
Secure Execution Environment

via Program Shepherding

by

Vladimir L. Kiriansky

B.S., Massachusetts Institute of Technology (2002)

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2003

© Massachusetts Institute of Technology 2003. All rights reserved.

A uthor
Department of Electrical Enginjerng and Computer Science

February 4, 2003

C ertified by
Saman P. Amarasinghe

Associate Professor
Thesis Supervisor

Accepted by......
Arthur C. Smith

Chairman, Department Committee on Graduate Students
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

BARKER JUL 3 0 2003

LIBRARIES

2

Secure Execution Environment

via Program Shepherding

by

Vladimir L. Kiriansky

Submitted to the Department of Electrical Engineering and Computer Science
on February 4, 2003, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

We present program shepherding, a method for monitoring control flow transfers dur-
ing program execution in order to enforce a security policy. Program shepherding
provides three basic techniques as building blocks for security policies. First, pro-
gram shepherding can restrict execution privileges on the basis of code origins. This
distinction can ensure that malicious code masquerading as data is never executed,
thwarting a large class of security attacks. Second, shepherding can restrict control
transfers based on instruction type, source, and target. Finally, shepherding guaran-
tees that sandboxing checks around any program operation will never be bypassed.

Security attacks use inevitable bugs in trusted binaries to coerce a program into
performing actions that it was never intended to perform. We use static and dynamic
analyses to automatically build a custom security policy for a target program, which
specifies the program's execution model. An accurate execution model restricts control
flow transfers only to the intended ones and can thwart attacker attempts to alter
program execution. For example, shepherding will allow execution of shared library
code only through declared entry points. Finer specifications can be extracted from
high-level information present in programs' source code - for example, which values
a function pointer may take. Program shepherding will allow indirect calls only to
their known targets, and function returns only to known callers. These analyses
build a strict enough policy to prevent all deviations from the program's control flow
graph and nearly all violations of the calling convention. This technique renders most
security vulnerabilities unexploitable and thwarts current and future security attacks.

We present an efficient implementation of program shepherding's capabilities in
the DynamoRIO [6, 7] runtime code modification system. The resulting system im-
poses minimal performance overhead, operates on unmodified binaries, and requires
no special hardware or operating system support.

Thesis Supervisor: Saman P. Amarasinghe
Title: Associate Professor

3

4

Acknowledgments

The work described in this thesis would have been impossible without the help of

many others. The DynamoRIO project is indebted to the Dynamo group at HP labs

for their fundamental contribution. Thanks are due to Derek Bruening, who was

the main maintainer of the base DynamoRIO system at MIT and helped implement

many of its extensions for the system presented here. Derek also coined the term

program shepherding for the techniques presented in this work. I am also grateful

to my advisor Saman Amarasinghe for his undepletable enthusiasm and technical

insights during the course of this and several other projects.

5

6

Contents

1 Introduction

1.1 O verview. .

1.2 O rganization .

2 Security Exploits

2.1 Program Vulnerabilities .

2.2 Stored Program Addresses .

2.3 M alicious Code .

3 Program Shepherding

3.1 Restricted Code Origins .

3.2 Restricted Control Transfers .

3.3 Un-Circumventable Sandboxing .

4 Execution Model Enforcement

4.1 Degree of Freedom

4.2 Context-Insensitive Policies

4.3 Selective Code Duplication

5 Security Policies

5.1 Code Origin Policies

5.2 Control Transfer Policies

5.3 Sandboxing Policies

5.4 Attack Resilience

7

15

17

18

19

19

21

22

25

25

26

26

29

30

30

32

33

35

35

37

39

. .

. .

. .

. .

. .

. .

. .

5.4.1 Injected Code Attacks . 39

5.4.2 Existing Code Attacks . 39

6 Efficient Implementation of Program Shepherding 43

6.1 Dynamic Optimization Framework 44

6.2 DynamoRIO: Runtime Introspection and Optimization 45

6.3 Restricted Code Origins Implementation 47

6.4 Restricted Control Transfers Implementation 48

6.4.1 Transfer Type Restrictions . 48

6.4.2 Transition Pair Restrictions 48

6.5 Un-Circumventable Sandboxing Implementation 49

6.6 Protecting DynamoRIO . 50

6.6.1 Memory Protection . 50

6.6.2 Multiple Application Threads 51

7 Call Graph Construction 53

7.1 Points-to Analysis .. 53

7.1.1 Dynamic Linking Support . 54

7.1.2 Matching Analysis Results with Program Binaries 55

7.2 Program Profiling . 56

8 Experimental Results 57

8.1 Test Suite of Vulnerable Programs . 57

8.2 Effectiveness of Static Analysis . 59

8.3 Perform ance . 60

8.4 M em ory usage . 63

9 Related Work 67

10 Future Work 71

10.1 Operating System Extensions . 71

10.2 Hardware Support . 72

8

11 Conclusions 75

9

10

List of Tables

5.1 Sample list of policies built using program shepherding 34

6.1 Performance achieved when various features are added to an interpreter 46

6.2 Privileges of each type of memory page belonging to the application

process executed under DynamoRIO 51

8.1 Static points-to analysis results . 60

8.2 Memory usage of DynamoRIO on the SPEC2000 benchmarks on Linux 65

11

12

List of Figures

5-1 Capabilities of program shepherding's techniques toward stopping dif-

ferent attack types . 38

6-1 Flow chart of the DynamoRIO system infrastructure 44

8-1 Normalized program execution time for execution model enforcement

on the SPEC2000 benchmarks on Pentium 4 under Linux 61

8-2 Normalized program execution time for dynamic policy enforcement

on the SPEC2000 benchmarks on Pentium III under Linux 62

8-3 Normalized program execution time for dynamic policy enforcement

on the SPEC2000 benchmarks on Pentium III under Windows 2000 63

13

14

Chapter 1

Introduction

Remote exploitation of program vulnerabilities poses a very serious threat to our mod-

ern information infrastructure. It allows rapid automatic self-propagating programs

(worms) to gain control over large number of hosts [57]. Grave secondary effects

are possible due to the extent to which critical infrastructure relies on the Internet.

Worms usually exploit well-known security vulnerabilites since flawed software is quite

often left unpatched. For example, a recent worm worthy of a CERT Advisory [91
(CA-2003-04), propagates by exploiting a vulnerability in Microsoft's SQL Server an-

nounced six months earlier (CA-2002-22). The worm infected most vulnerable hosts

within 10 minutes [42]. Although it has no malicious payload it wrought considerable

damage by secondary effects of network outages, e.g. in ATM networks. Notably,

even the vendor of the flawed software had unpatched systems, and this shows the

inadequacy of the patch deployment process even for already known vulnerabilities.

At the other end of the spectrum, vulnerabilities that are not publicly disclosed may

be used in an attack specifically targeting a security sensitive entity. This thesis

introduces techniques that can effectively render most security vulnerabilities unex-

ploitable and thence mitigate disruptions due to distributed denial of service attacks.

We have implemented them in a software system which provides a secure execution

environment while imposing minimal performance overhead.

The goal of most security attacks is to gain unauthorized access to a computer

system by taking control of a vulnerable program. This is generally done by exploit-

15

ing bugs that allow overwriting stored program addresses with pointers to malicious

code. An attacker who gains control over a program can simply inject code to perform

any operation that the overall application has permission to do. Hijacking trusted

applications which are typically run with global permissions, such as login servers,

mail transfer agents, and web servers, gives full access to machine resources. Vulnera-

bilities allowing remote execution of arbitrary code and their exploitation account for

34 of the 37 CERT Advisories [9] for 2002. Today's most prevalent attacks use buffer

overflow and format string vulnerabilities to overwrite program addresses. Our threat

model of security attacks assumes that an attacker is able to exploit inadvertent pro-

gram vulnerabilities to gain random write access to arbitrary memory locations in

the program address space.

Nearly all attacks have one thing in common: they coerce a target program into

performing actions that it was never intended to perform. In short, they violate the

execution model followed by legitimate program runs. The execution model encom-

passes the Application Binary Interface (ABI) and higher-level specifications from the

program's source programming language. The model also incorporates components

specific to the program, for example, which values a particular function pointer may

take.

A program's execution model is invariably narrower than that imposed by the

underlying hardware. As such, there is typically no efficient way to require that the

rules of this execution model be adhered to. The result is that the execution model

becomes, in practice, a convention rather than a strict set of rules. If this model were

enforced, and only program actions that the programmer intended were allowed, a

majority of current security holes would be closed. Whenever the execution model

allows only a single choice, or choices equivalent in their system effects, an attacker

cannot gain new abilities. For example, a common attack type overwrites a return

address to point to a malicious destination. If this destination is not a valid return

target in the program's execution model, it would be disallowed by an enforcement

of the model.

16

1.1 Overview

In this thesis, we employ program shepherding [38] to enforce a security policy. Instead

of attempting to protect data, program shepherding monitors control flow in order

to enforce a program's execution model. Program shepherding provides three basic

techniques: restricted code origins to prevent execution of data or modified code,

restricted control transfers to preclude deviations from the execution model, and un-

circumventable sandboxing checks around any type of program operation.

The execution model implicitly provided by the programs according to the Appli-

cation Binary Interface (ABI) can be extracted dynamically. For example, shepherd-

ing will allow execution of shared library code only through exported entry points,

and can ensure that a return instruction only targets instructions after a call. Finer

specifications of the execution model can be extracted statically from high-level in-

formation present in programs' source code - for example, which values a function

pointer may take. Program shepherding will allow indirect calls only to their known

targets, and function returns only to instructions after their known callers.

We use static and dynamic analyses to automatically build a custom security

policy for a target program which specifies the program's execution model. This

process requires no user interaction, but is able to build a strict enough policy to

prevent all deviations from the program's control flow graph and nearly all violations

of the calling convention. Therefore it greatly reduces the possibility of an unintended

program action. Our static analyses require source code access but not recompilation.

We have efficiently implemented program shepherding capabilities in the Dy-

namoRIO [6, 7 runtime code modification system. DynamoRIO executes only san-

itized copies of the original program code and stores these in a trusted code cache.

This code cache is the first key feature to providing efficient secure execution, because

it allows many security checks to be performed only once. A second key feature of

DynamoRIO is the creation of traces, hot streams of code that cross control flow

transitions. Security checks on indirect control flow transitions can be elided when

execution follows the trace. These features result in a secure system that imposes

17

minimal performance overhead, operates on unmodified native binaries, and requires

no special hardware or operating system support. Our program shepherding im-

plementation on top of DynamoRIO supports both Windows and Linux on IA-32

processors. However, the detailed security discussion in this thesis is mainly focused

on Linux applications.

1.2 Organization

In Chapter 2 we classify the types of security exploits that we are aiming to prevent.

Program shepherding's three basic techniques are described in Chapter 3. The exe-

cution model and how to enforce it is discussed in Chapter 4. We analyze features

of the execution model that can be enforced with reasonable cost using program

shepherding in Chapter 5, where we also identify aspects of enforcement that can

be performed dynamically when source code is unavailable. In Chapter 6 we dis-

cuss how we implement program shepherding efficiently, and how to prevent attacks

directed at our system itself. We show how to incorporate static analyses to auto-

matically extract features of the program's execution model such as its call graph in

Chapter 7. We present experimental results and the performance of our system in

Chapter 8. We demonstrate that enforcing a program's execution model via program

shepherding can thwart many security attacks. We give experimental evidence that

the execution model can be enforced efficiently and effectively using a runtime code

modification system. We discuss related work in Chapter 9, propose future extensions

in Chapter 10, and conclude this thesis in Chapter 11.

