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Abstract

In the field of genomics, this thesis presents algorithms for identifying non-coding
RNA (ncRNA) genes. It describes a rapid and highly reliable comparative statistical
method for identification of functionally significant base pairs in ncRNA genes
in multiple sequence alignments of cross-species homologs, a divide-and-conquer
approach to optimal assembly of exon predictions with O(nlogn) time-complexity,
(the standard algorithm for exon assembly has O(n?) time-complexity for ncRNA
exon predictions,) and highly accurate statistical tests for exon boundaries based on
recognition of non-contiguous patterns in known examples. It also describes a method
for scanning cDNA for ncRNA genes.

In the field of geometric measure theory, it proves that the set of cartesian currents
given by integration over the graphs of smooth functions is dense in the set of all
cartesian currents.
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Chapter 1

Introduction

1.1 Gene recognition

In principle, it should be possible to infer an organism’s biology almost entirely from
its genome, as its genes specify the vast majority of its chemical constituents. At this
stage, however, not only is there no way to predict how those chemicals will behave,
but many organisms’ genomes (including humans’) represent genes themselves so
cryptically that currently they are only imperfectly discernible without painstaking
in vitro simulation. The mechanisms of gene expression are fairly well understood
at a gross level [34], but they involve affinities between proteins and DNA or RNA
subsequences that are very hard to identify reliably from gene sequences. As a result,
even though the human genome has been sequenced [11], it almost certainly contains
genes that have not yet been identified. There is simply too much of it to exhaustively
search for genes using existing lab techniques.

Significant progress in identifying genes computationally has been made using
statistical analyses of known genes [8, 9], but by themselves, these tests are not
accurate enough for a genome-scale search.

To improve on the accuracy of computational gene prediction, searches for genes
have turned to other genomic structure. In the past few years, comparative genomics
has become a popular approach [4, 54]. Its key idea is that usually the rate

of mutation in biologically significant regions is strongly retarded by evolutionary
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selection pressure. Thus searching genomes of multiple organisms for strongly similar
regions and restricting the search for genes to those regions dramatically winnows the
set of candidate genes, sometimes to the extent that existing computational methods
suffice to identify genes reasonably accurately. Comparative genomics can be further
refined by scoring similar regions according to the extent to which the variations

between them match the expected mutation patterns for genes [41}.

Nearly all gene finding efforts have concentrated on genes that generate proteins
8,9, 4, 50, 19]. However, a lot of RNA transcribed from DNA is never translated to
protein, and some of it, such as the XIST gene, which in males suppresses expression
of genes on the X chromosome [15], is biologically essential. Identifying such genes

will be crucial to a complete understanding of cellular biology.

There appears to have been relatively little work on automatic identification of
non-coding RNA (ncRNA [47]) genes. Some approaches have focused on searching
for a recognizable secondary structure associated with RNA transcripts serving a
specific biological function. An example is Regalia et al.’s [44] search for signal
recognition particles and Rhoades et al.’s. search for microRNA’s [45]. I am aware
of two programs that search for generic traits of ncRNA genes. One is RNAGENiE
[10], which combines searches for motifs known to occur in RNA genes, free-energy
calculations, and neural-nets and support-vectors trained on known examples. The
other is QRNA [47], which scans pairwise alignments of homologous DNA sequences
from related genomes, and flags homologs that exhibit mutation patterns concomitant

with selection-driven preservation of RNA secondary structure.

In this thesis, I present new algorithms for detecting ncRNA genes. I describe
the first ncRNA detection scheme using multiple sequence alignments (MSA’s) of
more than two homologs. By exploiting the extra information in a large MSA, this
algorithm outstrips QRNA in terms of both speed and accuracy. MSA’s have been used
for determination of ncRNA secondary structure for decades [27, 18, 30, 43] , but not
for searching for ncRNA genes. As I demonstrate with a scan of the Buchnera genome

against eighteen other bacterial genomes, this is becoming a feasible approach.

The key idea of the algorithm is to estimate the statistical significance of the
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number of reverse-complementary portions of an MSA’s constituent sequences. In
the first phases of the algorithm’s development, this estimate was based on searching
for complementary base pairs at each pair of positions in an MSA. This is similar to
the manual approach commonly used to predict RNA secondary structure through
comparative analysis. Automated thermodynamics-based secondary structure
prediction has been augmented with similar comparative analysis of associated MSA’s
by Hofacker et al. [27], but they use a fixed column-based score to detect conservation
of base pairs, and are dependant on correct alignment of orthologous base pairs in

the MSA’s they use.

At the time of writing, the latest version of the algorithm is based on identifying
potential helices using a Smith-Waterman-style alignment of sequences in the MSA
to their reverse complements. By allowing for gaps and mismatches, this method can
detect reverse-complementary regions which are very significant, and this permits

even greater tolerance of misalignment of orthologous base pairs within the MSA.

The runtime of all algorithms is O(n?) in the length of the MSA, so they are
feasible for larger-scale searches than QRNA, the run time of which grows cubically in

the length of the alignment it is passed.

A scan based on MSA’s also has the advantage of often working even if some of
1ts constituent alignments are too weak for pairwise alignment to capture significant

features, or too strong to exhibit significant covariation in complementary base pairs.

In this thesis, I also describe a comparative-genomics algorithm similar to ROSETTA
[4] incorporating a new exon assembly algorithm of time-complexity O(N log N),
and new splice-site recognition algorithms based on richer statistical models than
existing methods use, taking advantage of the huge number of example splice sites
now available. I also describe a PROCRUSTES-like [19] approach to scanning ¢cDNA’s
for ncRNA genes. This involves BLAST’ing [2] cDNA’s from one organism against the
genome of another, and concatenating appropriately ordered matches into a single

alignment that can be tested using QRNA.
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1.2 Geometric Measure Theory

In chapter 5, I describe a proof of a long standing conjecture regarding Cartesian
Currents. My investigation of this conjecture began while I was an undergraduate,
and it was then that I devised the constructions used in lemma 5.3.1, which show
Cart(2, R"Y) to be closed under arbitrary modifications to the “vertical” portion of
its elements. However, [ realized the key dimension-reduction technique described in

section 5.4 while at MIT.

Let 7:C®(Q,RY) - R be a polyconvex functional such that for some fixed
¢ > 0 and for u € C=(Q,RY), Flu) > cH™G,), where G, is the graph of wu,
2 c RY an open set with smooth boundary and H™ is the n-dimensional Hausdorff
measure. Giaquinta, Modica and Soucek [21] introduced the space cart(£2, RY) (see
Definition 5.1.2) as a natural space in which to seek minimizers for F. Roughly,
an element of cart(Q, R") is an n-current given by integration over the union of the
graph of a function u: ) — RY (called the underlying function of the current) and
a “vertical part”. An element of this space is called a cartesian current. A sequence
of cartesian currents is said to converge C-weakly if it converges weakly, its elements
have uniformly bounded mass, and their underlying functions have uniformly bounded

L' norm.

Let Cart(2, R™) C cart((2, R") denote the smallest subset which is closed under
C-weak convergence and contains all currents which are given by integration over the
graphs of smooth functions from © to RY. In [20], Giaquinta, Modica and Souéek
suggested that the conjecture Cart(Q2, RY) = cart(, RY) seems reasonable. The main
result of this chapter is that this is indeed the case when € is a smooth bounded
domain.

Glaquinta, Modica and Soucek [20] discussed the Dirichlet Energy and the
phenomenon of “bubbling of spheres” in terms of cartesian currents. They
characterized the weak C-limits of sequences of cartesian currents given by integration

over graphs of functions with uniformly bounded Dirichlet Energy from 2 to S? ¢ R

They also considered the following more general situation: for P > 1and open ) C
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R™, let AP(S2, RY ) be the subset of L? (Q,]RN ) comprised of the weakly differentiable
functions whose weak derivatives have minors in LP(Q, R"Y). A sequence (uy) is said
to converge weakly in AP if the functions (ux) and all the minors of their derivatives
converge [P-weakly. Let Cart”(£2, RY) be the smallest set containing C*(€, RY) N
AP(Q, RY) which is closed under this notion of convergence, and let cart?{Q, R") be
the set of all functions u € AP(Q, R™) such that the current given by integration over
the graph of u is boundaryless. They raised the question of whether cart?(2, RY ) =
Cart?(Q,RY), and whether every element of cart?(Q, RY) is the limit of graphs of

smooth functions. Maly showed that this is not the case in [35].

In this thesis, the proof that for smooth bounded ©, Cart(Q,RY) = cart(, R")

uses induction on {2’s dimension. Firstly, Lemmas 5.5.1 and 5.5.2 show that
F ={T € cart(, RY) | spt (T — [Go]) cC Q x RV}

is dense in cart(€2, RY). Then Corollary 5.4.4 shows that for T in this set, there is
a sequence of currents S; S T which are constructed in a very explicit fashion from
cartesian currents of dimension one less. Specifically, Lemma 5.4.1 shows that for
a sequence pr — 0, there is a grid of tessellating open n-cubes {Ay; C Q} of side-
length pi. and centers gx; such that slicing 7" by | 0Ax,; % RY gives a current whose
restriction to any n-dimensional linear subspace of the grid is a cartesian current. If
Pa,(2,y) € QxRY v (grry) € {@a} x RY and ha,, is the affine homotopy of
this map with the identity, then

Sk = Ziha, ([0, 1} % O(T A1) + pap, (T Ar) + [\ Arg) x {0}]

is a weak approximation to T'. Finally, in Theorem 5.4.4 the explicit expression of S in
terms of (n — 1)-dimensional currents is combined with the induction hypothesis and
corollary 5.2.3 to show that Sy € Cart(Q,RY). Hence T ¢ Cart($2, R"), completing
the proof.

Whether the conjecture holds for arbitrary domains is still unclear. A crucial step
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in the proof is showing that F is dense in cart(2, R™), and there is no straightforward

way to duplicate the proof of this for arbitrary open sets.
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Chapter 2

Prediction of non-coding RNA
(ncRNA) genes using comparative

sequence analysis

This chapter describes new comparative techniques for identification of orthologous
genes whose function depends on secondary structure in the RNA transcripts they
generate.

FEventually understanding exactly how cells find and express genes is important,
but merely identifying genes is of enormous value in itself. Since we can draw
inferences from the genomes of multiple organisms, using information that is
unavailable to cellular expression machinery, many genes can be found without a
perfect understanding of how they are expressed.

Any set of organisms has a common ancestor, and usually most of their genes are
descended from a gene in that ancestor. Genes in different species that are believed to
have descended from a common ancestral gene are called orthologs. Genes are delicate,
and random mutations of them often weaken the resulting organism, reducing the
likelihood that they will have descendants to pass the mutations on to. Thus the rate
of mutation from generation to generation tends to be much lower in genes than in
portions of the genome that are never expressed, and one way to narrow the search

for genes is to look for them in regions of genomes that are strongly similar, then
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search for orthologs in these regions.

Unfortunately, evolutionary pressure on the phenotype is not the only mechanism
for preservation of DNA sequences across generations—for instance, the fidelity with
which splice sites and transcription start sites are preserved varies a lot, and is often
very high, in some cases almost perfect, even far from the boundary that they signal.
Also, there is a wide variation in the fidelity with which orthologous genes match,
presumably corresponding to variation in the delicacy and importance of the genes’
products. Thus, while comparative methods can winnow the field of candidate genes,
they do not yet reduce accurate gene prediction to a matter of searching for similar
strings. For the time being, they have to be used in conjunction with tests for local

features such as those described in chapter 4, as imperfect as those are.

2.1 Non-coding RNA genes

The role of RNA in the early “central dogma” of cell biology was limited to mRNA
transcripts, tRNA’s and rRNA’s. However there are other RNA sequences known
to be biologically functional, such as RNaseP [7], SRP [25], snoRNA and XIST [15].
Eddy’s review, “Non-coding RNA genes and the modern RNA world” [15], gives a

good overview of the current state of research into ncRNA.

2.1.1 RNA secondary structure

The functions of biologically significant RNA molecules often depend on their
secondary structure. As with DNA, nucleotides in RNA molecules can base-pair
with each other, and the nucleotides of single strands of RNA can base-pair to form
complex structures. The set of such pairs are referred to as a molecule’s secondary
structure, to distinguish it from its tertiary structure—its three-dimensional geometry.
The nucleotides in RNA are usually represented with the symbols A, C, G and U. These
are transcribed from the DNA nucleotides A, C, G and T respectively. At times, U and
T may be used interchangeably in this thesis. The stable base pairs in RNA are A-U,

G-U and G-C. Note that this is one more possible pairing than in DNA.
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abcdef.. ... ghijk....lmn....nml... kjihg.fedcba..
CCCCCa-aacc-CCGcuaggUClggaaGGAagcaaCGGu-aGGGGGac
gUCGcc-aacc-CGGUcaggUCCggaaGGAagcaGCCGu-aaCGAauun
CUCGcc-aacc-UGGUcaggGCCgagaGGCagcaGCCAc-aaCGAGau
UCUUGCuuag-UUGGUcaggUCUgaaaAGAagcaGCCAGgGUAAGAUU
cCCAUg-aacc-UGGUcaggUCCggaaGGAagcaGCCAuaaGUGGauc
culCUg-aacc-GGGUcaggAUCggaaGGUagcaGCCCuaaGGAuagg
AUUGCUgaauc-CCGUcaggACUggaaGGUagcaGCGGuaAGCGAUuu
AUUGUg-aacc-CCGUcaggCClggaaGGGagcaGCGGua-GCAGUug
CCCGUc-aacc-UGGUcaggUCCggaaGGAagcaGCCAca-GCGGGaa

Table 2.1: MSA of SRP RNA from [25]. Each row contains a portion of an SRP gene’s
nucleotide sequence, with some gaps included for alignment purposes. In the top row,
pairs of letters indicate positions at which some of the SRP orthologs are believed to
base pair. Nucleotides in a sequence which are believed to base pair are in captitals.
This alignment of SRP’s is a portion of the alignment currently available from
http://psyche.uthct.edu/dbs/SRPDB/rna/alignment/text/srproa_ali.80coltext.

