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Abstract

In this thesis, we introduce a notion of asymptotic stability for a holomorphic vector bundle
with a global holomorphic section on a projective manifold. We prove that the special
metric on the bundle studied by Bradlow is the limit of a sequence of balanced metrics
that are induced from the asymptotic stability. Conversely, assuming the convergence of
a sequence of balanced metrics, we show that the sequence converge to a special metric in
the sense of Bradlow. The proof uses the asymptotic expansion of the Bergman kernel for
general holomorphic vector bundle and machineries about moment maps involving two group
actions developed by Donaldson.
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Introduction

In [29], Yau proposed that there is a connection between Kahler-Einstein metrics and the
Chow stability of the underlying algebraic manifolds. In [24], [25], Tian introduced two
new stability conditions, K-stability and CM-stability, for algebraic manifolds and proved
that the existence of constant scalar curvature metrics implies the two stabilities. In [10],
Donaldson proved that the existence of constant scalar curvature metrics implies the Chow
stability. The main purpose of this thesis is to extend Donaldson’s ideas to those special

metrics on bundles with sections in the sense of Bradlow [3].

In [23], Tian proved that a given polarized kahler metric is the limit of Kahler metrics
induced from a sequence of projective embeddings using the polarization. Tian established
the result by studying the asymptotic expansion of Bergman kernel adapted to the given
metric. The asymptotic expansion of Bergman kernel was later studied in greater detail by
Ruan [22], Zelditch [30], Catlin [6] and Lu [15]. Notably, Lu evaluated the lower four terms
in the asymptotic expansion. The salient one is the second term, which is exactly the scalar
curvature. Thus a converging sequence of metrics with constant Bergman kernel converge to
a constant scalar curvature metric. Metrics of constant Bergman kernel, so called balanced
metrics, has been studied by Luo in [16]. He proved that the existence of balanced metrics

imply the Chow stability of the underlying manifold.

Thus to show that a constant scalar curvature metric implies the Chow stability, the
main issue is to show the existence of balanced metrics. Donaldson achieved this goal by
perturbing a constant scalar curvature metric to metrics which are very close to being bal-

anced. This approximation procedure is based on the asymptotic expansion of Bergman
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kernel. The metrics close enough to being balanced are then shown to ‘flow’ to balanced
metrics by a collection of estimates. The conceptual motivation for the ‘low’ argument is a
very interesting ‘quantized’ moment map interpretation of the balanced condition. Donald-
son interpret the condition as the simultaneous vanishing of two moment maps on a certain
infinite dimensional manifold. One group is an infinite dimensional group, the other group
is a finite dimensional group.

In this thesis, we extend Donaldson’s ideas to a special metric for a bundle with a section.
We introduce balanced metrics in our context and prove that a special metric is the limit of
a sequence of balanced metrics. We basically follow Donaldson’s approach. We get balanced
metrics in our context using a similar ‘quantized’ moment map interpretation. Again there
are vanishing conditions for two moment maps, with respect to an infinite dimensional group
and a finite dimensional group. Our notion of stability also depends on a real parameter,
as the case for the stability defined by Bradlow [3]. For the approximation procedure, we
use the asymptotic expansion result of Catlin [6]. We work out the explicit expression for
the first three terms in the expansion based on the work of Tian [23] and Lu [15]. We prove
that the approximation procedure can be carried out to any order by solving a sequence of
recursive equations based on the special curvature properties of the special metric. We also
work out a similar collection of estimates. The estimates are in the sharp form as suggested
by Donaldson in [10].

We also make an observation on the equivalence of two functionals for testing stability
in a finite dimensional Kahler geometry set up. The two functionals are introduced from
different perspectives, one is from algebraic geometric perspective and the other one is from
symplectic geometric perspective. Our observation is based on the geometry linking these

two perspectives.
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Chapter 1

Preliminaries on Moment Map and

Stability

The main purpose of this chapter is to explain the principle that stability conditions are
the same as vanishing conditions for moment maps. It’s rigorously established for finite
dimensional set up ([18]). It serves as a guidance for infinite dimensional set up as initiated
by Atiyah and Bott in their study of Yang-Mills equation over Riemann surface ([1]). In
section 1.1, we recall the algebraic notion of stability and the theorem of Kempf and Ness
which characterizes stability from differential geometry perspective ([12]). In section 1.2, we
turn to a standard Kahler geometry set-up. We recall two functionals used to test stability
and observe that the two functionals are exactly same. The observation is based on the
geometry behind lifting of a group action to a polarized line bundle and moment map for
the group action. In section 1.3, we recall a crucial proposition developed by Donaldson on

how to find zeros of moment maps inside a complex orbit with suitable assumption ([10]).

1.1 Stability in G.I.T.

The notion of stability is developed as a result of forming a nice moduli space in algebraic

geometry ([18]). The simplest situation is the following: suppose we have a connected
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reductive algebraic group G over complex number, V' is a finite dimensional complex vector
space, assuming that G acts on V algebraically, the question that we are interested is what
structure the orbit space V/G has. It turns out that for the orbit space to have a nice
structure in the category of algebraic world, one shouldn’t consider all the orbits, instead

the orbits with certain stability property.

Definition 1.1 A nonzero vector v € V is called
(1) semi-stable if zero is not in the closure of the orbit containing v;
(2) polystable if the orbit containing v is closed;

(3) stable if it is both polystable and the stabilizer is finite.

Clearly stability property is a property for an orbit. It can be shown that the semi-stable
orbits form an algebraic variety ([18]).

Practically to check stability is not quite easy. There are several equivalent criterion
from different perspectives available. One is Hilbert numerical criterion ([18]), which tells
the stability from the weights of each one algebraic parameter subgroup. Another one is
due to Kempf and Ness ([12]), they give a criterion by choosing a Hermitian metric, then
examine the length function along the orbit. This approach is very geometric.

Precisely, as G is an reductive algebraic group, it is the complexification of a compact
Lie group K (we can take this as the definition of reductiveness). Hence by standard Weyl
integration trick, we can choose a Hermitian norm || || on V' so that the action of K preserves
this norm.

For each nonzero vector v € V, define a function p, on G

po(9) = llgvl® (1.1)

Clearly if G, denotes the stabilizer of v in G, then the function p, is invariant on the left
action by K and on the right action by G,. Hence p, is constant on double K — G, cosets
of the form Kg¢G,.

12



The theorem of Kempf and Ness is
Theorem 1.1 (/12])
(1) Any critical point of p, is a point where p, obtains its minimum value.

(2) If p, obtains a minimum value, then the set m where p, obtains this value consists of a
single K — G, coset and is connected. Moreover, the Hessian of p, at a point of m in

any direction not to tangent to m is positive definite.
(3) The function p, has a critical point if and only if v is polystable.
(4) The function p, is proper if and only if v is stable.

The above nice theorem tells us that the stability property can be described by their
differential geometric property. In the next section, we will see the critical points are exactly

zeros of a hidden moment map.

1.2 Symplectic geometry of stability

1.2.1 A standard picture

In this section, we consider the following standard Kéahler geometry set up (cf. [8] [26]):

(1) aKahler manifold (M, J, w), where J is an integrable complex structure, w is the Kihler

form compatible with J, i.e., w(X, JX) > 0, V nonzero tangent vector X;

(2) a holomorphic Hermitian line bundle (L, k), where h is the Hermitian metric, so that

the corresponding curvature form R”(h) satisfying v —1RF(h) = w ;

(3) a compact Lie group K and its complexification G act biholomorphically on M. More-

over the action of K preserves the Kahler form w ;

As before to have a nice structure of the orbit space M/G, we consider only the orbits

with stability property. In this case, it turns out that the stable orbits have a nice description
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via the symplectic geometry, which at the end of day, identifies the stable orbit space with
symplectic quotient.

Precisely, we want the following two equivalent assumptions

(4) existence of a linearization of the action (G, K) on (L, h), that is a holomorphic lift of
the action of G on M to L, so that the action of K preserves the Hermitian metric h

on L;
(5) existence of a K-equivariant moment map p : M — Lie(K)*, that is

e d{u, &) +ix,.w =0, for any { € LieK, where X is the induced vector field on M,

( ) is the pairing between vector space and its dual vector space;

e (u(gp), &) (u(p), ad(g™1).(€)), where ad(g) is the adjoint action defined by
9)(h)

ad(g)(h) = ghg™! for any element h € G.

Convention: During the paper, all the group actions are left actions. And for an ele-
ment £ in the Lie algebra of the group, the induced vector field X, is given by X¢(p) =
% exp(—t&)pli—o at any point on the manifold. This sign convention is to make sure that the
induced map from Lie algebra of the group to the Lie algebra of vector fields on the manifold
is a Lie algebra homomorphism. In case the action is on more than one manifolds, we put a
superscript on the vector fields to indicate which manifold we are considering.

The equivalence of (4) and (5) is quite interesting. Assumption (4) is usually used by
algebraic geometer, while assumption (5) is usually used by differential geometer. Later on
we are going to give two criterion for testing stability, one is based on assumption (4), the
other is based on assumption (5). We’ll show that the two criterion are equivalent using the
geometry behind the two perspectives.

The correspondence is as following (cf. [7], [5]). Assuming we have a linearization. For
each ¢ € Lie(G), let R¢ be the induced action on the space of sections I'(L), that is for any
section S of L

ReS(p) = S (e p)heo

14



Clearly, Ry is a derivative with respect to X éM , that is for any smooth function fon M, we

have

RefS=xMfrs 4 fReS

Hence if D denotes connection on I determined by the metric 4 and the holomorphic stryc-
ture, then the difference R — DX§M is a homomorphism of the line bundle L, hence there

exits a function u, such that

RS = DX€MS+ V—1ueS (1.2)

function g : M — Lie(K)* by (u, §) = pg, then it’s straightforward to check that [ is a
K-equivariant moment map.

To see the other direction, just note that the identity 1.2 is equivalent to

X¢ = XM — petn (1.3)

Thus given a K -equivariant moment map u, we can use identity 1.3 to define the vector
fields XfL, then the corresponding flow will give a linearization.

Now given a linearization, recall a point p on M is called

Definition 1.2 (1) semi-stable of for all k large enough, there is ¢ G-equivariant holomor-

phic section of L&k non-vanishing at the point ¢ ;
(2) polystable if it’s semistable, and the orbit Gp is closed in the set of semistable points ;

(3) stable of it’s both polystable and the stabilizer Gp is finite.

To test the stability, there are severa] equivalent criterion from different perspective. In
the following we recall one criterion based on the one given by Kempf and Ness. We’ll recall

another one from moment map perspective in the next section.

15



Analogy to the function p, defined in 1.1, we define, for each point p on M, a function

S, on the group G
193

|g£p|

Sp(g) = In (1.4)

where &, is any nonzero element in the fiber L.

Clearly, the function S, is well-defined, it’s constant along the double coset K — Gp, thus
it descends to a function on the homogeneous space G/K. The result of Kempf and Ness
holds also in this case ([18]). Particularly, the orbit Gp is polystable if and only if 5, has
a critical point. The orbits Gp is stable if and only if S, is proper. Thus it’s desirable to
compute the derivative of the function S,. Note we only need to compute the derivative Sp

at the identity e € G, as Sy, = R;S,, where Ry is the right multiplication operation.

Lemma 1.1 (c¢f [5]) For any & € Lie(K), we have

(1)
d

5,(e%) = (ul(e™p), ) (15)

(2)
d? ite
—dt2Sp(6 ) = w(Xe, JX).

