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Abstract

In this dissertation we study a broad class of stochastic scheduling problems characterized
by the presence of hard deadline constraints. The input to such a problem is a set of jobs,
each with an associated value, processing time, and deadline. We would like to schedule
these jobs on a set of machines over time. In our stochastic setting, the processing time
of each job is random, known in advance only as a probability distribution (and we make
no assumptions about the structure of this distribution). Only after a job completes do we
know its actual "instantiated" processing time with certainty. Each machine can process
only a singe job at a time, and each job must be assigned to only one machine for processing.
After a job starts processing we require that it must be allowed to complete - it cannot be
canceled or "preempted" (put on hold and resumed later). Our goal is to devise a scheduling
policy that maximizes the expected value of jobs that are scheduled by their deadlines.

A scheduling policy observes the state of our machines over time, and any time a machine
becomes available for use, it selects a new job to execute on that machine. Scheduling
policies can be classified as adaptive or non-adaptive based on whether or not they utilize
information learned from the instantiation of processing times of previously-completed jobs
in their future scheduling decisions. A novel aspect of our work lies in studying the benefit
one can obtain through adaptivity, as we show that for all of our stochastic scheduling
problems, adaptivity can only allow us to improve the expected value obtained by an optimal
policy by at most a small constant factor.

All of the problems we consider are at least NP-hard since they contain the deterministic 0/1
knapsack problem as a special case. We therefore seek to develop approximation algorithms:
algorithms that run in polynomial time and compute a policy whose expected value is
provably close to that of an optimal adaptive policy. For all the problems we consider,
we can approximate the expected value obtained by an optimal adaptive policy to within a
small constant factor (which depends on the problem under consideration, but is always less
than 10). A small handful of our results are pseudo-approximation algorithms, delivering
an approximately optimal policy that is feasible with respect to a slightly expanded set of
deadlines. Our algorithms utilize a wide variety of techniques, ranging from fairly well-
established methods like randomized rounding to more novel techniques such as those we
use to bound the expected value obtained by an optimal adaptive policy.

In the scheduling literature to date and also in practice, the "deadline" of a job refers to
the time by which a job must be completed. We introduce a new model, called the start
deadline model, in which the deadline of a job instead governs the time by which we must
start the job. While there is no difference between this model and the standard "completion



deadline" model in a deterministic setting, we show that for our stochastic problems, one
can generally obtain much stronger approximation results with much simpler analyses in
the start deadline model.

The simplest problem variant we consider is the so-called stochastic knapsack problem,
where all jobs share a common deadline and we schedule them on a single machine. The
most general variant we consider involves scheduling jobs with individual deadlines on a
set of "unrelated" parallel machines, where the value of a job and its processing time
distribution can vary depending on the machine to which it is assigned. We also discuss
algorithms based on dynamic programming for stochastic scheduling problems and their
relatives in a discrete-time setting (where processing times are small integers), and we show
how to use a new technique from signal processing called zero-delay convolution to improve
the running time of dynamic programming algorithms for some of these problems.

Thesis Supervisor: Michel X. Goemans
Title: Professor of Applied Mathematics
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1. Introduction

In this dissertation we study a broad class of stochastic scheduling problems characterized
by the presence of hard deadline constraints. Scheduling problems in general involve the
assignment of a set of jobs to a set of machines over time. By combining different machine

environments, different objectives, and different side constraints, one can conceive of hun-

dreds of useful scheduling problems. As a result of this abundance of problems as well as

constant attention from researchers in the computer science, operations research, and opti-

mization communities over the past several decades, the scheduling literature has become
quite extensive, and scheduling theory has evolved into a rather mature discipline.

In a stochastic scheduling problem, the processing times of jobs are known in advance

only with uncertainty. The processing time of each job is initially described in terms of

a probability distribution, and the exact processing time of a job becomes known, or is
"instantiated", only after the job is completed. As one might imagine, this stochastic
model gives us a much more versatile means of expressing real world problems in a more

realistic fashion than deterministic models in which the exact processing time of each job
must be known in advance. One does not need to look very hard to find examples of large

projects that have far exceeded their original deadlines as a result of poor planning in the

face of uncertainty in the initial project parameters. Unfortunately, stochastic scheduling

problems (and stochastic optimization problems in general) tend to be far more difficult to

approach from both a theoretical and computational point of view than their deterministic

counterparts.

Stochastic scheduling has received a fair amount of attention in the literature to date.

For instance, there are no fewer than 343 entries in a bibliography of results in stochastic

scheduling maintained until 1995 by Richard Weber [59]. However, the vast majority of

the stochastic scheduling literature has been concerned with problems in which all jobs

must be scheduled in a manner that minimizes some objective. Typical choices include

minimizing a schedule's makespan (latest completion time over all jobs), or minimizing the

sum of weighted completion times over jobs. We consider a different, but also natural

objective: if we associate with each job a deadline and a value, it may not be possible to
schedule all of the jobs successfully by their deadlines, but we would like to devise a schedule

that maximizes the expected value of the jobs that are scheduled by their deadlines. In a
deterministic setting, such problems (e.g., the NP-hard knapsack, multiple knapsack, and



interval scheduling problems) are fairly well understood; however, as Pinedo [46] writes in
his recent book on scheduling theory, "Problems with due dates are significantly harder in
a stochastic setting than in a deterministic setting."

In the chapters that follow, we study many variants of deadline-constrained stochastic
scheduling problems. The simplest of these involves only a single machine and a set of jobs
that all share a common deadline. We call this variant the stochastic knapsack problem
since its deterministic counterpart is the well-studied 0/1 knapsack problem. In the most
general variant we consider, jobs have individual release times and deadlines, there are
multiple machines, and the processing time and value for a job can vary as a function
of the machine to which it is assigned (this is known in the scheduling literature as the
unrelated parallel machine environment). All of these problems are at least NP-hard since
they contain the deterministic knapsack problem as a special case, so we focus our attention
on the development of approximation algorithms: polynomial-time algorithms that output
solutions that are provably close to an optimal solution. We develop 0(1)-approximation
algorithms for most of the problems we consider; that is, the expected value of our solution
will always differ by at most a constant factor from that of an optimal solution. For the
remaining handful of problems, we develop pseudo-approximation algorithms that obtain at
least a constant factor of the expected value of an optimal solution, but that may output
a schedule that is slightly infeasible (say, a schedule that would be feasible if all deadlines
were doubled).

The solution to a stochastic scheduling problem is a policy that specifies the next job to
schedule any time a machine becomes available. A scheduling policy is said to be adaptive
if it makes these decisions based in part on information it has learned about the actual
instantiated processing times of previously-scheduled jobs. A non-adaptive policy commits
to a certain type of schedule in advance (say, an ordering of jobs to be scheduled in sequence)
and adheres to it regardless of its performance as time progresses. An interesting facet of
our work is the study of the benefit of adaptivity in stochastic scheduling problems. We show
that for most of the problems considered in this dissertation, adaptivity can only improve
the expected value of an optimal solution by at most a constant factor. This is proved
constructively, by demonstrating approximation algorithms whose non-adaptive solution
policies obtain expected values that fall within a constant factor of the expected values of
optimal adaptive policies.

Many of the results in this dissertation, in particular those in Chapters 3 and 4, are based
on joint work with Michel Goemans and Jan Vondrik [14, 15], some of which also appears
in the Ph.D. thesis of Jan Vondrik [58]. Chapter 7 is based in part on [13].

1.1 Notation, Terminology, and Problem Formulation

The study of scheduling problems is plagued by an abundance of notation and terminology,
even more so with stochastic scheduling problems. The majority of this chapter is devoted
to a description of our stochastic scheduling models and problems, after which we briefly
summarize the results to appear in the following chapters.

INTRODUCTION 12



Let [n] {1, 2,. ..n} be the indices for a set of n jobs, and let [m] index a set of m

machines. Each job j has an associated processing time pj, valuel wj, and deadline2 dj. On
occasion, we also associate a release time rj with each job j, where rj indicates the time at
which job j becomes available for processing.

1.1.1 The Start Deadline and Completion Deadline Models

In the scheduling literature and in practice, the term deadline indicates the time by which a
job must be completed. In the study of deadline-constrained stochastic scheduling problems,
however, we will occasionally find it more natural and convenient to consider deadlines on
the start times of jobs rather than the completion times. Nowhere in the literature does
there seem to be a distinction made between these two concepts - primarily, it seems,
because they are completely equivalent 3 in a deterministic setting, so there has been no
reason to deviate from the standard notion of a deadline on completion time. The only
model in the literature that is perhaps somewhat similar is that of scheduling with time
windows or "lags" where the start time of one job may be constrained to be sufficiently
close to the completion time of another job.

The results in this dissertation can be divided into two main classes depending on whether
they apply to the start deadline model (a new model we introduce where deadlines are on
job start times) or to the completion deadline model (the traditional model where deadlines
apply to completion times). The reader with a background in scheduling theory, or with
project scheduling in the real world, may ask the reasonable question: is it worthwhile to
study the start deadline model? Arguably, this model does not coincide with many of the
scheduling scenarios encountered in practice, where hard deadlines on completion times are
desired. However, there are good reasons to consider the possibility of deadlines on start
times. If we make the reasonable assumption in practice that our random job processing
times have "well behaved" distributions without too much variability, then there is not so
much difference between the start deadline and completion deadline models (and there is
no difference in a deterministic setting). Furthermore, since our results in the start deadline
model will tend to be simpler and stronger (i.e., we can get closer to the optimal solution),
one can argue as with many scientific models that the analytical strength of the model
compensates enough for the slight loss in realism.

The introduction of the start deadline model entails somewhat of a challenge with regard to
notation and terminology. After careful consideration, we have opted to use the same term,

'The scheduling literature almost exclusively uses the term "weight". However, we prefer to use the
term "value" for maximization problems and "cost" for minimization problems, since this leaves no doubt
as to whether we are maximizing or minimizing. To maintain consistency with standard scheduling notation
(described shortly), we use the symbols w, ... w, to denote the values/costs/weights of jobs.

2In the literature there is sometimes a distinction between a deadline dj and a due date dj, with deadlines
being hard constraints and due dates being soft constraints that one might consider overrunning at some
penalty. In this work, we use only the term deadline and the symbol dj .

3To convert between the two models in a deterministic setting we simply increase or decrease each
job's deadline by its deterministic processing time. The only potentially unpleasant side effect of this
transformation is that for problems in which all deadlines coincide at a single point in time, this property is
not preserved.

INTRODUCTION 13



INTRODUCTION

deadline, for both a start deadline and a completion deadline. There is really no other word
that conveys as clearly the notion of a time by which something must be performed, whether
it is the initiation or the completion of a job. Whenever there is potential for ambiguity,
we use the terms start deadline and completion deadline. In the scheduling literature, the
symbols d1 ... dn are well-understood to represent the completion deadlines of our jobs.
While it might seem less confusing to use different symbols (perhaps 6 ... J" or d' . . . d')
for start deadlines, we actually find that it is less awkward to use d, . . .dn for both purposes.
Many of our results are built upon a common framework that applies to both models, in
which it is quite cumbersome to maintain two copies of each formula just for the sake of
using a different deadline symbol. We clearly indicate throughout our discussion whether
we are in the start deadline or completion deadline model, so there should be no chance of
confusion resulting from the dual use of d, .. . dn.

1.1.2 Random Processing Times

Job processing times are independent random variables whose distributions are provided
to us as input. An important feature of our results is that they do not require "special"
types of processing time distributions. By way of contrast, a large majority of the stochastic
scheduling literature focuses on special classes of distributions (e.g., exponential, Gaussian,
etc.). We generally assume very little about how processing time distributions are described:

" Our algorithms for the completion deadline model assume that we know Pr[pj dj],
and one of these (Section 4.2) requires Pr[pj < t] for any t.

* We also assume for each job j that we know its mean truncated processing time,
pj = E[min(pj, dj)]. For technical reasons, this turns out to be a more natural way4

for us to measure the "expected" processing time of job j than E[pj]. For some
problems (starting in Chapter 5) we assume that we know E[min(pj, t)] for certain
other values of t than t = dj - e.g., for t = dj - r., or for t = di where i j.

For the most part, we treat the pj's and other inputs as abstract real numbers without
worrying about the sizes of their binary representations on a digital computer. Most of our
algorithms have strongly-polynomial running times, running in polynomial time indepen-
dent of the magnitude of the numbers in their input, if we assume that all fundamental
arithmetic operations take constant time (a standard assumption). Only one of our results
(Section 4.2) involves a weakly-polynomial algorithm whose running time is sensitive to the
number of bits in the input.

Finally, we assume that E[pj] > 0 for all jobs, since all jobs j with E[pj] = 0 can be
scheduled instantaneously at the beginning of time.

4 To see one case where this is apparent, consider a single-machine scheduling problem in the completion
deadline model where all jobs share a common deadline d. In the event that pj > d for some job j, it does
not really matter how much larger than the deadline p turns out to be, since we will not be receiving any
value from j. Our instance therefore behaves equivalently to one in which pj has a support in [0, d] U {oo},
in which case the standard measure of expected value might be infinite.

14
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1.1.3 Assumption: No Cancellation or Preemption

The strongest and perhaps most objectionable assumption we make in this dissertation
is that once a job is started, it must be allowed to run to completion. Cancellation or
preemption (putting a job on hold to be resumed later) are forbidden, even in the completion
deadline model when we reach the deadline of a job. One can certainly argue against these
assumptions as being overly restrictive compared to our typical options in practice. For
example, as a job j undergoes processing, we learn more information about p3 over time
since we can condition on the fact that p > t for increasing values of t. It is certainly
conceivable that we may reach a point where we know for sure that j will not complete by
its deadline, or that j will take an unreasonable amount of additional time to complete, so
in practice we might want to cancel j at this point. Another objectionable case occurs in
the completion deadline model when we reach the deadline of a job j but find ourselves
unable to terminate j immediately even though it is now a worthless job. This case is not
problematic if all jobs share a common deadline (and this is a rather common case), but it
can make a noticeable difference if jobs have individual deadlines.

We impose our non-cancellation assumption since it seems necessary to simplify our models
to the point where we can achieve good approximation guarantees. Consider, for example,
a single-machine instance with n unit-value jobs whose processing times are either 0 (prob-
ability 1/2) or oc (probability 1/2), where all jobs share a common deadline at time t = 1.
By canceling or preempting jobs that do not complete immediately, we can successfully
schedule roughly n/2 jobs in expectation, whereas otherwise we could only schedule 1 job
in expectation in the completion deadline model or 2 jobs in expectation in the start dead-
line model. If we are allowed to terminate jobs at their deadlines in the completion deadline
model, then we can also schedule roughly n/2 jobs in expectation. One might think this is
somehow a degenerate case that occurs when we allow processing times of zero, but we can
also modify the instance above by spacing deadlines out an infinitesimal amount around
time t = 1 so that processing times need not be zero. We conclude from this example that
if cancellation/preemption is allowed, our scheduling policies must somehow take advantage
of this fact or else we can only hope to obtain an 0(1/n) fraction of the expected value of
an optimal schedule in the worst case. At the present time, we do not know how to utilize
this extra power.

1.1.4 Random Job Values

Although we typically assume that job values w1 ... w, are deterministic, we can also ac-

commodate job values that are random with known distributions (instantiated when a job
is scheduled). The only requirement here is that w, ... w, must be mutually independent as
well as independent from p1 . . .p, (in the start deadline model, dependence between pi and
wg is permitted). In this case, we simply replace W1 ... wn (random) with E[wi] ... E[wn]
(deterministic) and thereby reduce our instance to one having deterministic job values.

We claim that the reduction above (i) does not change the expected value obtained by
our algorithms, and (ii) also does not change the expected value obtained by an optimal

15



scheduling policy. To see this, let Xi be an indicator random variable that tells us whether
or not job j is successfully scheduled. Given our independence assumptions above, wj and

Xi must be independent, since Xj depends only on random choices and events prior to
the decision to schedule job j (including, in the completion deadline model, the outcome
of j's own processing time), and none of these have any influence or dependence on the
instantiation of wj. Now consider the objective we are trying to maximize:

Maximize E [ WuXJ = E[wj]Pr[job j scheduled successfully].

_1 j=1

The E[wj] terms are of course not affected when we replace the wf's with their determin-
istic expectations. For any optimal policy, E[Xj] = Pr[job j successfully scheduled] is not
affected due to independence. The change also does not affect E[Xj] for the algorithms in
this dissertation, since the only property of the distribution of wj they use is E[wg].

1.1.5 Scheduling Notation

For completeness, we briefly review the standard notation for scheduling problems used in
the literature. Scheduling problems are typically described using a three-field a | 8 | 7
notation initially popularized by Lawler, Lenstra, and Rinnooy Kan [26]. The a field
represents the machine environment. In this dissertation, we concern ourselves with the
following common choices:

* 1 (single machine). In this environment, a schedule simply corresponds to a linear
ordering of the jobs to be processed in sequence.

* P (identical parallel machines). Here, we have m machines available for process-
ing, all running at the same speed.

* Q (uniformly related parallel machines). In this case, our m machines can run
at different speeds si .. sm.

* R (unrelated parallel machines). In this model, the processing time of a job can
vary depending on the machine to which it is assigned. Our processing times are of the
form pij for (i, J) E [n] x [m]. This contains the uniformly related model as a special
case, and also allows us to prohibit certain (job, machine) pairings by assigning them
infinite processing times.

The # field indicates any additional constraints that might be present in our problem.
Typical entries in this field include:

" pj ~ stoch (stochastic processing times). This entry will be present in all of the
problems we consider.

" di = d (common deadlines). All jobs share the same deadline d. This generally
simplifies our problems quite a bit.
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* rj (release times). Jobs have associated release times (also called release dates).
Without this constraint, we assume jobs are all released at time t = 0. When release
times are involved, we assume an off-line model where all jobs (even those not released
at time t = 0) are known in advance. By contrast, in on-line scheduling models, we
know nothing about a job until the point in time at which it is released.

" prec (precedence constraints). Here, we specify along with our jobs a directed
acyclic graph (DAG) whose edges (i, j) indicate precedence relations of the form "job
j can only be scheduled after job i completes". We do not consider precedence con-
straints in any of our problems, and in general it seems very difficult to mix precedence
constraints and deadlines (this issue is discussed further in Chapter 8).

" pmtn (preemption). Without this field set, jobs must be scheduled in a non-
preemptive (i.e., contiguous, or "integral") fashion. If preemption is allowed, we can
interrupt a job and resume working on it later. Preemption typically reduces the com-
putational complexity of a scheduling problem, just as removing integrality constraints
typically reduces the complexity of an optimization problem. In this dissertation, we
only consider preemption in deterministic models (without pj - stoch), since as we
mentioned, preemption gives us too much power in the stochastic case.

Finally, y indicates the objective. Common objectives include:

C Omax (minimize makespan). The completion time of job j is typically denoted
Cj (by convention, uppercase letters are used to denote the output of a scheduling
algorithm, and lowercase letters its input). The makespan of a schedule, Cmax, is the
maximum completion time over all jobs. In a stochastic setting we write E[Cmaxb,
since we wish to minimize expected makespan (this convention applies to all the
objectives below).

E S wjC (minimize sum of weighted completion times.) This is one of the more
common objectives in the scheduling literature. For problems with nonzero release
times, one often considers instead the objective of minimizing the sum of weighted
flow times: E wjF, where F = C, - rj. This objective is equivalent (at least
when computing an exact, rather than approximately optimal solution) to minimizing

E wj Cj, since the two differ by an additive amount of Ej wjrj.

" Lmax (minimize maximum lateness.) The lateness of job j is defined as L =

C, - dj.

" E wjTj (minimize sum of weighted tardiness.) The tardiness of a job is defined
as Tj = max(0, Lj) = max(0, C, - dj).

* 5 Uj (minimize number of tardy jobs.) The indicator variable U, takes the value
1 if j completes after its deadline, and 0 otherwise.

E 5 wUj (maximize weight of successfully scheduled jobs in the completion
deadline model.) This is one of the two objectives on which we focus in this dis-
sertation. The indicator variable Uj (sometimes written as 1 - U,) takes the value 1

17



if job j completes no later than its deadline. In terms of computing an exact opti-
mal solution, this objective is equivalent to E wjLUj (minimizing the weight of tardy
jobs). However, the two objectives must be considered separately for purposes of ap-
proximating an optimal solution. In this dissertation, we focus on the maximization
objective.

