is only one risky asset, i.e., n = 1. Then the system
F(x) = 0 is an 18 x 18 nonlinear system of equations. Let x be its solution, which we write

as

x = [m PA PX @1 g4 qx ... (78)

N N N N N N O O ¢ c

Uil Uiz Uiz Ui Va3 U3z Uy Uip viz u§ v Us3
The solution x clearly depends on the parameters of the system. These parameters are: r,
the risk-free rate (and R = 1 + r); ay and ac, the coeficients of absolute risk aversion
of both agents (we are also going to use the parameters Y = %); By and B¢, the time-
discount coefficients; D, the mean value of dividends; opp, the variance of dividends; o 4 4,
the variance of €4, (the innovation to 4, the amplitude of the wealth shock); arp, the
variance of éry; opr, the covariance of ¢ Dt With epy; and 4, the autocorrelation of A,. We

change notation:

O =agu, o1 = 0pp, 029 = 0 A4, 033 = OpF, 13 = opF. (79)

We also give more notation, by defining some new parameters g and w instead of vy and

Yc:
_ _TIN7YC _ TC
Yo= ——, W=—-———
YN+ e YN + Yo

(80)

Even though we are in the simplest case, n = 1, the system is quite complicated, so it
is doubtful that one can find a solution in closed form, except for some special values of
the parameters. However, it can easily be solved numerically, using the standard Newton-
Raphson method (see Press et al (1992), chapter 9). The only observation here is that
in order to speed up calculations it is important to use an analytic formula for the Jaco-
bian of the system. Otherwise the Jacobian has to be approximated numerically, and this
considerably slows down the Newton-Raphson algorithm.

As it is usual when solving systems of nonlinear equations, one needs to start the al-

gorithm by finding an 18-dimensional vector xg which is reasonably close to the solution.
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The hest way of doing that is by setting some parameters equal to zero and then trying to
solve the system analytically. The two things that complicate the system are the wealth
shock and the price impact, sc in order to find xg we set ggo = 0 and A = 0. Although the
solution x depends on all parameters, from now on we only indicate the dependence on A

and @9y we also define the solution for when A and o9y are zero:

x = x(A, 022) xg = x(0,0).

The condition 22 = 0 means that £4; = 0, which implies that Ay = yAy_1 + €4y is also
zero, so there is no wealth shock. The condition A = 0 means that both agents are price
takers, so we are in the usual Merton framework of the optimal consumption and investment

problem. We take this as our benchmark, and analyze it first.

I. Benchmark case: no shocks, no price impact

This problem is standard, except that we have introduced two extra state variables, A; and
X,_1, so we should in principle calculate their coefficients as well. But if we only look at
the values of P, and Xy, it turns out that we can calculate them without worrying about

A; and X,_1. This is shown in the following result.

Proposition 21. Consider the model where there is one risky asset, no wealth shock (093 =
0) and no price impact (A = 0). Denote by X_1 the initial holdings of agent N. Then the

model has a unique equilibrium, given by

Xy = w forall t>0,

P = D—_Tw forall t2>0.

This implies that trading only takes place at t = 0, after which agents reach their optimal

risk-sharing holdings.
Proof. See Appendix B. O

Since we want to use this benchmark case to find a starting point xp for the algorithm

in the general case, we also have to express the solution as P; = p1 + pads + pxXi—1 and
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Xi =@+ qads + (gx + 1) X;—1. Moreover, we also want to calculate vV and v°. Then xg
is the vector formed with py,pa, px, 1, qa, gx and the super-diagonal elements of v?¥ and

vC.

Proposition 22. A solution x¢ to the nonlinear system (72) in the degenerate case when

22 =0 and A = 0 43 given by:

D — oy 01370 o13(l —w
p1=——r— A:*ﬂ px =0 ¢ =w QA——LEJH‘) gx = —1
UN:’)’801172R1n(¢—2)—21n(rﬁN) UN=_013’YS(1—w) UN= (D—"}/QO'H)')’O
1 r 12 (R— ¢ 13 Tw
o = _ (011033 — od3(1 — w)?)3 o — 71373 oN =0
99 U]l(R—¢2)UJ2 23 (R—qb)w 33
c _ ')’3‘711 - 2R1n(—‘§) —2In(rfc) o _ 013’}’8 C
vn = ” U12—R_¢ vz =0
C — 0—%378 ’UC =0 'UC =0
27 on(R - ¢%) 23 2

This is the unique solution if we make the extra requirement that gx be negative, which

corresponds to the processes X, and P, having a stationary representation.

