
Managing Embedded Software Development in China

by

Wei Hu

M.S. Electronic Engineering (1996)
Southeast University, China

B.S. Electronic Engineering (1993)
Northwestern Polytechnical University, China

Submitted to the System Design and Management Program
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Engineering and Management

at the

Massachusetts Institute of Technology

January 2004

2003 Massachusetts Institute of Technology
All rights reserved

Signature of Author
Wei Hu

System Design and Management Program
January 2004

Certifiedl by
Michael A. Cusumano

Thesis Supervisor
Sloan Management Review Professor of Management

A ccepted by
Thomas J. Allen

Co-Director, LFMISDM
Howard W. Johnson Professor of Management

Accepted by
David Simchi-Levi

MASSACHUSETTS INSTiTUTE Co-Director, LFMISDM
OF TECHNOLOGY Professor of Engineering Systems

JAN 2 3 2004 BARK

LIBRARIES

Chapter 1 Em bedded Softw are O verview ... 3
1.1 Introduction to Em bedded Software ... 3
1.2 Characteristics of Em bedded System s ... 3

1.2.1 H ardw are characteristics... 3
1.2.2 Softw are Characteristics ... 4

1.3 D eveloping Em bedded Software .. 6
1.3.1 D esign m ethodologies.. 6
1.3.2 Program m ing Languages ... 12

1.4 Challenges in developing em bedded softw are... 13
Chapter 2 China's Em bedded Softw are Industry ... 14

2.1 China's Softw are Industry at Large ... 14
2.1.1 Com panies and Products... 14

2.2 Em bedded Softw are in China ... 17
2.2.1 Product segm ents .. 17
2.2.2 China vs. India in Em bedded Softw are.. 18
2.2.3 Leading Telecom m V endors in China... 19

2.3 D evelopm ent Process M anagem ent... 20
Chapter 3 Embedded Software Development at Motorola BJDC 22

3.1 Product .. 22
3.2 D evelopm ent process .. 22

3.2.1 Requirem ent analysis ... 23
3.2.2 M odule D esign... 24
3.2.3 Process m anagem ent.. 25
3.2.4 Testing.. 26

3.3 D evelopm ent Team Structure ... 27
3.4 Efficiency and Lessons learned .. 27

Chapter 4 Embedded Software Development at Glocom Shanghai 29
4.1 Product introduction... 29
4. 2 D evelopm ent Process.. 29

4.2.1 Product Requirem ent Analysis ... 29
4.2.2 System Architecture D esign .. 30
4.2.3 Softw are D esign... 30
4.2.4 Softw are Im plem entation... 31
4.2.5 Quality A ssurance and Testing ... 32

4.3 D evelopm ent Process M anagem ent... 32
4.3.1 Characteristics of Software D evelopm ent Process 32
4.3.2 Schedule M anagem ent ... 34

4.4 Efficiency and Lessons learned .. 34
Chapter 5 Managing the Development Process at Huawei Shenzhen 36

5.1 Background... 36
5.2 Brief on IPD .. 36
5.3 IPD at Huaw ei.. 38
5.4 Softw are Quality A ssurance at Huaw ei Shenzhen... 39
5.5 Im pact ... 40
5.6 Success factors.. 41
5.7 H ow m uch process is enough?.. 42

1 -

Chapter 6 China's Capability in Embedded Software.. 43
6.1 Similar Development Environment ... 43
6.2 Different Process Management... 43
6.3 Chinese Companies' practice in Process Management 44

Chapter 7 Opportunities and Challenges ... 46
7.1 Opportunities and Challenges to Chinese companies.. 46

7.1.1 Rise of Chinese Vendors... 46
7.1.2 Obstacle to Overseas Market .. 46
7.1.3 Possible solutions.. 47

7.2 Opportunities and Challenges to Foreign Companies ... 48
7.2.1 from Dumping Ground to Battle Field... 48
7.2.2 Strategies to Leverage China .. 49

7.3 Outlook of Embedded Software in China.. 49

-2-

Chapter 1 Embedded Software Overview

1.1 Introduction to Embedded Software
As microprocessors have become smaller and cheaper, they are embedded in more and
more non-computing products, such as washing machines, elevators, MP3 players and
printers. It has been estimated that these products consumed 99% of the worldwide
production of microprocessors. I

In general, "Embedded system" means a computer system sitting inside a product other
than a computer to make the product more flexible and controllable. For example, a
modem washing machine has a control software system to execute different "washing
programs" for different types of clothes.

Embedded systems usually have strict requirements on response time, and the response
must be generated within a finite and specified period, though depending on the situation,
the time could be within a few milliseconds or a few seconds. Because of the special
requirement on response time, embedded systems are sometimes called real-time systems.

Embedded systems can be divided into two categories: hard and soft, according to the
degree of required "timeliness" 2 . A hard embedded system is stringent on that the
response must occur within a specified timeline. Typical examples are flight-control
systems and missile control systems. A soft embedded system is less strict: response time
is important but the system still can function properly given occasionally missed deadline.
Examples are mobile phones, printers, and medical devices. This paper is only concerned
with development of the soft-embedded systems, and hence the term "embedded
systems" in the paper means "soft embedded systems".

1.2 Characteristics of Embedded Systems
Though embedded systems are computer systems, they are different from personal
computers (PCs) we are familiar with in both hardware and software aspects.

1.2.1 Hardware characteristics
Unlike a PC, which stores program and data on external storage devices, such as hard
disks, and loads them into memory when system boots up, an embedded system usually
doesn't have external storage devices and must store its program and data in memory and
keep them in memory even without power.

Embedded systems often have standard serial ports, network interface and hardware to
interact with sensors and activators, but lack the rich peripherals a personal computer has.

1 Alessandro Pasetti, Software Frameworks and Embedded Control Systems, Springer
2 J.E. Cooling, Real-time Software Systems, Thomson Computer Press

-3-

* A monitor. Some systems may have a liquid crystal display (LCD) that can
display several lines of characters, and some only have a few diodes to indicate
the system's states.

* A keyboard. Most embedded systems only have a few buttons for input.
* Disk drives. As both program and data are stored in memory, and embedded

systems don't need such devices.

Embedded systems usually don't require high computing power, and tend to use less
advanced CPU models, and also have less memory.

The following table shows some CPUs commonly used in embedded systems, and their
memory and speed information.

Processor Bus Width Memory Max Speed (MIPS)
Zilog Z8 family 8 64K (maximal) 1
Intel 8051 family 8 64K program + 64K data 1
Zilog Z80 family 8 64K; IM 2
Intel 80188 8 iM 2
Intel 80386 family 16 64M 5
Motorola 68000 32 4G 10
family
Motorola PowerPC 32 64M 75
family
Intel StrongArm 32 2.1
Motorola DragonBall 32 1 5.4

Table 1.1

1.2.2 Software Characteristics
Embedded systems deal with real-world inputs through hardware peripherals. The need to
respond to and control external hardware often results in strict timing requirements, and
most embedded systems must then be built to ensure certain minimal response time or to
guarantee a certain minimal throughput. Meeting such requirements can have a
significant impact on the architecture of the software and programming paradigm, and
timing aspects becomes one of the most important design drivers of embedded software.

Because embedded software is usually used to collect inputs and control devices, it
usually lacks the complex user interface conventional software systems have, and has a
much smaller proportion of UI related code, whereas in the convention software
application with graphical user interface, the proportion of UI related code can reach
90%3.

Embedded systems are designed to operate without direct human supervision. Compared
with an information processing system or desktop system, it requires a higher degree of
autonomy and reliability, guaranteed response time and lower maintenance cost.

3 Alessandro Pasetti, Software Frameworks and Embedded Control Systems, Springer

-4-

Embedded software systems usually have two different system architectures depending
on whether they are built on a real-time operation system (RTOS). Figure 1.1 illustrates
the architecture diagram built on a RTOS.

Real-Time Operating

IF System (RTOS)

Hardware layer

Figure 1.1 Embedded system with RTOS

A RTOS provides infrastructure services to ease the work of developing embedded
software. Typical services include scheduling service, tools to protect shared data and
facilitate inter-task communications, such as semaphores and message queues, and timing
service. To save memory and improve performance, a RTOS typically include just the
services that are necessary for embedded systems, and most RTOSs allow users to
configure them extensively to streamline features further.

In spite of similar names, most real-time operating systems are quite different from
desktop machine operating systems such as Windows or UNIX. The biggest difference
lies in the relationship between OSs and applications. On a desktop computer, the OS
takes control of the machine as soon as it is turned on and then lets users to start other
applications. In contrast, in an embedded system, an application is linked into RTOS, and
at boot-up time, the application gets control first and it then starts the RTOS. RTOSs also
lack the memory protection mechanism Windows and UNIX have. Consequently, an
application crash can easily bring down the whole system. The tight coupling reflects the
fact that most embedded software is designed for a specific task, and it does not make
much sense to keep the OS alive if the application crashes.

Popular RTOSs include VxWorks, Windows CE, Palm OS, Real-time Linux and etc.

Because RTOSs are general commercial products, to lower cost and potential overhead,
many small projects choose not to use a RTOS and build their own modules to handle
boot-up, interruption processing, tasking scheduling and simple mechanism to protect
shared data. Figure 1.2 illustrates the architecture diagram without a RTOS.

-5-

Figure 1.2: Embedded system without RTOS
The biggest advantage of this architecture is the simplicity, but it is not flexible and
scalable. Developers need to make a tradeoff between them. A recent survey shows that
in Asia-pacific region, forty-one percent of projects don't use any RTOS. 4

1.3 Developing Embedded Software

1.3.1 Design methodologies
The most important objective in the development of any embedded system is to make a
design that meets requirements. In this aspect, embedded systems are no different from
other software application. A typical cycle of an embedded software application consists
five stages.5

" Requirement specification
* Architectural design
* Detailed design
" Implementation
" Testing

Because of hardware constraints and performance requirements, in the early stage,
assembly and C language have been the dominant implementation language in
developing embedded software, and they are still popular even today. For example, in
1996, a control system of a large satellite was written in assembler. Structured bottom-up
approach is the major programming paradigm. Embedded software was often considered
a supplement to hardware, and many software projects were not well planned and
managed, and grew as hardware evolved and requirement increased. For example, the
engine control software of a line of middle-sized cars consisted about 300,000 lines of C
code in 1997, and was poorly structured.6 Also due to the limited hardware capacity, the
research on methodologies for embedded software lags far behind the practice, as the
software systems becomes more complex, many embedded systems suffer from poor
reusability and maintainability.