For instance, snoRNA’s have the behavior and associated secondary structure

shown in figure 2-1.

2.1.2 Existing methods for RNA secondary structure
prediction

Secondary structures of orthologous ncRNA’s have been determined by hand using
comparative techniques for many years (see, e.g., [18]) but have only recently been
used to detect them [47]. The key idea in comparative analysis of ncRNA’s is
that functionally significant secondary structure encourages distinctive patterns in
variations among orthologs. Table 2.1 contains an example of such patterns. It shows
a portion of a multiple sequence alignment (MSA) of bacterial SRP [25] genes.

The pairs of symbols “a”, “b”, “c”...in the first row indicate columns that
are believed to be paired to each other in the consensus SRP secondary structure.
Nucleotides in a sequence that are believed to be base-paired are indicated in capital
letters. Thus in the “c” columns, the consensus nucleotides are C and G respectively,
and it is believed that these are base paired. In rows where this consensus is violated,
their complementarity is maintained. Thus, in a row with an A in one “c” column, the

[{39}]

other “c” column has a U. The secondary structure of orthologs has been determined
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Figure 2-1: snoRNA secondary structure binding rRNA for 2'-O-ribose methylation
and pseudouridylation [15]. The ladder-like elements of the diagram represent base

pairing.
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by manually searching for such complementary mutations since the 1970’s [18].

The long-standing approach to automation of RNA secondary structure prediction
is estimation of the energetically optimal secondary structure [55, 53]. However, there
appear to be some inaccuracies in the thermodynamic models of RNA folding used
by these approaches, as secondary structures confirmed by other methods such as
comparative analysis are often suboptimal with respect to them. It is likely that
tertiary interactions are also influencing the thermodynamics of folding, and RNA
tertiary structure seems to be just has hard to predict as protein structure.

There have been some recent attempts to automate the prediction of secondary
structure through comparative analysis. The problem of identifying ncRNA orthologs
from secondary structure is closely related to prediction of secondary structure in
known orthologs. My techniques for ncRNA identification draw on ideas implemented
In two programs designed to predict secondary structure: Hofacker’s alifold [27] and

Matthew and Turner’s Dynalign [36].

The alifold program

The alifold program predicts RNA secondary structure from an MSA of sequences
presumed to be orthologous ncRNA genes. It takes as input an MSA of ncRNA
orthologs and augments the thermodynamical model used by the Vienna RNAfold
program (28] by including scores for the arrangement of complementary nucleotides
in each pair of columns in the MSA. For a pair of positions in the sequence i and j,

the key element of the score is
Yxvx vy fi (XY) fi (XY Ndp (XY, X'Y")

where X, ¥, X' Y’ range over RNA nucleotides such that X base-pairs with ¥ and
X' base-pairs with Y’ f;(XY) is the number of rows in which positions i and 7
contain X and Y respectively, and dy (XY, X'Y’) is the hamming distance, i.e. the
number of positions at which the strings “XY” and “X'Y" differ. The distance
factor is probably included to give higher weighting to columns in the MSA that

exhibit some variation-—columns comprised of just one nucleotide each are not very
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interesting even if they are complementary to each other, as standard MSA algorithms
optimize precisely for uniformity within columns. One corollary of this is that
comparative analyses of RNA secondary structure are only appropriate for orthologs
exhibiting sufficient nucleotide variation. However, another limitation of alifold’s
approach is that it relies on the MSA accurately aligning orthologous base pairs in
the consensus secondary structure to each other. Since programs such as ClustalW
generate alignments purely from sequence identity, this means there must be enough
homology between the sequences to provide accurate clues about how to align non-
identical nucleotides. (See table 2.2 for an example of ClustalW failing to align

orthologous base pairs correctly.)

The Dynalign program

The Dynalign program [36] is rather remarkable, in that it requires no sequence
homology whatsoever. Instead, it takes a pair of sequences assumed to be ncRNA
orthologs of sufficient similarity that all orthologous features of their secondary
structures are offset from each other by at most some small distance M. It examines
the local thermodynamics of pairings between 5-, 6- and 7-tuples within each of the
two sequences, and determines from these a secondary structure that minimizes the
total free energy of both sequences. However, it is very slow. Matthew and Turner {36]
state that Dynalign’s run time grows cubically in the length of the shortest sequence
it is passed, and that the current implementation is only suitable for sequences of
length less than 300 nucleotides or so. They also state that Dynalign’s algorithm will

not scale well to alignments of more than two sequences.

2.1.3 Detection of ncRNA genes

The thermodynamics of secondary structure provides at least some clues to the folding
of a lone RNA molecule, but so far searching for thermodynamically stable RNA
sequences has proven to be an inadequate technique for identification of ncRNA
genes [46]. The leading available program for detecting ncRNA genes combines

thermodynamics with comparative analysis of a pair of orthologous ncRNA genes.
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Searching for ncRNA genes with QRNA

Rivas’ and Eddy’s QRNA [47] tests pairwise alignments of candidate ncRNA orthologs
by computing their probabilities with respect to a statistical model RNA, which
describes the thermodynamics of ncRNA secondary structure and the concomitant
mutation patterns described in section 2.1.2. It flags alignments that look more
likely with respect to this model than with respect to a model for alignments of
regions coding for protein (denoted by COD and a model for regions of arbitrary
DNA (denoted by 0TH). The models COD and OTH are relatively simple--COD encodes
codon mutation frequencies in the six possible translation frames, and 0TH encodes
mutation frequencies for single nucleotides. The model RNA is a Stochastic Context
Free Grammar [14] encoding the stacking energies of RNA base pairs, and rates of
mutation in known orthologous ncRNA base pairs in pairs of orthologous ncRNA

sequences. The probability they actually compute is
s P(XY|s, RNA)P(s|RNA).

The first factor is the probability of the mutations between XY, given the base pairing
specified by s, and the second is the relative probability of the secondary structure
s with respect to the space of all possible secondary structures, given the estimated

thermodynamic stability of s.

Rivas and Eddy use the Inside Algorithm [14] to compute the odds of an alignment
with respect to the RNA model, and its run time grows as the cube of the length of the
alignment. This is reasonable for short alignments such as for snoRNA orthologs, but
is prohibitively expensive in searches for longer orthologs (the XIST gene in humans

is estimated to be about 19 kB long [29].)

For the same reasons as alifold (sec subsection 2.1.2,) QRNA depends critically
on the accuracy with which the alignments it is passed match up orthologous base
pairs. With orthologous sequences with high nucleotide identity, QRNA is reasonably
sensitive because the identical nucleotides give many clues as to how to align the non-

identical nucleotides. Its sensitivity degrades when passed poorly aligned orthologs,
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however, as shown in table 2.4 on page 41. Rivas and Eddy state that QRNA performs
most reliably on candidate orthologs with 65% — 85% nucleotide identity.

2.2 Identification of MSA’s of ncRNA orthologs

The complementary mutation patterns in ncRNA orthologs are very distinctive,
and the Bayesian approach used by QRNA fails to exploit this—an alignment with
complementary mutations in appropriate positions conforms to QRNA’s statistical
model, and gets a good RNA score as a result, but this does not preclude it from
also scoring well with respect to the COD and OTH models, even though they provide
no explanation for the complementarity. It seems as though a more sensitive approach
is to score the statistical significance of the complementary mutations an alignment
exhibits. The intrinsic sensitivity of the two methods aside, another advantage to
significance-based detection is that it easily generalizes to MSA’s of large sets of

orthologs, which contain far more information than a pairwise alignment.

2.2.1 Column-based significance estimates

My first attempt at detecting MSA’s of ncRNA orthologs was based on estimating the
statistical significance of the number of complementary mutations seen in each pair
of columns in an MSA. This method proved inaccurate in the context of automated
searches, but is worth describing as it is a simple precursor and contains the key idea of
the next approach. I estimated significance with respect to the null hypothesis that
the nucleotides in each column were drawn from an independent randomn variable
whose odds of emitting a nucleotide R are equal to the proportion of R nucleotides in
the column. Thus in table 2.1, the “d” columns contain CGGUACGGG and GCCAUGCCC,
so if the random variables the columns are assumed to have been drawn from are NV
and N,, then the probabilities of drawing A, C, G or U from N; are 1/9, 2/9, 1/9 and
5/9 respectively and the probabilities for N, are 1/9, 5/9, 2/9 and 1/9 respectively.
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The odds in this model of a particular row having complementary base-pairs is

P(N; = A)P(Ny =U)+ P(N; =U)P(N, = A)+
P(N, =C)P(N; =G)+ P(N, = G)P(N, = C)+
P(N; = U)P(N; =G) + P(N; = U)P(Ny = G),

i.e. about 0.45. The odds of seeing nine or more events of this probability in a sample
of size nine is 0.45°, i.e. about 0.0039. This probability is called the complementarity

probability.

The significance of such pairs by themselves is too low to constitute convincing
evidence of orthologous base pairs. Even in the short MSA in table 2.1, there are
990 pairs to be considered, so assuming for simplicity that the pair probabilities are
being drawn independently (they are not) the odds of seeing a pair with these odds or
less is about 1 — (1 — 0.0039)%", or about 98%. To compensate for this, the evidence
from multiple significant pairs needs to be aggregated. To compute this aggregate, I
restrict attention to pairs ¢ and j with a complementarity probability less than 0.05,
and compute a rough estimate of the probability of the complementary pairs in a
neighborhood of 4 and j. Specifically, suppose there are { valid pairs of positions
nearby (4, 7), of the form (i1 +k+1,7—k+1) for 0 < ||k|| < 10. Denote by p1,...,m
the complementarity probabilities for these pairs of columns, and assume they are in

increasing order. Then for each m < I, I compute

PL-- - Pm
m

as an estimate of the odds of independently drawing from the null hypothesis { pairs
of columns containing a subset of size m whose complementarity odds g; satisfy the
constraint g1 < pi,...,¢n < Py, I use the minimum over m of this expression as the
aggregated probability for the pair and its neighborhood. Finally, as the significance
for the complementarity in an MSA, I use the maximum aggregated significance over

all pairs of positions.
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2.2.2 Tuple-based significance estimates

Since ClustalW tends to only misalign orthologous base pairs by one or two positions,
[ attempted a new estimate of significance using the number of contiguous reverse
complementary tuples in a pair of shifting windows. This version was more tolerant

of misalignments, and thus more accurate on automatically generated MSA’s.

This significance estimate is with respect to the same per-column null hypothesis
as before—that each column is drawn from a nucleotide-valued random variable whose
distribution is the same as the proportion of nucleotides in the column. For column
positions i and 7, with ||s — j|| > 5, the complementarity in the windows (4,7 + 3)
and (j,7 + 5) is examined. For each row in the MSA, I find the longest pair of
complementary tuples in these windows, and estimate the odds with respect to the
null hypothesis of secing the resulting distribution of tuple lengths. To compute this
estimate, first I estimate the odds of seeing complementary tuples of lengths 3 or
more, 4 or more, or 5 by simply adding the odds of seeing complementary tuples of
the various lengths at each possible position. The product of these odds, g;;, is taken
as an estimate of the probability of the complementarity in windows ¢ and j. This
is inaccurate, as while the null-hypothesis is independent with respect to the rows of
the MSA, it is also symmetric in them. Thus the product of the rows’ odds should be
multiplied by the number of ways the rows could be rearranged. However, neglecting
this factor results in an effective test, while including it results in unreasonably low
significance estimates. It is possible that leaving this factor out compensates for the

looseness of the other probability estimates in the calculation.

For example, here are a pair of windows taken from the ClustalW alignments in
table 2.2. The variable names in the first row represent the random variables the
columns of the MSA are assumed to be drawn from in the null hypothesis. The last

column gives the length of the longest reverse-complementary tuple in each row.
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Xo X1 Xs X X4 | Y i Y, Y; Y, Lengths
C C C C C G G G G G 5
g u C G C a C G A - 3
C U C G o a C G A G 4
c U U G C g 1) A A G 4
c C C A U a G U G G 4
C u U C U A G G A U 3

If X and Y are nucleotide-valued random variables, denote by X|[|Y the event
that a nucleotide is drawn from each, and the resulting pair is complementary. The
odds of a reverse-complementary 5-tuple are

4

P(5-tuple) = H P(X;||Y5-:),

=0
while for a reverse-complementary 4-tuple they are estimated by

3
P(4-tuple) < ¥y 01 H P(XikllYs—ia),

1=0

and simtlarly for 3-tuples.

The odds for this degree of complementarity is then estimated by the product
of the odds estimates over the rows. In this case, there are two rows with reverse-
complementary 3-tuples, three rows with 4-tuples and one row with 5-tuples, so the
estimate used is

P(3-tuple)® P(4-tuple)® P(5-tuple).

Once the odds g¢;; for pairs of windows have been computed in this way, they are
combined as follows: an initially empty list I of chosen base pairs within the MSA is
kept. For each pair ¢, j, denote by p;; the product of ¢;; and the number of positions
k, I within the sequence with ||k — || < ||l< — j|| and whose pairing is consistent with
the base pairs in L. This is an estimate of the odds of drawing an MSA with this
degree of complementary base pair correlation in some region of length ||z — j||. The
lowest q;; is chosen, and the associated pair 4, j is added to L. This process is repeated
until no significant pairs remain. Finally the odds for the MSA’s total correlation in

complementary base pairs is estimated by the product of the chosen g;;’s.
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2.2.3 Alignment-based method

In order to detect significant reverse-complementary regions that are not perfectly
contiguous, I devised a method based on aligning sequences to their reverse

complements.

