
 
 

 

 
Abstract — this paper deals with the problem of shipping 

multiple commodities from a single vendor to a single buyer. Each 
commodity is assumed to be constantly consumed at the buyer, and 
periodically replenished from the vendor. Furthermore, these 
replenishments are restricted to happen at discrete time instants, 
e.g., a certain time of the day or a certain day of the week. At any 
such time instant, transportation cost depends on the shipment 
quantity according to certain discount scheme. Specifically, we 
consider two transportation quantity discount schemes: LTL 
(less-than-truckload) incremental discount and TL (truckload) 
discount. For each case, we develop MIP (mixed integer 
programming) mathematical model whose objective is to make an 
integrated replenishment and transportation decision such that the 
total system cost is minimized. We also derive optimal solution 
properties and give numerical studies to investigate the problem. 
 

Index Terms — Vendor-Buyer Problem, Transportation 
Quantity Discount, LTL Incremental Discount, TL Discount 
 

I. PROBLEM CONTEXT 
n this paper, we study the multi-item single-vendor- 
single-buyer problem (a.k.a. single-warehouse-single- 

retailer problem), in which transportation quantity discount 
is provided by external carrier. The problem of interest is 
partially motivated by the growth of emerging 3PL 
(third-party logistics) industry and application of VMI 
(vendor-managed inventory) systems. 

Consider the following example. Super-Vendor, a 
consumer goods supplier, provides one of its clients 
Super-Mart some dozens of commodities from 50-cent 
diapers to 50-dollar cosmetics. Super-Mart adopts VMI 
system, that is, Super-Vendor has the liberty of making 
replenishment decisions for Super-Mart rather than filling 
replenishment orders from it. A 3PL company, Super- 
Logistics, transports the commodities. And according to the 
transportation contract, trucks from Super-Logistics arrive 
at 8am in the morning if shipment is scheduled in that day 
and no other arrival time of a day is available. We consider 
two quantity discount schemes as follows. 

LTL incremental discount transportation: When the 

shipment quantity is less than the vehicle capacity, quantity 
discount is applied only to the additional shipment 
quantities beyond the predetermined breakpoint. In this 
situation, the logistics manager of Super-Vendor faces a 
basic tradeoff: infrequent replenishments raise inventory 
holding costs, and lower transportation costs, while the 
contrary happens with frequent replenishments. 

TL discount transportation: When the shipment quantity 
is larger than the vehicle capacity, TL (truckload) discount 
transportation is used. In TL discount scheme, Super- 
Vendor pays LTL transportation cost until it has paid for the 
cost of a full truckload, at which point, there is no charge for 
the remaining quantities shipped in that truckload.  

Thus, we obtain two different single-vendor-single-buyer 
problems, which can be meaningful and interesting.  

The remainder of this paper is organized as follows. Next 
section presents a review of the relevant literature. The 
description of the problem under consideration is given in 
§III. Centralized models for the LTL incremental discount 
transportation and TL discount transportation are 
respectively presented in §IV and §V. Finally, we give a few 
concluding remarks in §VI. 

II. RELEVANT LITERATURE 
We note that the literature on VMI system or 

transportation quantity discount schemes is abundant. In the 
interest of brevity, our literature review in this section 
mainly focuses on the single-vendor- single-buyer problem.    

The Single-vendor-single-buyer problem was firstly 
introduced by Goyal (1976) which studied an integrated 
inventory problem of shipping a single commodity from a 
single supplier to a single customer. Goyal showed that 
system cost savings can be achieved if the supplier and 
customer cooperate to determine the economic joint 
inventory policy.  

Monahan (1984) developed a model from a vendor’s 
perspective for establishing an optimal price discount 
schedule with the premise that the vendor’s order processing 
cost is larger than the buyer’s fixed order cost. Banerjee 
(1986a) extended and generalized these results to account 
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for the situations where the vendor is a manufacturer. He 
demonstrated the equivalence between approaches 
suggested by Monahan (1984) and Banerjee (1986b) for lot 
size modification accompanied by a price discount in order 
to increase vendor profits. Goyal (1988) illustrated that 
manufacturing a batch which is made up of an integral 
number of equal shipments generally produces a lower cost 
solution. The related literature up to 1989 was well 
summarized in the review paper of Goyal and Gupta (1989). 

Lu (1995) developed a heuristics algorithm to the 
single-vendor-single-buyer problem with the assumption of 
a production batch providing an integral number of equal 
shipments. And Goyal (1995) used the same numerical 
example from Lu (1995) to investigate an alternative policy 
involved successive shipments within a production batch 
increasing by a constant factor. This policy is based on a 
much earlier idea set out by Goyal (1977) to solve a very 
similar problem in a slightly different setting. In Hill (1997, 
1999), different types of policy were considered with the 
assumption of successive shipments to the buyer within a 
single production batch.  