The proof uses the geometric identification of linearization and moment map.

For (1), let i denote the norm function on L: (z,§) + [€]?, then
1 1,

Thus taking derivative, we have

, 1 -
Sp(e™) = ~JX}Inh,

d
2

dt
16
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where J is the complex structure on L induced by the complex structure J on M and the

connection D on L. Using identity 1.4, we have
JXE = TXM — peJtg.

Due to assumption that the action of K preserves the metric h, we have

d i |
aSp(e tE) = —EuEJtR In A.
To compute the right hand side, we choose a local orthonormal frame for L, which induces

a real oriented coordinate (u,v) for the fiber. It’s easy to see then

h =u? + 02
t —ua vi
T Tow
The proof of (1) is finished by using .J % = %.

The (2) follows from (1) easily by the definition of moment map.

From the above lemma, we see the following important corollary
Corollary 1.1 (18], [5])(Moment map interpretation of stability)
(1) A complez orbit Gp is polystable if and only if the moment map u vanishes along a single
K — G, orbit;
(2) A complex orbit Gp is stable if and only the moment map vanishes along a single K

orbit with stabilizer G, finite.

There are also statements about semistable points ([18]). We omit that as we only discuss
the stable orbits in the later discussion.
For later comparison, we list a few properties of function S. They can be checked straight-

forwardly.

Proposition 1.1 For any point p on M

17



(1) For any g, h € G, Sp(g)+Sgp(h)=Sp(hg);

(2) Forany g € G, k € K, Sy(kg) = Sp(g) and Sy(e) = 0;
(3) Forany g € G, k€ K, Sip(g) = S,(k~'gk);

(4) g € G is a critical point of Sy if and only if w(gp) = 0;

5) For any € € Lie(K), 235,(¢") > 0 and the equality holds if and only if X e'p) = 0.
p 3

) de?

1.2.2 Criterion for stability

In last section, we use the function S to test stability. Now we recall another function which
I learned in Tian’s survey article ([26]).
Now assume we have a moment map p. For any point p on M, we can define a function

T, on the group G .
T,(g) = / ((g(£)p), Tm(Ryg—)+(9(1))) dt (1.6)

where g(t): [0,1] — G is any smooth path connecting identity e to g, and Im means the
imaginary part under the identification of Lie(G) = Lie(K) ® v/ —1Lie(K).

The well-defineness of the function follows from the following lemma.

Lemma 1.2 (/26]) For any smooth one family path g(-,t): [0,1] — G parameterized by

s € [0, 1], we have the integration

/0 (195, £)p), T (Ryga ) (g1(s, 1)) dt

is independent of s.
The proof uses the definition of moment maps and the following identities in Lie algebra.
Lemma 1.3 For a family of path g: (—¢,€) x (—n,n) — G, we have

d
—Ry1g: —

d
7 —Ry-19s = [Rg-19s, Ry-19:].

dt

18



The verification for above lemma, is quite clear for matrix group, so is for general group.

The function T appears in geometric contexts, mostly in infinite dimensional set up. For
instance, Donaldson’s functional in studying stability of vector bundles ([7]) and Mabuchi’s
K-energy functional in studying of metrics with constant scalar curvature on Kihler mani-
folds ([17]). Here we only discuss the function in the simple finite dimensional context.

From the definition, the two functions S and T are of quite different nature. .S is defined
using the linearization, while T" is define using moment map. And also, in the definition
of function S (see 1.4), there is a freedom of choice of a vector ¢, while in the definition
of function T(see 1.6), there is a freedom of choice of path. However they do have lots of
common properties.

Let’s first see the derivative of the function T at identity e.

Lemma 1.4 For any € € Lie(K), we have

(1)

ZTo(€%) = (u(e™p), &); (17)
(2) »
ETp(eltg) = W(Xﬁ’ ']XE)

The proof is clear, we simply re-scale the path we are choosing.

Then observe that the function T also have the following properties:
Proposition 1.2 (/10/) For any point p on the manifold M
(1) For any g, h € G, T,(g9)+T,p(h)=T,(hg);
(2) Forany g€ G, k € K, T,(kg) = T,(g) and Ty(e) = 0;
(3) Forany g€ G, k € K, T,(g) = T,(k™'gk);
(4) g € G is a critical point of T, if and only if u(gp) = 0;
(5) For any ¢ € Lie(K), %Tp(e”{) 2 0 and the equality holds if and only if X¢(ep) = 0.

19



The verification is also clear. They basically follow from the definition.

By now it’s reasonable to guess that the two functions coincide. Actually, they are.

Theorem 1.2 Function S coincide with function T. Ezplicitly

i 2k = [ utotep). TRy (o))

The proof by now should be clear. By Lemma 1.1 and lemma 1.4, they have the same
derivative along the path ¢é. Clearly they have same initial values. So they coincide along
the path. For general point, using proposition 1.1 and Proposition 1.2, we can reduce the
proof to the special case.
In the following we give an example in the simplest case.

Example: Let M = C with the standard Kahler form w = @dz A dz, L be the trivial
complex line bundle with the metric Az, u) = u|2e"2¥) K = S', G = C*, G acts by
multiplication: z — zw, Yw € C. For each integer k, there is a linearization CxL —

L: (z,u) — (zw,uw®), Yw € C. The corresponding moment map is then

1
(u(2), & = k - 512I%
where ¢ is the standard base for Lie(S 1), and

, , 1
Sz(eng) = Tz(ené) = é—l(em - 1).2‘2 — ka.

1.3 Existence of zeros of moment maps

We have seen that to test stability of a complex orbit is equivalent to find zeros of the
moment map along the complex orbit. In his work on the existence of constant scalar
curvature, Donaldson( [10]) develops a general method to find zeros of a moment map under
certain assumption. We discuss this important method in this section.

Suppose we have the standard Kahler geometry set up. Furthermore, we choose an

20



invariant inner product on the Lie algebra Lie(K). Then we use this inner product to
identify Lie algebra Lie(K) with its dual Lie(K)* in the standard way, then we can think
the moment map p as a map v: M — LieK. At each point p € M, we have the infinitesimal
action

op: Lie(K) — T,M.

Then define an endomorphism of Lie(K) by

Qp = O’;UP,

where the adjoint is define using the metrics on Lie(K) and M. By the definition of the

moment map, (), is also given by
Qp = dvy o J oo,

The significance of the endomorphism @, lies in the fact that they are very important
in the understanding the existence and uniqueness of zeros of the moment map inside a
complex orbit. This is well explained in Donaldson’s paper [10]. For completeness, we recall

his result in the following.

The uniqueness result is

Proposition 1.3 ([10/) (Uniqueness of zeros of moment map inside a complex
orbit) Suppose for a point p € M, and g € G, such that u(p) = u(gp) = 0, then for some
k € K, gp = kp, in other words, gp € Kp

Now we discuss the more interesting and crucial part: the existence of zeros of moment
map inside a complex orbit. Suppose the complex orbit we are considering is Gpy, we assume
the stabilizer G, is finite, then o, is injective and @, is invertible for all p in the complex

orbit Gpo. Let A, denote the operator norm of Q;': Lie(K) — Lie(K), defined using the

21



invariant Euclidean metric on Lie(K). Precisely

1Q, €]l
A, = max P _>" 1.8
P eetie(®No €]l (1.8)

The existence result is

Proposition 1.4 ([10]) (existence of zeros of moment map inside a complex or-
bit) Suppose we have real numbers X, § such that A, < X for all p = e¥py with |€] < . Fur-

thermore \|v(po)| < 8. Then there exits a point p = e"py with v(p) = 0, where |n| < X|v(po)|

In the assumptions, the main point is certainly the condition Alv(po)| < §. It basically
means the initial point should be close enough to the zeros of moment map. When we apply
this proposition, the main issue is to fulfill this condition. We will see this in our later
discussion.

As in [10], to apply this proposition to our later discussion, we need to consider the case
M = W//H, and the action of K on M is induced by an action of K X H on the Kahler

manifold W. For each point w € W, we have two infinitesimal actions
ok w: Lie(K) — T,W, op.: Lie(H) — T,W.

Lemma 1.5 ([10]) Let p € W//H be represented by a point w € W. Then for § € Lie(K),
the endomorphism @, associated to the K action on W//H satisfies

(@€, €) = Im(oxwd)I”

where m: T,W — T,,W is the orthogonal projection to Im(cg.,)*. In particular

Ap: ( min |7T(O-K,w§)|>2l

geLie(K) €]

22



The proof is baseq on asymptotic expansion of Bergman kerne] of Catlin ([6]). In section
2.1, we recall the Special metric studied by Bradlow ([3]) and the vortex equation it governs.

We also recall modified version of the vortex equation by Okonek and Teleman ( [19]). In

Suppose E is a holomorphic vector bundle of rank » — (E) over a Kihler manifold (M, w)

of dimension n, ¢ €L(E)isa global holomorphic section of E| thep 5 Hermitian metric H

V-IAFy + 4 g ¢ = cldy (2.1)

23



where A : Q*(M) — Q*2(M) is the adjoint operator of L: a — w A «, and it extends
naturally to bundle valued forms. Fgy € Q*(M,End E) is the curvature form determined
uniquely by the Hermitian metric H and the holomorphic structure on E. ¢*®¢ € Q°(End E)
is the endomorphism 9 — H (1), ¢)¢, ¥ € E. c is some constant, Idg € Q°(M,End E) is

the identity endomorphism.

The equation is introduced by Bradlow ([3]). It’s called vortex equation because it
generalizes the vortex equation studied in physical Gauge theory (cf. [3]). Note in case ¢ is
the zero section, this equation is exactly the Hermitian-Einstein equation. In that case, the
existence of the special metric is shown to be equivalent to Mumford stability of the vector
bundle ( [27], [7]). Analogously, for general section ¢, the existence of such metric is shown
by Bradlow to be equivalent to certain stability defined in a similar way as Mumford stability
as well as dependence on a parameter 7. As our main concern is to study the stability from
the metric point of view, we are not going into the detail of algebraic notion of 7-stability.
However we’d like to explain the dependence of the real parameter 7, which is relevant to

our discussion.

In case of Hermitian-Einstein equation, the constant ¢ in the equation 2.1 is a priori
determined by the topology of the bundle E. Precisely by taking the trace of both sides
of equation 2.1, and integrating over the manifold, we find that ¢ equals to the normalized

degree ug of E, where

2w fM Cl(E) N &
ME = Y

which is only a topological invariant. Here V' = Vol(M) is the volume of M defined by the

Kahler metric w.

However for the vortex equation, the constant c is not a prior determined. If we set

T

v e

By taking the trace of both sides of vortex equation 2.1, and integrating over the manifold,
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it’s easy to see

162 = / 6P du=r,
M

where dy is the volume form defined by the Kahler metric w. Hence fixing 7 is the same as
fixing the L? norm of the section ¢. For fixed 7, we call the metric H to be T-special.
Convention: To avoid confusion, we use { ) to denote fiber-wise metric, | | the fiber-wise
norm and () to denote the integrated L? metric, | || be the corresponding norm.

Note in above discussion, we use the first identity in the following elementary lemma,
Lemma 2.1 (1) V¢, 9 € E, Tr¢* @ ¢ = (¢, ¢),
(2) VI, T; € EndE, ¢,9 € E, (T1¢, Toyp) = (T1)* @ ¢, Th),

Note we are using the induced metric on End(E), (T}, Ty) := Tr 1T}

Before we further discuss the vortex equation, we make a digression.