Due to the fast improvement of CPU and memory design and manufacturing technologies,
the hardware constraints have loosened up significantly. Consequently, many efforts have
been spent to bring good practices in developing conventional software products, such as

4 Gartner Report: Asia/Pacific: Embedded Systems Design, Software Decisions, May 2003
5 A. Burns and A. Wellings, Real-time Systems and Programming Languages, 3 edition, Addison-Wesley
6 Alessandro Pasetti, Software Frameworks and Embedded Control Systems, Springer

-6-

Modeling languages, Object-Oriented design and programming, Component-based
programming, to developing embedded software systems.

Gomaa suggested that there are four important objectives for a real-time design method: 7

" To structure a system in concurrent tasks
" To support the development of reusable components through information hiding
" To define the behavior aspects using finite-state machines
* To analyze the performance of a design to determine its real-time properties

An embedded system usually consists of computers and several coexisting external
elements with which the computer programs must interact simultaneously, and
concurrency is often inherent in embedded software systems. SDL-RT addresses these
issues well and is popular in the industry. Though UML is designed for embedded
software, many efforts have been spent to extend it for embedded software.

1.3.1.1 SDL-RT8

Specification and Description Language (SDL) is an object oriented, formal language
defined by International Telecommunications Union (ITU, formerly CCITT). The
language is design to specify complex telecommunication systems, which are usually
event-driven, real-time, and interactive, and involve concurrent activities communicating
with discrete signals.

Though SDL has been developed in the first place for telecommunication applications,
experience showed that some of its basic principles could be applied in a wide variety of
real time and embedded systems.

SDL-RT inherits the merits of standard SDL and improves it on several aspects:
" It replaced SDL obsolete date types with ANSI C data types
* It added "semaphore" symbols to the model
* It removed some message types that are rarely used in embedded systems.
" It adopted UML for modeling object oriented content in v2.0.

This section gives brief description of SDL-RT, and demonstrates how it can be used to
model special characteristics, such as time constraint and concurrence, of an embedded
system. Though it focuses on SDL-RT, most of the content applies to SDL as well.

In SDL-RT, an element in the system is called an agent, and there are two kinds of agents:
blocks and processes. A system itself can be viewed as the outermost block. A block can
be further decomposed into smaller and simpler blocks, and a lowest level block can be
composed of one or several processes, which fulfill the block's functionality.

A process is modeled as a finite state machine, and it has a set of states and conditions
that cause states to transit. A process communicates with other processes through

7 Software design methods for the design of large scale real-time systems, Journal of Systems and Software
8 SDL-RT standard, http://www.sdl-rt.org

-7-

message exchanges, and its state transitions are usually triggered by messages it receives.
Processes can be concurrent, and it is also allowed to have several instances of the same
process running independently.

Message sequence chart (MSC) is the major tool to show process state transition. Figure
1.3 shows server process enters idle state after startup, and process caller in its start
transition sends a conReq to server and goes to state idle. Process server returns a
conConf message and enters connected state. The caller in idle state transits to connected
state after receiving conConf message.

prcess process

caller server

idle.

Wil

--- -- -- - --- -- --

Figure 1.3

With timers defined in SDL-RT, the time constraint can be expressed
model. Figure 1.4 shows an example with some time constraints.

process

Ealer

waiti
0,OaI2PP

workflci

workRvsp

conveniently in the

process

LIseI

Figure 1.4

-8-

ing

cmnectcd

This MSC diagram shows that server process reaches idle state at absolute time 34 sec,
and caller process requests server process to compute some work in less than OxO2FF
time units.

As a process is a finite state machine, MSC describes its internal state transition
effectively and efficiently. However, a system usually consists of multiple processes, and
these processes can run in parallel or alternatively. It is sometimes needed to describe
such relationships between processes. SDL-RT provides high-level MSC (HMSC)
diagram to model the relationships.

Ilfhillllfiniilll ihiliril~i...I.

Figure 1.5

In Figure 1.5, the system starts in disconnected state, and either process conFailed or
conSucceeded is executed depending on the return result of connection attempt. In the
scenario of conSucceeded, the process supervising and dataTransfer run concurrently,
and both end in disconnect process.

SDL-RT uses UML to describe classes, relationships among classes, package and
deployment.

SDL-RT is a formal language, and in theory, the model can be translated to executable
codes directly. However, such tools are not available yet.

-9-

1.3.1.2 Unified Modeling Language
Over the last ten years, object-oriented (00) analysis and design has become the
mainstream methodology in software development, and the Unified Modeling Language
(UML) was adopted as the standard 00 notation. Many of key UML features are suitable
for modeling real-time embedded systems. For example, the object model and packaging
can be used to capture system architecture and organize elements into groups. To better
support modeling real-time applications, the proposed real-time UML standard includes
features to model key concepts in embedded software.9(All the figures in this section are
from the same reference.)

In the "CommonBase" package, it introduces a Resource package and a Time and a
Concurrency package that derive from the Resource package, as shown in Figure 1.6.

Figure 1.6 The Structure of real-time profile

The base package is extendable to support specific technologies, such as Real-Time
CORBA.

Resource models the physical aspect of software, and a resource is viewed as a server that
provides one or more services to its clients. The physical limitations of a resource are
represented through its quality of service attributes (QoS). QoS attributes can be used to
model many different properties. In most cases, the values are quantitative, for example,
size, service time and capacity, but they can be qualitative as well, and scheduling policy
and failure model are two such examples.

9 Bran Selic, The Emerging Real-Time Standard, Proceedings Sixth International Workshop on Objected-
Oriented Real-Time Dependable Systems

- 10 -

In the proposed real-time UML, a situation involving resources and their clients is
referred to an analysis context. The context can be static and dynamic. The relationship
between resource and QoS attributes is referred to general resource model, which is the
basis for all other aspects of the real-time UML profile. Figure 1.7 is the relationship
diagram.

ResourceUsage ResourceService Resource

Figure 1.7 The General Resource model

Figure 1.8 is an example of a simple static analysis context. It shows two active and
potentially concurrent clients accessing a shared monitor resource. The time constraint is
modeled as QoS attributes.

wGRMresourceClIents -GR MresourceCiient-
Clieni Client 2

1qos~adine=3ms) (gosEeadline-Sms}

-GRMresource-
myMonitor

(qo9RcsponscTimt-4rns)

Figure 1.8 Example of a service representation

The Time package that derives from Resource is used to model the time constraint of
embedded applications. Physical time is modeled as a set of physical time instants, and
the count of the number of expired cycles is used to measure the progress of physical
time.

The real-time URL proposal distinguishes two types of timing mechanisms: timers and
clocks. Clocks periodically generate special kinds of time events called clock ticks and
timers only generate a single timeout event when their duration expires, unless they are
periodic timers, which act like clocks. The relationship among physical time, clocks and
timers is demonstrated in figure 1.9.

- 11 -

t. :1

1-

Pbt4~.aIInduu.t ~W.mV4Art~~

op*

- --------------

I1 -*

(u I e

Ib.we.

M.~ba.t~u

1~mw

Figure 1.9

What real-time UML provides is a common language to express a design - not a design
method. Several methodologies using UML have been proposed, ROPES (Rapid Object-
oriented Process for Embedded Systems, Douglass, 1999) is one of them. It defines an
iterative development cycle of analysis, design, implementation and testing. Use-case
model is used to capture user requirements, and the identified use-cases are ordered
according to priority, risk and commonality. However, some researchers argue that use-
case model may not be appropriate for embedded systems, as requirements in most cases
are non-functional requirements, such as response time and robustness 0 . Though UML
will be used more and more widely in embedded software development," the adoption of
these methods remains to be seen.

1.3.2 Programming Languages
Initially, most embedded systems were developed with the assembly language of the
embedded computer. This is because that assembly programs could achieve efficient
implementation through direct access to the hardware, it is also because high-level
programming languages were not well supported on microprocessors used in embedded
systems.

As computers became more powerful, programming languages more mature, and
compiler technologies progressed, the advantages of developing embedded software in a
high-level language outweighed the disadvantages. Though some languages specifically
for embedded systems have be designed, general purpose programming languages, such
as C/C++, ADA, are more widely used in developing embedded software applications.

10 J. Arlow, I. Neustadt, UML and Unified Process, Addison-Wesley, 2002
"1 Gartner Report, Asia/Pacific: Embedded Systems Design, Software Decisions, May 2003

-12-

The languages can be roughly grouped into two groups, sequential and concurrent
languages.

Typically sequential languages include FORTRAN, C and C++. These languages are
weak in the facilities for real-time control and reliability, such as thread and thread
synchronization tools, and they often rely on operating system support.

In contrast, concurrent languages like ADA and JAVA have build-in support for these
features. Though JAVA initially was not suitable for embedded programming, many
efforts have been spent recently to develop a real-time version of JAVA.

1.4 Challenges in developing embedded software
Embedded software is rarely pure software, and it has close relationship with the
underlying hardware. Whether the requirements can be achieved not only depends on the
software but also the hardware capacity. Further, some minor hardware changes could
simplify software implementation greatly. Therefore, the software programmers have to
understand how the hardware works before making software design, and make reasonable
suggestions to hardware designers. In most situations, the software is developed in
parallel with hardware development, and software needs to be robust and yet flexible to
cater for potential hardware changes.

Embedded software needs to be highly reliable, but it is difficult to test and debug a real-
time program. Some intractable errors are usually the result of subtle interactions
between processes or an unexpected combination of conditions. It is common that a
system works perfectly under development environment, while works abnormally during
the real testing. Such errors tend to be very difficult to reproduce in debug mode or using
a simulator, and programmers usually have to check all related codes to guess the
possible reasons. In extreme cases, programmers have to rewrite the whole module to
resolve the problem.

It is also challenging to achieve reusability in embedded software development. To get
the optimum performance, the software needs to fully take advantage of the hardware
capacity and characteristics, making it tightly coupled with the specific hardware.
Though it is recommended to separate the generic code from hardware related code, it is
difficult to do in practice due to small memory space and the lack of good framework.

- 13 -

Chapter 2 China's Embedded Software Industry

2.1 China's Software Industry at Large
China's software industry has experienced fast growth in the past decade, and the annual
growth rate has been above 25% over eight consecutive years. In 2002, the industry had
4,700 companies and hired 590,000 employees, and the total sales revenue reached RMB
110 billion (US$ 13.5 billion)". Figure 2.1 illustrates China's software sales from 1992
to 2002.

China's Software Sales
(Unit: 100 Milion RMB)

1200

1000

800

600

400 -+-Saes

200

0
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Year

Figure 2.1

Despite the fast growth, China's software industry remains small. In 2002, it took only
2% share in global software market, whereas U.S. and west Europe took 40% and 31%
respectively.

