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THE NONLINEAR PROXIMAL POINT ALGORITHM*

Abstract. A new Algorithm, the nonlinear proximal point algorithm

(NPA) is introduced. Let T be a maximal monotone map on a real Hilbert

space. The Proximal Point Algorithm (PPA) for the solution of 0 E Tz,

k+l k
is the iteration z = P(ckT,I)z , where P(ckT,I) is the proximal map

of ckT with respect to the identity I, and {ck } is a sequence of posi-
z k

tive real numbers. In the NPA a monotone map S is substituted for I

k+l k
yielding z E P(ckT,S)z . The object is to control the speed of con-

vergence throuhg S. The set of maps S is identified by requiring that

the NPA be globally weakly convergent. The growth properties of S and

-1
T in a neighborhood of zero are used to characterize the asymptotic

convergence for both exact and approximate versions. If those growths

are bounded by power functions with exponents s,t > 0, respectively,

with st > 1, the convergence is linear, superlinear, or in finitely many

steps --which can be reduced to one-- depending on whether st = 1, st >

1, or t = a. If st = 1, and limk ck = a, superlinear convergence obtains.

Sufficient conditions for sublinear convergence are also given. It is

shown how thw criterion for approximate computation can be implemented

when T is strongly monotone. Both versions of the NPA are applied to

minimizing convex functions, and finding saddle points of convex-concave

saddle functions. The spped with which'minima and saddle values are

approached is determined.

*This research is part of the author's dissertation written under

the supervision of Prof. Dimitri P. Bertsekas of The Massachusetts In-

stitute of Technology. It was supported by the ITP Foundation, Madrid,

Spain, and the National Science Foundation under grant ECS 8217668.
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1. Introduction. Let H denote a real Hilbert space with inner

product (-,'): H x H -+ R, and induced norm Ixl = (xx)i. T: H + 2H is

a monotone map, if and only if, yi E Txi (i = 1,2) implies that (y2 - yl,

X2 - x ) > 0. T is maximal monotone iff it is monotone and its graph,

gph T = { (x,y) E H xHly ETx} , is not properly contained in the graph of

any other monotone map. Other concepts associated with T are its effec-

tive domain, dom T = {x E HITx e 0}, its range, ran T = U{Txlx E H}, and

its inverse, which is defined by u e T v iff v E Tu. Elementarily,

(T ) = T, dom T ran T , and gph T = {(x,y) E H HI (y,x) gph T}.

M(H) will denote the set of maximal monotone maps from H into 2

Let f be a proper closed convex function defined on a real Hilbert

space. Its subdifferential map Of is maximal monotone (Moreau 1965,

p 296, prop 12.b). x E H is a global minimum of f iff 0 E af(x). Thus

x is a solution of 0 c Tx, where T = af E M(H). Many other problems in

convex analysis such as finding saddle points, and solving variational

inequalities, can be expressed abstractly as the problem of finding a

root of a maximal monotone map defined suitably.

In 1962, Minty proved by methods of convex analysis the existence

of solutions of nonlinear functional equations of monotone type. Since

then an intensive development has taken place. General references are

Brezis (1973), Deimling (1985), Joshi and Bose (1985), and Pascali and

Sburlan (1978).

A fundamental algorithm for solving 0 cTz is the Proximal Point

Algorithm (PPA). The PPA is based on a theorem of Minty (1962, p 344,

cor, see also Brezis 1973, p 21, prop 2.1), stating that T E M(H) iff

-1
for all c > 0, (I + cT) is defined on all of H and is nonexpansive,
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thus single-valued. A map P: H - 2 is nonexpansive iff whenever y E

PX, y' E Px', IY - Y'l I< IX - x'l. 

The proximal map of S with respect to T, P(S,T), where S, T: H +

2 , was introduced (in greater generality) by the author in Luque

(1984a), see also Luque (1.986a,b). It is given by

Vx E H, P(S,T)x = {uE HSu n T(x -u) f 0}.

One can show (ibid.) that P(S,T) = (I + T oS) . Thus (I + cT) is

the proximal map of cT with respect to I.

Fro ay tatig o 0 k

From any starting point z e H, the PPA generates a sequence z ac-

k+lr. k
cording to the rule z = Pkz , where Pk = (I + ckT) and {ck} is some

sequence of positive real numbers. The criterion used for the approximate

k+l .':
computation of z is

k+l Pkzk k+l k r
Iz - k < ck min {l,1z -z I }

(A)
r 

r > 0, k < 00'

This criterion was introduced by Rockafellar (1976a) with r = 1. Luque

(1984) used r > 1 in order to show superlinear convergence. Rockafellar

-1 ~ k+l k
(1976a, th 1) has shown that if T- (0) ¢ O, Iz - Pkz I < k is suf-

k+l k
ficient for z - z + 0. Therefore, the larger r is, the more accurate
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k+l
the computation of z will be.

In the review of the known main results -which:.will be obtained in

this paper as special cases- on the convergence and the speed of con-

vergence of the PPA that follows, it will assumed that T- (0) = Z 

{z } will denote any sequence generated by the algorithm with criterion

(A ), and a sequence of positive real numbers {ck } bounded away from
r k

zero. Rockafellar (1976a, p 883, th 1) proved that any such sequence

k m _
{z } is bounded and converges weakly to a unique z g Z.

_ -1
The solution set Z = T (0) is a closed convex subset of H (Minty

1964, th 1). If Z # 0, for any z C H, the vector in Z closest to z will

be denoted by z. The distance from z to Z satisfies

d(z,Z) = min (Iz - z' :z' e Z} = Iz - zI

When studying the asymptotic convergence of the PPA, attention is focused

on the sequence d(z ,Z) corresponding to any sequence {z } as above.

The mnost useful hypotheses concern the growth properties of T , in a

neighborhood of zero, away from the solution set. The general form of

these growth conditions is

36 > 0, Vw .6B, Vz S T w, d(z,Z) < T(lwl), (1.1)

where B = {x e HI Ixl < 1}, and T:[0,A) + [0,A) is such that T(O) = O and

is continuous at zero. This asssumption was first introduced in Luque

(1984b, p 280). It is almost equivalent, when T is a subdifferential map,

to a growth condition on concave functions used by Kort and Bertsekas

(1976, p 278, A6), in fact, Bertsekas suggested it to me. It must also

be noted that Rockafellar (1976a, p 885, th 2, p 888, th 3) used growth

-6-



conditions which are particular cases of- (1.1) (Luque 1984b, p 289,

prop 3.5). Luque (1984b, p 281, prop 1.2 ) proved that when T satisfies

k
(1.1), d(zk, Z) + O. If Z is a singleton, it follows that z converges

strongly to the unique solution of 0 G Tz, But (1.1 ) is not necessary

for the strong convergence of the PPA (ibid., p 281).

t
Let T(x) = ax with a,t,x GIR+. If a > 0, t = 1, {Ck} is nonde-

creasing, and Z is a singleton, Rockafellar (1976a , p 885, th 2) has

proved that d(z k,Z) + 0 linearly at a rate bounded by a/(a2 + c )7

where lim ke ck = c < A, and superlinearly if cm = a. Luque (1984b, p

281, th 2.1) extended this result to general Z # 0, and showed that the

bound is tight (ibid. p 282, example.

If a > 0, t g [1,-), and {ck } is nondecreasing, Luque (1984b,p 285,

th 3.1) has proved that the (Q-) order of convergence is at least min

k+l k
{r,t}. To operate the algorithm exactly, i.e., z = Pkz , is equivalent

to r = A, in that case the (Q-) order of convergence is at least t.

If a = 0 and Z is a singleton, RoQkafellar (1976a , p 888, th 3) has

proved that the approximate algorithm converges superlinearly even. when

c < A, and the exact one does so in finitely many steps, Luque (1984b, p

287, th 3.2) extended this result to general Z # A, showing that the ap-

proximate algorithm has a (Q-) order of convergence of at least r, while

the exact one converges in finitely many steps, giving also a sufficient

condition for the convergence in one step (ibid. , p 288).

If T is such that

Va >0, 36 > o, Vwe6B, Vz6T-lw, d(z,Z) > a wl 

and { ca is nondecreasing with qo< o , the convergence cannot be faster
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than sublinear (Luque 1984b,p 290, th 4.1). If (1.1 ) is satisfied for

some a > 0 and t 6 (0,1), {ck } is nondecreasing, and. the algorithm is ex-

kt/2 -t/2
act, then the convergence is faster than k i.e, o(k ) (ibid, p

291, th 4.2)

As seen above, at each step, the PPA computes the next iterate ac-

cording to the rule

k+l k -1 k
zk+ p = (I + ckT) z ,

or

k+l k k Pc zk 1 k
z Pkz , P } = P ,I)z = P(T,c I)z

k-li k k

where we have used the fact that (Luque 1984a, 1986b)

(I + ckT) = P(ckT,I) = P(T,ck I)

where (ibid.)

P(ckT,I)z k ' (x HCkTxn I(z - x) # 0 },

and that (I + ckT) is single-valued (Minty 1962, p334, cor).