In the later discussion, we’ll vary the Hermitian metric on bundle E quite often, we’d
like to know the dependence of each term in the vortex equation on the metric.

Recall given a Hermitian metric H on E, it determines a unique connection Dy on E,
which in turn induces a connection Dy on EndE. We denote the (0,1) part of Dy to be
Oy and the (1,0) part to be dy. Note Oy is independent of the metric H. We can omit the
subscript H. We also omit the subscript in 0y when it’s clear which metric we are using.

Assume H and K are two Hermitian metrics on F, they are related to each other via

K(p, ) = H(nyp, ¥)

for some endomorphism 7 €EndE, which is positive definite w.r.t the metric H. Conversely,
given such 7, the above identity defines a metric. For simplicity we’ll write X = H 1. Note

the self-adjoint condition is crucial.

Lemma 2.2 If K = Hny, then

(1) Fx = Fy + 9(n~'8yn),
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(2) P @ ¢ =¢™ @ .

Note ¢*¥ ® ¢ €EndE is determined by the metric K. Later if we are clear about which
metric we are using, we’ll omit the superscript K.
In fact
(¢ @ Y)p = K(p, o) = Hnp, )y = (6™ @ ) nyp.

Corollary 2.1 For small enough n € EndE, we have
Fyayn = Fu + 00n + O(||77||2)

Let’s also recall the standard Kahler identity.
Lemma 2.3 ([14]) (Kahler identity)
(1) v=1[A,0]=0",
(2) V=1[A, 8] = -9
It follows that
V—1A00n = 0*0n = Aan

is self adjoint positive operator. We’ll omit the subscript in As. Keep in mind it’s not the
usual Laplace. On functions, it’s half on the usual Laplace. For general bundle, it’s not.
We now continue the discussion of vortex equation. Our purpose is to explain a modified
equation, which comes up naturally in our situation.
In the original definition by Bradlow, the right handside term in the vortex equation 2.1
is a constant term. However for our purpose, it is not sufficient to consider only constant.
Instead we want a general function. Nonetheless, Okonek and Teleman proved the following

theorem

Theorem 2.1 (/19]) The vortex equation

\/—1AFH+¢* ®¢:CIdE
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is solvable if and only if the modified vortex equation
V=1IAFy +¢"® ¢ = fldg

is solvable for any smooth function f on M with

<. _Jfdu _
VE —T—C

Note in case ¢ is zero section, this theorem is simple. As if f = 1, then there exists a

smooth function g so that

f=pe+ Ag.

If the metric H satisfies the Hermitian-Einstein equation
vV —].AFH = [J,EIdE
Then for the conformal metric K = e?H, using the identity in Lemma 2.2 and Lemma 2.3,

\/~1AFK =V —1AFH + Ag = f

However this argument does not work for modified vortex equation. As when we do the

conformal change K = eH, not only

V=IAFy = v=1AFy + Ag

but also using the identity in Lemma 2.2

P RP=eP" @ ¢.
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Then altogether we get

V-IAFx + ¢ ®@¢p = V—1AFy+Ag+ed™ ®@¢
= c+Ag+e9p" R - Q¢

= [+ ®9— ¢ @9,
which does not equal to f.

This reflects the fact that the term ¢* ® ¢ is quite nonlinear. One more evidence about
this is that if we consider the simplest case when the bundle E is a line bundle, then the

Hermitian-Einstein equation is equivalent to the following one

Af=g (2.2)

for a smooth function g.

While vortex equation is the following one
Af+ael =g (2.3)
for a smooth function g and some nonnegative function a.

The Laplace equation 2.2 is relatively easy, it’s linear and elliptic. The existence and
uniqueness of the solution is standard. While the equation 2.3 is harder, it is elliptic, however
has a nonlinear term ef. Equation of this sort has been studied by Kazdan and Warner [13].
This equation raised as a result to prescribe curvature function on a Riemannian manifold. In
their excellent written paper [13], Kazdan and Warner proved the existence and uniqueness
of the equation 2.3 in case a is nonnegative and positive somewhere and the integration of
g is positive. The existence and uniqueness of the equation 2.3 in the general assumption is

still largely open. Nonetheless, vortex equation is in the good case.
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2.2 Balanced metrics for bundles with sections

2.2.1 Definition of balanced metrics

We assume (M, w) is polarized, that is, we have a Hermitian holomorphic line bundle

(L, h) with the curvature determined by the metric A and holomorphic structure satisfy-
ing vV—1RL(h) = w.
Because of the curvature condition, L is positive. Thus by Kodaira, embedding theorem,

for integer m large enough, the higher dimensional cohomology group
HY (M, E,) =0, Vi>1 (2.4)
where E,, denotes £ @ L™. Moreover the map
tm: M — Gr(N,, —r, H*(M, E,)) (2.5)

defined by sending each point p € M to the sections vanishing at p is an embedding. Where
Ny, is the dimension of the space of holomorphic sections Ihoi(Er). Using the Riemann-Roch

theorem and vanishing condition 2.4, N,, is given by
Nm = X(Em) = / Ch(Em)Td(M) = aomn + almn-l + o+ ap.
M

It is easy to see the coefficients a;’s are topological invariants of M and E. The salient ones

for the paper are the leading term

o =/M(gcl(x)+c1(E))?Tff);! - (2;),1/]\4(%“@)2—?. (2.7)



where x is the complex scalar curvature with respect to the metric w, which is half of the
Riemannian scalar curvature.
Observe that once a basis {s;} for I'(E,) is chosen, they determine uniquely a Hermitian

metric H on E, so that

i 1
D si®si+—¢" ®¢=idp (2.8)

i=1
In fact, for a fixed metric H, the endomorphism ), s; ® s; + %qﬁ* ® ¢ is positive definite, as
V1 € F, we have

1
Zs ® si + ¢ ® O)Y, ) = Z!Hsl, + —[H($,¥)f*

let ™t =3, si®@si+ #qﬁ* ® ¢, then for the metric Hn, using the first identity in Lemma 2.2,
the identity 2.8 holds.

We have used the identification of End(E) with End(E,,) in the canonical way.

We call this metric to be canonically determined by the basis {s;}. In case ¢ =
geometrically, the metric is the pull-back metric of standard metric of on the tautological
bundle on Grassmannian defined by explicit embedding 2.5 using the basis s; (cf: [28]).

The following lemma is elementary and useful.

Lemma 2.4 For any T € End(E),
1
T, = SO ITsi* + — (Tof (29)
holds at every point on M. Where the operator norm is defined using metric canonically

determined by {s;}.

We now define the asymptotic stability in our context. The definition is motivated by

metric characterization of Gieseker stability for bundles in X.W.Wang([28]).

Definition 2.1 Assume E is simple, that is H(EndE) = C. ¢ € I'na(E). 7 is a fized

positive number.
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(1) A metric H on E is called m-th balanced w.r.t. ¢ if the induced metric on Ey, coincides

with a metric canonically determined by a basis s; and for some constant c,

Siy 85) = €044,
(si, 85) = b

(2) A m-th balanced metric H w.r.t. ¢ 1s called T-balanced if ||§||*> = 7, or equivalently

rVv-—=L
—__m

(3) (E, @) is called asymptotic stable if for any large enough m, E has m-th balanced metrics,

(4) (E, ¢) is called asymptotic T-stable if for any large enough m, E has m-th T-balanced

metrics.

Remarks: In case ¢ = 0, X.W.Wang ([28]) proved the above defined asymptotic stability is
exactly the Gieseker stability. A simplified proof is given by Phong and Sturm ([20]) using
directly the theorem of Kempf and Ness as explained in the previous Chapter. For general
¢, the author is not able to find the appropriate algebraic notion yet. It is worth further
study to understand the algebraic nature of the above defined stability.

2.2.2 Moment map interpretation

We now start moment map interpretation of balanced metrics according to the principle
that stability is equivalent to the vanishing of moment maps. Our equations for balanced
condition then correspond to the vanishing condition of moment maps. Actually, this is
exactly the reason that we call these metrics to be ’balanced’.

We now fix a background Hermitian metric H on bundle £. We take the compact group
K to be the unitary transformation group of (E, H) and the complex group G to be the
general transformation group of E. Note they are also the corresponding group for bundle

E,..
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It’s well-known that the space of holomorphic structure on E can be identified with the
space AUV(E, H) of unitary connection D on E with (0,2) component of the curvature Fj,
vanishing (cf. [14]).

The action of G on the space of smooth sections I'(E) is given by
g Y=gy

The action of G on the space ALV(E, H) is given by

5g-D = gng_l
then extends to the (1,0) part of the connection using the fixed metric H in a standard way.
All actions extend naturally to bundle FE,,.

We now give a metric structure and a symplectic structure on I'(F) by

wn

w.¥)= [ o0,

e, ) =T [ (o, 9) %

Analogously we have metric structures and symplectic structures on I'(E,,).
The space A“Y(E, H) also has a natural symplectic structure defined by Atiyah and
Bott ([1])

wn—l

Q(a,b):/MTr(a/\b) e

where a,b € Q' (EndFE) = Tp A(E).

We now recall the moment map interpretation of the vortex equation ([4]). Consider

consider the product action of X on AMY(E, H) x T'\(E).

Lemma 2.5 ([{/) The moment map u is given by

(\/—_1AFH+¢*®¢—f)(:L—T
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for some smooth function f on M.

So the modified vortex equation corresponds exactly to the vanishing condition of moment
map . Hence the theorem Bradlow proved confirms the principle that stability condition
is the condition for the vanishing of moment map in the above infinite dimensional context
(13)).

To explain the balanced condition, we consider the action on another interesting space
with an interesting symplectic structure with the help of polarize bundle L. This sort of
construction is first given by Donaldson ([10]).

First of all, the group G has a natural action on
[(Ep) % -+ [(En) x T(E) x AAY(E, H),

taking N,, copies of I'(E,,)

We then let H,, be the subset of this product consisting of those (s, - - , sy, ; ¢; 0p) such
that s;’s are holomorphic with respect to the holomorphic structure on E,, determined by
dp and the fixed holomorphic structure on L and are linearly independent, as elements of
['(En), and ¢ is a holomorphic section of E with respect to the holomorphic structure dp.

Note the space H,, is invariant under the action of G. Each complex orbit can be think
as an equivalent class of holomorphic structures coupled with a set of holomorphic basis and
a holomorphic section.

The interesting part is the symplectic structure on H,,. Consider the projection 7 from

Hy, to T(E,)Nm x T(E), we have

Proposition 2.1 (cf. [10]) The projection is an injective immersion of Hy, into T'(E,,)Nm x
['(E)

In fact it’s just another way of expressing that the map ¢, defined in 2.5 is an embedding.

Take a variation vector (8s;;6¢;80p) which vanishes under projection 7, that is

(551' = (5¢= 0.
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On the other hand, by the definition of H,,, we have constraints
Op ds; +00p(s;) =0
which is a result of differentiating the equation dps = 0. Thus we get
60p(s;) = 0.

Recall the map ¢,, is an embedding map, we thus have 80p = 0. This proves that the map
7 is immersion. Injective is also clear.

