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JAVA-BASED MODELING OF THE ACTIN POLYMERIZATION
CYCLE
by

CATHERINE HOWELL
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Fulfillment of the Requirements for the Degree of Bachelor of Science in Mechanical
Engineering

ABSTRACT

This thesis project combines work on two aspects of a project entitled ““A Mechanistic
Model of the Actin Cycle” [1,2]. This project uses accumulated biochemical research to
write a broad mathematical model that describes the effects of regulatory proteins
(profilin, beta-thymosin, cofilin, and capping protein) on the steady-state actin cycle. The
model necessitates the simultaneous solving of 90-330 differential equations and 51-171
additional equations. One object of this thesis was to prove that this model could be run
on JSim, a modeling architecture developed at the University of Washington, to obtain
the same results as McGrath et al calculated using Matlab. The theory behind using JSim
was that it would be faster and more accessible, since JSim is Java-based and contains all
the necessary software to run on various platforms. This project proved that the

- equations could be run quickly with JSim. It also highlighted some of the drawbacks of
JSim, such as heavy demand on the processor. A second object of this thesis was to
provide an independent evaluation of the mathematical model and correct mistakes in the
original draft. Several errors were uncovered and the corrected results now appear in the
paper submitted to The Biophysical Journal [2].

Thesis Supervisor: C. Forbes Dewey

Title: Professor of Mechanical Engineering and Bioengineering
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1. Actin Model

Actin monomers are continuously being polymerized into filaments and depolymerized
off of filaments by an ATP-powered cycle. Studies of individual reactions in this cycle
have identified the reactant proteins and rate constants. McGrath et al [1] combined these
rate constants and concentration variables to write a set of homogeneous equations
describing the actin cycle at steady-state. The equations were originally tested with
Matlab, providing data that were subsequently used to test the JSim model. In the
process, errors in the McGrath equations were found and corrected.

Actin filaments support and generate mechanical stresses at the cell periphery,
determining the cell’s shape. Proteins that contribute to actin filament polymerization
bind actin are modulated by various cell signaling mechanisms. These modulating
proteins, such as gelsolin, profiling, and cofilir, serve to modulate the length and
location of the filaments and reconfigure them. McGrath et al [1] developed a model of
the steady-state actin cycle that identifies the relationships between actin and 1ts key
modulating proteins. This model can be used to predict the key parameters describing the
state of monomeric and polymeric actin, including filament length, polymer fraction,
monomer flux, filament turnover, and a complete nucleotide profile of actin filaments,
under the influence of various regulatory proteins. Actin monomers can be bound to
ATP or ADP, and can associate themselves with ‘barbed’ and ‘pointed” filament ends

(see Fig. 1).
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Figure 1: Diagram of Actin Cycle [1}
ATP hydrolizes quickly to ADPPi, (ADP plus inorganic phosphate (Pi)) which more

slowly releases Pi to become ADP. Pi directly associates with filaments (F-actin) and 1s
assumed not to bind to unpolymerized actin (G-actin), which can bind to ATP or ADP.
Because of ATP consumption within filaments, polymerization proceeds to steady-state,
at which point the dominant reactions are addition of ATP-bound actin to barbed ends
and subtraction of ADP-bound actin from pointed ends. Subunits ‘treadmill’ from barbed
ends to pbinted ends. Disassembled ADP-bound actin monomers are recharged with
ATP to complete the cycle. The chief regulatory proteins in the actin cycle are capping
protein (CP), gelsolin, Arp2/3, cofilin, B-thymosin, and profilin. CP, gelsolin, and
Arp2/3 nucleate new actin filaments and sever existing ones; their effects are represented
in the equations by the fractions of uncapped filament ends, ¢ and 3. CP and gelsolin
cap barbed ends, and Arp2/3 caps pointed ends. B-thymosin is the primary G-actin
sequestering protein; it maintains G-actin at hundreds of times the critical concentration.
Profilin is another G-actin sequestering protein; it accelerates the exchange of ADP for
ATP 100 fold. -thymosin and profilin are assigned the variables B and P in both the
manuscript and the MML code. Profilin-bound-G-actin assembles at barbed ends,

releasing unbound profilin. Cofilin binds to ADP-bound subunits near filament ends.



Cofilin destabilizes these ends by severing filaments and lowering subunit affinity for
filaments, accelerating subunit disassembly at pointed ends. The activity of cofilin is
inferred with the rate constant, k',p (kpdm in MML), which can be varied to signify
different concentrations of cofilin. A no-flux condition requires cofilin to similarly
destabilize barbed ends, so the rate constant k'yp (kbdm) is varied in tandem with kpdm.
The number of filament subunits of interest varies. At some subunit within a
filament the G-actin is entirely ADP bound, and each subsequent subunit is likewise
bound until they approach the other end of the filament. The number of subunits
necessary to observe is related to cofilin activity, barbed end capping, and filament

concentration. The rule of thumb for determining this number ‘len’ is given in Table 1.

Table 1. Conditions that determine the model paraineter ‘len’. [1]

1. Ifk’yp <1ora>0.1,then len=20 is sufficient.

2. Ifk,p =1ora <0.1, and n <0.2, then len = 50 is sufficient.

3. Ifk,p =1ora <0.1, and 0.2 <n <0.4, ther len = 80 is sufficient.

4. Ifkpp =21 or @ <0.1, and n > 0.4, then the filaments are short and essentially
have no core and the model would have te deal with selvi‘ng things in a

different way.




IL. JSim as a computational engine for complex biological modeling

This project is part of ongoing work on an information architecture for complex
physiological models. JSim is a simulation program created at the University of
Washington. It is based on an X-window based simulation interface for UNIX platforms
called XSIM. The function of these interfaces is to take a configuration file provided by
the user and solve simultaneous equations, providing simulations of scientific models.
JSim is Java-based, eliminating the need for any software on the user end. The user
downloads JSimStudio, a graphic user interface (GUI), which car: be run on
MSWindows, Linux, Solaris, or SGI IRIX. JSim software and documentation can be
downloaded from the National Science Resource website at UWash

(http://nsr.bioeng. washington.edu), along with other biological models written for JSim.

With the use of JSim software, users can download and run existing models, or write
their own models in Mathematical Modeling Language (MML), a high-level
programming language that writes a set of mathematical variables and equations.

