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Abstract

Major airlines aim to generate schedules that maximize profit potential and satisfy
constraints involving flight schedule design, fleet assignment, aircraft maintenance routing
and crew scheduling. Almost all aircraft and crew schedule optimization models assume
that flights, aircraft, crews, and passengers operate as planned. Thus, airlines typically
construct plans that maximize revenue or minimize cost based on the assumption that every
flight departs and arrives as planned. Because flight delays and cancellations result from
numerous causes, including severe weather conditions, unexpected aircraft and crew
failures, and congestion at the airport and in the airspace, this deterministic, optimistic
scenario rarely, if ever, occurs. In fact, schedule plans are frequently disrupted and airlines
often incur significant costs in addition to those originally planned. To address this issue, an
approach is to design schedules that are robust to schedule disruptions and attempt to
minimize realized, and not planned, costs. In this research, we review recovery approaches
and robustness criteria in the context of airline schedule planning. We suggest new
approaches for designing fleet assignments that facilitate recovery operations, and we
present models to generate plans that allow for more robust crew operations, based on the
idea of critical crew connections. We also examine the impact on robustness of new
scheduling practices to debank hub airports.
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Chapter 1

Introduction

The goal in solving the Airline Schedule planning problem is to create aircraft and crew

schedules that maximize airline profitability. This problem is large-scale and complex

because it is characterized by numerous parameters including dynamic passenger demand,

different aircraft types, maintenance requirements and crew work rules. Its size and

complexity make it impractical to solve in its entirety, thus it is decomposed into a set of four

sub-problems namely Schedule Design, Fleet Assignment, Aircraft Maintenance Routing and

Crew Scheduling.

1.1 Airline Schedule Planning: A Sequential Approach

Schedule Design

The output of Schedule Design problem is the flight schedule: the markets to serve and

with what frequency, and when to schedule flights to meet these frequencies. The flight

schedule is a fundamental to airline profitability and involves strategic decisions of an airline

and of its competitors, which are hard to capture in a mathematical model. Therefore the

number of optimization models in this area is limited. Nonetheless, mathematical programs

have been used in simplified design problems to make incremental changes to existing flight

schedules, as described in Berge (1994), Marsten et al (1996) and Lohatepanont and Barnhart

(2001). Their approaches are incremental in that the changes from one published flight

schedule to the next are limited, but the reported impacts are significant.
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Fleet Assignment

Once the flight schedule is determined, the fleet assignment problem is solved to assign a

specific aircraft type to each flight in the schedule, while minimizing fleeting costs. Fleeting

costs are comprised of

1) Operating costs, representing the cost of flying each flight leg with the assigned aircraft

type.

2) Spill costs, measuring the revenue lost when passenger demand for the flight leg exceeds

the leg's assigned aircraft's seating capacity.

A fleet assignment has to satisfy some constraints such as restrictions on the number of

available aircraft of each type, and the balance of aircraft in the network. The aircraft balance

constraint requires that each aircraft type is assigned to the same number of strings arriving at

a station as departing that station. The fleet assignment problem is often formulated as a

multi-commodity flow problem in Abara (1989) and Hane et al (1995). Although this

formulation has yielded tremendous savings, it does not address a critical challenge for fleet

assignment models. Namely it does not model passenger fares, demands or spill as itinerary-

specific, but rather models them as flight-leg specific. The Origin-Destination based fleet

assignment approaches by Jacobs, Johnson and Smith 1999, Barnhart, Kniker and

Lohatepanont 2002 succeed in modeling more accurately the revenues and spill cost of each

fleeting.

Maintenance Routing

With schedule design and fleet assignment decisions made, the flight network is

decomposed into sub-networks, each one associated with a single aircraft type. The

maintenance routing problem is solved to assign individual aircraft to flight legs in a sub-

network to create a rotation or cycle of flight legs assigned to the same aircraft. Rotations are

constructed to ensure that all aircraft are maintained at the right place at the right time, as

specified by governmental regulations. The maintenance routing problem is often formulated

as a network circulation problem with side constraints. Detailed descriptions can be found in

Feo and Bard (1989) and Gopalan and Talluri (1998).
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Crew Scheduling

The crew scheduling problem is solved to assign cockpit and cabin crews to flights to

achieve minimal operating costs, while satisfying the numerous and complex work rules

defining legal schedules. This problem is often broken into two problems that are sequentially

solved:

1) The crew pairing problem to construct minimum-cost, multiple-day work schedules

(crew pairings) that satisfy all the work rule restrictions;

2) The crew assignment problem to assign individual crewmembers to pairings to create

equitable and efficient month-long crew schedules. These schedules must satisfy many

requirements such as:

1) Pilots are qualified to fly only certain types of aircraft

2) Flight crews cannot be away from their base or stay on duty for a time period

longer than some clearly defined limits.

Because the legality crew pairings structure is very complex, and the cost structure is

nonlinear, much of the existing literature formulate the crew pairing problem as a set

partitioning problem with one binary decision variable for each pairing. This formulation

allows the computation of non-linear pairing costs off-line and eliminates the need for an

explicit formulation of complicated work rules. More details can be found in Anbil et al

(1991), Gershkoff (1989), Hoffman and Padberg (1993), Barnhart and Shenoi (1998) and

Klabjan and Schwan (1999).

1.2 Drawbacks of the Basic Sequential Approach

Almost all optimization models in the area of airline schedule planning assume that flight

departure and arrival times, as well as the quantity of resources available, such as crews and

aircraft, are perfectly known. Unfortunately crew sickness, mechanical failure and adverse

weather result in delays, which in turn require necessary changes to the plan, often leading to

significantly increased costs. Therefore using mathematical models that ignore such

disruptions often result in

1) An optimal solution that cannot be implemented

2) Increases the costs of operations beyond those planned
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Clearly then, the so-called optimal schedules that are used today by commercial airlines

are far from optimal in practice. One approach to resolve this dilemma is to develop real-time

algorithms to re-optimize the schedule after irregularities occur. Another approach is to build

robustness in the schedules at the planning stage.

1.3 Thesis Objectives and Contributions

The research documented in this thesis was performed to achieve the following major

objectives and make the following contributions:

1) Review various approaches to deal with uncertainty in airline schedule planning

2) Provide alternative definitions of robustness in the context of airline schedule planning

3) Present a model for fleet assignment designed to facilitate recovery operations

4) Develop of models generating crew pairings that allow for more robust crew operations

1.4 Thesis Outline

This thesis is organized as follows. In chapter 2, we provide a survey of real-time

recovery models and some general robust planning methodologies. In chapter 3, we describe a

category of robust models that aims to facilitate recovery in case of disruptions. We also

present a robust fleet assignment model that aims to ease the aircraft recovery procedure at

spoke airports. In chapter 4, we present a category of robust models that generate schedule

that are less prone to disruptions. We propose an alternative definition of robustness for the

crew schedule and present a robust crew schedule model with the objective to minimize the

number of missed connections for crews. In chapter 5, we assess the robustness of a recent

strategic airline policy: the debanking policy. Finally in chapter 6, we summarize these

various robust models and discuss possible interactions of these models.
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Chapter 2

Strategies to Deal with Uncertainty

2.1 Introduction

There are two ways to deal with the uncertainty in schedule planning resulting from

disruptions. One approach is to re-optimize the schedule after disruptions occur during

operations; while another more proactive approach is to manage uncertainty by incorporating

robustness into the schedules, during the planning stage.

2.2 Irregular Operations

There are many reasons for flight delays and cancellations. Ageeva [2] states that the

major causes of disruptions at airports are:

-Weather. Wind, fog, thunderstorm, low cloud ceiling, which account for more than 90%

of all flight delays at major hubs

- Equipment failure.

- Runway due to surface repair, unavailability because of construction, etc

- Volume Aircraft traffic rate exceeds capacity of the airport at a given time, typically

when the weather conditions implies a loss of airport capacity.

These delays and cancellations lead to important internal disruptions to the airline aircraft

and crews. But they also lead to significant disruptions to the passengers through delays and

missed connections. Lan et al [27] points out that in 2000, about 30% of the flight were
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delayed and about 3.5% were cancelled. Unfortunately, the flight delays and cancellations are

expected to increase dramatically in the future, with an expected increase of 5% in delays for

each 1% increase in air traffic, thus if the air traffic in the US doubles in the next 15 years, as

expected, it is important for airlines to incorporate uncertainty in their modeling strategy.

2.3 Real-time Recovery Models

When disruptions occur, airlines must reschedule flight operations. A typical airline's

recovery procedure is designed to determine which flight legs to delay or cancel, and how to

reroute aircraft, crews and passengers.

As during the planning stage, airlines typically use sequential models to recover from a

disruption. In the first stage referred to as aircraft recovery, the objective is to reroute aircraft

and make flight leg postponement and cancellation decisions. In the second recovery stage

referred to as crew recovery, the objective is to reroute crews and utilize reserve crews as

necessary to accommodate changes in the flight schedule. In the final stage referred to as

passenger recovery, the objective is to reroute passengers whose itineraries are disrupted.

Much of the existing literature in the area of optimization recovery models deals only with

the aircraft recovery stage, for two reasons. First, compared to the crews, aircraft are seen as

more critical resources, because they are more expensive to reposition and there are fewer

reserve aircraft than reserve crew available. Second, solving the crew recovery problem

optimally in real-time during operations is typically not possible. Finally, the relatively low

priority given to passengers helps to explain the scarcity of models dealing with the passenger

recovery problem.

Our review of recovery models will be classified on the basis of the objective pursued

while trying to recover. The possible objectives are:

1) To minimize the effects of disruption as measured by the number of flight delays or

cancellations or the amount of passenger delay

2) To minimize the increase in operating costs considering crew labor costs, fuel costs or

the loss of revenue due to cancellation (that is spill costs)

3) To minimize the disruption duration, that is, the time before the airline can resume the

implementation of the originally planned schedule

20



2.3.1 Minimizing the Effects of Dismption

2.3.1.1 Aircraft Recovery Models

In 1984, Teodorovic, Dusan and Guberinic [28] discussed the problem of designing a new

flight schedule and aircraft routing solution when one or more aircraft experience a technical

failure. They determine the solution set of aircraft routings and flight schedule that minimizes

overall passenger delay using a branch-and-bound procedure. Their methodology assumes a

single fleet type and ignores all maintenance requirements. They implement their model on a

simple example involving three aircraft operating a total of eight scheduled flights.

Jarrah et al [16] present a model that is an improvement on the successive shortest path

method presented by Gershkoff in 1987. They find a good set of flight cancellations to

resolve aircraft shortages. They present two network models each of which allows aircraft

swapping among flights and the utilization of spared aircraft to absorb aircraft shortages. The

first model, called the delay model, is used to determine a set of flight leg postponement or

delays, while the second model (the cancellation model) is used to determine a set of flight

leg cancellations. To assess the cost of delaying or cancelling a flight, they used a disutility

function that depends on the total number of passengers, the number of passengers that will

have a downline connection, lost crew time and disruption of aircraft maintenance (the new

schedule might violate for some aircraft their maintenance requirements). They used historical

data from United Airlines to determine those disutility functions. The main drawback of this

solution framework is that it does not allow for a trade-off between cancelling and delaying a

given flight in a single decision process.

In 1997, Cao and Kanafani discussed a real-time decision support tool for the integration

of flight cancellations and delays. This work was an extension of Jarrah's work, using many

of the modelling concepts presented in [16]. The model considers the airport network as a

complete system and traces the effect of delays and aircraft reassignments from one airport at

a point in time to the next. They also take into account the issues of ferrying (flying an empty

aircraft to an airport so that it can cover a flight departing from this airport) and multiple

aircraft type swapping (if two routings of even different aircraft type meet at more than one
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node within a certain time window, an aircraft can be swapped from one routing to the other

and then returned to its original routing at a subsequent meeting node).