E wjVj (maximize weight of successfully scheduled jobs in the start dead-
line model.) In this dissertation, we introduce a new indicator variable V that
behaves just like U except it applies to start deadlines instead of completion dead-
lines. We have V3 = 1 only if job j starts no later than its deadline. One can also
consider the minimization objective E wj Vj, although as above we will focus on the
maximization case.

For example, one of the simplest problems we consider is 1 pj - stoch, dj = d I E[E wjUj]:
we have a single machine, all jobs have stochastic processing times and a common deadline d,
and our objective is to maximize the expected total weight of the jobs that complete by their
deadlines. We refer to this problem and its analog 11 pj ~ stoch, dj = d I E[E wjVj] in the
start deadline model as variants of the stochastic knapsack problem, since these problems
both involve a single machine (knapsack) with a rnmmnn deadline (capacity). One of
the more complicated problems we consider is R I pj - stoch IE[E wjVi]: scheduling
on unrelated machines in the start deadline model where each job has its own individual
deadline. Remember that if our objective contains U or Uj, we are in the completion
deadline model, and if our objective contains Vj or Vj, then we are in the start deadline
model.

1.1.6 Adaptivity

In terms of solution structure, there is a significant difference between deterministic and
stochastic scheduling problems. The solution to a deterministic scheduling problem is quite
straightforward - it is just an assignment of jobs over time to each machine. The solution
to a stochastic scheduling problem, on the other hand, is a scheduling policy that decides
the next job to schedule any time a machine becomes available. For an adaptive policy
(also known in the literature as a dynamic policy), this decision can use information that
is known about the current "state" of execution:

" what is the current time? (i.e., how much time remains before the deadline of each
outstanding job?)

" which jobs are currently processing on busy machines, and how long have they been
processing?

" which jobs have already been completed? (we now know the true processing time of
each of these jobs, but since pj's are independent this information does not really help
us in our future scheduling decisions).
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On a single machine, an adaptive policy can be formally defined as a mapping from (time,
set of jobs already processed) to the next job to process. In a parallel machine environment,
domain of this mapping also includes the index and start time for the job currently pending

on each machine that is currently busy.

A non-adaptive policy is a policy that cannot make any decisions based on information

learned from the instantiation of processing times during scheduling. On a single machine,
it specifies in advance an ordering of jobs to schedule in sequence. On a single machine, this

is fairly straightforward if all jobs share a common deadline, since in this case we schedule

jobs from our ordering until we reach the deadline (and in the completion deadline model,
we get no credit for the final job that is still processing). If jobs have individual deadlines,
then the non-adaptive model is actually somewhat weak since it might ask us to continue

scheduling jobs from our ordering even if it turns out that their deadlines have already

expired. One might think it is reasonable to give a non-adaptive policy the power to skip

over a job if its deadline has already passed, but this can be interpreted as a limited form

of adaptivity, since it depends on instantiated processing times of prior jobs. In a few pages

we describe somewhat-related partially adaptive models (called ordered adaptive models)

that adhere to an ordering but are allowed to skip jobs.

In a parallel machine environment, a non-adaptive policy partitions the jobs in advance

into disjoint sequences for each of the machines, after which each machine behaves locally

as in the single-machine case above. In addition to this type of "pre-assignment" policy, we

will also be considering in this dissertation policies based on a single "global" sequence of

jobs. In this case, any time a machine becomes available we schedule on it the next feasible

job from this sequence. In deterministic scheduling, algorithms of this type are called list

scheduling algorithms, and in the stochastic scheduling literature they are sometimes known

as static list policies. One should note that these types of policy are actually adaptive (albeit

in a very limited way) according to our definition.

Adaptive versus non-adaptive types of solutions have been studied in different contexts from

our stochastic scheduling models. For example, Borodin et al. [41 and Davis and Impagliazzo

[12] develop and analyze "adaptive" and "non-adaptive" models of greedy algorithms for

deterministic optimization problems (including deterministic scheduling problems).

1.1.7 Representing an Adaptive Policy

It is considerably easier to describe a non-adaptive policy than an adaptive policy, since

a non-adaptive policy is just a sequence of jobs to schedule on each machines, while an

adaptive policy is defined in terms of a complicated mapping as described in the previous

section. If our processing time distributions are discrete, we can visualize an adaptive policy

in terms of a decision tree, as shown in Figure 1-1. The figure provides a sample instance

of the problem 1 1 pj - stoch, dj = d I E[E wjUj] where all jobs have unit value and a

common deadline at time d = 10, and we are in the completion deadline model. Each node

in the tree corresponds to a state (t, J), with t being the current time and J the set of jobs

that have already completed. Our adaptive policy specifies, at each non-leaf node (t, J),
the job j E [n]\J to schedule next, and the edges emanating from the node correspond to
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Job wj dj pj

1 1 10 2 (Pr. 1/2) or 6 (Pr. 1/2)
2 1 10 8 (Pr. 1)
3 1 10 4 (Pr. 1/2) or 9 (Pr. 1/2)

No value received for jobs that
complete beyond the deadline.

Job 2 Job3 1/2..,p Value=2

1/2 / j- Prob=1/2

Job 2' .. . Value = 2

2 1 Prob=1/4

1/2 Value = I....................... ....... 1Prob=/4
Job 3 Job 2

0 1 2 3 4 5 6 7 8 9 10 time

Figure 1-1: Illustration of an adaptive policy in terms of a decision tree,
drawn on top of a timeline. Each node in the decision tree corresponds to a

particular time and a particular set of jobs we have already scheduled, and

specifies the next job to schedule. This particular example is in the comple-

tion deadline model, since we obtain no credit for a job whose processing

time runs over the deadline. Note that there is no harm in assuming that

our policy continues to schedule jobs beyond the deadline - these jobs of

course receive no value.

the possible instantiations of pj. The expected value obtained by the policy is obtained by

summing over its leaves. In our example, we succeed in completing 2 jobs by the deadline

with probability 3/4, and 1 job with probability 1/4, so E[E wjUj] = 7/4. If we happen to
have a parallel machine environment (with discrete processing times), we can still picture an

adaptive policy in terms of a decision tree, although the states represented by nodes will be

slightly more complicated. In the example above where we have a common deadline, we can

effectively think of our policy as terminating at the deadline; however it will occasionally

be simpler to assume that our adaptive policy is defined in a way so that it continues to

schedule jobs (even beyond their deadlines) until all jobs are scheduled. For example, this

lets us speak clearly about the notion of the expected time at which a job is scheduled. Of

course, we still only receive value for those jobs scheduled by their respective deadlines.

Even if the pj's have relatively simple discrete distributions, it is not clear exactly how much

space might be required to represent the decision tree corresponding to an optimal, or even

approximately-optimal adaptive policy. This is one of the reasons we typically choose to

compute non-adaptive solutions rather than adaptive solutions - since the complexity of

the output is substantially lower. When we do produce adaptive solutions as output (in

Section 4.2), we encode them implicitly in terms of a polynomial-time algorithm that takes

a state (t, J) and outputs the next job to schedule.
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Job wg dj pj
1 E 1 0 (Pr. 1/2) or 1 (Pr. 1/2)
2 E 1 1 (Pr. 1)
3 1 1 0 (Pr. -) or oo (Pr. 1 - e)

Figure 1-2: An instance of 1 I p3 ~ stoch, dj = d I E[E wjUj] having
adaptivity gap arbitrarily close to 5/4. An optimal adaptive policy sched-
ules job 1 followed by jobs 2 and 3 (if pi = 0) or job 3 (if pi = 1). An
optimal non-adaptive policy schedules jobs in the order 1, 2, 3.

Job wj dj pj
1 vF-1 1 0 (Pr. 2- v ) or 1 (Pr. v/-1)
2 v2-1 1 1 (Pr. 1)
3 1 1 oo (Pr. 1)

Figure 1-3: An instance of 1 1 p3 ~ stoch, dj = d I E[ wjVj] with
adaptivity gap 4 - 2'/2 > 1.171. An optimal adaptive policy schedules job
1, followed by jobs 2 and 3 (if pi = 0) or job 3 (if pi = 1), and the orderings
1, 2, 3 and 2, 3, 1 are both optimal non-adaptive policies.

1.1.8 Adaptivity Gap

What is the best non-adaptive policy for the sample instance shown in Figure 1-1? It is
impossible to schedule all 3 jobs so they all complete by the deadline, and for any ordering
of jobs, there is at most a 1/2 probability that we succeed in scheduling 2 jobs (the first job
always completes successfully). Therefore, the optimal expected value obtained by a non-
adaptive policy is 3/2. For example, we could schedule jobs in the order 1, 2, 3. Perhaps
not surprisingly, adaptivity allows us to achieve a higher expected value. To quantify how
much better the adaptive solution can be (i.e., to measure the benefit of adaptivity), we
advocate the use of a natural measure we call the adaptivity gap.

Definition. The adaptivity gap for a problem instance is the ratio between the expected
value obtained by an optimal adaptive solution divided by the expected value obtained by
an optimal non-adaptive solution. The adaptivity gap for a problem is the maximum such
gap over all possible instances.

For the instance shown in Figure 1-1, the adaptivity gap is 7/6. Figure 1-2 gives another
instance with adaptivity gap arbitrarily close to 5/4. This gap of 5/4 carries over to every
other problem we study in this dissertation in the completion deadline model, since they all
contain 1 I pj - stoch, dj = d I E[E wU] as a special case. In the start deadline model,
Figure 1-3 shows an instance with adaptivity gap 4 - 2v/- > 1.171, and this carries over
to all other start deadline problems we study in this dissertation, since they all contain
1 pj - stoch, dj = d I E[Z, wjVj] as a special case.
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2: 1/2 4: 1/2
4-: 1/2 T : 1/2
* 1:/

T: 4/5

........................................

T=6 T=6k

(a) (b)

Figure 1-4: (a) An instance of the stochastic shortest path problem for
which a better probability of arrival by a deadline T is possible if adaptive
routing is allowed. The best non-adaptive path (the straight edges across
the top of the graph) arrives on time with probability 1/4, where the best
adaptive route arrives on time with probability at least 7/20. By concate-
nating k copies of (a), we see in (b) an instance where the non-adaptive and
adaptive probabilities are (1/ 4 )k and at least (7 / 2 0 )k, so our adaptivity gap
is exponentially large factor in the size of the graph.

We wish to stress that the notion of adaptivity gap can be applied not only to stochastic
scheduling, but also to any stochastic optimization problem in which solutions are sequen-
tially constructed. For example, consider the stochastic shortest path problem, where the
length of every edge in a graph is an independent random variable (with known distribution),
and we would like to travel from a designated source node s to a designated destination
node d along a path that maximizes our probability of arriving by some deadline T. A
non-adaptive policy for this problem would select a static path to follow, while an adaptive
policy would select an edge outgoing from the source, follow it, and then decide (based
on the instantiated length of the edge) which edge to follow next. The adaptivity gap of
this problem can be exponentially large in the size of the graph (Figure 1-4). By way of
contrast, most of the stochastic scheduling problems we consider in this dissertation will be
shown to have only a constant adaptivity gap.

The notion of an adaptive scheduling policy is quite prevalent in the stochastic scheduling
literature. However, our notion of adaptivity gap (largest possible ratio of the expected
value of an optimal adaptive solution to that of an optimal non-adaptive solution) does
not seem to have received much explicit attention thus far in the literature. The work
of Mhring, Schulz, and Uetz [41] (which we discuss in more detail in Chapter 2) im-
plicitly considers the adaptivity gap of the problems 1 I pj - stoch,prec I E[E wjCj],
1 | p3 ~ stoch,rj,prec I E[ZLwjCj], and P | p3 - stoch | E[LwjCj], since it analyzes
the performance guarantee for several non-adaptive scheduling policies with respect to an
optimal adaptive policy.
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1.1.9 The "Fixed Set" and "Ordered" Models

In this section we describe several other special models for adaptive and non-adaptive
policies, which we consider in more detail in Chapter 7. Let us focus our attention here on
the single-machine problem with common deadlines (i.e., the stochastic knapsack problem).
A non-adaptive policy for this problem is a sequence of jobs to schedule, and we get credit for
whatever prefix of this sequence we manage to schedule by the deadline. A slightly weaker
model is the following: suppose we must choose as output a set of jobs (not a sequence),
and we only receive the value for the jobs in the set if they all manage to start/complete
prior to the deadline (so the order in which the jobs are scheduled does not matter). We
call this the fixed set model. The maximum expected value we can obtain in the fixed set
model is at most the expected value we can obtain with an optimal non-adaptive policy,
since it is a feasible non-adaptive policy to schedule (in any order) the jobs belonging to
an optimal fixed set, and whereas the value for the fixed set model is received on an "all
or nothing" basis, in the non-adaptive model we get partial credit if we only succeed in
scheduling some of the jobs in our set.

We also introduce the notion of an ordered adaptive policy. Suppose we fix an ordering of
the jobs. As we proceed down this ordering in sequence, we can either schedule each job
(deadline permitting) or skip over it permanently. If the initial ordering of jobs is fixed
and given to us as input, we call this the inflexible ordered adaptive model. If our policy
is allowed to choose the ordering as a preprocessing step, we call this the flexible ordered
adaptive model. For any instance, the maximum possible expected value we can obtain is
from an optimal adaptive policy, followed by an optimal flexible ordered adaptive policy
and then by either an optimal non-adaptive policy or an optimal inflexible ordered adaptive
policy. All of these policies will be at least as good as the optimal fixed set solution.

With the flexible ordered adaptive model, we encounter the somewhat interesting question
of whether or not one can easily compute an ordering of jobs that gives the maximum
expected performance when used to construct an optimal ordered adaptive policy. We
currently do not know the answer to this question, although we will show in Chapter 7 that
regardless of the ordering of the jobs, the expected value obtained by an optimal ordered
adaptive policy always falls within a constant factor (8 in the start deadline model, and
9.5 in the completion deadline model) of the expected value obtained by a general optimal
adaptive policy. Another interesting question is the following: consider the order in which
jobs are scheduled by an optimal adaptive policy. How many such possible orderings might
there be? This number can actually be quite large, as we see from the following example.
Suppose we have n unit-value jobs that share a large integral deadline d > n. Jobs come
in two flavors. Half of the jobs are type A, for which pj takes the values 1, 2, or 3 each
with probability E, and 5, 7, 9,... , 3 + (1 - 3e)/- each with probability 2e. The remaining
half of the jobs are of type B, and have processing time 1 or 2 each with probability e, and
4, 6, 8,... , 2 + (1 - 2E)/- each with probability 2-. If E is sufficiently small, then the optimal
policy uses a type A job (if available) if the remaining capacity has odd parity and a type
B job if the remaining capacity has even parity. Depending on the random outcomes of the
processing times, there are at least ( ) > 2n/n = Q(2n) different orderings of the jobs
that can be produced by an optimal adaptive policy.
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1.1.10 Approximation Algorithms

We assume the reader is familiar with the complexity classes P, NP, #P, and PSPACE,
and with the terms NP-hard, #P-hard, and PSPA CE-hard. An a-approximation algorithm
is a polynomial-time algorithm whose solution is always within a factor of a of an optimal
solution. The factor a is called its performance guarantee, and we adopt the convention
that a > 1 for maximization problems, so what we call a 2-approximation might be called a

-approximation elsewhere in the literature. A particular class of interest in approximation
algorithms is the polynomial-time approximation scheme (PTAS). An algorithm (parame-
terized by some number e) is a PTAS if it runs in polynomial time as long as - is a fixed
constant, and delivers a (1+e)-approximate solution. If the running time only depends poly-
nomially on 1/, then the algorithm is called a fully-polynomial-time approximation scheme
(FPTAS). For the purposes of computing a performance guarantee, we always compare the
expected value obtained by a policy to that obtained by an optimal adaptive policy.

In Chapter 5 some of our results will be pseudo-approximation algorithms. These deliver
solutions that are "nearly feasible" and close in objective value to an optimal "feasible"
solution. We say that a policy is an (a, /)-approximation algorithm if it delivers a solution
whose expected value is at most a factor of a different from that of an optimal adaptive
policy, where our policy has the extra advantage of being evaluated in an environment
where all deadlines are stretched out by a factor of /. By this, we mean that if job j has
original release time rj and deadline dj, then we use the quantity rj + /(dj - rj) as the
new "extended deadline" for j. We will generally only investigate pseudo-approximation
algorithms if it otherwise seems very difficult to obtain a good performance guarantee for a
standard approximation algorithm.

1.1.11 Complexity

All of the stochastic scheduling problems considered in this thesis are at least NP-hard
since their deterministic variants are NP-hard (they contain the 0/1 knapsack problem as
a special case). The true complexity of the stochastic variants is currently open and may
be somewhat worse than NP-hard. There is some evidence to support this: in [14, 58], it
is shown that for 1 1 pj ~ stoch, dj = d I E[E wjUj], the problem of computing a policy
maximizing the probability that some job completes exactly at the deadline is PSPACE-
hard. Also, in [15, 58] it is shown that the stochastic set packing generalization of 1 1 pj ~
stoch, dj = d E[EL wjUj] in which processing times are vector-valued (in two dimensions
or higher) is PSPACE-hard.

Several stochastic optimization problems related to ours are known to be #P-hard. For
example, the problem of computing the probability that a given set of jobs as a whole will
complete before a global deadline is known to be #P-hard [35]. In addition, if our jobs have
precedence constraints and we have an infinite number of parallel machines, then for any
instantiation of the job processing times, we can compute a minimum-makespan schedule
by solving a longest path problem in a DAG. If C* denotes the optimal makespan for a
random instantiation of the processing times, then the problem of computing even a single
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point on the cumulative distribution of C* is #P-hard [27].

1.2 Models for Analyzing On-Line Algorithms

It is possible to consider our stochastic scheduling problems within the framework of on-line

computation, since we are trying to compute the best possible solution despite limitations

on the initial information we know about our instance. Several models have been proposed

in the literature for evaluating the performance of an on-line algorithm, and it is worth

considering whether any of these are potentially well-suited for our problems.

The standard notion of competitive analysis used to analyze an on-line algorithm asks us

how much better we could have done had we known, in advance, what future conditions

would be (i.e., what are the true processing times of all jobs). In other words, we would

be comparing the expected value obtained by one of our solution policies to an omniscient

policy that knows the true processing times of all jobs in advance. More formally, let I

denote an instance of one of our scheduling problems, and let i denote a particular vector

of realizations for our processing times for the instance I. We denote by P(I, r) the value

obtained by a particular adaptive scheduling policy P running on instance I given that

our processing times instantiate to 7r (note that P doesn't know the vector ir in advance,
although it will discover some of its entries as time progresses). Similarly, we denote by

OPT(I, 7r) the value obtained by an optimal omniscient policy. The competitive ratio of

the policy P can now be written as

OPT (I, 7r)
max max.

I 7 P(I,r)

Unfortunately, this ratio can be as large as Q(n) since an omniscient policy simply has too

much power. For example, suppose we have an instance of 1 Ipj ~ stoch, dj = d | E[E wjUj]

with n unit-value jobs with processing times equal to 0 (probability 1/2) or oc (probability

1/2). Here, an optimal omniscient policy achieves expected value n/2 while an optimal

adaptive policy cannot achieve expected value more than 1.

Several alternative models have been proposed in the on-line computation literature to try

and "fix" the shortcomings of competitive analysis (namely, that it compares our perfor-

mance against an adversary that has too much power). Coffmann and Gilbert [11] and

Scharbrodt et al. [49] advocate a measure known as the expected competitive ratio,

OPT (I, r)
m E [ P(I, 7r)

For the problem P pj - stoch E Cj with exponentially distributed processing times, it

is shown in [49] that the expected competitive ratio for the shortest expected processing time

(SEPT) policy (taking jobs in the order E[p1 ] < E[p2] < ... < E[ps]) is 0(1) even though
the traditional competitive ratio is Q(n). Unfortunately, it does not seem possible to make

any sort of similar statement for our deadline-constrained problems, especially since we seek
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results that hold for arbitrary types of processing time distributions (intuitively, it seems
that the expected competitive ratio should grow rapidly once we introduce distributions
that have a significant chance of deviating from their means).