JSim uses a five-layer architecture to write, compile, solve, and display results
of mathematical models. The lavers and their communication structure are described in
Table 2 below. The core of the architecture is MML. The user can write any number of
standard mathematical equations, with a simple set of syntax rules (see [5] and Appendix
B). The .mod code is converted to a Java object when it is loaded by a user interface.
MML gives the option of unit conversion, which serves as a dimensional check for
variables. The Biological Component Libraries contain models of biological components
made in MML that can be referenced for higher-level modeling. The Numerical Planner

chooses solvers for the MML equations. The solvers, such as Dopn$, Radau, Kutta-




Merson, Euler, and Runge-Kutta 4, constitute the Numerical Method Library. The user
can choose a solver from a menu in the GUI or choose “Auto,” allowing the NP to
schedule solvers to suit the various needs of the algebraic, ordinary and partial
differential equations. The user runs the solution of the model via one of the user

interfaces.
Table 2, Major JSim software packages and standards [3]

Graphical User Interface (GUD)

| |
| Biological Component Libraries (BCLs)

I
Mathematical Modeling Language  (MML)

|
Numerical Planner (NP)

|
Numerical Method Library (NML)

Writing an MML model requires neither algorithmic programming skill nor familiarity
with numerical routines (e.g. ODE solvers). Therefore using MML for scientific models
is directly accessible to the scientists studying the physiological phenomena. However,
for processes that cannot be written directly in MML, it is possible to write JSim models
directly in Java, or to supplement MML models using Java procedures. There are two
user interfaces, JSimStudio, the GUY, and jsbatch, a text-based interface for batch
processing and debugging. Jsbatch, which writes Java source code from the .mod file
and compiles it into a Java class file was not used for this thesis project because its
capabilities were not needed, and it has no data analysis tools. [3]

JSim’s Graphical User Interface (GUT), JSimStudio, was used to load the .mod

file (Appendix C) of the actin modet equations and manipulate the solutions. JSimStudio



allows runtime control of input variable values, optimization, and function generation.
Parameters to be displayed can be chosen before, during, or after runs, and can be
displayed in various plots and spreadsheets. Multiple models can be loaded at once and
toggled. Every operation, however, increases the work for the processor, and crashes are
a common occurrence for models as large as this. More troublesome are the non-fatal
errors that occasionally find their way into runs, possibly because of incomplete clearing

of data.




HI. Preject Procedure

I proved that the actin cycle model could be written in JSim and run to obtain the
desired results. The form of the homogeneous equations in MML is that of first-order
ordinary differential equations; the output of the simulation is the solved variables vs.
time. I also wrote another version of the model that uses an additional independent
variable. The resulting output variables are given as solved variables vs. time and the
independent variable, which can be any of the regulatory proteins. Running the model
with more independent variables simultaneously is theoretically feasible, but too

computationally intensive for the average single processor.

16




B 15imStudio , i s
fle Edt Modsl Datn Simulafion Anaysis PiotPage View

indow Hefp

‘Project Folter

6.{ ot Page 1 |

@ (1 Default Praject ‘_y_ 1. Bssﬂ: Cantrol; pick & plat
Models 110 i
9 D toets |2 {{ wouet  Vacting0
[ actinso R : '
g .il\tleuenuem Variables ‘parammer M,
. Name ] Min ] Max Slep o # Unit &R ~ —_
i T : |4 1-Undate: @ Once por run
‘ maT * at (uk)
® ad (uM)
198+ ® fum)
1007 g @ ght1
#+ ghdl
| 85 gpit
l 90+ ® gpdl
& gbopit
a5 gbdpi
[ % gpgpit
B0
75T
0T
D 651
1
i g0
1
B 55
oy L = Show Tiie
1 507 T Show Stailstics
1T . ]
. [Ehy 1 Show Histagram Bars
qbdpisDl .o o8
: iS00 L9 a0+ 5 e
igbtids®m .0 T Show Evror Bars
gedis) BT # Draw Lines Beiween Polnts
41ap -
|Viopdidsa T ¥ Show Data Poinls
1 2%+ Di-h “j Burdgl _ »
. Sotvers and Initial Condiions % BT oL
3 20+
Siate var T
faT Viaw Data in Plot..
1 Cigar Data in Plot...
! 5 Save Plot fs..
! o Print Plot_.
i ) e Add 3 Plot 10 Page
"‘ : 10 N N TR il L
= { ’ 0 50 View Data in Pape_. !
= L t(s) | PrintPage- FlE
| s —— SavePapeAs.- =2
Wodel complled successitily: Runtime model Joaded sucpesstiy. Close wintow }

Figure 2: JSimStudio running actin50.mod

Since it began as a UROP in June 2002, this project has used several versions of JSim,

including Betal.4.3 for Linux and the latest version, 1.5b5 for Windows, which 1s not yet

available for UNIX systems.
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For versions of the actin code utilizing two independent variables, or two-IV,

ISimStudio outputs a two-dimensional color plot, which is more easily interpreted by its

accompanying spreadsheet (see Figure 3). Each solved parameter reaches a steady-state

value with regard to time.
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Figure 3: JSimStudio running actin50a.mod, with spreadsheet

To compare the JSim output to the figures in the original paper [1], I copied a column of

data from this spreadsheet, at the steady-state values (usually at about t=400 seconds) and

pasted it into a Microsoft Excel spreadsheet. So for instance, Figure 3 above becomes

Figure 4, below.
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Figure 4: JSim data copied to MSExcel

Now, the same run can be used to find other parameters. Clear the current data and select
at (concentration of ATP-bound free actin) from the parameter menu, view the

spreadsheet, and copy-and-paste again into the same Excel spreadsheet (see figure 5).

Concentration of ADP-and ATP-bound free actin

2.5

—e—ad

monomer concentration (uM)

0 0.2 - 0.4 0.6 0.8 1 1.2
alpha

Figure 5: G-actin concentrations, from JSim
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In a few minutes the simulation has been performed and compared to the paper, whose

comparable figure is Figure 6A on page 52 of the original manuscript [2].

monomer concentrations (LM}
—-—r

Wb T Figure 6
1.5
|
!

Figure 6: G-actin concentrations, from McGrath [2]

For the runs with a single independent variable, time, JSim treats the other independent
variables, for instance alpha, as a single mput variable. To reproduce the graphs, the user
can plot and copy several output parameters at once, then change the inp'ut variable to a
new value and repeat the process. The two-1.V. process is quicker but crashes the
program much more frequently because several times more computations need to be done
at run-time. Also, there are that many times more data points appearing simultaneously
in the plot and spreadsheet. See the section on computational requirements.

The g-equations (M10-13 in Appendix B), representing the fraction of subunits at
each position on the filaments, in the code (Appendix C) were generated by a Java
equation writer program written by Shixin Zhang. The program writes out iterative
expressions explicitly. The output of the program was inserted into actin20.mod
{Appendix C). MML does not support iterative expressions (e.g. ‘for,” ‘do,” or ‘while’

loops).
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For different values of fhe parameters kpdm, alpha, and n (respectively, effective
cofilin, fraction of barbed ends capped, and filament concentration) different numbers of
equations need to be run. The g-equations are the fractions of barbed and pointed ends of
the actin filaments bound to ATP, ADP, and ADP*Pi molecules. The length of actin
filament that needs to be considered varies between 20 and 80 subunits. The rule of
thumb quoted in Reference 1 and reproduced in Table 1 determines an approximate point
at which the filament subunits are entirely ADP-bound. Rather than writing a complex
“if”” statement, 3 versions of the code were written, for 20, 50, and 80 subunits of interest.
The variable len can be used to check if this length is accurate. When in doubt, the user
can err on the side of longer codes, but they are more computationally intensive.