Hoque and Goyal (2000) assumed the vendor’s 
replenishment/production rate is finite. Their model 
incorporates a capacity constraint limiting the replenishment 
quantities of the buyer. Toptal et al. (2003) generalized the 
single-vendor-single-buyer problem to simultaneously 
consider truck capacity constraints and inbound/outbound 
transportation costs. They provided both exact solution 
procedures and heuristics algorithms. 

A special single-vendor-single-buyer problem called  
single-link problem was introduced by Speranza and 
Ukovich (1994) to consider shipping multiple commodities 
from an origin to a destination with consideration of discrete 
shipment frequencies. They assumed the FTL (full 
truckload) transportation. Their model determines the 
number of trucks to be used and allocates different 
commodities to trucks. The branch-and-bound algorithm of 
Speranza and Ukovich (1996) was used for the solution of 
this single-link problem. 

An extension to the single-link problem was studied by 
Bertazzi et al. (1997) with considering one origin and 
multiple destinations. They presented different heuristics by 
solving a single link problem for each of the given 
destinations first, and then on improving the solution 
through local search techniques. Bertazzi et al. (2000) 
proposed an improved branch-and-bound algorithm for the 
single-link problem. Bertazzi and Speranza (2002) gave a 
framework for the identification of optimal continuous and 
discrete shipping strategies for the single link problem.  

In reviewing the previous work in vendor-buyer problem, 
we found that, all the papers overlook practical 
transportation quantity discount consideration when 
modeling the problem. Therefore, analyzing the impact of 
transportation quantity discount on vendor-buyer problem is 
one of the main contributions of this paper.  

III.  PROBLEM DESCRIPTION 
The following Table 1 displays the problem notations 

used in this section, along with the measure units for the 
considered quantities. 

TABLE 1. PROBLEM NOTATIONS 
 

k, K: 
 
Index and set of commodities, (k∈K). 

n, N: Index and set of discrete time instants, (n∈N).     
dk: Demand rate of commodity k at the buyer (quantity per time 

instant). 
vk: Unit volume of commodity k (volume).  
hk: System holding cost rate of commodity k ($ per quantity per time 

instant). 
t, T: Discrete value and set of possible replenishment/shipment 

periods, (t∈T). 
n
tδ : Binary coefficient about if shipment with period t happens at 

time instant n.  
t
kx : Fraction of commodity k replenished in period of t, 0 1t

kx≤ ≤ . 
tk: Replenishment/shipment period of commodity k (when SF 

policy applies). 
zn: Shipment quantity under Time Instant Consolidation Policy 

(volume). 
zt: Shipment quantity under Frequency Consolidation Policy 

(volume). 
F1(z): Transportation cost function of LTL incremental discount 

scheme 
F2(z): Transportation cost function of TL discount scheme 
N׀ :׀  Cycle of total shipment quantity pattern  

 

A.  Commodity Assumptions  
We use k to denote the index of commodities and K to 

denote the set of commodities. At the buyer, commodities 
are assumed to be continuously consumed at deterministic 
and constant rates. And no backorder is allowed. Let dk 
denote the demand rate for commodity k. Each commodity k 
is characterized with a unit volume vk. And all these 
commodities are assumed to have the same density. Thus, 
we ignore the shipment class category issue, in which 
commodities are charged according to different cost 
schemes based on their density values.  

 

B.  Discrete Periodic Replenishment Policy 
We assume that each commodity is periodically 

replenished. Furthermore, the minimum replenishment (in 
this paper, the terms “shipment” and “replenishment” are 
used interchangeably) interval is assumed to be an integral 
value, and all possible replenishment periods must be a 
multiplier of this value. This assumption was justified by 
Hall (1985), Muckstadt and Roundy(1993), and Speranza 
and Ukovich (1994) that the traditional EOQ-type formulas 
may produce an impractical shipment policy to implement 
such as shipping a commodity every 1.4142 days.  

We use n to denote the possible discrete shipment time 
instant, and t to denote the value of shipment period. We 
also assume that there is a given set  for t: t T∈ .We assume 
the minimum interval between shipments tmin is 1. Thus we 
have n = 0, 1, 2… Now, Let us consider two possible 
policies of deciding how commodities are replenished:  



 
 

 

Multiple frequency (MF) policy: each commodity can be 
partially replenished in different frequencies. Let variable 

t
kx  denote the fraction of commodity k replenished in period 

t. We have 0 1t
kx≤ ≤  and 

 1t
k

t T

x
∈

=∑ .                                                                   (3.1) 

Single frequency (SF) policy: each commodity k must be 
replenished in a single frequency. Therefore, t

kx  is a binary 
variable. Under the single frequency policy, commodity k 
can only be assigned one shipment period denote by  kt : 

t
k k

t T
t x t

∈

= ∑ .                                                                  (3.2) 

In principle, MF policy outperforms SF policy due to 
more flexibility allowed. We will show in section 4 that 
these two policies are equivalent for the centralized model 
of LTL incremental discount transportation problem. 