18

Chapter 2

Security Exploits

This section provides some background on the types of security exploits we are tar-

geting to prevent. We dissect security exploits along three basic characteristics: the

program vulnerability being exploited, the stored program address being overwritten,

and the malicious code that is then executed.

2.1 Program Vulnerabilities

The C language memory model allows unsafe writes to objects which are often unin-

tended by programmers. Most programmers code with the assumption that program

objects are accessible only via valid references, which is the logical memory model [60].

However, numerous unsafe language features result in bugs that break this model, e.g.

pointer arithmetic with no bounds checking, variadic arguments, dangling pointers,

weak types, unions. All provide venues for overwriting other than the intended ob-

jects.

Currently, the most-exploited classes of program bugs involve buffer overflow [46,

13, 8], integer overflow [5], and format string [45, 12] vulnerabilities. These vulnera-

bility classes are reported in respectively 22, 3, and 2 of the CERT advisories [9] for

2002 together with 4 advisories for other program bugs.

Buffer overflow vulnerabilities are present when a buffer with weak or no bounds

checking is populated with user supplied data. A trivial example is unsafe use of

19

the C library functions strcpy or gets. This allows an attacker to corrupt adjacent

structures containing program addresses, most often return addresses kept on the

stack [13]. Integer overflow and integer signedness problems allow attackers to bypass

imprecise bound checking code, which can then cause typical buffer overflow problems.

Buffer overflows affecting a regular data pointer, for example an output argument of

a function, can actually have a more disastrous effect by allowing a memory write to

an arbitrary location on a subsequent use of that data pointer. One particular attack

corrupts the fields of a double-linked free list kept in the headers of malloc allocation

units [36]. On a subsequent call to free, the list update operation

this-±prev -+next = this-+next ;

will modify an arbitrary location (controlled by prev) with an arbitrary value (next).

Format string vulnerabilities also allow attackers to modify arbitrary memory lo-

cations with arbitrary values and often out-rank buffer overflows in recent security

bulletins [12, 45]. A format string vulnerability occurs if the format string to a func-

tion from the printf family ({ , f , s, sn}printf , syslog) is provided or constructed

from data from an outside source. The most common case is when printf (str) is

used instead of printf ("%s",str). 1 As another example, a well-intended security

logging facility syslog (LOGINFO, str) ironically introduces a serious vulnerability.

The first problem is that attackers may introduce conversion specifications to enable

them to read the memory contents of the process. The real danger, however, comes

from the %n conversion specification which directs the number of characters printed

so far to be written back. The location where the number is stored and its value can

easily be controlled by an attacker with type and width specifications, and more than

one write of an arbitrary value to an arbitrary address can be performed in a single

attack.

It is very difficult to prevent all exploits that allow address overwrites, as they

are as varied as program bugs themselves. All of the above bugs have been found

10f course, the proper C idiom in this case is fputs(str, stdout).

20

exploitable in circumstances reducing them to an arbitrary write problem. More

than one write to disjoint memory ranges may also be performed, either in result of a

single intrusion or of repeated careful intrusions. We assume from now on a program

vulnerability exists, which allows random write accesses with attacker chosen values.

In most security attacks modifying data is simply the means to executing a sequence

of instructions that will ultimately compromise the whole system. Attackers induce

this by overwriting a stored program address that will be used in an indirect control

transfer.

2.2 Stored Program Addresses

Security exploits can attack program addresses stored in many different places. Buffer

overflow attacks target addresses adjacent to the vulnerable buffer. The classic return

address attacks and local function pointer attacks exploit overflows of stack allocated

buffers. Global data and heap buffer overflows also allow global function pointer

attacks and setjmp structure attacks. Data pointer buffer overflows, malloc overflow

attacks, and %n format string attacks are able to modify any stored program address

in the vulnerable application - in addition to the aforementioned addresses, these

attacks target entries in the atexit list, .dtors destructor routines, and in the Global

Offset Table (GOT) [20] of shared object entries. In the assumed arbitrary write

threat model, any function pointer or other stored address that is later supplied to an

indirect control transfer instruction (such as return, indirect call, or indirect jump)

provides a vector to a potential attack.

Program addresses are credibly manipulated by a number of entities. For example,

dynamic loaders patch shared object functions; dynamic linkers update relocation ta-

bles; and language runtime systems modify dynamic dispatch tables. Generally, these

program addresses are intermingled with and indistinguishable from data. In such an

environnent, preventing a control transfer to malicious code by stopping illegitimate

memory writes is next to impossible. It requires the cooperation of numerous trusted

and untrusted entities that need to check many different conditions and understand

21

high-level semantics in a complex environment. The resulting protection is only as

powerful as the weakest link.

2.3 Malicious Code

Using the privileges of the application, an attacker can cause damage by executing

newly injected malicious code or by maliciously reusing already present code. Cur-

rently, the first approach is prevalently taken and attack code is implemented as new

native code that is injected in the program address space as data [46]. Modifying any

stored program address to point to the introduced code triggers intrusion when that

address is used for control transfer. New code can be injected into various areas of

the address space: in a stack buffer, static data segment, near or far heap buffer, or

even the Global Offset Table. Since normally there is no distinction between read and

execute privileges for memory pages (this is the case for IA-32), the only requirement

is that the pages are writable during the injection phase.

It is also possible to reuse existing code by changing a stored program address and

constructing an activation record with suitable arguments. For example, a simple

but powerful attack changes a function pointer to the C library function system, and

arranges the first argument to be an arbitrary shell command to be run. Similar

attacks may be launched to the arguments of any system call normally accessible to

the application. Note that reuse of existing code can also include jumping into the

middle of a sandboxed application operation, bypassing the sandboxing checks and

executing the operation that was intended to be protected. In addition, a jump into

the middle of an instruction (on IA-32 instructions are variable-sized and unaligned)

could cause execution of an unintended and possibly malicious instruction stream,

which will not be visible even in manual inspection of normal dissasembly; however,

such an attack is very unlikely.

An attacker may be able to form higher-level malicious code by introducing data

carefully arranged as a chain of activation records, so that on return from each func-

tion execution continues in the next function of the chain [44]. The prepared activa-

22

tion record return address points to the code in a function epilogue that shifts the

stack pointer to the following activation record and continues execution in the next

function.

Modifying the targets of a suitable sequence of indirect calls as well as their argu-

ments also may allow an attacker to produce higher-level malicious code. Undetected

sequential intrusions may also allow orchestration of existing pieces of code to produce

an unintended malicious outcome. While attacks of this kind are currently not widely

publicized, a determined attacker can easily steer an application in this fashion.

23

24

Chapter 3

Program Shepherding

The program shepherding approach to preventing execution of malicious code is to

monitor all control transfers to ensure that each satisfies a given security policy. This

allows us to ignore the complexities of various vulnerabilities and the difficulties in

preventing illegitimate writes to stored program addresses. Instead, we catch a large

class of security attacks by preventing execution of malevolent code. We do this by

employing three basic techniques: restricted code origins, restricted control transfers,

and un-circumventable sandboxing. The following sections describe these techniques,

while Chapter 5 discusses how to combine them to build efficient security policies.

3.1 Restricted Code Origins

In monitoring all code that is executed, each instruction's origins are checked against

a security policy to see if it should be given execute privileges. This restriction can be

used to ensure that malicious code masquerading as data is never executed, thwarting

the largest class of current security attacks. Code origins are classified into these

categories: from the original image on disk and unmodified, dynamically generated

but unmodified since generation, and code that has been modified. Finer distinctions

could also be made. We describe in Section 6.3 how to distinguish original code from

modified and possibly malicious code.

Additional hardware flag for execute permissions on memory pages can provide

25

similar features to our restricted code origins. However, it cannot by itself duplicate

program shepherding's capabilities because it cannot stop inadvertent or malicious

changes to protection flags. Program shepherding uses its un-circumventable sand-

boxing to prevent this from happening by monitoring all such privileged operations,

e.g. system calls that change page protection. Furthermore, program shepherding

provides more than one bit of privilege information, hence distinguishable code ori-

gins allow different execute privileges to be specified by security policies for each

type.

3.2 Restricted Control Transfers

Program shepherding allows arbitrary restrictions to be placed on control transfers in

an efficient manner. These restrictions can be based on both the source and destina-

tion of a transfer as well as the type of transfer (direct or indirect call, return, jump,

etc.). Indirect calls, indirect jumps, and returns obtain their targets from data, which

can be modified by an attacker. Enforcing the execution model involves allowing each

branch to jump only to a specified set of targets. For example, the calling convention

could be strengthened by requiring that a return instruction only target the instruc-

tion after a call. Stricter policies may allow indirect calls only to their apriori known

targets, and function returns only to instructions after their known callers. These re-

strictions can prevent attackers from forming malicious code sequences from existing

code. Different policies for determining the valid transition sets and the trade-offs

between security, performance and applicability will be discussed in Section 5.2.

3.3 Un-Circumventable Sandboxing

Program shepherding provides direct support for restricting code origins and control

transfers. Execution can be restricted in other ways by adding sandboxing checks on

all other types of instructions of particular interest, for example privilege changing

instructions. Customized policies can be added to validate system call arguments

26

to limit data attacks. With the ability to monitor all transfers of control, program

shepherding is able to guarantee that these sandboxing checks cannot be bypassed.

Sandboxing without this guarantee can never provide true security - if an attack

can gain control of the execution, it can jump straight to the sandboxed operation,

bypassing the checks. In addition to allowing construction of arbitrary security poli-

cies, this guarantee is used to enforce the other two program shepherding techniques

by protecting the shepherding system itself (see Section 6.6).

27

28

Chapter 4

Execution Model Enforcement

The execution model of a program includes several components. At the lowest level,

the Application Binary Interface (ABI) specifies the register usage and calling con-

ventions of the underlying architecture, along with the operating system interface

mechanism. Higher-level conventions come from the source language of the program

in the form of runtime data structure usage, expected interaction with the operating

system, and usage of system libraries. Finally, the program itself is intended by the

programmer to perform a limited set of actions.

Even the lowest level, the ABI, is usually not efficiently enforceable when there is

no hardware support. There is no support for ensuring that calls and returns match,

and it is prohibitively expensive to directly implement this in software. For this rea-

son, the execution model is a convention rather than a strictly enforced set of rules.

However, most security exploits come from violations of the execution model. Over-

writing a stored program address lets an attacker control further program execution.

However, transfer of control to that code should not allowed be under the program's

execution model. Enforcing the model would thwart these security attacks.

Restrictions on data usage are very difficult to enforce efficiently because dis-

tinguishing memory references requires expensive runtime checks on every memory

access. Most security attacks target not just any data, but data storing program ad-

dresses. Even limiting data protection to these locations, protecting the data incurs

significant performance costs[13]. We restrict our enforcement of the execution model

29

to the set of allowed control transfers. Although caused by abnormal data operations,

unintended program actions will surface as unintended control flow. We will show

how to obtain accurate control transfer specifications and that an execution model

can be efficiently enforced.

4.1 Degree of Freedom

The degree of freedom of an attacker is given by the size of the set of allowed values for

an attacked stored program address. Ideally, these sets should be singletons, because

in a real program execution at any point there is only one valid value (in the absence

of race conditions). Therefore, we aim to minimize the size of the sets and convert

them to singletons when possible.

4.2 Context-Insensitive Policies

Our first aim is to determine the points-to sets for function pointers by using an

accurate static analysis. We use a flow-insensitive and context-insensitive analysis,

discussed in detail in Chapter 7, to gather the sets of valid targets for indirect calls.

Using that information we construct the complete call graph for the program. Targets

of return instructions are then computed from the graph, since the instructions after

caller sites of a function constitute the only valid targets for its exit point.