A useful tool which is unavailable in the current version of JSim would be
logarithmically spaced independent variable strings. Many of the graphs are similar to
logarithmic graphs, but JSim only offers linear grids. The user is forced to choose
between accuracy at the left part of the graph (small values of independent variables) and
efficiency at the right part of the graph (large values of independent variables). Because
JSim is intended for use with physiological models, a logarithmic option for independent

variable grids makes sense.
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IV. Computational Requirements

Running JSimStudio requires significant processing power. The work for this thesis was
done on a Pentium 4 1.7 GHz processor with 523 MB of RAM memory. The hard disk
used has a 37.2 GB capacity, 6.76 GB free. At the time JSim is launched, existing
processes, including the operating system, fill 212 MB of memory, leaving 305 MB of
RAM free. A typical one 1.V. model run takes about 1 to 2 seconds of CPU time, or 5 to
10 seconds real time and 88 MB of memory(what does this mean?). A typich two L.V.
model run takes about 2.2 seconds CPU time, 50-60 seconds real time, and 89 MB of
memory. The computation overflows the physical memory and is written to disk as
virtual memory, This memory isn’t cleared after each calculation and plot is removed,
making the system run slower until the user gives up or JSimStudio cancels the run. As
long as JSim 1s running, the virtual memory keeps the old data while the overflowing
physical memory slowly clears itself. When JSimStudio is terminated, all the memory is

cleared.

16




V. Conclusions

These results represent a factor of roughly 10 in increased speed over the earlier
Matlab program that was used to generate the figures in the original paper. They also
independently verified the results of the model before those results were submitted for
publication. In addition, the process of writing and running the equations exposed
numerous errors, which have been corrected for subsequent versions of the paper. Some
EITOTS havé not yet been corrected; the JSim results disagree with the paper’s results
concerning the behavior of profilin. However, the JSim results match very favorably for
the effects of cofilin, barbed and pointed filament end exposure, and filament
concentration. The actin model is becoming progressively faster and more convenient to
manipulate.

Future work on the project involves parallelizing the program to support an
extended model several times larger than the current one (~1300 equations, as opposed to
~300 in the current model). The new model will include more key mechanical processes
in the cell structure, such as calcium pathways. Work on the actin project will extend for

at least another 5 years.
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Appendix A: The Actin Model

Included here are Tables 1-3 from the corrected paper, listing variables, rate constants,

and equations [2].

Tables

Tahle 1: Variable and Parameter Definitions

Variable Description

at concenration o -Dound iree actin
ad concentration of ADP-bound free actin
concentration of actin in filaments
b concentration of barbed ends
p concentration of pointed ends
n concentration of hlaments
Atot total concentration of actin
Plot total concentration of profilin
Btot totaf concentration of f-thymosin
B concentration of free B-thymosin
Bat concentration of ATP-bound monomer complexed with B-thymosin
Bad concentration of ADP-bound monomer complexed with B-thymosin
P concentration of free profilin
Pat concentration of tree ATP-bound monomer complexed with Profilin
Pad concentration of free ADP-bound monomer complexed with Profilin
€ fraction of barbed ends capped (o = b/n)
B fraction of pointed ends capped {8 = p/n)
Sy iny fraction of subunits at position n near filament barbed ends that are bound to ATP
Shdpi iy (Taction of subunits at position n near filament barbed ends that are bound 1o ADP=Pi.
204 i1y fraction of subunits at position n near filament barbed ends that are bound to ADP,
Zpin) fractton of subunits at position n near filament pointed ends that are bound fo ATP

pdpiny  braction of subunits at position n near filament pointed ends that are bound to ADP+Pj

Spdd () fraction of subunits at position n near filament painted ends that are bound to ADP
Lavg average length of filaments

T average lifetime of filanents

PF fraction of actin polymerized

TR turnover rate of Alaments {10
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Table 2: Rate Constants and Literature Sources

Constant

Deseriptian Value(s) References
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ate 0l ADP-Gagtn association  pgppg g Lalvtal, 1584
a1 feee harbed ends
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pb # poirted crds '
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| o T1s i
L | g 1 froe harbed ends
ki, eate pf ADIPPi bunit disageo. 4% Pollard, {986 {see text)
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.. rale of ADP subunil disagsocia- |R-45 ¢t Latlprged, 19847 range is derived {see text},
LY thon a1 hasbed 20y _
k. rale oF ATV subunit disassocia- 0R ! Pusllard, 1986
pr tinm al polnied ends
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Table 3: Equatians
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Appendix B: MML Overview

The Mathematical Modeling Language (MML) used in JSim is a simple protocol
for writing models into JSim. Each program declares a set of mathematical variables and
the equations that constrain them. The salient features are domains, declared with
realDomain time s;
time.min=0; time.max=100; time.deita=1;
for instance. MML gives the option of declaring units for variables, and the additional
option of whether to convert units during calculation, causing compile failures when the
units do not align. Differential equa.tions are written thus:
dBat/dt = kBtm*Bat ~ kBtp*at*B
becomes
Bat:t=kBtm*Bat — kBtp*at*B,
The order of equations is immaterial; an equation cannot reference a variable or domain
that has not been declared above it in the code.
Declaration:
real ad(t,kpdm) uM
means that ad is a real variable whose domains are t and kpdm and whose unit is
micromolar (concentration). MML can also write if and when expressions, the latter a
necessity for writing initial conditions for differential equations. Upper and lower
boundary conditions for differential equations were necessary in older versions of JSim,

but are no longer necessary.

[5]

22




Appendix C: The MML code

This 1s actin20.mod, the input file taken by JSim to solve. Declaring a second domain,

such as alpha, kpdm, or Ptot, would require all variables that depend on that independent

variable to include that domain in their declarations, e.g. real gbtl(t,kpdm). Different

versions include actin50.mod and actin80.mod, which calculate for 50 and 80 subunits,

respectively.