C. Transportation Costs  
First, we have an assumption that all the commodities are 

shipped at time instant 0 and no shipment staggering is 
allowed. Under this assumption, shipment with period t 
happens at the time instants 0, , 2 ,3 ,...t t t  

We use z to denote the shipment quantity, and F(z) to 
denote the transportation cost function. Let Ctrans denote the 
average transportation cost. This cost considered is defined 
on an infinite time horizon. However it is obviously  that we 
only need to consider a finite time horizon |N|, which is  

{ :  with 0}t
kN lcm t k x= ∃ > .                                      (3.3) 

In this paper, such horizon is assumed to start at time 
instant 0 and end at time instant N -1. This time instant set 
[0, 1, 2, …, |N|-1] is denoted by N.  

In terms of calculation of shipment quantity z, we 
consider two consolidation policies as follows: 

Time instant consolidation policy: all the commodities 
shipped at the same time instant are consolidated into one 
shipment. We use zn to denote this total shipment quantity 
scheduled at time instant n. Furthermore, we use a binary 
coefficient n

tδ  to denote if the shipment with period t 
happens at time instant n. Thus we have  

,       t n
n k k k t

t T k K

z td v x n Nδ
∈ ∈

= ∀ ∈∑∑                                   (3.4) 

  ( )1n
trans n

n N
C F z

N ∈

= ∑                                                   (3.5) 

Frequency consolidation policy: only the commodities 
shipped in the same frequency can be consolidated. We use 
zt to denote the shipment quantity with shipment period t.  

,       t
t k k k

t T k K
z td v x t T

∈ ∈

= ∀ ∈∑∑                                      (3.6) 

( )tt
trans

t T

F z
C

t∈

= ∑                                                          (3.7) 

 

D. Holding Costs  
We assume that the system holding cost is proportional to 

the total  inventory carried in the system. Let kh  denote the 
holding cost rate for commodity k in the system. Then we 
have the expression of holdingC  

t
holding k k k

k K t T
C h d tx

∈ ∈

= ∑∑                                                (3.8) 

E.  Summary 
In this section, we describe a multi-item single-vendor- 

single-buyer problem that differs from the previous work by 
incorporating transportation quantity discount. This 
single-vendor-single-buyer problem models many practical 
situations such as component manufacturer and assembly 
plant, central warehouse and local retailer, and so on.  
Moreover, it may contribute to the analysis of complex 
supply chain networks when decomposition approach is 
applied and each decomposed subproblem can be optimized 
independently as a single-vendor-single-buyer problem as 
considered in this paper.  

 

IV.  LTL INCREMENTAL DISCOUNT TRANSPORTATION 
In this section, we study a centralized model for the LTL 

incremental discount transportation problem. As discussed 
in §I, such model is meaningful in the situation with two 
assumptions: (1) Under certain strategic alliance (e.g. VMI), 
vendor and buyer cooperate to minimize the system-wide 
cost. (2) The shipment quantity is less than the capacity of a 
vehicle. The objective of this centralized model is to make 
optimal replenishment and transportation decisions such 
that the total system cost is minimized.  

 

A. LTL Incremental Discount Transportation Cost  
In the LTL incremental discount cost scheme, quantity 

discount is applied only to the additional shipment 
quantities beyond the predetermined breakpoint. As 
described presented in Balakrishnan and Graves (1989), this 
cost structure can be modeled as a piece-wise linear and 
concave function 1( )F z as depicted in Figure 4.1. 
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Figure 4.1.Incremental discount cost function F(z)
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  Let r be the index of different slopes of the cost function, 
and R be the set of r ( )r R∈ . Let 1,  r rM M−   denote the 
lower and upper limits, respectively, on the rth interval of 
shipment quantities. Here 0 0M =  and RM  can be set to 

the possible maximum shipment quantity. Let rf and rα  
denote the fixed and variable shipment cost associated with 
the rth interval. We can express the piece-wise linear 
concave cost function as: 

1( ) r rF z f zα= +  ,  given ( 1,r rz M M− ⎤∈ ⎦                      (4.1) 

We assume  that time instant consolidation policy is used. 
The average system cost 1

nTC  consists of the average 

transportation cost n
transC  and average holding cost holdingC : 

 1 1
1 ( )n t

n k k k
n N t T k K

TC F z td h x
N ∈ ∈ ∈

= +∑ ∑∑                           (4.2) 

 