In this chapter we generalize the PPA by substituting a maximal mon-

otone map S G M(H) for I. Then P(ckT,S) is no longer single-valued, and

the expression of the Nonlinear Proximal Point Algorithm (NPA) becomes

k+l k+l k+l k -1 k -1 -1k
z - x , x E P(CkT,S)z = P(T,c S)z (I + S c T) z

k k k

The. modification of criterion (A ) is straightforward, one requires that
r

k+l
at each step, x satisfy
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where r and t{k } are as originally.

The motivation for such an algorithm comes from applications of the

PPA to convex programming. Rockafellar (1973 , p 560) noted the connec-

tion between the method of multipliers of Hestenes and Powell, and the

theory of proximal maps of Moreau(1965). Later Rockafellar (1976b)

showed that the method of multipliers applied to a convex program with a

quadratically augmented Lagrangian is a realization of the PPA in which T

= -ag, g being the essential objective function of the ordinary dual pro-

gram. There he showed that the Lipschitz continuity at 0 of (-ag) im-

plies the linear convergence of such an. algorithm, superlinear if ck -* 0.

Kort and Bertsekas (1972, 1973, 1976) generalized the method of multipli-

ers by introducing a much wider class of Augmented Lagrangians in which

the augmenting terms are not quadratic. They showed that the (Q-) order

of convergence depends not only on the problem at hand, i.e., on the

growth properties of g, but also on the growth of the penalty function

used in augmenting the Lagrangian. Bertsekas suggested me that the same

would happen in the PPA if the identity map I (which is the subdif-

ferential of ~-I2'), were replaced by some other appropriate maximal mon-

otone map.

Section 2 starts by describing the Nonlinear Proximal Point

Algorithm, and a list of desirable characteristics that the NPA is to

possess is given. These include that the algorithm be globally

convergent. These characteristics are then used to specify the class

of maps S to be used in the NPA.
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The main characteristic of the maps S to be used is that y e Sx

implies that y = Xx for some X > 0 (definition 2.11'),. This assumption

might seem too strong, but we show that when it is not satisfied it is

possible to construct easy examples in IR for which the NPA diverges.

The section concludes by showing the weak global convergence of

the approximate NPA towards some root of T (theorem 2.12). When T

satisfies condition 1.1, d(z ,Z) - 0 (theorem 2.13).

Section 3 is devoted to the study of the asymptotic convergence of

the NPA. Under the assumption that the growths of T and S are bounded

t 5
by power functions of the form ax and bx respectively with st > 1,

theorem 3.1 proves the following facts. If st = 1, the exact and

approximate versions of the NPA converge linearly at a rate bounded

above by a/(a + (c/b)2t) with c = lim inf Ck, thus superlinearly if
k +-t

c = a. The (Q-) order of convergence is at least min {r,st}. Thus

without requiring that c = ~ any (Q-) order can be achieved for s large

enough.

When the function T appearing in (1.1) is flat in a neighborhood

of zero, the NPA converges superlinearly if r = 1 and in any case the

(Q-) order is at least r. The exact algorithm converges in finitely

many steps which can be reduced to one. This generalizes a result of

Bertsekas (1975).

Upper bounds on the speed of convergence are given in theorem 3.3.

In particular a condition implying sublinear convergence is given.

In section 4 it is shown how criterion (A ) can be implemented when
r

T is strongly monotone.

Section 5 deals with the application of the NPA to convex and
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saddle functions. In these cases it is possible to estimate the speed

at which the infimum, or the saddle values are apprQached (cf

Rockafellar 1976a, p 896, §§4,5).



2. The Nonlinear ProQximal Point Algorithm, The Nonlinear Proximal

Point Algorithm (NPA) in its exact form can be partiJally specified as

follows: Given the equation 0 G Tz where T G M(H), the set of all maximal

monotone maps from H into 2 , select S from a suitable subset of M(H) and

(1) Pick z e H, cO > 0.

(2) Given z 6 H, ck > 0, find

k+l k k'
z E P(c T,S)z = {x HiCkTxNS(z X) }.

k+l k
(3) If z = z stop, otherwise set k = k+ 1, pick ck+ 1 > 0, and

go to (2).

To complete the specification of the NPA it is necessary to select a

subset of M(H) such that for any S belonging to it, the NPA will produce

sequences {z k } which converge towards the solution set in some sense, and

such that the termination criterion implicit in step (3) is valid. In

addition there might be other desirable properties that we want the NPA to

satisfy.

Concretely the pet of suitable maps S can be determined by requiring

that the corresponding NPA satisfy several of the following conditions,

Throughout T C M(II) and c > 0.

0 k
(C1) For any z C H, the NPA generates a sequence {zk}. Equivalently,

for any z G H, the NPA produces a nonempty set P(cT,S)z, from which to

choose (z) , the next iterate. Thus dom P(cT,S) = EI.

(C2) Same as (C1) but restricted to those maps T 0 M(H) such that

-1
T (0) f 0.

(C3) The fixed points of P(cT,S) are precisely the elements of Z

-12-



T (0), i.e., z g P(cT,S)z iff 0 6 Tz,

(C4) Once the solution set is reached, it is n'ever left, i..e,,

P(cT,S)Z C Z.

(C5) The stopping creiterion implicit in step (3) is valid for any

element of T (0), i.e,, P(cT,S)z = {z} iff 0 G Tz,

(C6) The map P(cT,S) is single-valued on H,

(C7) If Z =.T-l(0) ) 0m, for any z C H, the.sequence {z k generated

by the NPA should converge, in some sense, towards Z.

Clearly not all of these conditions are independent, (Cl) implies

(C2), (C5) implies (C3) and (C4), The minimum set of conditions on S so

that the algorithm be as specified in (1)-(3) is (Cl) (or (C2) if it is

known that T (0) . 0), (C5), and (C7), (C6) losses its meaning for the

k+l
approximate version because then z is selected from a certain neighbor-

hood of P(ckT,S)z k

We now turn to the propositions that are sufficient for each of (C1)-

-1 -1
(C7) to hold. Note that for any c > 0, (cT) (0) = T (0), and that T C

M(H) iff (cT) e M(H). Thus we can consider the constant c included in T,

and will always do so whenever it -is possible,

There are several approaches to satisfying (Cl), (C2), If all that is

known is that T 6 M(H), then a sufficient condition on S is sought, so that

for every T C t4(H), dom P(T,S) = H, If more is known about T, it is

possible to select some subset of M(H) to which T belongs to-. Then a suf-

ficient condition on S is sought, so that for every T in the above subset of

M(H), dom P(T,S) = H. Finally, it is possible to search for a sufficient

condition on both S and T, in order that dom P(T,S) = H.

The first approach corresponds to (C1), The second one includes (C2),

-13-



just consider the set of T C M(H) such that 0 G ran T. The third one puts

S and T on equal footing, which is not very appropriate for our problem

as we are trying to solve. e Tz for, in principle, arbitrary maps T e M(H).

In order to proceed we need the following

Definition 2.1. (See Pascali and Sburlan 1978, p 247.) T e M(H)

satisfies condition (*) iff

(*) Vxe dom T, Vu ran T, inf {(z -x,w -u) IwCTz} > -c.

Clearly T satisfies (*) iff so does T . The next proposition

implies (C1).

Proposition 2.2. Let S G M(EH) be such that dom S = ran S = H, and S

satisfies (*). Then for all T 6 M(H), dom P(T,S) = H.

Proof. dom P(T,S) = ran (T + S ) see Luque (1984a, ch II, §2,

and 1986b, §2) . As int(dom S- ) = H and dom T # 0, T + S -leM M(H).

-1 -1
Also dom T C dom S , (thus see Pascali and Sburlan 1978, p 249, th 3.2)

int(ran(T + S )) ='int(ran T + ran S ) = H. QED

-1 -1 -l -1 -1 -1
Remark. ran (T + S ) C ran T + ran S . Thus ran (T + S ) =

-1 -1 -1 -1
H implies that ran S = H. Furthermore, as dom (T + S ) = dom T

dom S has to be nonempty for all T C M.(H), it follows that dom S -1 H.

This shows the necessity of assuming that dom S = ran S = H. However

this latter condition is not sufficient for dom P(T,S) = H for every T G

M(H). One can show with the following example (ibid., p 245), Let EI =

IR , T be counterclockwise rotation by an angle of fT/2, and S clockwise

rotation by the same angle. Both T and S are bijective, but dom P(T,S) =

-14-



-! -1 -= -1= -1
ran (T + S lO}, as S (-T) -T Clearly S does not sat-

isfy (*). However subdifferential maps always do (ibid., p 247, ex 1),

and the following has been proved.

Corollary 2.3. Let g G F (H). dom g = dom g* = H iff for all T G

M(H), dom P(T, g) = H.

If S satisfies the hypotheses of proposition 2.2, for any T g M(H),

dom T + int(dom S) = H, and (Luque 1984a, 1986b) P(T,S)z will be a nonempty

closed convex set for any z G H. (A ) will then be satisfied iff
r

k+1 k+l r}
d(z k+l(c T,S)zk ) k min {1,z k z lI

with

k+l k k
d(z ,P(ckT,S)z ) min { I k xl:x C P(CkT,S)zk},

k
where the use of m in is justified by the fact that P(ckT,S)z is closed

k+l
convex and nonempty. Henceforth, x will denote the orthogonal projec-

k+l k
tion of z onto P(c T,S)z , then one has

d~zk+ l
d(zk+l ,P(ckT,S)zk) = z - x k+l

k+l s k k+l)ckTX S(z x ) .