2.3.1.2 Hybrid Recovery Models

In 1996, Mathaisel [22] presented a software/network application that integrates real-time

flight following, aircraft routing, maintenance, crew management, gate assignment and flight

planning with dynamic aircraft re-scheduling and fleet re-routing algorithms for irregular

operations. The architecture of the system is one server that centralizes all the databases, finds

routing alternatives to minimize the effects of disruption, and then distributes the decision

support and optimization to various workstations depending on the focus of each workstation.

The solution approach is a "what-if' approach in which the controller adjusts parameters

using the interactive interface to determine the consequences. The definitive choice remains

in the hands of the controllers, who understand that some flights might be more easily

cancelled than others.

2.3.2 Minimizing Operating Costs

2.3.2.1 Aircraft Recovery Models

The first model to provide a delay and cancellation plan simultaneously is that of Yan and

Young [32]. Their objective is to maximize airline profit, defined as airline revenue minus the

cost of cancellation and/or delay. They ignored all maintenance requirements, crew

restrictions and passenger connections.

Argiello et al [3] present a time-band optimization model for reconstructing aircraft

routings in response to ground delays. The objective is to minimize aircraft operating cost and

cancellation revenue lost. In solving the problem, they assume a single fleet type and ignore

all crew restrictions and use a greedy randomized adaptive search procedure, called GRASP.

From the initial solution in which all flights that are to be flown by the aircraft grounded or

delayed are cancelled neighbouring solutions are found by making relatively minor changes to

the initial solution. These neighbouring solutions are then costed and only the best are

included in a restricted candidate list. Then, randomly selecting a solution in the restricted list,
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the algorithm finds new "neighbours" and repeats. Throughout the iterations, the best solution

is recorded.

One of the drawbacks of the Arguello et al's model is that only the next leg each aircraft

is scheduled to fly after the disruption is considered and therefore the cost of a cancelled leg

or delayed leg is represented as a single value space. However, cancelling a leg can require

the airline to cancel several other legs and/or to ferry some aircraft.

In 1997, Clarke [9] presented a model, whose objective was to minimize the operating

costs and the lost passenger revenue for a whole sequence of flights. Unfortunately his model

is computationally very intensive.

In 2001, Rosenberger et al [24] outlined a model that minimizes the increase in operating

costs calculated for each routing, as done in [9], while rerouting aircraft from the same fleet.

To make the model tractable and solvable in a limited time, they do not generate all potential

new routes, but rather work on a subset of selected aircraft. This subset is selected as

follows: For the set of disrupted aircraft, they create a special graph in which for each pair of

aircraft (i, j), they check if one can create a new route for j that includes some legs initially

covered by i. If this is the case, they add a node for aircraft j in the graph and an arc from i to

j. Then for each disrupted flight i, they identify the shortest cycle, in terms of the number of

arcs, from i. They then run the model on the set of aircraft that are included in each of the

cycles generated for each disrupted flight. According to the authors they are consequently

able to solve many large recovery instances quickly.

2.3.2.2 Crew Recovery Models

In 1995, Lettovsky et al [20] presented a crew recovery model that reassigns crews to

flight legs, while minimizing the additional cost and operational difficulties to the airlines.

The solution strategy is to identify a set of eligible crews, whose original assigned unflown

flight legs are used to form new crew pairings, which are then reassigned to individual crew

members through a set covering problem.

Given a new flight schedule, including delays and cancellations decisions, the interactive

software presented in 2003 by White et al [30] and implemented by Continental Airlines

addresses the crew recovery problem. They minimize the overall operating cost of the crews
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plus the cost of not covering a flight plus the cost of deadheading plus the cost of having an

idle crew. Their methodology is to decompose the problem by fleet type qualification and

pilot positions, then to modify only the pairings that are close to the disruption. To avoid

being trapped by crew restrictions they rank the crew constraints in decreasing order of

importance and frequency of violation and start by considering only the top-ranked

constraints. By doing so, the authors are assured to reach sub-optimal solutions within a

couple of minutes.

2.3.3 Minimizing the Disruption Duration

2.3.3.1 Aircraft Recovery Models

Yan and Yang [31] propose a strategic model for dealing with temporary aircraft

shortages. Their objective is to minimize the length of the perturbed period and to determine

the most profitable schedule in that period, using a schedule perturbation model. They

consider four strategic models with increasing complexity. In all of the models flight leg

cancellations are allowed. In models 2 and 4, ferrying is permitted, and in models 3 and 4,

flight leg postponements are allowed. Models 1 and 2 are easily solvable pure network flow

problems, whereas models 3 and 4 are NP hard. They use Lagrangian relaxation and

subgradient methods to find sub-optimal solutions within 1% of optimality for models 3 and

4.

In 2000, Thengvall et al [29] outline a model whose objective is to minimize deviation

from the original aircraft routing. They use a time-space network that covers a recovery

period that can be set arbitrarily. The cost assigned to each flight arc is equal to the revenue

generated by flying that flight leg. They augment the original set of flight arcs in the time-

space network as follows:

1) For each potential delay copies of flight arcs are added to the network prior to running

the models. The revenue assigned to each of these copy arcs includes a cost of delaying

the flight leg. The number of copy arcs generated can be fixed arbitrarily.

2) To limit the deviation from the original plan, additional arcs, called protection arcs, are

added to the network. If an aircraft is planned to operate 2 legs 1 and 2 in succession, an

arc is added to the network that links the departure airport of leg 1 to the arrival airport of
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leg 2, with an associated cost equal to the revenue of leg 1 plus the revenue of leg 2 plus

an incentive to flight both legs with the same aircraft. This is done for each subsequence

of flight legs operated by the same aircraft in the plan. The incentive increases according

to the number of legs in the sequence.

3) For each through-flight, they add an arc linking the departure airport of the trough-

flight to the arrival airport of the through-flight is added to the network with an associated

cost equal to the sum of the revenue generated by all the legs composing this through-

flight. To keep the maximum number of through-flights, the model penalizes the

solutions, where different aircrafts cover the flight legs composing a previous through-

flight by subtracting to each flight leg revenue the ticket price of the through-flight

passengers on this leg.

The objective of the mathematical model is to maximize overall profit, given that each

flight should be only covered at most once, either by a regular flight leg, a delayed flight leg,

a protection arc or a through-flight arc, and that each node should be balanced. The advantage

of this model is that it is flexible, easily incorporating any user preferences.

2.3.4 Recovery Model Drawbacks

The main drawback of dealing with uncertainty at the operations stage is that the airline

cannot afford to wait for a solution. This poses serious tractability issues as recovery

problems are subject to numerous constraints, including slot availability, gate availability,

crew and aircraft restrictions. Because airlines must determine changes to aircraft routings,

crew schedules and passenger itineraries rapidly, recovery decisions are often made using

rules of thumb developed through years of experience.

2.4 Robust Models

Building robustness into schedules is a proactive way to deal with schedule disruptions. A

more robust plan can alleviate the effects of disruptions and yields realized operating costs

that are lower than those realized with the optimal schedule produced by the sequential

approach described in chapter 1. Unfortunately, the robust airline schedule planning problem
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is very challenging. First, robustness is difficult to define in general. For example depending

on the particular problem instance, a robust plan can be one that yields minimum expected

operating costs, or minimum operating costs for the worst case scenario or minimum

operating costs while satisfying a certain level of service requirements. Second, it is difficult

at the planning stage to define an appropriate trade-off between robustness and cost. Indeed,

adding robustness at the planning stage often results in higher planned costs, but it is hoped

that the benefits of robust plans that is, reductions in delays, cancellations, should exceed the

increase in planned costs. The value of robustness is hard to quantify and thus, it is difficult

for airlines to determine how much they should pay to achieve certain levels of robustness.

In the area of robust planning, there are two distinct trends in existing literature. One trend

is to capture a uncertainty in the model parameters, and the other is to incorporate robust

criteria in the planning models.

2.4.1 Incorporating Uncertainty in Model Parameters

In 2001, Yen and Birge [33] developed a two-stage stochastic integer programming model

to minimize total crew costs. Their work is an application to airline scheduling of the general

robust planning methodology used in robot design, telecommunications, logistics, etc. Instead

of modelling the crew scheduling problem as deterministic, they incorporate uncertainty in

the objective data by adding delay costs to the operating costs. These delay costs are

characterized by a probability distribution. They aim to find a feasible solution for all

possible data instances and to minimize expected overall crew operating costs. In the first

stage, they select crew pairings using expected pairing costs. In the second stage, the recourse

problem, they test their solution and evaluate the expected recovery cost that it implies. They

simultaneously try to find a solution that minimizes the number of times crews have to

transfer between airplanes. The main drawback of their approach and of most of stochastic

models, is its large size, making it intractable for real size problem.

Also in 2001, Schaefer et al [26] outlined a stochastic extension to the deterministic crew

scheduling problem based on the idea that if uncertainty in the flight schedule is assumed,

crew costs, which depend on departure and arrival times, cannot be considered to be given

any longer. They used a Monte-Carlo simulation to obtain a linear approximation of the
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expected crew pairing costs and then solve the resulting deterministic crew scheduling

problem incorporating the expected crew pairing costs. Their methodology assumed a single

recovery procedure: the push-back recovery procedure in which each flight is delayed until

all required resources (crew, aircraft, passengers) are available. This assumption is not overly

restrictive only in the case of "small disruptions".

2.4.2 Incorporating Robust Criteria

Instead of trying to capture uncertainty in model parameters, an alternative approach is to

incorporate some added criteria into the model to help achieve robustness. Some metrics that

are possible indicators of robustness are:

- Ease of recovery: One approach to achieve recovery of aircraft, crews and passengers

is to build the schedule such that when disruptions occur, their effects are isolated,

preventing important downstream impacts or allowing recovery to be less complex and

expensive such that coming up with new aircraft routes or crew duties through basic

recovery models is easier. When disruptions occur, airlines must reschedule flight

operations. Airline decision makers mainly swap aircraft and crews or cancel a cycle of

flights planned to be covered by the disrupted aircraft. In order to ease recovery, a

schedule with many crew or aircraft swap opportunities is good, as proposed by Ageeva

[2] for aircraft or by Klabjan [18] for crew. Alternatively, ease of recovery is possible if a

schedule has small loops out of and into a hub as proposed by Rosenberger [23]. This

network structure ensures minimum disruption in the case that a flight has to be cancelled

and therefore, the entire loop is disrupted.

- Slack allocation and Delay propagation: the effects of aircraft, crew or passenger delays

and disruptions in one location are often experienced in locations quite distant from the

original disruption. The delay of one flight can cause delays to downstream flights and

possible delays and misconnection to crews or passengers assigned to those affected

flights. To minimize this propagation of delay Lan et al [27] assign slack times

strategically to connections with historically long delays.

In this thesis, we focus on two different approaches. In the next chapter we develop an

approach to robustness based on the "ease of recovery" approach. Then in Chapter 4, we
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present a model is designed to minimize crew misconnections, with the goal of deriving plans

that are less prone to disruption.

28



Chapter 3

Ease of Recovery Approaches

3.1 Introduction

The following models are designed to build robustness into the schedule by incorporating

a criterion that facilitates recovery from disruptions. Insights into the definition of these

criteria can be obtained by understanding how airline operations control centers operate and

the processes by which schedule plans are recovered. The following models are based on the

observation that airlines primarily recover from disruption by canceling flights and/or by

swapping aircraft or crews.

3.2 Cancellation Tool

Before introducing the Rosenberger et al robust fleet assignment model [23], we briefly

review the fleet assignment problem.

3.2.1 String-based Fleet assignment

After the airline flight schedule has been built, the fleet assignment problem, to find the

cost-minimizing assignment of aircraft types, is solved. This problem is usually formulated as

a multi- commodity flow problem, in which multiple aircraft types must flow through the

network feasibly and with minimum cost. The first formulations of this problem were called

leg-based, because they assigned to each flight leg a specific aircraft type. Then researchers
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introduced string-based fleet assignment models that assigns a sequence of flight legs

(referred as a string) to the same aircraft type.

