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1. Problem Formulation

Consider the following feedback control system:

* Id

e fU PO(F y

Here P(s) is a causal transfer function, the plant, and it is required

to find a compensator, with causal transfer function C(s) which achieves

internal stability and minimizes the weighted sensitivity function in the

infinity norm:

I IW(s)[+P(s)C(s)l-'l 1. (1.1)

where W(s) is a proper, stable, outer rational function, normalized to be 1

at infinity. The plant P(s) is not assumed to be a rational function. In

this paper we concentrate on the case

P(s) = eSA Po(s) (1.2)

where PO(s) is a strictly proper rational function which is outer.

The choice of W as proper (and not strictly proper) makes the problem

difficult, since in general there is a high degree of non-uniqueness in the

solution.

2. Notation, Mathematical Formulation and Preliminaries

We follow the basic notation of Hoffman (1962] and Garnett [1981].

Let D = [zeCIlzI<l1 and n+ = {zSeCRe z>O}. By HP(D) or HP(n+), l<p<,

we denote the Banach space of holomorphic functions in D or n+ with the

usual norms. Given a geHP(D), let

h(w) = (l+w)-2/pg((w-1)(w+l)-). (2.1)

Then heHP(n+). The mapping g -*h is an isometric isomorphism of HP(D) to



HPO(+). We shall usually work with HP(n+) and the argument will be

omitted.

We assume the plant admits a co-prime factorization:

P(s) = (s) -l(s), ,408H

(2.2)

3 a,b,eHm, such that, aq+b9 = 1.

By the Corona Theorem (cf. Garnett [1981], p. 324) this will be true if,

there exists a 6>0, such that

r(W) I + 10(w) I > 6 Y wn . (2.3)

We also assume that P(s) is the transfer function corresponding to a

causal, time-invariant, linear bounded operator

T:Le(R) -)L2(R), (2.4)

where L2 denotes the extended L2-space (cf. for example Desoer and

Vidyasagar [1975]. A characterization of such transfer functions can be

given in terms of the Paley-Wiener-Schwartz theorem (c.f. Segal [19551],

Theorem 3).

The Youla parametrization of compensators achieving stability is then

valid for this more general class. We say that the causal feedback

compensator C(s) renders the feedback system stable of

u,dL 2 ->e,v,f,yeL2. (2.5)

Such a compensator will be termed admissible and (2.5) is true if and only

if

(l+P(s)C(s))-1 , P(s)(+P(s)C(s)) , C(s)(l+P(s)C(s)) e H (2.6)

Note however internal asymptotic stability of the canonical state-space

realizations corresponding to each of these transfer functions is not

necessarily guaranteed in this general setting. Some form of exact
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controllability and observability conditions will have to be verified for

this to be true. We then have

Proposition 2.1

C is an admissible controller ( -3 ZeH , ZfbT- 1 such that

C = a+_Z (2.7)
b-IZ '

As is well known, the original sensitivity minimization problem does not

admit a solution and it is necessary to consider a relaxed problem. In the

standard way, we consider the relaxed problem

Min |iW+(fhlJ , (2.8)
hsHw

where WsH" and is outer and eSH" inner. (2.8) is equivalent to the problem

of minimizing the distance

d(TW, Ho), (2.9)

where T denotes the conjugate of T.

If W is proper and not strictly proper, TWeLL and in general there is

no unique solution. If W is strictly proper, VWsH*+C (H +C = set of

functions f+g, fsHm, gsC (the space of continuous functions)), then there

is a unique solution (c.f. Garnett {1981], Theorem 1.7). If T has an

essential singularity on the imaginary axis at the point g then tWeH=+C te-

W(g) = O. In this case there is a unique solution to (2.8).

3. Generalized Interpolation and the Theory of Hankel Operators

The results of this section are contained in Sarason [1967, 1985] and

AdamJan, Arov and Krein [1968].