Searching for helices using Smith-Waterman alignment

To identify helices within an RNA sequence, the sequence is aligned to its reverse
complement using the Smith-Waterman algorithm [49]. A pair of nucleotides are
flagged as a “match” if they can base-pair in RNA, and as a “mismatch” otherwise.
The alignments are scored with a match score of 1, mismatch penalty of -2 and gap
penalty of -5. These values are largely ad hoc, and bear no resemblance to RNA
folding energies. However, it is necessary to use a severe gap penalty to prevent
unreasonably long alignments from being chosen.

The significance of an alignment is estimated using a modification of the standard
Poisson-approximation estimator for the expected number of alignments of a given
score [1]. I first compute the estimator in the case of nucleotides having uniform
probability. Isimulated this case by randomly generating 3100 pairs of sequences each
of length 300 and aligning them as described above. For an alignment of sequences
of length m and n, the expected number of pairs with score at least S is estimated
by

Kmne (2.1)

where K and \ are determined by simulation. The distribution of scores was roughly
log-linear in the vicinity of scores 15 and 16, so I estimated K and A from the numbers
of pairs having scores exceeding these values. The values I used were 0.7 for A and
0.02 for K.

By itself, equation 2.1 is very inaccurate in general, as local variations in nucleotide
frequencies can change the probability of randomly matching complementary
nucleotides. For instance, when all four nucleotides are equally likely, the odds of

drawing two nucleotides that are complementary is 6/16 = 0.375, but if one nucleotide
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is drawn from that distribution, while the other is certain to be G, the probability of

a complementary pair is 0.5. To compensate for this, I replace X with

B log p
P Tlog0.375

where p is the probability of drawing a pair of complementary nucleotides.

To estimate the significance of an alignment XY of score S, the value I use for
p is the probablity of drawing a pair of complementary nucleotides at random, one
from each of the collections of nucleotides in the sequence portions X and Y. If XY
came from aligning a sequence of length m to a separate sequence of length n, the

expected number of alignments of score S is estimated by
E(S) = Kmne % (2.2)

Frequently, XY comes from alignment of a strand to its own reverse complement. In
that case, I instead use the expected number of alignments in a strand of this length
occurring within a portion of length less than that covered by XY. If XY comes
from self-alignment of a strand of length !, and the difference between the lowest and
highest indices of positions in XY is L, then I use the following estimate for the
expected number of alignments:

_ KlLe *%

E(S) .

(2.3)

That is, I replace the mn factor, the approximate number of positions X and Y could
start at, by IL/2, the approximate number of positions X and ¥ could start at if XY

spans a length of L or less.

Searching for conserved helices

Given an MSA of candidate ncRNA orthologs of length I, T seek helices that are in
roughly the same positions in a statistically significant number of the MSA’s rows. I
take the row with the most nucleotides, strip it of inserted dashes and align it to its
reverse complement as described in the previous subsection. For ease of comparison

to other rows, the positions of alignments within the stripped sequence are mapped
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back to the indices of the corresponding columns within the MSA. Local alignments
with scores greater than 7 are examined as potential helices. Helices with scores lower
than 7 tend to be very common and have extremely low significance, so ignoring them
greatly accelerates the algorithm at a negligible cost to its sensitivity.

Let A be an alignment, with score greater than 7 and expected count E(A).
Denote by Ssiarts Send A0 Tsare, Tena the boundaries of the forward and reverse strands
of the alignment, respectively. I seek similarly positioned helices in the other rows
of the MSA by aligning the portions of them between positions max(0, Sser: —
10), min(l, S¢nqg + 10) and positions max(0, 7star¢ — 10}, min(l, 7¢ng + 10). In row ¢, with
best-scoring alignment A;, its expected count E(A;) is computed using equation 2.2.

The significance of this arrangement of helices is then estimated by
—log E(A) + Xg(a,)<1 — log E(4;),

which is a rough estimate of the log probability that a tightly clustered set of
such helices would be found if the nucleotides in each row of the MSA had been
drawn independently from each other. The highest such significance is taken as the

significance of the MSA.

2.2.4 Tests of the various methods
Test data

To determine the accuracy of these tests, I ran them on MSA’s of RNaseP [7] and
SRP [25] orthologs, along with contols that I generated artificially from those MSA’s.

Artificially generating data for tests of detection schemes is a perilous business,
as one can never be sure that the resulting data contains unrepresentative favorable
statistical properties. My first tests used control data drawn directly from the null
hypothesis used in the significance estimates, and of course the resulting scores were
spectacularly well separated from the scores of the MSA’s of genuine orthologs.
Specifically, given such an MSA of length L containing n sequences, the null
hypothesis described in section 2.2.1 involves nucleotide-valued random variables

Ny, ..., Np. For each genuine MSA of ncRNA orthologs that T tested on, I constructed
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a control MSA in which the 7th column contained n nucleotides drawn from &, and

then shuffled the columns.

This approach to generating control data was similar to Rivas and Eddy’s in
[47], in which they shuffle the columns of pairwise alignments of genuine ncRNA
orthologs. However, the embellishment of drawing new columns from the &,’s resulted
in “MSA’s” lacking strong homology between rows, a feature that MSA’s of actual
homologs inevitably possess. When the tests described above are used on real MSA’s,
such homology can result in the MSA’s being assigned much higher scores than they
deserve, because all of my tests assume the rows are independent. For instance, if
all rows are identical and exhibit reverse complementarity to which one of my tests
assigns a probability p, each row contributes a factor p to the significance estimate,
even though having seen the event in one row, it is not very remarkable to also see it

in the others.

To compensate for this, I repeated all the tests with strong homology removed
from the MSA’s. To remove it, I used a sliding window of length 20, and for each
row in the MSA, computed its sequence similarity to the previous rows within the
window. If in some window a row has more than 83% sequence similarity with some

prior row, that portion of the row is masked out with dashes.

Masking strong homology in this way resulted in less spectacular separation from
controls. At this point, I concluded that redrawing the columns from the null
hypothesis had stacked the deck too far in my favor, and repeated the experiments

with controls constructed by only shuffling the columns of genuine MSA’s.

I also tested on MSA’s of known mRNA orthologs from the EGO database [33).
Some of these exhibited extremely high significances, presumably because they
contain biologically important secondary structure. That problem disappeared when
I shuffled the columns of the MSA’s. However, the distributions of scores for the
resulting MSA’s was roughly the same as the distributions for the controls constructed

by shuffling the columns of ncRNA MSA’s, so they are not displayed here.
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Tests of the column-based method

This score seems to be fairly reliable at distinguishing curated MSA’s of orthologous
ncRNA genes. The results are in figures 2-2 through 2-8. They are aggregated
by two criteria—nucleotide identity in the MSA’s and GC content. Here nucleotide
identity in a column of an MSA is defined as the proportion of the most common
nucleotide out of all the nucleotides the column contains, and nucleotide identity
of an MSA is the average of that over its columns. The GC content of an MSA
is simply the proportion of nucleotides in the MSA that are G or C. Aggregation by
nucleotide identity is included for comparison with later results, because it will become
a significant factor when examining the algorithm’s performance on automatically
generated MSA’s. Aggregation by GC content is included for comparison to Rivas’
and Eddy’s work (see table 2.3,) who aggregate the results for QRNA in this way
because its accuracy seems to be significantly influenced by the GC content of the
alignments it is passed.

The column-based significance estimates provide excellent separation between
curated MSA’s of ncRNA genes and control MSA’s. However, this is not a realistic
test—this approach to automated ncRNA detection can only be useful if it works with
alignments generated automatically by programs like ClustalW [26]. The performance
of QRNA is significantly worse on alignments generated with BLASTN than on curated
alignments, as table 2.4 shows. Unfortunately, so is the performance of column-based
significance estimation, as shown by the overlap between the distributions of ncRNA
and control MSA’s in figures 2-9 through 2-17 and figures 2-34 and 2-37

The performance of the column-based significance estimates is significantly worse
because ClustalW’s alignments are optimized purely for nucleotide identity, and
frequently fail to align orthologous base pairs as a result. An example of this failure

is shown in table 2.2.

Tests of the tuple-based method

As shown in figures 2-18 through 2-33, this estimate gives almost perfect separation

between the SRP and control MSA’s drawn directly from the null hypothesis.
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ugauuccuaaagcGGGGC-g

.abcde. .ed.cba.
uCCCCCa aGG-GGGa
ugUCGecc aaC-GAau
cCUCGcc aaC-GAGa
cUCUUGC GUA-AGAu
acCCAUg aGU-GGau
cuUCUg- aGG-Auag
cGGGGCg aGC-UCC-
...abcde.. .edcba.
u--CCCCCaa aGGGGGa
....bed. .. ..dcb..
-——-gUCGcca aaCGA-a
...abcd. .. . .dcba.
—---CUCGcca aaCGAGa
....abcde. . .edcba
---CUUGCuu gGUAAGa
....bcde.. ..edchb.
aa-cCCAUga aaGUGGa
..... bed. . ..dcb..
agacuUCUga aaGGAua

acagagcagugaacaGCUCCc

Table 2.2: Misalignment of orthologous base pairs by ClustalW. The first section
shows curated alignments of portions of SRP RNA genes that are base paired. The
letters in the first row indicate consensus base pairs. The second section shows the
corresponding portion of an alignment generated by ClustalW. The letters in the
Intervening rows are above the corresponding nucleotides in the curated alignment.
The base pairs have been shifted significantly in the last row, but are only shifted by

one or two positions in the other rows.
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However, the performance on more reasonable controls constructed by shuffling
the columns of MSA’s is much weaker, as shown in figures 2-41 and 2-44. This
is probably because strong local homology between rows leads to artificially high
significance estimates, as described at the beginning of section 2.2.4. This hypothesis
is corroborated by the weak separation of scores for MSA’s drawn from the null-
hypothesis and genuine MSA’s with strong local homology masked out, as shown in

figures 2-42 and 2-45.

Tests of the alignment-based method

Figures 2-46 through 2-51 show the performance of the helix-based method. It
achieves good separation even on the control MSA’s constructed by shuffling columns,
as shown in figures 2-47 and 2-50. It does much better on the SRP homologs than
on the RNaseP homologs, because the consensus SRP secondary structure has a
long helix that looks very significant to the alignment-based method. Suprisingly,
this method also achieves poor separation between the MSA’s drawn from the null-

hypothesis and genuine MSA’s with strong local homology masked out.
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Figure 2-2: Distribution of column-based significance estimates for curated SRP
MSA’s with 20-30% GC content. Solid bars represent the distribution of significances
for genuine MSA’s, dashed bars the distribution for control MSA’s.
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Figure 2-3: Distribution of column-based significance estimates for curated SRP
MSA’s with 30-40% GC content. See figure 2-2 for more information.
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Figure 2-4: Distribution of column-based significance estimates for curated SRP
MSA'’s with 40-50% GC content. See figure 2-2 for more information.
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Figure 2-5: Distribution of column-based significance estimates for curated SRP
MSA’s with 20-30% nucleotide identity. See figure 2-2 for more information.
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Figure 2-6: Distribution of column-based significance estimates for curated SRP
MSA’s with 30-40% nucleotide identity. See figure 2-2 for more information.
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Figure 2-7: Distribution of column-based significance estimates for curated SRP
MSA’s with 40-50% nucleotide identity. See figure 2-2 for more information.
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Figure 2-8: Distribution of column-based significance estimates for curated SRP
MSA’s with 50-60% nucleotide identity. See figure 2-2 for more information.
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Figure 2-9: Distribution of column-based significance estimates for ClustalW SRP
MSA’s with 20-30% GC content. See figure 2-2 for more information.
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Figure 2-10: Distribution of column-based significance estimates for ClustalWw SRP
MSA’s with 30-40% GC content. See figure 2-2 for more information.
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Figure 2-11: Distribution of column-based significance estimates for ClustalW SRP
MSA’s with 40-50% GC content. See figure 2-2 for more information.
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Figure 2-12: Distribution of column-based significance estimates for ClustalW SRP
MSA’s with 50-60% GC content. See figure 2-2 for more information.
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Figure 2-13: Distribution of column-based significance estimates for ClustalW SRP
MSA’s with 20-30% nucleotide identity. See figure 2-2 for more information.
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Figure 2-14: Distribution of column-based significance estimates for ClustalW SRP
MSA’s with 30-40% nucleotide identity. See figure 2-2 for more information.
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Figure 2-15: Distribution of column-based significance estimates for ClustalWw SRP
MSA’s with 40-50% nucleotide identity. See figure 2-2 for more information.
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Figure 2-16: Distribution of column-based significance estimates for ClustalW SRP
MSA’s with 50-60% nucleotide identity. See figure 2-2 for more information.
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Figure 2-17: Distribution of column-based significance estimates for ClustalW SRP
MSA’s with 60-70% nucleotide identity. See figure 2-2 for more information.
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% Nucleotide identity | # alignments | % sensitivity | % Specificity

0 < 10 140 42.8 (60) 100.0 (0)

10 < 20 827 59.6 (493) | 100.0 (0)

20 < 30 503 714 (359) | 100.0 (0)

30 < 40 764 75.1 (574) | 100.0 (0)

40 < 50 283 58.6 (166) | 100.0 (0)

50 < 60 434 81.3 (353) | 100.0 (0)

60 < 70 88 80.7 (71) 100.0 (0)

70 < 80 70 91.4 (64) 97.1 (2)

80 < 90 73 97.3 (71) 79.4 (15)

90 < 100 61 93.4 (57) 27.9 (44)
100 929 93.9 (93) 29.3 (70)

% GC content

35 < 40 31 51.6 (16) 935 (2)

40 < 45 343 69.1 (237) | 96.5 (12)

45 < 50 1131 72.4 (819) | 97.9 (24)

50 < 55 1320 69.2 (914) | 96.5 (46)

55 < 60 508 73.0 (371) | 91.3 (44)

60 < 65 9 44.4 (4) 66.7 (3)

Table 2.3: Sensitivity and specificity of QRNA on curated alignments of RNaseP
and SRP orthologs with varying levels of nucleotide identity and GC content.
The numbers in brackets in the sensitivity and specificity columns are respectively
the number of accurate and inaccurate detections of ncRNA orthologs. Control
alignments were generated by shuffling the order of the columns in alignments of
genuine orthologs [47].