The next proposition gives a necessary and sufficient condition for

condition (C3) to hold,

Proposition 2.4. Let S e M(H), then

-15-



(1) S(0) C {0}) => [VT e M(H), z G P(T,S)z => 0 G Tz],

(2) {0) C S(0) <=> [VT e M(H), 0 e Tz => z e P(T,S;)z].

Proof. The forward direction of (1) and (2) is proved using the

equivalence (Luque 1984a, ch II, §2, 1986b, §2)

z 8 P(T,S)z <=> Tz s(0) # ~ <=> z g T (S(0)).

To prove the backward implications, the argument in Luque (1984a, 1986b)

has to be modified as T is maximal monotone and not just an arbitrary map

from H into 2 . Moreover it is more interesting to prove them even if we

restrict ourselves to maps T such that T (0) # 0. Let I be the identity

map. Let w 8 S(0)\{0}, select any z G H and set T = I(- - z) + w. Clear-

ly 0 8 Tz, but w 6 Tz.n S(z - z), thus z 6 P(T,S)z, and the proof of (1)

is concluded. If 0 0 S(0), pick any z e H and set T = I(' - z), then 0 e

Tz, but z 0 P(T,S)z, otherwise 0 8 S(0). QED

Remark. This proposition is valid in the context of maps from a real

Banach space X into the power set of its dual X*. One has to substitute

the normalized duality map corresponding to the norm on X, J for I.

The second part of the next proposition gives a sufficient condition

for (C4).

Proposition 2.5. Let S 8 M(H), then

(1) 0 e S(0) <=> [VT g M(H), Z C P(T,S)Z],

(2) If S is such that w g Sz and z # 0 6 w imply (z,w) > 0 (the maximality

of S implies 0 g S(0)), then for all T 8 M(H), P(T,S)Z C Z,

Proof. The direct implication of (1) is a straightforward consequence
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of proposition 2.4(2) via

Z= {zlOeTz} C U{P(T,S)zIO C Tz} = P(T,S)oT-i('O) 

When 0 e S(O) we saw that for any z C H, T = I(' - z) is such that 0 C Tz

and z e P(T,S)z. But T (0) = {z}, thus Z $ P(T,S)Z,

To prove (2), one has

z C P(T,S)oT- (0) <=> [ Bx e T- (0),3w e Tzn S(x - z)].

The monotonicity of T implies (x - z,O - w) > 0, but w e S(x z) and as

O e S(O), (x - z - O,w - 0) > 0. Thus (x - z,w) = 0, by the assumption

on S, either x = z and/or w = 0, in either case 0 C Tz, QED

Remark. This proposition is valid in the context of maps from a real

Banach space X into the parts of its dual X*. One substitutes J, the norm-

alized duality map of the norm of X, for the identity map I, in the proofs,

The next proposition gives a sufficient condition for the validity

of the stopping criterion of step (3) of the algorithm as explained in

condition (C5). -

Proposition 2.6. Let S C M(H), then

(1) S(0) C {0} => [VT C M(H), P(T,S)z = {z} => 0 C Tz].

-1
(2) S (0) C {O}, and w e Sz with w f 0O z implies that (z,w) > 0 (by

the maximality of S, it follows that 0 C S(0)),'then for all T C M(H),

0 g Tz implies that P(T,S)z = {z).

Proof. (1) is immediate from proposition 2.4, To prove (2), let T

6 M(H), 0 6 Tz, as 0 6 S(O), clearly z 6 P(T,S)z, Let x e. P(T,S)z, then
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there is a vector v e Tx S(z - x). The monotonicity of T implies that

(z - x,O - v) > 0, while the monotonicity of S implies (z -x - 0,v-0) > 0.

-1
Thus (z - x,v) = 0 and z = x or v = 0. If v = 0, then z - x e S (0) C

{0}, and z = x. QED

Remark. A monotone map is strictly monotone at x0 e dom S iff for

all y0 e Sx0 ' and all (x,y) e gph S

(x - x0,Y - y0) = 0 => x = x0 .

In particular, if S is such that 0 e S(0), then its strict monotonicity

at 0 implies that for all (x,y) e gph S, x O0 => (x,y) > 0, This condi-

tion implies in turn that S (0) = {0}, otherwise by picking x G s (0)

{0} one would contradict it. Thus strict monotonicity at 0 is stronger

than the hypotheses on S of both propositions 2,5(2) and 2.6(2). Analo-

gously one shows that strict monotonicity of S at 0 implies the hypo-

thesis on S of proposition 2.6(2),

The following example shows how the conclusions of propositions

2.5(2), 2.6(2) fail'if S does not satisfy that whenever w e Sz with w V

0 $ z, then (z,w) > 0.

Example. Let H = IR , and let T,S be rotations by j/2 and -fr/2

2 -T1
respectively. For all x E1R , Tx = -Sx = S(-x), Also T(O) = T (0) =

{0} = S(O) = S (0). Clearly, whenever y g Sx, (y,x) = 0, so S does not

satisfy the hypotheses of either 2.5(2) or 2,6(2), Then

P(T,S)(0) = {x e m2TxnS (-x) V 0} = {xGIR 2 1TX = TX} = R2



But {O} = T- (0) = Z, thus we have shown that Z = {0} E2 P(T,=S)

(cf. proposition 2,5(2)), and that 0 G.T(O) but P(T,S)(0) = 2 (cfi

proposition 2.6(2)).

In some applications it is desirable that the maps P(c kT,S) be

everywhere single-valued, not just on Z, In the next proposition, a

necessary and sufficient condition for (C6) is given.

Proposition 2.7. Let S 6 M(H). S is strictly monotone iff for all

T e M(H), P(T,S) is single-valued.

Proof. The sufficiency follows from proposition II4,3. To show

the necessity, let w. C Sz. (i = 1,2) and (zl z2,w1 w 2 ) = 0, Consider

the monotone map defined as follows, For all z G H

(1 - t)w 1 + tw2}, if z = (1- t)(-z1) + t(-z2 ) for somet [0,1] ,
Tz = 1

0Tz = i, iotherwise.

Zorn's lemma implies the existence of an extension of T, T e M(H) such that

TI [-z1 ,-Z2 C 1[[-z l'21

with dom T C [-Zl1,-2], actually equal as dom T = [-Zl,-z2] (see Pascali

and Sburlan 1978, p 123, th 2.12). Then

w. e T(-z.)nS( - (-z.)) (i = 1,2),
1 1 , 1

and -zl,-z 2 6 P(T,S) (0). QED

The basis of the ordinary Proximal Point Algorithm is the fact that
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-1

Pk = (I+ckT) = P(c TI)

is both everywhere defined and nonexpansive. Rockafellar (1976a) used

k+l k k
these facts, together with z - Pkz e ckTPkZ , and TCM(H)to prove

his fundamental proposition 1 (ibid, p. 881) on which much of his proof

of the global convergence (ibid, p. 883, th. 1) rests.

k l -1 k
In the present case, x 8 P(ckT,S)z (I + S (ckT)) z , and to

require that P(c kT,S) be everywhere defined and nonexpansive is equiva-

-1
lent to requiring that S ckT 8 M(H) which essentially would reduce the

algorithm introduced here to the usual Proximal Point Algorithm.

However it is easy to prove that if T e M(H) is such that T (O)

, then Vz e H, Tz C N(z;T- (0)), where N(z;T (0)) is the normal cone to

-1 -1 -
T (0) at z. As T (0) = (IcT) 0, the maps Pk in the ordinary Proximal

k k k 10
Point Algorithm satisfy z - Pkz 6 N(Pkz ;T 0). The surprising fact

i aa qn k k k+l k+l
is that any sequence {z } such that for all k, z - z 8 N(z ;C),

where C is a nonempty closed convex subset of H, will have most of the

convergence characteristics of the Proximal Point Algorithm.

Proposition 2.8' Let H be a real Hilbert space, and C a nonempty

closed convex subset of H. Let {zn} be some sequence in H such that

n n+l z n+l
Vn > 0, z - z e N(z ;C). Then

n m
(1) zm 8 C => Vn > m, z = z

(2) Vz e C, Vn > 0,.zn 2 > Ins n+1 2 + lzn+ 2 Thus {zI

is both bounded and z n+-z On

(3) Vz g C, I zn-z monotonically decreases to· i(z), where A is a

nonnegative Lipschitz continuous (with modulus 1) function on
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C whiich attains its minimum on C, u uniquely,

(4) Let d(zn ,C) = min (Iz -zj:z C}, Then d(z ,C) decreases

monotonically to d , and U > d on C,

(5) {zn) possesses a weakly convergent subsequence, Let z Gn )

nCJ

w
+ zJ, then

(5.1) lim IznzJI = IJ <
nGJ

(5.2) Vz e C, (p(z))2 = Uj + l-zj 2 -

(5.3) zJ = z, where zJ is the orthogonal projection of zJ

onto C, and z minimizes p. Thus if all the weak

cluster points of {zn} lie on C, {zn} converges weakly

to z.