Koutsoupias and Papadimitriou [38] offer two more alternatives. The first is what they call
the diffuse adversary model, where we apply standard competitive analysis but assume that
7 can be drawn (by a malicious adversary) from one of a limited class of input distribu-
tions. The second is a model they call comparative analysis, which compares two classes
of algorithms A and B, typically where A C B, and typically in order to show that B is a
broader, more powerful class than A. For example, by taking A to be the class of on-line
algorithms and B to be the class of all off-line algorithms we would end up back at the
traditional notion of competitive analysis. For further details, the reader is referred to [38].

In the evaluation model we use in this dissertation, our "adversary" is an optimal adaptive
policy that plays by the same rules as the policy P we are trying to evaluate. It knows only
probability distributions in advance, and learns the true processing times of jobs as they
are instantiated during the course of execution. Letting ADAPT(I, 7r) denote the value
obtained by an optimal adaptive policy for an instance I and a realization 7r, we measure
the performance guarantee of P simply as

Em[ADAPT(I, 7r)]
max

I E,[P(I,r)]

This is arguably a very reasonable measure for the quality of a scheduling policy P, and since
our adversary is sufficiently limited in power, we will be able to prove 0(1) performance
guarantees for almost all of the scheduling policies in this dissertation.

As a final note, a completely different way for on-line analysis to potentially creep into our
problems is to allow for jobs to have non-zero release times. In this case, we could assume
an on-line model where we do not know what jobs will be arriving in the future until the
time at which they arrive. However, to simplify matters, we always consider problems with
non-zero release times in an off-line model where we know the properties of all jobs in
advance.

1.3 Chapter Outline and Summary of Results

The structure of this dissertation is as follows.

In the next chapter we conduct a thorough review of relevant results from the stochastic
optimization and stochastic scheduling literature.

Chapters 3 and 4 contain many of the core results of the dissertation. They study the
so-called "stochastic knapsack problem", variants of which include the problems 1 1 Pj ~
stoch, dj = d I E[E wjVj] (start deadline model) and 1 1 pj - stoch, dj = d I E[Z wjUj]

(completion deadline model). In Chapter 3 we focus on analyses based on linear program-
ming (LP) relaxations, and in Chapter 4 we discuss techniques that are not explicitly based
on linear programming. Chapter 3 contains discussion on a variety of LP-based approaches
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Problem Guarantee Section
1 1 pj ~ stoch,dj = d | E[Z w3 Vj] 4 3.2.1

2 4.1 (also [58])
1 p3 ~ stoch I E[Z wjVj] 8 5.1.2

1| p3 - stoch,rj, dj = d I E[Z wj3 V] (8,2) 5.2

P Pj -~ stoch, dj = d I E[E wjVj] 4 6.2.1, 6.3.1
R Pj - stoch,dj = d | E[Z wj3 V] 4 6.5.1

R I pj ~ stoch I E[Z wjVj] 8 6.5.2
1 Pj - stoch, dj = d I E[Z wjUj] 7 3.3.2

4.572 3.4 (also [58])
4 4.1 (also [58])

3+- e 4.2
2 + _ (*) 4.3

S1 pj ~ stoch I E[Z wjUj] 8/(1 - e) 2 (**) 5.1.3

P Pj - stoch, dj = d I E[Z wjUj] 9.831 6.2.2
4.572 6.3.1

R Pj - stoch, dj = d I E[Z wjUj] 9.143 6.3.1

Figure 1-5: Results described in this dissertation. The upper half of the ta-
ble describes results for the start deadline model and the lower half describes
results for the completion deadline model. Note that for some problems we
have multiple results with different performance guarantees. Results citing
[58] are primarily discussed in the Ph.D. dissertation of Jan Vondrik [58].
The result with a guarantee of (8,2) is a pseudo-approximation algorithm.
The result (*) only applies if the processing time distribution pj of each job
j satisfies the condition that (maxpj)/pj = 0(1), and the result (**) only
applies if pj < E for all j (note that these are our only results that makes
any assumptions about the structure of our processing time distributions).

and shows how simple greedy non-adaptive policies can be used to achieve performance
guarantees of 4 in the start deadline model, and ranging from 6 + 4V/2 < 11.657 down to 7
in the completion deadline model. Approaches that have the strongest known performance

guarantees for the stochastic knapsack problem are primarily discussed in the Ph.D. thesis

of Jan Vondri'k [58]. These include

" a non-adaptive randomized policy (whose analysis is LP-based) for the completion

deadline model with performance guarantee 32/7 < 4.572, and

* non-adaptive greedy policies with performance guarantees of 2 in the start deadline

model and 4 in the completion-deadline model.

We omit details of the former policy, but discuss the latter in Chapter 4, where we show

that it delivers a performance guarantee of 2 + E for "small" jobs. By combining this policy
with an adaptive (1 + e)-approximate policy for "large" jobs, we will be able to obtain a
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performance guarantee of (3 + e) for any constant e > 0 in the completion deadline model.
We also show, in Chapter 4, how to obtain a performance guarantee of 2+ E if all processing
time distributions are "well-behaved" in that for every job j we have (maxpj)/pj = 0(1).
Many common distributions satisfy this property - for example, the uniform distribution
and all symmetric distributions.

Chapter 5 removes the dj = d constraint and considers problem variants in which jobs
have individual deadlines and release times. We first focus our attention on the start
deadline model and use randomized rounding to obtain an 8-approximate non-adaptive
policy for 1 I p3 ~ stoch I E[E wjVj]. Adding release times to the picture, we develop
an (8, 2)-pseudo-approximation algorithm for 1 1 pj ~ stoch, rj, dj = d I E[E wjVj]. In
the completion deadline model our results are substantially weaker, as we can only obtain
reasonable performance guarantees when jobs are "small". All of the results in this chapter
and the next are LP-based, and depend on the results in Chapter 3 as a prerequisite.

In Chapter 6 we consider parallel machine environments, starting with the problems P I pj
stoch, dj = d I E[E wjVj] and P I pj ~ stoch, dj = d I E[E wjUj]. Recall that there are two
types of non-adaptive strategies in this setting: (i) "global" list scheduling based on a single
sequence of jobs, and (ii) pre-assignment of disjoint sequences of jobs to each of the machines.
For type (i), we show how to achieve a performance guarantee of 4 in the start deadline model
and 5.5+2.5v/ < 9.831 in the completion deadline model. For type (ii), we give algorithms
with guarantees of 4 (start deadline model) and 32/7 < 4.572 (completion deadline model).
We then consider the unrelated parallel machine model, focusing on policies of type (ii). We
give a 4-approximation algorithm for R I pj - stoch, dj = d I E[E wjVj] and a 64/7 < 9.143-
approximation algorithm for R I p3 - stoch, dj = d I E[E wjUj]. Finally, we allow jobs to
have individual deadlines, and we generalize our techniques from the preceding chapter to
give an 8-approximation algorithm for R I pj ~ stoch I E[E wjVj]. These algorithms are
all heavily based upon our existing LP-based algorithms from the single-machine case.

Chapter 7 considers single-machine, common-deadline problems that involve discrete, integer-
valued processing time distributions. In this case, one can use dynamic programming (DP)
to compute optimal ordered adaptive solutions (for a fixed ordering of jobs provided as
input, which we called the inflexible ordered adaptive model). If we start with the ordering
of jobs suggested by our best non-adaptive algorithms for the stochastic knapsack problem
(performance guarantee of 2 in the start deadline model and 4 in the completion deadline
model), then we know that the resulting ordered adaptive policy must deliver at least as
good of an approximation guarantee. Moreover, we show that for any ordering of the input
jobs, the ordered adaptive policy computed by our DP algorithm will obtain an expected
value at least a 1/8-fraction (in the start deadline model), or a 1/9.5-fraction (in the com-
pletion deadline model) of that of an optimal adaptive policy. We do this by demonstrating
a approximation algorithms with these guarantees for the fixed set model (recall that the
fixed set model is strictly weaker than the ordered adaptive models). Additionally, we show
how to apply a technique from signal processing, known as zero-delay convolution to speed
up the running time of DP algorithms for single-machine stochastic scheduling and other
related stochastic optimization problems.

Finally, in Chapter 8 we discuss open problems and potential directions for future research.
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2. Literature Review

There do not appear to be any results to date in the literature concerning approximation
algorithms for deadline-constrained stochastic scheduling problems, particularly those with
arbitrary processing time distributions. However, there are quite a few areas of study to

which our work is related. In this chapter, we survey these areas and highlight connections

with our models and results. We particularly emphasize related results from stochastic

scheduling literature.

2.1 Stochastic Optimization

Optimization problems involving stochastic parameters (e.g., coefficients in the objective
function or constraints that are random variables with known distributions) have been

studied quite extensively by many different academic communities. One can find many

texts on stochastic optimization and stochastic programming - see for example [3].

One reasonable way to classify stochastic optimization problems is based on levels of re-

course, or equivalently, on the sequence of when we must make decisions and when random
variables in our input are instantiated. At one end of the spectrum, we have problems in-

volving no recourse. One could perhaps describe these using the term average case analysis:

we know that the parameters in our input are generated by some underlying probability

distribution and we want to know the expected value of an optimal solution. For example,
if we know that all edge lengths in a graph are uniformly chosen from [0, 1], we might want

to know the expected diameter of the graph. In this case, we first instantiate all the random

parameters in our instance and then compute the optimal solution value, Z, by solving the

resulting deterministic instance. The optimal solution value Z is a random variable (over

the probability space of our random input parameters), and we might want to know prop-

erties of Z's distribution, such as its expectation. This model is quite different from the

stochastic scheduling models we consider in this dissertation, since in our models we do not
know the instantiated processing time of a job until after we actually commit to scheduling

the job (recall again our comments regarding on-line models in Section 1.2). For further

information on "average case" behavior of the knapsack problem (the deterministic analog

of our fundamental problem 1 1 pj ~ stoch, dj = d I E[E wjUj]), see [6, 39, 24].



Moving away from average case analysis, we find our way to problems involving a single level
of recourse. These are probably the most popular problems in the stochastic optimization
literature in which there is some limited form of adaptivity present. Here, we must first
commit to a partial solution before witnessing the instantiation of any random parameters.
Afterwards, we see the results of the random instantiations resulting from our initial deci-
sions and we must react appropriately by completing our solution in an optimal manner,
or in a manner that repairs feasibility. For example, in a stochastic bin packing problem
(with random item sizes), we might be allowed to purchase bins in advance for a low price,
but after finally witnessing the instantiated sizes of our items we may as a recourse need to
order additional bins (at a much higher price). Some examples of approximation algorithms
for stochastic combinatorial optimization problems with a single stage of recourse include
[47, 32, 51].

It is also natural to consider models involving several levels of recourse, where in each
level we make some decisions and then witness any random instantiations that result. Our
stochastic scheduling problems lie at the extreme in this direction, since they allow for
unlimited levels of recourse. Generally, problems that explicitly involve multiple levels of
recourse can be quite computationally challenging to solve (this is partly why the single
stage recourse models are so popular). The same is true for our problems - for instance,
it seems quite dificult to compute an optimal adaptive policy explicitly. For this reason,
we tend to compute only non-adaptive solutions and then analyze their performance by
comparing against a hypothetical optimal adaptive solution that can take advantage of
unlimited levels of recourse.

2.1.1 Chance-Constrained Mathematical Programming

Traditional mathematical programming asks us to compute an optimal solution that is

feasible with respect to a set of constraints. A chance-constrained mathematical program
involves stochastic parameters in its constraints, and asks for an optimal solution that has
at least some probability q of being feasible. This is sometimes expressed using a set of
chance constraints, each of the form Pr[constraint j violated] < q.

Two recent papers due to Kleinberg et al. [35] and Goel and Indyk[23] consider a chance-
constrained formulation of the stochastic knapsack problem (somewhat analogous to our
problem I I pj ~ stoch, dj = d I E[E wjUj]) motivated by the application of assigning po-
tentially bursty data connections to capacitated links in a communication network. Their
model is somewhat similar to our fixed set model. They consider items (jobs) with de-
terministic values and random sizes (processing times), and the objective is to compute a
maximum-value set of items whose probability of overflowing the knapsack is at most some
specified limit q. Kleinberg et al. consider only the case where item sizes have Bernoulli-
type distributions (with only two possible sizes for each item), and for this case they
provide a polynomial-time O(log 1/q)-approximation algorithm as well as several pseudo-
approximation results. For job sizes that have Poisson or exponential distributions, Goel
and Indyk provide a PTAS, and for Bernoulli-distributed items they give a quasi-polynomial
approximation scheme whose running time depends polynomially on n and log 1/q.
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2.1.2 Markov Decision Processes and Games Against Nature

A Markov process is a stochastic process that moves from state to state according to a
matrix of transition probabilities. A Markov Decision Process (MDP) introduces some
aspect of control into this model, allowing us to select from a set of valid actions in each
state. Each (state, action) has an associated vector of transition probabilities, according to
which we then move to a new state after an action is selected. By associating a value with
each state, MDPs can be used to model a broad range of problems in stochastic optimization
and stochastic optimal control, including the problems studied in this dissertation (at least
if our probability distributions are discrete). However, in our case the state space is far too
large to consider modeling our problems explicitly as MDPs.

A slightly similar notion to that of an MDP is found within the realm of game theory:
a "game against nature" [43] is a system where players try to maximize their utility by
making moves in alternation with a player called "nature", that behaves according to some
specified probabilistic model. We can view the scheduling decisions we make (or the actions
taken in an MDP) as our moves, and the resulting job processing time instantiations (or
state transitions for an MDP) as the moves for nature. Although this framework also
seems too broad to give us any algorithmic advantage, it has proven useful in establishing
hardness results. In [14, 15, 58], PSPACE-hardness of certain variants of stochastic knapsack
and packing problems are shown to be PSPACE-hard via a reduction from the stochastic
satisfiability problem, which behaves like a game against nature as described above.

2.2 Deterministic Scheduling and Packing

The literature on deterministic scheduling is quite extensive. For a comprehensive and well-
written introduction to the field of scheduling, the reader is referred to the excellent book of
Pinedo [46] (which covers stochastic as well as deterministic results). Other good reference
include survey chapters by Kerger, Stein, and Wein [34] and by Hall [28], the latter of which
focuses on approximation algorithms for NP-hard deterministic scheduling problems.

2.2.1 Deterministic Packing Problems

The 0/1 knapsack problem (1 | dj = d | E wjUj) is the deterministic analog of our simplest
stochastic scheduling problems. Ibarra and Kim [31] describe an FPTAS for the knapsack
problem, which also gives an FPTAS for the generalization 1 1 E w3Uj in which jobs have
individual deadlines. By symmetry, this also give us an FPTAS for 1 I rj, dj = d I E wjUj.
Although the start deadline model has not been explicitly considered before in the literature,
we can obtain a PTAS for 1 I I E w3Vj by converting it into an equivalent instance of
1 11 E wjUj by simply adding pj to each deadline dj (thereby converting it from a start
deadline into a completion deadline). In general, for all other deterministic problems in
the start deadline model, for example "interval scheduling" problems (discussed soon), this
same transformation yields an equivalent problem in the completion deadline model. We
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also note that NP-hardness of the deterministic problem 1 I dj = d I E wjvj follows from
NP-hardness of the knapsack problem 1 1 dj = d I E wjUj. Given any knapsack instance,
if we add a "dummy" job of very large value and processing time and then send it to an
algorithm for 1 I dj = d I E wjVj, the optimal solution in this case will be to take the
dummy job as the "overflowing" job and to fill the remaining time prior to the deadline with
an optimal knapsack solution (so we would in effect optimally solve the knapsack problem).

In the parallel machine case, the deterministic problem Q I dj = d I E wjUj is known as
the multiple knapsack problem, and a PTAS for it was recently proposed by Chekuri and
Khanna [9]. In the unrelated machine model, R I dj = d I E wjUj goes by the name of
the generalized assignment problem, and a 2-approximation for it is given by Shmoys and
Tardos [50].

2.2.2 Interval Scheduling

In the problem 11 rj j E wjUj, each job j can only be processed within an interval of time
[rj, dj]. This is the simplest variant of what are commonly known as interval scheduling
problems, in which each job comes with an associated list of disjoint intervals of time during
which it may be processed. If ri = & for every job j, we can easily eompte an optimal
schedule in polynomial time using dynamic programming, even in the stochastic case (here,
we ought to use the start deadline model rather than the completion deadline model).
For the general deterministic interval scheduling problem, a 2-approximation is given by
Bar-Noy et al. [1] using the "local ratio" technique for designing approximation algorithms.

2.2.3 Unknown Deterministic Processing Times

Another interesting model that has some similarity to our stochastic models is an on-line
model where processing times are deterministic but unknown. For example, Bender et. al [2]
study stretch scheduling where the goal is to minimize the maximum or average stretch over
all jobs. The stretch of a job j is a natural measure defined as (Cj - rj)/pj (the ratio of flow
time to processing time). In an on-line, preemptive model, they give an algorithm that is
0(1)-competitive for minimizing average stretch, given that the processing times of all jobs
are known to within some constant factor. For completion time-related objectives (Cma
or E wjCj), any constant-factor approximation algorithm can be applied to the case where
we know all processing times to within a constant factor (say, by fixing every processing
time at its minimum value), and we will still obtain a constant-factor approximation.

2.3 The Stochastic Knapsack Problem

Stochastic variants of the knapsack problem are of interest to us since the knapsack prob-
lem is the deterministic analog of our simplest scheduling problems. Stochastic knapsack
problems with deterministic sizes and random values have been studied by several authors
[7, 29, 54, 55], all of whom consider the objective of computing a fixed set of items fitting in
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the knapsack that has maximum probability of achieving some target value (in this setting,
maximizing expected value is a much simpler, albeit still NP-hard, problem since we can
just replace every item's value with its expectation and obtain an equivalent deterministic

knapsack problem). Several heuristics have been proposed for this variant (e.g. branch-and-

bound, preference-order dynamic programming), and adaptivity is not considered by any
of the authors.

Another somewhat related variant, known as the stochastic and dynamic knapsack problem
[36, 44], involves items that arrive on-line according to some stochastic process - we do
not know the exact characteristics of an item until it arrives, at which point in time we
must irrevocably decide to either accept the item and process it, or discard the item. We
consider this variant briefly in Chapter 7.

Derman et al. [16] consider the adaptive stochastic knapsack problem where multiple copies
of items are permitted, as well as the related knapsack cover problem in this same setting,
where the goal is to cover the capacity of the knapsack with a minimum-cost set of items (for
this variant, we must allow multiple copies of items since otherwise it might not be possible
to cover the knapsack). A prototypical application of the stochastic knapsack cover problem
is keeping a machine running for a certain duration, where the machine depends on a critical
part (e.g. a light bulb) that periodically fails and must be replaced. The different items

correspond to potential replacements, each having a deterministic cost and an uncertain

lifetime. Derman et al. provide dynamic programming formulations for these problems,
and also prove that if item sizes are exponentially distributed, both problems (as well as

the stochastic knapsack problem without multiple copies allowed) are solved by greedily

scheduling items according to value or cost divided by expected size.

2.4 Stochastic Scheduling

Stochastic scheduling problems have been studied quite extensively in the literature (al-

though not nearly so much as deterministic scheduling problems). Consult the Ph.D. thesis
of Marc Uetz [56] for a comprehensive survey of stochastic scheduling results and problems.

We provide a brief summary of some of the most relevant results below.

2.4.1 Stochastic Analogs of Deterministic Algorithms

One of the earliest results in stochastic scheduling dates back to 1966, when Rothkopf [48]
gave a simple proof that 1 pj - stoch I E[E wjCj] is optimally solved by greedily ordering

according to the weighted shortest expected processing time (WSEPT) policy:

W1 W > wn

E[p1] E[ k2] E[pn]'

This policy is so-named because if all weights are equal, it becomes the shortest expected

processing time (SEPT) policy where we always execute the job having shortest expected
processing time first (not too surprisingly, there is also an analogous LEPT policy where
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we execute the job with longest expected processing time first).