% Nucleotide identity | # alignments | % sensitivity | % Specificity

60 < 70 419 15.3(64) 99.5(2)
70 < 80 269 26.8(72) 08.5(4)
80 < 90 131 61.1(80) 89.5(19)
90 < 100 78 97.4(76) 67.9(53)

100 106 92.4(98) 24.5(80)

% GC content

35 < 40 30 6.6 (2) 100.0 (0)
40 < 45 08 40.8 (40) | 89.8 (10)
45 < 50 278 39.6 (110) | 89.2 (30)
50 < 55 359 354 (127) | 88.3 (42)
35 < 60 218 46.8 (102) | 76.1 (52)
60 < 65 17 29.4 (5) 82.3 (3)

Table 2.4: Sensitivity and specificity of QRNA on BLASTN alignments of RNaseP and
SRP orthologs with varying levels of nucleotide identity and GC content. See table 2.3
for more information [47].
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Figure 2-18: Distribution of tuple-based significance estimates for curated SRP MSA’s
with 20-30% GC content. Solid bars represent the distribution of significances for
genuine MSA’s, dashed bars the distribution for control MSA’s.

2000 T T T T T T
1800 + : i
1600 | ! B
1400 : 1
1200 F

1000 + | 7

count

800 ! i

600 -

400 | e h

200 P .

0 1 L 1 1 1
-120 -100 -80 -60 -40 -20 0 20

Log probability w.r.t null-hypothesis

Figure 2-19: Distribution of tuple-based significance estimates for curated SRP MSA’s
with 30-40% GC content. See figure 2-2 for more information.
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Figure 2-20: Distribution of tuple-based significance estimates for curated SRP MSA’s
with 40-50% GC content. See figure 2-2 for more information.
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Figure 2-21: Distribution of tuple-based significance estimates for curated SRP MSA'’s
with 20-30% nucleotide identity. See figure 2-2 for more information.
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Figure 2-22: Distribution of tuple-based significance estimates for curated SRP MSA’s
with 30-40% nucleotide identity. See figure 2-2 for more information.
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Figure 2-23: Distribution of tuple-based significance estimates for curated SRP MSA’s
with 40-50% nucleotide identity. See figure 2-2 for more information.
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Figure 2-24: Distribution of tuple-based significance estimates for curated SRP MSA’s
with 50-60% nucleotide identity. See figure 2-2 for more information.
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Figure 2-25: Distribution of tuple-based significance estimates for ClustalWw SRP
MSA’s with 20-30% GC content. See figure 2-2 for more information.
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Figure 2-26: Distribution of tuple-based significance estimates for ClustalW SRP
MSA’s with 30-40% GC content. See figure 2-2 for more information.
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Figure 2-27: Distribution of tuple-based significance estimates for ClustalW SRP
MSA’s with 40-50% GC content. See figure 2-2 for more information.
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Figure 2-28: Distribution of tuple-based significance estimates for ClustalW SRP
MSA’s with 50-60% GC content. See figure 2-2 for more information.
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Figure 2-29: Distribution of tuple-based significance estimates for ClustalW SRP
MSA’s with 20-30% nucleotide identity. See figure 2-2 for more information.
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Figure 2-30: Distribution of tuple-based significance estimates for ClustalW SRP
MSA’s with 30-40% nucleotide identity. See figure 2-2 for more information.

1400 T T T T T T

1200

1000

800

count

600 k : §
400 F

200

o 1 ] L ! L
-60 -50 -40 -30 =20 -10 0 10

Log probability w.r.t nuil-hypothesis

Figure 2-31: Distribution of tuple-based significance estimates for ClustalW SRP
MSA’s with 40-50% nucleotide identity. See figure 2-2 for more information.
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Figure 2-32: Distribution of tuple-based significance estimates for ClustalW SRP
MSA’s with 50-60% nucleotide identity. See figure 2-2 for more information.
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Figure 2-33: Distribution of tuple-based significance estimates for ClustalW SRP
MSA’s with 60-70% nucleotide identity. See figure 2-2 for more information.
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Figure 2-34: Distribution of column-based significance estimates for ClustalW
RNaseP MSA’s versus “MSA’s” drawn from the null hypothesis.
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Figure 2-35: Distribution of column-based significance estimates for ClustalW
RNaseP MSA’s versus “MSA’s” constructed by shuffling the columns of genuine
MSA’s.
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Figure 2-36: Distribution of column-based significance estimates for ClustalW
RNaseP MSA’s with strong local inter-row homology masked out versus “MSA’s”
drawn from the null hypothesis.
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Figure 2-37: Distribution of column-based significance estimates for ClustalWw SRP
MSA’s versus “MSA’s” drawn from the null hypothesis.
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Figure 2-38: Distribution of column-based significance estimates for ClustalW SRP
MSA’s versus “MSA’s” constructed by shuffling the columns of genuine MSA’s.
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Figure 2-39: Distribution of column-based significance estimates for ClustalW SRP
MSA’s with strong local inter-row homology masked out versus “MSA’s” drawn from
the null hypothesis.

52



250 T T T T T T T T

200 ~

150

Count

100

1 1
-55 -50 -45 -40 -35 -30 -25 -20 -15 -10
Log probability w.r.t null-hypothesis

Figure 2-40: Distribution of tuple-based significance estimates for ClustalW RNaseP
MSA’s versus “MSA’s” drawn from the null hypothesis.
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Figure 2-41: Distribution of tuple-based significance estimates for ClustalW RNaseP
MSA’s versus “MSA’s” constructed by shuffling the columns of genuine MSA’s.
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Figure 2-42: Distribution of tuple-based significance estimates for ClustalW RNaseP
MSA’s with strong local inter-row homology masked out versus “MSA’s” drawn from
the null hypothesis.
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Figure 2-43: Distribution of tuple-based significance estimates for ClustalW SRP
MSA’s versus “MSA’s” drawn from the null hypothesis.
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Figure 2-44: Distribution of tuple-based significance estimates for ClustalW SRP
MSA’s versus “MSA’s” constructed by shuffling the columns of genuine MSA’s.
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Figure 2-45: Distribution of tuple-based significance estimates for ClustalWw SRP
MB8A’s with strong local inter-row homology masked out versus “MSA’s” drawn from
the null hypothesis.
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Figure 2-46: Distribution of helix-based significance estimates for ClustalW RNaseP
MSA’s versus “MSA’s” drawn from the null hypothesis.
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Figure 2-47: Distribution of helix-based significance estimates for ClustalW RNaseP
MSA’s versus “MSA’s” constructed by shuffling the columns of genuine MSA’s.
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Figure 2-48: Distribution of helix-based significance estimates for ClustalW RNaseP
MSA’s with strong local inter-row homology masked out versus “MSA’s” drawn from
the null hypothesis.
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Figure 2-49: Distribution of helix-based significance estimates for ClustalW SRP
MSA’s versus “MSA’s” drawn from the null hypothesis.
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Figure 2-50: Distribution of helix-based significance estimates for ClustalW SRP
MSA’s versus “MSA’s” constructed by shuffling the columns of genuine MSA’s.
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Figure 2-51: Distribution of helix-based significance estimates for ClustalW SRP
MSA’s with strong local inter-row homology masked out versus “MSA’s” drawn from
the null hypothesis.
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2.2.5 Scan of bacterial genome for ncRNA’s

Almost 100  bacterial genomes are available for download from
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/ at the time of writing, and the
wide range of phylogenetic distances between them make them excellent data for
comparative methods. Following Rivas and Eddy’s test of QRNA on Salmonella Typhi
and FEscherichia Coli, 1 have tested the techniques described above on MSA’s of
homologs generated from pairwise alignments of the Buchnera species’ genome to
the genomes of Bacillus halodurans, Bacillus subtilis, Buchnera aphidicola schizaphis
graminum, Escherichia Coli strains K12, O157H7 and EDL933, Helicobacter pylor:
strains 26295 and J99, Neisseria meningitidis strains MCH8 and 72491, Pasteurella
multoctda, Salmonella Typhi, Salmonella typhimurium strain LT2, Staphylococcus

aureus strains Mud0 and N315, and Vibrio cholerae.

The Buchnera genome was chosen as the central alignment subject simply because
it is one of the smallest genomes on the list, and this speeds the alignment
considerably. The entire list was chosen for reasonable phylogenetic closeness,

following the phylogenetic information in [3].

Known coding regions in the Buchnera sp. genome were masked, and the resulting
sequence was aligned to the other genomes in the list using WU-BLAST [24]. By ignoring
coding regions the search missed mRNA’s with secondary structure, but was faster

by a factor of ten.

Alignments were collated by the position they matched in the Buchnera sp.
genome. For each non-coding portion of the Buchnera sp. genome, the eight
longest alignments to it were greedily chosen subject to the constraint that all
pairwise alignments of the resulting nine sequences had nucleotide identities less than
85%. While the threshold of 85% was chosen fairly arbitrarily, it was necessary to
ensure that the sequences were reasonably distinct from each other because very
strong sequence similarity results in spurious correlations in the arrangements of

complementary base pairs in the rows of the MSA.

If an MSA constructed in this way was longer than 300 base pairs, it was processed
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in portions of length 300 with an overlap of 150 base pairs. Thus an MSA whose
sequences were 600 characters long was broken up into MSA’s of length 300 starting
at positions 0, 150, and 300

All 36 annotated RNA genes intersected an MSA with a significance greater than
20, and only two RNA genes failed to intersect one with significance greater than 25.
There were 47 other non-overlapping regions containing an MSA with significance
greater than 25. The boundaries of these regions are listed in table 2.2.5.

Some of the MSA’s contained two known RNA’s, and the significances of those
were combined. Some of the significant pairs in MSA’s intersecting known RNA genes
did not lie within the annotated gene boundaries. Examples of typical significant

MSA’s intersecting known RNA'’s are given in table 2.2.5.
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MSA start | MSA end | Prob. RNA’s Pairs Prob.’s
48417 48694 9.04e-16 | (48488, 48560) | (48579, 48641) | 6.84e-07
(48576, 48647) | (48605, 48617) | 1.43e-05
(48591, 48599) | 7.09e-05
(48623, 48631) | 1.30e-04
(48426, 48571) | 4.64e-06
(48431, 48439) | 2.43e-07
(48491, 48554) | 4.40e-086
(48514, 48522) | 6.90e-08
(48496, 48509) | 3.47e-06
(48530, 48540) | 3.64e-05
(48444, 48459) | 4.71e-05
(48473, 48483) | 1.99e-04
74459 74730 3.55e-32 | (74471, 74543) | (74501, 74513) | 3.31e-11
(74572, 74644) | (74479, 74491) | 2.19e-07
(74567, 74721) | 1.64e-06
(74575, 74639) | 6.11e-12
(74589, 74626) | 2.97e-07
(74602, 74614) | 1.38e-09
(74648, 74683) | 2.85e-06
(74655, 74675) | 1.27e-04
(74662, 74670) | 1.57¢-04
(74703, 74713) | 1.56e-04
(74518, 74556) | 9.32e¢-06
(74536, 74550) | 1.48e-06
74595 74770 1.10e-11 | (74572, 74644) | (74602, 74614) | 1.38e-09
(74726, 74740) | 2.23e-05
(74638, 74710) | 6.46e-06
(74648, 74683) | 2.85e-06
(74655, 74675) | 1.27e-04
(74662, 74670) | 1.57e-04
(74695, 74703) | 2.26e-04

Table 2.5: Typical MSA’s intersecting known ncRNA annotations in the Buchnera
genome. “MSA start” and “MSA end” are the start and end indices of the portion
of the Buchnera contig included in the MSA. “Prob.” is the estimated probability of
drawing an MSA exhibiting this degree of complementarity from the null hypothesis.
“RNA’S” is a list of the RNA gene annotations that the MSA intersects. “Pairs” and
“Prob.’s” are respectively the start indices of the significant pairs of windows chosen
from the MSA, and the estimated probabilities of drawing such pairs from a single

sample of the null hypothesis.
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(13954, 14329)

(101510, 101767)
(202652, 202829)
(251108, 251923)
(343173, 343424)
(358763, 358998)
(395201, 395459)
(526729, 526963)
(580393, 580794)
(611714, 612143)

(20389, 20611)

(143341, 143859)
(211732, 212113)
(268257, 268464)
(347494, 347717)
(363409, 363632)
(411181, 411529)
(530995, 531190)
(581393, 582027)
(625408, 625682)

{30501, 30764)

(179442, 179713)
(212128, 212317)
(276609, 277071)
(352802, 353014)
(370416, 370611)
(420568, 420778)
(538201, 538433)
(583462, 583689)

(35678, 36197)

(180129, 180540)
(223601, 223795)
(299704, 300048)
(355383, 355626)
(383497, 383763)
(425463, 425939)
(568591, 568850)
(609210, 609479)

(72186, 72409)

(181900, 182258)
(235400, 236082)
(327603, 328282)
(358251, 358466)
(384496, 384744)
(461608, 461849)
(579133, 579387)
(610238, 810471)

Table 2.6: Predicted ncRNA gene regions
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2.3 Future research

2.3.1 Further testing and refinement

* With clever indexing, it may be possible to identify columng exhibiting

significant complementarity in linear time. If this turns out to be the case,

genes, flagging probable trans base-pair Interactions between the genes like those

represented in figure 2-1.