Proof. See Appendix B. O

I1. General case. Approzimation of the solution

Now that we know the solution x; when A = 0 and ooy = 0, it makes sense to look at the
Taylor expansion of the solution x for general A and o292 around zero. Denote the long-term

averages of X; and P, by
X =EX, and P=EP,. (81)

Recall that P, = p1 + paA:s + px Xy and X; = ¢q; + qadi + (gx + 1)X;_1. Using these
formulas, we get

X=-2 aq P=p +pxX. (82)

ax
We now give the Taylor approximation for P around A = 0 and 5, = 0. Here the index 1

indicates the parameter A, and 2 indicates the parameter o,
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Proposition 23. For small values of X and og2, the Taylor ezpansion of P (the long-term

average of the equilibrium price) is

P(/\,O’gg) = a@+a1-)\+a2 ‘0’22‘{‘{111')\2+a12->\022+a22-032

Fann A% +ane - Mop -+ aun My (83)

where there erist factors taz and t119 depending only on R, w, vy such that

D — you o}
= —_— =10 —_—
ap ; ay a2 "R - o) (84)
_ o —ww(2r + (1 -w)(1-9¢)) a1l —w)?
an=0 ap= 3 ag = 7] - o2
ro1(R — ¢) ron (R — ¢)H(R - ¢?)

_ crfa'yo(l —w)w

a2 = “tiiz - ennn =0
ro, (R — ¢)?

The factor ty is always negative. The factortiiz is negative if w < 0.872, while ifw > 0.872,
it is still negative for most values of R > 1 and ¢ € (0,1).
For small A and 042, the Taylor expansion of X (the long-term average of the equilibrium

holdings of agent N ) is

X\ om) = bg+br- A+bo-oag+bii- A2+ bio Ao + by - 0%
Hbiay - A+ g - Aoz b AN+ (85)
where
bp =1 by = rd —w) -ay if length of index J is at least one. (86)
YoO11
Proof. See Appendix B. O

Notice that the Taylor expansion of X indicates a certain relationship between P and

X, hence a relationship among p1, px, 1, ¢x -

Corollary 24. If P and X are the average equilibrium price and N stock holdings, respec-

tively, then
P - D= _ k(X —1), where k= RULY

- = e (87)

The constant k is independent of the the price impact parameter (\) and the wealth shock
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parameters (oa2, 033, 013, Y)

More importantly, by looking at the Taylor expansion for P1, PX, G1, gx, one gets the

following result:

Proposition 25. Denote by X_; the initial stock holdings of agent N. Then in the degen-
erate case when 032 =0 (no wealth shock) but A > 0 (agent N has price impact), we have

the following formulas

D —yous
T

Xt —w=aAN)"HX_| —w), (89)

P =b(N)a(M\)(X_1 —w), (88)

where a(A) and b(A) are functions of A such that a()\) € (0,1). In particular, it follows that

P=(D—~vo11)/r and X = w.

Proof. See Appendix B. O

A Proofs of Results in Part I

Here is a proof of Proposition 2.

Proof. One needs to show that for each pair A > B and each € > 0 there exists a unique
maximal chain. First, let us solve in general the difference equation 2 fmte= fm-1+ frmr1,

with initial condition fy = 4. This is a quadratic function
€
fin=A—bm+ Em?,

with b some arbitrary real constant that has to be determined from the terminal condition,

fum = B. Now solve fiy = B, i.e.,
A—Mue—M(M*1)§=B

The positive solution is (if R = —H(A;B )



Notice that My = % + \/i+R and M; = —% + 1/%+R, s0 My — M; = 1. Therefore in
the interval [My, Mp) there is a unique integer M which corresponds to a number u € (0, 1].

This yields M and u, and now b = (M — 3+u). a

I now prove Theorem 9. Assume that there is a rigid competitive stationary Markov
equilibrium of the game. Then one proceeds to study necessary conditions for this equilib-

rium to exist.

Definition 8. A state is called
a) full if agents leave the state only if some new agent arrives;
b) partial if an ezisting agent voluntarily ezits after a positive ezpected wailing time;
¢) fleeting if agents only stay in this state an infinitesimal time.

A state is called regular if it is either full or partial, so that agents will wast in it at least o

positive amount of time.
I now investigate the state region §2, which is the collection of all regular states.
Proposition 26. There exist a finite number of states in {2 (with probability one).

Proof. Since agents lose utility proportionally to expected waiting time, there is a maxi-
mum expected time they will wait. Because of Poisson arrivals of the other agents, with
probability one only a finite number of agents will arrive during this period (which is fixed
in expectation). Now one has only to put this together with the fact that strategies of

players in this game have all a uniformly bounded number of jumps (see Part II). a

Definition 9. In any state S denote by fs the value function of the sellers and by gs the

value function of the buyers.