Rothkopf's result is particularly nice considering that the deterministic problem 1 Z wj Cj
is optimally solved by scheduling jobs in the order w > '2 .... > wn (this is called the
weighted shortest processing time (WSPT) policy, or also "Smith's rule" [53]). Therefore,
to solve the stochastic variant, we simply replace each job with its expectation and then
solve the resulting deterministic variant. Stochastic problems that can be optimally solved
via this sort of trivial reduction to an equivalent deterministic problem are rare. Another
example is the problem 1 pj - stoch I E[Lmax], which is optimally solved just like its
deterministic counterpart by ordering jobs so that di < d2 K ... 5 dn.

2.4.2 Special Classes of Distributions

A significant majority of all stochastic scheduling results to date consider only special types
of processing time distributions, most notably jobs with exponential processing times. We
summarize some of these results below, saving for later the results that deal with deadline-
constrained problems.

Bruno, Downey, and Fredrickson [53 show that P i P stoch I E[Cax] with exponential
distributions is optimally solved by list scheduling according to the LEPT policy, and that

P I pj ~ stoch I E[E Cj] with exponential distributions is optimally solved by list scheduling
according to the SEPT policy (the latter result is also due to Glazebrook [22]). These results
hold even if preemption is allowed. Due to the "memoryless" nature of the exponential
distribution, the expected remaining processing time of a job conditioned on the fact that
it has already been executing for some length of time is the same as its original expected
processing time. Therefore, a policy that performs list scheduling based only on expected
processing times will be unaffected by the availability of preemption. The LEPT result
here is particularly noteworthy since the LPT policy' is not necessarily optimal for the
deterministic problem P I I Cmax (although a well-known result of Graham [25] states that
LPT is a 4/3-approximation for this problem). In this situation the stochastic variant is
actually easier to solve, primarily due to the fact that we assume exponential distributions.

The results above are generalized somewhat by Weber [60], who shows that LEPT is optimal
for P I pj ~ stoch I E[Cmax] if processing time distributions have decreasing failure rates,
and SEPT is optimal for P I pj ~ stoch I E[J Cj] as long as processing time distributions
have increasing failure rates. The failure rate (also known as hazard rate) of a distribution

f (x) is given by _ ) where F denotes the cumulative distribution of f. The exponential
distribution is the only distribution with constant failure rate. If p3 has a decreasing failure
rate, then E[pj - T I p ;> T] increases as T increases. Similarly, for increasing failure rate,
the expected remaining processing time decreases over time2 as we begin to process job j.
As a result, the list scheduling approaches above will never want to preempt jobs, since the
jobs currently being processed will always remain ahead of any unprocessed jobs on the list.

1SPT and LPT are the natural deterministic analogs of SEPT and LEPT.
2Distributions for which expected processing time decreases over time (i.e., E[x - r I x > r] < E[x]) are

called NBUE (new better than used in expectation) distributions.
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Weiss and Pinedo [62] also generalize the results above to the case of parallel machines

with different speeds, assuming exponential processing times and availability of preemption.

Defining the SEPT policy as taking the job with shortest expected processing time and

assigning it to the fastest machine, the job with second-shortest expected processing time

and assigning it to the second-fastest machine, and so on, they show that this policy is

optimal for minimizing E[Cmax]. Similarly, if we define LEPT as taking the longest job and

assigning it to the slowest machine, and so on, they show that this is an optimal policy for

minimizing E[E Cj]. Note that these policies require preemption, since the completion of

any job may require us to re-shuffle the entire current assignment of jobs to machines. For

more details on general conditions under which list scheduling policies are optimal for these

objectives, the reader is encouraged to consult Kampke [33].

2.4.3 Minimizing Sum of Weighted Completion Times

Some of the strongest approximation results for stochastic scheduling problems to date

consider the objective of minimizing E[E wjCj]. M6hring et al. [41] consider the problems

1 I prec I E[E wjC] and 1 1 prec, r I E[E wjCj], and describe approximation algorithms

with performance guarantees of 2 and 3. It is worth noting that these are among the

few approximation algorithm results in the stochastic scheduling literature that apply to

arbitrary processing time distributions. In the parallel machine case, for P I I E[E wjCj]

they show that global list scheduling according to the WSEPT policy yields a performance

guarantee of 1 + '- (A + 1), where A is an upper bound on the squared coefficients of

variation of all job processing times:

max ] < A.
jEinl Elpg|2

If A < 1 (this is the case for many common distributions such as the uniform, exponential,
and Erlang distributions), the performance guarantee simplifies to 2 - 1. For the problem

P I rj | E[E wj Cj], they provide an algorithm with guarantee 3 - 1 + max{1, r-"l }
(which simplifies to 4 - - if A < 1). Megow et al. [40] extend this result to an on-line

model (the result of M6hring et al. for release times assumes an off-line model) and improve

the performance guarantee to roughly 3.62 for processing times with NBUE distributions.

Skutella and Uetz [52] extend the results above involving precedence constraints to the par-

allel machine case. They obtain a performance guarantee of (1+E) (1+ ' +max{1, ' A})
for P I prec I E[E wjCj] and a performance guarantee of (1 + c)(1 + I + max{1, "- lA})
for P I prec, rj | E[E wjCj] (here, - is an arbitrary constant and the release time results

assume an off-line model). For A < 1, these performance guarantees can be simplified to

3 + 2V2- - (1 + v/)/m and 3 + 2v/2 respectively.

These results described above are some of the only other results in the domain of stochastic

scheduling, besides our own, that use linear programming relaxations to bound the expected

value obtained by an optimal adaptive policy.
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2.4.4 Deadline-Constrained Stochastic Scheduling

In the literature to date, stochastic scheduling results involving deadlines tend to focus on
identifying conditions under which optimal policies can be computed (e.g., for special classes
of processing time distributions) rather than on approximation algorithms. We have already
mentioned the results of Derman et al. [16] for the stochastic knapsack problem - these
show that the WSEPT policy optimally solves 1 1 p - stoch I E[E wjUj] when processing
times are exponential. Pinedo [45] extends this result to show optimality even when job
deadlines are independent, identically distributed (i.i.d.) random variables or when all jobs
share a common, random deadline.

Emmons and Pinedo [18] give several optimality results. They show optimality of WSEPT
in a non-preemptive, identical parallel machine environment when job processing times are
i.i.d. and job deadlines are either i.i.d. or all equal to a common random deadline. In
addition, they show how to use bipartite assignment to optimally solve Q I pj = 1, dj ~
stoch I E[E wjUj] where the dj's have arbitrary distributions (not even necessarily inde-
pendent), and also Q I p3 ~ stoch, dj - stoch I E[E wjUj], where the pj's are exponential
each with expected unit duration, and the dc's are exponential with arbitrary expectations
(not even necessarily independent).

Chang et. al [8] consider preemptive scheduling on parallel machines where jobs have
exponentially-distributed processing times. They show that if the WSEPT and LEPT
orderings happen to coincide, then global list scheduling in this order optimally solves
P I pj ~ stoch, rj, dj ~ stoch J E[E wjUj], as long as the dj's are i.i.d. They discuss similar
results for the objective E[E wjTj]. Pinedo [45] shows that if E[pi] < E[p2] _ ... 5 E[pn]
and w, > w2 > ... w, then list scheduling according to this ordering (SEPT) optimally
solves P pj - stoch, dj = d - stoch I E[E wjUj] if (i) processing times are independent
and exponentially distributed, and (ii) if the common deadline d has a concave distribution
function.

The stochastic analog of the problem 1 |E U is studied by van den Akker and Hoogeveen
[57], who show that for some types of processing time distributions, a well-known optimal
O(n log n) algorithm of Moore [42] can be extended to the stochastic case. Rather than
focusing on the objective E[Z U] directly, they define a job as being "stochastically on
time" if its probability of completion prior to its deadline is above some specified threshold,
and they consider maximizing the expected number of jobs that are stochastically on time.
For the objective E[E wjUj], they show how to compute an optimal ordered policy using
dynamic programming (as we do in Chapter 7), but only for certain classes of processing
time distributions.
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3. One Machine with Common Deadlines:
LP-Based Results

This chapter develops many of the fundamental results and techniques that we will build
upon throughout the remainder of the dissertation. It focuses entirely on the so-called
"stochastic knapsack" problem, where jobs are scheduled on a single machine and share a
common deadline. All of the problems studied later in the dissertation contain the stochastic
knapsack problem as a special case. By appropriate scaling of processing times, we assume
without loss of generality that all jobs share a common deadline at time t = 1. Therefore,
we can write the stochastic knapsack problem as either

* I p - stoch, dj = 11 E[E wjVj] (in the start deadline model), or

* 1 P3 p- stoch, dj = 1| E[E wjU] (in the completion deadline model).

We study both the start deadline and completion deadline models in this chapter, and in

general our results in the start deadline model will be both stronger and simpler than those
in the completion deadline model.

In this chapter our analyses all share a common theme in that they are all strongly based
on linear programming. In the next chapter, we present stronger results whose analyses are

not explicitly based on linear programming (although there do appear to be ways to cast

these results in terms of linear programming as well). It should be noted that although
the results in this chapter are weaker than those in the next chapter for the case of the
stochastic knapsack problem, at the moment only these results seem to extend readily to

more complicated scheduling problems such as those with individual deadline constraints

(Chapter 5) and parallel machine environments (Chapter 6). These two future chapters (5
and 6) are based on the material in this chapter, and not Chapter 4.

3.1 Bounding an Optimal Adaptive Policy

A feature that is common to most approximation algorithms is some means of obtaining a

bound on the value of an optimal solution. In our case, this step is somewhat interesting

(and in need of special techniques beyond those typically applied in the literature) since



ONE MACHINE WITH COMMON DEADLINES: LP-BASED RESULTS

the solution we are trying to bound - an optimal adaptive policy - is in the form of a
decision tree. Since the decision tree for an optimal policy might be quite complex, how
does one obtain a bound on the maximum expected value such a policy may obtain?

As an example, suppose we have an unlimited quantity of jobs whose processing times are
either 0 (with probability 1 - e) or 1 (with probability E). We assign each job a value equal
to its expected processing time, E. Since we have one unit of time prior to our deadline and
each job takes E units of expected time, one might expect that we can schedule roughly one
unit of value. However, it takes 2 jobs of processing time 1 to exceed the deadline, so we
actually expect to schedule 2/e jobs in the start deadline model and 2/E - 1 jobs in the
completion deadline model. Since each job has a value of e, we obtain expected values of 2
and 2 - E in these respective models, and this is nearly twice what we could hope to achieve
in the deterministic case. As we shall see in a moment, this example is essentially tight in
that the expected value of any adaptive policy can be no larger than the optimal value one
can "fractional" schedule in a deterministic instance in which every processing time pj is
replaced with its mean truncated processing time pj, and in which our deadline is inflated
to time t = 2.

The following lemma is a key ingredient in this analysis, and it applies in both the start
deadline and completion deadline models.

Lemma 1. Fix any adaptive policy P. Let J denote the (random) set of jobs that P
schedules (i.e., starts) no later than the deadline1 . In the start deadline model, J is the
set of jobs actually scheduled by P, and in the completion deadline model J is the set of
jobs successfully scheduled plus the single job that completes later than the deadline. Letting

p(J) = E pj, we then have E [p(J)] < 2.

Proof. Suppose P finds itself in a situation with a deadline d units of time into the future
and a set R of remaining jobs. Let J(d, R) denote the (random) set of jobs that P attempts
to schedule from this point on. For any set of jobs R and any random variable t < 1
independent of the processing times of jobs in R, we argue that E[p(J(t, R))] < E[t] + 1
using induction on JRI, taking JR = 0 as a trivial base case. The lemma follows if we set
t = 1 and R = [n]. Suppose, now, that P is faced with a deadline t units of time into the
future (a random variable) and has a set R of available remaining jobs. If P happens to
schedule job j E R next, then

E[p(J(t, R))] I p + E[p,(J(t - pj, R\{j})) I p3 < 1]Pr[pj < 1]

= pj + E[p(J(t - min(pj, 1), R\{j})) I pj 1]Pr[pj < 1]
= pj + E[p(J(t - min(pj, 1), R\{j}))]

< pj + E[t - min(pj, 1)] + 1 (by induction)

= E[t] + 1,

'A "random set" by itself is not a particularly well-defined notion, so we should technically be considering
the random incidence vector of such a set. However, since the notion of a property of a random set like
E[p(J)] is fairly clear, we will continue for simplicity of exposition to use the more informal "random set"
term throughout this work.
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and this completes the proof, since it holds for every job j E R. l

Lemma 1 is tight according to the "Bernoulli" example described above: given an unlimited
number of jobs with processing times of 0 (probability 1 - E) or 1 (probability e), we have
E[pL(J)] = 2.

3.1.1 Analysis Using Martingales

Martingale theory is a branch of probability theory that gives us a powerful and general
set of tools with which we can analyze and bound adaptive policies. A martingale is a
stochastic process Zo, Z 1 , Z 2 ,. .. satisfying

E[Zj I Z 0 , Z, ... Zj-1) = Z3 _1. (3.1)

Equivalently, a martingale Zo, Z 1 , Z2 .... is sometimes defined with respect to a stochastic
process Xo, X 1 , X 2 ,..., where Zn is a function of X 0 ... Xn and where

E[Zj I X 0 , X 1,. ..Xj 1 ] = Zj_ 1. (3.2)

The simplicity and lack of strong assumptions (e.g., independence, bounded variance) in this
definition give martingales sufficient flexibility to model quite a range of useful stochastic
processes. As we shall see in a moment, this includes the ability to model an adaptive
scheduling policy. Martingales have been studied quite extensively in the literature in
the past few decades, due in large part to the initial work of Doob [17]. Historically,
martingales originated as a means of describing "unbiased" games of chance, where one's
expected earnings after any series of bets are precisely zero. As a trivial example, suppose
you flip a fair coin and gain one dollar if it comes up heads (Zj = Zj-1 + 1), and lose
one dollar if it comes up tails (Zj = Zj_1 - 1). In this case, Zo, Z 1 , Z2 ,... satisfies the
martingale condition since we expect to "break even" at each step. As a consequence of
this behavior, all martingales satisfy the following well-known property, which is readily
proved by straightforward induction on n.

Lemma 2. If ZO, Z1, Z2 ,... is a martingale, then E[Zn] = E[Zo] for every n > 0.

Let us try to cast the stochastic knapsack problem in the "gambling" framework above.

Suppose our goal is to maximize E[p(J)], where J denotes the set of jobs we attempt to
schedule. To do this, we must select a series of jobs to schedule. At each step, if we
choose job j we receive a "reward" of pag toward our objective, but we must also "pay"
min(pj, 1) (a random quantity). We would like to receive as much reward as possible before
we pay more than one unit total (at which point we exceed the deadline). Note that this
game is unbiased in the sense that the expected reward at each step is the same as the
expected amount we pay. More formally, let us fix an adaptive policy P, and let Sj denote
the (random) set of the first j jobs that P attempts to schedule. Once we schedule some
job j that completes later than the deadline and stop scheduling new jobs, we adopt the
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convention that Si = Sj+1 = Sj+2 =- = Sn. We now define

Z., = E Xi,
iESj

where Xi = pi - min(pi, 1). It is fairly easy to see that Z 0 , Zi, Z 2 ,... is a martingale with
respect to the stochastic process Xo, X 1 , X 2 , ... since it satisfies (3.2),

E[Zj I XO, X 1 ,... X _1] = E[Z_ 1 + Xj | X 0 , X 1 ,... Xj 1] = Zj 1,

due to the fact that E[Xj] = 0 (this is true both in the initial phase where we schedule jobs
as well as in the "stopped" phase where we cease to schedule jobs).

Another way to write Zj is as Zj = I(Sj) - r(Sj), where

T(Sj) = E min(pi, 1).
iESj

Note that T(Sj) < 2 for all j since we stop scheduling immediately after some job i (with
min(pi, 1) < 1) completes later than our deadline of d = 1. According to Lemma 2, we

'LI r - r rr7 1 -"-,r7 I n v r / TXl -,-r /, -V _r wh r denotes -therefure Have E[ZnJ = E[Z10J = U, so J[p(J)j = EVp(S) = i[(n)J _ 2 where J denotes
the final (random) set of jobs our policy P attempts to schedule. This gives us an alternative
proof of Lemma 1. Actually, one can view our original proof as being essentially equivalent
to this one, substituting an inductive argument for Lemma 2.

If the support of every processing time distribution lies in some small bounded range [0, b],
then we can strengthen the bound above to E[p(J)] < 1 + b since E[r(Sn)] < 1 + b. We use
this fact in Section 4.3 when we study special "well-behaved" classes of distributions.

3.1.2 Fractional Relaxations for the Start Deadline Model

Perhaps the most common technique used to bound the optimal solution to a hard problem
is to "relax" it to an easier problem (usually a linear program) by removing integrality
constraints. In this section we show that this technique can also be applied, albeit somewhat
indirectly, to the stochastic knapsack problem. We show how to bound the optimal value
obtained by an adaptive policy for the stochastic knapsack problem in terms of the value of
a fractional relaxation for a corresponding deterministic knapsack problem.

Suppose for a moment that processing times p1 .. .pa, are deterministic. In the completion
deadline model, this gives us precisely a 0/1 knapsack problem, which we can write as an
integer program and relax to a linear program. In the start deadline model, we can still
express the problem 1 1 dj= 1 E[E wj Vj] as an integer program, since in any feasible
solution the removal of one job must leave us with a set of jobs whose processing times sum
to no more than 1. Letting x be the incidence vector for the set of jobs in our solution and
y be the incidence vector for the single job to be removed, we arrive at the following integer
program:
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By relaxing this to a linear program, we can obtain an upper bound on OPT. However,
a simpler linear program also suffices for this task. In fact, we can use the same linear

programming relaxation as in the completion deadline case, which we parameterize on the
deadline d:

n
LP(d) = max E xjwj

j=1
n

E xj min(pj, 1) < d
j=1

Vj E [n] : 0 < xj : I

We claim that OPT < LP(2). This follows from the fact that any optimal solution x*

is feasible for LP(2) since only one job j (with min(pj, 1) < 1) is allowed to overflow the

deadline of d = 1. Note that since LP(1) is a fractional relaxation of the knapsack integer

program, the optimal solution to a deterministic instance in the completion deadline model

is bounded by LP(1).

Moving to the stochastic case, consider the following natural generalization of LP(d):

n
<D(d) = max E xjwj

j=1
n

E xjE[min(pj, 1)] < d
j=1

Vj e [n] 0 < <1

Recalling that pj = E[min(pj, 1)], the packing constraint above can be written more con-

cisely as E> xjpj < d. It is not too difficult to see that this particular function 1 (d) is

concave. However, since throughout this dissertation we will be utilizing the concavity of

this function and several of its more complicated generalizations (all of which are also con-

cave), let us briefly mention a well-known and useful lemma on concavity that will apply to

all of our future linear programming relaxations.

Lemma 3. Consider any function f(A) of the form

f(A) = max{cT x: Ax < Ab, Cx d}

where x is an n-dimensional vector. Then f is concave over the domain over which f (A) is

finite.

n
OPT = max E xjwj

j=1
n

E (x3 - yj)pj 1
j=1

n

E Y3 1
j=1

Vj E [n] : j > yj
Vj E [n] : x C {0, 1}, yj E {0, 1}.
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Proof. By definition, f is concave if we can show that af(A,) + (1 - a)f(A2 ) < f(aAl +
(1 - a)A2 ) for any a E [0, 1] and any nonnegative values of Al and A2 .Therefore, consider
any setting for a, A1 , and A2 .Let x, and X2 be optimal solutions to the LPs for f(A,) and
f(A2 ), and define x* = az 1 + (1 - a)X2. It is easy to see that x* is feasible for the LP for
f(aA, + (1 - a)A2 ), and moreover, the objective value for x* for this LP will be precisely
equal to af (A) + (1 - a)f (A2 ). The lemma follows. n

Just as we can bound an optimal solution by LP(2) in the deterministic case, we can bound
the expected value obtained by an optimal adaptive policy by D(2) in the stochastic case:

Theorem 1. Let ADAPT denote the expected value obtained by an optimal adaptive policy.
Then ADAPT < 4(2) in both the start deadline and completion deadline models.

Proof. Fix any adaptive policy P. Let J denote the (random) set of jobs that P attempts
to schedule. Denote by w(J) the total value of the jobs in J and by P(J) the sum of pj
for all j E J. Note w(S) 5 D(p(S)) for any deterministic set S of jobs, since the incidence
vector x(S) for the jobs in S is a feasible solution to the linear program for 4(pt(S)). Now,

ADAPT < E[w(J)]

< E [,D(p(J))]

< 1 (E[p(J)]) (Jensen's inequality)

< 4(2).