As zzm+l rl m m+l
Proof. (1) As - z e N(z ;C), for all v C C, (z -z

m+l m
z -v) > 0. Setting v = z the result follows.

Asin - n nln n+l n+l 2
Iz-zI = Iz -z +z -zI

n -n+l2 n+l 2 n n+l n+l
= -z-z I + Iz -zl + 2(z -z ,Z z)

> hn1/ 2 + zn+l z2

Being {Izn-zl} bounded and decreasing, it converges, Taking limits in

n+l n
both sides above, z - z + 0 follows.

(3) In (2) we have seen that lim zn -z| exists. Let z,z' G C,

n-,OO

t e [0,1], then

Izn-(1-t)z-tz'l < (l-t)lzn-zl + tlzn-z' l.

Taking limits, which exist as (l-t)z + tz' 6 C by convexity of C, the
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convexity of I follows. Let z,z' g C

Izzntl < Iz -zl + Iz-z'Il

from which p(z') 1 p(z) < Iz-z'|. Interchanging the roles of z and z'

one gets -Iz-z'| < P(Z') - V(z), and thus lp(z) - v(z') < Iz - z'.

Let C = {zeClp(z)<p}, p > 0. For all z C C, n > 0, p(z) < Izn zl,
Pn

thus z g Cp whenever |zn-zJ<P for some n > 0. Let z1, z2 g Cp,

liml nzil = i (z ) < p, (i=1,2)

n1 --

Given C > 0 there are numbers n1, n2 such that n > ni implies

|z -zil < P + 5 (i=1,2). Choosing nO = max {n1 ,n2}

n n

| Z-Z I| < IZ -Z |- + I|z 0-2 I < 1-(z ) + (Z2 ) + 2E < 2(p + £).

£ > O begin arbitrary it follows that iz-z 2 < 2p, and C is weakly

compact. As 11 is convex and continuous Weierstrass' Theorem implies

that it attains its infimum on C. Let zl, z2 C C.and let z = ( +z 2)/2,

then

n z n 2z -z + z -z2

1znZI~ 2 2
2 2

n1 n 2 1 n 1 n n-
1z-zll z+ Izn - 2 I + (z -z ,z z
4 4 2 ( 2 2

But

n 122 zn 2 n l-2
(znz ) = (z n -z + z 2 n z Z2

n 4 z 2 1 jZ1 2
2
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Using this equality above and rearranging

1 zn z2 1= zn1 z
1
2 + zn 2 1 -z2 ,

taking limits as n + C

1 2 2 1 2 1 2 2
2 ((z )) = ( )) + -(g(z 2 )) 81Zl 21

If I(Zl)' = 1(Z2) = U = infcp, the convexity of P and C implies that
1 2 C

11(z) = i,. and it follows that z1 = z2.

n n
(4) Denote by zn the orthogonal projection of z onto C, by (2)

n j~n ~nj _ n+ln zn+l
d(z ,C) = ICn znl >_ d(n+,C)

Thus {d(zn,C)} is nonincreasing and bounded below thus convergent, let

oo~m~~~~~~~~ n
d be its limit. Also, for all z e C, d(z ,C) < Izn-z|, and taking

limits on both 'sides it follows that d < 11(z)

(5) The boundedness of {z } implies that it possesses some weakly

w

convergent subsequence. If {} z, for all z e C
nE3J zj,

Iz nz= 2 =zn 1 2 + Iz-zl2 + 2(zn_z ,z Z).

Taking limits as n + o along J on both sides

Vz e C, (P(Z))2 = 12 + Iz-z1 2

Setting z = z the unique minimizer of U on C, and being zJ the orthogonal
J

projection of z onto C

(- 2 + - 12 < 1 + 2 2 2 2-

( JVz j IJ -
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from which zj = z. If the weak cluster points of {zn} lie on C, they

are equal to z and then, it is easy to see that {zn} +÷t OED

Remark. {zn } may converge to a limit not in C. Consider in R ,

C = (-a, -1], and {zn} a decreasing sequence of positive numbers, then

lim z exists and does not belong to C. The sequences of this type
n-co0

generated by the Proximal Point Algorithm studied here are such that

their weak cluster points always belong to C, therefore they are weakly

convergent. Whether {zn} converges weakly in general is an open ques-

tion.

We have shown (Luque 1984a, ch II, §2, 1986b, §2) that

I-P(ckT,S) = P(S,ckT) = (I+(ckT) S) - (I+(S c T)

If in addition S(O) = {0}, from proposition 2.4 and the fact that ck> O

0 e Tz <=> 0 e ckTz <=> z e P(ckT,S)z <=> 0 C P(S,ckT)z

(cf. Rockafellar 1976a, p, 881, eqns (2.1),(2,2)).

In order to show the global convergence of the NPA, I will require

that S be such that the sequences generated by the exact version of the

algorithm be of the type studied in the above proposition.

Proposition 2.9. Let S G M(H) be such that

y e Sx => (3\ > 0, y = Xx),

Then VT e M(H) with T (0) # 0, Vz C H, Vx. P(T,S)z

(1) z-x e P (S,T)z n N(x;T - 1 (0 ))
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(2) Vz G T (0)., (z-x,x-z) > 0

(3) Vz C T (o)., Iz-z2 > Iz-x12 + x-z1 2 ;

Proof. If x e P(T,S)z, then Tx . .S(z-x) 0, and for all v

e T (0), w 6 Tx n S(z-x), the monotonicity of T implies (x-v,w) > 0.

As w e X(z-x), w = X(z-x) for sore N > O, thus for all v C T (0),

X(z-x,x-v) > 0, as X >0, this is equivalent to z-x e N(x;T (0), This

and P(S,T) = I-P(T,S) conclude the proof of (1); while (2) is an immed-

iate consequence. Part (3) follows from (1), (2) by expanding I -z12

= z-x+x-z 2 QED

Remark. This proposition generalizes proposition 1 of Rockafellar

(1976a, p. 881). The generally multivoque maps P(ckT,S), P(S,ckT) play

the role of Pk P(c TI). Q I-P P(I,ckT) respectively, In part

(1) the difference between z and any of its one step iterates x need not

belong to the image , under T, of x, but only to the convex cone gener-

ated by Tx. Therefore, the sequences generated by one exact version of

the algorithm are of the type studied in proposition 3.2.8. Parts (2)

and (3) are only stated for the case z' g T (0) (cf. ibid.), which is

all which is needed to prove the global convergence of the algorithm.

The assumption of proposition 2.9 may seem too strong at first

sight. The following example shows how if it is not satisfied, it is

2
possible to find maps S,T in ER such that the exact NPA exhibits radi-

cally'different convergence behaviours ranging from convergence to

divergence towards infinite,
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Example. Let T G M(H) and define its moduli of Lipschitz continuity

and strong monotonicity, respectively, by

{T i-X2 x 2 Yi Txi

-(X-x2 'Y~ 'Y2) A

Let inf- 2 -: Xl x2 Yi G TX-p

Let AT', T respectively denote the modulus of Lipschitz continuity and

-1
strong monotonicity of T ,

Let 0 e. Tz, from the above definitions, one has

-2
TIZ-Zl < (z-z,w-) Z= I-z I cs (zz,w),

Ix-01 < T I -zl,

thus cos (z-z,w) > IT/AT. The same argument for T. yields cos (z-z,w)

-> ]-/X-. Let c max {i T/T, /X}, then 1 > cos (z-zw) > c > 0

-l rT
and if 0 < T = cos C-, one has 0 < (z-z,w) < eT < 2. Let S be well

T T -2

behaved enough so that P(T,S)z # 0 and let x g P(T,S)z, then 3w e

Tx n S(z-x). One dcn apply the above reasoning to the points (z,0),

(x,w) e graph of T, and to (0,0), (z-x,w) C graph of S, obtaining

\T
0 < (x-z,w) < T < 2

T - 2

0 < (z-x-0,w-0) < 0S <-

So w has to belong to two cones of semiaperture 0T and 0S, and axes

x-z and z-x respectively. From figure 1, it follows that that is

possible only if $ < O0 + OT. Thus one arrives to the following condir

tion on : < S + 0T < T. As COS (') is monotonically decreasing
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figure 1.
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in 0 ' ,T] we get 1 > cos > cos (QS + QT) > -1

If one assumes that OS + 0 T < r/2 then < Tr/'2 and z-X 6 (x;{z),

If {z} = T (0) the'n we again obtain z-x 6 N(x;T (0)), Otherwise the

argument may be easily extended to the general case. That convergence

occurs in the former case can be quickly shown as follows,

- 2 2 - 2
Z-Z =z + ix-zl + 2(z-x,x-z)

Iz- x I2 + Ix_ 1 2 + 21z-xl 1 :-lcos (z-xz)

Iz -xI2 x- + Ix-2 + 21z-xII (x-zloos , Z2 -2

> IZ-xI 2 + Ix-zI 2

as cos ) > 0.

w e S(z-x), 0 e s (0) => Iz-x > Iw/As

w G Tx, 0 e Tz => Ix-zl < X.lwt,

using these estimates, it follows that

lx-zl_ < 1

-zI l+(X5; ) 2

Thus if (X )- 2 > 0, linear convergence at the rate 1/ /l+(
ST S T

occurs.