Barnhart et al (1998) [5] extend the leg-based fleet assignment model to a string-based

model to ensure that aircraft maintenance requirements can be satisfied for the resulting fleet

assignment. We summarize their modeling and algorithmic approach in the next sections.

3.2.1.1 String-based Fleeting Models

The Barnhart et al [5] model represents the airline network using a timeline network for

each airport, called a station, and for each fleet.

For a given fleet at a given station, a timeline includes:

1) Nodes. Each node represents the time of a string departure or the arrival time of a string

at a particular station.

2) String arcs and ground arcs. A string arc corresponds to a particular string, with its

departure node corresponding to the departure station and time of the first flight leg in

the string and its arrival node corresponding to the arrival station of the last flight leg in

the string. The string arrival time is adjusted to include the minimum amount of time

required on the ground for disembarking and embarking passengers, unloading and

loading baggage, and refueling. Ground arcs represent the possibility for aircraft to

remain idle on the ground between strings.

Side constraints enforce the following requirements and restrictions:

1) Cover: each flight leg is assigned to exactly one aircraft type

2) Count: only available aircraft are assigned to the flight network

3) Balance: each aircraft type is assigned to the same number of strings arriving at a

station as departing that station.

3.2.1.2 Model

Before presenting the string-based fleet assignment model, we present the following

notations:

" F is the set of flight legsf

" S is the set of strings and S(f) the subset of strings that include flight legf

" K is the set of fleet types k
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" P(k) is the number of planes of type k

" C is the set of airports

To ensure that each fleet assignment uses type P(k) or fewer planes of type k, we count the

number of aircraft of type k assigned to each arc spanning a fixed time, called the plane count

time. Without loss of generality, we select the plane count between the latest arrival at each

station on a given day and the earliest departure on the next day. Let t, be the time that

preceedes the plane count time and t, the one that follows it.

m O(k) is the set of strings of fleet type k whose arcs span the plane count time.

- Cks is equal to the operating cost of fleet k on string s + opportunity cost of spilling

passengers (defined in 1.1) if fleet k is assigned to string s

- xk = x,, is the binary string variable that has value 1 if aircraft type k is assigned to

string s, and 0 otherwise.

- o denotes the Origin airport of string s

- d denotes the Destination airport of string s

" y,_ y,k. are the ground variables that count the number of aircraft on the ground at each
ott Ott

station at every point in time for each fleet. Let t- be the time of the node preceding node

t at the same station o and let t+ be the time of the node following node t at the same

station t.

Given this we write the fleet assignment problem as:

Min l cks Xks (3-1)
seS keK

Subject to

Ix =1 for all flight leg f in F (3-2)
ke K seS(f)

xot t-t odt Ott =0 for all node (o, t) and all aircraft type k (3-3)
dc=C dc=C

x,+ O y P(k) (3-4)
iEO(k) oeC

xEb {0,1} (3-5)

k k y > o (3-6)
Yot- t Ott
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The objective (3-1) is to minimize the total operating plus spill cost. The cover constraints (3-

2) and the binary constraints (3-5) ensure that for each flight leg f one and only one aircraft

type is assigned to it. The node balance constraints (3-3) ensure that for each aircraft type, the

number of aircraft flying out of an airport location equal the number into that location. Finally

the plane count constraint (3-4) ensures that the number of aircraft assigned in the solution

does not exceed the number of aircraft available. This constraint requires the above

assumption of when the plane count time was picked.

3.2.1.3 Solution Approach

The disadvantage of the string-based approach compared to the leg-based approach is that

there might be many possible strings, and therefore variables. To avoid the complete

enumeration of the possible strings, Barnhart et al (1998) [5] describe a column generation

method.

3.2.2 Rosenberger et al Model

3.2.2.1 Overview

Regarding flight cancellation, Rosenberger et al [] realized in 2001 that airline decision

makers usually cancel a cycle when canceling a flight in order to achieve aircraft balance.

Therefore, to minimize the impact of a flight cancellation and make the fleet assignment more

robust, they had the idea of designing a fleet assignment with many short cycles.

They contend that the hub-and-spoke network, a widely used network structure in which

most of the flight legs fly either into or out of a small subset of stations, called hubs, is

sensitive to disruptions, particularly at hubs. To reduce the impact on other hubs of a

disruption at one hub, they design a model that yields reduced hub connectivity. Hub

connectivity is defined as the number of legs in an aircraft rotation (defined in 1.1) that are in

a route that begins in a hub, ends at a different hub and only stops at spokes in between.

Using these two ideas of short cycles and reduced hub connectivity they develop a robust

fleet assignment and aircraft routing model.
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3.2.2.2 Model

Rosenberger et al present a hub-based fleet assignment model, based on the string-based

model presented in 3.2.1, where each string starts and ends at a hub and visits only spokes in

between.

They classify strings into two types: those that start and end at the same hub referred to as

cancellation cycles; and those that start and end at a different hub referred to as acyclic

strings. Then they prove that a decrease in hub connectivity implies an increase in the lower

bound on the number of cancellation cycles, and implies and increase in the number of short

cancellation cycles.

Using the same notations as used for the string-based model, let us define the connectivity

of a string s as:

" hks =F if s is an acyclic cycle, where F(S) is the set of legs included in string s

" hks = 0 if s is a cancellation cycle

Therefore, hub connectivity of a solution to a hub-based fleet assignment model is given

by

Z~h Xks
seS keK

Rosenberger et al present two models:

The first model is designed to minimize fleet assignment costs, with an added constraint to

limit hub connectivity. LetZ represent the set of x that satisfy the basic fleet assignment

requirements: cover constraints, aircraft count constraints and balance constraints, constraints

(3-2) to (3-6) from the string-based fleet assignment. Then the model is:

Min IE c xk (3-7)
seS keK

Subject to

,Zhsxks 5 (3-8)
sES keK

xE Z (3-9)

The objective is to select the fleeting and routing that minimizes fleet assignment operating

plus spill costs, subject to a limit 4 on the value of hub connectivity. To ensure feasibility,

has to be greater than a computable lower bound on hub connectivity.
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The second model is designed to minimize hub connectivity with an added constraint to

constrain fleet assignment costs, namely:

Min I I hksx, (3-10)
seS keK

I (Ckcxk (1+ E)Cfleet optimal (3-11)
se S ke K

x e Z (3-12)

The objective is to select a fleeting and routing solution that minimizes hub connectivity,

while ensuring that the cost of the solution is within e of optimal.

3.2.2.3 Solution Approach

Rosenberger et al implement their models and evaluate their approach using three

different schedules, one with 2558 flights, one with 910 flights and one with 573 flights. They

use column generation and a first-out policy to solve the two models.

3.2.2.4 Results

Rosenberger et al use SimAir [25] to asses the robustness of their models. SimAir

simulates the daily operations of a domestic airline, and is composed of three modules:

1) The Event generator module that generates three types of random delay: ground

time delays (based on location and time of the day of the departure); additional

block time delays (based on the length of the scheduled block time, time of the day

of the arrival and on the arrival/departure stations); and unscheduled maintenance

delays.

2) The Controller module that determines when a disruption prevents a flight from

flying as scheduled.

3) The Recovery module that proposes a solution to the Controller, who accepts the

proposal or requests that a different recovery solution be generated.

They simulate the daily operations over 500 days and demonstrate that the new fleeting

and routing solutions generated by their models perform better in operations (measuring on

time performance, total delay, etc) than those generated with conventional models. Moreover

their solutions required fewer aircraft swaps during recovery, also indicating that they are also
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more robust. Finally, Rosenberger et al report that the difference between a sub-optimal and

an optimal solution in terms of their relative hub connectivity is small: an increase by less

than 1% in the number of flight cancellations. From this, they conclude that model I might be

the best choice in practice to balance operating costs and robustness.

3.3 Swap Tool

Before describing the approaches of Ageeva and Klabjan, we introduce some fundamental

concepts.

Consider the following two aircraft and their assigned flight legs:

BOS BOS

Arrive:
8:10am Depart: Arrive: Depart: -Aircraft a covers the

9:00am 7:00pm 7:45pm "dotted" flight legs
2 .'

Arrive: \ Depart: Arrive: . \ Depart: -Aircraft b covers the
8:20am 9:04am 6:40pm/ \ 7:45pm "solid" flight legs

VIDC

DFW

Figure 3.1 Illustration of aircraft swapping

Aircraft a lands at airport 1 at 8:10 am and departs at 9:04 am from 1, whereas aircraft b

lands at aircraft 1 at 8:20 am and departs at 9:00 min. Therefore aircraft a and aircraft b are

together on the ground for 40 minutes at airport 1. We then say that aircraft 1 and aircraft 2

overlap at airport 1. Later in the day, they are again on the ground at airport 2 for 45 minutes,

resulting in a second overlap this time at airport 2. Moreover if these two overlaps occur

between two successive maintenance visits of aircraft a and b, we say that we can swap

aircraft a and b. If we swap them at airport 1: aircraft a covers the solid flight legs between 1

and 2, and aircraft b covers the dotted flight legs between 1 and 2.
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3.3.1 Ageeva's Approach

Ageeva [2] introduced the idea that flexibility, and therefore, robustness of an airline

schedule can be improved by increasing the number of overlapping routes , and hence the

number of swaps, in the aircraft maintenance routing solution. Note that after a swap, the new

aircraft routings still satisfy maintenance requirements. This follows by definition, because

swaps are allowed only between aircraft routings that intersect at least twice between

successive maintenance visits of the affected aircraft. Ageeva's algorithm to generate robust

maintenance routing solutions consists in generating several alternative cost-optimal

maintenance routing solutions. Then for each cost-optimal maintenance routing solution, she

evaluates the number of overlapping routes, indicator of the number of aircraft swapping

opportunities. Finally her robust maintenance routing solution is the one with the biggest

number of overlapping routes.

Klabjan and Chebalov [18] suggest a similar approach to the problem of crew scheduling

in which they achieve crew schedule robustness by providing opportunities to swap crews.

Before introducing the robust crew schedule model, we briefly review the basic crew pairing

model.

3.3.2 Crew Pairing Problem

3.3.2.1 Overview

As described in chapter 1, the crew scheduling problem is typically divided into two sub-

problems. First, the crew pairing problem is solved. In this problem, we want to find a

minimum cost subset of the feasible pairings such that each flight segment is covered by

exactly one chosen pairing. Second, the crew assignment problem is solved. In this problem,

the chosen pairings are combined with rest periods and vacations to create extended, typically

monthly, individual work schedules.
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3.3.2.2 Model

The crew pairing problem, usually formulated as a set partitioning problem, utilizes the

following notation:

Parameters:

m F: the set of flight legs i

m P : the set of pairings p

" c,: the operating cost of pairing p

- o*, : equals 1 if pairing p includes flight leg i, else 0

Variables:

m y, : equals 1 if pairing p is selected, 0 otherwise

The crew pairing problem is formulated as:

Min cy, (3-13)
PE P

Subject to

Z , y, =1 for each flight leg i in F (3-14)
PEP

ye {0,1} (3-15)

The objective (3-13) of this crew pairing model is to minimize the cost of the chosen set of

pairings. The cover constraints (3-14) and the binary constraints (3-15) ensure that each flight

leg i is covered by exactly one selected pairing.

3.3.2.3 Solution Approach

The crew pairing formulation requires the explicit enumeration of all pairings.

Unfortunately, enumerating pairings can be difficult. First, numerous work rules and

regulations must be checked to ensure legality and therefore, feasibility of each pairing.

Second, even for relatively modest-sized networks, the number of potential pairings is huge.

For instance, a network composed of several hundred flight legs typically has billions of

potential pairings (Barnhart et al [6]). Finally, the integrality requirements on each pairing

variable further complicates the solution process.
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Therefore, this problem is solved either by heuristic local optimization approaches or by

column generation methods (Anbil et al. [1]).