If we assume that the only security relevant events are due to system calls, we

can perform reachability analysis to identify the system calls accessible from each of

the functions in a set, up to a node dominated by all targets in the set. If different

execution paths can reach different system calls, then an attacker has a choice of

action for constructing a malicious sequence. (We may make a further unification by

assuming the order of system calls is immaterial since attackers may be interested

in any of them.) Whenever the system call sets are all equivalent (in the best case

all being empty), we can accept any valid target in a set, because changing a stored

pointer from one value to another provides no new abilities to an attacker.

30

In the following example with vulnerable code, the only accepted values for the

function pointer f are {sin,cos}, but not system for that matter.

double eval(double f(double), double x, char* msg) {
printf(msg, x); // format string vulnerability
return f(x);

}
void sincos(char* usermsg) {

eval(sin, 0, usermsg);
eval(cos, 0, "cos(Xf)");

}

If an attacker can never cause deviations from the trace of system calls, then the

only vector of attack left is changing their arguments. Simple stateless system call

sandboxing may be successfully employed to limit the arguments to those statically

predicted, however this type of automatic policy generation is not covered in this

thesis.

Context-insensitive policies make an attacker's life much more difficult, narrowing

potential attack targets from any instruction in the program to a small handful.

The program's control-flow graph and call graph can be enforced using only context-

insensitive policies, as such graphs are themselves context-insensitive. However, the

execution model is more than the control flow graph, which still allows unrealizable

program paths. For one thing, the program model should incorporate the calling

convention, which restricts each return to have exactly one target - the return site of

the caller depending on the context of invocation. In our example, a return address

overwrite may still lead to an (innocuous) omission of the second execution of eval.

One approach is to enforce the calling convention by introducing sandboxing checks

to match call and return pairs. There are also a number of schemes we can use to

reduce the size of allowed targets further without incurring high overheads.

31

4.3 Selective Code Duplication

Even the most accurate static analysis will not produce only singleton sets for context-

insensitive policies. However, dynamic program transformations may be applied to

further reduce the points-to sets. We can try to partition the set of targets by dy-

namically applying program transformations on the generated traces.

We can apply program specialization with respect to function pointers passed as

arguments, which is a common use case. This way way the target set of a function

pointer's later uses is a singleton set. In our example, this will result in two versions

of eval specialized on the different function pointers passed, which would be useful

if the sets reached valuable system calls.

Furthermore, leaf functions can be partially inlined in traces from their callers,

therefore they are also effectively reduced to singletons. A simple compare with

the value of the singleton replaces the hash table lookup when detection of security

violations is desired, otherwise it can be elided in a trace. In order to reduce the

degree of freedom of return overwrite attacks, leaf functions with large fan-in can

be selectively cloned and thus the return set of the original function is partitioned

into smaller sets. In general, static analysis can determine each definition and use

of a pointer used as an indirect branch target, and by selectively duplicating code

from different definitions we can obtain selective flow- and context-sensitivity in the

execution traces dynamically generated by the runtime system.

32

Chapter 5

Security Policies

Program shepherding's three techniques can be used to provide powerful security

guarantees. They allow us to strictly enforce a safe subset of the instruction set ar-

chitecture and the operating system interface. There are tradeoffs between program

freedom and security: if restrictions are too strict, many false alarms will result when

there is no actual intrusion. This section discusses the potential design space of secu-

rity policies that provide significant protection by limiting attackers degree of freedom

while preserving program correctness. We envision a system with customizable policy

settings to allow the maximum protection level for each application. Our philosophy

is to start with a completely safe subset and examine the causes of false alarms. The

responsible operation is potentially dangerous, so its restrictions should be relaxed

only so far as to reduce false alarms to a reasonable level while maintaining as much

security as possible. Table 5.1 lists sample policy decisions that can be implemented

with program shepherding. Our system currently implements a set of security policies

for which allows normal execution for most application binaries, and a more restric-

tive set when static analysis of source code provides an accurate execution model.

The applicability and attack resilience of these policies are described and analyzed

later in this chapter.

33

Restricting Least restrictive Most restrictive

Code Any Dynamically Only code from Only code
origins written code, if disk, can be dy- from disk,

self-contained namically loaded originally
and has no loaded
system calls

Function Any Only to Only to known Random xor Return only
returns after-call call sites as in Stack- from called

targets Ghost [26] function

Intra- Any Only to function entry points Only to bindings
segment given in an in-
call or terface list
jump

Inter- Any Only to export of Only to im- Only to bindings
segment target segment port of source given in an in-
call or segment terface list
jump

Indirect Any Only to address Only within Only to bindings
calls stored in read- user segment given in an in-

only memory or from library terface list

execve Any Static argu- Only if the oper- None
ments ation can be val-

idated

open Any Disallow writes Only to a sub- None
to specific region of the file
files, e.g. system
/etc/passwd

Table 5.1: Sample list of policies built using program shepherding. Each row shows a
continuum of choices ranging from most restrictive on the right to least restrictive on
the left for how to control the action in the left-hand column. Bold entries indicate
the policy choices that we implemented for our experimental system for binaries with
no external information. Italicized entries show the more restrictive policies in place
when an execution model is provided statically.

34

5.1 Code Origin Policies

Consider the policy decision in the upper right of the table: allowing unrestricted

execution of code only if it is from the original application or library image on disk

and is unmodified. Such a policy will allow the vast majority of programs to execute

normally. Yet the policy can stop all security exploits that inject code masquerading

as data into a program. This covers a majority of currently deployed security attacks,

including the classic stack buffer overflow attack.

Shared libraries that are explicitly loaded (i.e., with diopen or LoadLibrary) and

dynamically selected based on user input should also be considered potentially unsafe

unless properly validated. A relaxation of this policy allows dynamically generated

code, but requires that it contain no system calls. Legitimate dynamically-generated

code is usually used for performance; for example, many high-level languages employ

just-in-time compilation [2, 19] to generate optimized pieces of code that will be

executed natively rather than interpreted. This code almost never contains system

calls or other potentially dangerous operations. For this reason, imposing a strict

security policy on dynamically-generated code is a reasonable approach. Similarly,

self-modifying code should usually be disallowed, but may be explicitly allowed for

certain applications.

5.2 Control Transfer Policies

Direct control transfers that satisfy the code origin policies can always be allowed

within a segment. Given that we limit execution models to those that disallow self-

modifying code, direct control transfers will always perform as the program intends,

as they are part of the code itself and cannot be modified by an attacker as guaranteed

by the other techniques. Calls and jumps that transition from one executable segment

to another, e.g., from application code to a shared library, or from one shared library

to another, can be restricted to enforce library interfaces. Targets of inter-segment

calls and jumps can be verified against the export list of the target library and the

35

import list of the source segment, in order to prevent malevolent jumps into the

middle of library routines.

Indirect control transfers can be carefully limited. The calling convention can

be strengthened by preventing return instructions from targeting non-call sites, and

limiting direct call sites to be the target of at most one return site. Controlling

return targets severely restricts exploits that overwrite return addresses, as well as

opportunities for stitching together fragments of existing code in an attack.

Indirect calls can be completely disallowed in many applications. Less restrictive

general policies are needed, but they require higher-level information and/or compiler

support. For C++ code it is possible to keep read-only virtual method tables and

allow indirect calls using targets from these areas only. However, further relaxations

are needed to allow callback routines in C programs. A policy that provides a general

solution requires source access, compiler support, profiling runs, or other external

sources of information to determine all valid indirect call targets (Chapter 7). A

more relaxed policy restricts indirect calls from libraries no more than direct calls

are restricted (if between segments they can only target import and export entries),

while calls within the application text segment can target only intra-segment function

entry points. The requirement of function entry points beyond a simple intra-segment

requirement prevents indirect calls from targeting direct calls or indirect jumps that

validly cross executable segment points and thus avoid the restriction. It is possible

to extract the valid user program entry points from the symbol tables of unstripped

binaries. Unfortunately, stripped binaries do not keep that information.

Indirect jumps are used in the implementation of switch statements and dynam-

ically shared libraries. The first use can easily be allowed when targets are validated

to be coming from read-only memory and are hence trusted. The second use, shared

library calls, should be allowed, but such inter-segment indirect jumps can be re-

stricted to library entry points. These restrictions will not allow an indirect jump

instruction that is used as a function return in place of an actual return instruction.

However, we have yet to see such code. It will certainly not be generated by compilers

since it breaks important hardware optimizations in modern IA-32 processors [47].

36

5.3 Sandboxing Policies

Sandboxing can provide detection of attacks that get past other barriers. For example,

a data attack that overwrites the argument passed to the system routine may not be

stopped by any aforementioned policy. Program shepherding's guaranteed sandboxing

can be used for intrusion detection for this and other attacks. The security policy must

decide what to check for (for example, suspicious calls to system calls like execve)

and what to do when an intrusion is actually detected. These issues are beyond the

scope of this thesis, but have been discussed elsewhere [30, 39].

A further on return target restriction can easily be provided to emulate a technique

proposed in StackGhost [26]. A random number can be xor-ed with the return address

stored on the stack after a call and before a return. Any modification of the return

address will result with very high probability in a request for an invalid target. In

a threat model in which attackers can only write to memory, this technique renders

execution of the attacker's intended code very unlikely. This protection comes at

the low cost of two extra instructions per function call, but its additional value is

hard to determine due to the already limited applicability of this kind of exploit.

Furthermore, an attacker able to exploit a vulnerability that provides random read

rights will not be stopped by this policy. Thus, we currently do not impose it. Instead

we propose using a parallel stack in an inaccessible to the application area in memory

and cached in hardware registers (XMM, or RSB - see Section 10.2), to match returns

with their respective caller.

Sandboxing with checks around every load and store could be used to ensure that

only certain memory regions are accessed during execution of untrusted code seg-

ments. This would provide significant security but at great expense in performance,

unless largely independent modules are to be isolated [65].

37

Attack Type

Injected Code Existing Code

Single Calls Chained Calls Multiple Calls

Return Indirect Return Indirect
Jump or Jump or

Call Call

Not Imported Not Imported
Imported Imported

With Information No
(e.g., Symbol Information

Table)

Restricted code origins

Restricted control transfers

Un-circumventable sandboxing

Figure 5-1: Capabilities of program shepherding's three techniques toward stopping
different attack types, for the security policy indicated in bold in Table 5.1. The three
boxes represent the three components. A filled-in box indicates that that component
can completely stop the attack type above. Stripes indicate that the attack can
be stopped only in some cases. The vertical order of the techniques indicates the
preferred order for stopping attacks. If a higher box completely stops an attack, we
do not show techniques below it (e.g., sandboxing is capable of stopping some attacks
of every type, but we show its use only when the other techniques do not provide full
protection).

38

5.4 Attack Resilience

We now turn our attention to a specific security policy made up of the bold entries in

Table 5.1. We implemented this policy in our prototype system when only a program

binary is available. For this security policy, Figure 5-1 summarizes the contribution of

each program shepherding technique toward stopping the types of attacks described

in Section 2. The following sections describe in detail which policy components are

sufficient to stop each attack type.

5.4.1 Injected Code Attacks

The code origin policy disallows execution from address ranges other than the text

pages of the binary and mapped shared libraries. This technique stops all exploits that

introduce external code, and will eradicate a majority of currently deployed security

attacks. However, code origin checks are insufficient to thwart attacks that change a

target address pointer to point to existing code in the program address space.

5.4.2 Existing Code Attacks

Most vulnerable programs are unlikely to have code that could be maliciously used

by an attacker. However, all of them have the standard C library mapped into their

address space. The restrictions on inter-segment control transfers limit the available

code that can be attacked to that explicitly declared for use by the application. Still,

many of the large programs import the library routines a simple attack needs. For

this reason, restricting inter-segment transitions to imported entry points would stop

only a few attacks.