B.  Mathematical Model 
In this section, we develop a mixed integer programming 

model. We use a binary decision variable r
ny  to denote if 

shipment quantity nz  falls in the range of ( 1,r rM M− ⎤⎦  at 

time instant n. And the decision variable r
nz  is equal to 

shipment quantity nz  if nz  falls in the range of 

( 1,r rM M− ⎤⎦ . These decision variables are: 
r
ny  = 1,  if shipment quantity ( 1,r r

nz M M− ⎤∈ ⎦  at 

time instant n,    = 0,  otherwise.  
r
nz  = nz ,  if shipment quantity ( 1,r r

nz M M− ⎤∈ ⎦  at 

time instant n,    = 0,   otherwise.  
A MIP (mixed integer programming) problem can be 

formulated as follows. 
Problem Φ1  

Min  1( ) ( )t r r r r
k k k n n

k K t T n N r R
h td x f y z

N
α

∈ ∈ ∈ ∈

+ +∑∑ ∑∑          (4.3) 

 
s.t.    1  ,                         t

k
t T

x k K
∈

= ∀ ∈∑                      (4.4) 

    ( )   ,  t n r
k k k t n

k K t T r R

td v x z n Nδ
∈ ∈ ∈

= ∀ ∈∑∑ ∑                     (4.5) 

   ,               ,   r r r
n nz M y n N r R≤ ∀ ∈ ∈                 (4.6)   

    1   ,                    ,   r r r
n nz M y n N r R−≥ ∀ ∈ ∈          (4.7) 

    1  ,          r
n

r R
y n N

∈

≤ ∀ ∈∑                                     (4.8) 

0 1  ,        ,   t
kx t T k K≤ ≤ ∀ ∈ ∈                           (4.9) 

    { }0,1   ,          ,   r
ny n N r R∈ ∀ ∈ ∈                        (4.10) 

   0  ,               ,   r
nz n N r R≥ ∀ ∈ ∈                       (4.11)  

 
The objective function (4.3) presents the average system 

cost 1
nTC . Constraints (4.4) ensure that each commodity is 

completely assigned shipment periods, and constraints (4.5) 
set the total shipment quantity at time instant n. Constraints 
(4.6)- (4.8) make sure that if cost index r is used at time 
instant n, then the shipment quantity at time instant n must 
fall in its associated interval 1( , ]r rM M− . Finally constraints 
(4.9) indicate that at most one cost range can be selected at 
each time instant. Constraints (4.9) specify that multiple 
frequency policy is used.  

 

C.  Optimal Solution Properties 
We show two interesting properties for the optimal 

solution of problem Φ1. Let us first introduce the following 
notations. Under the multiple frequency policy, we use min

kt  

and max
kt  to denote the minimum and maximum of the 

shipment periods assigned to commodity k.  
( )min min : 0 ,             t

k kt t x k K= > ∀ ∈                        (4.12). 

( )max max : 0 ,             t
k kt t x k K= > ∀ ∈                        (4.13). 

   
LEMMA 1: Let the commodities be indexed in a 

nondecreasing order of the ratio k kh v  such 

that ( ) ( ) ( )1 1 2 2 ... K Kh v h v h v≤ ≤ ≤ . Then in the optimal 

solution of problem Φ1, we have the following relationship. 
max min max min max min
1 1 2 2 ... K Kt t t t t t≥ ≥ ≥ ≥ ≥                             (4.14) 

 
PROOF: See the Appendix A.1  
 Since the proof does not need any particular shipment 

cost structure assumption, Lemma 1 is true for a general 
centralized model in which the transportation cost only 
depends on the shipment quantity and the inventory cost is 
proportional to the total inventory carried in the system.  

 
LEMMA 2: In problem Φ1, multiple frequency policy and 

single frequency policy are equivalent. Then, it is optimal to 
replenish each commodity with a single period. 
Furthermore, for all the commodities of the same ratio of 
h v , it is optimal to replenish them with the same periods. 
That is, 

,i jt t=     given               ,ji

i j

hh
i j K

v v
= ∀ ∈                 (4.17) 

PROOF: See the Appendix A.2 
The proof needs the assumptions of concave 

transportation cost structure and no shipment capacity 
restriction. Lemma 2 makes sense since any one unit volume 
of such commodities contributes the same to transportation 
and inventory costs. 

 

D.  Numerical Example 
In this section, we present a numerical example that 



 
 

 

illustrates the problem Φ1 . The main purpose is to show 
how our model actually works. We also consider a simple 
shipment strategy in which all the commodities must be 
shipped with the same frequency. We refer this strategy as 
Unified-T policy. We investigate  the situations in which our 
model outperforms the simple Unified-T model. 

In our example, 12 commodities are shipped. The vehicle 
will arrive at the vendor every Monday morning, that is, the 
basic discrete shipment period is one week. The possible 
shipment period set T is [1, 2, 3, 4, 6, 8, 12 (weeks)]. 
Consequently, we only need to consider a planning horizon 

of 24 weeks. We assume demand rate dk is 30 (quantity per 
week) and unit volume vk is 1 (volume per unit commodity) 
for every commodity.  