3.3.3 Klabjan Model

3.3.3.1 Key Ideas

Klabjan and Chebalov [18] introduce the idea of move-up crews. A move-up crew is

defined for each flight legf as the number of crews:

1) with the same crew base as the crew pre-assigned to coverf,

2) located at the departure station of flight leg f and available to depart at the departure

time of f;

3) with the same number of remaining days until the end of their pairings as the crew pre-

assigned tof

The objective of Klabjan and Chebalov's model is to maximize the number of move-up

crews for each flight leg departing a hub, while ensuring the usual flight cover constraints as

seen in 3.2.2.2. Because of their modified objective, the selected solution will likely cost more

than the total minimum cost solution. To circumvent this problem, first they solve the usual

pairing problem, which gives them a planned crew cost. Second, they include in their model a

constraint limiting crew cost to some pre-defined tolerance above the planned crew cost.

3.3.3.2 Model

Before presenting the Klabjan and Chebalov model, we present the following notation:

Parameters:

" L: the set of all legs

" HL: the set of all legs originating at a hub

" CB: the set of all crew bases

" CBL: the set of all legs originating at a crew base

We assume that each crew base is a hub therefore CBL is included in HL.

" Pbd: the set of pairings covering leg i , starting at crew base cb and having d days

remaining after leg i.
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- P, : the set of all pairings covering i that yield a move-up crew if a pairing beginning

at crew base cb with d days remaining after leg i is in the solution

" P : the set of pairings covering i

* P': the set of pairings whose first leg is i

m M: an arbitrary number usually 2 or 3

Variables:

* y, : equals 1 if pairing p is included in the solution, 0 otherwise

" x cb : equals 1 if for flight leg i, i departs from a hub airport, it is not the first leg of the

pairing and it is covered by a pairing with crew base cb and d days remaining after leg i,

and 0 otherwise

- w1 : equals 1 if flight leg i is covered by a pairing whose first leg is i, for all i e CBL

" zc the number of move-up crews for flight leg i , given i is covered by a pairing p,

beginning at a crew base cb with d days remaining after leg i

- COT : the optimal planned crew cost from the basic crew pairing problem

- r: the "robustness" factor measuring the maximum additional crew cost beyond cOrr

allowable in the move-up crew solution.

The move-up crew model is:

Max 2 (3-16)
i,cb,d

Subject to

y, =1 i e L\HL (3-17)

y, = xcb for legs i E HL, cb E CB and d (3-18)
PE cb, d

y, = wi for legs i e CBL (3-19)
peP'

W +Ix'b =1 for legs ie CBL (3-20)
cb,d
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x c =1 for legs i e HL\CBL (3-21)
cb,d

y, Z4 for legs i e HL (3-22)
PEcb,d

4 M *xc for legs i E HL, cb e CB and d (3-23)

I~x CP (P1+ r).cop (3-24)
P

The objective (3-16) is to maximize the number of move-up crews over all flight legs.

Constraints (3-17) ensure that each leg originating at a spoke is covered exactly once.

Constraints (3-18) characterize for each flight leg i, the crew that covers i by their crew base and

the numbers of days left before the end of the pairing. Klabjan and Chebalov do not assign

move-up crews to a flight leg if it is first in the crew's pairing. Therefore constraints (3-19) and

(3-20) partition the flight legs out of a crew base: each flight leg is either the first leg of a pairing

or it is characterized by: cb and d. These two constraint sets also ensure that each flight leg

originating at a crew base is covered exactly once. Constraints (3-21) ensure that each flight leg

originating at a hub which is not a crew base is covered exactly once. Constraints (3-22) and (3-

23) count and limit the number of move-up crews. And finally constraint (3-24) ensures that the

sub-optimally in terms of crew cost is bounded.

3.3.3.3 Solution Approach

Klabjan and Chebalov develop a solution method based on Lagrangian decomposition in

which they relax the constraints associated with counting the number of move-up crews: that

is, constraints (7) and (8). This relaxed problem has similar tractability characteristics as that

of the set partitioning problem in 3.3.2.2. Using column generation methods, Klabjan and

Chebalov solve the move-up crew model on a relatively small problem containing 123 flight

legs. Klabjan and Chebalov however did not evaluate the robustness of their model because

existing simulators, such as SimAir (see section 3.2.2.4), do not include crew swapping as a

recovery option (Rosenberger et al[25]).
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3.4 Robust Fleet Assignment Model

3.4.1 Motivation

Pilots are qualified to operate all aircraft with a specific equipment type rating.

Typically, each equipment type rating coincides with an aircraft type, for instance the Boeing

777 has one type rating, and the DC 9 has one type rating. There are exceptions, however.

The Boeing 757 and the Boeing 767 have a common rating and the Boeing 737 has several

ratings. The 737-100 and the 737-200 have the same type rating but different from the single

type rating 737-300, 737-400 and 737-500. All of these types have a different rating from

that given collectively 737-600, 737-700, the 737-800 and the 737-900. For the remainder of

this thesis, we define an aircraft family to be the set of aircraft with a common type rating.

Hence the 737-600, 737-700, 737-800 and 737-900, for example all belong to the same

aircraft family.

In theory, airline operation centers can swap aircraft of different types. But if the two

swapped aircraft are not from the same family, the airline operation centers must modify the

crew schedule to assign qualified crew to the swapped aircraft. To limit the crew schedule

modifications implied by aircraft swaps, recovery policies commonly swap only among

aircraft of the same family. Figure 3.2 illustrates this restriction. Assume that we are

monitoring the airline operation at Airport B. The solid lines with arrows represent the

planned schedule of family 1 aircraft and the double lines with arrows represent the planned

schedule of family 2 aircraft. Therefore the aircraft assigned to J2 can be swapped with the

aircraft assigned to J7 but not the aircraft assigned to f3.
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Figure 3.2: Illustration of aircraft rating restrictions on swap recovery procedure

This restriction of swapping among aircraft of the same family, combined with the fact that

typically there are only a limited number of flight legs at spoke airports, leads us to conclude

that the greater the number of aircraft families at spoke stations the more difficult the

recovery. To validate this idea, we conduct the following analysis:

Consider the operations of a major U.S. airline at one of its spoke airports, namely San

Francisco. The airline operates five different aircraft types at this airport, namely: Boeing

737-600, Boeing 737-800, Boeing 757, Boeing 767 and MD-90. The associated passenger

capacities are: 109-150 passengers, 180 passengers, 200-250 passengers and 150 passengers,

respectively. This translates to three different aircraft families, specifically: the 737-600

family, the 757-767 family and the MD-90 family. In Table 3.1, we depict departures and

arrivals of this airline at San Francisco.

Based on this flight schedule, our objective is to evaluate the impact on passengers of an

aircraft shortage at San Francisco airport. To this end, we consider the following scenarios.

Suppose that one day, exactly one of the 18 incoming flight legs at the San Francisco Airport

has to be cancelled for technical reasons, implying that the airline operations control center at

San Francisco has to operate with a shortage of one aircraft. Our aim is then to try to swap

aircraft of the same family at San Francisco to reduce the overall passenger delay.
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Table 3.1: Arrivals and departures from San Francisco for a major airline

ARRIVAL DEPARTURE
flight arrival aircraft flight departure aircraft

From to
number time type number time type

Atlanta 523 10:40am 737 Salt lake city 1692 06:30am M90
Cincinnati 509 :11:23am: 757 Cincinnati :338 :06:35am :757

Dallas 2137 11:51am; MD90 Atlanta 632 07:00am : 767
-atLake city_ 1137 i12:08pm, 737 Dallas 514 07:00amn: -737 --

Atlanta 251 12:l9pr: 757 Atlanta 1946 08:00am : 767
Atlanta 633 01:42pm 737 Salt lake city 2206 509:2am 737

Salt Lake city : 1008 01:50pm: 737 Cincinnati 1040 10:30am : 757J --------L ---- --I ---------------------------- J------------ J----------------- L------
Cincinnati 1176 02:58pm 757 Dallas : 1570 11:05am MD90

Atlanta 219 0327pri: 767 Atlanta 670 11:30am 737
Salt Lake city 1035 0400pm 737 Salt lake city 1172 01:00pm 737------------- ---------- r ------ -------------------------- ------- ------- i--- 1------------

Dallas 905 05:23pm 737 Dallas 2014 : 01:10pm MD90
Atlanta 1949 06 27pm 767 Atlanta 250 01:l9pm 757

Cincinnati 660 06:48pm 757 Cincinnati 946 02:40pm 757
Salt Lake city 1895 07:35pm: 737 Salt lake city 1025 03:00pm 737

Dallas 1571 07:40pm MD90 Atlanta : 1449 03:15pm 757
Atlanta 2089 08:20pml 757 Salt lake city 866 04:55pm 737

Salt- Lake ----ity--------------------------------- -t-----------ft------------------QPP
SaltLake city 971 09:17pm MD90 Atlanta : 2148 09:40pm 757

Atlanta 305 10:02pm 757 Atlanta 1804 11:40pm 737

We provide an estimate of the impact on passenger delays by making the following

simplifying assumptions:

1) Among aircraft of the same family, aircraft routings are based on a first-landed-

first-departed policy.

2) If a flight leg is cancelled, we assume that we can always accommodate the

passengers on the following flight unless it is also cancelled.

3) The recovery policy allows only aircraft swaps among aircraft of the same

family and minimizes the overall delay incurred by passengers.

4) Disruptions do not exceed 12 hours, implying that 12 hours after the beginning

of the disruption all resources, aircraft and crews, are available.

We evaluate the impact of an unavailable aircraft for selected flight legs and report the results

in Table 3.2.

We observe that only one scenario has a big impact on passengers, namely if flight 2137

from Dallas is disrupted, then flight 2014 has to be cancelled because no other MD-90 is on

the ground at that time and its passengers have to wait more than 17 hours for the next flight
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for Dallas. Performing the same analysis, assuming that flights currently covered by the MD-

90 family are covered by the 737 family, which has similar passenger capacity, then the delay

incurred by passengers on 2014 drops to zero.

Table 3.2: Impact on passengers of various aircraft shortage scenario

Scenario:
Aircraft unavailable for-leg
--- -- -- -- --N o -523- -------
--- -- -- -- --N o -509 --------

No 2137
No -1137

--- -- -- -- --N o -25 1- -------
--- -- -- -- --N o -633 --------
-- -- -- -- --N o 1008 -------

No -1176
--- -- -- -- --N o -219- -------
-- -- -- -- --N o 1035 -------
--- -- -- -- --N o -905- -------

No -1949
-- -- -- -- --N o -660 -------

No -1895

-- -- -- -- --N o 1571 - - --- - -
No 2089

--- -- -- -- --N o -971- -- - -- --
No 305

delay/pax
0--- minute ---
0 minute

0 minute

0 minute
0 minute
0 minute
0 minute
0 minute
0 minute
0 minute
0 minute
0 minute
0 minute
0 minute
0 minute
0 minute
0 minute

This simple analysis illustrates the impact on passengers of fleeting solutions with a

limited number of fleet families. If the airline decreases the number of aircraft families at San

Francisco by replacing MD-90 aircraft by Boeing 737 aircraft, the resulting fleet assignment

is more robust with respect to passenger delays.

3.4.2 Modeling idea

Based on the previous analysis, a fleeting solution can facilitate recovery and yield shorter

passenger delays if a limited number of aircraft families are operated at spoke airports.

Additionally, there is a clear trade-off between minimizing the total fleeting cost, that is,

operating costs plus spill costs as defined in section 1.1, and minimizing the number of

aircraft families at spoke stations. A fleet assignment model minimizing the number of

aircraft families at spoke stations can reduce the number of possible fleeting solutions, which
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in turn can result in higher fleeting costs. To limit this effect, we first solve the basic fleet

assignment model, to determine the minimum fleeting costs, and then we solve a modified

fleet assignment model with the objective to minimize the number of aircraft families at the

spoke stations with an additional constraint that bounds the associated fleeting costs as a

function of the minimum fleeting costs.