In the case of the ordinary Proximal Point Algorithm, at each iter-

ation kS = Ck '1 Assuming that T is Lipschitz continuous at zero with

modulus a, we have

k+ -
1z -zl < a

k- /2+c2 2
|z-z k -28-
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which coincides with the result reported by PRockafellr (1976a, p 885,

th.. 2),

To see how anything can happen when one does not assume QS + QT -

7/2, let us consider in R2 the linear operator corresponding to

cos a -sin a
= J1 a [_- -.

sin a cos a 2' 2

A-(a) notates vectors conterclockwise by an angle of a.. This operator

is strongly monotone with modulus cos a, and Lipschitz continuous with

constant 1. If a > 0, aA(a) is strongly monotone with modulus a cos a

and Lipschitz continuous with modulus a. Its inverse is a A(a) with

modulus of strong monotonicity a cos(-a) =a cos a and Lipschitz

continuous with modulus a-

Let us consider T = tA(a), S = sA(-U), s,t > O0, 6 -/2,G/2].

Being both S, T bijective one can easily see that x G P(T,S)z <==>

x = (I+S T) z. Elementary computations yield

(I+S-1T)- -= (I + tA(ca+))-l
s

1 t
[I + -A(-U-03x)]2 s

t t
1+ -cos(a+) --

s s

-1
If x = (I+S T)z, then

Ixi t2
1 + 2-cos(a+S) + -2

IZI s s

As iT = t cos a T = t, p= t Cos a, A t , CT = A{T/NTdT/NAT}

cos a and 0T = a. Similarly US = e '
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If cos (0S + 0T) > -1/2 NS', it follows that cos (a+3) > -t/2s,

and l zl _ l xi. Thus the algorithm does not get further away fram the

solution set T (0) = {(0}.

On the other hand by an appropriate choice of s,t,a,B one can get

that Izl = xI , and the sequences generated by tile algorithm remain on

a circumference of radius Ijz about the solution set, or iZl < txl and

the sequences become unbounded with lz I + CO Setting cos (Ca+) =

-t/2s one gets izI = Ixi. Setting cos (a+3) > -t/2s. one gets I[z < xl.,.

In the former case {z } remains on the circle of radius r about zero, in

the second lz + 

We now continue studying the properties of the NPA, using a maximal

monotone map S satisfying the hypothesis of proposition 2,9.' The next

proposition deals with the fixed point properties of the maps P(T,S),

where T is the maximal monotone map for which we wish to solve 0 e Tz,

Proposition 2.10. Let S 6 M(H) be such that y 6 Sx implies that

y = Xx for some X > 0. Then for all T 6 M(H)

(1) 0 e Tz < ==>,(T,S)z = {z}.

(2) Z = P(T,S)Z,

Proof. Whenever y C Sx, y =Xx, thus (x,y) = lxx2 > 0, and the

maximality of S implies 0G6 S(0). If y 6 S(O), then for some N > 0,

y = X-0 = 0, thus S(O) = {0} If 0 g Sx, for some X > 0, 0 = Xx, thus

x = 0 and S (0) = {O}. If y 6 Sx, (x,y) = AIx 2 > 0 if x # 0, Using

proposition 2.6, (1) is proved. (2) follows from proposition 2.5, or

directly from (1). QED
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If S satisfies the hypothesis of the abQve proposition, it does not

follow that dom S = H or ran S = H, Consider in 1]P, S such that

gph S = {(x,-l): x < -1U {(x,x): 1 < x < 1} {(l,x): < x

It is not clear either whether this type of map is necessarily a subdif-

ferential map or more generally satisfies condition (*).

In view of the above two propositions we now specify the class of

maps S E M(H), suitable for use in the NPA,

Definition 2.11. A map S e M(H) is in 9 C 1M(H) iff

(1) S satisfies condition (*)

(2) dam S = ran S = H.

(3) y g Sx implies y = Xx for some X 3 0.

Among others, 9 includes the subdifferential maps of functions of

the form ~bolI, where c(p)= and : [0,) + [0,) is any continuous

monotonically increasing function with 4(0) = O0 For these type of maps

Sx = ~(Ixl)sgn x, where

x/lx1 if x 0 
sgnx x /Ixl

0 if x = 0

Being subdifferential maps, they satisfy conditon (*). Also, it is

clear that their domains and ranges equal H.

The iteration step of the NPA can be written as (see Luque 1984a,

ch II, §2, 1986b, §2)

k+l k k
z e P(ckT,S)z = P(S Ol(c T),I)z
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= (I + S (C T))-1 kk .

This is equivalent to the ordinary Proximal Point Algorithm applied

to the map S o (ckT), If S o (CkT) were monotone, the NPA would reduce

to the ordinary Proximal Point Algorithm, Even when S e (see defini-

tion 2.11) that is not the case, as shown in the next

Example. Let oa,, e (1,-) satisfy + = , and let 

Thus for all x 6 II

Sx = x 2 x , s x = xl x

2
In H = R , let T be the map that rotates vectors counterclockwise by

2
an angle of 7/2, and let u,v 6 IR be of the form

u = a{ , v = {j, a,b > 0.

After some algebra one can obtain

-1 -1 ab Q-2 =3-2
(S Tu - S Tv)(u-v) = (b -a

If a # 2, one can choose positive values of a,b so that the above expres-

sion is negative. This proves that the NPA introduced here is a strict

generalization of the ordinary Proximal Point Algorithm, as P(T,S) is

not nonexpansive by the aforementioned theorem of Minty.

The global convergence properties of the NPA are given by the next

Theorem 2.12. Let S 6Y and .:[0,o) -- [o0,) be such that o(O) = 0,

is continuous at O and Ad > 0, Vx e 6B, Vy e Sx, Ytl < g(IXI).
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Let {zk } be any sequence generated by the NPA under criterion (A-)

for some r > 1, when applied to T G M(H) with a sequence of positive

real numbers {Ck} bounded away from zero. Suppose {zk } is bounded (this

-holds iff Z = T -10 ). Then, {z } converges weakly to z e Z.

Proof. Proposition 2.2 and S 6G imply that dom P(c T,s) = H for

- - k+l k+l
all k. Let z e Z and x be the orthogonal projection of z onto

P(c.T,S)zk . Criterion (A ) and proposition 2.9 imply
r

iZk+l -} < k+l Xk+l + k+l 1li - k + Z (2.1)

from which it follows that {zk ) is bounded as

c0

Izk+l -- 0 - +lzk+l.HI K z0 '-ZI + Z £ < a
m=Q

Without assuming Z $ 0, which will be proved below, let {zk } be any

bounded sequence satisfying (A ) for some r > 1. Let c > 0 be such that
r

Vk > O Izkl< c, ek c,

thus {z k has at lea§t one weak cluster point z 6 cB. Consider the

closed ball 2cB, and let h be its convex indicator function. Let T'

= T + Dh, T' = T on int 2cB = 2cU, where U is the open unit ball, For

any k > 0, (A ) yields
r

txk+ll < Ixk+l zk+ll + ikk+lL + iZk+ll <2c,

therefore

x e dom T [f 2cU = dom T n int (dom oh),
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thus dom T n iRt (dom 3h) L 0 and T' C M(H) (Rockafellar 1970a, p. 76,

th. 1), Furthermore as {xk } C 2cU

k+l sk k+l xk+l k k+l
c Tx n S(z -x = C T x S(z -x 

k+l k k+l
and x 6 P(ck ' ,S)z If y denotes the orthogonal projection of

k+l k k+l l k+ thusk+l k b
z ont ,( Sz -y z x < thus {z k can be

considered as generated by the algorithm when applied to T'. Clearly

dom T' is bounded, therefore T' is surjective and (T') 0 # 0. Since

00 co

z e cB C 2cU, T' can be substituted for T when verifying that 0 e Tz .

Writing T instead of T' for simplicity, let z C T 0 which is non-

empty by above. Proposition 2.9 implies for any k > 0

k z 2 k Xk+l 2 xk+ - 2
Iz -Z > Z -x I + Ix -Zl

hence

i k k+l 2 - 1 k- 1 2 + k+l -12z -x I -Z-Zl + -Z

< Izk+lzl2 _ ixk+- -l2

k+l k+l k+l - k+l
= (z -x ) (z -z+x -z)

< kzkklx+l (zk+lzI + lxk+l --

rearranging

k k+l 2Iz kx k 2 < k---z z Izk+l- 12 + 2Ek(C + IZi) z (2;2)

Equation 2.1, the boundedness of {z }and Zek < 0m, imply that

lim sup Iz -zl lim inf Iz zl = j < c, (2.3)
k + o k + o

k k+1
Taking lim sup in both sides of 2,2, it-follows that z -x o0, But
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k+l_ < k k+l k+l k+l k k +nc .kl k+l 
|Z -z | < |Z -x I + Ix _Z . since I z< -- I t

follows that. zk+l-z + 0, i.e., {z k is asymptotically regular. Let

k k+l (k k+l)
w e c Tx n S(z -X

k kil
For all k large enough jz -x 5 6, thus assumption (c) implies

wk1 <_ (iz -x |) for all k large enough. Taking lim sup in the preced-

ing inequality and using the continuity of a at zero, it follows that

k -1 k 00

kw + 0, and ck w 1 0 as {ck } is bounded away from zero. Since z is
k k k+l

a weak cluster point of {zk } and z -x + 0, it is also a weak cluster

point of { }, and for some subsequence {x k x z. Then

lim sup X (ck w ) < lim supx k+i ck
-l wk = (z

k l ic = ,0).
k e K k K

-1 k k+l
But ck w G Tx , thus 0 e Tz (see Brezis 1973, p. 27, prop, 2.5).