JSim v1.1

import nsrunit;

unit conversion on;

math actin{
realDomain
t.min = 0;
//realDomai
//kpdm.min
real len;

real kbtp
kbdp
kptp
kpdp
kbtm
kbdpi
//kbd
kptm
kpdpi

t
t
n

m
m

m

//kpdm

kBdm
kBdp
kBtm
kBtp=
kPdm
kKPdp
kPtm
kPtp

kRpp
kmDT

It

n

kmTD =

kPDT
kPTD
kbTDp
kpTDp

i
i

§; //independent variable, I think
.max = 100; t.delta = 1;

kpdm 1/s; Use this for 2D version

0.32; kpdm.max = 8; kpdm.ct = 51;

11.6 1/uM/s, //Table 2: Rate Constants p. 23
.9 1/uM/s,

.3 1/uM/s,

.le 1/uM/s,
.1 1/s,
.4 1/s,

.8 1/s, //nominal value...
1/s,
.250 1/s,

.32 1/s, //nominal value...
100 1/s, // page 24

1 1/uM/s,

0.9 1/s,

1 1/uM/s,

0.65 1/s,

1 1/uM/s,

0.60 1/s,
=1 1/uM/s,
.02 uM,

.66%10" (-3) 1/s,
.86%107(-5) 1/s,
.66 1/s, //page 25

.86 1/s,

12.3 1/s,

1.3 1/s,

I 4o = o

W on

a O @ = =

[T SN S I S S -
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kdpid = 5.5*10%(-3) 1/s:;
real kpdm =0.32 1/s;
real kbdm 1/s;
kbdm = 5.63*kpdm;
//variables, Table 1.
real at(t) uM, ad(t} uM, f£(t) uM;//page 21

real Ptot= 0 uM;
real Btot = 0 uM;

real B(t) uM, Bat(t) uM, Bad(t) umM,
P(t) uM, Pat(t) uM, Pad{t) uM; //R(t) uM, Rp(t) uM,
real Lavg(t), gq{t) 1/s, tau{t) s, //22
PF(t), TR(t) 1/s;
real b = 0.1 uM, p = 0.1 uM, n = 0.1 uM, atot = 100 uM, alpha =
b/n,
beta=p/n;

//equations, Table 3
len = if (kpdm < 1) 20//Rules of thumb

else

if (alpha > 0.1} 2¢
else

if (n <= 0.2) 50
else 80;

real gbtl(t), gbdl(t), gptl(t), gpdl(t), gbdpil(t}), gpdpil(t);
real gbtil=0, gbdil=1, gptil=0, gpdil=1;

real gbt2(t), gbdz(t), gpt2(t), gpd2(t), gbdpi2(t}, gpdpi2(t);

/ /M4

gbtl:t = alpha*kbtp* (Pat+at)* (1-gbtl) - alpha*kbtm*gbtl* (1-gbt2)
- alpha*kbdp*gbtl* (ad+Pad) + alpha*kbdm*gbdl*gbt2
+ alpha*kbdpim*ghbdpil*gbt2 - kbTDpi*gbtl* (1-gbt2);

/ /M6

gbdl:t = alpha* (kbdp*(ad+Pad)* (1-gbdl) - kbdm*gbdl* (1-gbd2)
- kbtp*gbdl* (at+Pat) + kbtm*gbtl*gbd2
+ kbdpim*gbdpil*gbd2) + kdpid*gbdpil;

/ /M8

gbdpil = 1 - gbtl - gbdi;

/ /M5

gptl:t = beta*kptp*at#*(l-gptl) - beta*kptm*gptl* (i-gpt2)
- beta*kpdp*gptl*ad + beta*kpdm*gpdl*gpt2
+ beta*kpdpim*gpdpil*gpt2 - kpTDpi*gptl* (1-gbt2);

/ /M7

gpdl:t = beta*(kpdp*ad*(1-gpdl) - kpdm*gpdl* (1-gpd2)
-kptp*gpdl*at + kptm*gptl*gpd2
+ kpdpim*gpdpil*gpd2) + kdpid*gpdpii;

/ /M9

gpdpil = 1 - gptl - gpdl;

real Ab(t)= (kbtm*gbtl + kbdm*gbdl + kbdpim*gbdpil),

Beb (t) =(kbtp* (at+Pat) +kbdp* (ad+Pad) ),
Ap (t) = (kptm*gptl + kpdm*gpdl + kpdpim*gpdpil},

Bep (t) = (kptp*at+kpdp*ad) ;



real gbt3(t), gbd3(t), gpt3{t), gpd3(t), gbdpi3 (t), gpdpi3(t);
//M14
gbdpi2 = 1 - gbt2 - gbd2;
//M15
gpdpi2 = 1 - gpt2 - gpd2;
real gbti2(t)=0, gbdi2(t)=1, gpti2(t)=0, gpdi2(t)=1;
when (t=t.min){
gbt2=gbti2; gbd2= gbdi2; gpt2 = gpti2; gpd2= gpdi2;
}

//M10
ght2:t = alpha*Ab*{gbt3 - gbt2)
+ alpha*Beb* (gbtl - gbt2)
- kbTDpi*gbt2*{1-gbt3)
- kpTDpi*gbt2* (1l-gbtl);

//M12

gbd2:t = alpha*Ab* (gbd3 - gbd2) + alpha* (Beb)*(gbdl - gbd2) +
kdpid*gbdpi2;

//M11

gpt2:t = beta* (Ap*(gpt3 - gpt2)
+ Bep*(gptl - gpt2))
- kpTDpi*gpt2* (1-gpt3)
- kbTDpi*gpt2*(1-gptl) ;
//M13
gpd2:t = beta* (-gpd2* (kptp*at+kpdp*ad)* (1-gpdl}
+ gpdl* (kptp*at+kpdp*ad) * (1-gpdz2)
+ gpd3* (kptm*gptl+kpdm*gpdl + kpdpim*gpdpil) * (1-gpd2)
- gpd2* (kptm*gptl + kpdm*gpdl+kpdpim*gpdpil) * (1-gpd3))
+ kdpid*gpdpiZ2;
real gbt4 (t}, gbd4(t), gpt4(t), gpd4(t), gbdpi4(t), gpdpis(t);
gbdpi3 = 1 - gbt3 - ghd3;
gpdpi3 = 1 - gpt3 - gpd3;
real gbti2(t)=0, gbdi3(t)=1, gpti3(t)=0, gpdi3(t)=1;
when (t=t.min) {
gbt3=gbti3; gbd3= gbdi3; gpt3 = gptil; gpd3= gpdi3;
}

gbt3:t = alpha*Ab*(gbt4 - gbt3)
+ alpha*Beb* (gbt2 - gbt3)
- kbTDpi*gbt3*(1-gbt4)
- kpTDpi*gbt3* (1-gbt2);
gbd3:t = alpha*Ab* (gbd4 - gbd3) + alpha*(Beb)*(gbd2 - gbd3) +
kdpid*gbdpi3;
gpt3:t = beta* (BAp*(gpt4 - gpt3)
+ Bep*{gpt2 - gpt3))
- kpTDpi*gpt3*{1l-gpt4)
- kbTDpi*gpt3i*(1l-gpt2);
gpd3:t = beta*{(-gpd3* (kptp*at+kpdp*ad) * (1-gpd2)
+ gpd2* (kptp*at+kpdp*ad) * (1-gpd3)
+ gpd4~* (kptm*gpt1+kpdm*gpdl + kpdpim*gpdpil) *(1-gpd3)
- gpd3* (kptm*gptl + kpdm*gpdl+kpdpim*gpdpil) * (1-gpd4))
+ kdpid*gpdpi3;
real gbts(t), gbds(t), gpt5{t), gpd5(t), gbdpi5(t}, gpdpis5(t);
gbdpi4 = 1 - gbt4 - ghd4;
gpdpi4 = 1 - gpt4 - gpd4;
real gbti4(t)=0, gbdi4(t)=1, gpti4(t)=0, gpdi4(t)=1;
when (t=t.min) {
gbt4=gbtid4; gbd4= gbdi4; gptd4 = gpti4; gpd4= gpdis4;
}
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gbt4:t = alpha*ab* (gbt5 - gbt4)
+ alpha*Beb* (gbt3 - gbtd4)
- kbTDpi*gbta* (1-gbt5s)
- KkpTDpi*gbt4* (1-gbt3);
gbd4:t = alpha*Ab*(gbd5 - gbd4) + alpha* (Beb)* (gbd3 - gbd4) +
kdpid*gbdpi4;
gpt4:t = beta* (Ap* (gpt5 - gpt4)
+ Bep* (gpt3 - gpt4))
- kpTDpi*gpt4* (1-gpt5)
- kbTDpi*gpt4* (1-gpt3);
gpd4:t = beta* (-gpd4* (kptprat+kpdp*ad) * (1-gpd3)
+ gpd3* (kptp*at+kpdp*ad) * (1-gpda4)
+ gpd5* (kptm*gpt1l+kpdm*gpdl + kpdpim*gpdpil) * (1-gpd4)
- gpd4* (kptm*gptl + kpdm*gpdl+kpdpim*gpdpil) * (1-gpd5))
+ kdpid*gpdpis;