China's software industry is largely driven by its domestic needs. In 2002, the total
export was US$1.5 billion, only 11% of the total sales.

2.1.1 Companies and Products
Among the 4,700 companies, small companies are the majority. 67% of companies have
employees less than 50 and few companies have more than 1,000 employees. Only 214
companies have annual sales more than RMB 100 million, and 368 companies have sales
more than RMB 50 million13. Figure 2.2 shows the company distribution according to
sales and employee numbers.

1 Ministry of Information Industry of China 2002
13 MII 2003 survey

Annual Report

-14-

Companies distribution with sales
(unit: RMB)

8% 4.5%

M <10 million

23% 1 >10 nillion

[50 - 100 mllion

64.5% E3 >100 million

companies distribution with employee
numbers

7%

26%1 U <50

- 50-200

-3 >200

67%

Figure 2.2

The overall software market can be divided into three segments: application software,
system/tools software and middle-ware 4 . In 2002, their proportions are 64.5%, 28.9%
and 6.6%, respectively.

2.1.1.1 Mid-ware products
Mid-ware products include group-ware, Web application servers and CORBA-related
products. This market is dominated by foreign players. Lotus Notes is the market leader
in group-ware, and IBM WebSphere and BEA WebLogic are mainstream web
application servers. Some domestic companies also development some mid-ware
products, but so far these products have failed to make significant impact.

2.1.1.2 System/tools products
System/tools software includes desktop and server operating software, database systems,
network management software, and general development tools.

Foreign companies and products dominate this market, taking 95.3% market share in
2002. Microsoft Windows can be found on almost any PC in China. Oracle, Sybase and
IBM take the database market. Borland's C++ Builder, JBuilder and Delphi, Microsoft's
Visual Studio, Marcomedia's DreamWeaver are the most popular development tools in
China.

Though Chinese companies currently don't have much presence at this segment, the
advent of OpenSource movement may change the situation in the next several years.
There are big Linux communities in China, and several indigenous companies have
developed operating systems based on Linux. Meanwhile, the heavy reliance on foreign
proprietary operating systems has caused the government some serious concerns with
national information security. As a result, the government has started to take a pro-

14 Embedded software market will be discussed in the next section.

- 15 -

indigenous-product policy in government purchasing to finance these products. Beijing
municipal and Guangdong provincial government have taken the lead to adopt some
Linux variants, such as Red Flag Linux.

2.1.1.3 Application software
The application software market covers a wide variety of products and services. It can
roughly be divided into two sub-segments: commercial packages and IT solution projects.
The former includes ERP, office applications, corporate financial, MIS, desktop
publishing and security software; the latter includes numerous government and company
information projects. Table 2.1 illustrates some major application markets and some key
players.

Table 2.1

To develop successful application products, companies need to understand China's
unique cultural, economic and political systems, and regulations. Therefore, indigenous
players have significant advantages, even with less advanced technologies. For example,
in the ERP market, domestic products took nearly 80% market share in 2002. Table 2.2
shows the top players. Only two foreign vendors, SAP and Oracle, had significant market
share (PeopleSoft had 2.0% share).

Rank Company Sales (US dollar):million Market share
1 UFSoft 40.12 21.60%
2 SAP 25.08 13.50%
3 KingDee 23.22 12.50%
4 Oracle 11.89 6.40%
5 DCMS 10.40 5.60%
6 Genersoft 7.99 4.30%
7 HJSoft 7.62 4.10%
8 NeuSoft 6.69 3.60%

Others 52.75 28.40%
Total 185.75

Table 2.2

-16-

Market Major players
ERP SAP, Oracle

UFSoft, KingDee, Genersoft
Financial UFSoft, New Grand

KingDee, Genersoft
Office Microsoft, KingSoft

CS&S, Evermore
Publishing Adobe

Founder
Network Security KingSoft, Rising

Jiangmin, Neusoft
Symantec

Data source: CCID (China Center of Information Industry Development)

2.2 Embedded Software in China
China's booming economy created a large market for consumer electronics, digital
devices and telecom equipment. China is the largest mobile phone market in the world,
the number of mobile phone users reached 167 million in April 2001 1. As the
government poured huge amount of money to update its old communication
infrastructure in the past ten years, China is becoming world's largest telecom equipment
market. Also in the past a few years, the prevalence PCs has brought strong demands for
digital devices, such printers and digital cameras.

As these products require embedded software, a big market for embedded software is
forming. In 2001, China's embedded software sales exceeded $580 million, about 14.5%
of total annual software sales. A survey showed that 30% of software companies were
involved in embedded software development, and another 20% were considering entering
the industry'6 .

2.2.1 Product segments
Similar with computer software market, embedded software can be roughly divided into
two segments, operating system/tools, and product specific software.

In real-time operating system (RTOS) market, VxWorks, Windows CE and embedded
Linux are the most popular platforms 17, but indigenous vendors also have strong presence,
and have developed and are marketing a dozen of RTOS products. Table 2.3 lists some of
these products.

RTOS name Vendor name
HOPEN Beijing Software Engineering Center
Embedded Linux CS&S
Red Flag Linux Red Flag Software (Beijing)
Delta OS Core Tek Systems (Beijing)
CC-Linux Beijing CCOSS
XTinux Net Tiger
Athenew Shanghai GoTop
Start Embedded OS Fuzhou Start
EJE-OS Xi'an EJE
GoldLinc 927 Shenzhen GoldLinc
ZyCo Beijing Ketai Century

Table 2.3
Data source: Embedded software development in China, Dehua Ju, 2002

15 Embedded software Development in China, Dehua Ju, 2002
16 Embedded software development in China, Dehua Ju, 2002
17 Gartner 2002 Asia/Pacific survey

- 17 -

As open-source movement is taking roots in China. Linux is also taking off in embedded
software market. According to a report from the China Center of Information Industry
Development (CCID), in next three years Linux will be the preferred OS for embedded
devices with 54.8 percent of the China market. According to the same CCID report, 57.2
percent of developers for embedded devices now intend to focus primarily on Linux.

In product specific software segment, telecom equipment vendors are the biggest
producer of embedded software, which has become an integral part of the equipment. In
fact, the top three Chinese software companies are all telecomm vendors and five out of
the top ten are in telecomm industry (Beijing Eriksson and Datang are also telecomm
vendors).

Table 2.4 shows the top 10 Chinese software companies.

Name Rank Software and service revenue Software revenue
(RMB, thousand) (RMB, thousand)

Hua Wei 1 6,040,390 6,040,390
Zhong Xing 2 3,786,160 3,546,160
Putian Dongfang 3 2,432,240 2,432,240
Shenzhou Shuma 4 2,321,230 525,400
Beijing Eriksson 5 2,088,680 2,088,680
Founder 6 1,556,410 1,556,410
Microsoft China 7 1,464,360 1,464,360
NeuSoft 8 1,421,520 653,620
CS&S 9 1,329,490 512,100
Datang 10 1,283,320 102,580

Table 2.4
Data source: MII report.

2.2.2 China vs. India in Embedded Software
In contrast to China, whose IT industry is largely driven by domestic needs, India's
software business is built for export. India is the largest country for software outsourcing,
and in 2002, India exported almost $10 billion software and IT services.

One reason behind the difference is that India has a much smaller domestic market. Table
2.5 shows the comparison between India with China in some IT respects.

India China
Per Capita Income $400 $800
Number of Internet 8 million 22 million
Connections
PC sales (2000) $1.5 billion $10 billion
Cell phone (per 1000) 2 34
Export $45 billion $180 billion

Table 2.5 "

18 China Report, Y. Gao, etc MT Software Business class presentation, 2003

- 18 -

As embedded software is usually sold as one part of other products, such as cell phones
and other consumer electronics, the small domestic demands determine that India's
embedded software is also export oriented. Two forms of exports exist in India: direct
product export and indirect export as value-added internal transactions.

In 2000, India estimated it could export $100 million embedded software product to
Japan, mostly in high-tech toys, and plant and machinery. 19 After the great success in
software outsourcing, India is well-regarded as a place that produces high-quality IT
products with low-costs. As the economy in US and Europe is still at the downturn, a
large number of western companies consider moving basic product research and
development to India a long term cost cutting strategy. For example, Cisco has a big
development center with 600 employees. Intel revealed its plan to design the next version
of its Xeon processor for mainframes and write some embedded software for its Centrino
mobile computer chip in India.20 As western companies shift their product R&D to India,
India's embedded software grew rapidly in the past several years.

2.2.3 Leading Telecomm Vendors in China
The huge and fast growing telecomm market not only made a lot of big indigenous
telecomm companies, but also attracted many foreign manufacturers to set up their
facilities in China. Huawei is the largest and probably the best-known Chinese telecomm
vendor, and Motorola is the largest foreign investor in China's telecomm industry.

2.2.3.1 Huawei Technologies
Huawei is a private company founded in 1988. The company came to prominence with
China's rapidly expanding telecomm market in the late 1990s. Its avenue reached RMB
22 billion (US$2.68 billion) in 2002 and the projected revenue for 2003 is RMB 30
billion (US$3.66 billion). Huawei is expending to international market as well, and its
products are being sold in over 40 countries. The international revenue was US$552
million in 2002, and reached US$350 million in the first half of 2003.

The company's growth is driven by three areas: DSL, Software and services, and data
communications. In 2002, its software and service revenue was RMB 6 billion, about
27.3% of its total revenue, and the company forecast a 32% increase in 2003.

Huawei has major domestic software development centers in Beijing, Shanghai and
Shenzhen, and established its first overseas center in India in 1999. The India and Beijing
center have achieved CMM4 certification.

Huawei has developed almost everything it needs to write software for its routers and
switches. The company has its own real-time operating systems, communication protocol
libraries and testing tools.

19 http://www.expressindia.com/fe/daily/20001024/fco24003.html
20 http://nation.ittefaq.com/artman/exec/view.cgi/8/3067
21 Gartner report: Huawei: China's leading equipment vendor returns to growth, July 2003

- 19 -

2.2.3.2 Motorola China Software Group
Motorola entered China market in 1987, and since then it has set up a mobile phone
factory, a semiconductor factory and 16 R&D centers. Motorola China is one of the
biggest foreign companies in China, and it plans to make China its global production and
R&D base and increase its annual output to US$10 billion in China by 2006.

Its software development center was founded in 1993 in Beijing. As the first practitioner
of CMM, Motorola brought CMM to China. The software center has over 530 staff and
has three branches in Beijing, Nanjing and Chengdu, all are at CMM 5.