2.3.2 Secondary structure prediction

novel approach. The closest cognate in the literature that We are aware of is Hofacker’s

“covariance score” [27], which he uses in conjunction with free-energy minimization
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2.3.3 Searching for ncRNA genes with introns

Rivas and Eddy used QRNA to scan genomes of organisms that do not have introns.
However, some known ncRNA genes such as XIST possess introns [6, 29|. No
methods for identifying such genes is currently available. While QRNA has a “semi-
Markov model” which it uses to predict the maximum-likelihood boundaries of ncRNA
genes in the candidate orthologs it is passed, it makes no attempt to identify splice
sites, and would run much too slowly even on a modest-sized candidate pair of

orthologous genes with introns.

To compensate for this, one option is to use ¢DNA to obtain genes with
concatenated exons, align those to another organism, concatenate the resulting
alignments, and test the resulting alignments for complementary mutations using
QRNA. In this way, the large set of cDNA’s can be scanned, hopefully some novel
ncRNA’s can be identified.

I have implemented this pipeline, and it does find sequences that QRNA suggests
are ncRNA genes. Because the set of known cDNA sequences is highly redundant, I
searched the non-redundant set of cDNA’s in the Unigene [40] database. Since long
open reading frames are unlikely in non-coding genes, I further reduced the search
by removing any entries with an open reading frame of length at least 90 codons.
This left 50965 entries which I BLAST’ed [24] against the Mouse genome [16]. In
order to search for ncRNA genes with introns, I selected ¢cDNA’s that had multiple
compatible alignments with expected frequencies of at most 0.01 separated by at
most 10 000 base pairs. These alignments were concatenated, and those matches with
65% — 85% nucleotide identity were passed to QRNA, which reported 9 of the matches
to be from alignments of ncRNA genes. Those 9 matches were BLAST’ed [2] against
the NCBI nucleotide database [38] to check for strong homology to known genes. Five
of the matches exhibited no such homology. Three of these matches were discarded

as highly repetitious. The two remaining matches are in table 2.7.

In an attempt to expand this rather small collection, the entire set of Unigene

representatives were blasted against the Mouse genome. This proved far more
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Human

Mouse:
Human:
Mouse:
Human:
Mouse:
Human:
Mouse:
Human:
Mouse:
Human:
Mouse:

Human:

cDNA #8
267694
252
267754
312
267814
372
266303
111
266363
171
266416
230

1646953 against Mouse chromosome X contig MmX_30495_27

ACCCATGGAATCGGGAAGGGACATGTCGCTGGACCGCTGCTGAGTCAGGGACTGATGCAT 267753

PR L L L LT
AACCATGGAATCGGGCAGGGACATGTCGCTGGACCGCTGCTGAGTCAGGGACTGATGCAT 311

GGTGAAAGCTGTCCAGTTGCCCCTGTCCCCGAAGCTGCTTCAAGAGCCCCTGGCTCAGGG 267813

ELLLERE TEE L LR LR e T el |
GGTGAAAACTGCCCGGTTGCCCCAGTCCCCGAAGCTGCTTCAAGCGCCCCCGGCTCTGGG 371

CGCCCCGCAGAGCATCCTACTCTGCCGCTGCCT 267846

CVLELRRL e e et tp 1 1l
CGCCCCGCAGAGCATCCTACTCCGCGGTTGCCT 404

CCCTTGAACGAAATTTGTTGCGACTGAGTCTTTTGCAGGCAGCGGAGAGCTCACACTGGG 266362

AN N A RN R AR A
CCGGTGAACGAGTTTTGTTGACACTGAGTCTTCTGCGGGCAGTAGGGAGATTATATAGGG 170

C--TCAATCTCCT---TGCCCC-TCCCCT-GTGCATGTTCCAGCAAATTCATCGGAGAAG 266415

R N e N N e R AN RR NN NR RNy
GGTTCGATCTTCTCCCTGCCCCCTCCACTCGAG-ATGTTCCCGCAAATTCATCGGAGAAG 229

T T o
ACCTGAGCAGACTGA-TGGCAG 250

Human cDNA #51397703 against Mouse chromosome 11 contig Mm11l_32669_27

Mouse:
Human:
Mouse:
Human:
Mouse:
Human:
Mouse:

Human:

44686
11
44746
62
44896
267
44954
324

??TCATATATCAGTTTCAAACAAGATGGGAATAAATCTATACATCACAAAAGGTACCTTG 44745

N AR e N e A e A AN
ATACAG-TA-CAGTTTCAAACAAAATTGGGGCAACTTTGTACTTC---——- G-TACCTTA 61

TTCAAGCTGGG—CTAGCACAGCCTGATTGACCTGTGAGGCTGACTT??? 44793

A N N e AR N B N A
TTAAAACTGGGGCGAACACAGCGTGTTTGGT-T-TGATCTTGTCTTCAT 108

ACAGAGTTACTTTCCA—T—CTGGGGAGTGATTCTCTATGAAGAATTGTAACTGTAA?AC? 449563

LECEE L 1 LoLELeEr b L 1
ACAGA-TTCCTTTCAGGTACTTCTTTGGGATTCTGT--GAAGAATTGTGGCTGTACACTA 323

AGATGTTTAATAGGAAG———-CTCCTT---TTATGACATCATCAGACAGAGATTGTA 45003

LELILTLEELLL L LLEELE Lt L il 1
GGATGTTTAATAGGAAGGAAGCTCCTTCCTTTATGACATCACCAGACAGAGAG-GTA 379

Table 2.7: Non-contiguous matches of human ¢cDNA to the Mouse genome flagged by
QRNA as possible ncRNA orthologs.

65



fruitful, yielding 2268 raw BLAST matches and 55 matches after filtering by the same
process described for human ¢cDNA’s. All but one of these matches was with a Rat
c¢DNA transcript, a remarkable preponderance, given that only 75% of the BLAST
matches involved Rat ¢cDNA. Table 2.8 lists the candidate Unigene entries, and the
corresponding portions of Mouse contigs.

QRNA also strongly flagged a number of matches that turned out to lie in known
coding genes. These usually involved a match between a Rat ¢cDNA and the 3’
untranslated region of a coding gene. It would be interesting to systematically search
orthologs of coding genes for the compensatory mutations associated with biologically
significant RNA secondary structure, as there are a number of cis-acting mRNA’s (see
e.g. [23, 37, 31].) The genes QRNA flagged in this way were HLA-B in the Human
Major Histocompatibility Complex, which codes for one of the surface proteins the
immune system uses to recognize native cells [51], Human Rho GTPase activating
protein 8, which is involved in the regulation of the actin cytoskeleton [12], and
Munc13-4, which is believed be involved in regulating membrane traffic in the lungs
[32]. Searches on PubMed [39] for these proteins revealed no articles postulating that
the mRNA’s of these molecules are cis-acting.

It is possible that this search would be improved by tuning QRNA’s COD model to use
mammalian codon mutation frequencies. The search was performed using the codon
model QRNA ships with, which is presumably optimized for the bacterial genomes that
Rivas and Eddy searched.

QRNA is currently too slow for large-scale searches for genes with introns

To search a target sequence for ncRNA genes whose cDNA has not been recorded and
which may contain introns, some kind of exon assembly algorithm such as described
in chapter 3 is needed. Scores for transcription start sites, splice sites and alignment
to homologs can be used in the same fashion as when searching for coding genes.
However, scores for the “exonness” of candidate exons need to be changed to reflect
ncRNA secondary structure rather than protein structure. One straightforward

approach would be to use a score based simply on the fidelity of alignments to
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nigene number | Mouse contig [ Contig boundary indices
Rn#3363952 Mml_ 25771 27 (160770, 160870), (161105, 161358)
Rn#S8352137 MmX_32699_27 (214422, 214529), (214706, 214960)
Rn#5153994 Mm11.33611.27 | (139013, 139345), (139622, 139695)
Rn#38397 Mm11_32645_27 | (89412, 89563), (89621, 89793)
Rn#5346768 Mm2_31545_27 (481370, 481183), (476719, 476486)
Rn#5331647 MmX_33906_27 (88745, 88548), (88242, 88103)
Rn#5364469 Mmil 31584 27 | (52156, 52459), (52696, 52893)
Ro#599922 MmX_26297_27 (241242, 241556), (241654, 241819)
Rn#35183908 Mmd4 33748 _27 (95565, 95636), (95787, 96123)
Rn#5202563 Mm3_33726_27 (100547, 100405), (100010, 99739)
Rn#3103326 Mm11 3264527 | (126006, 125846), (124408, 124171)
Rn#5361321 Mn11_31563_27 | (386401, 386763), (386855, 387027)
Rn#560948 Mm17_2761 27 (28911, 29007), (33081, 33242)
Rn#5149169 Mm10.27082.27 | (113734, 113637), (113271, 113081)
Rn#3135958 Mm3_33573_27 (320525, 320759), (323496, 323599)
Rn#3270454 Mm4_33734 27 (139650, 139741), (141482, 141589)
Rn#5346381 Mm16 26295 27 | (1754, 1939), (2381, 2427)
Rn#5329836 Mm11.33784_ 27 | (115840, 115642), (115338, 115206)
(110443, 110272)
Rn#5220512 Mm7 _26253_27 (125004, 125088), (125501, 125724)
Rn#5186253 MmX_33916_27 (97654, 97783), (97891, 98150)
Rn#S189469 Mm2_33706_27 (6874, 6560), (6471, 6398)
Rn#5213733 Mm3_33722_27 (69869, 70039), (70040, 70137)
Rn#5342964 Mm11.33613.27 | (170925, 170668), (170649, 170600)
Rn#5363472 Mm13.33622.27 | (173793, 173922), (179239, 179442)
Rn#5275483 Mm11 33781 27 | (158911, 159098), (159249, 159477)
Rn#S5121414 Mm1l 32609 27 (261673, 261835), (262011, 262108)
Rn#S5167450 Mm17_30483_27 | (17137, 17220), (17440, 17569)
Rn#5181440 Mm11_33842_27 | (221725, 221498), (219543, 219261)
Rn#5331811 Mm7_2748_27 (6911, 6827), (6681, 6534)
Rn#S219465 Mm11_31561.27 | (174778, 174571), (174389, 174301)
Rn#5231960 Mm11.33842.27 | (6767, 7010), (7043, 7100)
Rn#3244366 Mm11_31586_27 | (322046, 322224), (329017, 329344)
Rno#8247280 Mm2 31545 27 (395455, 395361), (395279, 395192)
Rn#593586 Mm11_33784_27 | (188329, 188125), (188070, 187912)
Rn#5266706 Mm6_32337_27 (5225, 5411), (11597, 11799)
Rn#3299413 Mm2_31545_27 (443961, 443632), (443364, 443241)
Rn#35322323 Mm13_31593_27 | (61520, 61279), (61201, 61065),
(61025, 60919)
Rn#5325922 Mm11_33829_27 | (160679, 160757), (160787, 160957)
Rn#3334941 Mm2 3371127 (75862, 76121), (76332, 76521)
0s#515730 Mm11.33776_27 | (128215, 128274), (134434, 134498)
Rn#5341712 Mm11_31584_27 | (420856, 420709), (419778, 419636)
Rn#5361828 Mm11_33617.27 | (144077, 144374), (152979, 153097)
Bn#3363456 Mm3_26367_27 (89205, 89295), (91576, 91753)
Rn#5360597 Mm4 _33742_27 (97271, 97024), (96112, 95882)
Rn#5354848 Mm17_30483_27 | (204662, 204905), (204932, 205192)
Rn#S323624 Mm11.33862.27 | (112119, 112494), (112847, 113050)
Rn#5305824 Mm11 26339 27 | (183942, 184178), (184365, 184654)
Rn#35358387 Mmi1_25695_27 (60259, 59933), (58662, 58480)
Rn#35358387 Mm1_25680_27 (198459, 198787), (200056, 200240)
Rn#3580041 Mm6_32337_27 (37537, 37230y, (28699, 28647)
Rn#S55695 Mm4_2500_27 (42388, 42184), (42135, 42100)
Rn#5179344 Mm11.33775.27 | (161115, 160950), (160948, 160530)
Rn#554091 Mm16_26295_27 | (137040, 136804), (136728, 136629)
Ro#35176913 Mm11 33848 27 | (47802, 47630), (44677, 44493)
Rn#5345794 Mm11_31572.27 | (18183, 17811), (16601, 16561)
Rn#5253488 Mm2_33718_27 (169200, 169160), (169132, 168926)
Rn#5348943 Mm13.30491.27 | (165454, 165873), (170718, 170873)

Table 2.8: Non-contiguous matches between Unigene cDNA’s and the Mouse genome
flagged by QRNA as ncRNA orthologs. In cases where the first contig boundary exceeds

the second, the match was to the contig portion’s reverse complement.
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Contig name | Exon boundaries in parse

Mm1l_ 31586 | 107, 1013, 1676, 2611, 3399, 3469, 5859, 6182, 7327,
7489, 8845, 10160, 10446, 10906, 12010, 12338, 13232,
15602, 16995, 17799, 20432, 22658, 23553, 23879, 25549,
26150, 26377, 26439

Mm11_31587 5258, 5800, 8648, 8955, 9154, 10609

Mm11_32645 996, 1038, 1633, 3453, 3941, 4618, 4730, 4942, 5629,
6739, 6938, 7119, 7281, 8239, 10110, 10435, 10493, 11869

Table 2.9: Plausible gene parses for the Mouse contigs table 2.8 were generated
using the exon assembly algorithm described in chapter 3 and the splice-site scores in
chapter 4. Candidate exon interiors were scored for homology to Rat contigs chosen
for strong matches to the corresponding Rat cDNA’s in table 2.8. The homology score
used was the number of identical nucleotides in alignments to the corresponding rat
contig divided by 100.

candidate orthologs. This approach is vulnerable to spurious cross-genome matches,
and quite error-prone. That could be compensated for by computing a large number
of high-scoring parses and choosing from among these the one whose concatenated
exons and alignments have the highest score according to QRNA. Another would be
to concatenate strongly aligned regions between the two orthologs with consistent
orientations and positions, and run QRNA on the concatenation, hoping that it can
pick the alignment out of that. It turns out that both of these approaches fail because
the alignments obtained by either method are simply too long for QRNA to process
at a reasonable speed. Rat contigs [52] with strong homology to the Rat ¢cDNA’s
in table 2.8 form alignments to the corresponding Mouse contigs that are thousands
of nucleotides long. Table 2.9 shows some parses gene parses generated from those

mouse contigs.