Return address attacks, however, are severely limited: they may only target code

following previously executed call instructions. With more accurate execution models

they are even further limited only to their respective callers.

39

Single Calls

By single call attack we mean an attack that overwrites only a single program address

(perhaps overwriting non-address data as well), thus resulting in a single malicious

control transfer. We consider the readily available execve system call to be the

most vulnerable point in a single-call attack. However, it is possible to construct an

intrusion detection predicate [39] to distinguish attacks from valid execve calls, and

either terminate the application or drop privileges to limit the exposure. Since only

a single call can be executed, system calls that need to be used in combination for an

intrusion do not need to be sandboxed. Sandboxing execve also prevents intrusion

by an argument overwrite attack.

Nevertheless, sandboxing alone does not provide protection against sequences of

operations that an application is allowed to do and can be controlled by an attacker.

For example, an exploit that emulates the normal behavior of sshd, i.e., listens on

a network socket, accepts a connection, reads the password file for authentication,

but at the end writes the password file contents to the network, cannot be stopped

by simple sandboxing. The mimicry attacks introduced [62] and further analyzed by

Wagner [64] show how attackers can easily evade intrusion detection at the system call

level. Therefore, restrictions on control transfers are crucial to prevent construction

of such higher-level code from primitives, and hence to limiting possible attacks only

to data attacks targeting unlikely sequences of existing code.

Chained Calls

An attacker may be able to execute a malicious code sequence by carefully construct-

ing a chain of activation records, so that on return from each function execution

continues in the next one [44]. Requiring that return instructions target only call

sites is sufficient to thwart the chained call attack, even when the needed functions

are explicitly imported and allowed by inter-segment restrictions. The chaining tech-

nique is countered because of its reliance on return instructions: once to gain control

at the end of each existing function, and once in the code to shift to the activation

40

record for the next function call.

Multiple Calls

We were able to construct applications that were open to an exploit that forms higher-

level malicious code by changing the targets of a sequence of function calls as well as

their arguments. Multiple sequential intrusions may also allow execution of higher-

level malicious code.

It is also possible to extract the valid user program entry points from the symbol

tables of unstripped binaries. Allowing indirect calls to target only valid entry points

within the executable and within the shared libraries limits the targets for higher-

level code construction. If there are no simple wrappers in the executable that allow

arbitrary arguments to be passed to the lower level library functions, the possibility

of successful attack of this type will be minimal.

Higher-level semantic information is needed to thwart these attacks' intrusion

method by limiting the valid indirect call targets. The policy that is able to stop

such attacks in general, and without any false alarms, requires an execution model to

provide the list of valid transfers. Whenever the degree of freedom of an attacker is

limited to equivalent actions malicious sequences will never be constructed.

Nevertheless, interpreters that are too permissive are still going to be vulnerable

to data attacks that may be used to form higher-level malicious code and will not be

recognized as a threat by these techniques.

41

42

Chapter 6

Efficient Implementation of

Program Shepherding

In order for a security system to be viable, it must be efficient. In order to be

widely and easily adoptable, it must be maximally transparent to its users. Trans-

parency includes whether a target application must be recompiled or instrumented

and whether the security system requires special hardware or operating system sup-

port. We examined possible implementations of program shepherding in terms of

these two requirements of efficiency and transparency.

One possible method of monitoring control flow is instrumentation of application

and library code prior to execution to add security checks around every branch in-

struction and privileged operation. Significant runtime components would also be

needed to overcome the difficulties of statically handling indirect branches by merg-

ing information about dynamically loaded libraries and verifying that all modules

are properly instrumented. In addition, the invariably introduced checks will impose

significant performance penalties.

Another possibility is to use an implementation in an interpreter. Interpretetation

is the most straightforward solution to provide complete mediation of control transfers

on native binaries. It is a natural way to monitor program execution because every

application operation is carried out by a central system in which security checks can

be placed. However, interpretation via emulation is slow, especially on an architecture

43

START basic block builder trace selector

dispatch - - - ----- - -

context switch

indirect branch lookup sndita e ranch

Figure 6-1: Flow chart of the DynamoRIO system infrastructure. Dark shading
indicates application code. Note that the context switch is simply between the code
cache and DynamoRIO; application code and DynamoRIO code all runs in the same
process and address space. Dotted lines indicate the performance-critical cases where
control must leave the code cache and return to DynamoRIO.

like IA-32 with a complex instruction set, as evidenced in Table 6.1.

6.1 Dynamic Optimization Framework

Recent advances in dynamic optimization have focused on low-overhead methods

for examining execution traces for the purpose of optimization. This infrastructure

provides the exact functionality needed for efficient program shepherding. Dynamic

optimizers begin with an interpretation engine. To reduce the emulation overhead,

native translations of frequently executed code are cached so they can be directly

executed in the future. For a security system, caching means that many security

checks need be performed only once, when the code is copied to the cache. If the

code cache is protected from malicious modification, future executions of the trusted

cached code proceed with no security or emulation overhead.

We decided to build our program shepherding system as an extension to a dynamic

optimizer called DynamoRIO [7]. DynamoRIO is based on top of an IA-32 port [6] of

Dynamo [3]. DynamoRIO's optimizations are still under development. However, its

44

baseline performance is already reasonable for many applications (see Section 8.3).

DynamoRIO is implemented on IA-32 for both Windows and Linux, and is capable

of running large desktop applications.

A flow chart showing the operation of DynamoRIO is presented in Figure 6-1.

The figure concentrates on the flow of control in and out of the code cache, which

is the bottom portion of the figure. The copied application code looks just like the

original code with the exception of its control transfer instructions, which are shown

with arrows in the figure.

Below we give an overview of DynamoRIO's operation, focusing on the aspects

that are relevant to our implementation of program shepherding. The techniques of

program shepherding fit naturally within the DynamoRIO infrastructure. Most mon-

itoring operations only need to be performed once, allowing us to achieve good per-

formance in the steady-state of the program. In our implementation, a performance-

critical inner loop will execute without a single additional instruction beyond the

original application code.

6.2 DynamoRIO: Runtime Introspection and Op-

timization

DynamoRIO copies basic blocks (sequences of instructions ending with a single control

transfer instruction) into a code cache and executes them natively. At the end of

each block the application's machine state must be saved and control returned to

DynamoRIO (a context switch) to copy the next basic block. If a target basic block

is already present in the code cache, and is targeted via a direct branch, DynamoRIO

links the two blocks together with a direct jump. This avoids the cost of a subsequent

context switch.

Indirect branches cannot be linked in the same way because their targets may

vary. To maintain transparency, original program addresses must be used wherever

the application stores indirect branch targets (for example, return addresses for func-

45

Normalized
System Type Execution Time

crafty vpr
Emulation 300.0 300.0
+ Basic block cache 26.1 26.0
+ Link direct branches 5.1 3.0
+ Link indirect branches 2.0 1.2
+ Traces 1.7 1.1

Table 6.1: Performance achieved when various features are added to an interpreter,
measured on two of the SPEC2000 benchmarks [56], crafty and vpr. Pure emulation
results in an estimated slowdown factor of several hundred. Successively adding
caching, linking, and traces brings the performance down dramatically.

tion calls). These addresses must be translated into their corresponding code cache

addresses in order to jump to the target code. This translation is performed as a fast

hash table lookup. Security policies that restrict indirect control transfers are put in

place by varying this hash table lookup.

To improve the efficiency of indirect branches, and to achieve better code layout,

basic blocks that are frequently executed in sequence are stitched together into a unit

called a trace. When connecting beyond a basic block that ends in an indirect branch,

a check is inserted to ensure that the actual target of the branch will keep execution

on the trace. This check is much faster than the hash table lookup, but if the check

fails the full lookup must be performed. The superior code layout of traces usually

amortizes the overhead of creating them and often speeds up the program [3, 51].

For context-insensitive security policies, no extra checks are required when execution

continues across an indirect branch in a trace.

Table 6.1 shows the typical performance improvement of each enhancement to the

basic interpreter design. Caching is a dramatic performance improvement, and adding

direct links is nearly as dramatic. The final steps of adding a fast in-cache lookup for

indirect branches and building traces improve the performance significantly as well.

The Windows operating system directly invokes application code or changes the

program counter for callbacks, exceptions, asynchronous procedure calls, setjmp, and

the SetThreadContext API routine. These types of control flow are intercepted in

46

order to ensure that all application code is executed under DynamoRIO [6]. Signals

on Linux are similarly intercepted. Security checks can be placed at the interception

points, similarly to indirect branches. These abnormal control transfers are rare and

so extra checks upon their interception do not affect overall performance.

6.3 Restricted Code Origins Implementation

Restricting execution to trusted code is accomplished by adding checks at the point

where the system copies a basic block into the code cache. Checking code origins

involves negligible overhead because code need only be checked once prior to insertion

into the code cache. Once in the cache no checks need to be executed.

Code origin checking requires that DynamoRIO know whether code has been

modified from its original image on disk, or whether it is dynamically generated. This

is done by write-protecting all pages that are declared as containing code on program

start-up. In normal ELF [20] binaries, code pages are separate from data pages and

are write-protected by default. Dynamically generated code is easily detected when

the application tries to execute code from a writable page, while self-modifying code

is detected by monitoring calls that unprotect code pages.

If code and data are allowed to share a page, we make a copy of the page, which

we write-protect, and then unprotect the original page. The copy is then used as the

source for basic blocks, while the original page's data can be freely modified. A more

complex scheme must be used if self-modifying code is allowed. Here DynamoRIO

must keep track of the origins of every block in the code cache, invalidating a block

when its source page is modified. The original page must be kept write-protected

to detect every modification to it. The performance overhead of this depends on

how often writes are made to code pages, but we expect self-modifying code to be

rare. Extensive evaluation of applications under both Linux and Windows has yet to

reveal a use of self-modifying code. For our prototype, we limit execution models to

applications with no self-modifying or dynamically generated code, which is the case

for the targeted security sensitive applications.

47

6.4 Restricted Control Transfers Implementation

The dynamic optimization infrastructure makes monitoring control flow transfers very

simple. For direct branches, the desired security checks are performed at the point of

basic block linking. If a transition between two blocks is disallowed by the security

policy, they are not linked together. Instead, the direct branch is linked to a routine

that announces or handles the security violation. These checks need only be performed

once for each potential link. A link that is allowed becomes a direct jump with no

overhead.

Indirect control transfer policies add no performance overhead in the steady state,

since no checks are required when execution continues on the same trace. Otherwise,

the hash table lookup routine translates the target program address into a basic block

entry address.

6.4.1 Transfer Type Restrictions

Policies that only examine the target of a control flow transition are the cheapest to

enforce. A separate hash table is used to look up the target for validation for differ-

ent types of indirect control transfers (return instruction, indirect calls, and indirect

branches). Security checks for indirect transfers that only examine their targets have

little performance overhead, since we place in the hash table only targets that are

allowed by the security policy. This enables type specific restrictions without sacrific-

ing any performance when execution continues in the code cache. Targets of indirect

branches are matched against entry points of PLT-defined [20] and dynamically re-

solved symbols to enforce restrictions on inter-segment transitions, and targets of

returns are checked to ensure they target only instructions after call sites.