The last step follows from monotonicity of 4 (d) and Lemma 1. El

3.1.3 Fractional Relaxations for the Completion Deadline Model

Although ADAPT < 4(2) holds in the completion deadline model, this bound is not tight
enough to allow us to prove useful approximation bounds. In fact, it can be arbitrarily
loose: consider a deterministic instance with a single job j with pj = 1 + E and wj = 1.
Here, ADAPT = 0 but D(2) :: 1. For exactly the same reason, although LP(1) is an upper
bound on the optimal solution to a deterministic knapsack problem, it is an arbitrarily
loose upper bound. Fortunately, we can remedy these problems with a slight addition to
the objective function that prevents us from getting too much "credit" for jobs of processing
time larger than 1:

n fl

LP*(d) max E WjwgI(pj,1) *(d) max E xjwjPr[pj < 1]
j=1 j=1

n n
E xj min(pj, 1) < d E xjE[min(pj, 1)] < d
j=1 j=1

Vj E [n] : Ox 1 VJ E [n] : < xj <

The indicator function I(x, y) takes the value 1 if x < y, and 0 otherwise. With this included
in the objective, the integrality gap for LP* (1) for the deterministic knapsack problem drops

42



ONE MACHINE WITH COMMON DEADLINES: LP-BASED RESULTS

to 2. To see the integrality gap really can be arbitrarily close to 2, consider an instance
with multiple jobs of unit value and processing time 1/2 + -. In this case, OPT =1 while
LP*(l) ~ 2. Finally, note that LP*(d) 5 LP(d) and <P*(d) < <b(d).

Theorem 2. Let ADAPT denote the expected value obtained by an optimal adaptive policy.
Then ADAPT < (k*(2) in the completion deadline model.

Proof. Fix an optimal adaptive policy P. Let xj denote the probability that P attempts to
schedule job j no later than the deadline, and let yj denote the probability that P succeeds
in scheduling job j so it completes prior to the deadline. Regardless of when we attempt to
schedule j, there is at most a probability of Pr[pj < 1] that it will complete by the deadline.
Therefore, we have yj 5 xPr[pj < 1], and the expected value obtained by P is

n n

ADAPT = w yj wjxjPr[pj < 1],
j=1 j=1

which is precisely the objective of 4J*(-). Letting J denote the random set of jobs that P
attempts to schedule, we use Lemma 1 to obtain

n

Exjtpg = E[p(J)] < 2.
j=1

The vector x is therefore have a feasible solution to the linear program for VD (2) of objective
value at least ADAPT, so ADAPT < <*(2).

The quantity wjPr[pj < 1] is something we will commonly encounter in the completion
deadline model, more commonly in fact that wj by itself. We call this the adjusted value of
job j, and denote it by w' := wjPr[pj 5 dj] = wjPr[pj 1]. In terms of adjusted values,
we can write <V*(-) more concisely as

<D*(d)=max { xjw> Jxj 1 3 : < d,O <x 1 ,
j=1 j=1

which differs from 4)(d) only in the use of w in the objective rather than wj.

3.1.4 Limitations of LP-Based Analysis

We have now established the bounds ADAPT < <D(2) and ADAPT < <b*(2) (in the com-
pletion deadline model). These bounds are fairly good, but it is worth noting that there are
inherent limitations on the approximation guarantees we can prove for any policy whose
expected value we compare against <b(2) or <V*(2). Consider a deterministic instance with
four jobs having pj = 1/2 + e and wj = 1. In the start deadline model, ADAPT = 2 while
<>(2) ~~ 4. In the completion deadline model, ADAPT = 1 while *(2) ~~ 4. Therefore,
using only the bounds above, we should not expect any of our LP-based analyses to give us

43



ONE MACHINE WITH COMMON DEADLINES: LP-BASED RESULTS

approximation guarantees better than 2 in the start deadline model, and 4 in the comple-
tion deadline model. On the positive side, we will show later in this chapter how to obtain
a performance guarantee of 4 in the start deadline model and 32/7 < 4.572 in the com-
pletion deadline model. Both of these can be improved using somewhat stronger methods
of analysis (not explicitly based on the LPs introduced above) - in Chapter 4, we derive
a performance guarantee of 2 for the start deadline model and 3 + e for the completion
deadline model.

3.1.5 Solving the Linear Programs

It is well-known that the linear programs for LP(d), LP*(d), 4D(d) and 1*(d) can all be
solved using greedy algorithms in O(n log n) time. These greedy algorithms select jobs one
by one to include in our solution in decreasing order of "value density":

. For LP(d): i > W2 > ... > Wnmin(pi,1) - min(P2,1) - - min(p.,,1)'

" For LP*(d): wiI(pi,1) > W21(p2,1) > ... > WnI(Pn,1)min(pi,1) - min(p2,1) min(pn,1)

" For 4(d): ! > Y > ... > W.

" For ()* (d): !!L > W-2 > ... > .
Al# - A2 - - An

For each job j selected in sequence by our greedy algorithm we increase xj in our LP solution
as much as possible. This usually means increasing xj to 1, except for the last job we select
(when we reach the deadline), which may only be fractionally included. Therefore, we can
always find an optimal solution to the LPs above in which 0 < xj < 1 for at most one job
J.

In the deterministic case (LP(d) and LP*(d)), the greedy algorithms above are known in
the scheduling literature as WSPT (weighted shortest processing time) policies, since if
all values wi ... w, are equal, the greedy orderings above tell us to schedule the job of
shortest processing time first. In the stochastic case (F(d) and 1*(d)), they are known as
WSEPT (weighted shortest expected processing time) policies. When we speak of "the"
WSEPT policy, the actual ordering of jobs depends on whether we are in the start deadline
or completion deadline model. In the start deadline model, where 1(-) is our LP relaxation
of choice, WSEPT stands for the ordering Y > M > ... > n. In the completion deadline

model, we take the ordering > 2 > ... > Q as the WSEPT ordering.

3.1.6 An Interesting Special Case: Zero Capacity

Our bounds of ADAPT < 4(2) and ADAPT < 4*(2) (completion deadline model) assume
that d = 1, which is an assumption we can make without loss of generality by scaling
processing times. Without rescaling, the bounds are ADAPT < 4(2d) and ADAPT <
4 *(2d) (completion deadline model), using the following "unscaled" versions of our linear
programs:

44



ONE MACHINE WITH COMMON DEADLINES: LP-BASED RESULTS

n n
<b(A) = max ZjwJ <I>*(A) = max E xjwjPr[pj < d]

j=1 j=1
n n

S xjE[min(pj,d)] < A E xjE[min(pj, d)] < A
j=1 j=1

Vj E [n] : 0 < x 1 Vj c [n] : 0 xj < 1
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This holds for all deadlines d > 0, even d = 0. However, the bound for d = 0 is particularly
weak since the packing constraints above deteriorate and allow us to set xi = 1 for all j.

For d = 0, it turns out that in both the start deadline and completion deadline model

we can compute an optimal policy in polynomial time, and that this policy will be non-

adaptive. In the completion deadline model this is analogous to a simple greedy problem
known as the quiz problem. In the quiz problem, we are given a set of n questions, each

with an associated value and probability that we answer correctly, and we must decide on
an optimal ordering in which to receive the questions for an oral exam, so that we maximize

our expected value. The exam proceeds until the first incorrect answer, and no value is

obtained from the question answered incorrectly.

Theorem 3. In the start deadline model with deadline d = 0, an optimal policy is to non-

adaptively schedule jobs according to the ordering

W1 W2 >Wn (3.3)
Pr[pi >03 - Pr[p2 > 0] - Pr[pn > 0](

In the completion deadline model with deadline d = 0, the ordering

wiPr[pi = 0] w2Pr[p 2 = 0] WnPr[pn = 0] (34)
Pr[pi>0] - Pr[P2 >0] -Pr >0]

is optimal. Recall that we assume that Pr[pj > 0] j 0 for all jobs j, since any job j for

which Pr[pj > 0] = 0 can be immediately scheduled with no risk at the beginning of time.

Proof. The theorem follows from a straightforward greedy exchange argument. For nota-

tional simplicity, let 7j = Pr[pj = 0]. If we schedule jobs in order of their indices 1, 2,. n,
our total expected value in the start deadline model is

E[total value] = wjPr[jobs 1 ... j - 1 take zero processing time]
j= 1

= W1+ W2 1r + w3 7 1 7 2 + W 4 71727 3 + ...

In the completion deadline model our expected value is similarly

n

E[total value] = E wjPr[jobs 1... j take zero processing time]
j=1

= Wiri + W27172 + W37r17r27r3 + W47 17 2 737 4 + ...

Now suppose we take an adjacent pair of jobs (j, I + 1) and exchange them in the ordering.
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The net change in expected value is

[wj+ 1 + wj7rj+i - (wj + wj+i) -1 . . . rji_

in the start deadline model, and

[wj+17rj+ + wj7rj7rj+1 - (wj7rj + Wj+1j7rj+1)] - 7172 ... 7rj_1

in the completion deadline model. These quantities are strictly positive precisely when

Wi Wj+1
1- 7rj 1 - r,+1

in the start deadline model, and when

Wjzi I <Wj+17rj+1

I - 7rj 1 - rj+i

in the completion deadline model. Therefore, if we use different orderings than (3.3) and
(3.4), we can always find an adjacent pair of jobs to exchange so as to increase our expected
value. FI

3.2 The Greedy WSEPT Policy

For the remainder of this chapter, we discuss simple non-adaptive "greedy" policies that
give 0(1) performance guarantees. The natural greedy non-adaptive policy is the WSEPT
ordering, in which we schedule jobs in decreasing order of value (adjusted value, in the
completion deadline model) divided by mean truncated processing time. Assuming our jobs
are indexed according to some ordering (e.g., WSEPT), we define

M/I = ZIpZ.i=

Lemma 4. Suppose we schedule our jobs non-adaptively according to the order in which
they are indexed. Then the probability that jobs 1 ... J are successfully scheduled is at least
1 - Mj_ 1 in the start deadline model, and at least 1 - Mj in the completion deadline model.

Proof. In the start deadline model, jobs 1 ... j are successfully scheduled as long the total
processing time of jobs 1. . . j - 1 does not exceed the deadline. Therefore,

Pr[jobs 1... j scheduled successfully] = 1 - Pr pi > 1

P 1 .
= 1 - Pr Emin(pi, 1) > I

i=1
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Figure 3-1: Graphs of (a) 4 (d) and (b) D**(d) used to analyze the WSEPT
policy. The expected value obtained by WSEPT (operating only on small
jobs in (b)) is at least the area of the shaded rectangles.

(Markov's inequality)
j-1

> 1 - E min(pi, 1)

=I - My _1.

In the completion deadline model, the proof is identical except j - 1

job j is successfully scheduled only if jobs 1 ... j all complete prior
is replaced with j, since

to the deadline. L

3.2.1 Analysis in the Start Deadline Model

WSEPT is somewhat easier to analyze and provides stronger guarantees in the start deadline

model than in the completion deadline model. In this section, we show that WSEPT is a

4-approximation algorithm in the start deadline model, and later in Chapter 4 we show how

to tighten the analysis to prove a performance guarantee of 2.

Lemma 5. In the start deadline model, WSEPT obtains expected value at least 4I(1)/2.

Proof. We use a simple geometric argument. Let r be the largest index such that Mr-i 1,
and let J denote the set of jobs successfully scheduled by WSEPT. Using Lemma 4, the

W

w

w22

Wt
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expected value we obtain is therefore

n

E[w(J)] = wjPr[jobs 1... j scheduled successfully]

j=1
r

> E(1 - Mi-1).
j=1

Consider now Figure 3-1(a), which plots the concave, piecewise linear function 4D(d). Each
segment of the function corresponds to some job j in the WSEPT ordering and has slope
wj/pj. The total area of the shaded rectangles is >1 wj (1 - Mj_ 1 ). Due to the concavity
of '1(d), this area is always at least as large as the area of the triangle ABC, which is
D(1)/2. D

Corollary 1. The WSEPT policy delivers a performance guarantee of 4 for the problem
1 I pj - stoch, dj = I I E[E wjVj].

Proof. Let J denote the (random) set of jobs successfully scheduled by WSEPT. Since 1(d)
is concave, we have ADAPT < 1 (2) < 24(1) < 4E[w(J)). El

Since the WSEPT policy is non-adaptive, this also proves that the adaptivity gap of 1 I pj ~
stoch, dj = d I E[ wVj] (the stochastic knapsack problem in the start deadline model)
is at most 4. A similar statement regarding adaptivity gap can be made for each of our
ensuing approximation algorithms that involve non-adaptive policies. Finally, we note that
in the deterministic case, the deterministic WSPT policy for 1 1 dj = d I E[E w 3Vj] can be
easily shown to give a 2-approximation, since the value of an optimal solution is no more
than D(2) and WSPT gives us a solution of value at least 4)(1).

3.3 Greedy Policies for the Completion Deadline Model

For the remainder of this chapter we now focus our attention on the completion deadline
model. In this section, we investigate a simple non-adaptive policy called the best-of-2
policy that achieves a performance guarantee of 7, and in the next section we describe a
randomized non-adaptive policy with a performance guarantee of 32/7 < 4.572. The best-
of-2 policy combines two different non-adaptive policies that by themselves can give poor
approximation bounds in the completion deadline model: WSEPT, and what we call the
single job policy, which schedules only the best single job (the job j maximizing w) followed
by an arbitrary ordering of the remaining jobs. Recall that the WSEPT ordering in the
completion deadline model uses adjusted values w rather than actual values wj.

In the completion deadline model, it is well-known that WSEPT by itself might not give
a good approximation bound in the presence of jobs with large expected processing times.
For example, suppose we have a deterministic instance with two jobs, the first having
Wi = (1 + E)pl and pi = e, and the second having w2 = P2 = 1. The optimal solution in
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this case is to schedule only job 2 (for a value of 1), but WSEPT only schedules job 1 and

receives an expected value slightly more than e.

It is also well-known that the single job policy by itself might not give a good approxi-

mation bound if all of our jobs have small expected processing times. Suppose we have a

deterministic instance in which all jobs have pj = e, where we have a large number of jobs

of two types: jobs with wj = -, and jobs with wj = 0. The single job policy only guarantees

that we can schedule one of the valuable jobs, so it gives us only 6 value while the optimal

solution can schedule nearly 1 unit of value.

Let us call a job j small if pj 5 e, and large if pj > E, for some threshold 6. As we shall

see, WSEPT is a good policy for small jobs and the single job policy is good for large jobs.

In our best-of-2 policy, we apply either WSEPT to the small jobs, or the single job policy

to all jobs (we could apply it only to the large jobs without affecting our analysis). Let us

index our jobs so that the small jobs appear first (indexed 1, 2, 3,... ) and in the WSEPT
ordering. Letting r be the largest index among the small jobs such that Mr 1, we define

r

WSEPT = w (1 - Mj)
j= 1

SINGLE = maxW;
i

B = max(WSEPT, SINGLE)

We know that WSEPT is a lower bound on the expected value of the WSEPT policy

applied to small jobs (according to Lemma 4) and that SINGLE is a lower bound on the

expected value obtained by the single job policy. To combine the two policies, we compute

WSEPT and SINGLE and execute the policy corresponding to whichever is larger. The

resulting non-adaptive policy, which we call the best-of-2 policy, obtains an expected value

of at least B.

3.3.1 Analysis of the Best-Of-2 Policy

In this section, we show that the best-of-2 policy obtains a performance guarantee of 6 +

4A2 < 11.657 (for suitable choice of e) by combining separate analyses of WSEPT and the

single job policy in a straightforward manner. Although we will improve this analysis in

a moment to obtain a performance guarantee of 7, there are several ideas in the simpler

analysis that are definitely worthy of discussion, and in addition this gives us an opportunity

to analyze WSEPT and the single job policies by themselves.

Given any set J of jobs, we define <I*(d), a version of the LP for our fractional relaxation

restricted only to the jobs in J, as:

<b* (d) = max E Zxjw
jE J

Sxj pj < d
jEJ

VjEJ : 0 xj<1
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We define -P(d) similarly. If J = A U B for disjoint sets A and B, then 1*(d) < D* (d) +
D*(d), since the optimal solution x* to the LP for D* (d) can be decomposed (in a straight-
forward fashion) into two solution XA and XB that are feasible for the LPs for V* (d) and
D* (d) whose respective objective values sum to *(d). Similarly, (Dj(d) < 4A(d) + 4B(d).
For the rest of this dissertation, we let S and L denote the sets of small and large jobs in
our instance. We now have

ADAPT K <D*(2) D* (2) + -* (2).

The performance guarantee of 6 + 4-V for the best-of-2 policy now follows immediately
from the following two lemmas.

Lemma 6. In the completion deadline model, WSEPT > l+**(1).

Lemma 7. In the completion deadline model, SINGLE > E4* (1).

Corollary 2. If all jobs are small, then WSEPT is a 1 4 -approximation algorithm in the
completion deadline model.

Corollary 3. If all jobs are large, then the single job policy is a i-approximation algorithm
in the completion deadline model.

Corollary 4. The best-of-2 policy delivers a performance guarantee of 6 + 4v2 for the
problem 1 | p3 ~ stoch, dj = 1 E[Z wjUj], if we take E = v - 1.

Corollary 2 follows from the fact that if all jobs are small, then ADAPT < 4*(2) = <1* (2) <
2<D* (1) 4WSEPT and Corollary 3 follows from the fact that if all jobs are large, then1 -E
ADAPT < 4D*(2) = <4* (2) 2-P*(1) 5 SINGLE. To prove Corollary 4, we note that
B > WSEPT and B > SINGLE, and obtain

ADAPT < (D* (2) + 4*(2)
4 2

< WSEPT + -SINGLE
- 1-e 'E

< 4 +2)B
< (+-± B

= (6 + 4\)B,

if we choose E = - 1.

In the next chapter, we will be able to improve the performance guarantee for this problem
substantially by strengthening or replacing Lemmas 6 and 7. Specifically, we improve the
performance guarantee for small jobs to 2/ (1-,-) and for large jobs we show how to construct
a (1+,)-approximate adaptive policy. Combining the two of these together gives an adaptive
policy with a performance guarantee of 3 + E in the completion deadline model.

We now return to the proofs of Lemmas 6 and 7.

Proof of Lemma 6. Let r be the largest index in the WSEPT ordering such that M, < 1.
Using Lemma 4, the expected value obtained by WSEPT in the completion deadline model
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can be lower bounded as follows:

wPr[jobs 1 ... j scheduled successfully]
j=1

r

: ZWa(1- Mj)
j=1

r

> Zw' (1 - Mj)
j=1

4* (1) E)* (1)
2 2

The last inequality follows from a geometric argument similar to the one in the proof of

Lemma 5. In Figure 3-1(b), the area of the shaded rectangles (E'= wj(1 - Mj)) is at
least as large as the area of triangle ABC (D* (1)/2) minus the area of the darkly-shaded

triangles. Each dark triangle has base at most E (since we only apply WSEPT to small jobs
in the completion deadline model), and their combined heights are at most @4*(1); hence,
the total area of the dark triangles is at most eI* (1)/2. E

Proof of Lemma 7. Recall that SINGLE = max w'. Letting SINGLE(L) = maxjeL Wj,
we therefore have SINGLE > SINGLE(L). An equivalent way to obtain a value of

SINGLE(L) is by solving the following linear program.

SINGLE(L) = max E xjw

jEL
VJEL O<x:51

Since all jobs are large, this linear program is a relaxation of the linear program for 4b*(e),

= max E xjw
jEL

E xjpj < N *
jEL

VJ E L 0 xj 1,

since replacing pj with e for each job j only weakens the constraint (*). Therefore,
SINGLE > SINGLE(L) (*c(E) > E4* (1). D

3.3.2 Stronger Analysis of the Best-Of-2 Policy

By more carefully combining the analyses of WSEPT and the single job policy, we can show

that the best-of-2 policy delivers an approximation guarantee of 7. Again, our analysis is
based on two lemmas, one for small jobs and one for large jobs.
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Lemma 8. If - < 1/3 then for any set J of small jobs, w'(J) < (I + 2t(J) WSEPT.