Let H be a Hilbert space and K a closed subspace. Let SesY(H), the

space of bounded linear operators from H to H. Let

T = PKSIK (3.1)

T is the compression of S on K and S is the dilation of T on H. Now let
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H=H2 and K=(vH2) ' where T is an inner function. Let WeH = and let Mw be the

corresponding multiplication operator on H2. Clearly MW 8e 9(H2) and

IIMWII (H2) = I IWIX.
Let T = PKMWJK. W is termed the interpolating symbol of T. Consider

the semigroup of translation s )e- e sA and the compressions SA = PKMe-sAIK

Then,

Proposition 3.1. Tes(K), TSA = SAT VA>0 -3 ZeH' s.t. T = PKMZIK and

JIJTIL(K) = J11Jz11. Eo

Z is the minimal interpolating symbol of T. Returning to the relaxed

sensitivity minimization problem (2.8), if we take K = (TH2) , T = PKMWIK,

then

Min [IW+qhllJ = IITI 1(K)). (3.2)

Let fsK and f#O. f is called a maximal vector of T of

JITfJ J=JITJ . JJf (3.3)

Proposition 3.2. Let f be a maximal vector T. Then

Tf

is a minimal interpolating symbol of T, which is a constant times an inner

function.

It is clear that T has a maximal vector iff T*T has a maximal

eigenvalue, and p(T*T) = IIT*TJJ = JIT11 2 and hence J1ITJ = (p(T*T))1/2.

Finally if T is compact then T has a maximal vector and T is compact

(- WeH +C.

An operatorye:H 2 -)(H2) is a Hankel operator f-'3 a symbol e8L~ such

that .e=P_M[ H2, where P_ is the projection on (H2) . Iflis a Hankel

operator with symbol 0, then 0' is a symbol ofAi4 -*--' 8 Ha. The operator

T = PKMWIK defines a Hankel operatordh= P_M-T, with symbol IpW. Clearly 0

is a symbol of.e<-9-4 is a symbol of T.

Let /'be a Hankel operator with HI[4j = s. Then on H2 (D), we have the

following criterion for the uniqueness of the minimal symbol ofyf.
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Theorem 3.3. H has a unique minimal symbol ---

lim <(p2I-y~th- l.1,l1 = ~,

p4 s

where 1 is the function identically 1 on H2 (D). -

The function 1 transforms to on H2 (n+). In case there is no
s+1-

unique symbol, one can obtain a parametrization of all minimal symbols of

by the following generalization of the Schur algorithm for interpolation.

Let

jt8 = (1-'s1, O<<(1. Let (3.4)

= 2'e
8 8e

The sequences {qu} and {r.) are uniformly bounded on compacts of D and

hence there exists a sequence en ->0 such that q. re converge uniformly on

the compacts of D and hence to q, r in the space of holomorphic functions

on D. Let

U = . (3.5)

Theorem 3.4. 0 is a minimal symbol forYf e)-3 e~&(H) (the unit ball of

H (D)) such that

0 = ULT = -q(P+
r. +q

0 is unimochular <->) is inner. EJ

On H2 (O+), we have to use q' and r' in the definition of U, where
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q = (s+l)q'

r = (s+l)r 

4. Sensitivity Minimization for Delay Systems.

This section follows Flamm [1985], Flamm and Mitter [1986], and

Fagnani [1986]. See also Foias, Tannenbaum and Zames [1986].

In the first instance, we take the plant to be P(s) = e-sA, and the

n

weighting function W(s) = n(s)d-l(s), with n(s) = 7 (s+ai) and d(s) =

n I i=l

~T (s+bi), ai, bi > 0. In this case K = (e-sAH2 ) and T = PKMWIK. It is

i=1

easy to show that

-1i(K) = L2 (0,A)C L2 (0,=), where

9?is the Laplace Transform considered as a unitary operator between L2(0,O)

and H2 and- f1 denotes the inverse Laplace Transform. Defining

V =i? ,TJ2 (O) we see that V a -(L2(0,A))
IL2(0,A)

and

V = I+S where S is the Volterra operator (4.1)