6.4.2 Transition Pair Restrictions

Our static analyses produce context-insensitive policies, which can be easily enforced

with minimal overhead. This is because context-insensitive policies are always valid

after initial verification, therefore they can be cached and cheaply evaluated with

48

minimal execution overhead. Our execution model policies need to examine both the

source and the target of a transition, which will have a slightly slower hash table

lookup routine when shared tables are used. These checks can be optimized to be as

efficient as only checking the target by using a separate hash table for each source

location. The space drawback of this scheme is minor as equivalent target sets can be

shared, and furthermore, the hash tables can be precomputed to be kept quite small

without increase in access time.

6.5 Un-Circumventable Sandboxing Implementa-

tion

When required by the security policy, DynamoRIO inserts sandboxing into a basic

block when it is copied to the code cache. In normal sandboxing, an attacker can

jump to the middle of a block and bypass the inserted checks. DynamoRIO only

allows control flow transfers to the top of basic blocks or traces in the code cache,

preventing this.

An indirect branch that targets the middle of an existing block will miss in the

indirect branch hash table lookup, go back to DynamoRIO, and end up copying a

new basic block into the code cache that will duplicate the bottom half of the existing

block. The necessary checks will be added to the new block, and the block will only

be entered from the top, ensuring that we follow the security policy.

When sandboxing system calls, if the system call number is determined statically,

we avoid the sandboxing checks for system calls we are not interested in. This is

important for providing performance on applications that perform many system calls.

Restricted code cache entry points are crucial not just for building custom se-

curity policies with un-circumventable sandboxing, but also for enforcing the other

shepherding features by protecting DynamoRIO itself.

49

6.6 Protecting DynamoRIO

Program shepherding could be defeated by attacking DynamoRIO's own data struc-

tures, including the code cache, which are in the same address space as the application.

This section discusses how to prevent attacks on DynamoRIO. Since the core of Dy-

namoRIO is a relatively small piece of code, and DynamoRIO does not rely on any

other component of the system, we believe extensive code review and analysis will

leave no loopholes for exploitation.

6.6.1 Memory Protection

We divide execution into two modes: DynamoRIO mode and application mode. Dy-

namoRIO mode corresponds to execution while in the top half of Figure 6-1. Appli-

cation mode corresponds to the bottom half of Figure 6-1, including the code cache

and the DynamoRIO routines that are executed without performing a context switch

back to DynamoRIO. For the two modes, we give each type of memory page the

privileges shown in Table 6.2. DynamoRIO data includes the indirect branch hash

table and other data structures.

All application and DynamoRIO code pages are write-protected in both modes.

Application data is of course writable in application mode, and there is no reason

to protect it from DynamoRIO, so it remains writable in DynamoRIO mode. Dy-

namoRIO's data and the code cache can be written to by DynamoRIO itself, but

they must be protected during application mode to prevent inadvertent or malicious

modification by the application. We should also protect RIO's Global Offset Table

(GOT) [20] by binding all imported symbols on program startup and then write-

protecting the GOT.

If a basic block copied to the code cache contains a system call that may change

page privileges, the call is sandboxed to prevent changes that violate Table 6.2. Pro-

gram shepherding's un-circumventable sandboxing guarantees that these system call

checks are executed. Because the DynamoRIO data pages and the code cache pages

are write-protected when in application mode, and we do not allow application code to

50

Page Type DynamoRIO mode Application mode
Application code R R

Application data RW RW
DynamoRIO code cache RW R (E)
DynamoRIO code R (E) R
DynamoRIO data RW R

Table 6.2: Privileges of each type of memory page belonging to the application process
executed under DynamoRIO. R stands for Read, W for Write, and E for Execute. We
separate execute privileges here to make it clear what code is allowed by DynamoRIO
to execute.

change these protections, we guarantee that DynamoRIO's state cannot be corrupted

within the process.

6.6.2 Multiple Application Threads

DynamoRIO's data structures and code cache are thread-private. Each thread has its

own unique code cache and data structures. System calls that modify page privileges

are checked against the data pages of all threads. When a thread enters DynamoRIO

mode, only that thread's DynamoRIO data pages and code cache pages should be

unprotected.

A potential attack could exploit this race condition: while one thread is in Dy-

namoRIO mode another thread in application mode can modify the first thread's

DynamoRIO data pages. We could solve this problem by forcing all threads to exit

application mode when any one thread enters DynamoRIO mode. We have not yet

implemented this solution, but its performance cost would be minimal on a single

processor or on a multiprocessor when every thread is spending most of its time ex-

ecuting in the code cache. However, the performance cost of extra synchronization

would be unreasonable on a multiprocessor when threads are continuously context

switching. We are investigating alternative solutions, including those in Section 10.1.

51

52

Chapter 7

Call Graph Construction

Constructing the call graph for a C program in the presence of indirect calls requires

use of pointer analysis to disambiguate between the potential values of the used

function pointers. Current research on pointer analyses [1, 58, 59, 15, 34] offers

different tradeoffs between accuracy and scalability. Previous points-to analyses for

C have also been specifically applied to call graph construction [33, 41].

7.1 Points-to Analysis

We have employed a context-insensitive, flow-insensitive Andersen's [1] style points-to

analysis using projection merging [59 and cycle elimination [23]. It is implemented

using the Banshee [4] analysis toolkit to build a customized constraint resolution

engine. The C front-end is derived from David Gay's Region Compiler [28] and the

GNU C Compiler. This type of points-to analysis scales very well to the size of our

target applications, and on our targets it is practically dominated by source code

preprocessing time. Flow-insensitive analysis ignores control flow and the order of

assignments, and therefore the improved scalability comes at the cost of some losses

in accuracy. However, the analysis results also hold even in concurrent programs.

Our current implementation is currently inaccurate in regards to treatment of

assignments to struct/union fields. The field names are ignored and only the base

object is looked at. Therefore, the analysis may produce larger than the actual points-

53

to sets. According to the notion in [34] it is field-independent similar to the works in

[59, 15, 58]. However, field-based analyses that ignore the base are suggested [33, 41] to

be more accurate for call-graph construction. We further plan to use the intersection

of result sets of both types of analysis to provide even more accurate points-to sets.

In this thesis we will discuss only the performance of the field-independent instance

of our analysis.

7.1.1 Dynamic Linking Support

The points-to information in our system is used at runtime and therefore needs to

be efficiently propagated, and in case of position independent code relocated at run

time. Use of dynamic libraries poses new problems in respect to combining the results

of the independent local analyses on the shared objects and application executable.

Previous modular combination techniques have been used for compile time analyses

only by Das [15], and Heintze and Tardieu [34]. Our static analysis supports this

model for shared objects by symbolically evaluating arguments that contain function

pointers and thus allows binding and unification at runtime.

Currently our runtime component performs only a single level indirection of sym-

bolic arguments to obtain the full points-to sets. While this scheme supports most use

cases, it easily breaks when a structure containing function pointers is successively

crossing module boundaries. Nevertheless, in practice this crude binding technique

was sufficient to handle all SPEC2000 benchmarks, with the exception of one transi-

tion in gcc. In that case, an assignment to an obstack structure field was crossing

two module boundaries, which resulted in an incomplete transition set in the foremen-

tioned settings. Therefore, it was flagged as alarming by the runtime system. This

particular case is shown to be properly handled by a field-based analysis of structure

field assignments [41] and will be valid even across module boundaries within our

system.

The general problem of merging points-to sets, however, should be solved by com-

puting the transitive closure for all points-to sets that cross module boundaries. The

depth needed for this graph reachability analysis is determined by the maximum

54

number of module boundary transitions between pointer definition and use. In order

to reduce program startup overhead, the fully expanded sets should be precomputed

together with the executable. They will need to be recomputed only in the rare occa-

sions that shared libraries are modified. The memory footprint of a straightforward

representation of the final precomputed unique sets, as observed on our benchmarks,

is in one or two 4KB pages. A self-contained security sensitive executable should

be augmented with an ELF [20] section which holds the fully precomputed points-to

sets for each indirect call and is memory mapped as read-only. Our prototype im-

plementation currently refrains from binary modifications. Furthermore, statically

available transition sets allow code auditors to easily analyze vulnerable program

address targets.

7.1.2 Matching Analysis Results with Program Binaries

Since our analysis is not in the program build process, we have to match the call-site

information we obtain from static source code analysis to the actual indirect call in-

structions in the executable. We have applied our post-process call-site matching on

locally installed or previously built program executables and shared objects. We have

experimented so far only with binaries produced by the gcc compiler, but any other

compiler may be used to build the final binary, as far as it generates accurate enough

debugging information at high optimization levels. Most calls can be unambiguously

matched since they are usually sparsely located across function and line boundaries.

However, debugging information is insufficient to disambiguate between indirect calls

on the same line. Since evaluations between sequence points are compiler implemen-

tation dependent, we occasionally have to merge points-to sets for several indirect

calls. If this analysis is used in an infrastructure with more precise code generation

information, any artifactual inaccuracy of this external matching will not be present.

On the other hand, although our current static analysis requires source code access,

debug information is usually already present and recompilation is not necessary.

55

7.2 Program Profiling

Our static analysis provides a close upper bound on the points-to sets. It should

be noted that for our purposes, a safe approximation on a points-to set can even be

a lower bound on the accurate points-to set. In this respect it is opposite to the

traditional notion of conservative estimation. An automatic points-to analysis that

may miss some potential valid transitions may produce false alarms (false positives),

but it will not introduce unintended transitions in the model. Therefore an omission

in the deduced model may cause denial of service to unusual requests with legitimate

intent, but it will never allow an malicious request.

An easy way to obtain the target sets for a flow-insensitive, context-insensitive

validation in our program shepherding system is to run it in in "learning" mode to

only flag invalid indirect transitions pairs. Successive executions use the results of

previous runs as a model and allow only those transitions. This method has its own

merit, especially in the absence of source code access. However, it is prone to a

high number of false positives and for quick convergence requires profiling runs with

high code coverage. Notwithstanding these adverse effects on program correctness,

alarms on execution paths which have not been covered in test environment may be

considered useful to establishments with high security requirements.

56

Chapter 8

Experimental Results

This section presents our test suite of vulnerable programs, shows the effectiveness

of our program shepherding system on this test suite, and then evaluates the perfor-

mance and memory requirements of our system on the SPEC2000 benchmarks [56].

8.1 Test Suite of Vulnerable Programs

We constructed several programs exhibiting a full spectrum of buffer overflow and

format string vulnerabilities. Our experiments also included the SPEC2000 bench-

mark applications [56] and the following applications with recently reported security

vulnerabilities:

stunnel-3.21 CVE-2002-0002 [14] A format string vulnerability in stunnel (SSL

tunnel) allows remote malicious servers to execute arbitrary code because several

calls to f dprintf (a custom file descriptor wrapper of fprintf) have no format

argument.

groff-1.16 CVE-2002-0003 [14] The preprocessor of the grof f formatting system has

an exploitable buffer overflow which allows remote attackers to gain privileges

via lpd in the LPRng printing system. The pic picture compiler from the grof f

package also has a format string vulnerability [48].

57

ssh-1.2.31 CVE-2001-0144 [14] An integer-overflow bug in the CRC32 compensa-

tion attack detection code causes the SSH daemon (typically run as root) to

create a hash table with size zero in response to long input. Later attempts to

write values into the hash table provide attackers with random write access to

memory.

sudo-1.6.1 CVE-2001-0279 [14] sudo (superuser do) allows local users to gain root

privileges. A vulnerability caused by an out-of-bound access due to incomplete

end of loop condition is triggered by long command line arguments. An exploit

based on malloc corruption has been published [36].

Attack code is usually used to immediately give the attacker a root shell or to

prepare the system for easy takeover by modifying system files. Hence, the exploits

in our tests tried to either start a shell with the privilege of the running process,

typically root, or to add a root entry into the /etc/passwd file. We based our

exploits on several "cookbook" and proof-of-concept works [8, 66, 36, 48] to inject

new code [46], reuse existing code in a single call, or reuse code in a chain of multiple

calls [44]. Existing code attacks used only standard C library functions.