  For the LTL incremental discount cost structure 
considered. There are four cost ranges which are [500, 500, 
1000, 2000]. The fixed cost of each shipment is 1000 dollars 
and unit shipment cost rates at four cost ranges are [10, 8, 7, 
6 (dollars)]. The holding cost rates (hk) of commodities are 
from 0.05 dollar per unit per week to 5 dollars per unit per 
week. (see talble 2). 

 `
TABLE 2  NUMERICAL EXAMPLE OF INCREMENTAL DISCOUNT CASE 

  holding cost rate hk , replenishment period Tk and system cost  UnifiedT  Saving

#  k 1 2 3 4 5 6 7 8 9 10 11 12 Cost  Cost  

1 hk 0.05 0.05 0.85 0.85 1.65 1.65 2.45 2.45 3.25 3.25 4.05 4.05 126784  128112 1.04%

 Tk 12 12 1 1 1 1 1 1 1 1 1 1   1  

2 hk 0.05 0.05 0.05 1.25 1.25 1.25 2.45 2.45 2.45 3.65 3.65 3.65 123472  125088 1.29%

 Tk 12 12 12 1 1 1 1 1 1 1 1 1   2  

3 hk 0.05 0.05 0.05 0.05 0.05 0.05 2.45 2.45 2.45 2.45 2.45 2.45 110000  114720 4.12%

 Tk 12 12 12 12 12 12 2 2 2 2 2 2   2  

4 hk 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 2.45 2.45 2.45 2.45 99008  106512 7.05%

 Tk 12 12 12 12 12 12 12 12 2 2 2 2   3  

5 hk 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 4.25 4.25 4.25 4.25 109376  118176 7.45%

 Tk 12 12 12 12 12 12 12 12 2 2 2 2   2  

6 hk 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 5 5 5 5 112256  122496 8.36%

 Tk 12 12 12 12 12 12 12 12 1 1 1 1   2  

 
4.5. Summary 
In this section, we studied the centralized model whose 

objective is to minimize the sum of LTL incremental 
discount transportation costs and holding costs. This model 
accounts for the specificities of a practical situation where 
vendor-buyer strategic alliance exists and shipment 
quantity is less than the vehicle capacity. We first 
introduced the cost structure of the LTL incremental 
discount transportation, and developed a MIP formulation 
for the problem considered. Then we showed two 
interesting optimal solution properties of the problem. 
Finally, we gave a numerical example to show how our 
model actually works.  

 

V. TRUCKLOAD DISCOUNT TRANSPORTATION 
In last section, we discuss the single-vendor-single buyer 

problem with consideration of LTL incremental discount 
transportation mode, which is widely used when shipment 
quantity is smaller compared with the capacity of a 
transportation vehicle (e.g. truck, container etc). In this 
section, we assume multiple vehicles are needed to deliver 
large shipment quantity. This situation was studied in 
Speranza and Ukovich (1994) where a so-called single-link 

model was introduced to consider FTL (full-truckload) 
transportation mode. They showed that system cost savings 
can be obtained through making replenishment and 
transportation decisions simultaneously. However, the 
assumption of exclusive FTL transportation option in their 
single-link model may not be practical in some situations 
because sending an almost empty truck costs the same as a 
full one in FTL transportation mode.  

In this section, we investigate the TL (TruckLoad) 
discount transportation mode which can model two 
practical situations as follows.  

(1) With TL discount cost structure, carrier can give 
incentives to shippers to practice less-than-truckload 
shipment so that inventory cost is decreasing. 
Consequently, the carrier can also gain profits by charging 
in  higher transportation cost.  

(2) Both FTL carrier and LTL carrier are available in the 
market. The shipper uses FTL carrier to ship the quantities 
of truckloads. While for the delivery of the leftover 
quantities, the shipper chooses FTL carrier or LTL carrier 
based on the cost charged. 

In the numerical case analysis, our model results in more 
system cost savings than the single-link model does.  



 
 

 

A.  TruckLoad Discount Transportation Cost  
We are now introducing the TL discount transportation 

cost structure. We use P to denote the truckload capacity in 
volume. And a predetermined number 'P  ( 0 'P P< < ) 
divides the truckload P into two segments: (0, ']P  
and ( ', ]P P . Transportation cost charged for any vehicle 
depends on shipment quantity z carried on the vehicle:  

(1). When (0, ']z P∈ : if the shipment quantity z falls 
into the first segment (0, ']P , transportation cost consists of 
a fixed and a variable component. The fixed cost, denoted 
by c0, is incurred independent of the shipment quantity z as 
long as it is not zero. The variable cost, denoted by α, is 
incurred on a per-unit-volume basis. We also refer to c0 as 
the setup cost and α as the proportional shipment cost. 