68



Chapter 3

Assembling global gene predictions

Existing tests for local features, including those in this thesis, are quite inaccurate.
One can compensate for this to a certain extent by choosing from the predicted local
features subsets which are consistent with the overall structure common to all genes
and which have high total probabilities. This means finding a transcription start site,

followed by an alternating sequence of 5" and 3’ splice sites:

ATG...GT...AG...GT.. AG...
N’ N S——
exon €xon exon

In the case of genes which code for protein, the concatenation of the exons also has to
be free of stop codons. In other words, if the concatenation is broken up into groups
of three, starting with the initial ATG, there should be no instances of the triples TAA,
TAG, or TGA.

Here is a rough description of the algorithm for finding the best gene prediction
from a set of local gene features (for more information, see, e.g. [8]): one scans across
the predicted local features in linear order, keeping a list of partial predictions that
have been formed so far. A new parse is added each time a translation start site
(ATG) is encountered, and the score of the ATG is recorded as the score of this parse.
Each time a 3' splice site (AG) is encountered, a new parse is generated for each one
in the list that ends with a 5 splice site (GT). The scores of the new parses are the
scores of their prefix parses plus the score of the 3’ splice site, plus possibly a score
for the “Iintronness” of the intervening intron. The highest-scoring of these newly

generated parses is added to the list of parses. Each time a GT is encountered, new
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parses are generated from those in the list that the GT can consistently be added to.
The highest-scoring of these is is added to the list, where again the score of a new
parse is the score of the prefix parse, plus the score of the GT, plus a score for the
“exonness” of the resulting exon. When all local features have been processed in this
way, the highest-scoring parse in the list is the highest-scoring parse given those local

features and scores.

When searching for coding genes, the constraint that the concatenation of exons
should contain no stop codons is very helpful. It increases the accuracy of gene
predictions, because it reduces the number of candidate parses to pick the correct
parse from. Taking it into account also dramatically improves the efficiency of the
algorithm. Without it, its time to run scales roughly bilinearly in the the number of
candidate GT’s and the total number of AG’s and ATG’s, as every GT has to be compared
to a parse ending in every prior AG and ATG. However, there is almost always a stop-
codon just a few hundred base pairs prior to any given GT that precludes appending
it to a a partial parse that ended much earlier, and by keeping track of this it is
possible for the search to scale linearly on average in the total number of predicted
gene features.

For ncRNA genes, this constraint does not apply, so an alternative algorithm
will have to be used. To deal with this case, the following algorithm would be
appropriate. It is a divide-and-conquer algorithm that takes advantage of the fact
that the scoring function is local and additive, so given a subsequence of DNA, it is
possible to determine the optimal parse within that subsequence knowing only the

state of the global optimal parse at the boundaries of the subsequence.

Let S = n,...nx be a sequence of nucleotides of length N. Because our scores
for local features are local and additive, optimality of a parse on S is a local property,
in the sense that its restriction to a subsequence S’ = MNjgl - - T 1S optimal among
subparses that satisfy the boundary conditions imposed by the state of the parse at the
edges of S’. Thus we can compute the optimal parse on the entirety of S by breaking
it up into constant-length portions, computing optimal subparses on each portion

for each set of possible boundary conditions, and gluing these optimal subparses
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together. Here is a more formal description. We begin with some definitions. Let
T,A,G EcC {1,...,N} be disjoint sets of positions of candidate transcription start
sites, 3’ splice sites, 5 splice sites and transcription end sites, respectively. A parse of
S s a sequence 1 < f, < S fi<Nwith f e T, f2€0, fie&, fiii €A fie 4
it £,y €G. and Ji€Giffi_, € A The score of such a parse is

TSS(f1) + TSE(fi) + 2046, aG(f) + Yias,..<A(f) + Yras 1B (fi, fin).

Here, 755 (f1) is the score for f1 as a transcription start site, TSE(f;) the score for
Ji as a transcription end site, G'(f;) the score for fi as a 5 splice site, A(f;) the score
for f; as a 3 splice site, and F(f;, Jix1) the score for the region between f; and fir
inclusive as an exon.

For a subsequence ¢/ — - Mipn, & subparse is a sequence [ <fli<... <
fi ST+ N' —1 with JieTUAUG, fr € AUGUE, foo o fi € AUG, fleqgif

i1 € AUT, fl e Aif i1 €G, and Ji—1 € Aif f € £ The score of such a subparse
is the sum of the scores of the fi’s, plus the sum of the scores of any internal exons, plus
E(L f)if fi € G, and E(fi, I+ N ~1)if f e AUT, For Fi, 7o € {A, G, T, £}, let
P(s, F1,F3) denote a highest-score subparse f{, ..., Sy in S with fi € F, € F.
Such a parse can be computed in O((N’)?) time using a simple modification to the
standard dynamic programming algorithm for exon assembly. Let P(S', 0, 0) denote
an empty parse, with score 0.

Suppose U and V are adjacent subsequences. Denote their concatenation by /1.
If P, Q are subparses of U, 1/ respectively, and they can sensibly be concatenated,
denote this concatenated subparse of [JV by PQ.

Here is the algorithm for exon assembly. Assume N > 9000. Divide S into
adjacent subsequences of length 1000, with the last sequence possibly shorter than
that: Sy =n,. . T1000, 92 = nygoy . . . 2000, - - .. Assume for simplicity that this results
In an even number of subsequences. Add an empty subsequence to the list to ensure
this, if need be. The algorithm recursively operates on the set of subsequences ags

follows:
(1) Foreach S, compute the following parses: P(5,7,¢), P(s, A &), P(S,, T, A),

71



P(SiaAa A)u P(Si:Ta g)v P(Sia-Aa g)

Next, for i odd, let S; = S;S;;; denote their concatenation. Because all the
scores are local, the optimal subparses for this subsequence listed in step 1
can be constructed from those for S; and S;;;. For instance P(S;, T, €) is the
highest scoring of the following concatenated parses: P(S;, T,E)P(Sii1,0,9),
P(S;,0,0)P(Sis1,T,E), P(S, T, T)P(Sis1, A E), P(S, T, AP(Si+1,G,8),
P(S, T, A)P(5i11,E,E), P(S:, T,G)P(Si11, A, E).

If there is more than one subsequence in {S;}, replace the S;’s with the S,’s,
ensure that there are an even number of subsequences in the list by adding an
empty one to the end of the list if need be, and repeat from step 2. If S5} = S,
the highest scoring parse is P(S),7, &)

Note that O(N log N) such concatenations are required to fully assemble S, and

step 1 takes time O(N). Hence the run time of the algorithm grows as O(N log N).

The algorithm can easily be modified to keep track of the highest-scoring n parses

by simply keeping the n highest-scoring parses at each stage. The time complexity of

the algorithm grows linearly with n.
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Chapter 4

Statistical tests for local gene
features

This chapter describes new techniques for identifying transcription start sites and
splice sites. 'The proteins that trigger transcription and splicing exhibit affinities
to the DNA/RNA sequences comprising these features, but as mentioned in the
Introduction, such affinities cannot be determined a priori yet.

Identifying the characteristic patterns of gene features is a frustrating problem—
presumably, a gene’s entire behavior is specified by its DNA sequence, so whatever
these patterns are, they are staring back at us from the thousands of known genes,
completely accessible if only we were clever enough to see them. However, the patterns
might be very complex, at least in some cases. One phenomenon that suggests this
notion is the strong conservation of splice sites and transcription start sites in some
relatively distant orthologs. If the crucial properties of those sites are too delicate to
admit significant changes over time from point mutations to the underlying sequence,

then they may be too complex to capture using the simple statistical models that

4.1 Tests based on non-contiguous patterns

The tests for local features in GENSCAN [8, 9] and FGENE [50] are both based on
statistical models with a relatively small number of parameters. At the time they were
devised, this was necessary, because the set of known genes that could be used for

training was quite small. However, a far larger set of genes has since been recorded,
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and correspondingly richer tests can be trained from them. To take advantage of this,
I devised a class of tests that capture correlations between non-adjacent nucleotide
positions. The resulting tests have no clear probabilistic model behind them, but

seem to be effective in capturing previously unused patterns in gene features.

The main problem with a test that captures arbitrary non-adjacent correlations is
that the statistically significant patterns that result can overlap in arbitrary ways, and
a useful probabilistic model for estimating the probability of overlapping patterns has
proven elusive. The somewhat arbitrary approach taken here is to greedily choose
the most statistically significant pattern in the sequence, then the next most that
doesn’t overlap that pattern, then the next most, and so on. These events are then
treated as independent. For instance, suppose the following sequence is to be tested

as a potential 5 splice site:

0123456789
0-9 AAGCCCTGAG
10-11 GAGGTGCCAT
20-29 CTCCCTCTTT
30-35 TCCAG

First all of the patterns it contains are listed and sorted by their statistical
significance in the training sequences (just how this statistical significance is

calculated will be described later.)
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Pattern Start index | Score

CCT*T*T*TT 22 4.53
T*C+T*TT*T 21| 4.50
CxT+TTTT 23| 4.50
CxTCTTT 23 4.40Q
T*C*T*T*TT 211 421
TCTTTTC 25 4.18

300 patterns elided. . .

CxT*x*T*T 23 2.33
T**CxCkT**C 21 2.32
TC*CC*+C+T*T 19 2.32

First the CCT+#T*T*TT pattern is chosen. The next most significant pattern,
T+C*T+TT*T, is discarded, because it overlaps pattern already chosen, the patterns
are examined in order of decreasing scores until another consistent pattern is found,
T*xC+CxT**C. This process is repeated until the list of patterns is exhausted or the

entire sequence to be tested is covered:

Pattern Start index | Score
CCT*T+T*TT 22| 4.33
TH*CkC*T#*C 21| 2.32
AxxTGxxAT 11| 2.19
CxCTGA 3 1.43
Cx{14}C 17| 1.04
CH**C 16 | 0.46
Ccx{7}G 41 -0.35
Ax{8B}G 1| -0.46
A*{12}G 0| -0.64

(Here *{n} is used to denote n wild cards in succession.)

Then the procedure is repeated, using the lowest scoring sequences:

(3]



Pattern Start index | Score
GG*Gx*A 12| -3.18
G**CxG**G 2| -1.25
G*A 9| -0.55
cx{11}C 4| 018
T*{10}C 6| 020
A%{13}T 0| 0.24
Ax{11}C 8| 026
c+{18}C 3| 034
cC 23| 0.38
Ax{17}T 1| 0.52
CT 26| 0.64
cC 31| 0.66
Tk kT 21| 1.18
TT 29 | 1.48

Finally, to obtain the overall score for the splice site, the scores for the patterns

from these two lists are summed.

4.1.1 Calculating the statistical significance of the individual
patterns

Patterns’ frequencies in intergenic DNA were used as a null hypothesis. The per-
event probability of them appearing was estimated from these frequencies. If the
probability of a pattern’s observed frequency in the training data was less than 1077
with respect to the null hypothesis, the pattern was considered sufficiently significant

for this testing scheme. The score used for sorting patterns was

TP NP
log (T) — log (W)

where T}, is the number of times the given pattern was seen in the training data, T’
is the number of times a pattern with the nucleotide offsets seen in the given pattern

was seen in the training data, and N,, N are the corresponding values for the null
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hypothesis data.

The way the “nucleotide offsets” were counted varied depending on the types of
patterns expected. For splice sites, where it was expected that the features significant
to gene expression would have fixed nucleotide positions relative to some easily
identifiable anchor (AG or GT,) 7" was the number of times a pattern (with any set of
nucleotides) was seen at the positions occupied by the pattern under consideration.
For the null hypothesis counts in these cases, N was the number of times a pattern
with that set of nucleotide offsets (again, with any set of nucleotides occupying those
relative positions.) For transcription start sites, where there is no obvious anchor in
candidate sites, patterns with a given nucleotide offset were counted equivalently no
matter where they appeared in the training sequences. However, the accuracy of the
resulting test for transcription start sites has since been exceeded by other research

[13].

4.2 Performance of splice site tests

For both 3’ and &' sites, training sets were taken from the gene parses in the GBPRI

[5]. Null hypothesis sets were taken from random intergenic data.

4.2.1 The 3 test

The test was trained on the fifty nucleotides preceding the AG signaling resumption
of coding sequence. The patterns lengths and maximal gap lengths allowed were
respectively two nucleotides with gaps of length less than 20, three nucleotides
with gaps of length at most 5, four nucleotides with gaps of length at most 4, five
nucleotides with gaps of length at most 3, and six nucleotides with gaps of length at
most 2.

Two hundred sequences each were removed at random from the training and null
sets prior to training. A cut-off score was chosen based on the performance of the test
on some of the data it was trained on. These were the results for the data excluded

from training:
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True positives 191

False negatives 9

True negatives 179

False positives 21
Sensitivity 95.5%
Specificity 90.1%

The 3’ splice-site test described in [8, 9] was tested on 600104 nucleotides of data,
about one-sixteenth of which would have provided false AG’s to be used as testing data.
At a sensitivity of 95%, it found 5, 397 false positives. At the rate demonstrated above,

this new test would find about 3, 700 false positives.

