The research described in this paper was supported in part by the Air Force Office of Scientific Research under Grant AFOSR-82-0258 and in part by the National Science Foundation under Grant ECS-8700903.
I. Introduction

In this paper we present results related to the smoothing problem and related generalized Riccati equations for the two-point boundary value descriptor system (TPBVDS)

\[\begin{align*}
E_x(k+1) &= Ax(k) + Bu(k) \\
V_i x(0) + V_f x(N) &= v \\
y(k) &= Cx(k)
\end{align*} \] (1)

where \(E, A, V_i, \) and \(V_f \) are possibly singular \(n \times n \) matrices, and \(B \) and \(C \) are \(n \times m \) and \(pxn \) matrices respectively.

II. System Theory for TPBVDSs

In [1-2] we develop a basic theory for (1)-(3).

Many of the aspects of this theory have a similar flavor to that in [4-5], although the possible singularity of \(E \) and \(A \) create some significant differences. As discussed in [1,2], when (1)-(2) is well-posed, we can assume that it is in standard form, i.e. for some constants \(\alpha \) and \(\beta \)

\[\begin{align*}
&\alpha E' + A' = 1 \\
&V_i E' + V_f A' = 1
\end{align*} \] (4)

As in [4-5], \(x(k) \) can be decomposed into an outward process \(z_o \) and an inward process \(z_i \). The outward process \(z_o \) is defined as

\[z_o(k,\ell) = E^{-k} x(\ell) - A^{-k} x(k) \quad k \leq \ell. \] (6)

By eliminating \(x \)'s in (6), we find that \(z_o(k,\ell) \) is only a function of the inputs inside the interval \([k,\ell]\). Also note that \(z_o \) does not depend in any way on the boundary matrices \(V_i \) and \(V_f \). The expression for the inward process \(z_i \) is in general very complex, although in the so-called stationary case there is a simple expression for \(z_i \) [1].

The system (1)-(2) is strongly reachable on \([k,\ell]\) if the map \(\{u(m): m \in [k,\ell]\} \rightarrow z_o(k,\ell) \) is onto. System (2.1) is called strongly reachable if it is reachable on some \([k,\ell]\).

Theorem 1:
The following statements are equivalent
a) System (1)-(2) is strongly reachable.

b) The strong reachability matrix

\[R = \begin{bmatrix} A^{n-1}E & A^{n-2}E & \ldots & AE & E \end{bmatrix} \] (7)

has full rank.

c) The matrix \([\alpha E - \alpha A]B\) has full rank for all \((s,t) \in \{(0,0)\}.

d) The state \(x(1) \) where \(i \in [n,N-n] \) can be made arbitrary by proper choice of the inputs \(u(\cdot): j \in [n-1,n+1] \) with all other inputs and the boundary value \(v \) set to zero, and for all pair of matrices \(V_i \) and \(V_f \) in standard form.

The research described in this paper was supported in part by the Air Force Office of Scientific Research under Grant AFOSR-82-0238 and in part by the National Science Foundation under Grant ECS-8709503.
In the case of the optimal smoother, it is shown in [3] that if the following generalized Riccati equations

\[\Theta = A'(E \Theta^{-1} E' + BQB')^{-1} A + C'R^{-1} C \]
(14)

\[\Psi = A(E \Psi^{-1} E + C'R^{-1} C)A' + BQB' \]
(15)

have positive definite solutions \(\Psi \) and \(\Theta \) then there exist invertible matrices \(M \) and \(N \) such that

\[MN^{-1} = I \]
(16)

\[MN^{-1} = \begin{bmatrix} I & 0 \\ 0 & A'S^{-1}E\Theta^{-1} \end{bmatrix} \]
(17)

Moreover, the eigenvalues of \(AT^{-1}E'\Psi^{-1} \) and \(A'S^{-1}E\Theta^{-1} \) are inside or on the unit circle. Equation (3.5) is called the descriptor Hamiltonian equation and the above decomposition is the descriptor Hamiltonian diagonalization. Of course, we would like \(AT^{-1}E'\Psi^{-1} \) and \(A'S^{-1}E\Theta^{-1} \) to be strictly stable. This occurs only when the descriptor Hamiltonian has no eigenmodes on the unit circle i.e. it is forward-backward stable.

Theorem 3:

If the system is forward-backward detectable and stabilizable (i.e. the modes on the unit circle are strongly reachable and strongly observable) then the corresponding smoother is forward-backward stable.

IV. Generalized Riccati Equations

In this section we study the generalized algebraic Riccati equation.

\[\Psi = A(E'\Psi^{-1} E + C'R^{-1} C)^{-1} A' + BQB' \]
(18)

Theorem 4:

If \((E,A,B) \) and \((C,E,A) \) are strongly reachable and observable respectively then (18) has a unique positive definite solution.

The approach used to prove this theorem is similar to that in [6] for the standard Riccati equation. Details will be presented in a future paper. Existence proceeds as follows. From Theorem 3 and the fact that eigenmodes of the smoother occur in reciprocal pairs, we know that we can write

\[\begin{bmatrix} E & -BQB' \\ 0 & A' \end{bmatrix} \begin{bmatrix} F \\ G \end{bmatrix} = \begin{bmatrix} A & 0 \\ -C'R^{-1}C & -E' \end{bmatrix} \begin{bmatrix} F \\ G \end{bmatrix} \]
(19)

The proof then proceeds by first showing that \(F \) is invertible, then that \(E'GF + C'R^{-1}C > 0 \) and finally that

\[\Psi = (A(E'GF^{-1} + C'R^{-1}C)^{-1} A' + BQB') \]
(20)

satisfies (18). To prove uniqueness, let \(\phi_1 \) and \(\phi_2 \) be two positive definite solutions of (18), let \(\Delta \phi = \phi_1 - \phi_2 \), and

\[T_i = E'\phi_i^{-1} E + C'R^{-1} C \text{ for } i=1,2. \]
(21)

Some algebra then yields

\[\Delta \phi = AT^{-1}E'\phi_1^{-1} A\phi_2 - ET^{-1}A'. \]
(22)

But \(AT^{-1}E'\phi_1^{-1} \) and \(ET^{-1}A' \) are strictly stable (see [3]); thus \(\Delta \phi = 0 \).

References