3.4.3 Formulation

In this section, we use the above observations to guide our development of models for

robust fleet assignment. Before presenting our fleet assignment model with limited aircraft

families at spoke airports, we present the following notation:

Parameters:

- F: set of flight legsf

" C: set of airports

- o denotes the Origin airport of a flight leg

- d denotes the Destination airport of a flight leg

" S is the set of spoke airports

- K: set of fleet types k

" M: set of fleet families m

" Ckf : the operating cost of fleet k assigned to flight leg f + cost of spilling passengers if

fleet k is assigned to flight leg f as defined in 1.1

" COF : fleeting cost associated with the optimal solution to the basic fleet assignment

model

" r: the "robustness" factor measuring the maximum additional fleeting cost beyond COF

allowable in our solution

m ': equals 1 if fleet type k is in fleet family m, and 0 otherwise.

Variables

m M, : the number of fleet families at spoke airport s

" "': equals 1 if fleet family m is assigned to spoke airport s, else 0.
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" Xk =X ,: equals 1 if aircraft type k is assigned to flight legf, else 0

We used notation similar to the one defined for the string-based fleet assignment model in

3.2.1.2, to restrict the number P(k) of planes of type k, to represent the ground variables, y

and yk , , and to model the plane count time constraint

Our robust fleet assignment model formulation is:

Min EM (3-25)
SES

for all flight legs f in F

+ _ - x =0 for all nodes
dE C

P(k)

(o, t) and all aircraft k in K

for all fleet type k

for all destinations d at any time t

Z M for all spoke station s (3-30)
m

SCkf Xkf (+ r).cOF (3-31)
fe F ke K

The objective (3-25) is to minimize the number of aircraft families at each spoke stations.

Constraints (3-26), (3-27) and (3-28) represent the usual fleet assignment model constraints,

specifically: the flight cover constraints, the balance constraints and the plane count

constraints, respectively. Constraints (3-29) and (3-30) state that M, is exactly equal to the

number of aircraft families at the spoke s. Finally (3-31) bounds the model's value as a

function of the optimal basic fleeting solution cost.

3.4.4 A Variant

A possible variation to this model is to change the objective function to: Min

Ckf Xkf while keeping the same constraints, (3-26)
feFkeK

to (3-30). In this case, Ms is no

longer a variable, but rather, a parameter. This implies that we now have to determine an

appropriate value for eachM,, which might be difficult in practice. One idea is to look at
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(3-26)
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historical data and to enforce a small allowable number of aircraft families at spoke stations

that historically face numerous aircraft disturbances.
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Chapter 4

Approaches to Reduce Likelihood
of Disruption

4.1 Introduction

The models that are typically used to solve the sequential airline schedule planning

problem, as shown in chapter 1, maximize airline profit by minimizing crew and aircraft

operating costs. To achieve this goal, a finely tuned optimization solution increases resource

utilization through the removal of slack, providing crews with less time to connect between

flight legs and aircraft with reduced time on the ground between flying. Slack is defined for

aircraft as the difference between the planned turn-time, time between the arrival of the

aircraft at the gate and the time this aircraft is scheduled to depart on the next flight, and the

minimum turn-time. Similarly, slack for crews is defined as the difference between the

planned crew connection time, that is, the elapsed time from crew arrival at the gate and the

time the crew is scheduled to depart on the next flight, and the minimum crew connection

time. Less slack time, although economical in theory, may translate in practice into more

missed crew and aircraft connections, higher operating costs and less robustness. To address

these issues, researchers have begun to accept more costly airline schedule solutions,

compared to minimum cost solutions, with reduced susceptibility to disruption. Next, we will

present the aircraft routing model developed by Lan et al [27], which places slack judiciously,

that is, where it is needed to minimize the disruptive effects on passengers of delays.
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4.2 Robust Aircraft Maintenance Routing

4.2.1 Key Ideas

Lan et al [27] partition flight delays into two different types of delays:

- Propagated delay: Flight delay caused by waiting for an incoming aircraft, which is a

function of aircraft routing.

- Independent delay: Delay caused by all other sources, including bad weather

conditions, late passengers, absent or delayed crews, etc.

To minimize the overall flight delays and make the aircraft maintenance routing solution

more robust, the idea of robust aircraft maintenance routing is to reduce propagated delay by

intelligently routing aircraft and optimally allocating slack to absorb the propagated delay to

the greatest extent. Obviously by increasing slack for certain aircraft connections, the

resulting solution might be less cost effective. To try to circumvent this issue, the idea is to

reduce slack where it is less needed which has no impact on the robustness of the solution but

makes the solution more cost effective.

The aircraft maintenance routing problem, as in fleet assignment, can either be formulated

as a leg-based model or a string-based model. Here a string is defined to be a sequence of

connected flights that begins and ends at a maintenance station and has elapsed time that does

not exceed the maximum time-between-maintenance limits required by law and by airline

policy. Because delays propagate along the aircraft routes, to track delay propagation it is

more appropriate to use a string-based model.

First we present the basic string-based routing model, then the robust aircraft maintenance

routing model, and finally we will compare them in terms of tractability and robustness.

4.2.2 Basic String-based Routing Model

The aircraft maintenance routing problem can be solved separately for each fleet type. The

structure underlying each of these problems is a time line network, seen in 3.2.1.1. For this

model, we use notation similar to that used for the basic string-based fleeting assignment

model in 3.2.1.2.
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Parameters

" F: set of flight legsf

" S: set of strings and S(/) the subset of strings that include flight legf

" P: number of planes

" C: set of airports

- M: set of nodes located at a maintenance stations

" 0: set of strings whose arcs span the plane count time.

m c, : the operating cost of string s

Variables:

" x, = xodt is the binary string variable that has value 1 if string s is used in the solution,

and 0 otherwise. o denotes the Origin airport of string s and d denotes the Destination

airport of string s

" yOt ,, yk. : the ground variables that count the number of aircraft on the ground at each

station at every point in time for each fleet. See 3.2.1.2 for a detailed description of t- and

t.

To ensure that the aircraft maintenance routing uses P or fewer planes, as we did for the

string-based fleet assignment, we count the number of aircraft assigned to each arc spanning a

fixed time, called the plane count time. See 3.2.1.2, for a detailed description of t,, and tI.

Given this we write the fleet assignment problem as:

Min I c x, (4-1)
SE S

Subject to

xS =1 for all flight legs f in F (4-2)
seS(f)

IXdot + y, - xo , - yo + = 0 for all nodes (o,t) e M (4-3)
deC de C

x + I yo,,,, < P (4-4)
sEO oeC

XS E {0,1} for all strings s (4-5)

y,,, Y,. ! 0 for all nodes (o, t) e M (4-6)
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The objective (4-1) minimizes total operating cost. The cover constraints (4-2) and the binary

constraints (4-5) state that for each flight leg f one and only one aircraft is assigned to it.

Because by definition all strings start and end at a maintenance location, the node balance

constraints are only needed at maintenance station nodes, that is why (4-3) ensure that the

number of aircraft flying out of an maintenance location equal the number into that location.

Finally the plane count constraint (4-4) ensures that the number of aircraft assigned in the

solution does not exceed the number of available aircraft.

4.2.3 Model

The objective of Lan et al [27] is to minimize expected propagated delay while satisfying

conventional aircraft maintenance routing constraints, that is, cover constraints, balance

constraints and plane count constraint. To achieve this goal, they first determine the

propagated delay distribution for every flight leg in the airline schedule. Based on historical

data from the ASQP (Airline Service Quality Performance) database, they show that for more

than 80% of flights, the distribution of propagated delay follows a log-normal distribution.

Before introducing the Lan et al's model, we provide the following additional notation:

m represents the set of strings that satisfy the basic aircraft maintenance routing

requirements: (4-2) through (4-6).

m pd is the delay propagated from flight i to flightj if flight i and flightj are in string s

The robust aircraft maintenance routing model (Lan et al) is:

Min E(Z I pd sx,) (4-7)
se S (ij)Es

Subject to xE (4-8)

The difference between the basic string-based aircraft routing model (4-1)-(4-6) and this

model (4-7)-(4-8) is the objective function. In both cases, the models are deterministic mixed

integer linear programming problems. The main difference is that in the robust model, for

each string s, we need to estimate I:E(pd1 ) instead of cs,. As a result both problems have
(i, j)E s

similar tractability.
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4.2.4 Results

Lan et al use a Branch and Price approach to solve the robust aircraft maintenance

routing model. This technique can be described as the branch-and-bound algorithm with

linear programming relaxations solved at nodes of the branch-and-bound tree using column

generation (see Barnhart et al [7] for a detailed description of this algorithm). Lan et al

implemented their model on four different networks, composed of 20, 59, 97 and 102 flights,

respectively. Using historical data in July 2000 to determine the expected propagated delay

and generate routings they apply their routing solutions on August 2000 operational

conditions, they compute the expected resulting delays in August 2000. They then compare

their result with actual delays in August 2000. The total propagated delay generated by Lan et

al solution is 44% less than that actual experienced in August 2000, implying an 11%

decrease in passenger misconnections.

4.3 Motivation: Critical Crew Connection

One restriction on a valid crew pairing is that two sequential flight legs cannot be

assigned to the same crew unless the time between these flights (known as crew connection

time) is sufficient for the crew members to travel through the terminal, from the arrival gate of

one flight to the departure gate of the next. This restriction does not hold if both flights have

been assigned to the same aircraft; in that case the crew connection time can be as short as the

minimum required time for the aircraft (known as the minimum turn time) before its next

departures, which includes disembarquing and embarquing passengers, refueling, etc. We

refer to a short connect as a connection in which the same crew and the same aircraft are

assigned to a pair of successive flight legs. In this chapter, we assume that the minimum crew

connection time is equal to 45 minutes and the minimum aircraft turn time is 30 minutes.
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Minimum crew connection
time CZ

Minimum
Turn Time

Figure 4.1: Definitions related to crew connections

Bratu and Barnhart (2002) compute flight delays in August 2000 using data from a major

US airline and found that the airlines flight legs have an average delay of 16 minutes. These

short delays, although seemingly contained can lead to crew misconnections if the planned

crew connection time is close to the minimum crew connection time. Repeated delays can

then snow ball into significant delays and disruptions for the crews, resulting in the use of

reserve crews and increased crew operating costs. We call critical connects those connections

in which the connection time is close to the minimum connection time, making them more

prone to disruptions. We assume that critical connects have a connection time between 45

minutes and 1 hour. Figure 4-1 illustrates these definitions; the double arrow represents the

critical zone, if a crew connects to a flight, is assigned to different aircraft and the departure is

in that zone, the crew connection is a critical connect.

As discussed above, critical connects cause the crew schedule to be more prone to

disruptions and misconnects even when the delays are short. One solution is to disallow

critical connects in the crew schedule. Of course this is not cost effective, because crews and

especially cockpit crews are expensive, being the second-largest operating expense after fuel.

To be cost-effective, airlines need to maintain a high level of crew utilization. It is possible

however to limit the costs and reduce the fragility of the crew schedule simultaneously by

intelligently minimizing the number of critical connects. One approach is to reschedule and

postpone departure corresponding to critical connections (illustrated in our first model). A
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second approach is to integrate aircraft routing and crew scheduling decisions in order to keep

aircraft with crews, when crew connections are critical (illustrated in our second model).

4.4 Robust Crew Schedule with Time Windows

4.4.1 Time Windows and Crew Connections

We assume that the minimum crew connection time (MCCT) is a constant for all crews

independent of the type of airport at which they connect. As discussed above, for a connection

to be feasible, the planned crew connection time must be greater than the minimum crew

connection time, with the difference between the two referred to as slack. The ACCT refers to

the actual crew connection time, defined as the actual departure time minus the actual arrival

time of the departing and arriving flight legs, respectively, in the crew connection.

D
E

,f 1 L

f NNACCT A

slack I MCCT f '
f "2

Figure 4.2: Illustration of flight schedule retiming

__ Planned

Actual

If ACCT is smaller than the MCCT, the crew is considered disrupted.