0 0 -1 k
Let Zl' z2 C T 0 be two weak cluster points of {zk }.

By (2iA3)

lim lz -z i= p < (i=1,2)
k->oo

One has

k ~ 2 k o k o co 2
IZ _Z21 = z-ZlI + 2 (z -Zl klm-z2 + I1z-z2

and

k o co 2 2 c c 2
21im (Z -Z Z2) - 2 1 z-L

Thus the limit on the left side exists and it is the same for any sub-

k k
sequence of {z }, in particular if {z }K + Zl' said limit is zero,
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CO CO
Reversing the roles of zl and z2, one Qbtains

2 2 2 2 
1 I 21 1 2'

wcO Co k o
from which z1 = z2. Suppose now that z P z , then there are a weak

neighborhood V of z and a subsequence {z } C H V. Being {z } bounded,

so is {zk}K and zw has to be its only weak cluster point in contradiction
K

k kw 00 QED
with {z}K C H\ V. It follows that z -+ z QED

Remark. The proof given follows Rockafellar (1976a, p. 883, th. 1)

with the necessary modifications as implied by proposition (2..9),

Assuming a growth condtion of the type (1.1) one is able to prove

that the sequences {d(z ,Z)} corresponding to any sequence {zk } generated

by the NPA coverge to zero,

Theorem 2.13. Under the hypothesis of the above theorem, let Z

-1
= T 0 # 0, and let T:[0,c ) + [0,w) be such that T(O) = 0, T is contin-

uous at 0, and

3n > o, Vw e r. Vz e Th w, d(z,Z) < TI(wI,)

Then d(z ,Z) -+ O.

-1 k
Proof. By the above theorem, c w + 0, thus for all k large

-1 k k k+l k k+l k+l -1 -1 k
enough ck w 6 CB. As w CkTx TS(z-x )x C T ck wk

and the properties of T imply that d(xk+l ,z) < r(lckwk) Taking lim

k+1 -
sup in both sides of this inequality, it follows that d(x ,Z) + 0.

k+l k+ -
Let x denote the orthogonal projection of x onto Z and analogously

k+1
for z . By (A)

r

-36-



i k+l. k+l i 1zk+l .k+Jl 1 I k+l k+1 i+ k+; k+ll
Z -z I< -xZ -x X X

xk+l -
< k + d(x Z)

Taking lim sup on both sides the result follows. QED
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3. Asymptotic convergence. The (Q-) order of convergence (Ortega

k'k
and Rheinboldt 1970) of {d(z ,Z)}, assuming that d(g ,Z) $ 0 for all k,

is the supremum of the numbers a > 1 such that

k+l

k d(z ,Z)

Theorem 3.1. Under the hypotheses of both theorems 2.12 and 2.13,

let us assume the following forms of a and T

t 5bx
s

Vx e R+, T(x) = ax , (x) = bx

where a,b,s,t are positive real numbers with st > 1,

If st = 1, the NPA in both the exact and approximate versions, con-

verges linearly at a rate bounded above by a/(a + (c/b) 2) ½ , where c =

lim inf Ck, and thus superlinearly if c = ah

k -+ 

In any case, the (Q-) order of convergence of the approximate algo-

rithm is at least min {r,st} > 1, and at least st > 1 for the exact ver-

sion. If st > r = 1, superlinear convergence is attained without need-

inq c = a.

li ~ P T k k k+l k k+l
Proof. Let x e P(c T,S)z and w G ckTx nS(z x ) . The-

k k
k k+l k k+l

orem 2.12 implies z - x + 0, thus for all k large enough z - x G

6B and by the assumption on S of the same theorem and the above form of a

k k k+l s
Iw I <bz - x 

-l k
In theorem 2.12 it was also proved that ck w + 0, thus for all k large

-1k k+l -1 -1 k
enough, c w C nB. As x G T (c w ), by the assumption on T of

k k

theorem 2.13 and the above form of T one can conclude
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d(x k + l z) < alc -wk t
= K

From these inequalities, for all k large' enough

d(k+l < ab k k+lst

t
Ck

For z = z the orthogonal projection of z onto Z, proposition 2.8(2)

yields for all k

k 2 k k+l 2 k+l k 2
d(z ,Z) > z - x + 

(3,1)
k k+l12 (xk+l 2

> Iz - x I + d(x ,)

Eliminating Iz - x I between the above two inequalities and rearranging

one obtains the following estimate valid for all k large enough

ktl ~d(z k z)t
d(x ,Z) < (3.2)

[c + d(xk + l ,z ) 2(st - 1)/st]st/2 '

2/s -2/st.
where c' = (ck/b) a

From the triangle inequality, (Ar), and r > 1, for all k

k+l k+l k+ k +l k+l k+l
I Xz -x + Ix - I

k+l k r (xk+lZ)
_<_ ~kIz - z + d ,Z)

k+l k r-l k+l k+l k k+l k+l-
- £klZ _ z J (Iz -x | +1 z -x )+ d(x

Al-39-
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jzk _ xk+l < kZk k k+1
.k ......

< d(z ,z) + t_ _xk < 2d(zk,Z),

Where we have used the fact that projection onto a nonempty closed convex

subset of H is a nonexpansive map, and that lk - x < d(zk,Z) by (3.1).

Eliminating Iz - x k between the last two inequalities and rearranging

kdx ,)_|k+l k+l11(1 - k+l klr-

2£klzk+l zkr-l d(zk

By theorem 2q12 ,-|kZ l Zk o |°.by (A), r > 1 and k + O, thus for all

k large enough Eklzk~l -kr'l _ k <. Being z xk+ > d(zk+-l, ),

the following estimate is valid for all k large enough

k+1 k r
d(xk+l Z) > (1 - k )d(z ,Z) - 2Ckd(zk ,z)z k+l zkr

Inequality (3.1) and (A ) yield, by the same argument as above, for all
r

k large enough

k+l - k k+1l , k k+l - k+l k+l
d(x ,Z) > lZ -x Z> [ Z z -Iz -x 

_ Z Z ( - -k Z (3.3)

k k +
> (1 - kk) -lk z k+l

Eliminating |z - Z k between the last two inequalities, for all k large

enough

k+l k+l k k r
d(x k+z) > (1- )d(z k+ ) - d(zk z)

= k r
(1 - £k)
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Combining this inequality with (3,2) one can eliminaate d(x lz)

obtaining for all k large enough

' ki1 -d(zk ,)st/(iE ) 2£kd(z k,Z)
d(z ,z) < + (3.4)

[C d(k+l z)2(st -l)/st st/2
kZk

where one should remember that d(x ,Z) - 0 by theorem 2.13 , Suppose

now that d(zk,Z) O0 for all k. If st = 1, (3.4) implies that d(zk,Z) +

O linearly at a rate bounded above by

a abt

a2 + (/b2t t 2 C2t)i '
(a + (c/b) ) ((ab) +c

where c = lim inf Ck, and thus superlinearly if c = m. This result is
k -*-

valid for both the exact and approximate versions of the algorithm. In

any case the (Q-) order of convergence is at least min {r,st} > 1 for the

approximate version or st > 1 for the exact one, as then £k 0 QED

Remark.. Without requiring c = ", any (Q-) order of convergence can

be achieved if either min (r,st} for the approximate version, or st for

the exact version is large enough.

The following result gives a sufficient condition for the conver-

gence in a finite number of steps of the exact (E 0) algorithm, This

generalizes a result of Bertsekas (1975).

Theorem 3.2. Let S ge Q, and let 6,b,s be three positive real num-

bers such that x g 6B and y 6 Sx implies that jy| < bixls , Let T:H + 2
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a maximal monotone map be. such that Z = T- (0) ¢ 0 and satisfy

T1 0, Vw qIB, Vz 6 T-l (w), d(z,Z) = 0.

Then for the approximate version of the Nonlinear Proximal Point

Algorithm operated under (A ), d(z ,Z) + 0, superlinearly if r = 1, and
r

with (Q-) order of convergence at least r for all r > 1. The exact ver-

sion of the algorithm converges in finitely many steps which can be re-

0 0- (z
duced to one if 6 > d(z ) and co > bd(z ,Z) /n.

Proof. T satisfies

VW 6e nB, Vz 6 T- (w), d(zZ) < a

for any a,t > 0, and in particular T satisfies the hypothesis of the pre-

ceding theorem for all a > 0, t > 1/s. Thus the (Q-) order of conver-

gence is at least min {r,st} for all t > i/s, i.e,, r. If r = 1, said

theorem also implies that the convergence is superlinear.

If the algorithm is operated exactly, for all k, there is an w e

k+lc k k+l -1k
ckTz nSz - z . By theorem 2.12 ck w + 0 thus it lies in nB for

k+l 1 -1 k k+l -
all k large enough, and as z G T (ck w ), it follows that z e Z.