We can use the above proposition to define a symplectic structure on H,,. We start with
the standard form Qg on I'(Ep,) and the standard form Qg on I'(E), take the sum of O,
over N copies of I'(Ep,) and Qg over T'(E) with weight *, then lift this form to H,, using
the projection . We write {2 for the resulting form on H,,. Be aware of the weight % we

have.

Proposition 2.2 (cf. [28]) The group K acts on Hy, preserving the symplectic structure 2.

The moment map for the action is given by

N,
— V=1 = 1
pic(s1, -+ 58N, @;0p) = ’2—(; s; ® s+ aﬁb* ® ¢)

There is another natural symmetry group acting on H,,. This is the finite-dimensional
unitary group U(Np,) acting on the basis {s1,- -, sy, }. Each of the group G and U(Nm)
has nontrivial center containing trivial multiplication. To avoid this duplication, we restrict

to the subgroup SU(Ny,) of U(Np,).

Proposition 2.3 (cf [10]) The moment map psy for the action SU(Ny,) is a map from

H,, to trace-free matrices su(Ny,)

psu(St,  SNms ¢;5D) = \/:—1((51'1 85) — cbij) (2.10)
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where ¢ = (3, [ls:ll*)

Observe that the action of G and GL(N,,, C) on H,, commute, so we have an action of
G X GL(Ny,) on H,p,.

Now for a fixed a > 0 we may consider the symplectic quotient

(vV=Ta) N gy (0)

_ Hx
o /0 x SU(Ny)) = Pt

(2.11)

The following two propositions fit our stability into the general framework of stability we

discussed in the first chapter. The proof simply use definition.
Proposition 2.4 (cf. [10])
(1) Any G-orbit in H,, contains a point in uc'(v/—la), unique up to the action of K

(2) Any SL(Ny, C)-orbit in H,, contains a point in ug;(0), unique up to the action of
SU(Np).

Proposition 2.5 (c¢f. [10]) Assume (E,0p) is simple. A triple (E,¢,dp) is m-th stable
if and only if, for any a > 0, the corresponding compler orbit o C H,, contains a point
in p(v—1a) N gy (0). In other words the complex orbit is represented by a point in the

symplectic quotient.

2.2.3 Explicit formulae

We have now fit the problem of constructing balanced metrics into the standard set up we
have in the first chapter. Hence the key point is to estimate the operator norm A of Q!
defined in 1.8 along a complex orbit. In the following, we formulate this norm in terms of
the data we have. Also note we are in the situation of having two group actions.

We consider the action of the group SU(NV,,) on the symplectic quotient
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We fix attention to a single orbit of the complex group SL(N,,, C), say z € Z. Keep in
mind, an element of the orbit is represented by a tuple (sq, -, Sn,.; @; Op) which determine
a unique Hermitian metric. Note we omit the component Op in the following as it is not
relevant in the metric structure and symplectic structure as we defined.

Given a matrix /—1 A = v/—1(a;;) of su(Ny,), we write
OAi = Z aiij.
J

It is exactly the infinitesimal of action v/—1 A at point 2z = (s1,- -+, SN,.; @)

To apply lemma(1.5), we need to find the orthogonal projection in the Hilbert space
[(Ey)V~ x T(E) of

oa=(0a1, " ,04Nnm;0)

to the orthogonal complement of the subspace
P={(Tsy, - ,Tsn,,;T¢): T € End(E)}.
which is exactly the image of infinitesimal action of K at z.

Proposition 2.6 Given s;, ¢ and A = (a;;) as above, define an endomorphism T, € End(FE)
by
TA = Zaijsf &® Sj.

1j

Then the orthogonal projection of o4 to the subspace P is
pa= (Tasy, -, Tasn; Tad).

(Note we are using the metric canonically determined by the tuple (s1,-- -, sn,,;9)).

Actually, we want to find T4 € End(E) so that

Ya=0a— (Tas1, -+ ,Tasn; Tad), (2.12)
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is orthogonal to (T'sy,--- ,Tsy,,; T$), for any T € End(F).
Written out, we want for any T € End(E)

L (746, T¢) = 0

aij(sj,Tsi) — (TASi,TSi) — E

Applying the identity (T1¢, To¢)) = (T1Y* ® ¢, T), we have

L 0 6,7) =0

(5% © 5, T) — (Tas! @ 5, T) = =

for any T € End(E).
Hence

1
aijs;‘®sj—TAs;‘®si—ETA¢*®¢:O

Using the metric is determined canonically by (s1,-- -, sn,.;¢). We get

*
TA = E ;5 S; ®Sj.

ij

We can now apply Lemma 1.5 to see that the quantity A, associated to our problem with

respect to the Hilbert-Schmidt norm on Hermitian matrices is given by

A7 = min 3 [[gall (213)

where the minimum runs over the trace-free Hermitian matrices A = (a;;) with ||A[|* =
Zij |ai;|” = 1.
While the quantity A, . associated to operator norm on Hermitian matrices is given by the

same expression

AL =min Y all? (2.14)

however the minimum runs over the trace-free Hermitian matrices A = (a;;) with I|A]12, = 1.

Recall the two standard norms on Hermitian matrices are defined as:
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the Hilbert-Schmidt norm
A = |Ag)°
1,3

and the operator norm
|Ag|
]

Our problem is to find a lower bound for the quantity A;! and A,y ..

[[Allop = max

Proposition 2.7 We have identity
[0%al* = [0Talo,
holds point wisely on M

In fact
— _ 1 —
Bal = 3 1Blayss; = Tas)l® + —[0(Tad) "

Notice s; and ¢ are holomorphic sections, hence we get
Bl = 32 1B(Ta)s: + —B(Ta)o"
Using the identity: for any T' € End(E),
(T = 21T+ TP,
we have |9ya|? = 0T 42,
Corollary 2.2 We have identity
109 all> = 10T all2,

Simply integrating.
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2.3 From balanced metrics to special metrics
We now prove converging balanced metrics for converge to a special metric.

Theorem 2.2 Assume for each m large enough, there exist m-th T-balanced metric H,,.
Furthermore, assuming H,, converge to a smooth metric H, in at least C* norm. Then Hy
satisfies the following modified vorter equation

.
+ < tHE

\/—1AFHOO+¢*®¢+E:
2 TV

DN | A

Hence Hy, is also T-special.

Here [y is given in Theorem 4.1 which tells us that the expansion of Bergman kernel is
uniform in C° to the second term as we vary metrics in bounded family in C* norm. We
take [y > 2.

To prove the theorem, we first give a characterization of balanced metrics in terms of

Bergman kernel. Recall the m-th Bergman Kernel B,,,(H) € End(E) is

Nm
Bm(H) = ZS: ® Si,
i=1
where {s;} is an orthonormal basis for T'yo(Ey,) w.r.t. the L?-metric.

Proposition 2.8 A Hermitian metric H on the bundle E is m-th balanced for (E, ¢) if and

only if for some constant ¢ > 0
1, 1,
By (H) = -(idg — —¢" ® ¢).
c m
It’s T-special of moreover the constant ¢ equals TVT;?'E

In fact if
1, 1,
Bn(H) = =(idpg — —¢" ® ¢),
c m
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then by definition of Bergman kernel, we can choose an orthonormal basis {¢;} so that
* 1 1 *
E ti®ti=—-(Idg — —¢" ®¢).
c m

Then the basis {s; = v/ct;} will satisfy

Nom ]
Zsf®3i+—¢*®¢zld,
i=1 m

and

(Si, Sj) = C(Si,j,

which exactly means H is m-th balanced.

The other direction can be proved analogously. The statement about 7-stability is just

the definition.

With this characterization and the asymptotic expansion Theorem 4.1 for Bergman kernel

by Catlin ([6]), we give the proof the theorem.

Proof of the theorem:

Because H, is m-th 7-special, using the above characterization by Bergman kernel, we have

Np,, . 1,
B(H) = " (ids — — 6" © ),

m

The dimension NV, is a polynomial of m by Riemann-Roch formula of degree n, say

-1
Np =aom” +am"™ +---+a,

By the identity 2.6 and 2.7, we have

\3
<
=

<

(5% + ue).

[\

(2m)"



Thus the expansion of B,,(H,,) for large m is

" 1.1 1
Bn(Hn) = (L4 (G s = 6™ ® 6+ —) + 0( ),

note ¢* ® ¢ is determined by metric H,,.

We also have the expansion for B,,(H,,) for large m

m" 1 1 1
m\{lco) = 1 —_ - P -
Bn(Hs) (27r)”( -+ m(\/ 1AFy_ + zn) +O(m2)),
Precisely,
m" 1 1
”Bm(HOO) - (271.)”(1 + E( Vv _lAFHoo + E’i)”CO < Cm™?

And the constant C can be chosen to be uniform for the metrics varying in a bounded family
of metrics in C% norm.

As we assume H,, converge to Hy, in C', we can have

11
IV=TAFy, + Sk — K+ g — 6" ® ¢+ ——||co < Cm"!
2 2 TV

Thus, using ly > 2, we get

T

11
V=IAFy + k= F+pup—¢* @b+
2 2 rV

This is exactly what we want.
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Chapter 3

From Special Metrics to Balanced
Metrics

In this chapter we prove that a 7-special metric is the limit of a sequence of 7-balanced
metrics. The proof is basically based on the idea of Donaldson ([10]). In section 3.1, we
work out the required estimates in order to construct balanced metrics. Qur estimates are
in the shape form as suggested in the last part of Donaldson’s paper ([10]). This estimates
is enough to derive the existence of balanced metrics if we only use the approximation to
the third term. In section 3.2, we work out the approximation procedure. We show that the
approximation procedure can be carried out to any order by solving a sequence of recursive
equations. In the last section 3.3, we prove the existence of balanced metrics and their

convergence to the given special metric.

3.1 Analytical estimates

In last Chapter, we have fit the problem of finding balanced metrics into the general moment
map framework. To construct balanced metrics is then equivalent to find zeros of moment
map.

For that purpose, we want to apply the general Proposition 1.4. The most important
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issue is thus to estimate the quantity A and A,,. In this section we obtain explicit estimate

on the quantity A based on analytic arguments in Donaldson ({10]).

Fix any reference metric Hy on bundle E and an integer . For R > 0, we say that

another metric H on E is R — bounded if H > R~'Hy, and
|H — Hollcv(ro) < R,

where || ||ci(mo) is the norm determined by the fixed referenced metric Ho. Clearly, at the cost
of changing R, this notion is independent of the choice of Hy. Now, as in 2.8, we consider a
basis s; for H°(E,,) which together with ¢ determines a unique metric on £ such that

N 1
Sosi@si+ ¢ @p=1Id
. m

1=1
at each point. We say that the basis {s;} has R-bounded geometry if the Hermitian metric
they determined is R-bounded. Notice that, working with this metric,

1
S lsill2+ —lgl> = rv
p m

This is a crucial observation. It tells the sum of L? norm of s; are bounded by universal
constant.

We write

rV — lloll?

(8i,8;) = N 8,5 + Ty

Then the matrix T = (Y;;) is a trace-free Hermitian matrix. T=0 if and only if the metric

is m~th balanced.

We continue to use the notation in subsection 2.2.3, so for any matrix A = (ay) €

V=1 su(N,,) we define a T4 €End(E) and sections ¢4 by (2.12).

We make use of two standard norms on Hermitian matrices:
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the Hilbert-Schmidt norm

IAI1P =" 1441

.7

and the operator norm

Al = max 221

||

We have the following elementary inequalities, for N x N Hermitian metrics A B
ITr(ABA)| < | AI]| Bllop,

ITr(AB)| < V'N||A|| || Bl op.