(Sf)(t) = JG(t-s)f(s.)ds Yt [0O,A] and (4.2)

0he kernel Gt)hastheexplicitrepresentation(4.3)

The kernel G(t) has the explicit representation

n -b.t
G(t) = ale 3 where (4.4)



8

aj = £n(-bj)-d(-bj)] (bi b )1 (4.5)

Since T and V are unitarily equivalent, in order to calculate the

maximal eigenvalue of T*T (if it exists) it is useful to obtain a state-

space realization of V*V.

Proposition 4.1. The operator V*V is realized as the map f -+z, where

Xl =-DX + a'f; x (0) =0 (4.6)

Y = c'x 1 + f

2 = D2 - a'y; x2 (A) = 0

Z = CX2 + Y ,

where D = diag. (bl,...obn) c = (1,1,...,1)' and a = (al,...,an)'. [ 0

Now,

V V = I + (S+S +S*S)

= Identity + Compact operator, and hence

a(V*V) = 1+a(S+S*+S*S).

Therefore, the spectrum of V V consists of a succession of eigenvalues

with a possible point of accumulation at 1 and the point 1 whose spectral

type is not known a priori.

From this we may arrive at the following criteria for the existence of

maximal eigenvalues:

(i) If U = S+S*+S*S is a non-negative operator, then V*V has a

maximal eigenvalue.

(ii) If 3 M>O such that JW(iw)j>l, Vb2M, then V*V has a maximal

eigenvalue greater than 1.

Now,



W(iaw)| > 1 <- (o 2 +a2) > TT(t2 +b (4.7)
i=l i1=

and we may conclude that

n n

a > b2 -)V V has a maximal eigenvalue. (4.8)

i=1 i=l

Also,

n n

a > bai -*V V has a maximal eigenvalue. (4.9)

i=l i=l

Let us denote by X2 the maximal eigenvalue and g the corresponding

eigenvector. Then from the theory of Sarason it follows that the optimal

sensitivity is given by

-T(vg)
X= 9f(g) * (4.10)

Indeed, we have the following expression for the optimal sensitivity.

Proposition 4.2. There exist polynomials v,c of degree (n-l) such that vV

= A2c6 and

X(s) = 22 n(s)c(s) - e d(s)v(s) (4.11)
A2d(s)c(s) - e-SAff(s)v(s)

where for a polynomial P(s), P(s) = (-1) degree P P(-s).

Proof: From (4.6)
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-1
c' (sI-D) x2(0)

f(s) =(f(s)) 2 -1 -1
X2-(I-c'(sI-D) b)(I+c'(sI+D) b)

c(s)d(s)

X2d(s)d(s)-n(s)ff(s)

where c(s) is a polynomial of degree (n-l), and hence

n

f(t) (ai eI + ae ), (4.12)

i=1

where Pi are the solutions of

12dd-nf = 0 and ai, .i (4.13)

are appropriate coefficients.

The eigenvalues of VV are obtained by restricting the functions given

by (4.12) to the interval O0,A] and are of the form

F(s) = - (f )O, d- sAb (4.14)
2 dda-nf

where b is an appropriate polynomial. One can then compute

= (i) + (4.15)

i=1

By computing, V*Vf = Vf + S*Vf, and imposing the condition V*Vf = X2f, we

obtain

n i -Pi

1 1 + 1 =0 j. (4.16)
-hb +R -h -R



By computing, Y((Vf)), one obtains the expression for the optimal

sensitivity

-sA~
n(s)c(s)-e v(s)d(s)

X(s) = (4.17)
d(s)c(s)-e-SAb(s)

It remains to find the relation between the polynomials c,v and b. It can

be shown

b(s) = - (s)v(s), and (4.18)

v(s)V(s) = l2c(s)M(s), (4.19)

which concludes the proof. EJ

4.1 The One-Pole One-Zero Case

In this case W(s) = We have the following theorem.