I already assumed the equilibrium is rigid, which means that at the boundary <y some
agents behave using mixed strategies, in such a way that buyers and sellers have the same

value function. Then one has the following result:

Proposition 27. In a regular state fs > gs- In a partial or fleeting state fs = gs.
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Proof. To prove the first statement Suppose in a regular state fg < 9s- Then there exists
u > 0 such that fs < gg —u. So one of the sellers is better off offering at gg — u, which one
of the buyers is better off accepting. For the second result, one knows that by definition in
all partial states S one has fs = gs. Now each fleeting state § corresponds along the main
diagonal to a partial state. Now use Proposition 31 to show that fs = gs as well (it is the

only possible equilibrium). 0

Now I prove an Important result, which allows one to determine the shape of the state
region. It says that when a new seller arrives, every seller is worse off. Also, every buyer is

better off, but by less than every seller is worse off.
Proposition 28. Suppose the system s in a regular state S and a new seller arrives, so
the system moves to reqular state §'. Then fs < fs and g3 > gs. Moregver,

fs—fsr 2 gs — gg.

Proof. The difficult inequality is the last one. If &' is a partial state, then fg = gg and
the proof is done. So suppose S’ is a full state. The staternent must be hardest to prove

for one buyer, so I show how to prove it in that case. Even in the most optimistic scenario
£
gst 2 B + 3

Also, one can assume that no extra buyers are arriving (one can prove the statement for
each number of buyers). Then

9s < B+e,
because the buyer just has to wait for an impatient seller. One gets

&
g5 —gs < ¢

[\

Now for f: All the top agents in 5" have to wait at least until an impatient buyer or

patient (that becomes impatient) arrives into $. So one has

£
fSEfS’ = 5)
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from which one deduces that fs — fsr > gs — gs'- O

Corollary 29. If a state S = (m,n) is regular and m > 0, n > 0, then (m —1,n) and

(m,n — 1) are also regular.
Proof. Follows from the previous result. O

Let  be a region in the positive quadrant of the plane which is symmetric with respect
to the main diagonal. Suppose  has the property that if (m,n) are in 2, then so are
(m —1,n) and (m,n —1). Let R be the largest integer such that (0,R) is in Q. Define a
function ¢ : {0,1,..., R} — Nin the following way: ifk =0,1,..., R look at the intersection
of the diagonal from the point (0, R — k) with the boundary of 2. This is a point of the
form (04 j, R—k+j) for some j € N. Then define ¢(k) = j. Call ¢ the associated function,

or the shape function of 2. The following result is not hard to prove.

Lemma 30. Let Q) be a symmetric integer region in the positive quadrant, with the property
that if (m,n) are in Q, then so are (m —1,n) and (m,n —1). Then the shape function ¢ is
always increasing by either 0 or 1. Conversely, any such function leads to a region Q with

the properties mentioned above.

I now analyze more carefully what happens in each state (m,n). For this, take the
one-sided story, and assume there are m sellers which compete for a bid of &. One can then

prove the following important result, which is the game of attrition with Poisson arrivals.

Proposition 31. Suppose m sellers lose ulility in a way proportional to expected waiting
time and coefficient r. At random time T which represents the first arrival in a Poisson
process with intensity A, an event happens and the game ends (this event can be the arrival
of a new agent). Then, if all sellers wait until T, assume that each gets a payoff of f*.
Also, at each time there ezists a buyer who posts a bid for h. Assume that if a seller accepts
h until T, he gets h and all other sellers get f~. Denote by fO = f* —r/X. Then one has

the following list of possible sub-game perfect equiltbria:

e If h > max{f°, f~}, then every seller immediately accepts h (and only one randomly

gets it).
o Ifh < min{f° f~}, then no seller accepts h, and everybody waits until T
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o Ifhelf [ and f7 < fO, there are two SPE: either everybody waits until T (this
is the Pareto optimal equilibrium); or, if they believe the others will try to get h, they

are all better off by doing the same: so each seller places a market order for h.

o hel|f',f ] and fO< f~, thenthisisa typical game of attrition. It has two equilibria:
one, where some agent always accepts h, and the other never accept h; and the other
where all agents accept h according to some Poisson process with intensity p (i is
such that each agent is indifferent between accepting h now end waiting for the other

m — 1 sellers to do that).

Now, the previous result does not assume anything about sellers placing limit orders.
The next result is a simple extension of this game of attrition, where sellers are allowed to
place limit orders. Clearly, the ask price is important now, because that might influence

the payoff f> at T I show that one gets one more equilibrium.

Corollary 32. In the setup of the previous proposition, suppose A = A\ -+ Mg, where Ay is
the Poisson intensity of the arrival of an impatient buyer (event 1), and Ay corresponds to
any other event that does not depend on the value of the ask price (event 2). Now suppose
that at T, if event 1 happens, the bottom seller (at the ask) gets the ask price, while all
the other get f&. If event 2 happens, assume that all sellers get f&°. Then, besides the
equilibria above there is one more equilibrium, where the top sellers wait and the bottom
seller randomly accepts b with Poisson(y), where p is in such a way that everybody’s value

function is h.
This last equilibrium indicates exactly how agents behave in partial rigid states.