real gbté(t), gbdé(t), gpté{t), gpdé(t), gbdpié(t), gpdpi6(t);

gbdpi5 s 1 - gbt5 - gbds;
gpdpi5 = 1 - gpt5 - gpds;
real gbhtis(t)=0, gkdis(t)=1, gpti5s(t}=0, gpdis(t)=1;
when (t=t.min) {
gbt5=gbti5; gbd5= gbdi5; gpt5 = gpti5; gpdS5= gpdis;
}

gbt5:t = alpha*Ab* (gbt6 - gbts)
+ alpha*Beb* (gbt4 - gbts)
- KbTDpi*gbt5+* (1-gbté)
- kpTDpi*gbt5* (1-gbt4);
gbd5:t = alpha*Ab* (gbdé - gbd5) + alpha* (Beb)*(gbds - gbds) +
kdpid*gbdpis;
gpt5:t = beta* (Ap*(gpt6 - gpts)
+ Bep*{gpt4 - gpth))
- kpTDpi*gpt5+* (1-gpts)
- kbTDpi*gpts5* (1l-gpt4);
gpd5:t = beta*{-gpd5* (kptp*at+kpdp*ad)* (1-gpd4)
+ gpd4* (kptp*at+kpdp*ad) * (1-gpds)
+ gpdée* (kptm*gptl+kpdm*gpdl + kpdpim*gpdpil) *(1-gpd5)
- gpd5* (kptm*gptl + kpdm*gpdl+kpdpim*gpdpil) * (1-gpd6))
+ kdpid*gpdpis;
real gbt7(t), gbd7(t), gpt7(t), gpd7(t), gkbdpi7{(t), gpdpi7(t);
gbdpi6 = 1 - gbte - gbds;
gpdpié = 1 - gpté - gpdé6;
real gbtié(t)=0, gbdi6(t)=1, gpti6(t)=0, gpdi6(t)=1;
when (t=t.min) |
gbté=gbti6; gbdé= ghdié; gpté = gptié6; gpdé= gpdi6;
}

gbt6:t = alpha*Ab=* (ght7 - gbtse)
+ alpha*Beb* (gbt5 - gbtsg)
- kbTDpi*gbté* (1-gbt7)
- kpTDpi*gbté* (1-gbt5s);
gbdé:t = alpha*Ab* (gbd7 - gbdé) + alpha* (Beb)* (gbd5 - gbds) +
kdpid*gbdpié6;
gpté:t = beta* (Ap*(gpt7 - gpté)
+ Bep* (gpt5 - gpté€))
- kpTDpi*gpté*{1-gpt7)
- kbTDpi*gpte* (1-gpts);
gpdé:t = beta*(-gpdé* (kptp*at+kpdp*ad) * (1-gpd5)
+ gpds* (kptp*at+kpdp*ad) * (1-gpd6}
+ gpd7* (kptm*gpt1l+kpdm*gpdl + kpdpim*gpdpil)*(1-gpds)
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- gpdé* (kptm*gptl + kpdm*gpdl+kpdpim*gpdpil)* (1-gpd7))}
+ kdpid*gpdpié6;

real gbtg8(t), gbdg(t), gpt8(t), gpds(t), gbdpis(t), gpdpi8(t);

gbdpi7 = 1 - gbt7 - gbd7;

gpdpi7 = 1 - gpt7 - gpd7;

real gbti7(t)=0, gbdi7(t)=1, gpti7(t)=0, gpdi7(t)=1;

when (t=t.min) {
gbt7=gbti7; gbd7= gbdi7; gpt7 = gpti7; gpd7= gpdi7;

}

gbt7:t = alpha*Ab*(gbt8 - gbt7)
+ alpha*Beb* (gbté - gbt7)
- kbTDpi*gbt7* (1-gbt8)
- kpTDpi*gbt7* (1-gbt6);
gbd7:t = alpha*Ab* (gbd8 - gbd7) + alpha* (Beb)* (gbdé - gbd7) +
kdpid*gbdpi7;
gpt7:t = beta* (Ap* (gpt8 - gpt7)
+ Bep* (gpt6é - gpt7))
- kpTDpi*gpt7*(1-gpt8)
- kbTDpi*gpt7*(1-gpté);
gpd7:t = beta*{-gpd7* (kptp*at+kpdp*ad)* (1-gpds6)
+ gpdé* (kptp*at+kpdp*ad) * {1-gpd7)
+ gpd8* (kptm*gptl+kpdm*gpdl + kpdpim*gpdpil)* (1-gpd7)
- gpd7* (kptm*gptl + kpdm*gpdl+kpdpim*gpdpil) * (1-gpd8))
+ kdpid*gpdpi7;
real gbts(t), gbdo(t), gpto(t), gpdo(t), gbdpis(t), gpdpig(t);
gbdpi8 = 1 - gbts8 - gbds;
gpdpi8 = 1 - gpt8 - gpds8;
real gbti8 (t)=0, gbdis(t)=1, gptiB8(t)=0, gpdi8(t)=1;
when (t=t.min){
gbt8=gbti8; gbds8= gbdi8; gpt8 = gpti8; gpdB= gpdis8;
j