Motorola's China software center focuses on developing application and system software
for wireless and mobile telecom equipment. Embedded system is the core technology, as
they are "the workhorse powering interactive TV, information home appliances, GPS,
smart control systems, cellular phones and satellite communications."22

Motorola has been a champion for Linux and has ambitious Linux plans. In April 2000,
the Beijing center released the first Chinese language version of an embedded Linux
system (based on TurboLinux) running on Motorola's PowerPC 8240 chips. 23

2.3 Development Process Management
Chinese companies have realized the importance of process management. One example is
that the CMM is being accepted by more and more companies. Since Advanced Systems
Development Company (ASDC) became the first company passed CMM certification
(CMM2), the number of vendors with CMM or ISO certificates has been increasing.
Among them, Neusoft, Legend, Genersoft, UFSoft and Huawei achieved CMM42 4 , and
Neusoft achieved CMM 5 .

Beside CMM, other good software engineering practices, such as Spiral model, and
variants of agile programming model, are also being widely used in Chinese companies,
especially in small and medium companies.

In the next three chapters, the practice in developing and managing embedded software in
Motorola Beijing Design Center (BJDC), Huawei Shenzhen, and Glocom Shanghai will
be presented and analyzed in details. The following table gives basic information about
the three companies.

22 http://www.turbolinux.com/news/pr/motorola.html
23 http://www.csdn.net/news/newstopic/6/6461.shtml
24 Gartner report, COM-14-9027, 9-Jan-2002
25 http://www.pconline.com.cn/pcedu/softnews/yejie/10307/192087.html

- 20 -

BJDC Huawei Glocom
Product Software system Software system for Software for satellite

embedded in mobile switches and routers communication
phones terminals

Process CMM 3 CMM4 equivalent Home-made process
Development V-Model V-Model Iterative model
model
Modeling SDL UML for use cases SDL and state chart
Language
RTOS Embedded Linux Home-made RTOS RTXC
Language Java/C/Assemble C/Assemble C/Assemble

Table 2.5

The practices in the three companies are quite representative, and will give an overall
picture about how embedded software development is managed in China.

-21-

Chapter 3 Embedded Software Development
- at Motorola Beijing Design Center

Motorola Beijing Design Center (BJDC), a CMM3 organization, was merged from the
former Motorola Mobile Research Center and Motorola Pager Research Center in late
1990s. It hires about 300 engineers to conduct a wide variety of researches on software,
electrical, mechanical and industrial design development. Its R&D focuses in 2003
include touch-screen smart phones and platform development, refreshes of GSM cellular
phones, and localization of CDMA cellular phones 26.

3.1 Product
BJDC develops embedded software systems that make mobile phones function. It has
developed the systems for Motorola's V60, V66, V70, and T720 series mobile phones,
and it is developing the software system for A760 series.

3.2 Development process
BJDC is a CMM3 organization. Figure 3.1 illustrates the key requirements of CMM 3
and the relationships between level 3 and lower levels. To achieve a standard consistent
process and product quality required by CMM 3, BDC relies on standardize requirement
analysis process, historical data, a set of process management tools, and strict build and
testing procedures.

Standard,-
Consistent 3. Defined Integrated
Ponsst Process characterized Engineering

fairly well understood Process

Disciplined 2. Repeatable
Process Can repeat previously Project

mastered tasks Management
1. Initial

Unpredictable and3
poorly controlled

Figure 3.1

The development process follows a typical V-model. It starts at system requirement
definition, followed by subsystem design and component implementation, then followed
by testing and verification procedures. Figure 3.2 illustrates the process and major tasks
at each stage.

- 22 -

26 From Motorola China's website

System Requirementr

Desiga Readiness
Re~1ev

System Software Test
Systei Test
Readiness Revhew

Requirements Inspction Plat: RtleA

code
Inspecti on

3.2.1 Requirement analysis
The marketing department is responsible for initial user requirements. After receiving the
requirement, the hardware team writes hardware specification, and the software team
writes a set of documents, including:

Software Requirement Specification (SRS)
Software Architecture Specification (SAS)
Software Interface Specification (SIS)

The requirements from marketing department are described in users' language, and they
are usually ambiguous and sometimes conflicting. Some examples are:

" The device can function normally in suburban area where the signal is weak.
* Users want a light-weight device with large display and long talking time.
* Users want a fashionable device with a price tag around RMB 800.
* The device supports multiple Chinese character inputs, and has a large volume

address book.

To provide a roadmap for product development, the initial user requirements must be
translated into accurate and measurable engineering requirements.

The user requirements can be mapped to categories: hardware and software requirements.
The hardware spec usually specifies the requirements on physical components, such as

-23 -

N

Figure 3.2

the weight, dimension, and battery working time. Tradeoffs are made when user
requirements are in conflict, such as battery size (weight) and talking time, price and
display size. SRS, as the overall software spec, defines the general software requirements,
such as user friendly interface, and data storage types. SRS also includes the real-time
requirements, such as date writing/reading time.

The software system is further decomposed into modules (subsystems), for example,
data-storage module, and protocol handling module. The system functions are allocated
to each module. The hardware configuration and real-time constraints are considered
when software architecture is designed and module functions are defined. For example, to
meet the low power consumption requirement, some modules are required to have a low-
power mode. And to meet the real-time response requirement, some modules are required
to use multithread architecture.

SIS further describes the relationships between software modules. It defines the interface
between modules and correlation sequences to realize system functions.

The three documents together provide a complete roadmap for software system
development, and their relationships are illustrated in figure 3.3.

Hardware

Figure 3.3

These documents will also be used later to verify the functionalities of the product.

3.2.2 Module Design
After SAS and SIS are finalized, the software team proceeds to module design. Top-
down approach is used to decompose the modules to several components (classes), and to
allocate module functions to them. At BJDC, a module design consists of a high-level
and a low-level design. In a high-level design, SDL (Specification & Description
Language) is used to describe the component functions and correlations. The output of
architecture design is a set of detailed component composition diagrams and the
correlation sequence diagram. Figure 3.4 shows the three components and how they work
together.

-24 -

AT Parser

DL_DbPhoneBookDeleteRecord

Phonebook SP Engine Scim

If the storage has been selected,
DLDBPHONEBOOKWRITERECORD_C
NFID with index and the
SUCCESS result

*

If the storage is not selected,
DL DB PHONEBOOKWRITERECO

RD CNF ID with FAILURE result

SCIM_STORE_FILEREQID

SCIM_STORE_FILE_CNF_ID

Figure 3.4

The low-level design is more concerned with the implementation logic. Usually several
alternatives are proposed and evaluated. For the selected implementation, detailed pseudo
code is developed to describe the logic, and the pseudo code should be detailed enough to
allow direct mapping to real code. The following is the pseudo code-snap to set up
communication.

IF iscellavailable == TRUE AND (cell is not low priority OR radio is in low power
scan OR ...) THEN

Setup camp in this cell
ELSE

Setup to try another cell
IF cellisavailable == TRUE THEN

ELSE IF (something != 0) THEN

ENDIF
ENDIF

3.2.3 Process management
After the detailed feature set is defined and pseudo codes are developed at the end of
design process, the team proceeds to feature implementation. With the help of historical
data, the feature set is further broken into individual features that can be implemented

25 -

I.

_7

I

with about 80 man hours. The related features are typically assigned to a feature team of
three to eight developers depending on the complexity and urgency of the features.

The development period varies from product to product. For example, the A760 system
requires about three months implementing all the features 27 . But, in general, BJDC's
schedule estimation based on the historical data is quite close to the actual schedule.

As features are developed by team in parallel, proper tools and processes are required to
manage the source code and to synchronize the efforts of all developers.

BJDC has an array of tools to manage the artifacts of the development process. It uses
Rational's ClearCase to store and control versions for all of deliveries, including source
code, documents, tools, and compiled code, and uses Clear DDTs to track Change
Requests.

It also has strict source code checking rules. Before a build starts, all the developers are
required to check in their changes, and the developer must test the changes locally to
make sure the changes don't break the build process.

3.2.4 Testing
BJDC has strict testing procedures. In parallel with the feature development, the quality
assurance (QA) team develops test cases based on the design documents. During the
product development process, testing at three levels are conducted at different stage: Unit
testing, component integration testing and product/platform software integration testing.

Unit testing starts after the main functions of a feature are implemented. The focus of unit
testing is to verify that the designed functions are properly implemented with acceptable
quality.

Component integration testing is performed after the subsystems are implemented. It
focuses on the interactions between subsystems. The integration testing validates that the
system can fulfill the designed functions.

The last testing, hardware/software integration testing, tests the interaction between the
software and the hardware system.

BJDC has standardized bug logging and tracking procedures. The QA engineers
categorize bugs into several different types according to the severity, and log the bugs
with the procedures to reproduce them in a bug database. Then a QA engineer files a bug-
fix-request to the development team, and the request is routed to the right developer.
After fixing the problem, the developer marks the bug as "fixed by developer". The QA
engineer verifies the fix, and closes the bug if the bug is fixed.

27 The development period is changed for confidential reason.

- 26 -

3.3 Development Team Structure
BJDC usually uses a devoted project oriented team structure. Team size varies from
project to project, but a team usually consists of a project manager, three to four team
leads and about 20 developers. During critical periods, a task force may be set up to
address some technical difficulties, and members of a task force usually are selected from
experienced developers across teams. In such cases, the team structure has a favor of a
matrix structure.

An independent SQA (Software Quality Assurance) team is responsible for testing all
products BJDC develops. QA engineers don't report to any project managers.

Figure 3.5 illustrates the team structure.

PRoject Manager SQA Magcr

Tcam Lead Team Lead Team Lead QA team
(feature team) (feature team) (feature team) (shared)

Task
Deve fevl"

DDvvepl tkvi
D o e -r -- ----------

DevelopDor

Figure 3.5

3.4 Efficiency and Lessons learned
BJDC has used CMM3 process management in several previous projects, and all the
projects were finished within schedule and with expected quality. However, in this
project, the process management ran into some problems, and the company did realize
that some aspects need to be improved to better deal with technology risks and changing
requirements.

CMM's major vehicle to make project schedule is to productivity based on historic data.
To estimate the schedule of a project, the project is first broke down into modules and
then ultimately small sub-modules whose workload can be estimated using historic
productivity data. For example, the granularity in this project is 80 man-hours. This
approach works well with products that have high similarities with previous products, but
tend to be less accurate when the product is being developed in a new environment and
with new tools. This is the first product BJDC has ever developed on embedded Linux
platform, and the development tool (QT) is new to many developers. Because of the

-27 -

changes in platform and development tool, estimations based on the historical data can be
misleading, and in fact, many features that appear to be similar with those in previous
products turned out to be harder and required longer time to develop. Even though some
buffer time is added in the project schedule, the project was behind schedule, and both
the productivity and quality were lower than expected.