When run natively, our test suite exploits were able to get control by modifying

a wide variety of code pointers including return addresses; local and global function

pointers; setjmp structures; and atexit, .dtors, and GOT [20] entries. We investi-

gated attacks against DynamoRIO itself, e.g., overwriting DynamoRIO's GOT entry

to allow malicious code to run in DynamoRIO mode, but could not come up with an

attack that could bypass the protection mechanisms presented in Section 6.6.

All vulnerable programs were successfully exploited when run on a standard Red-

Hat 7.2 Linux installation. Execution of the vulnerable binaries under DynamoRIO

with all security checks disabled also allowed successful intrusions. Although Dy-

namoRIO interfered with a few of the exploits due to changed addresses in the tar-

gets, it was trivial to modify the exploits to work under our system. Execution of

the vulnerable binaries under DynamoRIO enforcing the policies shown in bold on

Table 5.1, effectively blocked all attack types. All intrusion attempts that would have

58

led to successfully exploitable conditions were detected. Nevertheless, the vulnerable

applications were able to execute normally when presented with benign input. The

SPEC2000 benchmarks also gave no false alarms on the reference data set.

8.2 Effectiveness of Static Analysis

We applied our static points-to analysis and runtime execution model enforcement

of indirect branches on the SPEC2000 benchmarks [56] in C, two popular security

sensitive applications that are usually run with high privileges, the GNU C library

which is dynamically linked to all applications, as well as other supporting libraries.

We have not invested considerable time and effort to actually devise exploits for

these target applications, without being detected by the policies shown in bold in

Table 5.1. Nevertheless, specifically crafted vulnerable programs, which allow multiple

intrusions to modify function pointers, were quite easily used as proxies to all already

present system calls. It will be hard to argue that the difficulties in similar attacks to

real applications are unsurmountable, therefore we dissect the worst case scenario of

potential future attacks when the policies shown in italic in Table 5.1 are enforced.

We summarize the results for the benchmarks with nontrivial target sets in Ta-

ble 8.1. The size of the maximum set of targets for an indirect call is given, as a

measure of the largest degree of freedom for an execution deviation. (We consider

average set sizes to be a misleading metric for security assessment and instead provide

a worst case metric.) The indirect calls in the executable or the shared object are

given for reference. The size of the union of all indirect call targets in our sets is

provided for comparison with a much simpler analysis technique that allows indirect

calls to any address taken function. An even less restrictive policy that can be applied

on unstripped binaries may allow all function entry points in the executable and the

shared libraries to be in the valid target sets.

The interpreters in the benchmarks - gap and perl have high maximum call

set size due to dynamic method dispatch and that is not surprising. Inspection of

the maximum size sets of the other benchmarks show that they contain functions

59

Benchmark Indirect calls Functions Union Maximum
ammp 27 191 32 16
mesa 694 1073 440 440
gap 1275 865 614 268
gcc 137 2031 269 129
perlbmk 64 1042 448 433

vortex 18 935 41 37
glibc-2.2.4.so 687 2582 380 185
sendmail-8.12.6 100 685 116 84
openssh-3.5p1 133 738 100 41

Table 8.1: Static points-to analysis results. The total number of functions and indirect
calls shown is as found in the executable or shared object. The size of the set of
functions present in the union of all target sets, and the size of the maximum set of
call targets are obtained by our analysis.

with similar behavior and their size reflects intrinsically equivalent operations for the

application, e.g. generic code generation in gcc, generic handling of multiple ciphers

in sshd. However, inaccuracies due to field-independence result in larger sets than

best obtainable. For example, the maximal size set of sshd is three times smaller

when that points-to set is decomposed over the structure fields. In terms of freedom of

choice for an attacker, most of the sets usually provide similar facilities, i.e. equivalent,

if any, system calls. Therefore control over a function pointer constrained to each of

these sets will have limited utility. We are currently automating this evaluation in

order to fully quantify the effective degree of freedom of all target sets, and to identify

potential applications of the techniques from Section 4.3.

8.3 Performance

Figure 8-1 shows the performance of our system enforcing execution model policies

of applications on a Linux system with a Pentium 4 processor. The figure shows

normalized execution time for the SPEC2000 benchmarks [561, compiled with full

optimization and run with unlimited code cache space. The first bar gives the per-

formance of DynamoRIO by itself. DynamoRIO breaks even on many benchmarks,

even though it is not performing any optimizations beyond code layout in creating

60

2.25

2.00

1.75

1.50-

1.25-

1.00-

0.75-

0.50-

0.25-

0.00-

E .2w 0 W &L 1 E EBt:mr
CE 0 . 0~ MO~ 0) 0) 9) E a)W
cc CU E > E

.-

Benchmark

" DynamoRIO

* DynamoRIO +
Indirect Calls

o DynamoRIO +
Indirect Calls +
Protection

Figure 8-1: Normalized program execution time for our system (the ratio of our
execution time to native execution time) on the SPEC2000 benchmarks (excluding
FORTRAN 90 benchmarks) on Pentium 4 under Linux. They were compiled using
gcc -03. The final set of bars is the harmonic mean. The first bar is for DynamoRIO
by itself; the middle bar shows the overhead of program shepherding (employing
context insensitive restrictions on indirect control transfers); and the final bar shows
the overhead of the page protection calls to prevent attacks against the system itself.

traces. The second bar shows the performance of program shepherding employing the

context insensitive enforcement strategies on indirect control transfers using a shared

hash table, as discussed in Section 3.2. The benchmarks marked with an asterisk were

not in C and therefore were run with static analysis based on profiling information.

The results show that the additional overhead is negligible on most benchmarks, even

without optimizing our prototype to site-specific hash tables.

The final bar gives the overhead of protecting DynamoRIO itself. This overhead

is again minimal, within the noise in our measurements for most benchmarks. Only

gcc has significant slowdown due to page protection, because it consists of several

short runs with little code re-use. We are working on improving our page protection

scheme by lazily unprotecting only those pages that are needed on each return to

DynamoRIO mode.

Dynamically constructed policies based on the bold entries in Table 5.1 for ap-

plications with no source access provide another set of performance measurements.

Figure 8-2 and Figure 8-3 show the performance of our system on a Pentium III

61

aD
E

2

0
C.)

cc
90J

Z

Program Shepherding Performance under Linux
1.8
1.7
1.6-
1.5-
1.4-
1.3
1.2-
1.1
1.0-
0.9-
0.8-
0.7-
0.6-
0.5-
0.4-
0.3
0.2-1
0.1 -
0.0

N 2 cc CM N E. E . CBcCU M9 E Ef M >~ EEa CL 25

Benchmark

m RIO

* RIO + Program
Shepherding

* RIO + Program
Shepherding +
Protection

Figure 8-2: Normalized program execution time for our system (the ratio of our execu-
tion time to native execution time) on the SPEC2000 benchmarks [56] (excluding all
FORTRAN 90 benchmarks) on Pentium III under Linux. They were compiled using
gcc -03. The first bar is for DynamoRIO by itself; the middle bar shows the over-
head of program shepherding (with the security policy shown in bold in Table 5.1);
and the final bar shows the overhead of the page protection calls to prevent attacks
against the system itself.

processor under Linux and Windows, respectively. Each figure shows normalized ex-

ecution time for the SPEC2000 benchmarks [56], compiled with full optimization and

run with unlimited code cache space. (Note that we do not have a FORTRAN 90

compiler on Linux or any FORTRAN compiler on Windows.) The first bar gives the

performance of DynamoRIO by itself. The slightly lower performance of the base

system on a Pentium 4 compared to a Pentium III likely results from aggressive mi-

croarchitectural optimizations that improve native execution but interact inefficiently

with our runtime system (e.g. return stack buffer, trace cache for [-ops). The second

bar shows the performance of program shepherding enforcing the policies shown in

bold in Table 5.1. Resricted control transfers are enforced by hash table partitions on

instruction type. The results show that the overhead of program shepherding enforc-

ing these policies is indistinguishable from the overhead of the base system. This is

also expected to be the case for transition pair enforcement using hash tables per-site.

The final bar gives the protection overhead on each operating system. The pre-

62

C
0
C.)
0)

N

0Z

Program Shepherding Performance under Windows

7.6
2.3

2.0
1.9

1.6
1.5
1.4
1.3
1.2
1.1

0.8
0.7

0.4
0.3

0.0
U -L cc

N E a)
E C0.

E

m RIO

* RIO + Program
Shepherding

o RIO + Program
Shepherding +
Protection

CL

> E
L_:

Benchmark

Figure 8-3: Normalized program execution time for our system (the ratio of our exe-
cution time to native execution time) on the SPEC2000 benchmarks [56] (excluding
all FORTRAN benchmarks) on Pentium III under Windows 2000. They were com-
piled using cl /Ox. The first bar is for DynamoRIO by itself; the middle bar shows
the overhead of program shepherding (with the security policy shown in bold in Ta-
ble 5.1); and the final bar shows the overhead of the page protection calls to prevent
attacks against the system itself.

viously noted slowdowns on several benchmarks are seriously exarcebated on Win-

dows, especially gcc. We conjecture that the significant difference between slowdowns

on protection on Linux and Windows is because Windows is much less efficient at

changing privileges on memory pages than Linux due to coarse grain invalidations

and significantly many subsequent TLB misses.

8.4 Memory usage

The memory usage of our security system is shown in Table 8.2. All sizes shown are in

KB. The left half of the table shows the total size of text sections of each benchmark

and all shared libraries it uses compared to the amount of code actually executed.

The third column gives the percentage of the total static code that is executed. The

right half of Table 8.2 shows the memory overhead of DynamoRIO compared to

63

II
0)
.E

0
x

Cu a) CL

cc) 0

I---
t CN.
cc a-

.0

-I
-
-

the memory usage of each benchmark. For most benchmarks the memory used by

DynamoRIO is a small fraction of the total memory used natively.

By operating dynamically, our system is able to focus on the small portion of code

that is run, whereas a static approach would have to examine the text sections in their

entirety. However, whenever multiple copies of a process are executed simultaneously

these metrics may provide an incomplete picture. On modern operating systems

static code is usually shared across processes and multiple instances do not require

additional physical memory. When such programs are executed under DynamoRIO,

the portion of their executed code will be duplicated in code cache in private pages

per process. Therefore it may result in higher physical memory requirements. On

the other hand, if multiple instances operate on different data and hence exercise

different code paths, each copy will be specialized for its particular instance. We have

yet not quantified these effects in systems with a lot of sharing or with variations

of application workload mixes. Still, we are considering schemes for efficient sharing

between code caches of different processes in order to minimize memory overheads.