Proposition 33. Consider the state space §1 of a competitive stationary Markov equilh-
rium. Then, along each line parallel to the main diagonal there are initial full states, then
at most one partial state, and then fleeting states. If the equilibrium is also rigid, then there

is ezactly one partial state.
Proof. Follows from Proposition 28 and Corollary 32. |

Now I prove Theorem 11.
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Proof. 1 show that Af = 1. Start with equation 4fpnn +& = fm—in + fmtin + fan-1+

fmn+1, and divide throughout by € = §2. Then one gets

fm—l,n - 2fm,n + fm+1,n fm,n—l - 2fm,n + fm,n+1

5 - 52

But this is the finite difference approximation of the PDE

82]&' BZf
(5? + (—9?) (md, nd) =1,

which is exactly Af(z,y) = 1.

=1

Now equation 3fmo + € = fm-10 + fm+10 + fm,1 becomes after division by é:

fm-10 = 21:;;,0 + fmiro 5 Jma g fmo _ &

After passing to the limit when ¢ goes to zero, one gets

of

ay(:c,O) =0.

If one picks a point on 7y of type 1, one has (4 + Smun) frn + € = 2fm—1n + 2fmn-1 +

$mnfm—1,n—1, which after division by § becomes

2frn,n - fm—l,n +92

+ Smun

1 d )

After passing to the limit when ¢ goes to zero, one gets

of

of

8—y($,y) = 0.

fm,n - fm—l,n fm,n - fm—l,n—l — 6

For a point on « of type 2, one has 4+ smn)fmn+€= fro1n + 2fmn-1 + fmnt1 +

$mnfm—1n—1, which becomes

fm,n - fm—l,n + fm,n - fm—l,n + fm,'n—l - zfm,n + fm,n+1
) ) 52

-6+ Sm,n

In the limit one gets the same condition %_,é(r, y) + %g(r, yy=0.
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fm,n - fm—l,n—l

= 6.
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Finally, the condition f = g on v is obvious. Od0

B Proofs of Results in Part III

Throughout the Appendix we use the following conventions and notations: Unless otherwise
stated, vector notations represent vectors in column form, i.e., n x 1 matrices. We denote
the transpose of a matrix A by AT. Denote by el(-n) the column n-vector with unit entry
in position 7 and zero entries elsewhere; by u(™ the column n-vector with all entries equal
to one; and by o{™ the zero n-vector. Also, denote by O(™™ the m x n matrix with zero
entries; by O™ the zero n x n matrix; and by I(™ the identity n x n matrix. When there
is no danger of confusion, we are going to omit the superscript n.

The general idea for proving Theorems 18-20 is the following: We first assume that the
guesses made in these theorems are true. If we fix the parameter values for these guesses,
the system is determined, and we only have to show that agents’ behavior described in
Theorems 19 and 20 is indeed optimal, and that our guesses for the value functions were
correct. Moreover, we have to show that the price process postulated in Theorem 18 clears
the market. These verifications lead to a set of equations in our injtially fixed values of the
parameters. If a solution can be found, then we are done.

With this strategy in mind, assume that the equilibrium price is given by P, = pZ;;
that the equilibrium net stock demand of N is given by z, = ¢Z,, which determines the
equilibrium evolution of Z;, as in the state equation (60); and that the log-value functions
for agents ¢ == N, C are quadratic in Z; with Hessian matrix v*. Then start with some fixed
values for p, ¢, v"¥ and vC 3!

We now solve the optimization problems in Theorems 19 and 20. By using some more
notation, we can tackle both optimization problems for agents N and C at the same time.
Denote by Vf"tN = wy, the cash wealth of agent N before trading at ¢, and by Wtc = Wtc,
the total wealth of agent C at t. Denote by X'tN = 7, the net stock demand of N at ¢, and
by XE = X§, the total stock holdings of C' after trading at t. This sets uniform notation
for both agents: if i = N,C, then Wti and Z; are the state variables for agent i, while cg

and f(ﬁ are the control variables. For example, equations (65) and (69), which express our

¥ Technically, we should also start with a value for Y1, the coefficient of wealth in the log-value function,
[=]

but it turns out that v; is equal to =T, so we might as well assume it is known from the beginning.
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guesses for the value functions of the two agents, give the following formula for the value

function of agent i, ¢ = N,C,

JZ = Jz(Wti,Zt) = —ﬁf exp(—’nWti — %Z;F’Uizt).