Figure 4.2 illustrates the idea of our crew schedule with time windows model. Assume

that the same crew is assigned to flight leg fl and flight leg J2. The solid lines with arrows

represent the planned schedule. The connection between fl and J2 is a critical connects

because the slack for this connection is 5 minutes. Suppose that according to historical data,

fl is often delayed to the position of f'1. In that case, the ACCT is shorter than the MCCT and

the airline must decide to either call on reserve crews, which is expensive and can only be

done in a limited number of airports, or delay J2 to the position f'2, in order to enable the
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scheduled crew to make its connection. If in the planning stage, we had moved the departure

time of flightJ2 tof''2, then even if fl is delayed to the position f'1, the crew is not disrupted.

Time window specifies how much time a given flight can be shifted. Clearly, if departure

time can be rescheduled in a "large" window, even longer delays will not disrupt crews, and

our model will produce even more robust solutions. Obviously, there is a trade-off between

robustness and cost. Adding more slack by retiming departures, can be good for connecting

crews, but result in reduced productivity for the aircraft and the crews and maybe also for the

fleet. The challenge is to determine where to postpone departure and add slack so as to

maximize the benefit for connecting crews, without requiring additional crews or aircraft to

fly the schedule, while maximizing robustness of crew connections.

Levin [21] was the first to propose the idea of adding time windows to aircraft routing and

scheduling models. In that paper, time windows were used to allow departures to occur at

discrete time intervals. Because the scheduled time of some flights is more flexible than

others, the width of each time window, defining the set of possible departure times, is a

parameter that can be different for every flight. Here we assume a uniform departure time

window for each flight and do not discretize the time window; any time within the window is

an allowable departure time.

4.4.2 Crew pairing and Departure Re-timing Model

In our work, we consider the fleet assignment and aircraft routings as fixed, and ensure

that any crew pairing solution with retimed flight legs that our model produces does not

violate the current fleeting and routing solutions.

To make the trade-off between robustness and cost, we first solve the conventional pairing

problem, which gives us a minimum planned crew cost, denotedcoc. Then, we include in

crew pairing and re-timing model a constraint limiting the crew cost to some specified

amount greater thane the minimum cost. Next we solve Lan et al's model [27], which

generates the robust routing solution input to our model, with its associated planned

connecting time for each aircraft connection (i,j) referred to as RobustTurn... We include in

our crew pairing and departure re-timing model's objective function a term to minimize for
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each aircraft connection, the absolute decrease after retiming in the connection time

RobustTurn , for each aircraft connection (ij).

Before introducing our robust crew model with time windows, we present the following

notation.

Parameters:

" F : set of flight legs i

" P : set of pairings p

" C : set of aircraft connections (ij) included in the robust aircraft routing solution

" F,: penalty cost that represents for each pairing p the weighted number of

connections included in the pairing p that are critical for the crew.

" 51 : equals 1 if pairing p includes flight i, else 0

- Q',: weight attributed to the aircraft connection (ij)

Sr : the "robustness" factor, as previously defined

Variables:

" y, : equals 1 if pairing p is in the solution, 0 otherwise

For each connection (i, j) e C , we define:

" t : equals the arrival time of flight i

- t : equals the departure time of flightj

" e11 : equals the difference between the planned re-timed aircraft connection time

and RobustTurn

" A ij: equals the absolute value of eij, if e 1 <0; 0 otherwise

The robust crew schedule with time windows model is:

Min I F, y, +( aA (4-9)
pP

Subject to
1 6 y, =P1 for all flight legs i in F (4-10)
p(

I, yP P (1 + r).cOC (4-11)
pP
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I t o,, y, - It' 5, y, > MinTurn for all aircraft connection (i, j) e C (4-12)
PE P PEP

I t- o,, y, - I =|i, y= Robus Turni + eij for all aircraft connection (i, j) e C (4-13)
pEP pP

- ei : A i for all aircraft connection (i, j) e C (4-14)

0 < Ai for all aircraft connection (i, j) e C: (4-15)

The objective (4-9) is to minimize the sum of the weighted number of critical connects

and the positive deviation of each aircraft connection from its robust turn time. Constraints

(4-10) ensure that each flight leg is covered exactly once. Constraint (4-11) guaranties that

planned crew costs are close to the minimum possible. Constraints (4-12) ensure that the

current routing solution is still feasible, with each aircraft turn longer than the minimum

required. Constraints (4-13)-(4-15) state that for each aircraft connection (ij) included in the

current routing solution, Aii is equal to 0 if the planned connection time is greater than the

robust connection time and is the robust connection time minus the planned connection time

otherwise.

We attribute different weights to the A -term in the objective function to ensure that our

retimed solution does not undo the robustness gains achieved by solving the Lan et al model.

For example if a flight leg is important to the airline due to its revenue, or if based on

historical data, a specific aircraft connection is often missed, it might be interesting to assign a

higher weight on these connections.

4.5 Robust Integrated Routing and Crew Planning

4.5.1 Integration

As discussed above, critical connects make the crew pairing solution more susceptible to

disruptions. To ensure a more robust schedule, we minimize the number of critical connects,

by keeping the aircraft and crew together, if connection times are in the critical zone

Figure 4.3 illustrates the idea of our integrated robust routing and crew pairing model.

Assume that the same crew is assigned to flight legfl and flight legJ2 and the same aircraft is

assigned to flight leg fl and flight leg f3. The solid lines with arrows represent the planned
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schedule. The connection between fl and f2 is a critical connect. Suppose that according to

historical data, fl is often delayed to the position of f'1. In that case, the crew is disrupted as

seen in 4.4.1 because ACCT is shorter than MCCT. Now let's consider that the aircraft

routing is changed tofl followed byJ2. In this case even whenfl is delayed, crew and aircraft

are not disrupted. This solution is therefore more robust than the original one.

N

N f'1

TMTT

f3 f2
- Planned

Actual

Figure 4.3: Illustration of robust extended crew scheduling

The challenge here is therefore to integrate and solve the aircraft routing and crew pairing

problems in order to minimize the number of critical connects.

Cohn and Barnhart [11] were the first to propose the idea of integrating aircraft routing

and crew scheduling decisions. They notice that short connects reduce crew costs by

increasing the crew utilization. But, because the feasible short connects are determined by the

aircraft maintenance routing solution, they develop an approach in which the crew pairing

problem is solved simultaneously with the aircraft routing problem. In their model, they add

to the basic crew pairing model a collection of variables, ensuring that the crew solution

generated has an associate feasible aircraft routing solution. By integrating these decisions,

crew pairing solution costs can be reduced because more short connects can be utilized in the

crew solutions.

4.5.2 Integrated Robust Routing and Crew Model

In our integrated robust routing and crew model, we use a similar idea to that introduced

by Cohn and Barnhart [11]. Our objective is modified, however, to choose an aircraft routing

solution and a crew pairing solution that minimizes the number of critical connects used while
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keeping crew costs close to minimum. In this model, a critical connection is a crew

connection, in which the planned connection time is comprised between 45 minutes and 1

hour and the sequential flight legs are not assigned to the same aircraft. Again, to balance

crew costs and the number of critical connects, we first solve the usual crew pairing model,

which gives us a planned crew cost, referred as c0c. Then we include in our model a

constraint limiting crew costs.

Before describing our robust extended model, let's introduce the following notation:

Parameters

" F: set of flight legs f

* P: set of pairings p

" S : set of maintenance solutions s. A maintenance solution s is a set of aircraft strings

that satisfy the basic aircraft maintenance routing requirements:(4-2) through (4-6), it

determines the feasible short connects and the number of critical connects.

SR,: set of route strings included in maintenance solution s

- C : set of critical connections annulled by S

* S : set of short connections allowed by S

Sber : equals 1 if route string r includes (that is, assigns the same aircraft to) critical

connect c, else 0

- $ih : equals 1 if route string r allows short connect h, else 0

* 6 fp: equals 1 if pairing p includes flightf, else 0

m ac, :equals 1 if pairing p includes critical connect c, else 0

Sahp: equals 1 if pairing p includes short connect h, else 0

Sr : the "robustness" factor, previously defined

Variables:

* x,: equals 1 if maintenance solution s is in the solution, 0 otherwise.

" y : equals 1 if pairing p is picked, 0 otherwise

* ac fc : equal to (0, 0) if critical connect c is covered by one crew and one aircraft or

if critical connect c is not included in the maintenance routing solution and is not in the
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crew pairing solution; (0, 1) if critical connect c is not in the crew pairing solution

included and is included in the maintenance routing solution; (1, 0) if critical connect c is

included in the crew pairing solution and not in the maintenance routing solution.

The integrated robust aircraft routing and crew pairing problem is:

Min I ac (4-16)

Subject to

Zx5 =1 (4-17)
SES

If, y, =1 for all flight legs f in F (4-18)
pEP

I Ihr Xs - ahp yp = 0 for all short connections h in S (4-19)
SE S rE Rs pE P

b - 1 ac, y, - ±c + a, = 0 for all critical connections c in C (4-20)
sE S rE R, pE P

I , y, YP! (1 + r).coc (4-21)
pEP

The objective (4-16) is to minimize the number of critical connects in the selected crew

pairings. Constraint (4-17) ensures that exactly one maintenance solution is selected.

Constraints (4-18) guarantee that each flight leg is covered by exactly one crew. Constraints

(4-19) ensure that only feasible short connects are included in the crew pairing solution.

Constraints (4-20) count the number of critical connects in the pairing solution that are not in

the aircraft maintenance routing solution. Constraint (4-20) ensures that the cost of the

selected crew pairings is close to minimum crew pairing costs.

4.5.3 Ensuring Robust Maintenance Routings

An important challenge associated with this model is the issue of how to ensure

robustness of the aircraft routing solutions. Our idea is to generate routing solutions in our

model using the robust aircraft routing model of Ageeva, which ensures aircraft swapping

opportunities and ease of recovery in case of disruption. Alternatively we could use Lan et

al's robust routing model 4.2, which limits delay propagation. Because in our integrated

robust crew and aircraft routing model we are merely selecting an aircraft routing solution, we

will not alter the robustness proprieties of the routing solution selected in solving our model.
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Chapter 5

Hub Debanking

5.1 The Airline Industry

5.1.1 Birth of the Hub-and-Spoke Network

Before 1978, the Airline Industry was regulated. Two agencies, namely the Civil

Aeronautics Board and the Civil Aeronautics Authority, set fares and determined which

airlines could serve which cities. Because several carriers often served the same markets, the

competition in the industry already existed. To preserve their market share, carriers competed

on service, such as the number of passengers per flight attendant, good quality in flight

service and more frequent flights. In 1978, the Airline Deregulation Act deregulated the

airline industry and dissolved the Civil Aeronautics Authority. The airlines were now free to

decide the fares to charge and which routes to serve.

Bogush [8] notices that after deregulation, established carriers decided to mainly compete

not on fare but on service, for example better meals, more frequent flights, more itineraries.

The establishment of the hub-and-spoke network is the result of the desire to offer more

destinations, and therefore stimulate more demand. In this strategic policy, flight schedules

are built with a focus on the hub airports and a goal of trying to maximize the number of

itineraries that can be offered by connecting flights into and out of the hubs. Thus hubs

allowed carriers to expand service networks for less cost than point-to-point services for each

of the routes. Hubs also allowed airlines to survive for post-deregulation competition by

consolidating passengers destined to multiple locations at spoke stations, and redistributing

them on connecting flights at the hub. Figure 5.1 illustrates the difference between the hub

and spoke network design and the point-to-point network design. To serve n2 O-D pairs with
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the point-to-point, one need n2 flight legs but with the hub-and-spoke one can do it with n

arcs

- '0

Hub and Spoke network

Figure 5.1: Illustration of two schedule operating networks for the airlines

The potential benefits of the hub and spoke strategy are numerous: greater frequency and

travel options, access to small cities, and better resource utilization through consolidation. To

achieve these benefits, however, it requires a high-degree of operating efficiency at the hubs.