gbt8:t = alpha*Ab*(gbt9 - gbts)
+ alpha*Beb* {gbt7 - gbts)
- kbTDpi*gbt8=* (1-gbt9)
- kpTDpi*gbt8*(1-gbt7);
gbds:t = alpha*Ab* (ghd? - gbds) + alpha*(Beb)*(gbd7 - gbdB) +
kdpid*ghdpi8;
gpt8:t = beta* (Ap* (gpt9 - gpt8)
+ Bep* (gpt7 - gpt8))}
- kpTDpi*gptB8* (1-gpt9)
- kbTDpi*gpt8*{(l-gpt7);
gpds:t = beta*(-gpdB* (kptp*at+kpdp*ad) * (1-gpd7)
+ gpd7* (kptp*at+kpdp+*ad) * (1-gpd8)
+ gpds* (kptm*gptl+kpdm*gpdl + kpdpim*gpdpil) * (1-gpd8)
- gpds8* (kptm*gptl + kpdm*gpdl+kpdpim*gpdpil}* (1-gpds))
+ kdpid*gpdpis;
real gbt10(t), gbdla(t), gptlo(t), gpdio(t), gbdpilo(t), gpdpilo(t);
gbdpi9 = 1 - gbt9 - gbd9;
gpdpi9 = 1 - gpt9 - gpd9;
real gbti9(t)=0, gbdi9(t)=1, gptig(t)=0, gpdig{t)=1;
when (t=t.min){
gbt9=gbti9; gbd9= gbdi%; gpt9 = gpti9; gpd%= gpdis;
}

gbt9:t = alpha*Ab* (gbt1l0 - gbt9)
+ alpha*Beb* (gbt8 - gbt9}

- kbTDpi*gbt9* (1-gbtl0)

- kpTDpi*gbt9* {1-gbt8) ;
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gbd9:t = alpha*Ab* (gbdl0 - gbd9) + alpha*{Beb)*(gbd8 - gbds) +
kdpid*gbdpi9;
gpt9:t = beta* (Ap* (gptl0 - gpt9)
+ Bep* (gpt8 - gpt9))
- kpTDpi*gpt9* (1-gptl0)
- XbTDpi*gpt$* (1-gpts) ;
gpdd:t = beta* (-gpds* (kptp*at+kpdp*ad) * (1-gpd8)
+ gpdB* (kptp*at+kpdp*ad) * (1-gpd9}
+ gpdlo* (kptm*gptl+kpdm*gpdl + kpdpim*gpdpil) * (1-gpd?3)
- gpdo* (kptm*gptl + kpdm*apdl+kpdpim*gpdpil} * (1-gpdl0))
+ kdpid*gpdpi®9;
real gbtll(t), gbkdll(t), gptll(t), gpdll(t), gbdpilllt), gpdpill(t);
gbdpil0 = 1 - gbtl0 - gbdlo0;
gpdpilo = 1 - gptl0 - gpdlo0;
real gbtild(t)=0, gbdilo(t)=1, gptilo(t)=0, gpdilo(t)=1;
when (t=t.min) {
gbt10=gbtil0; gbdl0= gbdil0; gptld = gptii0; gpdil0= gpdilo;
}

gbt10:t = alpha*db*(gbtll - gbtl0)
+ alpha*Beb* (gbt9 - gbt10)
- kbTDpi*gbt10*(1-gbt11)
- kpTIDpi*ghtl0* (1-gbt9) ;
gbdl0:t = alpha*Ab*(gbdll - gbdl() + alpha* (Beb)* (gbd9 - gbdl0) +
kdpid*gbdpilo;
gptl0:t = beta*{Ap*{(gptll - gptl0)
+ Bep* (gpt9 - gptlo))
- kpTDpi*gpt1l0*(1l-gptll)
- kbTDpi*gptlO*(1-gpt9);
gpdl1l0:t = beta* (-gpdi0* (kptp*at+kpdp*ad) * (1-gpd?9)
+ gpd9* (kptp*at+kpdp*ad) * (1-gpd10)
+ gpdll* (kptm*gptl+kpdm*gpdl + kpdpim*gpdpil) * (1-gpdl10)
- gpdl0* (kptm*gptl + kpdm*gpdl+kpdpim*gpdpil) * (1-gpdll))
+ kdpid*gpdpilo;
real gbtl12(t), gbdl2{t), gptl2(t), gpdl2{t), gbdpil2(t), gpdpil2(t);
gbdpill = 1 - gbtll - gbdll;
gpdpill = 1 - gptll - gpdli;
real gbtill(t)=0, gbdili(t)=1, gptill(t)=0, gpdill(t)=1;
when (t=t.min) {
gbtll=gbtill; gbdll= gbdill; gptll = gptill; gpdll= gpdill;
}

gbtl1ll:t = alpha*Ab*(gbtl2 - gbtll)
+ alpha*Beb* (gbt10 - gbtll)
- kbTDpi*gbt11l* (1-gbt12)
- kpTDpi*gbt11* (1-gbt10);
gbdll:t = alpha*Ab* (gbdl2 - gbdll) + alpha* (Beb)*{(gbdl10 - gbdll) +
kdpid*gbdpill;
gptll:t = beta* (Ap* (gptl2 - gptll)
+ Bep* (gptl0 - gptll))
- kpTDpi*gptll*(1l-gptl2)
- kbTDpi*gptll* (1-gptl0);
gpdll:t = beta*(-gpdll* (kptp*at+kpdp*ad) *(1-gpdl0)
gpdlo* (kptp*at+kpdp*ad) * (1-gpdll)
gpdl2* (kptm*gptl+kpdm*gpdl + kpdpim*gpdpil)*(1-gpdill)
gpdl1l* (kptm*gptl + kpdm*gpdl+kpdpim*gpdpil) *(1l-gpdi2))
+ kdpid*gpdpill;
real gbtl3(t), gbdl3(t), gptl3(t), gpdl3(t), gbdpil3(t}, gpdpil3(t);
gbdpil2 = 1 - gbtl2 - gbdl2;

+ +
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gpdpil2 = 1 - gptl2 - gpdlz;
real gbtil2 (t)=0, gbdil2(t)=1, gptil2{t)=0, gpdil2(c)=1;
when (t=t.min) {
gbtl2=gbtil2; gbdl2= gbdilz; gptl2 = gptil2; gpdl2= gpdil2;
}

gbtl2:t = alpha*Ab* (gbtl3 - gbtl2)
+ alpha*Beb* (gbt1l - gbt12)
- kbTDpi*gbtl2+*(1-gbt13)
- kpTDpi*gbtl2* (1-gbtll);
gbdl2:t = alpha*ab* (gbdl3 - gbdl2) + alpha* (Beb)* (gbdll - gbdi2) +
kdpid*gbdpil2;
gptl2:t = beta* (Ap* (gptl3 - gptl2)
+ Bep* (gptll - gptl2))
- kpTDpi*gptl12#*(1-gptl3)
- kbTDpi*gptl2* (1-gptll);
gpdl2:t = beta*(-gpdl2* (kptp*at+kpdp*ad) * (1-gpdll)
gpdll* (kptp*at+kpdp*ad) * (1-gpdl2)
gpd13* (kptm*gptl+kpdm*gpdl + kpdpim*gpdpil)* (1-gpdl2)
gpdl2* (kptm*gptl + kpdm*gpdl+kpdpim*gpdpil) * (1-gpd13))
+ kdpid*gpdpilz;
real gbtl4(t), gbdl4e(t), gptla(t), gpdla(t), gbdpild(t), gpdpil4 (t);
gbdpil3 = 1 - gbtl3 - gbdl3;
gpdpil3 = 1 - gptl3 - gpdil3;
real gbtil3(t}=0, gbdil3(t)=1, gptil3d(t)=0, gpdil3(t)=1;
when (t=t.min){
gbt1l3=gbtil3; gbdl3= gbdil3; gptl3 = gptil3; gpdl3= gpdil3;
}