The goal of this section is to prove:

(3.1)

(3.2)

Theorem 3.1 Suppose E is simple. For any R and £ > 0, arbitrary small, there is a

constant C: = C(R, Hy,€) and e: = €(R, Hp,e) < & such that, for any m large enough, if

10

the basis {s;} for H°(E,,) has R-bounded geometry and with error term IT]| < 5. Then,

for any traceless Hermitian matriz A, we have
IAIl < Cm2* 2%

By identity 2.13 and ||A||o, < ||A]|, this yields

Corollary 3.1 If z is the point in Z determined by a basis {s:} which satisfies the condition

in the Theorem 3.1 we have

Az < C2mn+1+25

)

and

A < CZmn+1+25.

op,z

The analytical estimate required to prove Theorem 3.1 is summarized in the following:

Proposition 3.1 Suppose E is simple. If the basis {s;} for H(E,,) has R-bounded geometry

and || T|]op < ﬁ then there are constants Cy,Cy and C,, depending only on R,w and Hy,
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such that for m sufficiently large and any traceless Hermatian matriz A, we have:

(1) 19T all3, < Cim!* 2 [[pall 1Al

op =
(2) IT4]l? < Coll0Tal* + T2 ITIEIAN
(3) A2 < §m™(ITallZ, + vall®),

(4) Moreover for large integer p, we have a sharper version for (1),

= n _1 1
10T 412, < Com' ™3 |[pall* % || All7.

op —

Here all the norms are defined by the metric determined by the sections {s;} together

with the given section ¢.

We now give the proof of Theorem 3.1 given the above proposition.
Proof of Theorem 3.1:
If we have, say ||A||2 < 2m"||14]|%, then Theorem 3.1 holds trivially. If not, then

5 n
S lwal < 1417
Using inequality (3), we then have

. 1
1AI> < Sm™Tallgy + S IAIP

] Ot

It follows then
JAI? <

m™||Tall2,-

DN O

By inequality (2) and ||T4l|2, < ||Tal?, we have

5C,

DS 5m™ N,
1A])* < ==m"[0Tall” +

2 rvV

115 AN
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Using the assumption [|Y]|o, < 5= and N, ~ rVm", we have, say

5Cy .~ 1
A7 < S22 me BT + A

Thus we have, for some constant C
IA]|* < Om™||8T ||,
We now apply stronger inequality (4) and ||0T4]|* < r2||5TA||§p, we have
JAI* < GOr*m™ 5 |y [ A4lf7,

or equivalently
n+l+ 12’&

_I_B
1Al < (G,Cri)mTm *5 |[gha.
Notice %‘”— R %1 for large p, hence for any e small enough, we can choose p large enough,
P

so that for some constant, say C, we have
1A]l < CmE+a+< gy,

This finish the proof of the main Theorem 3.1.
We now begin the proof of Proposition 3.1. The most important inequality is (1), so we
start with that. We begin with a Lemma which expresses the face that we can control the

size of the derivatives of the holomorphic sections s; and ¢.

Lemma 3.1 Under the assumption of Theorem 3.1, For each fized integer K, there is a

constant C = C(K) such that for any integer j < K
(1) 25 [Vsil* + ZIVIg” < Cm7tm,

at each point of M;
(2) VT4l < Cd| Al
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We emphasis again that in this Lemma we use the metric canonically determined by the

sections {s;} and the given connection and metric on the line bundle L™.

Proof of (1) in the Lemma 3.1 uses the following inequality in Donaldson ( [10], cf. [28]).
For a fixed metric H on bundle E, there is a constant C, depending only on w and H, so

that for each point p on M and any holomorphic section s of E,,
[(V75)p]* < Cm?*|Js”.

It is clear then, under the assumption of R-bounded geometry, we can choose a fixed constant
C, depending only on R and Hj,.

The the inequality can be derived by simply summing up combining the fact

Nm 1
12 4 ZNol2 = 7V
> s+ el =V

To prove (2) in the Lemma 3.1 uses same trick in Donaldson [10]. Notice T,y €End(F) is
not a holomorphic section, however it is a holomorphic section of the bundle F,,, = WTE_mv ®
75 Ep over the manifold X = M x M. Here M (E) is M (E) with opposite complex
structure,m; is the projection to the first factor and 7, is the projection to the second factor.

Then for any Hermitian matrix A = (a;;) we get a holomorphic section
TA = Z aijs} &® Sj

of F' over X. Because it’s holomorphic, we can use the same inequality as in the proof of

(1). To apply the inequality, we compute the L2 norm of T4 which is

ITall® = ajazz(si, 5)(s), 57)

i '
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or in matrix notation

2

v Lol v _ Il
D m gy m gy rny A

ITall? = Tr(A( N

=

Since ||T|| < 5== we deduce, using 3.1, N,, = rVm" and ||¢|| is bounded due to R-

mn

boundedness that
1 Tall < Cm~"||All.

The proof of (2) of Lemma 3.1 is done by noticing that T} is the restriction of T4 to the
diagonal of M x M and applying the same sort inequality in the proof of (1).

Now we can give the proof of first inequality (1) in Lemma 3.1. Recall from the Corollary

Proposition 2.7 that
18T al% = 118%all* = Y l15%as*

We use ¢ = 0 to denote the component of I'(E).
We also have identity

19¢11* = (¢, Aw),

and the inequality
(0, Ap) < ol [|Ae],

and we get

19T all5, < Q1A%asl)Y> O a2 = O~ 1A%al®) 2 all,
Now for each ¢ > 0, we have
A'(ﬂA,i = A(aiij — TASi) = —A(TASi),

and for i = 0, we have

Apao =—A(Ts9).
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Now use the identity
A(Typ) = A(T)p+2VT -V

and Lemma 3.1, we have

— 1 1
IBTAZ, < O IATusill? + —[IATA0|")2 + (32 IV T - Vil + —[|VLs - VI[H)?)
om™ |4 4]

A

We now give the last inequality (4) in Proposition 3.1. Basis idea is the same, however

we use the following inequality

_1 1
(0, Ap) < |lp||>77 [|AP||7.

It can be proved using Holder inequality and eigenspace decomposition for positive elliptic
operator A.

Applying Holder inequality, we get then
— _1 1
18T all5 < llall* ™% APl
Then apply Lemma 3.1, we get, for some constant C,

18T 4|2, < Cpm™ 35 [[al|> 7 || All.

op —

We now proceed to prove the second inequality (2) in Proposition 3.1.

Recall the following inequality,

Lemma 3.2 Suppose E is simple. Then for any L > 1, there is a constant C, depending
only on Hy and L, such that if H is any Hermitian metric on E with LHy > H > L~ 'H,

and if ® is any endomorphism of E, we have

| [, Tr® dpul®

2 < 3 2
18] < CJ3o|? + LM

(3.3)
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a bounded family, as operator 9 doesn’t depend on the metric, we can choose ' uniformly.
Note this is different from Donaldson’s cage ([10]). The operator there depends on the metric.

The proof of corresponding lemmag g harder.

We apply the above lemma to prove (2) in Lemma 3.1. In fact using
TA = (lijS;-k ® Sj,

we have

i

/Tkaijs;*@sjd,u

M

= /a,z-j(sj,sl-}du
M

= ay(sy, ;)

Tr(AY)

< VNIl 4

/ TITAdﬂ
M

Il

We used the fact that 4 ig trace-free and the Inequality 3.2 ip the above deduction.

We now prove (3) in Lemma 3.1,

S0 we have

loall” = ligaf2 + fip)2

o1



Using identity 2.9, we also have

Ipall® = I Tall5,.

For the rest 04, we have

ry — Ll
loall® = Zaija_ik(sj: s) = Z N—mlaij|2 + TrATA"

ijk ij

Then (3) is proved by the fact N,, ~ rVm™", boundedness of ||¢||? and inequality 3.1.

3.2 Constructions of approximate balanced metrics

In this section, we want to construct metric which are very close to being balanced assuming
the existence of a special metric.

Suppose H is an Hermitian metric on E. Fix an integer ¢, we call H is called approxi-
matible to be balanced to the order g if there are smooth self-adjoint endomorphisms 7;, 72,

-+, ng €End(E) such that if H,, is of the form
q .
Hm = H(l + anm_])
j=1

which is a Hermitian metric for large enough m, then

Nm . L,
B.(Hy) = v —(idp — Eﬁb Hm @ ¢) + aq(m)

m

where o,(m) = O(m"972). Precisely, for any integer | > 0, we have
log(m)llct < Cigm™ 472

where C 4 is some constant depending on [, ¢, metric H and w.
Note, when g = 0, by our discussion in Section 2.3, we see the obstruction for the metric

H to be approximatible to be balanced to order 0 is that it satisfies the following modified
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vortex equation

VoIAFy +¢" @b+ ==+ — 4 pp.
2 2 v

for some 7 > 0.

Also recall H,, is m-th balanced if and only if o,(m) vanish by the characterization of
balanced metric in terms of Bergman kernel.

The above definition can be used in Hermitian-Einstein case simply by setting ¢ = 0 and
7=0.

Our main result in this section is

Theorem 3.2 Suppose E is simple, (E, ¢) has a T-special metric Ho, such that
K K T
V=IAFy +¢* @b+ = =+ — + ug.
2 2 rv

Then it is approzimatible to any order. Moreover the endomorphisms my,m,, - -+ are uniquely
determined by H,, in the form of a sequence of recursive equations.

Furthermore, the L? norm of the section ¢ is fized during the approzimation procedure.

The following lemma is crucial for the proof of the theorem. Basically we are studying
the linearized equation. The first is standard. The second one is not hard, however it uses

the special curvature property of special metrics.

Lemma 3.3 Assume E is simple, ¢ € T'yoi(E) is nontrivial.

(1) Let H be any Hermitian metric on E, then the linearized equation
V—1A00® +¢* @D =T,

is always solvable and has a unique solution for any smooth endomorphism U of E.

Moreover, we have
s

(@ ¢, ¢) = (U, id) = / o <.

M n!
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(2) Furthermore if H satisfies the following modified vortez equation

V=1AFg+¢*®@¢ = f,

for some smooth function f. Then the adjoint of the unique solution ®* satisfying the
following equation

V=1 A00P* + ¢* @ ¢ D* = T*.

Thus by the unique of solution, ® is self-adjoint if and only if ¥ s self-adjoint.

Proof of the lemma:
(1): We use the standard technique: Fredholm alternative for elliptic equation.

On one hand using the identity in Lemma 2.3

V—=1A00% = 0*0% = A'®

is an self-adjoint elliptic operator.

On the other hand, V®, ¥ € End(E)

(0" ®¢2,0) = Tr(¢"©¢2 V)
= Tr(®T* 9" ® ¢)
= Tr(®(¢"®¢ 7))
= (2,9 ®¢V).

Altogether we see the operator
V-1A00 + ¢* R ¢

is self-adjoint and elliptic.
Thus to prove the lemma, we need only to show it has trivial kernel.

Suppose v/—1 A0OP + ¢* @ ¢ ® = 0 for some & € End(E).
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Taking tbhe inner product with @ itself, using the identities in Lemma 2.2 and 2.3, we get
(0D, 09) + (D*¢, *¢) = 0.
Both term on the left hand side are nonnegative, so we must have
(09,00) =0, (P*¢,d*¢)=0.