 (2). When ( ', ]z P P∈ :  if the shipment quantity z falls 
into the second segment ( ', ]P P , transportation cost is a 
constant value c independent of the shipment quantity z. 
We also refer to c as full-truckload cost.  

Furthermore, the TL discount transportation function 
2 ( )F z  is continuous over the range of (0, ]P , that is to say, 

we have the equation relationship of 0 'c P cα+ = . The 
general TL discount transportation cost function 2 ( )F z can 
be described as follows:  
(1) if ( 1) ( 1) '  P z P Pη η− < ≤ − +  

( )2 0( ) ( 1) 1F z c c z Pη α η= − + + − −⎡ ⎤⎣ ⎦  

(2) if ( 1) 'P P z Pη η− + < ≤  

2 ( )                                                 (5.1)F z cη=
 Where η  denotes the number of trucks used to carry 

shipment quantity z. The cost function 2 ( )F z can be 
modeled as a piece-wise linear cost structure as below.  

 
B.  Mathematical Model 

In this section, we develop a mixed integer programming 
model. We assume frequency consolidation policy is used. 
We use binary decision variable ty  to denote if the leftover 
quantity of tz  falls in the segment of (0, ']P . The decision 

variable 1
tz  is equal to the leftover quantity of tz  if 

( ) ( )( 1 , 1 't t tz P P Pη η∈ − − + ⎤⎦ , and the decision variable 
2
tz  is equal to the leftover quantity of tz  if 

( )( 1 ',t T tz P P Pη η∈ − + ⎤⎦ . These decision variables are: 

ty
 

=  1,   if  ( ) ( )( 1 , 1 't t tz P P Pη η∈ − − + ⎤⎦ . 

=  0,   if ( )( 1 ',t T tz P P Pη η∈ − + ⎤⎦ . 
1
tz

 
= ( 1)t tz Pη− − ,  if ( ) ( )( 1 , 1 't t tz P P Pη η∈ − − + ⎤⎦  

=  0,  otherwise 
2
tz

 
=  ( 1)t tz Pη− − ,  if ( )( 1 ',t T tz P P Pη η∈ − + ⎤⎦  

=  0,  otherwise 
According to the decision variables given as above, the 

TL discount transportation function 2 ( )tF z can be 
formulated as: 

( ) 1
t0

2
t

 if   y 1    1
( ) 1,2,3...    (5.2)

  if   y 0                             
t t

t
t

c c z
F z

c
η α

η
η

=⎧ − + +⎪= =⎨ =⎪⎩
 We also have the relationship 0 'c c Pα= + . Thus  (5.2) can 
be reformulated as:  

( )1
t

2
t

'   if   y 1 
( ) 1,2,3...      (5.3)   

  if   y 0                      
t t

t

t

c P z
F z

c

η α
η

η

⎧ − − =⎪= =⎨ =⎪⎩
  Furthermore, we can use the binary variable ty  to derive 
a general expression: 

1
2 ( ) ( ' )t t t tF z c P y zη α= − −                                        (5.4) 

 
A mixed integer programming problem can be 

formulated as follows.  
Problem Φ2 

Min  ( ) ( )11 't
k k k t t t

k K t T t T

h td x c P y z
t
η α

∈ ∈ ∈

⎡ ⎤+ − −⎣ ⎦∑∑ ∑      (5.5) 

 
s.t.  1  ,                   t

k
t T

x k K
∈

= ∀ ∈∑                             (5.6)  

      1 2( 1)   ,     t
k k k t t t

k K
tv d x P z z t Tη

∈

= − + + ∀ ∈∑         (5.7) 

    10 '   ,            t tz P y t T≤ ≤ ∀ ∈                             (5.8) 

    ( )2'(1 ) 1   ,      t t tP y z P y t T− ≤ ≤ − ∀ ∈                 (5.9) 

    0 1   ,                ,t
kx t T k K≤ ≤ ∀ ∈ ∈                   (5.10) 

    { }0,1   ,                 ty t T∈ ∀ ∈                               (5.11) 

    1 2, 0                      t tz z t T≥ ∀ ∈                              (5.12) 
      integer                   t t Tη ∀ ∈                               (5.13) 
   
The objective function (5.5) expresses the minimization 

of average system cost: the first term presents the average 
system holding cost, and the second term presents the 
average system transportation cost. Constraints (5.6) 
ensure that, for each commodity, the whole quantity is 
shipped and assigned to different shipment periods. The 
quantity relationships between variables t

kx , tη , 1
tz  and 

Figure 5.1. Truckload discount transportation cost  
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2
tz  are defined in constraints (5.7). Cosntraints (5.8) and 

(5.9) specify that if shipment with period t is full-truckload 
charged, the binary variable Ty  must be 0; otherwise Ty  
must be 1.  