gbtl3:t

+ +

u

alpha*Ab* (gbt14 - gbt13)
alpha*Beb* (gbt12 - gbt13)
- kbTDpi*gbtl3*(1-gbti4}
- kpTDpi*gbti3* (1-gbtl2);
gbd13:t = alpha*aAb*(gbdl4 - gbdl3) + alpha* (Beb)*(gbdl2 - gbdi3) +
kdpid*ghdpil3;
gptl3:t = beta* (Ap* (gptl4 - gptl3)
+ Bep* (gptl2 - gptl3))
- kpTDpi*gptl3*{(l-gptld)
- kbTDpi*gptl13*(1-gpti2);
gpdl3:t = beta* (-gpdl3* (kptp*at+kpdp*ad) *{1-gpdl2)
+ gpdl2* (kptp*at+kpdp*ad) * (1-gpd13)
+ gpdl4* (kptm*gptl+kpdm*gpdl + kpdpim*gpdpil)* (1-gpdl3)
- gpdl3* ‘kptm*gptl + kpdm*gpdl+kpdpim*gpdpil) *(1-gpdl4))
+ kdpid*ondpil3;
real gbtl5(t), gbdls(t), gptls(t), gpdis{t), gbdpils(t), gpdpils(t);
gbdpilse = 1 - gbtl4 - gbdl4;
gpdpil4 = 1 - gptl4 - gpdilsd;
real gbtila(t)=0, gbdil4a(t)=1, gptil4 (t)=0, gpdild (t)=1;
when (t=t.min) {
gbtl4=gbtil4; gbdl4= gbdil4; gptl4 = gptil4; gpdl4= gpdil4;
}

gbtl4a:t = alpha*Ab*(gbtl5 - gbtl4)
alpha*Beb* (gbtl13 - gbtl4)
- kbTDpi*gbt14*(1-gbt1l5)
- kpTDpi*gbt14* (1-gbtl3);
gbdl4:t = alpha*Ab*(gbdlS - gbdl4) + alpha*(Beb)*(gbdi3 - gbdi4) +
kdpid*gbdpila;
gptl4:t = beta* (Ap*(gptl5 - gptld4)
+ Bep* (gptl1l3 - gptl4))

+

+




- kpTDpi*gptla* (1-gptls)
- kbTDpi*gptld* (1l-gptl3);
gpdi4:t = beta* (-gpdla* (kptp*at+kpdp*ad)* (1-gpdl3)
+ gpdl3* (kptp*at+kpdp*ad) * (1-gpdl4)
+ gpdis5* (kptm*gptl+kpdm*gpdl + kpdpim*gpdpil) * (1-gpdl4)
- gpdl4* (kptm*gptl + kpdm*gpdl+kpdpim*gpdpil) * (1-gpd15}))
+ kdpid*gpdpils;
real gbtlé{t}, gbdls(t), gptle(t), gpdle(t), gbdpile(t), gpdpils(t);
gbdpilS = 1 - gbtl5 - gbdls;
gpdpils = 1 - gptl5 - gpdl5;
real gbtils(t)=0, gbdil5(t)=1, gptils(t)=0, gpdil5(t)=1;
when (t=t.min) {
gbt15=gbtiis5; gbdl5= gbdil5; gptl5 = gptil5; gpdl5= gpdil5;
}

gbt15:t

H

alpha*Ab* (gbtl6 - gbtlh)
alpha*Beb* (gbt14 - gbt15)
- kbTDpi*gbtl5* (1-gbtlé)
- kpTDpi*gbtl5* (1-gbt14);
gbd15:t = alpha*Ab* (gbd16 - gbdl5) + alpha* (Beb)* (gbdl4 - gbdl5) +
kdpid~ghdpils;
gptl15:t = beta* (Ap* (gptl6 - gptls)
+ Bep* (gptl4 - gptils))
- kpTDpi*gpt15* (1-gptl6)
- kbTDpi*gptl5* (l-gptl4) ;
gpdl5:t = beta* (-gpd15* (kptp*at+kpdp*ad) * (1-gpdl4)
+ gpdla* (kptp*at+kpdp*ad) * (1-gpdls)
+ gpdil6* (kptm*gpt1l+kpdm*gpdl + kpdpim*gpdpil)* (1-gpd15)
- gpdl5* (kptm*gptl + kpdm*gpdl+kpdpim*gpdpil)* (1-gpdis))
+ kdpid*gpdpils;
real gbt17(t), gbdl7{t), gptl7(t), gpdl7(t), gbdpil7(t), gpdpil7(t);
gbdpilé = 1 - gbtlé - gbdlé;
gpdpilé = 1 - gptlé - gpdlé;
real gbtil6(t)=0, gbdilé(t)=1, gptilé6(t)=0, gpdilé(t)=1;
when (t=t.min){
gbtle=gbtilé; gbdlé= gbdilé; gptlé = gptilé; gpdlé= gpdils;
}

gbtl6:t = alpha*Ab* (gbtl7 - ghtlg)
+ alpha*Beb* {(gbtl5 - gbtle)
- kbTDpi*gbtlé* (1-gbtl7)
- kpTDpi*gbtlé* (1l-gbtl5);,
gbdl6:t = alpha*Ab* (gbdl7? - gbdle) + alpha* (Beb)* (gbdl5 - gbdlé&) +
kdpid*ghdpilse;
gpt16:t = beta* (Ap* (gptl7 - gptlée)
+ Bep*(gptl5 - gptlé6))
- kpTDpi*gptl6* (1-gptl7)
- kbTDpi*gptlé*{1-gptls);
gpdl6:t = beta*(-gpdle* (kptp*at+kpdp*ad} * (1-gpd1s)
+ gpdls* (kptp*at+kpdp*ad) * (1-gpdile)
+ gpd17* (kptm*gpti+kpdm*gpdl + kpdpim*gpdpil)*(1-gpdlé)
- gpdlé* (kptm*gptl + kpdm*gpdl+kpdpim*gpdpil) * (1-gpdl7))
+ kdpid*gpdpile;
real gbt18(t), gbdl8(t), gptla(t), gpdis(t), gbdpils(t), gpdpil8(t);
gbdpil? = 1 - gbtl7 - gbdi7;
gpdpil7 = 1 - gptl17 - gpdl7;
real gbtil7(t)=0, gbdil7(t)=1, gptil7?(t)=0, gpdil7{t)=1;
when (t=t.min)
gbt17=gbtil7; gbdl7= gbdil7; gptl?7 = gptil7; gpdl7= gpdil7;
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}
gbtl7:t = alpha*Ab*(gbtlg8 - gbtl7)
+ alpha*Beb* (ghtl6 - gbtl7)
~ kbTDpi*gbt17+*(1-gbt18)
- kpTDpi*gbt17* (i-gbtls);
gbdl7:t = alpha*Ab*(ghd18 - gbdl7) + alpha* (Beb)*{gbdlé - gbdl7) +
kdpid*gbdpiil7;
gptl7:t = beta* (Ap*(gptl8 - gptl7)
+ Bep*{(gptl6 - gptl7))
- kpTDpi*gptl7*(1l-gpt18)
- kbTDpi*gpt17*(1-gpt16);
gpdl7:t = beta*(-gpdl17+* (kptp*at+kpdp*ad)* (1-gpd1é6)
+ gpdlé* (kptp*at+kpdp*ad) * (1-gpd17)
+ gpdlg* (kptm*gptl+kpdm*gpdl + kpdpim*gpdpil) *{(1-gpd17)
- gpdl7* (kptm*gptl + kpdm*gpdl+kpdpim*gpdpil) * (1-gpdiB))
+ kdpid*gpdpil7;
real gbtl9(t), gbdlo(t}), gptlo(t), gpd1lg(t), gbdpil9o(t), gpdpils(t);
gbdpil8 = 1 - gbtls - gbdls;
gpdpils = 1 - gptl8 - gpdls;
real gbtilB(t)=0, gbdil8(t)=1, gptil8(t)=0, gpdilB(t)=1;
when {(t=t.min) {
gbt18=gbtil8; gbdi8= gbdil8; gptl8 = gptils; gpdi8= gpdils;
}