Hence point wisely

0P =0 d*¢p=0

By the assumption F is simple and identity
(0®)* = 0%*,

we have ® = cidg.

However ¢ is a nontrivial section, hence ®*$ = 0 forces ¢ = 0, that is ® = 0.

For the other statement in (1) about the trace, we take the inner product with id, using

the identity in Lemma 2.3
(V=1A00,id) = (89, did) = 0

and the lemma 2.2

(0" ® ¢ 9,id) = (24, ¢).

(2) For this statement, we use the special curvature property of the metric H and Kahler
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identity. In fact

V=1AG0®* = +/—1AH(0D)*
= V—1A(00®)*
= —(vV/=1A80%)*
= (V=1ABO® — [V—1 AFy, ®))*

Now using the vortex equation and the fact fid is in the center of Lie algebra End(FE)
[V—1AFg,®] = —[¢" @ ¢, D]
Then we have

V=TI ABOD* + ¢* @ ¢ B* = (v—1ADID + ¢* @ ¢ ®)* = T*

This finishes the proof of the lemma. Now we discuss the approximation procedure.
Proof of the theorem:

Recall we have expansion for the Bergman kernel

Bu(H) = Gy (i + A(H)M™ 4+ A ()m™™ + 0(m172)

where A,’s polynomials in the curvature of H and w and its covariant derivatives, and the
error term is uniformly bounded in C for all metrics H in a bound family in C" (I is suitably

related to [).

Recall the integration of the trace of A,(H) are topological invariants

w'n
/;/ITI"AP(H)H = Qp,

where a, are p-th coefficients in Ny,. Also A,(H) are self-adjoint (cf. Remark 4.1).
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We can make a Taylor expansion of the coefficients

Ap(H(1+n)) +ZAM + O(lInlIZ:")
where Ay x(n) is a homogeneous polynomial of degree k, depending on H,w, in n and its
covariant derivatives and !’ is sufficient large (depending on ! and q).
Thus for any n;,7,,---,n, € End(E), we can write

k=1

H(1L+ 3 nm ™)) = Ap(H) + 3 byu(mym=™ + O(m 1Y)

where the b, ;. are certain multi-linear expressions in the n;, and their covariant derivatives,
beginning with
bpll = Apyl(nl)'

Thus we get
mr g+1 p+k=q+1
BelHn) = G Q_ Ap(Ha)m™ + 37 by * 1 0(m™2).  (3.9)
p=1 p,k=1
where Hp, = Hoo(1+ 3 27_ nym™).

We now should choose the 7, so that the terms in the right handside of above expression are

the same as

m 1o
V- (idg — E¢ ® ¢) (3.5)

up to m"=971,

We then try inductively. Suppose, inductively, that we have chosen the J < p so that the
coefficient of m™~7 coincide for 5 < p. The new term Np+1 appears only once in the coefficient
of both 3.4 and 3.5, in the form A, ;(n,11) in 3.4 and in the form —¢* ® @ Mp+1 in 3.5.

Now by the expression for A;(H) and Corollary 2.1, we have

A11(n) = vV=1A007. (3.6)

57



Thus to construct 7,41, all we have to do is to solve the following linear equation
V=1 A py1 + ¢ @ dMpr1 = Cpts (3.7)

for some (pr1 €End(E)

For instance, the equation for 7y is

7.2

V=1AIOm + " @ Pm =az — Ay(Hso) + (11;‘7 — 010" ® P+ W — ;’%ﬁb* ®¢. (3.8)

The solvability of the equation 3.7 has been established in Lemma 3.3. It is always solvable.
However to establish that H,, is Hermitian metric, we have to show the unique solution 7p41
for 3.7 is self-adjoint. Then by the Lemma 3.3, (p+1 has to be self-adjoint.

For (i, it is true by the expression in 3.8. For higher order terms, let us take a look at (2.

By straightforward computation, we get

G2 = 03— As(Hoo) + \/iIA—g(mBm) — bar{m)
- () @em

2
- (G%F +&1%+az)¢*®¢

73 72 T

-+ m—}—alm-&—agr—‘;.

(3.9)

The terms on the last two rows are self-adjoint. However the terms on the first two rows
are really involved. For example, the term by (11), which is the first variation of Ay(H) with
respect to 11, which we compute in the last chapter, is really involved. And also the term
V—=1Ad(mdm) is also complicated. Now it seems that there is no way to establish the
self-adjointness in general. However, it turns out that to show the self-adjointness, we do
not really have to know the term (p+1 explicitly.

In fact, let

H, = Ho(1+ mm e+ Npm ).
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We write

n

Bn(Hpy) = m—(l +Bm .+ Bpyim™ ' + B, om™P2 4 O(m="-3)),

(2m)"
And
Np I m" -1 —p—1 —p—2 —p—
TV — %(Zd_ggb r®9)= (27T)n(1+D1m ot Dppam ™7 4 Dy om™ 2+ 0(m™P7%)).
Clearly the endomorphisms C’s and D’s are determined by 7, - - - ,Mp- Then the approxima-

tion to order p just means that

Clearly the equation 3.7 is nothing but
V—=1A80np11 + ¢* ® O Npr1 = Dpya — Bpyo.

Our goal is thus to show

* _ *
p+2 Bpya = Dp+2 — Dpia.

Claim: We have the following recursive formulae
o2 — Bpra = mBpi1 — Byyym +mBy — Bymay + -+ - + 1,By — By,

and

p+2 — Dps2 = mDpi1 — Dpyym +n2Dp — Dy + -+ 4 m, Dy — Di.

In fact, as we have seen that Bergman kernel B,,(H,,) is self-adjoint w.r.t. the metric

Hp,. In terms of the metric H, that reads

(I +mm™ + -+ 9ym™P)Bp(Hpn) = By (Hp) (1 +mm™ + - 4+ p,m™P).
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Thus the claim follows by comparing the coefficient of mnP2,
The other one is also clear by the fact that ¢*m ® ¢ is also self-adjoint w.r.t. the metric
H,,. By the same reasoning as above, we confirm our claim.

Thus using the inductive assumption, we conclude that (1, is self-adjoint, so is 7p41.

For the invariant of L? norm of ¢, we prove inductively that

/ Tr(py1du=0.
M

In fact, using the Corollary 4.1 that the integration of the trace of the terms in Bergman

kernel is of topological nature, we have

/ T\r Bp_+_2 d’ll = a,p+2.
M

On the other hand, by the inductive assumption we have

/ Tr ¢*Fm @ ddp = 7.
M

Thus we also have

/ Tr Dp+2 du = Qp42-
M

Together applying the result in Lemma 3.3, we have

(np+1 ¢) QS) = 0.

which exactly means the invariant of L? norm of ¢ under the metric H,.

This completes our proof.

Remark. In [28], X.W.Wang worked the analogous problem for a Hermitian-Einstein metric.

However, in the paper, he wrote

Ay1(n) = V=1A3(n""dn)
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As we have seen, it should be V—1A007.

As we have seen, the Hermitian-Einstein equation is a special case of vortex equation.
However, the corresponding linearized equations are slightly different. In the following we
study the Hermitian-Einstein case.

For the linearized problem, we use the following analogous Lemma to Lemma 3.3. Also
the first one is standard. The second one use the special curvature property of Hermitian-

Einstein metric.

Lemma 3.4 Assume E is q simple bundle,
(1) For any Hermitian metric H, equation
V=1A88n = ¢. (3.10)
is always solvable for any smooth endomorphism ( of E with fM Tr¢ “’TT = 0. The
solution is unique if we fir Ju T = 0.

(2) Moreover, if H is a Hermitian-FEinstein metric on E satisfying the following equation
V—=1AFy = f

for some smooth function. Then the adjoint of the unique solution n* satisfying the
following equation

V—1A90n* = ¢*.
and [,, Tep* < =

Thus by the uniqueness of the solution, n is self-adjoint if and only if € is self-adjoint.

The proof use the similar strategy in the proof of Lemma 3.3. Using the Fredholm
alternative, we only need to compute the kernel of operator v/—1 A9. As we have already

seen the kernel consist endomorphism of form cid, for some constant ¢, due to the assumption
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E is simple. Thus by Fredholm alternative, equation 3.10 has a solution if and only if

(¢, id) =0,

For the second statement, we use the Hermitian-Einstein equation and Kahler identity. In

fact, we’ve already seen
V=1 A8y = (V-1Ad0y — [V—=1AFy, nl)*.
Using the equation, this implies
V-1A90n* = (/=1 AdOn)* = ¢

For the approximation part, it is also true that the approximation procedure can be
carried out to any order. In fact, the derivation is simpler then thoge for vortex equation.
the reason is that the corresponding By, By, ... » Bpi1 are constants. It thus follows that
B, s are self-adjoint. Then use the fact that integration of trace of Bergman kernel is of
topological nature, we complete the inductive process. For comparison, we write the first

two equations below:
v—1 AE@T]I = Q9 — AQ(HOO),

V—=1A30n, = a4 — Az(Hoo) + /=1 Ad(mdm) — by, ().

62



3.3 Convergence to balanced metrics

In this section, we prove the existence of balanced metrics given a special metric and the

convergence of balanced metrics to the given metric.

Theorem 3.3 Suppose E is simple, (E, ¢) has a T-special metric Hy, such that

V=IAFy_ +¢*®¢+g= T+ g (3.11)

N | &I

Then for each integer m large enough, there exit m-th T-balanced metric H, on FE.

Moreover, we have convergence

Hp — Hy

in any C' norm.

The plan for the proof is, starting with a special metric, first use the approximation
Theorem 3.2 to get metric which is close to being balanced for large m, then shift to the
context of moment map set-up, using the estimate in Theorem 3.1, we then can apply
Proposition 1.4 to prove the existence of balanced metrics.

Assume H, can be approximated to order g. We wrote

Ny, . _
Bn(Hp) = ;V_—L((Zdzs +€m) Tt — %Qﬁ*”m ® ¢)

m

where €, = O(m™97%). Then we pick up any orthonormal basis {\/72rs;} for HY(E,,)

with respect to metric H,,, then we have
* 1 * . —1
Zsi ®Si+—’n-1¢ ®¢ = (idg + €m) .
i

We then define H!, = H,,(idg + €,,). Because ¢, is self-adjoint w.r.t. H,,, H! define an

Hermitian metric for large m. Under this metric

, 1.
d st @si+ —¢" ©¢=idg.
m

i
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Thus we are in the situation considered in Section 1.3, with a point, say z, in the symplectic
quotient Z = H,,//K. For any trace-free Hermitian matrix B € v/—1su(Nm) we can use
the action of SL(N,,, C) to get another point eBz of the symplectic quotient, which will give

another Hermitian metric Hg on E. We take the reference metric Hy to be H.

Proposition 3.2 If | B, < 15 and integer [ > 0, then:
(1) There is a constant c¢ such that if
IBllop + lleller +m™ < R,
then the metric Hg are R-bound.
(2) There is a constant c'such that

IT8llep < ¢m™"([|Bllop + llellce).

The proof is straightforward. We simply write down explicitly the metric Hp in terms of
H,,, which in turn relates to Ho, explicitly. Because all the consideration is invariant under
the action of SU(N,,), we can assume that B is in the diagonal form B = diag();).