 

C.  Numerical Example 
In this section, we consider a problem of shipping 5 

commodities. The unit volume kv  for each commodity is 1 
(volume per unit commodity) and the demand rate kd  is 
the same for all commodities. The holding cost rates kh of 
each commodity is [1, 1.2, 1.5, 1.8, 2 ]. The vehicle 
capacity P is 100 (volume unit) and the transportation cost 
of full truckload c is 300 (dollar).  The setup cost c0 is 40 
and variable cost α is 4. The possible replenishment periods 
are [1, 2, 3, 4, 5, 6, 7, 8]  

 
dk = 22                                         TL Discount Model 
Xt 

j  t=1 t=2 t=3 t=4 t=5 t=6 ...... 
k=1 .747 .253 0 0 0 0 ...... 
k=2 1 0 0 0 0 0 ...... 
k=3 1 0 0 0 0 0 ...... 
k=4 1 0 0 0 0 0 ...... 
k=5 1 0 0 0 0 0 ...... 
ηt 1 1 0 0 0 0 ...... 
  Total Cost  516.08    

 
dk = 22                                        Single-Link Model 
Xt 

j  t=1 t=2 t=3 t=4 t=5 t=6 ...... 
k=1 .747 0 0 0 .253 0 ...... 
k=2 1 0 0 0 0 0 ...... 
k=3 1 0 0 0 0 0 ...... 
k=4 1 0 0 0 0 0 ...... 
k=5 1 0 0 0 0 0 ...... 
ηt 1 0 0 0 1 0 ...... 
  Total Cost  546.08    

 
dk = 27                                       TL Discount Model 
Xt 

j  t=1 t=2 t=3 t=4 t=5 t=6 ...... 
k=1 1 0 0 0 0 0 ...... 
k=2 1 0 0 0 0 0 ...... 
k=3 1 0 0 0 0 0 ...... 
k=4 1 0 0 0 0 0 ...... 
k=5 1 0 0 0 0 0 ...... 
ηt 2 0 0 0 0 0 ...... 
  Total Cost  664.28    

 
dk = 27                                        Single-Link Model 
Xt 

j  t=1 t=2 t=3 t=4 t=5 t=6 ...... 
k=1 .28 .72 0 0 0 0 ...... 
k=2 1 0 0 0 0 0 ...... 
k=3 1 0 0 0 0 0 ...... 
k=4 1 0 0 0 0 0 ...... 
k=5 1 0 0 0 0 0 ...... 
ηt 1 1 0 0 0 0 ...... 
  Total Cost  749.17    

 
dk = 31                                        TL Discount Model 
Xt 

j  t=1 t=2 t=3 t=4 t=5 t=6 ...... 
k=1 .014 .896 .09 0 0 0 ...... 
k=2 1 0 0 0 0 0 ...... 
k=3 1 0 0 0 0 0 ...... 
k=4 1 0 0 0 0 0 ...... 
k=5 1 0 0 0 0 0 ...... 
ηt 1 1 1 0 0 0 ...... 
  Total Cost  749.17    

 
dk = 31                                        Single-Link Model 
Xt 

j  t=1 t=2 t=3 t=4 t=5 ...... t=8 
k=1 .014 .896 0 0 0 ...... .09 
k=2 1 0 0 0 0 ...... 0 
k=3 1 0 0 0 0 ...... 0 
k=4 1 0 0 0 0 ...... 0 
k=5 1 0 0 0 0 ...... 0 
ηt 1 1 0 0 0 ...... 1 
  Total Cost  778.34    

D. Summary 
In this section, we considered the TL discount 

transportation mode.  This model can be seemed as an 
extension of the single-link model introduced by Speranza 
and Ukovich (1994). In the numerical example, we 
investigated both TL discount model and single-link model. 
We found that TL discount model will lead to more system 
cost savings and more frequent replenishments. 

 

VI. CONCLUSION 
This paper investigates the single-vendor-single- buyer 

problem with incorporation of transportation quantity 
discount. We study consider two discount schemes: LTL 
incremental discount and TL discount. MIP models are 
developed and numerical examples are carried out. The 
future wok can be developing centralized models for the 
problems considered in this paper.  
 

APPENDICES 
 

A.1. Proof of Lemma 1 
To prove Lemma 1, it is sufficient to prove the following 

statement: for any two commodities i and j, if we have the 
relationship of ( ) ( )i i j jh v h v≤ , then commodity i should 
not be replenished more frequent than commodity j, that is 

If ( ) ( )i i j jh v h v≤ , then min max   ,i jt t i j K≥ ∀ ∈        (A.1) 
This can be proved by contradiction. Suppose there 

exists an optimal solution t
kX  where we have min max

i jt t< . 