gbtlg:t = alpha*Ab* (gbt19 - ghtl8)

+ alpha*Beb* (gbt17 - gbtils)

- kbTDpi*gbt18* (1-gbt19)
- kpTDpi*gbtl8+*(1-gbtl17); ,

gbdlB:t = alpha*Ab*(gbd19 - gbhdl8) + alpha*(Beb)}=*(gbdi7 - gbdis) +
kdpid*gbdpiis;
gptl8:t = beta* (Ap*{gptl9 - gptls)

+ Bep* (gptl7 - gptl8))
- kpTDpi*gptl8* (1-gptl9)
- kbTDpi*gpt18* (1-gptl7);
beta* (-gpd18* (kptp*at+kpdp*ad) * (1-gpd17)
+ gpdl17* (kptp*at+kpdp*ad) * {1-gpd18)
+ gpdl9* (kptm*gptl+kpdm*gpdl + kpdpim*gpdpil) * (1-gpdls)
gpdls* (kptm*gptl + kpdm*gpdl+kpdpim*gpdpil) * (1-gpd19))

+ kdpid*gpdpils;
real gbt20(t), gbd20{t), gpt20(t), gpd20(t), gbdpi20(t), gpdpizo(t);
gbdpil? = 1 - gbt13 - gbdl9;
gpdpil9 = 1 - gptl9 - gpdils;
real gbtil9(t)=0, gbdils(t)=1, gptilg(t)=0, gpdils(t)=1;
when (t=t.min) {

gbt19=gbtil19; gbdl9= gbdil9; gptl9 = gptil9; gpdl9= gpdilyg;

}

gbt19:t = alpha*Ab*(gbt20 - gbt19)
alpha*Beb* (gbt18 - gbtl9)
- kbTDpi*gbt19* (1-gbt20)
- kpTDpi*gbt19* (1-gbt18) ;
gbhdl9:t = alpha*Ab* (gbd20 - gbdls) + alpha* (Beb)*(gbdl8 - gbd19) +
kdpid*ghdpils;
gptl19:t = beta* (Ap* (gpt20 - gptl9)
+ Bep* (gpt18 - gpt19))
- kpThpi*gpt19*{(1-gpt20)
- kbTDpi*gptl9* (1-gptl8);
gpdl9:t = beta* {-gpdl9* (kptp*at+kpdp*ad) * (1-gpd18)
+ gpdlis* (kptp*at+kpdp*ad) * (1-gpdl9)

gpdils8:t

1
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+ gpd20* (kptm*gptl+kpdm*gpdl + kpdpim*gpdpil)* (1-gpdl?)
- gpdl19* (kptm*gpt1l + kpdm*gpdl+kpdpim*gpdpil) * (1-gpd20))
+ kdpid*gpdpils;

gbdpi20 = 0;
gpdpi20 = 0;
gpt20 = 0y
gpd20 =1;
gbt20 = 0;
gbhd20 = 1

real fin = 98.06 uM, atin = 0.006 uM, adin = 1.9232 uM;
real Bin =0 uM, Pin =20 uM, Patin=0 uM, Batin =0 uM, Badin = 0 uM;
when (t=t.min) {

f = fin;
ad = adin;
}

/ /M1

f:t=alpha* (kbtp* (Pat+at)*n - kbtm*n*gbtl - kbdpim*n*gbdpil +
kbdp* (ad+Pad) *n - kbdm*n*gbdl) + beta*{kptp*at*n - kptm*n*gptl -
kpdpim*n*gpdpil + kpdp*(ad)*n - kpdm*n*gpdl):

/ /M3 '

at = atot - ad -f - Pat - Pad - Bat - Bad;

/ /M2

ad:t = kmTD*at - kmDT*ad + beta*n* (kpdm*gpdl + kpdpim*gpdpil
- kpdp*ad) + alpha*n* (kbdm*gbdl +kbdpim*gbdpil - kbdp*(ad+Pad)) +
kbdm*Pad - kPdp*P*ad +kBdm*Bad - kBdp*B*ad;

//M23

P:t = alpha*kbtp* (Pat+at)*n - kPdp*ad*P - kPtp*at*P + kPtm*Pat +

kPdm*Pad + alpha*kbdp* (Pad+ad) *n;

when (t=t.min) {
P = Pin;
Pat=Patin;
Bat=Batin;
Bad=Badin;

J/M24
Pad = Ptot - Pat - P;
//M22 .
Pat:t=kPtp*at*P - kPtm*Pat-kPTD*Pat + kPDT*Pad - alpha*kbtp* (Pat+at) *n;
//M27
B=Btot-Bat-Bad;
//M25
Bat:t=kBtm*Bat - kBtp*at*B;
//M26
Bad:t=kBdm*Bad - kBdp*ad*B;
Lavg = £/n;
tau = Lavg/q;
PF = f/atot;
real batp (t) 1/s, badp (t) 1/s, patp (t) 1/s, padp (t) 1/s;
batp = alpha*kbtp*(at + Pat) - alpha*kbtm*gbtl - alpha*kbdpim*gbdpil;
badp alpha*kbdp* (ad + Pad) - alpha*kbdm*ghdil;
patp beta* (kptp*at - kptm*gptl - kpdpim*gpdpil)
padp = beta*(kpdp*ad - kpdm*gpdl);
g=batp+badp;
TR = g/Lavg;}

1}
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