Let Hg = H,»(1 + ng), then by the definition of metric Hg, we have

1
> eMisi @ si(1+mp) + —¢" ® ¢(1+np) = id,
i
which is also equivalent to
(id+ D (e = 1)s; @ 8:)(1+np) = id.
i

The above explicit expression plus the inequality in Lemma 3.1 prove (1) in the Proposi-

tion 3.2.
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For the second one, notice the L? inner product of e*'s; is now given by

(e¥si,eM ;) :_/ ((L+np)eds,, eds;) du,
M

the above metric is in H,,. (2) is proved by using the fact

(si,85) = -

and the explicit formula for 7, and the following elementary lemma in [10]

Lemma 3.5 Let V — Y be a Hermitian vector bundle over a measurable space Y and let
si,0 =1,--- | N be an orthonormal set of sections of V' with respect to the usual L2 inner

product. If F' is a bounded function on'Y and we define o matriz T by

Tij =/ F<Sz‘a5j> du,
Y

then (| Tlop < || F|| e

We now continue the proof of Theorem 3.3. Let { be a fixed integer-we want to show that
there is a sequence of balanced metrics converging in C'. Fix an number R. Let H, can be
approximated to order g, then we can choose metric H;, with error term ¢, = O(m~772),
We choose m large enough that lellot + m=! < cR/2, where ¢ is the constant in Proposi-
tion 3.2. Then Proposition 3.2 tells us that if |Bllep < min(cR/2, 1/10), then the metric
Hr, is R-bounded. Under this assumption we can apply Theorem 3.1, which tells us that
Aop, B < X where we take A = C%m 142 for the constant C' in Theorem 3.1. Now we apply
Proposition 1.4. We take the constant § of Proposition 1.4 to be min(cR/2,1/10). We know
that || Bll, < & implies Az, < X\. Now the other ingredient entering into Proposition 1.4,

which in our context is ||T]|. Applying

TS /N[ Tl
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which is less than C’'m~"™/29-2_ Thus we can apply Proposition 1.4 so long as
)\Cﬂm—n/2—q~2 — C«Zc/mn/Z—f—QeAq—l <4

Take g > n/2+2¢+1, this holds for large enough m and we obtain a solution to our problem
with

HB“OP < C2C,mn/2+25_q_l.

This inequality then show the metric Hg which corresponds to the solution differs from H,
in C! norm by O(m!+™/2+2=9-1) Thus for ¢ > n/2+2¢+1+1, we can derive the existence of
balanced metrics and convergence of the balanced metrics to special metrics in C ! norm. The

T-property is also clear as T is preserved during approximation procedure as in Theorem 3.2.
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Chapter 4

Asymptotic Expansion of Bergman

Kernel for Bundles

In this chapter, we derive the lower three terms of Bergman kernel for bundles. One mo-
tivation is to know explicitly each term in the second equation 3.9 coming up during the
approximation procedure. In section 4.1, we discuss the background for the problem and
state the result. In section 4.2, we recall the important gadget, peak section, as developed
by Tian ([23]). In section 4.3, we do the expansion to the third term based on the work of
Lu ([15]).

4.1 Introduction

Assume we have a Kdhler manifold (M, g,w), g is a Kéhler metric, w is a Kahler form.
Suppose M has a polarization, that is a Hermitian line bundle (L, h%) with vV—1RL(h) = w,
where R”(h) is the curvature of L determined by the holomorphic structure on L and the
metric h. Let (£, H) is a Hermitian holomorphic bundle of rank r = r(E).

The metrics induce metrics on the bundles E,, = E ® L™, for each integer m, corre-
spondingly the L? metrics on the space of sections ['(En). We choose m large enough, so

that the map ¢, define in 2.5 is an embedding map. N,, denote the dimension of space of
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holomorphic sections Tyo( Ep)-

The m-th Bergman Kernel B,,(H) € End(F) associated to these data is
Nm
Bn(H) =Y S ®S5, (4.1)
i=1

where {S;} is an orthonormal basis for Thol(Erm) w.r.t. the L?-metric. Clearly, B,(H) is
well-defined. It’s the kernel function for the L? orthonormal projection from L? section space

L?(E,,) to holomorphic section space I'hol(Em)-

Notice that the Bergman kernel B,,(H) does not really depend on the metric h on the
polarized bundle L, even thought in the definition we use this metric h. The reason is that

the metric h is determined by the Kahler metric w up to a constant factor.

Our purpose is to derive the lower order terms in the expansion of B,,(H) for large m.

We write these terms in terms of various curvatures of M, E and their covariant derivatives.

In case the bundle E is a trivial line bundle, the problem has been extensively studied.
It’s initiated by Tian [23]. Where Tian developed the idea of peak global sections as well
as fundamental properties of peak sections. Tian also got the first term in the expansion
of Bergman kernel and proved convergence in C? norm. Ruan [22] improved the result by
introducing K-coordinates. Ruan showed the general convergence result of expansion of
Bergman kernel. Zelditch [30] and Catlin [6] reproved the result based on the general theory
of Szego kernel. Catlin [6] actually proved the existence of expansion for general bundle.

We’ll use his result in this paper.

The explicit evaluation of coefficients in the expansion is hard work in general. Lu in [15]
got the first four terms in case of E is trivial line bundle. X.-W.Wang ([28]) got the first two
terms for general bundle E. We derive the third term in this chapter. Our one motivation is
to know explicitly each term in the second equation 3.9 coming up from the approximation

procedure.

Recall the result of Catlin([6]) about the existence of expansion for general bundle E.
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Theorem 4.1 For a fized metric H, there is an asymptotic expansion as m — oo
(2m)" Bop(H) = Ag(H)m" + Ay(H)m™ 4.

where A;(H) € End(E) are determined by the geometry of w and H. Precisely, for any
integer I, R >0
1(2m)" B (H) — ZAJ' (H)m™ ||t < Cypgm™F,

j<R

where Cy g depends on |, R,w and H .

Note in [10], Donaldson remarked that the constants Ci,r,z can be chosen to be uniform if
we vary the metric H in a bounded set of metrics in the C¥ norm. Here I’ depends on
and R. In case R = 2 and | = 0, we denote the ! by l,. This integer is important for the
derivation of special metrics, see Section 2.3. It is interesting to know this number explicitly.

By the result of Catlin, we see right away

Corollary 4.1 (1) The integration of TrA;(H) is of topological nature. In fact
w™ n
TrA;(H)— = ((2m)"a;
M n!
where a;’s are (n — j)-th coefficient of m in N,,.

(2) Each A; is self-adjoint with respect to the fized metric H.

The (2) is simply because that Bergman kernel B,,(H)’s are self-adjoint.

Our expansion result is
Theorem 4.2 (0) Ay(H) = Id;
(1) Ai(H) = V-1AFy + ixld;

(2) As(H) = 3AkId + % (|R|? — 4|Ric|? + 3x%)1d
+ 3(A"Ric® + KkRic® + RicPRic® — RERP — (RE, Ric)).
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Here R, Ric and « represent the curvature tensor, the Ricci curvature and the scalar
curvature of g, and A represents the Laplace operator of M, Ric®P = \/—1AFy and Fy
represent the curvature of (E,h¥) and A" = /-1 ABO.

4.2 Constructing peak section

The main gadget to derive the coefficients in the Bergman kernel expansion is the peak
global section introduced by Tian ([23]). It provides a way to construct global holomorphic
sections basically concentrating on a prescribed point.

Fix a point 2o on M. To simplify the computation, we choose K-coordinates introduced
by Ruan in [22]. Precisely we choose local coordinates (z1,---,zn) centered at the given

point z, such that the Kahler metric g;; satisfying

gii(ﬂvo) = 6ij>
gortten g o (00) = 0
ot - 0z 0
for any nonzero n-tuple P = (p1,- -+ ,pn) € Z7.

and we choose a local holomorphic frame e” of L centered at z, so that the local representative

function a of the Hermitian metric hZ, ie., a = hP(el, eF) satisfying

CL(.’E()) = 1,
ap1+"'+,l’na
9 () =0
82{71 et az'nn ( 0)
for any nonzero n-tuple P = (p1,--- ,pn) € Z7.
and we choose a local holomorphic frame {ef, - - eZ} of E centered at z, so that the local

E
€a

representative function b,z of the Hermitian metric h”, i.e., byg = hE(ek, ef) satistying

bag(Zo) = dap,
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OP1t+Pn baﬁ

- af -0
027" - - 02" (7o)

for any nonzero n-tuple P = (py, - - - ,Pn) € Z7.

We recall the result on the peak global section is

Theorem 4.3 ([23]) For any n-tuple P = (py, - - - ,Pn) € Z7, and an integer p’ > py + -+

Pn, there is an integer mo, such that for any m > myg, there is a global holomorphic section

S of B, so that

P,am

157 amll =1

/ 1
| ISl av =005

M\{Jz| <!}

and Sg’a,m can be decomposed as
Igna,m = I’;,a,m + U’?’,a,m:
so that
s Apaz' - Zrel ® ()P (1+ O 37)) |2l < g
SP,a,m =
0
uzI;’,a,m(z) = O(Izl2p )
and
! 1
”ui‘)’,cx,m”2 = O(m2;m)
and

-2 _ P1 2. m
e [ b,

1
A<le

where dV,, = Wdu is the re-scaled metric for convenience.

Note the original statement is for bundle E trivial. The extension to general bundle F

is exactly the same, see X.W.Wang [28]

The basic idea is that we first construct a local holomorphic section of E.., say S, with
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the prescribed local form. Then we extend this section to a global smooth section using
cut-off function. We still denote it by S. This section is of course not holomorphic, to get

holomorphic section, the idea is to solve the equation
oT = 0S. (4.2)

If we can solve the equation, then the difference S —T is holomorphic. That’s not enough, we
also want section S — T has prescribed local form. So we want to choose solution 7' so that
it won’t perturb the local form too much. This requires a delicate study for the equation 4.2
using the positiveness of line bundle L and taking care of the integer m. These are all done
in Tian [23].

We also recall the following lemma in Lu ([15]) which is useful in the following computa-

tion.

Lemma 4.1 Let A be a function on {1,--- ,n}?P x {1,--- ,n}?. Then for any p' > 0,

E 2q ,—mz|?
/ A7z ZinZi Zj, 2, |2 e dVo

| |<__L

pl(n+p+qg—1) 1
G EZ 10 (4= Dmrrrs + )

where dVy = (%)”dzl AdZ; A --- Adz, A dZ, is the normalized volume form for C". Note
the factor (2m)™.

4.3 Calculation of the first three terms

4.3.1 Proof of the result
We start with the following simple and useful observation(cf. [15]).

Lemma 4.2 Let S1,Ss,- -+, S, be any basis of Tho(Em) so that at a given point o on M,
S1(z0), S2(z0), -+ -, Sr(zo) form a basis of the fiber Ep, at zo, while Sy(xg) =0 for k> r. If
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we set Fij = (S;,8;),4,5 =1,-+ ,dp, then obviously (F;3) is a positive definite matriz, hence

it can be written as the product of a matriz G with it’s complez transposition G*, explicitly,
Y

drm
F3=) GGy
k=1

Let (Hi;) be the inverse matriz of (Gy3), (I;) be the inverse matriz of (F3),

dm
Then {Y_ H;;S;} form an orthonormal basis of Thot(Em) and at the point zo, Bergman
j=1

kernel is of the form

Bo(H)(z0) = Y 1.555(z0) ® Sp(zo).

afi=1

In fact

(HigSk, HpS)) = HgHgFy
= HiH;iGiGyr
= Jiplp;

Our plan to compute the lower term of the Bergman kernel expansion is then, we choose
a special set of basis {.5;} satisfying the assumption of above lemma, then to compute the

lower term of the expansion of the terms on the right hand side.