4.2.2 The 5 test

The test used the same set of patterns as the 3’ test. It was trained on the three
nucleotides preceding and the fifty nucleotides following the GT signaling the end of
coding. Two hundred sequences each were removed from the training and null sets

prior to training. The results from those sequences were:

True positives 190

False negatives 10

True negatives 192

False positives 8
Sensitivity 95.0%
Specificity 96.0%

The corresponding MDD-based test in [8, 9] had 3382 false positives, so both tests
have about the same false positive rate. However, they use different data, and are
thus somewhat independent, as the scatter diagram in figure 4-1 shows. Thus it is

possible to combine them into slightly a more accurate test.
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Figure 4-1: Scatter plot of pattern-based scores against GENSCAN’s [8, 9] MDD-
based scores. Plus signs mark scores of actual &' sites, crosses mark scores of randomly
chosen sequences. The X-axis is the pattern-based score, the Y-axis is the MDD-based
score.
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Chapter 5

Cartesian Currents

5.1 Preliminaries

This section contains some notations, conventions and basic results which will be used
in this chapter.
For details on standard notations and results from Geometric Measure Theory see

for instance [48] or [17].

5.1.1 Notation for Euclidean spaces

Fix two natural numbers n, N. Throughout this chapter, let Q be a bounded open
subset of R™ with smooth boundary. Let 7:R" x RY — R*, #:R” x RY — R" be
the projections onto the first and second factors, respectively. Let ey, ..., e, denote
the standard basis of R™.

Suppose m € N, p € R™ and € > 0. Then as usual, let
Bip)={z € R" | |z — p| < e}.

5.1.2 Forms and currents

This section outlines the basic definitions of currents.

An open subset of R™ will have the standard orientation unless there is an explicit
indication to the contrary.

A H*-measurable set M C R™ is called countably k-rectifiable if it is H*-almost

all contained in a countable union of k-dimensional Cl-submanifolds of R™.
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Given an open set G C R™, the space of smooth differential k-forms which are
compactly supported in G has a standard locally convex topology (see [48, §26| for
the definition of this topology). Denote by Di(G) the dual of this space; its members
are called k-currents.

Composing currents with the exterior derivative operator induces a map & :
Di(G) — Di_1(G). Given a current V € Di(G), the value of 9V on a differential
(k — 1)-form w is given by

oV {(w) = V(dw)

where dw is the exterior derivative of w. The map 3 is called the boundary map. We
will refer to OV as the boundary of V. If 3V = 0 then we say that V' is boundaryless.

Suppose M C R™ is a countably k-rectifiable set with finite *-measure. Then
for H*-almost every z € M, there is an approximate k-dimensional tangent plane to
M denoted by T, M ([48, 11.4-6 ]). Suppose §: M — Z is a H*-measurable function
with locally finite L'-norm. Suppose £: M — A, (R™) is a H*-measurable map such
that for H*-almost every = € M, &(z) € A(T.M) < AL(R™) and &(z) is a unit
vector {with respect to the inner product on A, (R™) induced by the standard inner
product on R™.) Then 7(M,#,£) denotes the current whose value on a differential
k-form w having compact support is given by

T(M,e,g)(w)zf (w, £)0d HF.

M

Such a current is called integer multiplicity rectifiable.

The mass of such a current is given by

IM(1(M,8,6)) = /M 16|d HE.

Definition 5.1.1. The set of all rectifiable k-currents in Dy (G) with finite mass will
be denoted by R*(G)

Given T = 7(M, 8,¢) € R*(G) and a H*-measurable set S C R™, denote by T'|.5

the current 7(M N S, 6,&).
For open sets U C R” V ¢ R®, and a smooth proper map f: U — V, the
pullback by f of a form w € D*(V) is the form f#(w) = (Df)*(wo f) € D*(U). For
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a current S € D™(U) its push forward by a proper function f is denoted by fx(S),

and its value on a form w € D™(V) is S(f#w). By [48, 26.25), the push-forward may

also be defined when f is merely Lipschitz and proper. For a k-current T,
IM(f4(T)) < ess sup| D f{*M(T).
The graph of a function

Suppose u:{2 — R"Y. Then the graph of u is the set
Gu = {(z,u(z)) | z € Q}

Suppose further that u represents a member of BV () and its graph has locally
finite H"-measure (in particular, this is so if u € C*(©2,R")). Then G, is a countably
n-rectifiable set (see [22, Proposition 1]). Suppose that wherever the tangent plane
of G, is defined it is not orthogonal to §2 x {0}. Give it the orientation which makes

orthogonal projection onto 2 orientation preserving. Let
G.:G, — A\, (R x RY)

be a map corresponding to this orientation. In other words, if z € G, and 1,G,
_)
exists then G,(z) is the unique unit vector in A_(T.G,) < A, (R™ x RY) for which
_>
TuGy(z) = aer A ... Ae,, with a > 0.

Differential n-forms can be integrated over (7., inducing
[Gu] = 7(Gu, 6, Ga) € R*(Q x RY).

5.1.3 Cartesian currents
Definition 5.1.2.

cart* (U RY) = {T =7(M,0,¢) | 7uT =[] and for H™-almost all
z€ M, mp€(z) =ae; A... Ae, with a > 0}

Suppose T = 7(M, 8,£) € cart* (Q,R™). Without loss of generality, assume that
for all z € M, T,M exists, £(z) € A™T.M is a unit vector, and T#b(z) > 0. The co-

ejN. .. Nep

area formula (see [21, Theorem 2, Section 3] and [20, Theorem 5, Section 2]) implies
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that M contains the graph of a function of bounded variation. In particular, for almost
every z € (2 there is a unique point (z,v,;) € M, and so a function up:Q — R" can

be defined almost everywhere in 2 by

UT(x) = Yz

and then ur can be extended to all of €2 by defining it to be zero elsewhere. This
function’s graph G, is H™almost all contained in M, and moreover 7(M \ G,.) is

H™-null. It is also easy to see that 8|y .cc Mrax{ovy = 1 H"™-almost everywhere.
{ L2 {0}}

op | T2

Conversely, suppose T = 7(M,8,£) € R"™ is boundaryless and that there exists
a function up:Q — RY representing an element of BV (Q, R"Y) such that 7(MAG.,,)
is H™null and such that 8|, = 1 H™-almost everywhere. If 7T = [Q], then it
is not hard to check that T € cart* (2, RY). In particular, if v € C*(Q, R"Y) and
H™(G,) < oo then [G,] € cart* (Q,R"Y).

Redefining a function on a set of measure zero may result in a function whose
graph is not H™-measurable, or which differs from the graph of the original function
by a set which is not H"-null. For instance, suppose that N > n. Take an uncountable
set U C Q of measure zero and construct a bijection b:U — RY. Then given any
function u: @ — RY, redefine it to equal b on U. This results in a function whose
graph has orthogonal projection onto all of RY. Thus the graph of this new function
cannot have finite H"-measure.

The following five definitions are based on those given in [21].

Definition 5.1.3. The function ur discussed immediately above is called the
underlying function of T'.

Definition 5.1.4. Suppose T € cart* (€, RN) has underlying function up. Then the

C-norm of T is
1Tlc = M(T) + llurl|

Definition 5.1.5. cart(, RY) < cart* (2, RY) is the set of T € cart* (Q,RY) for
which ||T|c < 0.

Definition 5.1.6. Suppose (T})52, C cart(Q,RY). Then T € cart(Q, RY) is called
the weak C-limit of the sequence (T}) if

(1) |IT|lc is bounded independently of &,
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(2) T, = T (i.e. for each differential n-form w with compact support in Q x R,
Ti(w) — T(w))-

This convergence is denoted by

T. ST

The space cart(£2, R") is closed under this notion of convergence [22).

Definition 5.1.7. The space Cart(Q, R") is the smallest subset of cart(2, RY) which
is closed under sequential weak C-convergence (see Definition 5.1.6) and which

contains
{[G.] | v € CI(Q,]RN) and ||[G.]llc < oo}

In other words, Cart(€2, R") is the closure under weak C-convergence of the set of
currents given by integration over graphs of smooth functions.

The following Lemmas will be useful in the sequel.
Lemma 5.1.8. Suppose T € cart(Q,RN), x; the ith co-ordinate function. Then for
almost all z € R and any connected component C € QN {x; = z},

(T, z;,z)|C x RY € cart(C,R).

Proof. Obvious.

Lemma 5.1.9. Let v:Q — RY be a function for which

(1) There is an open V CC 2 and a compact K C V such that v|v is Lipschitz and
v|avk s smooth.
(2) H*(G,) is finite.
Then [G,] € Cart(Q, RY).
Proof. Choose ¢ € C*(£2) for which spt ¢ C V and ¢ = 1 in some neighborhood of
K. Choose a sequence

(wy) € C=(Q,RY) with a uniform Lipschitz bound in V and which converges
uniformly to v in V. Define

u(z) = (1 = o(x)v(z) + ¢(z)wi(z)

Then v; is smooth, and its restriction to V satisfies a Lipschitz bound B which is
independent of I. Thus

H™(Gy,) HY (G, N((L\ V) x RYY) + H™(G,, N V)

H (G, N((Q\ V) x RY)) + C(1 + B*YH™ (V)

IAIA

and clearly v; — v uniformly. Thus [G,,] = [G,].
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Lemma 5.1.10. Suppose W is the smallest set closed under weak C-convergence of
the set {[Gu] | u € V} for some V C C®(Q,RY). Suppose F: W — cart(Q,RY)
s a map which is continuous with respect to the mass norm, and that there is some
¢, d > 0 such that for T € W, ||F(T)||c < ¢||T||c+d. Finally, suppose that foru €V,
F([G.]) € Cart(, RY). Then F(W) C Cart(,RY),

Proof. This is an easy transfinite induction.

5.2 Bubbling of vertical currents

In this section, it is shown that if V € R*(RY), z € RY and T € Cart(©2, R"), then
T+ [{z}] x V € Cart(Q,RY).

Lemma 5.2.1. Let f: 5" — RY be a Lipschitz map. Let u € C®(Q,RY) be such
that [G,] has finite mass. Then for € Q, [G.] + [{z}] x f4[S"] € Cart(22,R").

Proof. Let w:Bj(z) — S™ be a smooth surjection constant on 9B;(z) and one-to-one
elsewhere which is orientation preserving with the standard orientation on S™. Let

i fow(z) if |2/ —z| <1
flz'y =S (7' =2l = Vu(@) + (2~ o' —z|)fow(dy) if |2’ — 2] € [1,2)
u(z) if |2/ —z| > 2

Let p:R™ — R be a smooth function such that p|g,) = 1, and p
Let

R™\Bs(0) = 0.

{ u((1 - p(klz — #|))a’ + plklz — 2')z) if ' ¢ Bs ()

uk(r) = flka) if 2/ € B%(:c).
Then by lemma 5.1.9, for sufficiently large k, [G.,] € Cart(f2, RY). Since [G,,] S

[G.] + f4(S™), the result follows.
O

Corollary 5.2.2. Let f be as in the previous lemma, T € Cart(Q, RY). Then T +
H{z}] x f&([S™) € Cart(2, R™).

Proof. This follows from the above Lemma and Lemma 5.1.10, with F(T) = T +
[{z}] x fx([S"]) € Cart(Q,RY), and W = Cart(Q, RY).
U

Corollary 5.2.3. Suppose V. € R*(R") o boundaryless current, z € 0, T €
Cart(Q, RY). Then T + [{z}] x V € Cart(Q,RY).

Proof. By the Weak Polyhedral Approximation Theorem {48, 30.2}, for each [ there
is a sequence of finite sums Wy, = X; fi .2 ([S™]) converging weakly to V' and having
uniformly bounded masses controlled by the mass of V. On the other hand, by the
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above corollary, T + [{z}] x W), € Cart(Q, RY), and since T + [{z}] x W, ST+v,
it follows that 7' + [{z}] x V € Cart(€2, R").
0O

5.3 The proof of the conjecture for one-
dimensional domains

In this section, £ will be an open interval of the real line. Mollifications of the
underlying function ur for any 7 € cart((2, RN ) give a sequence of smooth functions
w oy up. Since {2 is 1-dimensional, the lengths of their graphs are controlled by
their BV -norms, and hence are uniformly bounded. Thus the graphs give a sequence
of cartesian currents with uniformly bounded masses, so by taking a subsequence, it
may be assumed that ([G.,]) converges weakly to some S € Cart(Q, R") for which
ug = ur almost everywhere. Write T = 7(Myr,0r,&r), S = 7(Ms,05,€5). By the
definition of a rectifiable current as an integral, any current C = 7(M, 8,£) € R™(U)
is unchanged if M is replaced by the subset of all z € M for which 6(z) # 0, the
approximate tangent plane 7, M exists, and £(x) is a unit vector in AT, M. Assume
this replacement has been made for Mg and M7. Then there is G C My N Mg such
that for almost all z € Q, {z} x RY N (Mp U My) = {(z,ur(z))} = {(z, us(z))} and
Er(z,ur(z)) = €s(z,us(z)) = 1. Hence, T — S can be written as an integral over
(My U Ms)\ G and H'(m(Mr U Mg) \ G) = 0. Thus it suffices to show that any
current 7(M, 8, €) such that H}(w(M)) = 0, can be weakly approximated by currents

of the form considered in Corollary 5.2.3:

Lemma 5.3.1. Let V = 7(M,8,€) € R™(2 x RY) be a boundaryless current with
H' (m(M)) = 0. Then V is the weak limit of currents of the form

S{a}] x Vi

where q; € Q, and V; € R™(RY)

Proof. For p >0, let {z; < ... <z} C Qbe a set of points such that 2 ¢ |J B,(z;),
and fort=1...m,

Viz,z;) =0, and I(V|{z € Q |z <z)}) =0
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(see [48, 28.4,28.5].) Let p:Q\ {z1,...2m} — {z1,... T} be the map

(z) = min{z; | z; >} ifz <z,
Pt = Tom otherwise

Then define -
pe(V) = lim pu(V[Q\ | J(@: = dj, z: + d;)),

j—o0o )
i=1

where d; — 0 is a sequence such that for all j, (V|{z € Q| z < d;)}) = 0. If
h(t,z,y) = ((1 — t)z + tp(z), y), then hu(V) can be defined similarly, and 0hx(V) =
V —pa(V). Since IM(hg(V)) < pIM(V), and p was arbitrary, a sequence of currents
of the required form converging to V' can be constructed this way.