Alternatively, the preceding theorem guarantees an order of convergence

of at least st for all t > l/s by the above arguments Thus the (Q-) order

is o, i.e., d(z ,z) = 0 for all but finitely many kts,

0 1 0 1 -10 1
Let w 6e c Tzln S(zO- z). If cO w 6 pB, then z e Z, thus cO0 0 0

should be larger than [w0 /n, By proposition 2.8(2) , Z _zl >z zl I

c n0 0 1 d(z0 0 1 0-01
and choosing z = z , th z 6 6B if 6 > d(z Z).

0 0 1 0 0 is 0
As w G S(z z ), it follows that 1w01 bjz z < bd(z ,Z) /r, QED
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The sublinear convergence of the algorithn is explored in the

next result.

Theorem 3.3. Let S E 6 be such that for positive numbers b,s,r,

and a function G: R + IR continuous at zero and with a(O) = 0, it sat-

isfies

(x e rB, y C Sx) => blxjS< |Y| < Oc(xl).

Let T:H + 2 be maximal monotone with Z = T (0) 0, and for posi-

tive numbers a',t,6 , and a function T: R+ + R+, continuous at zero and

with T(O) = 0, it satisfies

(w E 6B, z 6 T 1 (w)) => alwit < d(z,Z) < T(lwl).

Let the NPA be operated under criterion (A ) with r > 1 and a bounded
r

sequence {ck}. If st > 1, then

k+l 
d(z ,Z)lim inf = 1

k co d(z k Z)

and the convergence cannot be faster than sublinear, If st = 1, then

d(z k+,) abt
lim inf >

k + c d(z ,Z) ab + c

where c = lim sup ck.

k + co
k k+ll

Proof, The global convergence theorem applies and if w 6 ckTx

k kl -1 k k+. -1 -I k
S(z _ x ), c w -+.0 and eventually lies in 6B, As x 6T (ck w ),

it follows that for all k large enough
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ckd(z ,Z) > aw I

k k+l
Also, by global convergence, z - x + 0 thus eventually it lies in nB

k k k+l
and as w e S(z - xk), for all k large enough

blzk - k+lls < swki

Combining both inequalities

ckd(xk+lZ) > abtlzk xk+l st

Projection onto Z is a nonexpansive map , thus

k+l � k k+l k+l k+l k+l
d(x ,Z) < |x I+ IZ z I + I z x

k+l k+l k+l -
< 2x - z + d(z ,z)

which substituted above yields

k+l k+l k+l t k k+l st
ckd(z ,z) + 2ck - z > abt

Criterion (A ) implies the following .inequalities
r

k+l k+l k k+l r
Ix - z < %JZ Z 

k k+l k k+l k+l k+l
z -x I lz - Z - z x I

k k+l k k+l r
> Iz _ Z %£z z

= k k+l (1 k _k+l r-1

k k+l
k -_> (l - Ek),
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k k+l
The last inequality is only valid for k large enough. Being z - z +

O by the global convergence theorem, eventually |z ;- z I • 1 and

k k+l r-1 k+l
-z - rz < 1. Using this two inequalities to eliminate Ix

k±1jz in the preceding one

k+z k _]+l st St k k+1 r
ckd(z ,z) > abt z z (1 k) 2CkklZ 

k k+l
Being {Ck} bounded k + 0, z - z + 0, r - st > 0, the second member

inside the brackets tends to zero so that for all k large enough the

bracket is nonnegative. Using this fact and

k k+l k k+l k+ k+l
Z -'Z I > l l z - I

> d(zk,Z) -d(zk+l ),

the above expression can be transformed into

k+l St-stl/st kk l -

[Ckd(z k+,z)] /St+ [abt (1- k ) 2Ckkk k+ rst/s d(zk+l,)

~slrt sk k+l r-st 1/st kzk

> [ab (1 - k 2c kkZ - z l ] d(z ,Z)k kk

If st = 1, without assuming the existence of.T, it is easy to obtain

k+l 
d(z ,Z)

lim inf >
k d(zk Z)

[ab t (1 C 2c C k k+1 r-l

lim inf =
t c atlE) -CEk/k k+l rl] t

k o [oabt-Z (zc k + c + ck ab

If st < 1, the existence of T implies that d(z ,Z) + 0,. and so does
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d(zk+l ) (1 - st)/t It foQlows then that

d(z ,z)
ljm inf 'k = ,

QED
k + co d(z ,Z)
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4. Implementation, Criterion (A ) requires that the current estimate

k k+1
of a root of T, z and the new one z satisfy

k+1 k+1 .l k k+1 r}
lz -x < < Ek min {1,|z - z |}

k+l k k+l
where x G P(k T,S)z . Thus x is a new estimate, computed exactly

k

from the current one z By the definition of P(ckT,S)zk it is cleark
k+l

that x satisfies

k+l k k+l)
O 8 c Tx -S(z x

k+l k
or O e Rx , where = ckT - S(z k ) is maximal monotone, The prob-

k+l
lem with (A ) is that x is not known and as it stands (A ) is not im-r r

plementable. Rockafellar (1976a, p 882, prop 3) showed a sufficient con-

k+l
dition for (A ) which does not require the knowledge of x In the

present case, the fact that S is no longer the identity map complicates

matters. The approach followed was suggested by Kort and Bertsekas(1976).

Proposition 4.1. Let T:H 2 be a maximal monotone map which is

strongly monotone with modulus a > 0. Then criterion (A ) is implied by
r

k+l mk k+l r}.
(A') d(O,Rkz ) < ackck min {l,Iz z

r k

k+l
Proof. Rk is strongly monotone with modulus ack > 0. Letw G R z

k k+

as 0 e RkX

(z - x ,w) > Ck z z k

kUsing the Cauchy-Buniakovskii inequality and selecting as w the least
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k+l
norm element of Rkz

d(0,PKzk+l) > aCkZl k+l OED

The estimate obtained by Rockafellar (ibidj) is, in our notation

d(0,~l > zk+l)l k xk+l1

The fact that P(c T,S) is nonexpansive for S = I was used there. This is

no longer the case if S # I as we have seen in the example after defini-

tion 2.11.

Note that if T is strongly monotone, then Z = {z }, and w G Tz im-

plies that d(z,z ) < c -ljw. The strong convergence of the algorithm in

its two versions, to the unique solution is guaranteeed,
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5. Application to convex and saddle functions, When T is the sub-

differential map of a proper closed convex functionsr-or the "twisted"

subdifferential of a proper closed saddle function, it is possible to

estimate the speed of convergence of the NPA towards the minimum value,

or the saddle value, respectively, This speed is given in terms of the

sequence {d(z ,Z)} whose decrease towards zero has been quantified in

section 3.

Let H1,H1 be real Hilbert spaces, Let <.,-> and 1' denote the

inner product and corresponding induced norm of both Hi and H2. In

H x H2 we can define an inner product as follows, For all (x,y),

(x',y') e Hlx H2

<(x,y),(x',y')> = <x,x'> + <y,y'>

The norm induced on H 1 H2 by this inner product is such that for all

(x,y) e H X H2

(x,y)l2 =<(x,y),(x,y)> = <x,x> + <y,y> = x12+ ly 2

Let L: Hl H2 - IR be a closed proper convex-concave saddle func-

tion. The subdifferential map of L, DL, is defined as follows. For

all (x,y) E HIlX H2, 9L(x,y) is the set of vectors (u,v) G H x H2 such

that for all (x',y') G Hlx H2,

L(x',y') <x'-x,u> > L(x,y) > L(x~y') -<yt-y,v>.

The "twisted" subdifferential of L, T, is such that for all (x,y) 6

H1 x H2,
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T(x,y) = {(u,-v) e HlxH 2 (u,v) e aL(X,)} ,

Under'the above assumptions on L, T is ax7imal monotone (Rockafellar

1970b), Clearly (0,0) 6 T(x,y) iff (x,y) is a saddle point of L.

Theorem 5.1. Let {(x ,y )} be any sequence generated by the NPA

when applied, under the hypothesis of theorem 3,1, to T as above, Then

{(x ,y )} converges weakly to (x ,y ), an element of Z T (0,0), and

k k k k
d[(x ,y ) ,Z] + 0. Let us also assume that (x ,y ) ~ Z for all k.