5.1.2 Changes in Competition

According to Bogusch [8], prior to the advent of the Internet, most flight reservations

were booked through travel agencies via the Customer Reservation System (CRS). Flights for

a given origin-destination city pair appeared ranked by departure time and total elapsed time.

Appearing on the "first screen" of the CRS search was an important factor in the number of

bookings an airline received and hence was a key determinant to market share. Competition to

appear on the first screen was fierce and airlines scheduled flights to coincide with the most

popular departure times, and to achieve the shortest planned connection time. This led to

banking of flight legs at hubs, that is, a sequence of flight leg arrivals followed closely by

flight legs departures. Banks result in planned periods of peak activity followed by limited

activity at the hub airports.
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As the number of tickets sold on the Internet increased, customers gained more

knowledge about their travel options. Moreover, because the majority of Internet travel sites

display itineraries in order of increasing price and not increasing elapsed time, itinerary

elapsed time became less important in influencing passenger buying decisions. At the same

time, an increasing number of carriers started to enter the industry. These new entrants, called

low-cost carriers, compete based on low fares. Their principal advantage is their low

operating cost, which they achieve with strategies such as: minimum service in single-class

flight legs, acquisition of used and refurbished aircraft, fleet commonality and a cheaper but

more productive labor force. These new carriers are not locked into expensive labor contracts,

as the legacy carriers with their heritage of regulation.

These two factors, near perfect customer information and low cost carrier entrance in the

market, led to an emerging unwillingness from the customers to pay high fares. The large

network legacy carriers were pressured to lower their costs or face bankruptcy. The first step

was to analyze to what their high operating costs were attributable.

Figure 5.2 American Airlines scheduled mainline departures in 15-minute intervals at DFW, March 2002
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The high operating cost of large network carriers is not only due to high labor costs but

also to low operating efficiency at the hubs. Motivated by the desire to offer customers the

shortest connection times and departures at popular times, carriers such as American Airlines

(AA) had banked schedules to enable very short passenger connections. Figure 5.2 depicts

AA's scheduled mainline departures over fifteen minute intervals out of Dallas Fort Worth

(DFW) for March 2002. It is evident that there are 8 departure banks in this schedule at DFW.

As a result of these peaks in ground and airport resources, hubs are periodically congested

over the day, leading to significant delays. Figure 5.3 depicts the correlation between AA's

average delay per departure flight and flight departure frequency over fifteen intervals out of

Dallas Fort Worth (DFW) for March 2002.
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Figure 5.3 American airlines scheduled mainline departures and average delay per flight in 15 minute intervals at
DFW, March 2002

From Figure 5.3, we can see that each departure peak corresponds to a peak in delay

incurred by flights. Note also the increasing trend of these delays over the day due to the

accumulation of aircraft queues at the airports. Flight delay is maximum at 8pm with an

average delay per flight leg of more than 50 minutes. Delays of this magnitude have
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significant impacts on airline operations and on passengers. Flight delay at hub airports is

only one of the drawbacks of the hub-and-spoke banked network. Banking also leads to:

1) Uneven aircraft utilization: Aircraft must wait at spoke airports until an appropriate

time to depart and meet the scheduled arrival bank at the hub station;

2) Low resource utilization: Increased numbers of ground employees must be present in

order to process passengers, luggage, etc during the banks. Employees are then mostly

must be present idle between banks

5.1.3 American Airlines Debanking Policy

In April 2002, American Airlines moved toward a more continuous flow of arrivals and

departures at their hub in Chicago, O'Hare International Airport (ORD). In November 2002,

they decided to extend this policy of de-banking to their hub in Dallas Fort Worth (DFW).

While a debanked schedule runs the risk of reduced revenue potential, a steady flow of

departures and arrivals should have a favorable effect on operating costs.

In the remainder of this chapter we analyze the debanking policy of American Airlines at

Dallas Fort Worth. First, we examine at a high level, the schedule changes compared with a

banked AA schedule. Then, we assess the robustness of the debanked schedule in terms of on-

time performance, passenger connections and ease of aircraft recovery, compared to a banked

AA schedule.

5.2 Analysis of American Airline Policy of Debanking at
Dallas Fort Worth airport

5.2.1 Analysis Methodology

When isolating the effects of a schedule change, one must take into account a variety of

additional factors that might influence the analysis, such as:

- Seasonality: seasonal effects can occur in both passenger demand and traffic patterns;

- One-time shocks;

- Industry trends: fluctuations in demand and changes in certain airline policies; and

- Incremental changes: small changes such as block time adjustments, boarding

procedure changes that the airline makes to its schedule.
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To address the seasonality effects, we choose to compare data from March 2002, before

the debanking policy, to data from March 2003, after the debanking policy. We use historical

data from the Airline Service Quality Performance (ASQP) database. The ASQP database

provides flight information for all domestic flights served by jet aircraft by major airlines in

the U.S.. For each flight leg, ASQP provides the following flight operation information:

airline, flight number, origin and destination airports, planned departure time and arrival time,

actual departure time and arrival time, taxi-out time, that is, the time between the aircraft

departure from the gate and the actual take off, and aircraft tail number.

Dallas Fort Worth is a hub for Delta Airlines, American Airlines and American Eagle.

American Eagle is a partner of American Airlines. This partnership enabled American

Airlines to offer more frequent service to various regional locations at DFW. American Eagle

serves 133 regional destinations. American Airlines and its commuter sister American Eagle

both depeaked their schedule at DFW, therefore we assess the effects of this conjoint policy

change.

5.2.2 Dallas-Fort Worth Airport

To address the effects of industry trends at Dallas Fort Worth, we first assess the

position of American Airlines and its partner American Eagle by comparing the numbers of

flights per day they operate with the numbers operated by other airlines at Dallas-Fort Worth

(DFW).

DFW flight repartition by airline 2002 DFW Hight repartition by airline 2003

* AA M AA

* AE N AE

0 Delta 0 Delta

0t Other 0 Other

Figure 5.4 Flight repartition by airlines in March 2002 and March 2003 at DFW
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Figure 5.4 illustrates the number of departure flights per airline at DFW. We can see that for

both years, American Airlines is the dominant airline at DFW, even though the relative

proportion of other airlines has increased from 2002 to 2003 Table 5.1 lists the number of

mainline departures per airline at DFW for March 2002 and March 2003.

Table 5.1 Number of mainline departures per airline at DFW

March 2002 March 2003
AA 414 404
AE 190 196

Delta 89 84
Other 59 212

The number of flights operated by American Airlines, American Eagle and Delta Airlines is

roughly the same in March 2002 and March 2003, while the number of flights for the other

airlines has more than tripled. This increase is attributable to two new airlines operating in

March 2003 compare to March 2002 at DFW, namely Skywest and Atlantic Southeast.

Skywest offers 42 flights and Atlantic Southeast offers 96 flights, both as Delta connection

partners.

Skywest and Atlantic Southeast operate small aircraft, for example the Canadair regional

jet. At DFW, there are two different runways, one is dedicated to the take-off and landing of

medium to large aircraft, such as those used by American Airlines, Delta Airlines,

Continental Airlines, etc, and the other one is dedicated to the take off and landing of smaller

aircraft, such as those operated by American Eagle, Skywest, Atlantic Southeast, etc.

Therefore, levels the two new regional carriers' operations at DFW affect congestion levels

only for American Eagle, and not American Airlines.

5.2.3 Overview of Schedule Change

As seen in section 5.2.2, the variation in the number of mainline departures for American

Airlines and American Eagle at DFW in March 2002 and in March 2003 is negligible.
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Figure 5.5 Comparison of domestic mainline scheduled departures per 15 minute interval, for American Airlines

at DFW, March 2002 and March 2003
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Figure 5.5 shows a direct comparison of the American Airlines (AA) domestic mainline

scheduled departures from Dallas Fort Worth in March 2002 and in March 2003. In this

graph, one can see that AA's new scheduling policy essentially cuts off the tops of the eight

previously distinct peaks and redistributes flights into the surrounding time intervals. As a

result, the maximum number of departures per 15-minute interval has gone from 32 in March

2002 tol2 in March 2003. We conduct the same analysis for American Eagle. The results are

shown in figure 5.6. The maximum number of departures per 15-minute interval has gone

from 13 in March 2002 to 8 in March 2003. Although American Eagle's policy also has cut-

off the top of the previously distinct peaks, but not to the same extent as American Airlines.

We define the degree of peaking, as the maximum percentage of flights departing in a given

interval. Figures 5.7 and 5.8 show the mainline departures for AA and AE respectively,

scheduled per 15 minute interval as a percentage of total mainline departures at DFW for AA

and AE respectively. The degree of peaking for AA has gone from 7.68% in March 2002 to

2.99% in March 2003. During the same period, the degree of peaking for AE has gone from

7.06% to 4%.
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Figure 5.7 American Eagle at DFW scheduled departures in 15 minute intervals, March 2002 and March 2003,
normalized by number of flights
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Figure 5.8 American Eagle at DFW scheduled departures in 15 minute intervals, March 2002 and March 2003,
normalized by number of flights

From figures 5.7 and 5.8, we observe that American Airlines and American Eagle reduced by

more than 50% their degree of peaking while operating essentially the same number of flights

in 2003 as 2002 at DFW.

5.3 Robustness Analysis

In this section we attempt to estimate the effects of the changes made in American

Airlines and American Eagle's schedules at Dallas Fort Worth. We consider three different

criteria to evaluate the robustness of a schedule:

1) Operational performance: average delay per flight and the degree of congestion at

the airport ;

2) Passenger connection: scheduled passenger connections and the number of passenger

misconnections; and

3) Aircraft ease of recovery: average number of swapping opportunities among the

same aircraft family
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5.3.1 Operational Performance

5.3.1.1 Delay Minutes

The monthly average delay per mainline flight departure, as shown in Table 5.2, for

American Airlines, American Eagle and the other airlines in March 2002 and March 2003, at

Dallas Fort Worth.

Table 5.2 Average delay for mainline departures per airline at DFW, March 2002 and March 2003

AA AE Others
In March 2002 2003 2002 2003 2002 2003
Delay per 11.5 5.5 10.0 5.3 9.4 6.3

flight(min)

We can see that for all airlines, average delay decreased from 2002 to 2003 even though

the total number of mainline departures, as seen in section 5.2.2, increased. Average delay

decreased by 50% for AA flights, by 47% for AE flights and by 32% for the other airline

flights.
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Figure 5.9 Average delay minutes per mainline departure for American Airlines in 15 minute intervals, March
2002 and March 2003 at DFW

73



50
45 -

40

S35
S30+
5

25 A

20

15
100
5

o S
0-

Time of day

-+-2002 -.- 2003

Figure 5.10 Average delay minutes per mainline departure flight for American Eagle in 15 minute intervals,
March 2002 and March 2003 at DFW
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Figure 5.11 Average delay minutes per mainline departure flight for other Airlines (not AA or AE) in 15 minute
intervals, March 2002 and March 2003 at DFW

The average departure delay minutes per flight for AA at DFW in March 2002 and March

2003 is shown in Figure 5.9. One can see that in March 2002 not only were more delays

occurring as the day progressed, but the average delays were getting longer. In March 2003,
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this increasing delay trend has disappeared with the average delay remaining between 0 and

10 minutes throughout the day. A similar delay evolution for AE from March 2002 to March

2003 is shown by Figure 5.10. Interestingly, although the other airlines did not debank, they

reaped the benefits of AA's and AE's debanking. Figure 5.11 illustrates a decrease in delay

per flight for the other airlines from March 2002 to March 2003. Note, however, that even in

March 2003 the average departure delay for other airlines is not consistent and still reaches

levels experienced in 2002.