BJDC uses a V-model in its development process. As a variant of waterfall model, V-
model works well with projects that have clear and stable requirements before
development starts. It is still largely the case in this project, but the number of
requirement changes has increased a lot. (The company has a request tracking system to
track the changes in requirements.) The impacts of changing requirements lie in two
aspects: interruptions to the normal work process and generated rework, which tend to
lower productivity and delay schedules.

Another problem is that the expected heavy workload also squeezes the time that
allocated for other CMM activities, such as code review and document updates, which
may cause some potential problems in later stages.

The company believes that these difficulties are caused by the lack of experience and data
with the new technologies, and expects that developers could catch up once developers
get familiar with the new platform and tools. But more importantly, even the project is
going to be delayed, with the new metrics of the productivity and quality collected, the
delay could be predicted early and accurately.

- 28 -

Chapter 4 Embedded Software Development
- at Glocom Shanghai

Glocom, a US company founded in 1988, develops mobile satellite terminals for Inmarsat
market2 8. Its main products are terminals for Inmarsat's M, B, M4, F services.

The company is headquartered at Maryland USA, currently hires about 120 employees
global wide, over 60 percent of which are hardware and software developers. Its
Shanghai subsidiary, Glocom Shanghai Limited, was found in 2001, and has about 20
employees. Over the past three years, the subsidiary had developed several successful
products, and become the company's product development center.

4.1 Product introduction
Glocom Shanghai recently developed the company's next generation product: Inmarsat
F77 ship station, which supports voice, high speed data and Inmarsat Packet Data
Service. The product consists of two parts: above deck equipment (ADE) and below deck
equipment (BDE). ADE is RF (Radio Frequency) component, and BDE processes data
packages according to Inmarsat communication protocols and provides human-machine
interface for input and output.

BDE has a big embedded software system. It uses a Motorola PowerPC-based platform
which supports various analog interfaces, such as ISDN driver, RS-232 driver, smart card
interface, and so on. The software system is built on RTXC, or Real-Time eXecutive in
C, a multitask real time operating system, and developed with C language.

4. 2 Development Process
The development process can be roughly divided into five phases: product requirement
analysis, product architecture design, hardware and software design and implementation,
and integration testing and field testing. In F77, the process (exclusive requirement
analysis) took about six months.

4.2.1 Product Requirement Analysis
Inmarsat defines detailed protocols for any device working with its satellite system, and
any product has to conform to the standard. Given the standard external interface,
products from different vendors are highly exchangeable. To differentiate their products,
during requirement analysis, engineers and marketing personnel sit together to identify
attributes highly valued by some customer segments, and then create a product
specification.

F77, as a ship station, needs to work in a highly humid environment with a wide range of
temperatures, and hence requires high stability and robustness, which are the two most

28 Inmarsat is the world's major global mobile satellite communications operator and provides a wide range of
communications services to maritime, land-mobile, aeronautical and other users.

- 29 -

important factors in the specification. In addition, the specification also defines the types
of service provided, number of telephone handsets supported, data interface used, price,
weight, power consumption and product dimensions.

4.2.2 System Architecture Design
Based on the requirements, a pilot team consisting of experienced engineers is put up to
explore the technical feasibility. Engineers usually build several hardware prototypes,
compare pros and cons of each prototype, and identify a configuration that is most likely
to meet the performance requirements.

To some extent, the process of system architecture design is the process of developing
prototypes. There is no clear definition on when the architecture design phase should end,
but it usually ends in two or three weeks when the senior engineers feel comfortable with
one prototype.

After selecting the prototype, the team then draws detailed schematic diagrams for the
hardware configuration. Based on the configuration, the management makes a rough
estimation of the required resources and schedule. This phase focuses mainly on
hardware configurations, and software system is only briefly addressed in resource
preparation.

In F77, it took a team of three engineers three weeks to find out the most promising
configuration, and initial estimation was eight months.

4.2.3 Software Design
After the basic configuration is decided, software and hardware design are conducted in
parallel. The software system mainly consists of two parts: user interface (UI) and
communication protocol module.

As the product is targeted for professional users, UI is relatively simple and straight-
forward. The front panel has some buttons to take inputs and a LCD screen to display the
working status of the equipment. The protocol module implements communication
protocols, and are quite complex. In F77, two types of protocols are required: Inmarsat
protocols, which are based on the system definition manual (SDM) 29 , and internal
protocols, which are defined by the company to transmit data between tasks.

Just as system architecture design is a process to find the most promising hardware
configuration, the purpose of software design is find out the software architecture that
best suits product requirements.

At this stage, the hardware team provides the software engineers detailed information
about the preliminary hardware configuration, including CPU pin allocation, port
allocation, analog driver chip data sheet and its connection to CPU. With the information,

29 For more information about SDM, refer to "http://www.inmarsat.org/glossary.cfm?letter-S"

-30-

software engineers can experiment their ideas. For example, like many telecomm
equipment, F77 has strict requirements on response time in some situations, so software
developers experiment different designs and select the fastest one. Engineers also develop

There is no clear deadline for software design phase, usually it ends when software
developers feel they have addressed the key difficulties. At the end of this stage, the
developers also are asked to refine their schedule.

In the case of F77, this phase took about two weeks. Combined with progress in hardware
design, the development schedule was also shortened from eight months to six.

4.2.4 Software Implementation
As software developers have decided their approaches and identified difficulties in the
design phase, implementation is to complete the designs and make them into production
code.

As the initial hardware configuration usually changes during the development period, to
minimize the impact of future hardware changes, at the beginning of implementation,
software developers first define some interfaces to separate software from hardware.

In F77, two sets interfaces are defined at low and high level. The low level interface is
the interface between the hardware peripherals and the software. Based on the initial
hardware configuration, the hardware developers develop some software drivers that
provide basic functions to access the peripherals while hiding the device specific details.
The high level interface wraps the drivers further and provides some convenient high
level functions, such as timeout, and data buffer management.

After the interfaces are defined, software developers started to implement the user
interface and protocol modules.

Because UI is simply, only one engineer is assigned to the work. The protocol module is
the main work of the software implementation. In F77, four engineers work on this
module and it is estimated that 90 percent of coding efforts are spent on it.

Even though developers try to separate software from hardware changes with interfaces,
in the practice, it often turned out that the interfaces are not properly defined at the first
place. Moreover, to achieve high performance, the communication module sometimes
uses some hardware specific features. It is also common that software developers ask for
some hardware changes to ease their difficulties in software implementation. The coupled
relationship between software and hardware has significant impact on schedule and
process management, and will be further discussed in next section.

In F77 project, it took the team about one and a half month to implement the software.

-31-

4.2.5 Quality Assurance and Testing
Because both hardware and software are in constant changes, it is critical to keep track of
the changes and synchronize the codes. The team uses Microsoft SourceSafe to manage
the software versions and labels code before any major changes. The developers are also
asked to check in their changes in the evening and check out latest codes in the evening.
During the coding process, the team make build once or twice in the first one and two
month into implementation, but regular weekly build later on and daily builds before
release.

The company doesn't have dedicated QA engineers, and developers are responsible for
testing both their own modules and the product as a whole. Besides the cost savings, the
company believes it is technically feasible without dedicated QA engineers for two
reasons. First, the product is design to perform one single purpose, which doesn't involve
many scenarios, so it is less a problem for engineers to cover only scenarios familiar to
them during the unit test. Secondly, after system integration, the product will go through
a set of standard test cases defined by Inmarsat type approval, so any problems
overlooked in the early tests will be captured here.

The company is very strict on the Inmarsat testing. In F77 project, the team spent about
half of product development time to pass the type approval test.

One reason that contributes to such a long testing period is that during development
process, to speed up development, engineers tend follow a "good enough" principle, and
"ad-hoc" approaches are frequently used to fix the problems. For example, if the response
is slower than required, software developers can make it faster by changing some
parameters. Without looking into the root causes, developers are actually delaying the
work to the integration test.

4.3 Development Process Management
At Glocom, the development process is targeted at delivering the product faster and
cheaper. In software development, it adopted early prototyping and multiple iterations.
The team refines its schedule based on the prototype and adjusts resources to keep the
project on schedule.

4.3.1 Characteristics of Software Development Process
The most striking characteristic is that engineers actually jump into implementation and
coding very early - right after the product requirements are defined. Table 4.1 illustrates
the major activities and outcomes in each stage.

As shown in the table, the initial hardware configuration is decided in product design
phase, and software framework is developed at software design phase.

- 32 -

Product Design Software Design Software Implementation

Activities Experimenting Experimenting defining interfaces between
different hardware software designs hardware and software
configurations
Studying feasibility Comparing developing device drivers

performance and software wrappers
against goals

Implementing software
design

Output Selected hardware developed software Complete software system
prototype framework

initial estimations of Refined schedule
schedule and and required
required resources resources

Table 4.1

However, as the software implementation starts with the preliminary hardware
configuration, which changes a lot during the process, the software has to change when
hardware changes. To mitigate the negative impact, engineers define interfaces between
hardware and software. As mentioned before, the interfaces are defined in the early stage
of the both software and hardware development, and they may not capture all the needs
of software components and often fail to wrap all hardware details. Consequently, the
interfaces themselves also have to be expended and updated frequently. It is also common
that software engineers bypass the interface and access the hardware directly to have
better performance.

On the other hand, when designing the hardware architecture, the hardware engineers
usually do not give enough considerations to the software components, and sometimes,
the hardware configuration introduces unnecessary difficulties to software developers. In
the process, software engineers often have to ask hardware engineers to make some
changes.

Because of dynamic nature and mutual dependence between hardware and software, the
product development requires several iterations and close cross team cooperation. Figure
4.1 illustrates the iterative nature of the process.

-33-

_Update

Hardware Hardware a
Design Implementation

SHardreSvfvar

Design ItaIrtivs Test
Implementation

Figure 4.1

The mutual dependence between software and hardware also requires close interactions
between software and hardware developers. In F77, the whole team, six hardware
engineers and five software developers, work in one big room so that they can have
formal and informal discussions, and the project manager also arrange regularly progress
briefing to facilitate communications.