Let ( )maxmin

min , ji tt
i i i j j jv d x v d xδ = . We construct a new 

feasible solution 't
kX  identical to t

kX  except for the 



 
 

 

shipment periods of commodity j and i. Consider ( )i iv dδ  

of commodity i with shipment period min
it  and ( )j jv dδ  

of commodity j with shipment period max
jt  in the original 

solution t
kX . We change their shipment periods to each 

other’s to get the new solution 't
kX . Then the quantities 

shipped at min
it  and max

jt  remain the same, so does the 
average system transportation cost.  

Therefore, the cost difference between solutions 't
kX  

and t
kX  is only attributable to the average holding cost for 

δ  of commodity i and δ  of commodity j: 

( ) ( )

'

max min

min max

max min min max

( ) ( )

     

       

     

     

t t
k k

i j i j i j
i i j j

i i i j j j
i i j j

j i i i j j
i j

j i

j

TC X TC X

d t h d t h
v d v d

d t h d t h
v d v d

t t h t t h
v v

h h
v

δ δ

δ δ

δ δ

δ

−

⎡ ⎤⎛ ⎞⎛ ⎞
= +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞
− +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞⎛ ⎞
= − + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= − − ( )max min 0                            (A.2)j i
i

t t
v

⎛ ⎞
− ≤⎜ ⎟⎜ ⎟

⎝ ⎠
 

The first term in A.2 presents the average holding cost 

for ( )i iv dδ  of commodity i and ( )j jv dδ  of commodity 

j in the new solution 't
kX , and the second term presents the 

counterpart in the original solution t
kX . The inequality is 

due to the assumptions of  min max
i jt t<  

and ( ) ( )i i j jh v h v≤ . Thus the original solution t
kX  does 

not outperform the new solution 't
kX . Therefore, A.1 is 

proved. Consequently, Lemma 1 is true.  
 

A.2. Proof of Lemma 2 
To prove Lemma 2, it is sufficient to prove the following 

statement: under single frequency policy, for any two 
commodities i and j with the relationship 
of ( ) ( )i i j jh v h v= , it is optimal to let them shipped in the 
same frequency, that is 

If ( ) ( )i i j jh v h v= ,   then     ,i jt t i j K= ∀ ∈             (A.3) 
This can be proved by contradiction as follows. Suppose 

there is a unique optimal solution t
kX , in which i jt t≠ . Let 

us define a notation Nk to denote the set of time instants at 
which commodity k is shipped. Thus commodity i and j 
have the different shipment time instant sets: iN  and jN . 
Suppose that, at time instant n, the total shipment quantity 

1( , ]r r
nz M M−∈  and let r

nf f= , r
nα α= . Thus the 

corresponding shipment cost at time instant n can be 
described as 1( )n n n nF z f zα= + . The average system cost 

associated with solution t
kX  is: 

[ ]

1
1( ) ( )

1            

t
k k k k n

k K n N

k k k n n n
k K n N

TC X h d t F z
N

h d t f z
N

α

∈ ∈

∈ ∈

= +

= + +

∑ ∑

∑ ∑
              (A.4) 

Let’s construct two new feasible solutions 't
kX  and ''t

kX  

identical to t
kX  except for the shipment period of 

commodity i and j: 
' ' 'and t:   ,        t
k j i k kX t t t k j= = ∀ ≠                                  

(A.5) 
'' '' ''and :  ,        t
k i j k kX t t t t k i= = ∀ ≠                                   

(A.6) 
Note that, we need the assumption of no transportation 

capacity restriction to make sure that these two new 
solutions are feasible. The average system cost associated 
with the new solution 't

kX  is: 
'

' '
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             (A.7)

 The above inequality holds because of the concavity and 
monotonicity of the incremental discount shipment cost 
function 1( )nF z : 1 1( ) ( )n n nF z F zδ α δ+ ≤ + . Then the 

difference in system cost between solution 't
kX  and ''t

kX  
is: 

' '( ) ( )

1   ( )

1  ( ) )          (A.8)

i j

i j
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∑ ∑

∑ ∑



 
 

 

 
Now we consider the other new solution ''t

kX . By a 
similar derivation as A.7, we can show the difference in 
average system cost between solutions 't

kX  and ''t
kX  is: 

'' ''

'

( ) ( )

1    ( )

1    ( )     (A.9)

j i

i j

t t
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≤− − + − =− ∆⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑

∑ ∑

The last equality in A.9 holds because of the 
assumption ( ) ( )i i j jh v h v= . Thus, we have 

' '' ' 'min( , ) min( , ) 0i i

j j

d v
d v

∆ ∆ = ∆ − ∆ ≤ , which means that the 

origin solution t
kX  does not outperform both of the new 

solutions 't
kX  and ''t

kX . And this contradicts the initial 

assumption that t
kX  is the unique optimal solution. 

Therefore, statement A.3 is true. To treat commodity i and j 
as the different amount of the same commodity, we can 
prove Lemma 2.  
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