As we pointed out in Section 11, the state vector Z;

(90)

evolves differently from the viewpoint

of the two agents. From the perspective of agent N, the state variables evolve according

to the following equations: 1 =1, Apy1 = azAt + AL X, = Xt—1 +x¢. For agent C,
however, Xy evolves differently: X: = q1+¢ ade+{gx + D X1 We can put these equations
together and get the following state equation for agent i = N, C"
Zion = a5 Zn -+ byerst + g X, (91)
where
1 0 o ol 0 0 o'
=10 aa o |> by J 100, &= (92)
o o I O o o I
and
1 0 o' ol 00 o'
=10 aa o' ; =10 1 0} C(z:'= ol (93)
g ga ax+1 O o o 0
‘We also give some formulas that will be useful later on:
v = ()i, vk = (b) Vs v = () v (94)
vy = () Tuiby, v = (c) iy, vy = () Uz
Let us now look at the wealth processes of the two agents. Recall from equation (63)

that the

(Xi—1 + a:t)TDt_H + Fyy1. Using equation (53), we rewrite this as w1 = {wy

pefore-trading cash wealth of agent N evolves by w1 =

(wt —Ct — xIPt)R +

—_— Ct)R —_

z (Ve + Az) R+ (X1 + )T (D + Epi+1) t Aiepir1- We saw in equation (62) that V; =

(p— Aq)' Zs. So we can then rewrite the wealth equation for N as follows: w1 = (Wt —

c) R — %(XtN)TmI)\(JxXgV + (XtN)Tm%zZt + (ng)Tm])\éestH + %
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where the matrices m%x’ m%z, m%s, mJZ\-rZ, m]ZVE will be given below.

The wealth process of agent C is given in equation (68): Wtﬁl = (WF - )R +
(XE) (P41 + Dyy1 — RP,). Rewrite this as WE = (WE - )R- (XE) (p(Zis1 - RZ) +
Dy.1). Using equation (60), we can rewrite the wealth equation as follows: W&, = (WF —
VR~ Y(REY MG XE + (XE)Tm§ %+ (X0) mGucuns + 320 myZe + 20 mGears,
where the matrices m)C(X, mf(z, m)C‘-E, mgz, mge will be given below.

We can put together the two wealth equations for agent i = N ,C:

Wi, = W' —d)R+ XN T x Xi + (XD Tmi 2

+H(XP) Tmb e + 32 MYy, Z + Z mb e, (95)

where

0 0 DT ol 0 0
mzz=10 0 o |, m2’5= ol 0 1], (96)
D o O I o o

and

m?{X:O, m?{zz[D 0 O]—RP‘FPG% mg"(E:[I DA o},

m$, = Ot m$, = O+, (97)

We now solve the optimization problem of agent i = N, C, by applying the Bellman
principle of optimality. If we denote by J} = Jg’(Wti, Zy) the value function of agent i, the

Bellman principle states that

Ji = m@g(—ﬂf exp(—aicq) + EtJf+1)- (98)

1
ci, Xy

We need to calculate E;Ji, ;. In order to do this, we use equations (95) and (91), which

describe the evolution of the state variables W,' and Z; from the viewpoint of agent i. We
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can write
Jiy =gt exp(—7iWi1 — %Zt-';lviZHl) = (it exp(—a - ble—3eAg),  (99)
where

€ = &4l

a = w(W' — R+ (X)) Ty x Xi + (XD T miyz 20 + 17 my, %
FLEN X + (XD Vi Ze + § 21 a2t

b = (%mg(g + ”ib)T}.(ti + (yimYe + Uib)TZt,

A = U;b'

Now we apply the following standard lemma in multivariate normal calculus.

Lemma 34. Lete be a multivariate normal random variable, with zero mean and covariance
mairiz 5. Let b be a constant vector, and A a constant symmetric semi-positive definite

matriz. Define @ = (A+E79)7". Then

1/2
Eexp (—bTE - %ETAE) = (%) exp (%bTQb) : (100)

where |M| denotes the determinant of the square matriz M.

Define Q' = (v}, + Z‘l)-l, and §; = (%)1/2. We can calculate

oDpD 0 ODF
. 1
Q= ol —Zaa_ 0 and 8 = = (101)
1HoAavia (1+ UAAvfM)l/
O'EF 0 OFF

where v%, , is the (n+ 1) x (n+ 1) entry of the matrix vt. We finally get

Eolfsn = 8401 exp(—ROFY =)~ § () T K~ (XD) T 2= 42T g 22), (102)
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where the matrices u' y, u, and u’;; are given by

- . . - . . N . T
ukx = WMixx + Ve — (Wml. +vi) O (mmi. +vh)

; : : i i\ O ; i \T
Uxz = ViMxz +Vea — (Wmixe + Vi) O (mimi, +0l) (103)

. . . . . . . . T
rU‘EZZ = ’Yimizz + ’Ufm - (’Yimq‘Ze + U;b) 93 (’Yiles + v;b)