Another characteristic of the process is the lack of detailed documentation. The only
detailed document is the system/module specification, and other documents, such as
interface definition, system general design document, and testing document, are brief and
not updated timely. To compensate the lack of detailed documents, the project manager
communicates with developers frequently to understand the current designs and
difficulties the team is facing.

4.3.2 Schedule Management
At Glocom, a project starts with a rough schedule, and but it gets clearer after software
design, which is about five weeks into the development. In F77, the initial estimation was
eight months, after system design, the schedule was refined to six months. Once the
schedule is decided, the project manager will try to meet the schedule. The project
manager tracks the progress through weekly meetings, regular builds and informal
discussion with engineers. When a project faces potential schedule slip, the manager will
bring more engineers to keep the schedule. In F77, the number of hardware engineers
increased from three to five, and number of software engineers from four to six.

4.4 Efficiency and Lessons learned
Glocom believes its process management is very effective. F77 took six months from
architecture design to complete, which is quite close to the scheduled development time,
though the number of developers involved increased from seven to eleven. The company
has not benchmarked its productivity with other companies in the same industry, but it
believes its productivity is very competitive.

- 34 -

In the period of six months, it is estimated that 30% of time is spent on the prototypes,
20% on implementation, and 50% on integration testing.

The company admits that its process management is not without problems. First, the
success heavily relies on smart and dedicated engineers. As the project manager of F77
commented that incapable developers often become the bottleneck of the development
process. However, because the knowledge is not captured in documents, it is difficult to
replace incapable engineers responsible for key components without hurting the schedule.
Secondly, the lack of careful upfront design and reliance on incremental improvements
make the development vulnerable to 90% syndrome. During the final testing of the F77,
it took engineers tremendous efforts to keep the schedule on track.

-35-

Chapter 5 Managing the Development Process
- Software Quality Assurance at Huawei

5.1 Background
When Huawei was founded in 1995, its main business was low-end telephone switches.
To avoid direct competition with foreign vendors, it targeted mainly at small or remote
cities or countryside in China.

Though Huawei had no technology advantages compared with the leading foreign
vendors, such as Nortel, Siemens and Lucent, it competed with them effectively on deep
knowledge about Chinese market, flexible marketing strategies, low price, and especially
excellent customer services.

As the telecommunication market expended rapidly in late 1990s, the whole company
was geared up to release more products in shorter time. Without a formal development
process in place, product breakdown happened frequently, and it was not uncommon for
Huawei to fly service engineers to a remote county to stay weeks to fix problems.

Taking ride on the economic boom and in 1990s, Huawei grew into a company with
22,000 employees and a wide range of product line from telephone switches to network
routers. The old way to fix problems is not only time-consuming and costly, but it didn't
scale.

The company realized that to do it right at the first time was the best growth strategy, and
to establish a suitable product development process was the key to fulfill the strategy.
The process management model Huawei found out is Integrated Product Development or
IPD.

5.2 Brief on IPD
IPD was developed by IBM in late 1993. The idea origins from Product and Cycle-time
Excellence (PACE) model, an approach to manage product development process
developed by PRTM (Pittiglio Rabin Todd & McGrath).

PACE emphasizes the importance of breaking department boundaries, and creating an
empowered cross-functional team involving management, marketing, technology,
product development and manufacturing at each stage of product development.

PACE model considers "the only sustainable source of product advantage is a superior
product development process." 3 To achieve the goal, PACE model divides a product
development process into seven elements, and introduces a collection of concepts,
processes, techniques and frameworks to manage these elements efficiently.

30 Product Development: Success Through Product and Cycle-time Excellence, M. McGrath, etc
Butterworth-Heinemann 1992

-36-

The following is a brief discussion of the seven elements in PACE model.

" Decision making. New product decision making is implemented through a Phase
Review Process that requires decisions at specifically defined points. A project
must achieve clearly defined objectives within expected time frame in order to
move to next phase. Product Approval Committee (PAC), a team consists of
senior management members, reviews a project on a phase-by-phase basis, and it
empowers project development team with authority, responsibility and resources
to implement the next phase if the project goes through a phase.

" Project team organization. A core team is a dedicated small cross-functional
project team that is empowered by PAC to manage all of the tasks associated
with the development of the product.

* The structure of development activity. A structured process consists of several
layers. Within the framework provided by Phase Review Process there are
typically 15 - 20 major steps, and each of these steps is further broken into 10 -
30 tasks. The tasks define standard cycle times for each step so that steps can be
used as building blocks for scheduling, estimating resource requirements,
planning and management.

" Product strategy. The strategy is the framework used by PAC to make decisions
and set priorities in the Phase Review Process, and it is the guideline for the Core
Team in defining products. It includes defining the opportunities for expanding
current product lines and innovating new product lines.

" Technology management. PACE focuses on the interrelationship of product
development and technology. It clarifies the distinction between product
development and technology development and defines the interface between
them.

" Design techniques and automated development tools. PACE outlines a number of
design techniques and tools, such as Quality Function Deployment (QFD),
Design for Assembly (DFA), and Design for Manufacturing (DFM), and
provides guidelines on applying the right technique or tool at the right time and
within the context of an overall product development process.

* Cross-project management. PACE focuses on resource scheduling, business-
system interface, product development process engineering and the interfaces
into functional organizations.

The key benefits of PACE include:
* It significantly shortens development cycle times, and consequently reduces

development costs, minimizes the possibilities of product overrun and overbudget.
* It reduces development risks and waste with a formalized phase by phase

approval process.
* It leads to higher quality products with features customers really need.

IPD is IBM's implementation of PACE. It embodies all the key ideas of PACE and adds
some tools and frameworks IBM developed in its practice. IBM used IPD to reform its

-37-

product development process in early 1990s, and successful turned the company around.
In 1994, Huawei brought in IBM consultants to establish IPD process at Huawei.

5.3 IPD at Huawei
Huawei is a product oriented company. Depending on the market size, product
complexity and development locations, the size of development teams varies from 10 to
around 1,000 developers.

In the past, the development center developed products, passed on to the marketing
department to sell them, and left service and support department to fix problems. As there
was no product development process, the development center enjoyed the freedom to
develop any products it deemed profitable.

Under IPD, a product development process is divided into product definition, product
design, paralleled hardware and software development, integration and testing. Figure 5.1
illustrates the stages.

HAFware
Dow lopment

efinition
phasegofntefing

Software

DEveloprneltI

Figure 5.1

The biggest changes come from the process implementation. For example, during the
product definition stage, a cross-function team of engineering, marketing and customer
service is formed to define product features. Unlike before, the team must be led by a
senior marketing person rather than a senior engineer. In the definition phase of the first
product after IPD, service and support engineers made more 100 requirements on product
maintenanability31 , which greatly surprised many developers.

Huawei's products typically have hardware and software components. The company is a
highly vertically integrated manufacturer, and it has large manufacturing facilities and
software development centers. In software, the company developed its real-time
operation system (RTOS), low level communication protocol libraries, and high level
utility libraries. All software systems for its products are developed in house, and it
doesn't works with any contractors.

31 J4 &J A Y MMi, IT 1t311(CEO & CIO in Information Times) 2002/10

-38-

In product development process, the company developed its own process standard for
hardware, and it adopted CMM for software.

As CMM provides only a framework, Huawei developed its company standard V-model,
and updates the standard regularly.

Figure 5.2 illustrates the stages defined in Huawei's V-model. The estimated time spent
on system definition and design, implementation, and testing is about 40% - 50%, 20%,
30% - 40% of the whole development period, respectively.

Define System System Test
Requirements

Subsystem Design Subsystem Test

Component Unit Test
Implementation

Figure 5.2

5.4 Software Quality Assurance at Huawei Shenzhen
Huawei Shenzhen is Huawei's headquarter. Though it doesn't have any CMM ranking, it
doesn't lack CMM expertise and practice experience, as Huawei has a CMM5 branch,
Huawei India branch, and two CMM4 branches, Huawei Beijing and Nanjing branch. At
Shenzhen, the software development process follows CMM4 standard.

To promote and enforce the implementation of CMM, Huawei Shenzhen created Process
Quality Department, which has a dedicated Software Quality Assurance Department
(SQA) and a Hardware Quality Assurance (HQA) Department.

SQA's responsibilities include providing CMM process training, assisting project
managers in practicing CMM key practice areas (KPA), guiding and enforcing
developers to follow CMM process, urging project managers and developers to
write/update documents, and collecting process data. SQA has the authority to suspend a
project if it doesn't follow SQA guidelines.

39 -

Since 2001, SQA has been providing training programs on CMM process. All new
software developers are requested to take it and others are advised to do it as well. To
present, most developers have taken the training.

SQA also collects process data to establish productivity and schedule bottom lines, and
defect rate standard. Productivity is calculated from the lines of code in all finished
products and development period. SQA has established productivity index for five
product categories: telephone switches, wireless device, wireless equipment, network
data equipment, administration software. During the definition of a new product, a
project manager uses the productivity index to estimate project schedule, and decide
module gratuity. With the help of these data, SQA can specify time needed for each
development phases and allowed variations.

SQA has about 20 engineers, and each one is responsible for three to four projects. These
engineers work in development teams, but don't report to the project managers. SQA
engineers get involved in whole software development process, especially the definition
phase and implementation phase.

In product definition phase, a SQA engineer advises project managers on what the key
areas they must go through, such as risk analysis, and proper tools used to perform the
tasks. During requirement analysis, Huawei uses industry standard tools, such as context
analysis, and use cases analysis. Special hardware constraints and real-time requirements
are identified and captured in documents. SQA engineers also helps project managers to
decompose a project to manageable feature sets and make project schedule based on
historical data.

During implementation phase, SQA engineers help organize activities CMM standard
requires. One important activity is code review. In embedded software development,
there are many tricky but quite common problems, such as protection of shared variables,
proper usage of intra-process communication mechanisms. Inexperience developers tend
to fall into pitfalls, and their program works well in simple testing but often fails in a
comprehensive testing. Code review is not only an effective way to eliminate these
problems early, but an efficient way for knowledge transfer.

During the whole development process, SQA engineers urge project managers and
developers to document their design and implementation plans and update these
documents regularly.

5.5 Impact
When Huawei started to introduce IPD, it encountered strong resistance from project
managers. As observed in many organizations, the initial change from CMM1 to CMM2
tends to increase, rather than reduce, the development period.32 The first product using
IPD model was forced by senior management, and it turned out to be very successful in

32 The Capability Maturity Model for Software, M. Paulk, etc, http://www.sei.cmu.edu

- 40 -

terms of quality and schedule. Huawei used the project as an example to educate project
managers and more and more project managers started to use the new process model.
Since 2001, all products at Huawei have adopted IPD process, and when a product starts,
project manager always ask SQA to send engineers to help them with process
management.