5.3.1.2 Taxi-out Time

Taxi-out time, the time between the aircraft departure from the gate and the actual take off

is influenced by a number of factors (Idris et al [14]) namely:

1) Ruaway configuration: determines the flow pattern on the airport surface;

2) Airline! terminal configuration: determines for each airline, the distance between the

gate and the runway;

3) Weather and downstream restrictions; and

4) Departure Demand and Queue Size: large queues of departing aircraft form on the

airport surface due to imbalances between demand and (reduced) capacity

We report the average taxi-out time per mainline departure for AA, AE and the other airlines

in March 2002 and 2003 at DFW in Table 5.3. Average taxi-out time for AA departures

decreased by 20%, for AE by 12% and for the other airlines by 13%. This decrease in taxi-out

time, assuming that in March 2002 and in March 2003, the runway, the airline/ terminal

configurations and the weather conditions are the same, is explained by a decrease in queue

size and hence, congestion, due to the debanking policy of AA and AE.

Table 5.3 Average taxi-out time per airline at DFW, March 2002 and March 2003

AA AE Others
In March I 2002 2003 I 2002 1 2003 2002 2003----- ------

Taxi-out(min) 18,1 14,9 18,5 1 16,3 19,5 16,9

The runway configuration at DFW, presented in section 5.2.2, combined with the fact that

departure demand remained the same for medium and large aircraft, and increased for small

aircraft, explains the larger decrease in taxi-out time for AA than for AE. Interestingly
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although Skywest and Atlantic Southeast increased demand for capacity on the runway used

by AE, average taxi-out times were decreased for each of these airlines because of AE's

debanking policy.

5.3.2 Passenger Connections

Table 5.4 Top five passenger destinations departing from DFW, March 2002

Carrier Destination Origin # passengers
AA LAX DFW 44041
AA ORD DFW 42951
AA MIA DFW 39788
AA LAS DFW 35843
AA SAT DFW 34809

Table 5.5 Top five passenger origins arriving to DFW, March 2002

Carrier destination Origin # passengers
AA DFW LAX 44729
AA DFW ORD 44236
AA DFW MIA 39422
AA DFW LAS 35231
AA DFW STL 35138

Identifying the origins/destinations served through DFW with large passenger demands in

March 2002 (see tables 5.4 and 5.5) we select four AA itineraries through DFW with high

demand and compare their planned connection times and the numbers of misconnections in

March 2002 and March 2003. The four itineraries are: Los Angeles to Chicago (LAX-ORD),

Miami to Los Angeles (MIA-LAX), Chicago to Las Vegas (ORD-LAS) and Saint Louis to

San Antonio (STL-SAT). To conduct this analysis we make the following simplifying

assumptions:

1) A smooth passenger connection requires at least 35 minutes of actual connection time,

between the actual arrival time and the actual departure time of the two connecting

flight legs. A tight passenger connection is one in which the actual connection time is

between 35 minutes and 20 minutes. A missed passenger connection has actual

connecting time less than 20 minutes; and

2) If a passenger misses his/her connection, we assume that the airline can accommodate

him/her on the next flight to his/her destination.
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As illustrated in Table 5.6, the planned passenger connection time after the debanking

policy has increased for the four itineraries. Nonetheless the maximum increase is 15 minutes

which represents a 37 % increase in connection time and the average increase in connection

time for these four itineraries is 6.75 minutes. This result is consistent with that reported by

Bogusch [], who shows that the average increase in connection time induced by AA's

debanking policy at Chicago (ORD) is 5 minutes.

Table 5.6 Planned passenger connection times for American Airlines for selected O-D pairs, March 2002
and March 2003

Planned connection
time min)

2002 2003
LAX-ORD 40 55
MIA-LAX 51 53

ORD-LAS 47 57
STL-SAT 48 48

Table 5.7 summarizes the distribution of the actual passenger connection time for our

four itineraries, in March 2002 and March 2003. The number of missed connections and tight

connections decreases from 2002 to 2003 for all itineraries except MIA-LAX. A closer look

to the data, reveals that the missed connections for this itinerary are due to large delays at

Miami. The departure delay at Miami in March 2003 was over 20 minutes for 10 days. Note

also that from March 2002 to March 2003 the average departure delay at Miami airport

increased by more than 86%, that is, from 6.3 minutes to 11.7 minutes. Therefore we can

assume that this increase in missed connections is due to an increased in congestion at Miami.

For the other three itineraries the decrease in missed connections is indicative of an increased

robustness of the debanked flight schedule, experienced by connecting passengers.

Table 5.7 Distribution of actual passenger connection times for American Airlines for selected O-D pairs,
March 2002 and March 2003

2002 2003
Missed (%) Tight (%) Smooth (%) Missed (%) Tight (%) Smooth (%)

LAX-ORD 11 37 52 0 3 97
MIA-LAX 0 6 94 19 16 65
ORD-LAS 16 20 64 8 4 88
STL-SAT 17 17 66 0 3 97
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Table 5.8 Distribution of passenger tight connections for American Airlines for selected O-D pairs, March
2002 and March 2003

2002 2003
30-35 min 25-30 min 20-25 min 30-35 min 25-30min 20-25 min

(%) (%) (%) (%) (%) (%)
LAX-ORD 80 20 0 0 100 0
MIA-LAX 100 0 0 80 20 0
ORD-LAS 60 20 20 0 100 0
STL-SAT 80 20 0 0 100 0

Table 5.8 summarizes the distribution of the tight connections for these itineraries.

5.3.3 Aircraft Ease of recovery

As seen in section 3.4.1, to recover from an aircraft shortage or disruption, airline

operations centers typically swap among aircraft of the same fleet family. Banked Hub-and-

Spoke networks, with departure and arrival banks, have the advantage of ensuring that every

couple of hours, significant number of aircraft of the same fleet family is on the ground at the

same time. This provides a large number of potential swapping opportunities. We are

interested therefore, to assess if a debanking policy of spacing arrivals and departures

throughout the day, reduces these swapping opportunities and therefore reduces the

robustness of the flight schedule.

Based on aircraft tail number from the ASQP database, data from JP international fleet

[15] and the simplifying assumption that flight legs operated on multiple days are assigned to

the same equipment type, we conclude that American Airlines in their domestic network

operates two different aircraft families at DFW: the DC-9 family and the Boeing 757-767

family. We estimate the number of aircraft of each of these families on the ground at DFW

per 15-minute interval in March 2002 and March 2003, and illustrate our results in Figure

5.12 and 5.13.
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Figure 5.12 Number of DC-9 on the ground at DFW for American Airlines per 15 minute interval, March 2002
and March 2003
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Figure 5.13 Number of Boeing 757 and Boeing 767 on the ground at DFW for American Airlines per 15 minute
interval, March 2002 and March 2003

As expected, the number of aircraft on the ground is more constant throughout the day in

2002 than in 2003. In figure 5.12, even without the banking the number of DC-9 on the

ground in March 2003 is at least 5, for more than 90% of the time. Hence an adequate number

of swapping opportunities exist for DC 9's throughout the day. For the Boeing 757-767
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family, however, roughly from 1pm to 3pm the number of aircraft on the ground at DFW is

below three. During that period the number of swapping opportunities is limited and in the

event of an aircraft disruption, the debanked schedule might not be robust enough.

Table 5.9 Average ground time (in hours) per aircraft for American Airlines at DFW, March 2002 and
March 2003
Ground time per aircraft

(hour)
2002 2003

DC-9 2.015 2.95
757-767 1.26 2.28

The reduction in swaps opportunities is offset to some degrees by the increases in aircraft

productivity achievable with debanking. The average ground times per aircraft type at DFW

for American Airlines in 2003 compared to 2002 are summarized in Table 5.9. The average

decrease in ground time is 37% for the DC-9 family, and 23% for the 757-767 family. This

clearly illustrates the increased aircraft utilization achieved by debanking policy.
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Chapter 6

Conclusions

6.1 Summary

In airline operations, flight delays and cancellations are common and often lead to

passengers, crews and aircraft delays and disruptions. Fundamentally, there are two distinct

approaches to deal with these uncertainties.

One is to deal with uncertainty at the operations stage, that is, using recovery procedures.

Recovery procedures aim to reschedule flights, crews and passengers rapidly after disruption.

In chapter 2, we present several of these recovery models. The main challenge of this

approach is that the airline must generate solutions rapidly. This poses serious tractability

issues, as recovery problems have many decision options and are subject to numerous

constraints, including slot availability, gate availability, crew and aircraft restrictions, etc. As

a result, most of these recovery models only tackle one aspect of the airline scheduling

problem, that is, they address aircraft, or crews, or passengers.

Another approach to deal with the problem of stochasticity of operations is to build more

robust schedules at the planning stage. We review methodologies for incorporating robustness

in airline schedule planning. We examine robust airline schedule planning methods that strive

to achieve ease of recovery, or to reduce susceptibility to disruption. In figure 6.1, we

summarize the robust models reviewed and presented in this thesis.

In chapter 3, we present new models for robust scheduling that focus on facilitating

recovery when disruptions occur. After estimating the effects on passengers of limited aircraft

swap opportunities during recovery, we design a robust fleet assignment model that generates
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fleeting solutions with a limited number of aircraft families at spoke airports. This fleeting

solution facilitates recovery and yields shorter passenger delays when aircraft shortages arise.

In chapter 4, we introduce two new models:

1. The robust crew pairing problem with time windows: First we generate an

aircraft routing solution based on Lan et al's [27] model. Then, by rescheduling

and postponing flight departures corresponding to critical (tight) crew

connections, we generate a feasible crew pairing solution with a minimum number

of critical crew connections, translating to fewer crew misconnections during

operations.

2. The integrated robust aircraft and crew pairing model: Here we integrate

aircraft routing and crew scheduling decisions in order to keep aircraft with crews,

when crew connections are critical. This helps to contain disruptions and mitigate

their propagation throughout the network. It also reduces the likelihood that crews

will misconnect when they have tight connections.

We examine in chapter 5 the impact of scheduling policies on robustness. We analyze the

debanking policy at Dallas-Fort Worth, initiated in November 2002 by American Airlines and

American Eagle. As expected, spacing out departure and arrival times allows increased

aircraft utilization and hence, lower operating costs. Debanking also results in less congestion

on airport taxi-ways, runways and at gates, even with increasing numbers of departures and

arrivals. Moreover, debanking allows for more robust operations, as measured by improved

on-time performance.

Interestingly, debanking does not have to result in large average increases in passenger

connection times, and moreover, significant reductions in the numbers of misconnecting

passengers can be achieved. The only robustness drawback to debanking that we identified

identified is the resulting reduction in aircraft swapping opportunities. This reduction,

however, is problematic only if the total number of flights operated by an aircraft family at a

hub airport is small.

Finally, to build robust airline schedules, there are two difficulties:

a. Tractability; and

82



b. Validation, which is the issue of how to assess the quality of a solution and

how to measure the degree of robustness of a solution. One way is to use

simulators, but the ability to model human decisions made during recovery is

still often limited. This issue is directly linked to the issue of assessing the

economic value of schedule robustness and finding the optimal trade-off

between schedule robustness and operating costs.

6.2 Future Research: Robust Framework

The robust models reviewed in figure 6.1 incorporate a robustness criterion for at most

two of the airline schedule planning subproblems: schedule design, fleet assignment,

maintenance routing and crew pairing. Because the airline scheduling problem is solved

sequentially and decisions taken for upstream subproblems often restrict the feasible choices

to downstream subproblems, one possible future research topic is to estimate the impact of the

use of a robustness criterion at one step of the sequential airline schedule planning process on

the subsequent subproblems as measured by the changes in costs and robustness levels. The

goal and challenge is to construct a robust framework that generates the "most" robust airline

schedule plan over all the scheduling subproblems. For example, this framework could be:

1) As a first step toward a more robust schedule, debank the flight schedule at the hub

airports to provide a more balanced schedule at the hubs and thus, reductions in airport

congestion and flight delays.

2) For each sub problem, choose one robustness criterion in order to avoid conflicts. For

instance, choose from Figure 6.2, [3] and [6] or [2], [4] and [7], to generate robust fleet

assignments, aircraft routings and crew pairings.
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