Define
g =upz — (uz) (wix) Tk and R = —~(uiy) Mk (104)
Define the quadratic function &° by
‘I)i(Xt, Zt) = %XJU&XX] + XtT'LLS(ZZt + %Z;u%zZt. (105)
Now rewrite the Bellman equation (98) as follows
—Blexp(~ W' — 12]0'7,) = (106)
ma:x{—ﬁf exp(—a;c}) — ;411 exp(—'nR(Wti —c) — ®(X], ZT))}.
e Xt

The first order conditions for ¢} and X} are

_ 1 i wR_yirt 1 gi(Fi
¢ = a;+yi R In ﬂwt?Rdi + Oti+7iRWt + a¢+'¥qu)1(Xt1’ Zy), (107)

Xl = —(ukx) Mg Z = hiZ, (108)

The second order condition is always satisfied for ct, and is satisfied for X} if and only if
u, y is positive definite (which is always the case, at least in the numerical applications).

For this optimum X} we can calculate
(X}, 2) = ¥ (W2, 2) = 2] (u%z - (Ul}(z)T(UB(x)_lug(z)Zt =329z (109)

Substitute (107), (108) and (109) into (106), and identify the coefficients of W, and Z. We
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obtain the following equations

v = L¢'—2n (i—*(@r@)”’*) B!, (111)

where E is the (n +2) x (n + 2) matrix with all entries zero, except for the top left entry,
which is one. Now we substitute (110) and (109) into equation (107), and derive the optimal

consumption strategy
¢ = FWi — zg In(Birdi) + =R VAT (112)

Notice that equations (112) and (108) for i = N,C are exactly the results we stated in
Theorems 19 and 20. As we discussed at the beginning of this section, this proves Theo-
rems 18-20, conditional on showing that the equations resulting from verifying our guesses
are satisfied by some values of p, g, N and v“. Let us take the guesses in turn.

First, we saw that the equilibrium evolution of Z; was based on the assumption that the
net stock demand of N, z,, is determined by the formula z; = ¢Z;. But z; is the optimal

stock demand X}V, which has the form XN = kN Z;. This implies that
qg=h". (113)

{Perhaps we should write R (p, g,vV, UC), to indicate the dependence of " on the choice
of parameters.)

Second, we assumed that the equilibrium price is £ = pZ;. Then P has to clear the
market, which means that the total demand X{V + XtC has to equal u, the supply vector.
We can write u = f1Z; and X;_1 = fxZi, where f, = [ u o O ] and fx = [ o o I ]
are constant (n+2)-vectors. So XN = (kN + fx)Zy, and from equating supply with demand
we get

fu= (A" + fx) + . (114)

Finally, we assume that the value functions of the two agents are of the form J} =

-pt exp(—*inti — %Zt UiZt). Then we saw above that applying the Bellman equation (98)
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and identifying the coefficients of Wti and Z; leads to two sets of equations, one for each
agent i = N,
vt = Lg' ~ 2In (%(ﬁir&-)lm) B (115)

Putting together identities (113)-(115), we get equations (72), and we are done.

We first prove Proposition 22. In the system of equations (72) we set A = 0 and 099 = 0.
We then briefly indicate how to find a solution xq of this system, and we show that it is the
only solution that leads to a stationary representation for 2, and Xi.

Observe that in (77) the set of equations F,unv = 0 implies ¢ = A", which basically
expresses ¢ in terms of the other variables: p, v and v©. We could have done this from
the beginning and omit F,~n = 0 from our system, but then the other sets of equations
would have looked more complicated. Therefore, we prefer to substitute the companents of
g in our equations only when needed.

Let us look first at the third equation from the set Frrt = 0 which we denote by
Frt(3) = 0. If we substitute for ¢x as discussed above, Fx1(3) = 0 is a second degree

equation in px, which has the following two real solutions:

vl — suyn (v + 1)
YN

px =0 and px=

We first analyze the second solution for px, and we show that it leads to a non-stationary
representation for P and X;: Notice that the second solution for px depends on the variable
vé\g, so we are not done yet in finding px. But it gives us the idea of looking at the equation
Fuu~(3,3) = 0. We then substitute gy and py into F,~ (3,3) = 0. We obtain a quadratic
equation in v, which leads to two solutions for v3,. When we substitute them into the
expression for px, we get the following two solutions for px (this time, the expression

depends only on the parameters):

o + 6 1/2
px = —_11—(72]\;—), where ¢ = i((’YN +27¢)* — 4Rvc (v + Wc)) :

Correspondingly, we get two solutions for gx, corresponding to the two values for 4:

v — o #29c +4)
YN +2v¢ = 2Ryc + &'
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Now one can show that either gx is complex imaginary, or, if it is real, gx must be positive:
for this it is enough to show that when § is real the denominator yv + 2vc — 2Ryc + b is
positive, or equivalently that (yv + 2v¢ — 2Rvc)? > (v + 27¢)? — 4Rve (v + 7c). But
this is equivalent to R > 1, which we know is true.