Four years after implementing CMM4 based process management, Huawei's software
quality improved significantly. The average defect rate is ten times lower than before,
and software quality in algorithm intensive modules improved even further. After
adopting CMM4 process management, the average software development time in general
increased, but the improved quality dramatically reduced the testing time and improved
the predictability of release date. It is estimated that most of all products are released on
schedule, and delay time for late products is effectively controlled.

5.6 Success factors
Establishing a product development process usually involves cultural changes, as the
company moves toward an approach that uses quantitive measures to evaluate
productivities and qualities, and requires a large amount of artifacts and rituals, such as
documentations and phase reviews.

Huawei's success in IPD and CMM in software development largely attributed to three
factors, the commitment of senior management, buy-in from mid-management and
developer, and persistent guidance and enforcement.

At Huawei, the initial impetus came from the top management. The CEO once said
"Huawei must establish IPD, and all employees must understand, and practice IPD,
whoever disagrees shall leave the company".

Top management's enthusiasm is instrumental to set up the process, but to actually
practice it needs buy-in from the mid-management. In software development, Huawei
achieved it using approaches. On one hand, it created a model project that demonstrated
the benefits of CMM and the true values it could bring about; on the other hand, it created
a dedicated SQA to help project managers mitigate the frustrations and confusions that
are bound to happen in any standard implementations.

Developers' participation is also critical to the success of a process management. SQA
organizes regularly activities that help developers improve code quality, such as code
reviews, and it also creates templates and automated process to help developers write and
update documents.

Even after the process is in place, and engineers and managers are willing to follow the
process, proper enforcement and guidance are still needed to make sure that the standards

33 Company interview
14 J -ifl W MA, IT 19Th:(CEO & CIO in Information Times) 2002/10

-41-

are correctly understood and properly followed. Not all process activities are welcomed
by developers. A CMM process requires developers to write detailed design and
implementation documents and update them regularly. As programmers rarely have
interests in writing documents, and sometimes SQA engineers have to really push hard to
get them to write documents.

5.7 How much process is enough?
When time-market pressure is low, it is relatively easy to follow a standard process.
However, communication equipment is a highly competitive market, and delay in key
product release could bring disastrous consequences. It is a big challenge for Huawei to
find a balance between a formal process and schedule. For example, in 2001, after IPD
was introduced, Huawei's development on a high-end router lagged behind its
competitors, the CEO demanded that all resources should be directed to the project, and
project managers were authorized to take whatever measures they could do to speed up
the development, and actually they did break the IPD process completely. 3

As Huawei gained more experience in process management, it gradually established a
procedure for such urgent situations. The procedure takes into consideration the
relationship between quality, schedule and resource, and allows project managers to
sacrifice some elements from others. For example, in a recent project, because the client
pushed hard on early release, the project manager negotiated with SQA, and increased the
acceptable defect rate.

31y 1J * -if, IT 1tAUA(CEO & CIO in Information Times) 2002/10

-42 -

Chapter 6 China's Capability in Embedded Software

As discussed in Chapter 1, embedded software applications used to be different from
conventional computer applications in several dimensions.

* Embedded software is used to control the device, and in general it is tied up with
hardware devices.

" Embedded software is burned into chips and difficult to validate software logic.
* The development processes and methods are heavily influenced by slow CPU,

limited memory, and real-time response constraints.

From the practices of the three Chinese companies, it appears that these differences are
diminishing. Due to the fast improvements in hardware and software development tools,
embedded software is more and more developed in the similar environment as computer
software.

6.1 Similar Development Environment
CPU speed and memory speed and volume have improved significantly over the past
decade. It is not uncommon for a device to have computing power of Intel 486. The
improvement in CPUs and memory chips almost completely eliminate the need to use
assembly code to squeeze the code size and increase the execution speed, and also allow
developers to use high-level languages, such as C/C++, and Java. The shift from
assembly to high level languages allows developers to focus on application logic, and use
modem 00 methodologies.

Development tools and environment for embedded software are improved too. Logic
validation and debugging used to be the most difficult part of embedded software
applications, but advanced simulators and testing equipment have made the jobs much
easier. Programmers can debug their source code step-by-step on a simulator on a PC,
and simulate potential deadlocks and race conditions. Even after the code is burned into
chips, programmers still can trace the code execution with some advanced testing
equipment.

Consequently, many developers think that writing code for an embedded device is not
much different from writing code for PC software. First, to a great degree, the underlying
hardware becomes transparent to developers. This is more obvious in large companies.
For example, at Motorola, after the system architecture is defined, developers spend 80%
of their time programming in a PC environment and testing with simulator running on
their PCs. At Huawei, the software development and hardware development are managed
as largely two independent processes after product definition and before system
integration. Secondly, developers do not have many constraints when they write code
with high level languages. Some companies do have general guidelines on allocating
memory with C++ or Java, but the guidelines do not have big influence on program
structures, and are easy to follow.

6.2 Different Process Management

- 43 -

Despite the apparent similarities at programming level, from a higher perspective,
embedded software still has some significant differences from computer software, and
these differences have strong influence on development process management.

" The fundamental purpose of embedded software is to control hardware and to
provide an interface between users and hardware. The functions and scope of the
embedded software for a device are usually well-defined and quite stable in the
product development phase. The software development is quite a straightforward
implementation process, and it doesn't need many software innovations, therefore,
the workload and schedule are more predictable than computer software.

" Embedded software ultimately will be burned into chips and to upgrade the
software usually requires to stop the system and to change the hardware manually.
In contrast, computer software can be dynamically updated by running "patches".
Further, the devices are used in various environments and required to run
correctly for long periods. These impose much higher requirements on the quality
of embedded software.

* Embedded software is usually a part of a tangible product, which requires time
and financial resources to manufacture. Any slip in release schedule not only
increases the development cost of the software but also delays the release of the
whole product, which can be disastrous in a competitive market.

* Unlike computer software, which are getting more complex as computers become
more powerful and users ask for more friendly user interface more functionalities,
embedded software is bounded with the hardware device, and for many devices,
and the software may not necessarily be getting complex.

Because of these characters, innovative software features are less important in embedded
software, while Quality and Schedule are the two most important factors.

6.3 Chinese Companies' practice in Process Management
In China, large and small companies take two different approaches to take on the two
issues. Large companies, represented by Motorola China and Huawei, tend to install a
high CMM level, strict process management, and small firms usually use home-made,
iterative process.

In companies using CMM methodologies:
" The software development process is divided into several clearly defined phases.

Each phase is required to meet certain standards and generate some artifacts, such
as detailed diagrams and prototypes.

" Waterfall model is widely used for its simplicity and accountability. Each team is
assigned to be responsible for a phase.

" Process data are collected regularly to reflect the productivity and to guide the
process.

* To prevent the process management from becoming nominal, companies usually
have independent process enforcement teams; Huawei's SQA is one example.

The benefits of such an approach include accurate estimation of workload, predictable
and realistic schedule, and high quality.

-44 -

From the practice of Huawei and Motorola China, CMM3 and 4 are very efficient way to
manage quality and development schedule. At Huawei, after adopting strict CMM4
method, 90% of its products are released on schedule and defect rate is dropped
significantly. At Motorola BJDC, even though it encountered some problems after
switching to a new platform, following CMM process allows it to adjust its initial
schedule and predict the possible delay early and accurately.

Though CMM is efficient, it remains a heavy weight process. It requires significant
investment in training and process enforcement, and developers spend a large portion of
time in documenting everything rather than programming. Small companies often find
they could not afford such an approach, and instead they look for light-weight process
management methods. Glocom's approach is quite representative in China, and it has the
following characteristics.

" Developers jump into implementation after a brief system design phase. No
detailed architecture design, but external requirements are defined.

" During implementation, software developers and hardware developers work
closely. Multiple iterations are required to achieve the desired performance.

" Software developers usually have some electronic engineering background, and
they can make reasonable suggestions to hardware designer to ease the software.

" Developers only do simple unit testing in developing process, instead, they have a
long, thorough testing before product release.

The biggest benefits are flexible and cheap. With the early workable product, problems
are identified earlier and product risks are reduced as well.

Though this approach does suffer from some problems, such as 90% syndrome and long
testing period, and developers have to work really hard before product release. With a
capable and dedicated development team, companies still can deliver quality products
fast and cheaply.

The wide adoption of CMM and creation of home-made process management symbolize
that Chinese companies are getting mature in managing embedded software. As China
has become an important player in global economy, China's capability in embedded
software will have impacts on both Chinese and foreign companies, which will be
discussed further in the next chapter.

-45 -

Chapter 7 Opportunities and Challenges
Two decades after China started economic reform, boosted by strong domestic needs and
export, China has become the world's factory floor for consumer electronic products and
also one of the biggest markets for these products. As Chinese companies become mature
in developing embedded software, China has great potentials to be global production base
for sophisticated products that require both hardware and software components.

At present, most Chinese companies only sell their products to domestic market. After
China's entry to WTO, it will be natural for Chinese companies to exploit international
markets.

As China merges further into global economy, in the next several years, the competition
centered on embedded software will have a big impact on the competitive dynamics
between Chinese and foreign vendors.

7.1 Opportunities and Challenges to Chinese companies
7.1.1 Rise of Chinese Vendors
At present, China is the largest producer of commodity consumer electronic products,
such as TV sets, VCD/DVD players, microwave ovens and refrigerators. The profit
margins in this segment are very low. For example, it is estimated that on average a

36
Chinese company need to sell 15 TV sets to make the same profit as Sony makes in one
It is in Chinese companies' interests to move to more sophisticated products, which
usually have higher profit margins. For example, some toy manufacturers are developing
electronic toys that can recognize voices and have some meaning conversation with kids.

Because of China's large and cheap labor pool, Chinese companies usually enjoy much
lower manufacturing costs than their western counter parts. In parallel to their move to
high-end markets, some companies are leveraging the price advantage to expend overseas.

Huawei, the leading Chinese telecomm equipment vendor, is expending quickly to
overseas market. It received $552 million from international contracts in 2002, and $350
million in the first six months of 2003".

Galanz, China's largest microwave oven manufacturer, started to export its products in
1998. In just four years, the company captured 40% of global microwave oven market
(45% in European countries) 38 in 2002.