Therefore, if we fix any adaptive policy P and let Js denote the (random) set of small jobs

that P attempts to schedule, we have E[w'(Js)] < I + 2E[p(Js)] WSEPT.

Lemma 9. Fix any adaptive policy P, and let JL denote the (random) set of large jobs that

P attempts to schedule. Then E[w'(JL)] < E[p(JL) SINGLE.

Theorem 4. The best-of-2 policy delivers a performance guarantee of 7 for the problem
1 | pj ~ stoch, dj = 1 1 E[_ wjUj], if we set e = 1/3.

Proof. Fix an optimal adaptive policy P. Let Js and JL denote the (random) sets of small
and large jobs that P attempts to schedule, and let J = Js U JL. We argue, as in Theorem
2, that ADAPT < E[w'(J)]. Recalling that B > WSEPT and B > SINGLE, we then
have

ADAPT < E[w'(Js)] + E[w'(JL)]

< + 2E[p(Js)] WSEPT + E[p(JL) SINGLE

< + 2E[p(is)] + E[1 JL)) B

K + max 2, 1 E[p(Js U JL)]) B

< 1 + 2max 2, - B (by Lemma 1)

= 7B

for e =1/3. E

This analysis is actually fairly tight considering that we are comparing B (expected value
we can get with best-of-2) to <b*(2) (upper bound on ADAPT). Consider a deterministic
instance with 6 jobs having wj = py = 1/3. Regardless of whether or not these jobs are
classified as being small or large, we have B = 1/3 while <D*(2) = 2, for a gap of 6.

We now prove Lemmas 8 and 9.

Proof of Lemma 8. Let S denote the set of all small jobs. Take any set J C S and consider
three cases:

1. If p(J) 1', then we turn again to a geometric argument. Let d = P(J), and let k be
the index such that Mk < d < Mk+1, as shown in Figure 3-2. Just as in our previous
geometric arguments, WSEPT is the total area of the shaded rectangles. We claim
that this area is at least as large as the area of the bold rectangle, (1 - d)<b* (d). To do
this, we show that the area of rectangle B is always at least as large as that of A (the
only "missing piece" in the bold rectangle). Equivalently, we show that B extended
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-(1) ---------------- - - ----------- - - ----- ---
S
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$Ls(d) --------- -
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91 g2(a)

Figure 3-2: Bounding WSEPT below by (1 - d)ts(d).

to the left into C has an area at least as large as A extended upward into C. Letting

A = wk+1/pk+1 be the slope of -* (-) at d, we have

Area(A+C) = (Mk+1 -d)APk+l

Area(B + C) = (1 - d)A(Mk+l - d),

so the area of B dominates that of A as long as 1 - d > Pk+1, which is true if 1 - d >

since all jobs are small. The condition 1 - d > E is implied by E < 1/3 and d = p(J) <

(1+e)/2, since in this case d+e < (1+)/2+e = 1/2+3E/2 < 1. Since WSEPT >

(1 - d)%*(d), we have w'(J) < 4*(d) < 'dWSEPT. The function 1 is convex on
the interval x E [0, (1 + e)/2], so we can bound it above by its linear interpolation on

this interval, which is 1 + . Therefore, w'(J) (I + WSEPT.

2. If p(J) E [1-E,1], then

w'(J) @*s((J)) < 4*(1) 2 WSEPT < 1+ WSEPT.
1-6 K 1-
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3. If p(J) > 1, then by Lemma 6 and concavity of -Ts(-) we have

w'( J) D*S(PG J)) M( J)OD*(1) M WSEPT. E

Proof of Lemma 9. Fix a policy P, let JL denote the (random) set of large jobs that P

attempts to schedule, and let xj denote the probability that P attempts to schedule job y.
We can now write

E[w'(JL)] j

jEJL

( X) ymax
jEJL) yE[n] ~

E[fJL|] SINGLE

SE[p(JL) SINGLE
E

where the final inequality uses the fact that all jobs in JL are large. Note that we could
have also proved this leumna using an argument based on relating two linear programs, just
as in the proof of Lemma 7. LI

3.4 A Randomized Policy for the Completion Deadline Model

In terms of approximation guarantee, there are several non-adaptive policies with stronger
performance than the best-of-2 policy in the preceding section. In this section, we discuss a
randomized policy we call the round-by-value policy, which achieves a performance guarantee
of 32/7 < 4.572, and in the next chapter we give a different type of "best of 2" policy
that delivers an approximation guarantee of 4 (the analysis in this case does not use an
LP relaxation to bound ADAPT). Both of these policies are primarily developed in the
Ph.D. dissertation of Jan Vondrik [58], so we will omit some of the proofs in our following
discussion.

Unlike our previous approaches in the completion deadline model, the round-by-value algo-
rithm does not need to distinguish small and large jobs. It proceeds as follows:

1. Solve the linear program for 4D* (1). Let X1 ... Xn denote the optimal solution.

2. Select a job j with probability proportional to xjw' and schedule it first.

3. Schedule the remaining jobs according to the WSEPT ordering for the completion

deadline model: > 2 > ... > w.
ftl 1 2 - - /n

The purpose of the randomization above is to try to alleviate the problem with our previous
analyses in the completion deadline model where a job of high value is "cut off" (scheduled
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in our fractional relaxation so that it just exceeds the deadline). Recall that our previous
"geometric" analyses do not give us credit for any such jobs.

Theorem 5. In the completion deadline model, the non-adaptive round-by-value policy has
a performance guarantee of 32/7 < 4.572. More precisely, given any set of jobs J, the
round-by-value policy on J delivers an expected value of at least 7 V*(2).

Proof of Theorem 5 appears in [58], where it is also shown that this policy gives us the best
possible performance guarantee as long as we bound ADAPT by <*(2) and use Markov's
inequality to lower bound the probability that jobs are successfully scheduled (Lemma 4).
Note that we can view the round-by-value policy as a convex combination of non-adaptive
policies, one of which must have a performance guarantee of at least 32/7. Hence, the
adaptivity gap for 1 I pj - stoch, dj = d I E[Z wjUj] is at most 32/7. We can also
derandomize the round-by-value algorithm by repeating the analysis from the proof (see
[58]) for each potential starting job, and taking the one that gives the largest expected
value. Finally, note that even though the expected value obtained by the round-by-value
algorithm is comparable to <D (2), the algorithm itself only potentially uses jobs that we
expect to start prior to time t = 1 in WSEPT ordering. We will exploit this feature in
Chapter 6 when we study parallel environments.
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4. One Machine with Common Deadlines:
Improved Results

In this section we describe non-adaptive and adaptive policies for the stochastic knapsack

problem that have stronger performance guarantees than those in the preceding chapter.

Although one can interpret some of these results in the context of linear programming just

as in the preceding chapter, the analyses in this chapter will be more of a combinatorial

nature.

We begin by reproducing (with small modifications) a proof from the Ph.D. thesis of Jan

Vondrik [58] showing that the WSEPT policy gives a performance guarantee of 2 in the

start deadline model, and that a "best of two" policy (taking the better of WSEPT and a

carefully chosen single job) delivers a performance guarantee of 4 in the completion deadline

model.

We then develop an (1 + -)-approximate adaptive policy for large jobs, and show how to

combine this with the preceding analysis (for small jobs) to obtain a (3 + E)-approximate

adaptive policy in the completion deadline model. This result is primarily of theoretical

interest, however, since the (1 + c)-approximate policy for large jobs can have a very large

running time (albeit still polynomial, as long as E is constant).

Finally, we show how to obtain a (2+ E)-approximate adaptive policy in the event that our

processing times distributions are somewhat "well behaved" - in particular, if for every

job j the ratio Pj/p is at most a constant, where P denotes the maximum value in the

support of pj.

4.1 A New Analysis for WSEPT

In this section we present a much stronger analysis (from [58]) for the expected value ob-

tained by the WSEPT policy. The analysis applies to both the start deadline and completion

deadline models, and consists of two main pieces: just as in the preceding chapter, we first

discuss lower bounds on E[p(J)] (where J denotes the random set of jobs we manage to

schedule using WSEPT) and upper bounds on E[p(J)] (where J denotes the random set

of jobs that an optimal adaptive policy attempts to schedule). After this, we modify these
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bounds so they relate the expected value we obtain from WSEPT to the expected value
obtained by an optimal adaptive policy.

4.1.1 Bounding E[p(J)]

Suppose we schedule our jobs non-adaptively according to their indices in the WSEPT or-
dering, and let Mj = E Ai over all i < j. In the preceding chapter, we used Lemma 4
(based on Markov's inequality) to lower bound the probability that jobs 1 ... j are success-
fully scheduled by 1 - M _1 (start deadline model) or 1 - Mj (completion deadline model).
These bounds are only useful, however, for Mj_ 1 5 1 (or Mj 5 1), which may only hold for
a small prefix of the jobs. The following lemma strengthens this statement, when computing
the probability that job j is successfully scheduled, by conditioning on jobs 1 ... j - 1 having
already been successfully scheduled. For example, in the completion deadline model, we
can lower bound the probability of job j completing by the deadline by 1 - tj_1 - pj, where
tji is the expected total processing time of jobs 1 ... j - 1 conditioned on the fact that
job j - 1 completes by the deadline. Since tj_1 is no larger (and potentially much smaller)
than Mj-1 , the new bound is much stronger.

Lemma 10. Fix any non-adaptive policy P, and index our jobs according to the scheduling
order for P. Let irj denote the probability that job j completes prior to the deadline, and
let J denote the set of jobs successfully scheduled by P. Then in the start deadline model,

n n

E[p(J)] = Zrilpj > 1 - fJ(i - [L). (4.1)
j=1 j=1

In the completion deadline model, if all jobs are small we similarly have

E[p(J)] = 1 g rj ; (1 - c) 1 ( - pj) . (4.2)
j=1 j=1

Proof. Define the random variable Tj = min(pj, 1), and let tj = E[T lTj < 1]. Now,

tj-1 + pj = E[Tj_1 + min(pj, 1) Tj_ 1 < 1]

= E[Tj Tj_1 1]

E[T Ti < 1] Pr[T < I I Tj_1 1]+ E[T I T > 1] Pr[T > 1 T_1 5 1]

>tj D + 1 1

7rj-

As a result,

7r > - ty _1 - p .(4.3)
rj_- 1 - tj
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This holds even for j = 1 if we adopt the convention that 7ro = 1 and to = 0. Multiplying
together (4.3) from 1 to j we obtain

1 - pl'

1-i
1- tj

1

1 - ti - p2

1- t2

( 1
1 -t3

1 - ti) (

f(1-zi)
i=2

1- zi)

where zj = pj/(l tj-1). In the start deadline model,

n

j=1

n j-1

> :"ir (I - zi)
j=1 1 - i=1

n j-1

= z1 (1--zi)
j=1 i=1

n

= 1-7(1 -z) .
j=1

Consider now two cases. If pj < 1 - tj-1 for all j E [n], then for all j E [n] we have

Pi < z_ < 1 so 1 - z. 0. Hence (4.5) can be written as

n

j=1

72

j=1

Otherwise, if Pk > 1 - tk-1 for some k E [n], then consider the
have pj < zj < 1 for all j < k and by (4.4),

smallest such k. We then

k-1

k-lPk > 7rk-1(1 - tk-1) (i - zj).
j=1

(4.7)

> 7rj-1pj
j=1

k-1

7Tk-pk + Z j-1pj
j=1

1 -tj

(I1 Il-tj-1

(4.4)

(4.5)

(4.6)

Therefore,

n

7 j- -1 /-J
j=1
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1 - t2)/

I - 11(1 - zi) > 1 - fj(1 - piy).
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k-1

j=1

(Using (4.7) and (4.5))

This concludes the proof for the start deadline model. In the completion deadline model
with small jobs, we have

n

Z7rjpj
j=1

n n

E Sj-1pj - E(irj-1 - 7j)pj
ji=1 j=1

n n

> 1- J(1-zj)-Y(7rj_- i rj)e
j=1

(Using (4.5))
j=1

= 1-J1(1 - zj) - (7ro - r,)e
j=1

n

= (1-) -(1-zj) + e.
j=1

Consider again two cases.
Pj zj < 1 so 1 - z3  0.

n

E) - (l1 -
j=1

If pj 1 - tj_ 1 for all j C [n], then for all j E [n] we have
Using (4.4), we can therefore bound (4.8) as follows:

n

zj) + E7rn > (1-E) - fl(I

n

- zj) + 1 t ( - zi)
j=1

n

j=r1

(1-=e)1 (4.9)

Otherwise, if Mk+1 > 1 - tk for some k, then consider the smallest such k. We then have
pj < z. < 1 for all j < k and by (4.4),

k

17J(1 - z1 ) (1 - tk) irk pk+17rk K- Erk- (4.10)
j'=1

Therefore,

n k

E7rjp > E rjyj
j=1 j=1

k

> (1 - )f- (1 - zj) + E7rk
j=1

(Using (4.8))

(4.8)
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j=1
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(1 - e) - -7rk + Ex7 k (Using (4.10))
= 1 -e.

This concludes the proof.

Just as Lemma 10 improves the "E[p(J)]" lower bound for WSEPT, we now demonstrate
a corresponding improvement for the upper bound on ADAPT, which can be viewed as a
strengthening of Lemma 1.

Lemma 11. Fix any adaptive policy P. Letting J denote the random set of jobs that P

attempts to schedule, we have

n

E[p(J)] < 2 1 - 17(i -i) . (4.11)

j=1

Proof. We follow the same inductive structure as in the proof of Lemma 1. Suppose P finds
itself in a situation with a deadline d units of time into the future and a set R of remaining

jobs. Let J(d, R) denote the (random) set of jobs that P manages to schedule from this

point on. Using induction on JRI, we argue that for any set of jobs R and any random

variable t < 1 independent of the processing times of jobs in R,

E[p(J(t, R))]<5(E[t] +1) 1 -HQ(1 - pj).

The lemma follows if we set t = 1 and R = [n]. We take JR = 0 as a trivial base case.

Suppose, now, that P is faced with a deadline t units of time into the future (a random
variable) and has a set R of available remaining jobs. If P happens to schedule job j E R

next, then

E[p(J(t, R)) = pj + E[p(J(t - pj, R\{j})) I pj < 1]Pr[pj 1]

= p3 + E[p(J(t - min(pj, 1), R\{j})) I p3 < 1]Pr[pj < 1]

py + E[p(J(t - min(pj, 1), R\{j}))]

< pj + (E[t - min(pj,1)]+ 1) 1 - (1 - pi) (by induction)
iER\{j}

= p+ (E[t] - 1i+1) + J (1 - pi)
iER\{j}

(E[t]+ 1) - (E[t] - p+1) + f (1 - pi)
iER\{j}

< (E[t] + 1) - (E[t] +1)(1 - p) 1 (1 - pi)
iER\{j}
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= (E[t] +1) 1 - J(1 - pi),

and completes the proof since it holds for every job j E R.

Observe that Lemmas 10 and 11 are actually tight, if we consider an instance in which the
processing time of each job is either 0 (probability 1 - E) or 1 (probability c).

4.1.2 Bounds on Expected Value

We now show how to obtain better lower bounds on the expected value obtained by WSEPT
and better upper bounds on ADAPT. Recall that ordering of jobs used by the WSEPT
policy depends on whether we are in the start deadline or completion deadline model. If we
define Wj as wj if we are in the start deadline model, or as w in the completion deadline

model, then the WSEPT ordering is -- > W2 ... > n. By defining Wj in this fashion,II- I'2 - - /in

we enable the proofs that follow to work in both the start deadline model and the completion
deadline model. We now define

n j-1

V = Wi ](1 - pi). (4.12)
j=1 i=1

Lemma 12. In the start deadline and completion deadline models, ADAPT < 2V.

Proof. Fix an optimal adaptive policy P, and let xj denote the probability that P attempts
to schedule job j. In both the start deadline and completion deadline models, we have
ADAPT < En- Wyxj. This clearly holds with equality in the start deadline model,
(where Wj = wj), and follows as a consequence of Theorem 2 in the completion deadline
model (where Wj = w'). Adopting the convention that Wn+1/pn+1 = 0, we have

n

ADAPT < ZW x
j=1

n W

Wj Wi+/1j

<2 Z WJ WJ+ 1 (1 - A) (Lemma 11)
n j1

j=1 i -i i=1<2
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n

=2E
j=1
n

=2E
j=1

=2V

and this completes the proof.

Wi
/ Lj

j-1

W (1-/i)

0

Lemma 13. In the start deadline model, the expected value obtained by WSEPT is at least
V. In the completion deadline model, if all jobs are small then WSEPT obtains an expected

value of at least (1 - e)V.

Corollary 5. The WSEPT policy delivers a performance guarantee of 2 for the problem
1 | pj ~ stoch,dj = 1 I E[Zw j Vj], and if all jobs are small, then WSEPT delivers a

performance guarantee of 2/(1 - E) for 1 1 pj ~ stoch, dj = 1 1 E [_ wjUj].

Proof of Lemma 13. Index the jobs according to the WSEPT ordering, and let 7rj denote

the probability that job j completes by the deadline. In the start deadline model, the

expected value we obtain is

n

EW7rj-1
j=1

n

> EZW 3 ri-i
j= 1

j1
n

j=1

n

j=1
n

Wi
I-Uj

( -1

(Lemma 10)

n 1

=1 P =1

n j-1

S W, H(1-p )
j=1 i=1

= V.

In the completion deadline model with small jobs, the application of Lemma 10 above brings

with it an extra factor of (1 - E), which carries through to the end of argument. I

Wi

/I'j

3
Wj+1

Wj+1
Aj+1)

3

-,u~)-fl - 1 ))

63

j-1

i=PA
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4.1.3 A 4-Approximate Policy in the Completion Deadline Model

The analysis above shows that WSEPT by itself is a 2-approximate non-adaptive policy in
the start deadline model. In the completion deadline model, we obtain a 4-approximate
non-adaptive policy by taking the better of two solutions:

e If any job j satisfies w > V/2, then schedule only this single job.

" Otherwise, schedule all jobs (not just small jobs) according to the WSEPT ordering.

We call this the improved best-of-2 policy.

Theorem 6. The improved best-of-2 policy delivers a performance guarantee of 4 for the
problem 1 | p3 ~ stoch, d. =1 I E[ wjU].

Proof. If a single job is scheduled, then we obtain an expected value of at least V/2 and
ADAPT < 2V, so the performance guarantee of 4 holds in this case. Consider now the case
where we use the WSEPT ordering, and let 7ri denote the probability that job j completes
by the deadline. Taking the jobs to be indexed according to the WSEPT ordering, the
expected value we obtain is

n n

Zw.7r >3w> 1i
j=1 j=1

n n

= w jrj_ - Ew (7rj-i - rj)
j=1 j=1

n

" V - E w((7rj1 - 7r) (Lemma 13)
j=1

,)n
" V - max(wjE _1-7j)

jiE[n] j=

" V - (V/ 2) (-go - 7rn)

" V/2,

which gives a performance guarantee of 4. E

4.2 Exhaustive Enumeration for Large Jobs

We focus on the completion deadline model for the remainder of the chapter. As usual, let
S and L denote the sets of small and large jobs in our instance, and let ADAPT(S) and
ADAPT(L) denote the expected value obtained by an optimal adaptive policy restricted to
these sets. Taking only the small jobs and indexing them according to the WSEPT ordering
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(based on w rather than wj since we are in the completion deadline model), let us define

n j-1

SM ALL = (I -e) E ; W ( p
j=1 i=1

We know from the preceding section that the WSEPT policy obtains at least an expected

value of SMALL, and that ADAPT(S) 2 SMALL. In this section, we construct an
adaptive policy for large jobs that delivers an expected value of at least LARGE, where
ADAPT(L) (1 +,)LARGE. Combining these two policies (taking the better of the two),
we obtain a (3 + e)-approximate policy.

Theorem 7. Let E' = E/5 be used to define the boundary between small and large jobs.

Applying either WSEPT for small jobs (if SMALL > LARGE) or the adaptive policy

described in this section for large jobs (if LARGE > SMALL), we obtain a (3 + E)-
approximate adaptive policy for 1 | pj ~ stoch, dj 1 I EE wjUj].