Now recall that we had the following formula for X;:
Xe=q +gqadi + (gx + 1) Xe.

This is the expression of a stationary time series X; if and only if gx +1 € (—1,1). But in
our case gx > 0, hence gy + 1 > 1, so the resulting expression for X; is not stationary. We
should point out that even though the expression for X; is non-stationary, the resulting time
series X; might be, and in our case it actually is (recall that X; = w, which is a constant
time series). However, when we let the parameters A and oy be non-zero, the actual time
series X; and P, become non-stationary, not just their expressions.

That leaves us with the only viable solution corresponding to px = 0. As we did with
the other solution, we look at F,,~(3,3) = 0, and we get vé\é = 0. We substitute the values
for px and vdy into the formula for gx and get gx = —1. Since from here on calculations
are straightforward, we only briefly indicate how to find the other components of xg: The
equation F,,c(3,3) = 0 implies v§ = 0 (after substituting the values we already found};
from F ¢ (2,3) = 0 we get v§; = 0; the equation F g~ (2,3) = 0 implies vl = ycpa; using
this and Fmi:(2) = 0, we obtain pa, hence also v%; next we get qa, vih, v, v5%; from
F,,~(1,3) = 0 we get vl = ynp1; we then obtain py from Fry(1) = 0 and this determines

v{\g; finally, we get U‘{VQ, vlcz, AR v§]. This completes the proof of Proposition 22.

We now prove Proposition 21. Begin with equations (73) and (74), which describe
the equilibrium processes Py = p1 + pad; + px Xy 1 and Xy = g1 + gadAi + ¢ Xi—1, with
g’y = gx + 1. Since we are in the degenerate case when o9p = 0, the amplitude A, of the
shock is zero. Also, the previous proposition implies that px = 0 and g = 0. That shows

that P, = p1 = (D — v011)/r, and X; = q1 = w, so we are done.

The proof of Proposition 23 is quite standard, since it fits into the implicit function

theorem framework. In our case, we have a system of equations F(x) = 0, where we
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indicate its dependence on the parameters ) and o922 by writing it as
T
F(x,p)=0, where p= [ A 0o ] )

We denote the implicit solution of this system as x = x(p). When p = 0, Proposition 22
gives a value for xo = x(0). We want to find the Taylor expansion of x(p) around xq.

The solution of this is standard, and we only indicate how to find the first-order Taylor
expansion. We know that F(x(p), p) = 0 for all p. Differentiate this expression with respect
to p to obtain:

ox

F.(x(p),p) - g—:(P) +Fp(x(p),p) =0 = %(0) = —(Fx(x0,0)) "' Fp(x0,0).

The (n + 2) x n matrix ?T;(O) represents the first-order coefficient of the Taylor expansion
of x with respect to p. Now recall that we want to calculate the Taylor expansion not of
x, but of X and P. However, X = —q1/9x, and P = p; + px X, so both P and X are
functions of x. To take their Taylor expansion around p = 0 is therefore standard. The
results for some of the coefficients are indicated in the statement of the Proposition.

Of particular interest are coefficients ags and a112, which are proportional to some factors
t22 and 110 that we now define. Let us start with f5,. Notice that of?, = g11033p%, where

p € [-1,1] is the correlation between ept and €g;. Then we can write

tog = 0'110‘33(R—¢)(R+¢w)(u— 1), (116)

w(6(1-¢) - r(R-9¢))
(R— ¢)(R +wg)

where = p*(1 —w) (1 +

Using that w € (0,1), 7 > 0 and ¢ € [0,1), we show that w< 1

<0 (14 ) 00 1+ 152)
S

<-0) (14 ) SO w0t = 1wt <L

But i > 1 is equivalent to 32 < 0, which is what we wanted to prove.

91



We now turn to t112, which is given by the formula:

tiz = t(R) = aR®+bR+¢c, where a=-—(3w+1), (11n)

b=6w? +dw+wd+¢— 4o, c=—-wl+2w—wd)(l+eé+w-—wd).
One can calculate

(1) = —(1 - w)(1 = $)(1 +w + ¢’ — 20,%)) <0,
t'(1) =w (6~ 4¢) —w(2—¢) — (2 ¢).

Since (1) < 0 and the leading coefficient a is negative, it is clear that t(R) is negative at
the endpoints of the interval [1,0c). The only way t(R) can be ever be positive for some
value of R in [1,00) is if the quadratic polynomial t(R) has a root in (1,00). We therefore

have to analyze its discriminant A = Ay

A=b2—4ac=u¢2+v¢+w, where u = 1 + 2w — 3w? + 4u*

v=—dw(l+w)(Buw?—w-1), w=4w(@®+w’-2w-1).