First we take P = (0,---,0) in Theorem 4.3, and get r sections, which for simplicity,
we’ll denote as Sy, @ = 1,--- , 7. These sections play crucial roles in the calculation of lower

order terms in the asymptotic expansion.

Next we complete the sections {S,, a=1,--- ,T}toabasis {Sy, T}, a=1,---
17 e 1d‘m. - T} of HO(M, E ® L®m)7 such that

{Ti, i=1,---,dn—r} are orthonormal and vanishing at z,
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and

(Sq,T;) =0, whenever a=1---,r, i>r

We can choose such basis T; simply for dimension reason. If V is the linear space of

sections vanishing at zo, W is the orthogonal space to the span of Sy, then clearly
dimV =dimW = N,,, —
Hence the dimension of their intersection
dim(V N W) = dim V + dim W — dim(Y U W)

is no less than then N,, — 7 + N, — 7 — N, = Ny, — 27

With respect to this basis, the matrix (F};) has the form

(Sw Sﬁ) (SaaTi) 0
(FLJ) = (T;J SO() -[7" 0
0 0 Idm—Zr
If we set M = ((Sa,S5)) and N = ((Sa, T;) ), then it’s easy to see the first block of the

inverse matrix of F is

I= (M- NN (4.3)

Clearly, the basis {S,, T;} satisfying the conditions in the lemma 4.2, hence by the local form

of S, in Theorem 4.3, our main task is now to compute the lower terms for

Z 1,55:(z0) ® Sp(xo) Z Xarsl,5(el)" (wo) ® ef (zo) (4.4)
af=1 af=1

We can further simplify the computation by recalling the following Lemma in Lu [15]
(cf. [28]).
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Lemma 4.3 For any holomorphic section T of E,, that vanishing at oy, we have

(50.7) = O(—)IT]

Thus we have the matrix NV is O(;l{) and I is essentially M~! modulo higher order
terms. So all we have to do is to compute the lower three terms in \,’s and (Sa,Sp)’s. In
the following we first state the result for these terms and use them to give the expansion
for Bergman kernel. Then give the computation for \,’s and (Sa, Sp)’s separately in next
section.

We fix the notation first. For the tangent bundle TM, Let R be the curvature determined

by the metric g. Locally, we write out R

0 0 _ 0
8—2] = Rijkldzk VAN le ® 5;7'

and the Ricci curvature Ric

- _ D _ Kkl
RZCij = Rijklg

and the scalar curvature

Kk = Ric;;g".

For the Hermitian bundle E, let R® be curvature determined by the metric H. Locally we
write out RF
RPe] = Rzef = RE;-dz Ndz; ® €f
and Ric® = /—1ARF
RicaEB = RfBﬁgﬁ

Proposition 4.1 For the above chosen basis {S,, Ti}, we have

) A B 1
AN =mr(14 2422 4 O(—))
m  m m
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where

1
A =5 + Rz'cfa,

1
B, gAm—l— (|R|2 4|Ric|® + 3x2)+

1
é(A”Rz'caa — Ricf/;Rz'cﬂa |RE |2 (RE. Ric) + kRicZ, + 2RicE RicE))

summing over 3

(2) Fora#p, D
(50 59) = =22 4+~ 1. 0(—),
where
Cop=— Ricfﬁ,
Dys=— lec (ch 5+ R'Lcﬂﬁ)
?NM%—M%MC — (RE., RE.) — (RE;, Ric))

a®y)? aﬂa

summaing over .

We now calculate the first three terms in the expansion for Bergman kernel.

Proof of the main result

By the identity 4.4, we only need to compute the coeflicients of Ay’s and I5’s. The A,’s are
clear by the Proposition 4.1. For I 3’s, using the identity 4.3 and N = O( ) we get

_ 1
I=M"'+ O(n?).
If we set Cps = Dag = 0, using the Propositiond.1, and

I+A) T =1-A+A+
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for small matrix A. We have

For Ay(H), it’s simply

=

For A\(H), using (1+ )z =1+%+ - ,we get

which is & + RicP.

For A3(H), using (1 + z)2 = 1+ 2 — “g—2+---, we get
«a A
(— + {)Cag + Co3C5 — Dyj
for A3(H),s with a # 8 and
Bo + Co5Cya

for AS(H)ad-

Then you put the exact expressions in, you get the result.

4.3.2 Expansion for )\,’s

We do the expansion for A, in this section. The main gadget is Lemma, 4.1,

Recall the A, is
3= [ b det(gg) v
|2}< loam

To apply the Lemma 4.1, we expand each term in the above integrand to certain order. This

is the same strategy in Lu [15].
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Recall in the K-coordinates ([15]), around zo, we have following Taylor expansions:

loga = —|z|> + as + as + as + O(|2|")
log det(g;5) = g2 + g3 + 94 + O(|2°)

baj = Oap + bajgz + baps + baga + O(|2[%)

where a’s are

(

1 = —
ay = 3 Ri502i252K %

_ 1 I = 5 o = = =
N a5 = 15 (Rijrip2iZiziZizp + Rijuip2iZi2e21%)

ag —

(R

1 -, T - = P _ —_ - —_
\ 36 (Rijklpg — FiskaRsjol — RijsiByspg — RispgRyju1) 7122121 %p%

where ag is the (3,3) part of ag and Ry, Ry and Rij are the coefficients of the

i7kl,pq

covariant derivatives.

And ¢’s are

4
g2 = —Ric;52:2;

_ 1 _ ~1 1 e w 5.3
S gs = _§Rij,kzizjzk — §Rij,kzizjzk

_1 o P Ne s
g4 = 3 (—Rijur + RiseiRsj) 2125220

\

where g, is the (2,2) part of go.

And b’s are
(
baﬁ? = —ngﬁzizj
S bags = —%RQEBﬁ,kzﬂjzk — %Rfﬁﬁﬁziéﬂk
Lgam = _%(Rfﬁﬁ,kl— - Rfmz‘Rkaj - Rf:ykz‘ngij - Rfﬁijiﬁkl_)Zizjzkzl

where Bam’s are (2,2) part of b,z
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Also if b,p,;5,7 denotes the coefficient of z;2;z,2; in b,g, then

)

> bagiasz = (R, RE,) + Ricl Ric%; + (RE;, Ric) — A" RicZ; (4.5)
(4]

The computation for these terms are straightforward. We simply use the local expression

for the curvatures in terms of metrics.

Now for each function ¢, we define

22 = / baaa™ dV,
lz|<
=/| bage™ 8% det(g;;) dVo

2 - _ 2
ba&em(log a+]z| )elogdet(gu)e m|z| dVo

— K(baaem(log a+|z|2)elogdet(gi3))

Using the Taylor expansions for a’s, b’s and g’s and Lemma 4.1, we have

A;2 =K((1+ baaz + baas + baga)

1
(1 +m(as + as + ag) + §m2a§)

1
(1492493 +9ga+ 593)) + O(mn+3)

1
K(94) + K(baa292) + K (baga) + §K(9§) +mK(as)+

1
mK(gaa4) + mK (bag204) + §m2K(a%) + O(mn+3)
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We collect the expansion for the these K’s in the following lemma

Lemma 4.4

1 1
K(1) = mn + (mn+3)
1 1
K(g2) = R + O(mn+3)
1 1
K (baaz) = —Ricon—5 + O(—13)
1 1 1
mK(aq) = ol (mn+3)
1 . 1
K(gs) = —§(A’f - |Rw|2)mn+z + O(mn+3)

1

K(baa292) = ('fRicfa + (Rfﬁu Ric))mn+2 + (mn+3)

K (bags) = —%(A”Rz’cfd — Ric;Ricg, — (R, Ric) — |Rfa|2)mi+2
SK() = (62 + |Ricl’) — = + O(—)
m (as) = £(Bn ~ 2Ric? ~ [RP)— +O(—0)
MK (g201) = 3 (K + 2/ Ricl’) — + O(—_)
K (bosaas) = —%(nmcf& +2(RE., Rz-c>)mi+2 + O(m}ﬁg)
LK (a}) = S(5* + 4| Ricl + |BP)— +O(—)

Here A" RicF = \/—lAagRicE

()

The derivation is straightforward using Lemma 4.1. We omit the proof here. However, in

the next section, we write all the analogous K’s out. The K’s here can be done analogously.

The expansion for A\,’s is then clear.

4.3.3 Expansion for (S,, S3)’s

The expansion for (S,, Sp)’s uses the same strategy as for A,’s.
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Recall, using the local forms for S,’s in Theorem 4.3

(%%FAﬁMMM

1
= Ao byza™ dV. —
ﬁ/|z|s’—°y‘% pa” dVy + O( o)

Rewrite it in terms of function K

/|| logm baaam qu 3 | | o baﬂ_emloga det(gzj) dVD
z S o 7:1, . S o n:n
= / baﬁem(loga+|212)elogdet(gi]—.)e_m,zlz v
|2|< T

— K(ba‘éem(loga+|z|2)elogdet(gi3))
Recall in case a # (3, we have following expansion for b’s
baB = baﬂ-Q + baﬁ3 + baﬁ_4 + O('Z'S)

Hence using the Lemma 4.1, we have

[ e o™ e = (a5
A=Tm

1
(14+m(aq + as + ag) + §m2a§)

1
(1 +92+93+94+§9§)) + O(
= K(baﬁQ) + K(baﬁll) + mK(ba52a4) +
1
K (bagag2) + O(——)

mm+3

mn+3 )

We collect the K’s in the following lemma
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Lemma 4.5

1 1

K(baga) = —Ricfﬁmnﬂ +O( n+3)
1 . 1 1
mK (bype0s) = —(§nch (Rfﬁ, Ric)) — + O(mn+3)
. 1
K(b05292) (K;RZC 3 + <Ra[3’ RZC))W + O(mn+3)
) . "o 1 1
K(boga) = ((qu, RE.) + chfﬁch (Rfﬁ, Ric) — A RanEﬁ)mnw + O(m"+3)
The derivation is straightforward using Lemma 4.1. In fact
K(bag) = - / REnme T v,
|2|< 252
1 1
. E
—Ricyg mntl + O(mn+3)
m
mK (byp204) ) 1 aﬁz]Rkﬁlqu'LZ] 2k E12pZq€ —mlal? gy
2| < logm
1 1
_Z(Rfﬂu(Rjgkk + Rjjz) + ZRam](Rﬂkk + R; kki))m + (m”+3)
1 . 1 1
—(Enchaﬂ (RfB,RZC))m — +O(m"+3)
K(ba[;zgz) / ngi-.Rick;ziijzkfle_mmz dVO
| |<_°Eﬂ J
B 1 1
(Raﬂmch + RaﬂzgR’Lc )mn+2 + O( n+3)
1 1
(kRic? B <R55’Rw>)m -+ O(m"+3)
1 —mlzl?
K (baga) 1 / bagijkiziZiZkZie =" dv,
|2l <52
1 1 1
'2_ aBiii] _ny2 (mn+3)
1 E E . ' D; F 1 1
5((Rm, RE.) + RicE ch + (R, Ric) — A’ R’Lca[’)m"” + O(m"+3)

For the last one, we use the identity 4.5. The expansion for (Sa, Sp)’s is then clear.
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