O

5.4 Proof of conjecture for higher dimensions

The remainder of the proof is by induction on the dimension of 2.

By Lemma 5.5.1 the closure under C-weak convergence of the set
F ={S €cart(Q, RY) | spt (S — [Go]) cC @ x RY}

is all of cart(Q, R"). Thus it suffices to prove the conjecture for T € F. Fix such 7.
Then there is open Qp CC Q and R > 0 such that 7' may be written as T' = 7(M, 8, £),
with M C Qp x Bg(0). Without loss of generality, it may also be assumed that for
any z € M, the weak tangent plane T, M exists, 6(z) # 0, and £(z) € A"T,M and
is a unit vector. Also, fix a null-set Ny C € such that for z € Q\ Np, the set
M N ({z} x RY) contains just one point y, and Tx(&(z,y:)) = aer A .. Aeg, with
a > (0.

Lemma 5.4.1. Suppose T € F. For C an open n-cube, let Pe be the set of faces of
C. Then for sufficiently small p, there is a collection of n-cubes

T = {Al =a+pzy+ (O,p)" | z] € Z,Al C Q, Hnil(NT ﬂaAl) =0,
and 8(T|A; x RY) € R*HQ x R},

such that
Sup(IM(D(T|(Ar x RY)) + Zpep, llurp ) < 20T,

where if F € Pa,, then Tp = &(T|A; x RY)|[F x RY. That this is an element of
cart(F,R") follows from the requirement H™~'(Ny N JA;) = 0.
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Proof. Choose p small enough that if
J={pz+(0,p)" | z€ Z", pz + (0, pz)" C {x € Q| dist (z,?) > V/np}},

then Qr C (J o ;A Forz € (0,p)" let Jy={z+ Al Aec J}.
Let &G be the full-measure set of all z such that the result of Lemma 5.4.1 holds.
There is o € G such that

P(Zacr, M(AT|A)) + Zrepllure|rliz) < 2n||T]c.
To find such «, let z; denote the ith co-ordinate function and let

B = (N {r€©p) | (T zir+ip) =T {z: =1+ jp}) and

i€{l,..n},j€Z
(T, zi,7 + jp) € cart({z; =7+ jp}, RV} } .

Note that B has full measure [48, 28.1]. Then

1Tl > / T, 25,7 e dr

[s e}

- S / T,z + jo)llc dr
B
- / S,eal(Ts 2,7+ ) e dr.
B

and so summing this inequality over 4, the set of (z1,...,z,) € G for which
S Bjezll(T, zi,r + dp)llc < np YTl

has positive measure.

O

Lemma 5.4.2. Suppose T € F. Suppose D = 3+ (0,p)" C Q is an open n-cube
with center s, and W = T|(D x R") has boundary B = 8W € R*1(Q x RY) of
finite mass. Let pp: D x RY — {s} x R be the projection pp(z,y) = (s,y), let
hp:[0,1) x D xRY — D x R" be the homotopy hp(t, z,y) = (1—t)(z,y) + (tp(z), y),
and let

Sp = hpx ([0, 1] x B) 4 ppg(W).
Then

M(Sp) < cpM(B) + M(W)

where ¢ depends only onn, and Sp = OW . In particular, spt Sp CC Q x RY. Also,
when H*"Y(8D N Ny) =0, Sp € cart* (D,RY) and

Nuspll: < pXrep|lure |z
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Proof. Obvious.
O

Lemmas 5.4.2 and 5.4.1 give a sequence of currents of uniformly bounded mass

converging to T. Namely, for each k, define

Sy =1\ | A) x {0}] + ez, Sa € cart(Q,RY).

AT,

Then T' - Sp = O([[0, 1]] X Taet,, hag(T|A)), and
IM([[O, 1]] X EAELkhA#(TI_A)) < ,OkM(T) — 0.

Also, 35, = 0. Thus Si ST I remains only to show that in fact, Sy, € Cart(Q,RN).

Lemma 5.4.3. Assume that Cart(G,RY) = cart(G, RY) holds for any G ¢ R"™" with
smooth boundary. Let M(t,z,y) = (z,ty), and with notation as in Lemma 5.4.2, let

Sp = hpx([[0, 1] x B) + My([[0,1]] ¥ (B + pp4#(B))) + [(2\ D) x {0}]
Then S}, € C, where C is the weak sequential closure of
{IG.] | v e C=(Q,RY) and spt u C D\ 8D}.

Proof Let 8= (B,...53,) be such that D = 3+ 0, p|*. Choose a € ((1, 1 + p) such
that (B, z1,a) € R 2(Q, R"Y) and its mass is at most %IM(B). Then take bi-Lipschitz
orientation preserving homeomorphisms f: 8D N {z; < a} — [0,3] x [0,1]* ? and
g:0DN{x1 > a} — [%, 1j x [0, 1]772, such that on the set L = 0DN{z = a,z2 = fa},
the restrictions f|r, g|r are equal, and are an affine bijection from L to {%} x [0, 1]2.
Let b:C' — 0D be equal to f~! on [0, ] % [0,1]"=2 and to g~" on [3,0] x [0, 1]*"2. Let

B' = (f4(BL(D N {z1 <a})) + gz(BL(DN{z: > a})))](0,1)"" x RY.

Then B’ € cart{(0,1)""1,RY), by(B’) = B, and the mass of B’ is finite.

Let i be inclusion of (0,1)"! x R* into R"~! x RY. For V € cart((0,1)"" 1, R")
with spt V C (0, 1)*! x Bg(0) and such that 3V € R™ 2((0,1)*2xR") and 0byV =
0, define

Vo= ([0, 1] % 0 (V) + My([[0, 1]} x 0h4 ({10, 1]] x by (V) +
[GolL((2\ D) = RY).

The aim now is to show that for any such V, V € C. For (Vi) a sequence of such
currents converging C weakly to V', it is clear that Vi S V. Let M': [0,1] x R™! x
RY — R"! x RY be the map M'(t,z,y) = (z,ty). Let V/ =V + M'({[0,1]] x
A(ixV)) + [(R™\ D) x {0}]. Let 9 :R""" — R"" be the dilation with fixed point s
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and scaling factor (1 — £). Then 9ugV'|D x RY — V/|D x RY, and bV’ = bV,
Thus it suffices to assume that spt (V — [Go]) €C (0,1)*! x RY. In fact, it suffices
to assume that V is given by integration over the graph of a smooth function with
compact support. To see this, choose v € C°(f2) such that ¢|n(spt VoiGo)y = 1
and spt iy C D. Also choose ¢ € C*(R) such that ¢((c0,0]) = {0}, ¢lpm =
id,r and ¢([2R, 00)) = {IR}. let ¥(z,y) = (z, (2)g(|yl) g for y # 0 and let
U(z,0) = (x,0). While ¥ is not proper, ¥4 can be defined as was py in Lemma 5.5.1.

It is Lipschitz, and hence maps cartesian currents to cartesian currents continuously.
Moreover, if u € C*((0,1)" 1, RY), then U4[G,] = [Ga], where

) 0 if u(z) = 0)
U= () pule)) e otherwise

which is a smooth, compactly supported function. Finally, ¥4V = V. It follows by
Lemma 5.1.10 that V' lies in the weak sequential closure of

{[Gu] | w e C2((0, )", RY)}

and thus it suffices to assume that V' itself lies in this set. Say V = [G,].

Let g: (D \ {s}) — 9D be radial projection from s. For z € D\ {s}, up(z) =
u(b~*(g(x))). Thus uy|p\ (s} is locally Lipschitz. Let (¢%) C C*(R) be a sequence of
functions such that

e For each &, [, |Diyx| =2,

L

5-) and one on (3,1 — 1).

e each 9 is zero on R\ (55,1 — l—

Let ¥, : @ — R be the function ¥4(z) = tx(max; [z; — s]). Then each Tyuy
is equal to a Lipschitz function away from s, so by Lemma 5.1.9 {[Gy,.,]} C

Cart(©2, R™). Tt easy to see that [Gyyuy] S7.
1

Corollary 5.4.4. S, € Cart(Q2, RY)

Proof. Let {A;, ...} be an enumeration of 7,,. With notation as in the above Lemma,
let

!
So=12\[JA < {0}] + =i, 5,
i=1
Suppose it has been shown that S; € Cart{2, RN). By Lemma 5.1.10, with V = {u €
C®(Q,RY) | spt unJ'_, 4 = 0}, and

l l
F(T) =TI\ [J4) x RV + 5,4 x RY),

=1 i=]
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it follows that Siy1 € Cart(92,RY). Since S S ¥iSh,, XSy, € Cart(Q, R™). Then by
Lemma 5.2.3, since S, — ;5. is supported over the centers of the cubes in 7, it

follows that S, € Cart(2, RY).
O

Theorem 5.4.5. Cart(Q,RY) = cart(Q, R")

Proof. This follows immediately from the above corollary and the fact that S ST
O

5.5 Approximating currents by compactly
supported currents

Lemma 5.5.1. Suppose T € cart(§,RY). Then there is a sequence (Zx) C
cart(, RY) such that Z; ST ask — oo and spt Z C Q2 X Bpg, (0) for some Ry.
Proof. For k € N, let pg:RY — By(0) be the following retraction map:

ki iyl =k

pk(y):{ y if |y <k

Let 7, = idg x pr. Note that this map has Lipschitz constant 1, and for any s > 0,
Wk'nxm is proper. Let s:9Q x RY — R be the map s(z,y) = |y|. This map also has
Lipschitz constant 1.

For any R > 0, let Xg = T[Q2 x Bg(0). Let Yr = (I, s, R) for each R for which
this is well defined. By [48, Lemma 28.5], this is the case for almost all R > 0, and
Yr = 0Xpg. Also

/ T M(YR)AT < M(T)

so there is a sequence Ry T oo for which IM(Yg,) — 0. Since spt Xg and spt Yg lie
in © x Bg(0), the push-forwards meu(Xpg,) and mex(Yp,) are well defined for all £.
They satisfy the mass estimates

M (mep(Xp,)) < M(T)

MOy (Xr,)) = M(mey(Yr,)) < IM(YR,) — 0

Applying the compactness Theorem for integer multiplicity rectifiable currents, for
any k € N there is some Z; € R™(Q x R¥) which is a weak limit point for the sequence
(me#(Xg,)). From the weak lowersemicontinuity of the mass norm, M(Zx) < IM(T)
and 92, = 0.

Given a differentiable n-form w € D*(Q xRY), sptw C Q x Bi(0) for all
sufficiently large k¥ € N. For any such &, and for B > k, Xgp(w) = T(w), and
since mxloxB,(0) = 1daxB.(0), it follows that g (XR)(w) = T(w). From the definition
of weak convergence, it follows that Zx(w) = T(w). Thus it follows that Z, — T.
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Since 7 o, = 7, Zx € cart* (0, RY). Since for almost all =, ugz, (z) = max(k,ur),
Zy, € cart(Q, RY). O

Next, it is necessary to approximate vertical boundaryless currents by vertical

boundaryless currents with compact support.

Lemma 5.5.2. Let QQ C R" be a bounded open set with smooth boundary. Let T €
cart(Q2, R™) be a current whose support lies in Q0 x Bgp(0), where R is some positive

number. Then there is a sequence of currents (Wy) C cart(, RY) such that Wy RN
T, and m(spt (Wi — [Go])) cC 2 x RY

Proof Let D:Q x RY — R be the function D(z,y) = dist(z,dQ). For 6§ > 0, let
Qs = D7'[(6,00)]. Fix € > 0 so that D is smooth and Lipschitz on G = @\ Q,. Then
the nearest point projection map p: G — 98 x R"Y is well defined, Lipschitz and
smooth. For & € (0,€) let ps: G — 0Qs x RY be the map

_ z — p(z)
ptens) = (ote) + 37 0)

Then ps is nearest point projection onto 0§, satisfying a Lipschitz bound which is
independent of 4. Let g5:G x RY — Q x RV \ (25 x RY) be the map

_ ) (my) iz g Qs
gs(z,y) = { ps(z,y) ifz € Qs

Again, this satisfies a Lipschitz constant which is independent of §.

Let H(z,y,t) = (z,ty). Let B = Hyu([[0,1]] x T). Then 8B = T and spt B C
2 x Br(0). Applying [48, Lemma 28.5| to the Lipschitz functions D and —D, there is
a full-measure set C of § € (0, ¢) for which Ts = (B, D, §) is defined, has finite mass,
and satisfies the equality

Ts = (B[ x RY) = T|Qs x RY
Such Tj is vertical, for it is supported in Qs x R™. Moreover,
s = —0(T|Qs x RY) = (T[Q x R¥ \ 25 x RV)

and so T'[§s x RY — 75 and T | x RN \ 25 % RY + T are boundaryless and have
finite mass.
Choose 4 and a sequence 6, — 0 from C. Let

Nk = Q5k#(T|_Q X RN \ Q5 X RN — T(;).

This is a boundaryless current whose mass is bounded independently of k. Also,
note that Q5k|QxRN\W is the identity map, and g¢s5,[G N $25,] € 9Qs,. Hence
k

Nel(Q\ Q5) x RY = T(2\ Q5,) x RY, and spt Ny € (2\ Q) x RY, so N =
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N (2 Q5,) x RY + N |98, ¥ RY. Applying the boundary operator to both sides
of this equation gives
0 = AT xRY\ Qs x RY) + O(N,. |95, x RY)
= —3(T |, x RY) + (N, |09, x RY)

So defining W, = T[4, x RY — N |80, x RN 4 [\ s, x {0}] gives a sequence

which satisfies the requirements of the Theorem.
O
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