(1) If the algorithm is implemented exactly, then for all k large

enough

IL(xy ) - L(x y )1 -1 k k)s

|(x ,yh ) (xk+l k+l) = ck bd[(x ,y) Z]

(2) Let S = I, and let the algorithm be implemented approximately,

requiring at each step that the following condition (sufficient for (Ar ),

see Rockafellar 1976a, p. 889, th, 4) be satisfied for all k

k k+1 k k+1 k+l k+l
d[(x -x .,y ),ckT(x ,y )] <

< £kmint{l,(x k yk) (xkil k+l 1 r}

Then for all k large enough

L(x ~ Y ) - L(xk+l yk+1)

IL(x ,Y ) - (xk+iX ,y ) - (xkl r~k~l)

k k k r 1 k k
=< : ,.k d[l(x ,yk ),Z]r + d[(x ,y ),z]

c k ( l- £k) ck ( 1 - k)
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(3) If T is strongly monotone with modulus a > 0, then T with

t = 1, a = a is globally valid, and Z {(x ,y }' Let the NPA be

operated approximately using criterion (A') (see section 4), i.e., for
r

all k

(k k+l k k+l) k+l k+l) 
d[S(x- X' ,y - ),ckT(x Y ) 

k k k+I k+l 1 r
< ackckmin{l, (x ,yk ) - (x ,Y

kk cok 
Then (x ,y ) + (x ,y ) strongly, and for all k large enough

| y > - L(x. 1 yk+l),

(k+l k+l

I (X k+1 k+l1(x,y) - ,y ) I

£k (xk,yk) - (x y) r+ b I (xk ,yk) - (x ,y) s

= (1-e k ) r c (1 - E k )

Proof. The hypothesis of theorem 3.1 imples that of theorem 2.12

k k-
from which d[(x ,y ),Z] - 0 follows.

k+l k+l k k+l k k+l
(1) Let (w ,-w ) y eg ckT(x+ly - S( -x y y ) and let

.J.

k k+l k k+l)
(V -Vy) e S(x -x ,y -y )

Then

(v +w ,-v -w ) e c T(x ,yk
x x y y k

and

-1 k+1 k±1
ck (v + ) a L(x ,y ),

xx x x

-l. k+l k+1
ck (vy +w) e L(x ,y )

y Y Y
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The subgradient inequalities yield

co k+l k+1 +l 1 c k+
L(x ,y > L.(x ,y )+c k V + W ,x Tx >,

k x x
k+l co k+l k+ 1 k+l - 00 k+l

L(x ,y ) < L(x ,y )+c +w ,y y >,
_ k y y

0 0co

From the saddle point inequality for (x ,y )

k+l co k+l 0
L(x ,y ) < L(x ,y ) L ,y ),

one obtains

-1 co k+1 co k k+ k+
Ck KVx +xw ,x - x > < L(x ,y ) L( x ,y ) 

-1 co k+l
C <V + W ,y - y >
=k y Y

Using the Cauchy-Buniakovskii and triangle inequalities, and dividing

tbxy ) xk+l k+l
throughout by (x ,y ) - (x ,y ) I the following estimate is obtained

L(,y ) -L(xk+l yk+l)

k x k+ l k+1

kk y yi (x ,y ) _ (xk+y )+< Ck (lIvyl+ Iwy)

k xk k+l k+l
By theorem 2.12 (x ,y ) (x y ) + 0, thus the growth condition

on S eventually holds, and using the form of g chosen in theorem 3.1,

I(v ,-v ) < bl(xkyk) _ (xk+l yk+l )s

But for all k large enough, by equation (3.3),

k k (k+l yk+l)f < d[(xkyk) z]/(l-C )

Also Ivxl ,Ivl < I (v ,-v ), thus for all k large enough
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-ck Wxl- da[ (x ,y ),z] <
kk ,

ck (1 - ek )

LY)0x ck+l k+l
L(Xy) - L(xk+l yl

" -<------ . < (5.1)
oo oo k+l k+l

I(x ,y ) - (x ,y ) I

-lb k k s
ck 1w + ± d[(x ,y ),Z]

k k

When the algorithm is implemented exactly, ie., £k -E 0, one can choose

w = 0, w = 0, and the.above inequality yields the desired estimate.
x y

(2) Let S = I, and let the algorithm be implemented with the

criterion given in the statement. Choosing as (w ,-w ) the minimum norm
x y

element of

k+l k+l k kL1 k k+ l
CkT(x ,y ) - S(x -x ,y -y .

By the same argument as in proving (1)

lwxI Iwyl < (Wx,.-Wy) l k+

< £k (xkxy k ) - (xk+l yk +l ) I 

_ k k kk k kr

k d[ (xk ,y k ),Z]

which yields via (5.1) the desired estimate,

(3) The strong monotonicity of T implies that Z is a singleton, and

k k coco kk
(x ,y ) + (x ,y ) strongly follows from d[(x ,y ),Z] + 0 Choosing as

(w ,-Wy) the minimum norm element of
X 
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-1 k+1 k+1 k k+l k k+l
c T(x ) -Sy -x ,y - y ),

criterion (A') yields, as above-,
r

IWxl1 Iwyl I (Wx,-wy) I

k(xky k ) (xk+ k +±1 l ) Ir

< Ck£k (x y (x ,y
r

(- k )

combining this inequality with (5.1) one concludes the proof of (3)

QED,

Let H be a real Hilbert space with inner product <*,,> and induced

norm |-|. Let f:H + (-,co] be a closed proper convex function and

T = af. Then 0 e Tz iff f achieves its global minimum at z.

k
Theorem 5.2. Let {z } be any sequence generated by the NPA when

applied, under the hypothesis of theorem 3.1, to T as above. Then {z }

-co 1 -n -l k) -. O
converges weakly to z an element of Z = T (0), and d(z ,Z) + 0. Let

k
us also assume that z k Z for all k.

(1) If the algorithm is implemented exactly, then for all k large

enough

k+l co
f(z ) -f(z) -1 k -

ck bd(z ,Z)s

1Z - z I

(2) Let S = I, and let the algorithm be implemented approximately,

requiring at each step that the following condition (see theorem 5.1(2))
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be satisfied for all k

d(zk k+l kk+l < £kminn{ 1,zk k+l lr
d(z -, c T z <T, kz

Then for all k large enough

( k+l) f(z ) k 1 k
k~lf(z )- f(z ~<d(z ,Z) + - d(z ,Z).; r

1k+l = rzis c ck ( 1-c £ k
) C k ( l £ k

)

·(3) If T is strongly monotone with modulus a, then r with t = 1,

-1 -

a = * is globally valid and Z = {z}, Let the NPA be implemented

k
approximately using criterion (A) (see section 4). Then z + Z

strongly, and for all k large enough

f( k+ ) f(z) _ k k I r b k 1 s

Izk+l (1- r c (1- )kz
Z - z I ( - kk ) k k

Proof. f can be considered as a saddle function on Hx H1 where

H = {). QED.

-55-



REFERENCES

[1] D.P. Bertsekas (1975), Necessary and sufficient conditions for a

penalty method to be exact. Math. Programming, 9, 87-99.

[2] H. Brezis (1973) Operateurs maximaux monotones et semi-groupes de

contractions dans les espaces de Hilbert. North-Holland, Amsterdam.

[3] K. Deimling (1985), Nonlinear functional analysis. Springer-

Verlag, Berlin.

[4] M.C. Joshi, and R.K. Bose (1985), Some topics in nonlinear func-

tional analysis. Wiley, New Delhi.

[5] B.W. Kort, and D.P. Bertsekas (1972), A new penalty function meth-

od forconstrained optimization. Proceedings IEEE Conference on

Decision and Control, New Orleans, LA, 162-166.

[6] - (1973), Multiplier methods for convex programming. Proceed-

ings IEEE Conference on Decision and Control, San Diego, CA, 428-

432.

[7] - (1976), Combined primal-dual and penalty methods for convex

programming. SIAM J. Control and Optimization 14: 2, 268-294.

[8] J. Luque (1984a), Nonlinear Proximal Point Algorithms. Disserta-

tion, Operations Research Center, Massachusetts Institute of Tech-

nology, May 1984.

[9] ----- (1984b), Asymptotic convergence analysis of the proximal

point algorithm. SIAM J. Control and Optimization 22: 2, 277-293.

[10] - (1986a), Convolutions of maximal monotone mappings, abstract.

Abstracts of papers presented to the Amer. Math. Soc. 7: 1, 108,

no. *825-49-541.

-56-



[11] ----- (1986b), Convolution of maximal monotone mappings. Submitted.

[12] G.J. Minty (1962), Monotone (nonlinear) operators in Hilbert space.

Duke Math. J. 29, 341-362.

[13] ----- (1964), On the solvability of nonlinear functional equations

of "monotonic" type. Pacific J. Math. 14, 249-255.

[14] J.-J. Moreau (1965), Proximite et dualite dans un espace hilbertien.

Bull. Soc. Math. France 93, 273-299.

[15] J.M. Ortega, and W.C. Rheinboldt (1970), Iterative solution of non-

linear equations in several variables. Academic Press, New York.

[16] D. Pascali, and S. Sburlan (1978), Nonlinear mappings of monotone

type. Sijthoff and Noordhoff, Alphen aan den Rijn, Holland.

[17] R.T. Rockafellar (1970a), On the maximality of sums of nonlinear

monotone operators. Trans. Amer. Math. Soc. 149, 75-88.

[18] ----- (1970b), Monotone operators associated with saddle-functions

and minimax problems. Proceedings of Symposia in Pure Mathematics,

vol 18, part 1, 241-250, F.E. Browder, ed., AMS, Providence.

[19] ----- (1973), The multiplier method of Hestenes and Powell applied

toconvex programming. J.O.T.A. 12: 6, 555-562.

[20] ----- (1976a), Monotone operators and the proximal point algorithm.

SIAM J. Control and Optimization 14: 5, 877-898.

[21] ----- (1976b), Augmented Lagrangians and applications of the proxi-

mal point algorithm in convex programming. Math. Operations Re-

search 1: 2, 97-116,.

-57-