7.1.2 Obstacle to Overseas Market
However, in general, Chinese companies lack research capacities. Due to the lack of core
technology, most Chinese companies have to buy key components from foreign vendors.
In fact, many companies southern provinces are more like assemble plants. The lack of

36 http://www.i-power.com.cn/ipower/knowledge/tv/071801.htm

3 Gartner Report: Huawei: China's Leading Vendor Returns to Growth, July 2003
38 http://www.galanz.com.cn/about/index.asp

-46 -

self-owned advanced technology hampers many companies' efforts to expend overseas,
and it was highlighted in a dispute over DVD loyalty fee in 2002.

China is the largest manufacturer of MPEG2 based DVD players. In 2001, it produced 26
million units, and exported 10.7 million units, which was about 25% of overseas
consumption. However, the key technologies are owned by three foreign consortiums, 3C,
6C and 1C39, and all Chinese manufacturers buy key parts, such as decoder and laser
head from the companies of these consortiums. After seeing that the cheap and quality
Chinese products were eroding their home market shares, they fought back with patents.

In early 2002, on requests from Phillips, who claimed that Chinese manufacturers did not
pay it the due patent fee, British and Germany customs detained about 10,000 units of
DVD players shipped from China. The dispute ended after several months tense
negotiations, and Chinese DVD manufacturers agreed to pay $9 for each exported DVD
player to the three consortiums ($5 to 3C) 40. Considering that the price of Chinese
products is below $100, the patent fee would increase product costs significantly.

The similar pattern is going to repeat in digital camera market. Chinese companies have
commoditized low-end cameras (less than 2M pixels). In China, the price for 2M pixel
digital cameras can be as low as $50. However, Chinese manufacturers met great
difficulties to enter the high-end and high profit market (3M pixels or above). Similar
with DVD technology, the key technologies of digital cameras are owned by some
Japanese companies. To protect their profits, they are unwilling to sell the key parts or
license the technologies to Chinese manufacturers. Further, encouraged by the DVD case,
they are planning to sue Chinese companies who acquired the parts from other channels.

7.1.3 Possible solutions
To further increase the competence of their products, Chinese companies need to narrow
the technology gap, and develop proper strategies to enter global markets.

To overcome the technology barrier, Chinese companies need to invest more on
technology research. In 2001, the number of patents that Chinese companies had is only
1/40 of that American companies, and 1/10 of that Korean companies had, and the

41majority of the Chinese patents were about product designs . In some high tech
industries, such as next generation wireless network, where industrial standards have not
been formed, Chinese companies should consider participating more actively in the
standard setup processes.

The competitive strength of Chinese products is built on low price. However, once
Chinese company go overseas, shipping and distribution channel costs, customer service
costs, and prolonged supply chain will significantly increase the product costs. If a
company wants to sell the products under its own brand, it has to spend resources and

39 3C consists of Phillips, Sony and Pioneer. 6C consists of Toshiba, Mitsubishi, Panasonic, Hitachi, JVC
and Time-Warner. IC is backed by Thompson.
40 http://www.china.com.cn/chinese/zhuanti/wtobg2003/351820.htm

41 http://news.sina.com.cn/c/2003-09-17/12061758745.shtml

47 -

time to promote its brands. To lower the costs of entry into global market, Chinese
companies may consider establishing alliances with some foreign companies. Recently
the joint venture between Huawei and 3Com represents the strategy. With the new joint
venture, Huawei would gain access to Europe and US market through 3Com's vast sales
channels, an important step toward a truly global enterprise.42

7.2 Opportunities and Challenges to Foreign Companies
For foreign companies, China's market is too attractive to ignore. But making money in
China is becoming more and more challenging due to fierce competition from indigenous
companies. A brief review on the history of foreign companies in China helps understand
the current situations and their possible future strategies.

7.2.1 from Dumping Ground to Battle Field
In the early days, foreign companies simply treated China as a dump ground for their out-
dated products and assemble lines. After isolated from outside world for three decades,
China was lagging behind western countries in almost all aspects, and even very old
products in western countries could be sold as new products for premium prices. For
example, in consumer electronic appliances, Japanese companies were the first to benefit
from selling TV sets, audio and video products in China. As the technologies in these
early products are highly mature, Chinese companies, attracted by the high profits, started
to manufacture these products with bought production lines. Compared with foreign
companies, Chinese companies enjoyed cheaper labor and distribution costs, and usually
had better understanding of the market needs. Consequently, the indigenous products
became very competitive in both price and design, and prices dropped rapidly. But in
general, foreign products dominated China's market during this period.

To foster technology transfer and indigenous manufacturers, from early 1990s, Chinese
government, on one hand, exacted high taxes on imported products, and on the other
hand, established regulation requirements on technology transfer and local production in
many industries. To lower production costs and meet government regulations, many
foreign companies started to set up joint ventures and their own subsidiaries to
manufacture their products in China. In telecomm industry, the successful examples
include Beijing International Switching System Corp. (BISC), a joint venture between
Siemens and several Beijing based companies, Shanghai Bell, a joint venture between
Shanghai government and Alcaltel, and Motorola China. These jointed ventures or
subsidiaries of foreign companies also gave Chinese companies access to the advanced
technologies and modern management knowledge. In the early development of China's
high-tech industry, the products more or less had some similarities with some foreign
products. For example, Huawei's first generation telecomm switch systems resembled
Fujitsu's in many aspects.

At present, there are thousands foreign companies operating in China. In electronic and
telecomm industry, nearly all big international companies have facilities in China4 3. And
Chinese companies are getting mature in production development and manufacturing.

42 http://www.chinabyte.com/homepage/219005124066934784/20030926/1732191.shtml
43 http://tel.21cn.com/news/2002-12-18/875955.html

- 48 -

Consequently, the competition in China is very fierce, and it was no longer a sure thing
that foreign companies can make profits in China, especially, in the commodity market.
Whirlpool, one of the largest American home electronic appliances manufacturers, was
estimated to lose about $400 million in China from 1995 to 2002, and was forced to leave
China. Even successful companies are feeling the intensified competition. For example,
in 2003, Motorola lost to a Chinese company in half-year mobile phone sales for the first
time since it entered China in 1990s. In fact, the market share of indigenous brands has
risen to 55.3%.44

7.2.2 Strategies to Leverage China
To compete more effectively in the increasing competitive environment, it appears that
foreign companies are taking two strategies. One is to further localize their research and
production to lower production costs, and the other is to leverage their technology
advantages to produce high end products, which have higher technology entry barriers.

Since price has been the most effective weapon for Chinese companies, to narrow the gap
between foreign and indigenous products helps increase their competence. Foreign
companies have significantly increased their investments in China since 2000. The total
investments are over $10 billion in the past three years ($4 billion in 2001 and 2002).
Nokia has invested $1.2 billion (RMB 10 billion) in the first phase of its industrial park in
China, and is planning to invest another $1.2 billion in the second phase. Motorola
planned to invest $10 billion in China before 2006 to increase its R&D and production
capacity in China. As China companies lack the key technologies, their products
concentrate on low end products. Foreign companies have more advantages in high-end
markets. For example, Motorola and Nokia recently released a wide variety of color-LCD
phones and smart phones in China. Even though Motorola lost the first place in overall
mobile phone sales, its high end mobile phones still have big advantages over products
from Chinese companies.

Besides making profits directly in China, due to China's cheap and big talent pool, it may
make a lot of economic sense for foreign companies to incorporate China into their global
product development process. Denso, a big Japanese auto supplier, established Denso
Create Shanghai in 2002, to develop embedded software for Denso's control systems and
information system products for automobiles. "We came to Shanghai to take advantage
of the many excellent software engineers based in the area"45 , and Denso is further
planning to make the Shanghai subsidiary a part of its global R&D chain. This strategy
applies to many small and medium companies as well. Golden River is a case of point.
The company has moved its global product development base Shanghai.

7.3 Outlook of Embedded Software in China
In the past decade, embedded software has been widely used in many products, and it has
penetrated into many industries which used to be pure mechanical. For example, most
modem car engines have an embedded software control system to control the movements
of mechanical parts and adjust their working states. It has been a trend to use software to

4 http://www.cnii.com.cn/20030218/ca144564.htm
4 Embedded Software Development in China, Dehua Ju, 2002

- 49 -

improve product performance and increase product functionalities. As Moore's law has
predicted, the number of transistors per integrated circuit would double every eighteen
months, the computing power will be more powerful and cheaper, therefore, in the
foreseeable future, embedded software will play a more critical role in a wide variety of
industries.

Because of the increasing importance of software and China's future impact, to some
degree, how to manage the embedded software development in China will be critical to
foreign companies regardless those focus in China market or those want to incorporate
China into their global development chain.

As discussed in the previous section, embedded software emphasizes more on quality and
schedule, and less on innovations. These characteristics may imply that the development
could be carried out in a "software factory" fashion, in which software products are
"manufactured" in a similar way as hardware products.

Japanese companies are among the first to exploit the "software factory" concepts to
develop software applications for ATM, banking transactions and telecomm. In a
software factory, college graduates are responsible for product design, while coders, who
take only several months training in programming, implement the design. As embedded
software often tends to have well defined user requirements, and doesn't require
innovations, it is feasible to use such a "factory" fashion to develop embedded software
in China.

To achieve high productivity, a software factory requires "workers" to be proficient in
one a two programming languages and some special industrial tools. In China,
programmers, who have education in computer science at colleges, tend to be generalists,
and don't fit well with the software factory concept. Seeing the future demand for this
type of programming "workers", many foreign IT and educational companies started IT
training programs in China. In Aug, 2003, Motorola and Beijing University launched a
special institute on using Metrowerks and Motorola's PowerPC chips. The institute offers
one or two month training programs to help engineers learn quickly the special
development environment and tools. Some India IT training companies also started their
business in China, and offer various programming certificate programs.

China also has to face competitions from India, the largest outsource software
development center. Because of the relative small size, embedded software was not
highly valued in India. For example, an editorial in a national media commented on
software outsourcing: "For India it is application outsourcing, ITO, BPO, product
development, network management and contact centers. For China it is embedded
software, hardware services, localization and application development."46 However,
embedded software is quickly gaining attentions in India. In NASSCOM-McKinsey
Study 2002, a strategic analysis of India's IT industry, embedded software market is
listed as one important growth opportunities.

46 http://www.hinduonnet.com/thehindu/2002/10/10/stories/2002101002651800.htm

- 50 -

One significant advantage India enjoys is its close relationship with western companies.
A large number of US and European IT companies already have big software or product
development centers in India, and have successfully run them for several years. It would
be natural for these companies to add their embedded software capacities to their
available facilities in India.

In conclusion, China's vast market and talent pool have made it an attractive place for
global embedded software development. But to make it a global factory for embedded
software, China still has a long way to go.

-51 -