64

benchmark static code executed code % executed native I DynamoRIO % extra
ammp 1515 52 3.4% 14893 1696 11.4%
applu 1597 181 11.3% 195715 2720 1.4%
apsi 1639 179 10.9% 197016 2208 1.1%
art 1424 22 1.5% 4612 928 20.1%
bzip2 1317 30 2.3% 190767 928 0.5%
crafty 1467 169 11.5% 3418 3232 94.6%
eon 2114 269 12.7% 2721 2208 81.1%
equake 1428 39 2.7% 34255 928 2.7%
gap 1713 167 9.7% 198916 4256 2.1%
gcc 2518 729 29.0% 145547 14496 10.0%
gzip 1323 27 2.0% 186374 928 0.5%
mcf 1289 24 1.9% 98516 928 0.9%
mesa 1885 63 3.3% 22812 1696 7.4%
mgrid 1475 63 4.3% 58233 1184 2.0%
parser 1390 114 8.2% 32407 3232 10.0%
perlbmk 1878 286 15.2% 76272 6304 8.3%
sixtrack 2812 347 12.3% 60786 4256 7.0%
swim 1452 44 3.0% 196433 928 0.5%
twolf 1591 124 7.8% 4256 3232 75.9%
vortex 1890 395 20.9% 50390 6304 12.5%
vpr 1540 114 7.4% 40425 2208 5.5%
wupwise 1477 67 4.5% 181527 1696 0.9%
arithmetic mean 1670 159 8.5% 90741[3023 16.2%
harmonic mean - 4.5% -- - 1.8%

Table 8.2: Memory usage of the SPEC2000 benchmarks [56], in KB, on Linux. For
benchmarks with multiple data sets, the run with the maximum memory usage is
shown. Static code is the total size of the text sections of the benchmark and all
shared libraries it uses. Executed code is the total size of all instructions processed
by DynamoRIO when running the benchmark. Extra memory is the total memory
used by DynamoRIO code, code caches and other DynamoRIO data. Native total is
total memory used by the benchmark when run natively (outside of DynamoRIO).

65

66

Chapter 9

Related Work

Reflecting the significance and popularity of buffer overflow and format string attacks,

there have been several other efforts to provide automatic protection and detection

of these vulnerabilities. We summarize here the more successful ones.

StackGuard [13] is a compiler patch that modifies function prologues to place "ca-

naries" adjacent to the return address pointer. A stack buffer overflow will modify

the "canary" while overwriting the return pointer, and a check in the function epi-

logue can detect that condition. This technique is successful only against sequential

overwrites and protects only the return address. Attacks exploiting random access

memory writes or targeting other program addresses are therefore not affected.

FormatGuard [12] is a library patch for dynamic checks of format specifiers to

detect format string vulnerabilities. However, it is limited to programs which directly

use the standard printf library functions without using custom wrappers around

them.

Static analyses have also been applied for detection of very common classes of

vulnerabilities as buffer overflow [63] and format string [54] vulnerabilities. When

capturing most common cases, these tools report relatively low false positive rates.

StackGhost [26] is an example of hardware-facilitated return address pointer pro-

tection. It is a kernel modification of OpenBSD that uses a Sparc architecture trap

when a register window has to be written to or read from the stack, so it performs

transparent xor operations on the return address before it is written to the stack

67

on function entry and before it is used for control transfer on function exit. Return

address corruption results in a transfer unintended by the attacker, and thus attacks

can be foiled unless attackers are able to read the process addresses.

Techniques for stack smashing protection by keeping copies of the actual return ad-

dresses in an area inaccessible to the application are also proposed in StackGhost [26]

and in the compiler patch StackShield [61]. Both proposals suffer from various compli-

cations in the presence of multi-threading or deviations from a strict calling convention

by setjmp(o or exceptions. Unless the memory areas are unreadable by the appli-

cation, there is no hard guarantee that an attack targeted against a given protection

scheme can be foiled. On the other hand, if the return stack copy is protected for the

duration of a function execution, it has to be unprotected on each call, and that can

be prohibitively expensive (mprotect on Linux on IA-32 is 60-70 times more expen-

sive than an empty function call). Techniques for write-protection of stack pages [13]

have also shown significant performance penalties.

Enforcing non-executable permissions on IA-32 via OS kernel patches has been

done for stack pages [18] and for data pages in PaX [49]. Our system provides exe-

cution protection from user mode on unmodified binaries and achieves better steady

state performance. Protection against attacks using existing code was also proposed

in PaX by randomizing placement of position independent code; however, it is open

to attacks that are able to read process addresses and thus determine the program

layout.

Type safety of C code has been proposed by the CCured system [43] which extends

the C type system, infers statically verifiable type safe pointers, and adds run time

checks only for unsafe pointers. Cyclone [35] provides a safe dialect of C in a similar

fashion, but requires annotations in conversion of legacy code. The reported overhead

of these systems is in the 30-300% range. We present a much easier to adopt system

that requires no recompilation or code modification.

Other programming bugs stemming from violations of specific higher level seman-

tic rules of safe programming have been targeted by static analyses like CQUAL [25],

ESP [16], MC [31], and static model checkers SLAM [60], MOPS [10]. In an unsafe

68

language like C, techniques that claim to be sound do not hold in the presence of vio-

lations of the memory and execution model assumed in the analyses [60]. Our system

may be used to complement these approaches and enforce the execution model of the

application.

Most host-based intrusion detection systems focus on the sequences of system

calls executed by an application [24, 30, 27, 50, 62, 40]. The mimicry attacks in-

troduced [62] and further analyzed by Wagner [64] show how attackers can easily

evade existing intrusion detection at the system call level by introducing undetected

sequences of system calls. Our example from Section 5.4.2 is an information flow [32]

mimicry attack. While we agree that system calls contain all externally visible secu-

rity relevant program actions, we also argue that system call interposition provides an

incomplete interface for containing attacks. Allowing malicious code to masquarade

as the normal application, and divert its system call trace is already too empowering.

Our system is close in spirit to the hybrid approach of using static analysis and

runtime model checking proposed by Wagner and Dean [62]. A static analysis is

used to construct a finite state automaton recognizing the system calls possibly gen-

erated by a program, a runtime component to simulate the nondeterministic model

space, and a system call interposition tool to verify the generated by the program

sequence. The finite automata are generated based on assumed valid execution mod-

els - context-insensitive represented as a call graph, or context-sensitive as result

of modeling a runtime stack. Our system is as at least as accurate in detection of

malicious system call sequences, since it disallows any deviations from the execution

model they assume. The non-determinism in the generated finite automata often has

high runtime simulation overheads for the more accurate models. Our techniques sub-

sume the need to further model and dynamically check system calls, and we present

a practical system with minimal overhead. An extension to the runtime model check-

ing applicable to the case of remote execution systems has been presented [29]. The

addition of network based attacks drastically changes the threat model, and the large

network latency dwarfs the overheads of NFA simulation. Hence, direct applicability

to host based intrusion detection is likely to be inefficient.

69

The indirect call target sets in both [62, 29] are considered to contain all address

taken functions. This is obtained either by source code [62] or binary code [29]

analysis. The call graphs in our models are much more accurate as obtained by a

points-to analysis. The possibility of adapting a points-to analysis to binary code

is hypothesized [29] and that will be an interesting area of research. Both [62,

29] address the issue of argument manipulation. However, the proposed techniques

already allow arguments that can be changed dynamically - and in our system

statically determined by the existing code arguments cannot be modified by attackers.

Accurate containment of argument replacement attacks is not yet effectively addressed

by most other IDS.

Software fault isolation techniques [65, 55] modify a program binary to restrict

the address range of memory operations. Execution monitors [52] were applied in

SASI [22] to enforce a memory model via static code instrumentation. These systems

have much higher overheads due to heavy-weight sandboxing operations and inability

to elide them from critical paths.

Our base system infrastructure itself, DynamoRIO [6, 7], is based on an IA-32

port of Dynamo [3]. Other software dynamic optimizers are Wiggins/Redstone [17],

which employs program counter sampling to form traces that are specialized for the

particular Alpha machine they are running on, and Mojo [11], which targets Windows

NT running on IA-32. None of the above has been used for anything other than

optimization. Strata [53] uses dynamic translation with lower performance to enforce

a subset of the techniques we have presented earlier [38].

70

Chapter 10

Future Work

The performance results show that our prototype is an already practical system.

We are continuing our optimization efforts and believe that good engineering will

yield close to zero overheads in all aspects of the system. Many opportunities for

optimization exist in the base system and it is gradually improved with respect to

latest microarchitecture specifics. Better trace creation heuristics will result in easily

reachable steady state which has no overheads. We have already delineated how the

security policy enforcement can be implemented with minimal additional overhead.

The costs of protection with the current system can readily go down with an on-

demand protection changes. Nevertheless, we present here alternative solutions to

these problems when supported by the operating system or underlying hardware.

10.1 Operating System Extensions

The described so far technique allows a program shepherding implementation solely

in one protection domain - it may be an application or an OS kernel. A program

shepherding system protecting user mode applications, as our current prototype, can

benefit from further facilities already provided by the hardware memory management

unit. Operating support will be needed in order to take advantage of these privileged

facilities. On most computer architectures including IA32, a supervisor privilege bit

determines whether a particular page is writable. All pages that need to be read-only

71

in application mode, but writable in shepherding mode, can be marked as supervisor

pages. The protection bits of the pages will thus be static and will not need to be

modified between the two contexts. Switching contexts will then have the cost of a

kernel trap and will be free of race conditions. Additional techniques for improving

context switch performance, including use of segmentation hardware are discussed in

CoVirt [37].

10.2 Hardware Support

The currently implemented system does not require any hardware support and yet

achieves minimal overheads. In order to fully remove the checks from critical ex-

ecution paths for maximum performance some components of the system can be

implemented in hardware. Our requirements often overlap substantially with already

existing hardware facilities. Therefore they only require minimal modifications for an

interface with a program shepherding system, whenever a fast hardware path fails.

Modern processors cache control data that needs to be validated only when it is put

in the cache. Examples of these are the instruction translation look-aside buffers

(TLB); Branch Target Address Caches (BTAC) used for indirect branch prediction;

and return stack buffers (RSB) used for return target prediction. Traps on mispredic-

tion or cache misses will often allow software to handle the slow paths and perform

the security checks needed.

Intel's processors have included a return stack buffer (RSB) since the Pentium

Pro [47]. The RSB is of limited size and is used as a branch predictor for return

instructions. On a call the return address is pushed onto the RSB, and on a return

the top RSB value is popped and used as the predicted target of the return. Since

the hardware is storing each return address, it is only natural to propose using the

RSB to enforce the calling convention.

Exposing the RSB to software might be done by allowing read and write access.

Then a program shepherding system could monitor every call and return and insert

code to handle underflow and overflow and code to compare the RSB prediction to

72

the real return address. On overflow, the RSB is copied to memory which is then

protected. On underflow, the most recent saved RSB copy is written in to the RSB.

For better performance only half of the RSB is stored and swapped in, with the upper

half being shifted down on overflow, to prevent thrashing due to frequent minor call

depth changes.

A further level of hardware support would be to add traps for underflow, overflow,

and RSB misprediction. Then the software need not impose instrumentation on every

call and return; it would simply need to handle the traps.

73

74

Chapter 11

Conclusions

This thesis introduced program shepherding, which employs the techniques of re-

stricted code origins, restricted control transfers, and un-circumventable sandboxing

to provide strong security guarantees. We have implemented program shepherding

in the DynamoRIO runtime system, which does not rely on hardware, operating sys-

tem, or compiler support, and operates on unmodified binaries on both generic Linux

and Windows IA-32 platforms. We have shown that our implementation successfully

prevents a wide range of security attacks efficiently. We have shown that by enforcing

the program's execution model by restricting control transfers, we are able to thwart

current and future security attacks. We incorporate static program analysis with

dynamic analysis and program transformations to provide an efficient enforcement of

the execution model.

We have discussed the potential design space of security policies that can be built

using program shepherding. Our system currently implements a set of policy settings

for trusted binaries with no source access, and a stricter set when source is available.

We are expanding the set of security policies that our system can provide without

significant loss of performance. Future expansions include using more semantic in-

formation provided by compilers to specify permissible operations on a fine-grained

level, and performing explicit protection and monitoring of known program addresses

to prevent corruption. For example, protecting the application's GOT [20] and al-

lowing updates only by the dynamic resolver can easily be implemented in a secure

75

and efficient fashion.