Proof. Let B = max(SMALL, LARGE) denote the expected value obtained by the policy
described in the theorem. Using the fact that 1 < + 2-' for E' < 1/2, we then have

ADAPT < ADAPT(S) + ADAPT(L)
2

< SMALL + (1 + E')LARGE
1 - E'

< (3 + 5E') B

K (3 + E) B,

which is the desired performance guarantee.

We proceed now to describe our (1 + e)-approximate policy for large jobs. An interesting
feature of this policy is that it is adaptive - given a set of remaining large jobs J and a
deadline d, it spends polynomial time (assuming E is constant) and computes the next job to
schedule in a (1 +E)-approximate policy. It also estimates the value it will eventually obtain,
thereby computing a (1 + e)-approximation to ADAPT(L) (i.e., the value of LARGE).

The policy we describe shortly is the first result we encounter in this dissertation with a

weakly-polynomial running time. Let K be an upper bound on the number of bits required

to represent any job value wj, instantiated processing time for pj, or probability value

obtained by evaluating the cumulative distribution for pj. Assuming e is a constant, our

running times will be polynomial in n and K.

Let us think of an adaptive policy as a decision tree, where at a depth-l node we have a choice
from among LI -1 jobs to schedule next (and this decision will be made based on remaining

deadline). We first claim that by restricting our policy to have at most a constant depth
(depending on -), we only forfeit a small (E-fraction) amount of expected value. Hence, our
decision tree will contain at most a polynomial number of nodes, and we can exhaustively

compute an approximately-optimal adaptive policy for each node in a bottom-up fashion -
at each depth-l node in the decision tree, our algorithm for determining the appropriate job

65



ONE MACHINE WITH COMMON DEADLINES: IMPROVED RESULTS

to schedule next will make a polynomial number of calls to algorithms at depth level I + 1.
Since the resulting polynomial running time can have extremely high degree, we stress that
this is a result of mainly theoretical interest (as is true for PTAS's for many other NP-hard
problems that use exhaustive enumeration to solve instances comprised of "large" items).

Let us define the function Fjk(t) to give the maximum expected value one can achieve if
t units of time have already been used, we have already scheduled jobs J C L, and we
may only schedule k more jobs. For example, ADAPT(L) = F0,ILJ(0). The analysis of our
adaptive policy relies primarily on the following technical lemma.

Lemma 14. For any constant 6 E [0,1], any t E [0,1], any set of large jobs J C L and any
k = 0(1), there exists a polynomial-time algorithm (which we call AJ,k,J) that computes a job
in L\J to schedule first, which constitutes the beginning of an adaptive policy obtaining ex-
pected value in the range [FJ,k(t)/(1 +6), Fj,k(t)]. The algorithm also computes the expected
value of this policy, which we denote by the function GJ,k,6(t) E [FJ,k(t)/(1 + 6), FJ,k(t).

We prove the lemma shortly, but consider for a moment its implications. Using the lemma,
we use AO,k,s to compute an adaptive policy that obtains an expected value of at least
LARGE = G0,k,5(0) where 6 = E/3 and k = 12. Then

FO,k(0) < (1 + E/3)LARGE.

Letting JL denote the (random) set of jobs successfully scheduled by an optimal adaptive
policy, Lemma 1 tells us that E[p(JL)] < 2, so by Markov's inequality (and the fact that

p3 ; & for all j E L) implies that Pr[IJL I ;> k] < E/6. For any k, we can now decompose the
expected value obtained by ADAPT(L) into the value from the first k jobs, and the value
from any jobs after the first k. The first quantity is bounded by Fok(0) and the second
quantity is bounded ADAPT(L) even when we condition on the event I JL I > k. Therefore,

ADAPT(L) Fk(0) + ADAPT(L)Pr[JLI > k] : F,k(O) + £ADAPT(L),6

and assuming that E < 3 we have

ADAPT(L) < FOk ( (I 3)Fk( 0) + (+ E/3)2LARGE < (1 +E)LARGE.
1 - -/6 (

Proof of Lemma 14. We use induction on k, taking k = 0 as a trivial base case. Assume
the lemma now holds up to some value of k, so for every set J C L of large jobs we have a
polynomial-time algorithm AJ,k,J/3. We use 6/3 as the constant for our inductive step since
(1 + 6/3)2 < 1 + 6 for 6 E [0, 1] (that is, our argument below will fall short by 2 consecutive
factors of 1 + 6/3). Note that this decreases our constant 6 by a factor of 3 for every level
of induction, but since we only carry the induction out to a constant number of levels, we
can still treat 6 as a constant at every step of the induction.

We now describe to construct the algorithm A.,k+1,J using a polynomial number of "recur-
sive" calls to the polynomial-time algorithm A.,k,6. Again, since we only use a constant
number of levels of induction (recall that the final value of k is constant), at each of which
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G (O) , ,... .., . .
G(Q) / (1+ 8/3) ' - G(t)

G(O) / (1+ 6/3)-.

G(O) / (1+ 8/3)

f~t)

to ti I 2 t3 t4 t P

Figure 4-1: Approximation of the function G(t) GJu{J},k,6/3(t) (shown
by a dotted line) by a piecewise constant function f(t) so that f(t) E
[G(t)/(1 + 6/3), G(t)].

we make only a polynomial number of function calls at the preceding level, the overall
running time of A.,k+1,6 will be polynomial (albeit with potentially very high degree).

The algorithm AJ,k+1,6 must decide which job in L\J to schedule first, given that we are
currently at time t, in order to launch a (1 + 6)-approximate policy for scheduling at most
k+ 1 more jobs. To do this, we approximate the expected value we get with each job j E L\J
and take the best job. To estimate the expected value if we start with job j, we might try
to use random sampling: sample a large number of instances of pj and for each one we call
AJuj},k,. to approximate the expected value Fju{j},k(t +pj) obtained by the remainder of
an optimal policy starting with j. However, this approach does not work due to the "rare
event" problem often encountered with random sampling. If pj has exponentially small
probability of taking very small values for which FJu{j},k(t +pj) is very large value, we will
likely miss this contribution to the aggregate expected value.

To remedy the problem above, we a sort of "assisted sampling" that first determines the
"interesting" ranges of values of pj we should consider. We approximate FJu{j},k(-) by a
piecewise constant function f(-) with a polynomial number of breakpoints denoted 0 =
to . .. t = 1. As with f, let us assume implied subscripts for the moment and let G(t)
denote GJu{j},k,J/3(t). Initially we compute f(to) = G(0)/(1 + 6/3) by a single invocation
of AJu{j},k,6/3. We then use binary search to compute each successive breakpoint t, ... tp_ 1 .
More precisely, once we have computed ti-1, we determine ti to be the minimum value of t
such that G(t) < f(ti-1). We illustrate the construction of f(-) in Figure 4-1.

The maximum number of steps required by the binary search will be polynomial in n and
K, since any aggregate sum of n item sizes requires poly(n, K) bits to represent, and each
iteration of binary search fixes one of these bits. Each step of the binary search makes one
call to AJu{j},k,6/3 to evaluate G(t). Note that even though FJu{j},k(t) is a non-increasing
function of t, its approximation G(t) may not be monotonically non-increasing. However,
if we ever evaluate G(t) and notice its value is larger than G(t'), where t' < t is a point at
which we formerly evaluated the function (or similarly, if we notice that G(t) < G(t') and
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t < t'), then it suffices to use the value of G(t') instead of the value of G(t) - this still
yields a (1 + 6/3)-approximation to Fju{j},k(t), and allows us to binary search properly.

Each breakpoint of f (-) marks a drop in G(.) by at least a (1 + 6/3) factor. The value of G
can drop by a (1 + 6/3) factor at most a polynomial number of times before it eventually
reaches zero. We can argue this inductively, by adding to our inductive hypothesis the claim
that G evaluates to a quantity represented by a polynomial number of bits. Since f is a
(1 + 6/3)-approximation to G, which is in turn a (1 + 6/3)-approximation to FJu{j},k, and
since (1 + 6/3)2 < 1 + 6, we know that f (t) E [FJu{j},k (t)/(1 + 6), FJu{j},k (t)].

Assume for a moment now that j is the best first job to schedule (the one that would be
scheduled first by an adaptive policy optimizing FJ,k+1(t), we can write FJ,k+1(t) as

FJ,k+1(t) = wjPr[pj < 1 - t] + FJu{j},k (t + r)hj (r)dr.
f=0

where h.(-) is the probability density function for pj. Since we are willing to settle for a
(1 + 6)-approximation, we can use f inside the integral:

GJ,k+1,6() wjPr[pi < 1 - t] + f (t + r)hj (r)dT
J r=O

w Pr[pj 1 - t] + f(t + ti1)Pr[ti_1 p t2].
z=1

Maximizing over all potential first items j E L\J gives the final value of GJ,k+1,6(t), which
is a (1 + 6)-approximation to FJ,k+1(t). Note that any value of GJ,k+1,6(t) must be rep-
resentable by a polynomial number of bits as long as the same is true of G.,k,6/3(t) (since
we only carry the induction out for a constant number of levels). In total, the algorithm
AJ,k+1,6 above makes only a polynomial number of calls to A.,k/ 3 - E

4.3 Special Classes of Distributions

In this section we derive stronger performance guarantees for WSEPT if processing times
have particularly "well behaved" distributions. From the previous section, we know how
to construct a (1 + E)-approximate policy if all jobs are large. The real difficulty lies with
the small jobs, and specifically small jobs with high variability. One way to escape this
difficulty is simply to assume that such jobs do not exist. If we assume the support of every
processing time pj lies in some small bounded interval [0, b], then according to the central
limit theorem, a sum of such independent random variables should be tightly concentrated
about its mean. In this case, we can use appropriate tail inequalities to show that WSEPT
obtains an expected value close to <D(1) (for sufficiently small b). Note that if all processing
times are bounded, then pj = E[pi] and wj =w for all jobs j and also -1*(A) = 1D(A) for
all values of A.

Let R = maxj P3 /pj, where P denotes the maximum value in the support of p3 . We focus
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our attention in this section on instances for which R = 0(1), since this guarantees that
a job j with small pu2 has a bounded support in the small interval [0, Rpj]. Several com-
mon processing time distributions satisfy this condition, including for example the uniform
distribution and all symmetric distributions.

Lemma 15. If R = 0(1), then for any small constant e > 0, there exists a constant

b E (0, e] such that WSEPT is a (1 +e)-approximate policy when we restrict our instance

to only the set J of jobs with pj E [0, b]. This result holds in both the start deadline and
completion deadline models.

To prove the lemma, we use a well-known tail inequality due to Hoeffding [301:

Theorem 8 (Hoeffding). Let X 1 ... Xn be independent random variables each satisfying
Xi E [ai,bi]. If X =X1 +...+X,, then

Pr[X > E[X] + t] < e-2t 2 /C and Pr[X < E[X] - t] < e-2 2 /c

where c = Z4(bi - ai )2

Proof of Lemma 15. We choose 6 > 0 to be the constant satisfying (1 + 6)/(1 - 6) = + e.
Choose b E (0, e] to be a small enough constant so that

e-2(-) 2/bR(1-i+b) < . (4.13)
~ 2

This is always possible since the left hand side tends to zero in the limit as b decreases. Let
J denote the set of all jobs j satisfying pj E [0, b]. We restrict our focus to the WSEPT
ordering of only the jobs in J. Let F = 1 - + b, and let j be the smallest index in our
ordering such that _j pi E [F - b, F]. Applying Hoeffding's bound (note that c < bRF),
we have

Pr[jobs 1... j complete by deadline] = 1- Pr [ p > 1]

> 1 - e-2(1-F)2 /c

> 1 - e2(1-F)2 /(bRF)

6
> 1 - . (Using (4.13))

The value we obtain if jobs 1 ... j succeed in completing by the deadline is at least

<DJ (F - b) > (F - b)1 j(1) > I - )' (1).

Note that 4 J(1) = 4*(1) given that our processing time distributions are bounded, so this
holds in both the start deadline model and completion deadline model. Therefore, the total
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expected value obtained by WSEPT for the jobs in J is at least

- 2 DJ(1) > (1 - )D (1),

In terms of bounding ADAPT, we return to our martingale argument from Section 3.1.1.
Since our processing times are bounded by b, we know that T(S.) < 1 + b (rather than
2), which implies that E[p(J')] 5 1 + b, where J' denotes the (random) set of jobs that
any given adaptive policy attempts to schedule. Jensen's inequality (see also the proof of
Theorem 1) then gives us ADAPT(J) 5 <j(1 + b) 5 (1 + 6)<Dj(1), where ADAPT(J) is
the expected value obtained by an optimal adaptive policy for just the jobs in J. Therefore,
if WSEPT(J) denotes the expected value for WSEPT on the set J, we have

ADAPT(J) < 1+6WSEPT(J) (1+ E)WSEPT(J),
-1-6

which completes the proof.

Note that the proof above gives us a means of estimating, to within a (1 + E) factor, the
expected value obtained by WSEPT for the jobs in J.

Theorem 9. If R = 0(1), then one can compute an adaptive (2 + E)-approximate policy
for any small constant e > 0 for the problems 1 | pj - stoch, dj = 1 I E[E wjVj] and
I I pj ~ stoch, dj = I | E[E wjUj].

Proof. We invoke Lemma 15 (using e' = E/2 instead of E) to obtain a constant b and a set
J with pj E [0, b] for all j E J. Let ADAPT(J) denote the expected value obtained by an
optimal adaptive policy for only the jobs in J, and let WSEPT(J) denote the expected
value obtained by the WSEPT policy for jobs in J. Then ADAPT(J) < (1+E')WSEPT(J).
Now consider the jobs in : these all have support that extends beyond b. We know that

Ii > bIR with b/R < E' = 0(1) for all j E J. Let LARGE(J) denote the expected
value for the adaptive policy from Section 4.2 for jobs that are "large" with respect to
the constant b/R. We then get ADAPT(J) < (1 + E')LARGE(J). Taking the better of
WSEPT for the set J and the adaptive policy for J, we obtain an expected value B >
max{WSEPT(J),LARGE(J)}, and

ADAPT < ADAPT(J) + ADAPT(j)

< (1 + E')WSEPT(J) + (1 + e')LARGE(J)

* 2(1 + E')B

= (2 + E)B,

which is the desired performance guarantee.
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5. One Machine with Individual Deadlines and
Release Times

We begin this chapter by considering stochastic scheduling problems in which all jobs have
individual deadlines but a common release time at t = 0:

" 1 I p, ~ stoch I E[E wjV] (in the start deadline model), and

* 1 I pj - stoch I E[E wjU,] (in the completion deadline model).

We then consider the somewhat symmetric problem where jobs have a common deadline at
time t = 1 but individual release times:

* 1 I p3 ~ stoch, rj, dj = d I E[E wjVj] (in the start deadline model), and

* I pj - stoch, rj, dj = d I E[E w3Uj] (in the completion deadline model).

Note that these problems are equivalent due to symmetry in the deterministic case, but
they are now quite different in our stochastic setting.

Just as with the stochastic knapsack problem we have considered for the past 2 chapters,
our results in this chapter will be simpler and stronger in the start deadline model than in
the completion deadline model. In particular, for we will only be able to obtain reasonable
results in the completion deadline model if all jobs are small.

5.1 Individual Deadlines

Deterministic scheduling problems in which jobs have individual deadlines have received
quite a bit of attention in the literature. It is well known that one can extend the FPTAS
for knapsack [31] to obtain an FPTAS for 1 E Z wjUj (and we can extend this to an
FPTAS for 1 E wjV by increasing the deadline of each job j by pj). In the stochastic
case, we show how to use a straightforward randomized rounding procedure to obtain an

8-approximate non-adaptive policy for 1 1 pj - stoch I E[E wjVj].
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5.1.1 Fractional Relaxations

Consider the following natural generalizations of the linear programming relaxations for
D(.) and D*(-) from Chapter 3 (recall that we define W'.= wjPr[pj < dj]):

n n
-1(A) = max E wxj 4D *(A) max i W j

j=1 j=1
Vj c [n] : xiE[min(pi, dj)] < Adj Vj E [n] : xiE[min(pi, dj)] < Adj

i:di gd j i:di:! d j
Vj c [n] :0< x < 1 Vj E [n] :0< x < 1

Note that the generalized functions (D(-) and *(-) above are completely equivalent to D(-)
and 4*(-) from Chapter 3 in the event that all deadlines coincide. As in Chapter 3, we can
use these functions to upper bound the expected value obtained by an optimal adaptive
policy. Note that in the completion deadline model, our bound below depends crucially on
our assumption that jobs cannot be canceled immediately at their deadlines. Also note that
1(.) and 4*(-) are concave due to Lemma 3.

Lemma 16. In the start deadline model, ADAPT < @(2), and in the completion deadline
model, ADAPT < D*(2).

Proof. We use the same argument as in the proof of Theorem 2. Fix an optimal adaptive
policy P, and let xj denote the probability that P attempts to schedule job j. The expected
value obtained by P is E xjwj (start deadline model) or at most E xjw (completion
deadline model), and these are precisely the objective functions for (D(2) and *(2). We
now need only to argue that X1 . .. X is a feasible solution. Consider, for some j, one of the
packing constraints from either LP (these constraints are identical for both LPs):

S xiE[min(pi,dj)] < 2dj.
i:di<dj

This is equivalent to the single packing constraint for the stochastic knapsack problem.
Since all jobs i with di dj must be launched prior to time dj, Lemma 1 establishes that
this constraint would be valid for a problem in which all jobs in {i : di K dj} share a
common deadline of dj. In our case, some of these jobs may have earlier deadlines, but this
does not affect validity of the constraint - if anything, these earlier deadlines could only
further strengthen the constraint.

5.1.2 Randomized Rounding

We now work toward an 8-approximate non-adaptive policy for 1 I pj ~ stoch I E[E wjVj].
As an upper bound on the expected value of an optimal adaptive policy, we use ADAPT <
4 (2) from Lemma 16. Starting with a fractional solution x1 ... x" for 4(1), we consider
each job j in sequence (ordered by their deadlines), flip a coin, and with probability xj/2 we
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schedule j. Since we do not pay any attention to j's deadline, it is entirely possible that we
may schedule j after its deadline has already expired. However, since we can perform the
coin flips in advance, the resulting policy (which we call the randomized rounding policy)
is truly non-adaptive, so we establish a bound of 8 on the adaptivity gap of 1 1 pj ~
stoch | E[E wjVj]. If we are allowed to use a limited amount of adaptivity and avoid
scheduling jobs whose deadlines have already expired, then our results can only improve.

Theorem 10. Take any feasible fractional solution x 1 ... x,, for 4(1). In the start deadline
model, the randomized rounding policy described above obtains an expected value of at least
one quarter of the LP objective value for x - that is, at least E xjwj/4.

Proof. Let us index our jobs according to their deadlines (the ordering used by the random-
ized rounding policy). We extend our definition of Mj as follows:

M= xiE[min(pi,dj)].

Note that Mj 5 dj since x1 ... x, is feasible for the linear program for D(1). Recall that
for the stochastic knapsack problem with common deadline at time t = d, Lemma 4 tells
us that job j is successfully scheduled in the start deadline model with probability at least
1 - Mj_1/d. Here, we modify this statement to say that job j would be scheduled by its
deadline (that is, if we were to include j according to its coin flip) with probability at least
1 - Mj- 1/(2dj) > 1/2. To show this, let Pj be a random variable whose value is the sum
of min(pi, dj) for all jobs i < j that are selected via coin flip by the randomized rounding
policy. Let Xj be an indicator random variable that takes the value 1 if job j would be
scheduled prior to its deadline (if the randomized rounding policy were to select j via coin
flip). Then,

E[X3] = 1 - Pr[P-_ > dj]

* 1 - E[Pj-1 ]/dj (Markov's inequality)

* 1 - Mj_1/(2dj)

> 1/2,

since E[P-_1 ] < My_1/2. Let Wj be a random variable taking the value 1 (with probability
Xj/2, if the coin flip for job j says to schedule j) or 0 (with probability 1 - xj/2, if the coin
flip tells us to leave out j). Job j will be successfully scheduled only if both W and Xj
deliver positive indications. Since Wj and X, are independent (this is true only in the start
deadline model!), we can write the expected value obtained by the randomized rounding
policy as

nn ni

E =XwE[WIE[Xj] > wjxj,
1j=1 j=1 j=1

and this is precisely one quarter of the objective value for 4(1) for x.
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Corollary 6. The non-adaptive randomized rounding policy is an 8-approximation algo-
rithm for 1 I pj ~ stoch | E[Z wjVj].