It is easy to see that ¢(R) has a root R € [1,00) if and enly if ¢/(1) > 0 and A; > 0. From

the formula for ¢'(1), one can check that

(1) >0 <= w>uwl(e) = 220+ ‘/S:zzb(% —17¢) (118)

Now we analyze when A > 0. Since A is itself a quadratic polynomial in ¢, its discriminant
equals w? — duv = 16w(1 + 3w)(1 4+ w)(1 - w)2(1 + 4w + 2w?) > 0. That shows that A{¢)

always has real roots. We can also calculate

A =1 —wP@w+1)2>0, A1) =2(1-w)(1+w)(1+4w+ 2w?) > 0,

A0) = 4“’(3“-’2 4w —2w—1), A'(0) = —4w(3w2 + 2% — 2w —1).

There are two cases:
1. A(0) > 0. This is the same as 3w+ w? —2w—1 > 0, which implies 3w?+2w?—2w—-1 >
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0, i.e., A’(0) < 0. We know that A(¢) always has real roots, so in this case both roots
lie in [0, 1]. Denote them by ¢g(w) < ¢1(w).

2. A(0) < 0. In this case there is a unique root in [0, 1], which we denote by ¢, (w).

Now A(0) > 0 is equivalent to w > w*, where w* is the unique real root of the third degree

polynomial 3w? + 2w? — 2w — 1 {we compute w* ~ 0.8712). So we get

Ifw>w" then A>20 <« ¢¢€[0,¢o(w)]U [p1(w),1], (119)

fw<w, then A>0 <« ¢elpw),l1]

Now we put together the two conditions #(1) > 0 and A > 0. A little analysis shows that the
region where w > wy(¢) in the (¢, w)-space is disjoint from the region where @ € [p1{w), 1],

but includes the region where w > w* and ¢ € [0, ¢o(w)]. This implies that
t'1)>0and A>0 <« w>w andoc [0, do(w)]. (120)

That means that when w < w* = 0.8712, the factor t112 is negative, which is what we

wanted to prove.

The last result we have to prove is Proposition 25. By looking at the Taylor series for
P1,PX,q1,9x, we observe that py — (D — ~po11)/r = —wpx and ¢; —w = —wq’ . Denote by
b(A) = px and a(A) = ¢y (we also have to do a numerical check, since we do not have all the
coefficients). Then, since 4; = 0, we deduce that P, = (D — yo01;)/r ~ wb(A) + b(N) X, -1,
and X; = w - wa(A) + a(A) X;—;. We get

_ D=

B = b(A)(Xi-1 — w),

r

X —w=a(N) (X1 —w).

The second equation gives X; — w = a(A)*}(X_; — w), and the first equation leads to

Py — (D = mo11) /7 = b(A)a(N)H(X_1 — w), and we are done.

C Tables for Part IIT
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Dividend: Dy = D +€p,. Shock to agent N's wealth at t: A; 1 - ey, where A; is AR(1):

Ay =aqAio1 +Eay.

Stock price after trading at t: Pj; price before trading: V;. Stock holdings of agent N: X;.

Net demand of N: z;. Price impact coefficient: A, where P, = V; + A - z.
Equilibrium solution: P = p1 + pad; + pxXe—1;, Tt =q1 + qads + ¢x Xi-1.

T -
Notations: & = [ED,t EAt gp,t] . ¥ = Elgg/]. Long term average of X;: X =

—q1/gx. Long term average of P: P =p; + pxX.

Value of parameters for numerical results when n = 1: ay4 (variable—see tables) r =
0.05 ,61208 O[i=2 w=056 D=0 R=1+47 ’Yl:gkrr d)1] = 039 = 033 =

1 g12 — 023 — 4] da13 = 0.5.

We change notation and define the excess share return by Qf = P, + Dy — (1 + r)P_;
We also define @y = P, — (1 + 7)P,_1. Since ep; is ii.d. and uncorrelated to e4,, we
deduce that @ and Q¢ have the same covariance structure (although, of course Qf has a
bigger variance). If X and Y are two random variables, denote by p(X,Y) the correlation
coefficient between them, i.e., corr(X,Y). Denote by p1(Q) the first-order autocorrelation

of @y, i.e., p(Qr, @i—1). Recall that x; is the amount net trading at ¢.

In the case of two risky assets, n = 2, indices 1 and 2 correspond to the two risky assets.

For example, by p1(Q);; we denote the (z,7)th element of the first-order autocorrelation

matrix of Qt1 i-'ew P(Qi,t;Qj,t—l)-

We saw in Section 11 that when n =1, Q; is ARMA(2,2):
Q¢ — (g + aa)Qi—1 + aagx = bom + G171 + 212,

where 8y = q4, 81 = pxga + pady — Rqa, and €, = —R(pxqa — pady).
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