Program shepherding does not prevent exploits that overwrite sensitive data.

However, if assertions about such data are verified in all functions that use it, these

verifications cannot be bypassed if they are the only declared entry points. Further-

more, data modifications that lead to a conditional control flow shift may still be

approachable by an extension of this technique. Infeasible execution paths as a result

of data changes in between guarding conditional branches may be detected to point

out memory model violations due to security attacks or unspecified race conditions.

A potential application of program shepherding is to allow operating system ser-

vices to be moved to more efficient user-level libraries. For example, in the exoker-

nel [21] operating system, the usual operating system abstractions are provided by

unprivileged libraries, giving efficient control of system resources to user code. Pro-

gram shepherding can enforce unique entry points in these libraries, enabling the

exokernel to provide better performance without sacrificing security.

We believe that program shepherding will be an integral part of future security

systems. It is relatively simple to implement, has little or no performance penalty, and

can coexist with existing operating systems, applications, and hardware to provide an

easy adoption path. Many other security components can be built on top of the un-

circumventable sandboxing provided by program shepherding. Program shepherding

provides useful security guarantees that drastically reduce the potential damage from

attacks.

76

Bibliography

[1] L.O. Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen, May 1994. DIKU
report 94/19.

[2] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F.
Sweeney. Adaptive optimization in the Jalapefio JVM. In 2000 ACM SIG-
PLAN Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA'00), October 2000.

[3] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A transpar-
ent runtime optimization system. In Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI '00), June
2000.

[4] Banshee.
http: //bane. cs. berkeley. edu/banshee.

[5] blexim. Basic integer overflows. Phrack, 10(60), December 2002.

[6] Derek Bruening, Evelyn Duesterwald, and Saman Amarasinghe. Design and im-
plementation of a dynamic optimization framework for Windows. In 4th ACM
Workshop on Feedback-Directed and Dynamic Optimization (FDDO-4), Decem-
ber 2001.

[7] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infrastructure
for adaptive dynamic optimization. In 1st International Symposium on Code
Generation and Optimization (CGO-03), March 2003.

[8] Bulba and Kil3r. Bypassing StackGuard and StackShield. Phrack, 5(56), May
2000.

[9] CERT/CC Advisories. Computer Emergency Response Team (CERT).
http: //www. cert. org/advisories/#2002.

[10] Hao Chen and David Wagner. MOPS: An infrastructure for examining security
properties of software. In A CM Conference on Computer And Communications
Security (CCS 2002), 2002.

77

[11] Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, and David M. Gillies. Mojo: A
dynamic optimization system. In 3rd ACM Workshop on Feedback-Directed and

Dynamic Optimization (FDDO-3), December 2000.

[12] Crispin Cowan, Matt Barringer, Steve Beattie, and Greg Kroah-Hartman. For-
matGuard: Automatic protection from printf format string vulnerabilities, 2001.
In 10th USENIX Security Symposium, Washington, D.C., August 2001.

[13] Crispin Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. Stack-
Guard: Automatic adaptive detection and prevention of buffer-overflow attacks.
In Proc. 7th USENIX Security Symposium, pages 63-78, San Antonio, Texas,
January 1998.

[14] Common vulnerabilities and exposures. MITRE Corporation.
http://cve.mitre.org/.

[15] Manuvir Das. Unification-based pointer analysis with directional assignments.
In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2000), Vancouver, BC, Canada, June 2000.

[16] Manuvir Das, Sorin Lerner, and Mark Seigle. ESP: Path-sensitive program ver-
ification in polynomial time. In PLDI '02: Proceedings of the A CM SIGPLAN
2002 Conference on Programming Language Design and Implementation, June
2002.

[17] D. Deaver, R. Gorton, and N. Rubin. Wiggins/Restone: An on-line program
specializer. In Proceedings of Hot Chips 11, August 1999.

[18] Solar Designer. Non-executable user stack.
http://www.openwall.com/linux/.

[19] L. Peter Deutsch and Allan M. Schiffman. Efficient implementation of the
Smalltalk-80 system. In ACM Symposium on Principles of Programming Lan-
guages (POPL '84), January 1984.

[20] Executable and Linking Format (ELF). Tool Interface Standards Committee,
May 1995.

[21] Dawson R. Engler, M. Frans Kaashoek, and James O'Toole. Exokernel: An
operating system architecture for application-level resource management. In
Symposium on Operating Systems Principles, pages 251-266, 1995.

[22] Ulfar Erlingsson and Fred B. Schneider. SASI enforcement of security policies: A
retrospective. In Proceedings of the New Security Paradigms Workshop, Septem-
ber 1999.

78

[23] Manuel Fahndrich, Jeffrey S. Foster, Zhendong Su, and Alexander Aiken. Partial
online cycle elimination in inclusion constraint graphs. A CM SIGPLAN Notices,
33(5):85-96, 1998.

[24] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A. Longstaff.
A sense of self for Unix processes. In Proceedinges of the 1996 IEEE Symposium
on Research in Security and Privacy, pages 120-128. IEEE Computer Society
Press, 1996.

[25] J. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation PLDI., 2002.

[26] M. Frantzen and M. Shuey. Stackghost: Hardware facilitated stack protection.
In Proc. 10th USENIX Security Symposium, Washington, D.C., August 2001.

[27] Tal Garfinkel. Traps and pitfalls: Practical problems in in system call interpo-
sition based security tools. In Proc. Network and Distributed Systems Security
Symposium, February 2003.

[28] David Gay and Alexander Aiken. Language support for regions. In Proceedings
of the 2001 A CM SIGPLAN Conference on Programming Language Design and
Implementation, pages 70-80, Snowbird, Utah, June 2001.

[29] Jonathan T. Giffin, Somesh Jha, and Barton P. Miller. Detecting manipulated
remote call streams. In 11th USENIX Security Symposium, August 2002.

[30] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A secure
environment for untrusted helper applications. In Proceedings of the 6th USENIX
Security Symposium, San Jose, Ca., 1996.

[31] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler. A system and
language for building system-specific, static analyses. In Proceedings of the A CM
SIGPLAN Conference on Programming Language Design and Implementation
PLDI., 2002.

[32] Nevin Heintze and Jon G. Riecke. The SLam calculus: programming with secrecy
and integrity. In ACM, editor, POPL 1998 the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Diego, California,
pages 365-377, 1998.

[33] Nevin Heintze and Olivier Tardieu. Demand-driven pointer analysis. In Proceed-
ings of the 2001 ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 24-34, Snowbird, Utah, June 2001.

[34] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using CLA: A
million lines of code in a second. In Proceedings of the 2001 ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 254-
263, Snowbird, Utah, June 2001.

79

[35] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang. Cyclone:
A safe dialect of C. In USENIX Annual Technical Conference, June 2002.

[36] Michel Kaempf. Vudo - an object superstitiously believed to embody magical
powers. Phrack, 8(57), August 2001.

[37] Samuel T. King and Peter M. Chen. Operating system extensions to support
host based virtual machines. Technical Report CSE-TR-465-02, University of
Michigan, 2002.

[38] Vladimir Kiriansky, Derek Bruening, and Saman Amarasinghe. Secure execution
via program shepherding. In 11th USENIX Security Symposium, August 2002.

[39] Calvin Ko, Timothy Fraser, Lee Badger, and Douglas Kilpatrick. Detecting and
countering system intrusions using software wrappers. In Proc. 9th USENIX
Security Symposium, Denver, Colorado, August 2000.

[40] Yihua Liao and V. Rao Vemuri. Using text categorization techniques for intrusion
detection. In 11th USENIX Security Symposium, August 2002.

[41] A. Milanova, A. Rountev, and B. G. Ryder. Precise call graph construction
in the presence of function pointers. In Proceedings of the Second IEEE Inter-
national Workshop on Source Code Analysis and Manipulation, October 2002.
(SCAM'02).

[42] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford,
and Nicholas Weaver. The spread of the sapphire/slammer worm, January 2003.
http://www.cs .berkeley . edu/~nweaver/sapphire/

[43] George C. Necula, Scott McPeak, and Westley Weimer. CCured: type-safe
retrofitting of legacy code. In Symposium on Principles of Programming Lan-
guages POPL, pages 128-139, 2002.

[44] Nergal. The advanced return-into-lib(c) exploits. Phrack, 4(58), December 2001.

[45] Tim Newsham. Format string attacks. Guardent, Inc., September 2000.
http: //www . guardent . com/docs/

Format String. PDF.

[46] Aleph One. Smashing the stack for fun and profit. Phrack, 7(49), November
1996.

[47] Intel Pentium 4 and Intel Xeon processor optimization reference manual. Intel
Corporation, 2001.

[48] Zenith Parsec. Remote linux groff exploitation via lpd vulnerability.
http: //www. securityfocus . com/bid/3103.

80

[49] PaX Team. Non executable data pages.
http://pageexec.virtualave.net/
pageexec .txt.

[50] Niels Provos. Improving host security with system call policies. Technical Report
CITI-TR-02-03, CITI, University of Michigan, November 2002.

[51] Eric Rotenberg, Steve Bennett, and J. E. Smith. Trace cache: A low latency
approach to high bandwidth instruction fetching. In 29th Annual International
Symposium on Microarchitecture (MICRO '96), December 1996.

[52] Fred B. Schneider. Enforceable security policies. Information and System Secu-
rity, 3(1):30-50, 2000.

[53] Kevin Scott and Jack Davidson. Safe Virtual Execution using software dynamic
translation. In Proceedings of the 2002 Annual Computer Security Application
Conference, December 2002.

[54] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detecting
format string vulnerabilities with type qualifiers. In In Proceedings of the 10th
USENIX Security Symposium, 2001, pages 201-220, 2001.

[55] C. Small. MiSFIT: A tool for constructing safe extensible c++ systems. In
Proceedings of the Third USENIX Conference on Object- Oriented Technologies,
Portland, Oregon, June 1997. USENIX.

[56] SPEC CPU2000 benchmark suite. Standard Performance Evaluation Corpora-
tion.
http://www.spec.org/osg/cpu2000/.

[57] Stuart Staniford, Vern Paxson, and Nicholas Weaver. How to Own the internet
in your spare time. In 11th USENIX Security Symposium, August 2002.

[58] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings
of the 23rd Annual ACM Symposium on Principles of Programming Languages,
pages 32-41, 1996.

[59] Zhendong Su, Manuel Fdhndrich, and Alexander Aiken. Projection merging:
Reducing redundancies in inclusion constraint graphs. In Proceedings of the 27th
Annual ACM Symposium on Principles of Programming Languages, pages 81-95,
2000.

[60] Sriram K. Rajamani Thomas Ball. The SLAM project: Debugging system soft-
ware via static analysis. In POPL 2002, pages 1-3, January 2002.

[61] Vendicator. Stackshield: A "stack smashing" technique protection tool for linux.
http: //www. angelf ire . com/sk/
stackshield/.

81

[62] David Wagner and Drew Dean. Intrusion detection via static analysis. In IEEE
Symposium on Security and Privacy, 2001.

[63] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken. A first
step towards automated detection of buffer overrun vulnerabilities. In Network
and Distributed System Security Symposium, pages 3-17, San Diego, CA, Febru-
ary 2000.

[64] David Wagner and Paolo Soto. Mimicry attacks on host-based intrusion detection
systems. In ACM Conference on Computer And Communications Security (CCS
2002), 2002.

[65] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Ef-
ficient software-based fault isolation. ACM SIGOPS Operating Systems Review,
27(5):203-216, December 1993.

[66] Rafal Wojtczuk. Defeating solar designer non-executable stack patch.
http: //www. securityfocus . com/archive/

1/8470.

82