Theorem 4.3. If A<1, then there exists a maximal vector and the optimal

sensitivity is given by

-sA-

X(s) = n-e d (4.20)
Xd-e SA '

If P>1, no unique solution exists. All minimal symbols are given by

X (s) n(s)-e- (s)s) (4.21)
0 d(s)-e-sA b(s)o(s)

X0 is inner ( )0 inner.

Proof. The first part of the theorem follows from Proposition 4.2. The

second part of the theorem follows from Theorem 4.3 and 4.4. C]
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Remark 4.4. If we take 0=O in (4.14) then we recover W(s) = d(s) as a

minimal symbol and this corresponds to applying open-loop control. By

taking 0=1, we obtain the minimal symbol

n(s)-e d(s)
X(s) = 

d(s)-e- i(s)

which is inner.

2
(s+l)

4.2 The Case where W(s) = (sa) a .

This case is far more complicated. If a+t_>2, we obtain a unique

solution. This follows by applying the criterion (4.9). Now

I WIlI = 1 ( >a > 1.

In this case, one can show that W is a minimal symbol. Now assuming a#l,

BP1, we obtain the following theorem which is the analog of Theorem 4.3

Theorem 4.4. ap-1 - no unique solution exists. All minimal symbols are

given by

n-e d- 0
X = s 0 swhere (4.22)

d-e sn,0

X= b(s+l) , 0 ea(H ), and (4.23)
X= v+b(s-!)9

V is a polynomial of degree 1 and b is a constant.

Proof. The proof of this theorem follows from a detailed application of

Theorems 4.3 and 4.4. CE]

Remark 4.5. It should be noted that in the above T does not necessarily

lie in Ha. -]
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Remark 4.6. One may conclude that in the 'neighbourhood' of a+P=2, a

unique solution exists. However in the region {(a,3)ja+P>2, a<(11, it is

not known whether the solution is unique or non-unique. It appears to be

very difficult to calculate the norm of the operator T in this region.

5. Concluding Remarks.

A far more general theory can be obtained when we combine the ideas

presented in this paper (and earlier in Flamm [1986], Flamm and Mitter

[1985], [1986]) with the Scattering Theory ideas implicit in AdamJan, Arov

and Krein [19681 and the theory of realizations of infinite-dimensional

systems, as for example discussed in Fuhrmann [1981]. The basis for these

ideas are the following:

We define:

K H2H 2) (VH2l (as before),

K# = (H2 ) = ((H

We have the decomposition:

L =))H(D K# D52 =H2 @ K# @(H2)' .

Define the Hankel operator with symbol j)W

atW : H2 -(H2)

Then since W e Ha is proper (but not strictly proper) and outer,

W- 1 £ Ha. Hence

KerfY ) = IH~

Therefore we have the canonical factorization



14

H2 2.W _.2H X - >(H z )

H2/Rer(,X' ) K.
QSW

where~, and 6 are the reachability and observability operators. Moreover

W with domain restricted to K has image K#. We also havew w: (H2 -)H2,

with symbol VW, with domain restricted to K# has range K and the diagram

H2 )W 2
H2 , (H)

H2 r K2/
(H )/KerOw) - K

To conform to systems theory, one should regard = P (Wqf) as a causal

operator andWe-W as an anti-causal operator. The canonical state space

realizations corresponding to these two Hankel operators will be exactly

controllable and observable (at least when Range :(WiW) is closed, which can

be ensured by a Corona condition on the pair. (1,W),). Finally,

PK g *Wes wPK = TI*T and therefore the eigenvalue problem for T*T is the

same as the eigenvalue problem for WJt(wfW considered as an operator from

K to K. One should therefore work with the realizations of JW9W and,~Y W

instead of T and T* as done in this paper. It is also clear that a large

part of the state space constructions of Glover [1984]admit a generalization

to this setting.

The details of these ideas will be presented elsewhere.
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