Using the method of conditional expectations with pessimistic estimators, we can deran-
domize the argument above and obtain a deterministic 8-approximation algorithm.

5.1.3 Difficulties with the Completion Deadline Model

The completion deadline model seems more difficult to accommodate in the case of individ-
ual deadlines. In particular, our familiar LP-based analysis based on * (.) no longer seems
powerful enough to give us a strong approximation guarantee. According to the following
lemma, one cannot hope for a better approximation guarantee than Q(n) in the worst case
if we base our analysis on *

Lemma 17. For the deterministic problem 1 j E w3 U the linear program for *(1) has
an integrality gap of 0(k), where k denotes the number of distinct deadlines among all jobs.

Proof. To show that the integrality gap is at least k, consider a deterministic instance with
k jobs having pj = dj = 23 and unit value. In this case, an optimal integral schedule
includes only one job (which blocks all others from being scheduled), but *(1) > n/2 since
xj = 1/2 for all j E [k] is a feasible solution. The integrality gap is at most k + 1 since we
can take an optimal fractional solution for 4*(1) and upper bound its value by the value of
a union of k + 1 feasible integral solutions. Let us assume without loss of generality that we
start with an optimal basic fractional solution for 1*(1) in which xj = 0 if pj > dj, so any
single job j for which xj > 0 is guaranteed not to exceed its deadline when scheduled in
isolation. Since the LP for *(1) has effectively k inequality constraints, any basic feasible
solution x will contain at most k fractional variables 0 < xj < 1. We take each of these
k fractional variables xj and turn each one into a "single job" schedule that includes only
job j by itself. That gives us k feasible integer solutions. For the last solution, we take the
set of all jobs j for which xj = 1. The total value of all of these k + 1 integral solutions is
clearly an upper bound on <b*(1). D

The large integrality gap for the LP for <b*(1) seems to only be a problem for large jobs.
For small jobs, we can still apply randomized rounding somewhat successfully.

Theorem 11. Suppose that for all jobs j we have [p < Edj (i.e., that all jobs are "small"
with respect to a cutoff e compared to their own deadlines). Let q = (1 - E)/2, and let us
perform randomized rounding by taking the jobs in order of their deadlines and including
each job j independently with probability qxj, where x 1 .. .xn is an optimal solution to
4)*(1). This gives us a performance guarantee of 8/(1 - E)2 for the problem 1 | p ~
stoch I E[E wjU].

Proof. We generalize slightly the proof of Theorem 10. Define the indicator random variable
Wj to be 1 with probability xj/2 and zero otherwise, and as before, let the indicator random
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variable Xj tell us whether or not job j would be successfully scheduled (that is, if the
randomized rounding policy chooses to include j). Now,

E[Xj] = 1 - Pr[Pji +p.] > d_]

- 1 - Pr[Pj-I + min(p, dj)] > dj

> 1 - E ~Phi] + E[min(pjd)3 (Markov's inequality)
dj

S1- _1 p3
dj dj

> q - E.

Since Wj and our modified version of Xj are independent, the total expected value we
obtain is

n ~n

SEwWX] = (wE[Wj]E[Xj]

n

Eqw'xj1 -q - E)
j1

" q(1 -- q - )*)

q(1 - q - ) ADAPT.
-2

By optimally setting q = (1 - E)/2, we obtain the desired performance guarantee. l

5.2 Individual Release Times

Let us now consider problems with individual release times r 1 ... rj and a common deadline
at time t = d. As before, we consider only the start deadline model, so the problem under
consideration is 1 | pj ~ stoch, rj, dj = d I E[E wjVj]. The natural LP relaxation for this
problem is symmetric to the one from the previous section:

4(A) = max E wjX,
j=1

Vj c [n] : x xE[min(p-, d - rl)] < A(d - rj)
i:ri;>rj

Vj c [n] : < xj I1

By a symmetric argument to the one given in the proof of Lemma 16, we have ADAPT <

1(2). Unfortunately, whereas in the previous section we can achieve at least 4(1)/4 in
expected value by randomized rounding, here we find that even in the deterministic case,
the linear program for 4I(1) has an integrality gap of Q(n). Consider a deterministic instance
with n unit-value jobs where d = 2n and for each j E [n] we have pj = 2i and rj = d - 2i.
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An optimal solution can schedule at most two jobs (one of which is scheduled right at its
deadline), while the feasible fractional solution that assigns xj = 1/2 for all jobs obtains a
value of n/2.

5.2.1 Pseudo-Approximation Algorithms

The integrality gap of the LP for o(1) rules out the possibility of obtaining any reasonable
approximation guarantee by rounding a fractional solution to the LP. However, it does
not rule out the possibility of developing pseudo-approximation algorithms. Suppose we
"stretch" the deadline of each job by a factor of #; that is, we assign each job j a new
deadline d2 = rj + /(dj - rj). We say that a policy is an (a,#8)-approximation algorithm
if, using the new deadlines d'i ... d', it can obtain an expected value that is at least an a
fraction of ADAPT (where ADAPT always denotes the optimal expected value we can
obtain using our original deadlines, which in this case all coincide at time t = d).

Theorem 12. Randomized rounding of jobs in non-increasing order of release time, using
a fair coin, gives a non-adaptive policy with an expected performance guarantee of (8, 2).

Proof. As long as our jobs initially share a common deadline, the act of stretching out
deadlines gives us much more slack for jobs with earlier release times. In fact, if we stretch
deadlines by a factor of / = 2, then the new deadlines d' ... d' become the "mirror image"
of the release times rn ... r1 with respect to the original deadline t = d. Therefore, if we
focus on times t > d in the stretched instance, we find ourselves faced with an instance of
1 I pj - stoch I E[> wjVj], since all jobs are available at time t = d and each job has an
individual deadline d'. Due to symmetry, the optimal solution xi ... X, for the LP for OD(1)
for the original problem will be an optimal solution to the LP for 4(1) for the new problem,
so by randomized rounding (starting at time t = d) according to the order d' < ... < d'
(i.e., non-increasing order of release times), Theorem 10 ensures that we obtain at least an
expected value of 4(1)/4, which is at least ADAPT/8. The randomized rounding approach
described above starts scheduling at time t = r, rather than t = d, but this can only serve
to improve our expected value. l

We note that the preceding approach also gives a performance guarantee of ((18)2, 2) in

the completion deadline model if all jobs are small.

5.2.2 Interval Scheduling

The natural problem to consider next is 1 I p3 - stoch, rj I E[E wjVj], where jobs have
individual release times and deadlines. In fact, one can generalize this further to allow each
job to have an associated set of intervals of time during which it can be launched. In a
deterministic setting, such "interval scheduling" problems can be approximated to within
a factor of (2 + -) [1]. However, in the stochastic case we currently do not know how
to obtain approximation algorithms (or even pseudo-approximation algorithms) with good
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performance guarantees for these problems. One can still bound ADAPT using a linear
programming relaxation, as we have done before. The difficulty seems to be on the other

side of the equation, in analyzing the expected value obtained by a "rounded" policy.
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6. Parallel Machines

In this chapter we generalize the LP-based non-adaptive policies from Chapter 3 to parallel
machine models. One might ideally like to generalize the combinatorial results from Chapter
4, since these give us stronger performance guarantees in the single machine case; however,
at the present time there does not seem to be a straightforward way of doing this.

The simplest parallel machine problems we consider are those involving identical machines

(we again assume by scaling that d = 1 throughout this chapter whenever we have common
deadlines):

" P pj - stoch, dj = 1 E[E wjT 3 ] (in the start deadline model), or

" P Pj - stoch, dj = 1 1 E[E wjUj] (in the completion deadline model).

We consider two types of policies for these problems: "global" list scheduling policies that
sequentially assign jobs to machines based on a single global ordering of all jobs, and
non-adaptive "pre-assignment" policies that initially construct disjoint orderings of jobs to
schedule on each of the machines.

Moving along from identical machines, we then consider pre-assignment policies for problems
in the unrelated parallel machine environment:

" R Pj - stoch, dj = 1 1 E[E wjVj] (in the start deadline model), or

* R p -~ stoch, dj = 1 I E[E w 3Uj] (in the completion deadline model).

Finally, we remove the dj = 1 constraint and generalize our pre-assignment policies for both
identical and unrelated machines to the case where jobs have individual deadlines.

6.1 Identical Parallel Machines: Fractional Relaxations

Just as in the single machine case, linear programming will serve as an important tool for
bounding the performance of an optimal adaptive policy in parallel environments. Letting m
denote the number of machines in our environment, consider the following linear programs:



n n
TF(A) = max E w4gj T*(A) = max E wjx'

j=1 j=1
n n
E XjjI/m < A E xjpj/m < A
j=1 j=1

Vj E [n] : 0 < j ! 1 Vj C [n] :0 Ox 1

The functions l(-) and T*(-) as defined above are formulated for the identical parallel
machine environment; later in the chapter, we will generalize these functions to handle
the case of unrelated parallel machines. Just as in Chapter 3, we define Ij(-) and T*'(.)
by restricting the linear programs above to a particular set of jobs J. Finally, note that
'IF(A) > T*(A) for all A > 0, that 'I(-) and TI*(-) are concave (Lemma 3), and that for m = 1,
these functions reduce back to our familiar D(-) and *(-) functions from Chapter 3.

Theorem 13. For the problem P I pj ~ stoch,dj = 1 | E [E: wjVj], we have ADAPT <
T (2), and for the problem P I pj - stoch,dj = 1 I E[Z wjUj], we have ADAPT < 4* (2).

Proof. Fix an optimal adaptive policy P and let x3 denote the probability that P attempts
to schedule job j no later than the deadline. Since our m machines are identical, by
symmetry we can assume that xj/m is the probability that P attempts to schedule job j
on some particular machine i. Letting JL denote the (random) se-t of jobs that P attempts

to schedule on machine i, we know by Lemma 1 that E xjpju/m = E[p(Ji)] < 2. Therefore,
x, ... x,, is a feasible solution for the Ps for T(2) and P*(2). The expected value obtained
by P in the start deadline model is E xjwj, which is precisely the objective value for the LP
for T(2). In the completion deadline model, the expected value obtained by P is at most

E xjw'. (using the same argument as in the proof of Theorem 1), and this is the objective
value of the LP for I*(2). El

6.2 Global List Scheduling

Global list scheduling according to the WSEPT ordering is perhaps the most natural and
simplest approach for scheduling on identical parallel machines. In the start deadline model,
we show that this gives us a performance guarantee of 4, while in the completion deadline
model we obtain a performance guarantee of 5.5 + 2.5v3- < 9.831 by using the better of the
global list scheduling policy according to WSEPT ordering (for small jobs) and a simple
policy that schedules only a single job on each machine. Recall that the WSEPT ordering
differs slightly between the start deadline and completion deadline models. In the start
deadline model, we use the ordering 2 > ... > ', and in the completion deadline

model, we use the ordering ELI > > ... > w. Let us now defineA1 1 - n

=i m pi1

where jobs are indexed according to the WSEPT ordering (in the completion deadline
model, we only use WSEPT to schedule small jobs, so in this model the definition above
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should be applied only to the WSEPT-indexed ordering of small jobs).

Lemma 18. The probability that jobs 1... j are successfully scheduled by global list schedul-

ing based on the WSEPT ordering is at least 1 - Mj_ 1 in the start deadline model, and at

least 1 - Mj_1 - pj in the completion deadline model.

Proof. Let us assume for convenience that our list scheduling policy runs to completion
and schedules all jobs - this gives us a clear notion of the expected time at which job j is
scheduled. We denote this time by the random variable T. We also assume for convenience
that the true processing time of each job j is min(pj, 1) rather than pi; note that this has
no impact on the scheduling time for any job that starts or completes prior to our deadline
d = 1. Now fix a job j, and let t1 . . . tm be random variables whose values give the times at
which machines 1 ... m would finish processing if we were to stop our list scheduling policy

at job j - 1. We then have

E[Tj = E min ti < E t E iE min(pk, 1) =Mii.

In the start deadline model, we fail to schedule job j with probability Pr[T. > 1] < E[T] <

Mi_1, so job j succeeds with probability at least 1 - Mj_ 1 . In the completion deadline
model, the probability that job j fails to complete by the deadline d = 1 is

Pr[T + pj > 1] = Pr[T. + min(p., 1) > 1]

K E[T + min(pj, 1)] (Markov's inequality)

K M -1 + pt.

Therefore, job j completes by time 1 with probability at least 1 - Mi_1 - pg.

6.2.1 Results in the Start Deadline Model

Just as in the single machine case, the start deadline model allows for a simpler analysis

and a better performance guarantee. In fact, our analysis in the parallel case is essentially

identical to that of the single machine case.

Lemma 19. Global list scheduling according to the WSEPT ordering delivers a perfor-

mance guarantee of 4 for the problem P I pj - stoch,dj = 1I E[ wjVj].

Proof. Perhaps the simplest way to prove the lemma is to argue that our analysis in this
case is equivalent to the case of applying WSEPT to the single-machine instance of 1 I pj ~
stoch, dj = 1 I E[E wjVj] in which every pct, is reduced by a factor of m. Note that TI(A)
is identical to <1(A) for this single-machine instance, so our upper bound ADAPT < T(2)
coincides exactly with the single-machine upper bound ADAPT < 4)(2). Moreover, there

is a direct correspondence between the analogous expressions that we use to lower bound

the expected value obtained by WSEPT. For the parallel case, Lemma 18 tells us that the
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expected value obtained by WSEPT is at least

r rj-

wj(1 -= Ew 1 - p/m), (6.1)
j=1 =i \ k=1/

where r is the largest index such that Mr_1 = E"_I pk/m < 1. In the single machine case,
Lemma 4 tells us that WSEPT obtains an expected value of at least

r' j-1
Z w W(I -E>11k) (6.2)
j=1 k=1

where r' is the largest index such that _=1 Pk < 1. The two expressions (6.1) and (6.2)
become identical if we define pj for the single-machine case as pj/m from the parallel case.
We now apply the same geometric proof as in Lemma 5 to argue that there is a gap of at
most a factor of 4 between these corresponding upper and lower bounds. E

6.2.2 Results in the Completion Deadline Model

In the completion deadline model, just as in the single machine case we need to consider the
better of two policies. The first is the WSEPT policy for small jobs (remember the WSEPT
ordering is now based on w rather than wj), and the second is a "single job" policy that
assigns one job per machine. As before, each of these policies, taken individually, can be
arbitrarily bad in terms of performance guarantee.

The Single Job Policy. We denote by SINGLE the expected value we get by scheduling
the best set of m single large jobs, one per machine. Note that in practice, we would use the
best m jobs overall, but for our analysis it suffices to consider only large jobs. If the large jobs
in our instance (denoted, as usual, by the set L) are ordered so that w' > w' > ... > w'
then we can define SINGLE = w' +... + w'. An equivalent way to compute SINGLE
is using an LP:

SINGLE max E WX
jeL

E xj/m < 1
jEL

VjEL O xj 1.

Note the strong similarity between this LP and the LP for JI*(.). In fact, if all jobs are large
(i.e., pj > - for all j E [n]), then the LP for SINGLE is a relaxation of the LP for I*'(E),
so SINGLE > T**(E). Due to the concavity of Tf*(.), we see that if all jobs are large, then
the single job policy gives a performance guarantee of 2/e compared to ADAPT.

WSEPT. Suppose we use global list scheduling to schedule the small jobs in our instance
according to the WSEPT ordering. If we set r be the largest index in the WSEPT ordering
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of small jobs so that Mr-i < 1 - e, then according to Lemma 18,

r

WSEPT =Ew (1-Mj_1 )
j=1

r

> Z (1 -Mji--E) (6.3)
j=1

is a lower bound on the expected value we obtain.

The Best-of-2 Policy. We combine the two policies above by computing SINGLE and
WSEPT, and by running the policy corresponding to whichever quantity is larger. This
gives us an expected value of at least B, where B = max(SINGLE, WSEPT).

Lemma 20. For any set J of small jobs,

W V) E2Jm WSEPT. (6.4)

As a consequence, if we let Js denote the (random) set of small jobs scheduled by an adaptive

policy P, then

E[w'(Js)] 1 - 2E[i(Js)]/m WSEPT. (6.5)
(I - E)2

Lemma 21. Fix any adaptive policy P, and let JL denote the (random) set of large jobs
that P attempts to schedule. Then

E [w'(JL)] 1 + E[p(JL)] SINGLE. (6.6)

Theorem 14. The best-of-2 policy based on global list scheduling delivers a performance

guarantee of 5.5 + 2.5-\F < 9.831 for the problem P I pj ~ stoch, dj = 1 I E[Z wjUj], if we

set E = 2 - V3-.

Proof. Fix an optimal adaptive policy P. Let JS and JL denote the (random) sets of small

and large jobs that P attempts to schedule, and let J = JS U J . We argue, as in Theorem
2, that ADAPT < E[w'(J)]. Now,

ADAPT < E[w'(Js)] + E[w'(JL)]

- E +2E[p(Js)]/m WSEPT+ + E[p(JL SINGLE
S(1 -e)2 ) me )

< 1 +±max( 2 1))E [P(JJs U JL)])B

E E2 E1

( + 12max(,D)B (Using Lemma 1)
-<I - E (62-/)2 E

< (5.5 + 2.5vf3)B
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Figure 6-1: The concave, piecewise linear function T* (A). The value of
WSEPT is at least the area of the shaded part of the diagram, which in
turn is at least as large as the dashed triangle of area 'j V '(1 - e).

for e = 2- V3 ~ 0.268.

Before proving Lemmas 20 and 21, we need one small auxiliary Lemma.

Lemma 22. WSEPT> l- *(1- e).2 S

Proof. Consider Figure 6-1. Recall our definition of r as the largest index so that Mr-1 <

1 - e. Also recall from (6.3) that WSEPT > E '(1 - Mj-1 - e), and this is precisely

the shaded area in the figure, which in turn is at least as large as the dashed triangle of

area 1 - XP *(1 - E).

As a consequence of Lemma 22 we now see that if all jobs are small,

)< 2 x*(_E)< 2 )2

ADAPT < XF*(2) = T*<(2) 1 *P(1 -e) ( WSEPT,

so this implies a performance guarantee of ( )2 in the case where all jobs are small.

' (s )

X

,1- E 1
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Figure 6-2: Case 2 of the proof of Lemma 20.

Proof of Lemma 20. Let J be any set of small jobs and consider the following three cases:

1. p(J)/m > 1 - e. In this case, we have

w'(J) '*SQp(J)/m) y I~ /m ( 1  &) 2p(J)/m WSEPT.
(1 - E) :(1 -)

2. p(J)/m < 1 - E. Consider the diagram shown in Figure 6-2. By the

from the proof of Lemma 22, we know that the shaded area is a lower

WSEPT. We can lower bound this area by the dashed trapezoid of area

p(J)/(2m)]1F* (p(J)/m). Therefore,

argument
bound on

[(1 - E) -

w'(J)< ~g~( )/)2 W SEPT.w'(J) - 4<s(bJ)/m) - 2(1 - e) -Lp(J)/m)

The quantity 2 A(J)/m is a convex function of p(J), so on the interval p(J) C

[0, (1 - e)m] we upper bound it by a linear function:

2 1 - - + p(J)/m 1 - E + 2(J)/m

2(1 - - p(J)/m - (1 - E)2 - (1 _ )2

In both cases, the desired bound holds.

I

,1- S
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1

I
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Proof of Lemma 21. Having fixed an adaptive policy P, we let JL denote the (random)
set of large jobs that P attempts to schedule, and xj the probability that P attempts to
schedule job j. Recall from the proof of Theorem 2 that E[w'(JL)] Z xjw. Therefore,

E[w'(JL)] Zx w

jEL

L M

T * (E[p (JL)
= M*

* m E[p(JL)]

< 6 max (1(J SINE[G(JL) E

\ Wc m ,
< max E[p-(JL)] * E

< max 1. E[p(JL)] SINGLE

" I+ E[p(JL)] SINGLE,

and this is the desired bound. D

6.3 Pre-Assignment by List Scheduling

Having investigated "global" list scheduling policies based on a single list, we spend the
remainder of this chapter discussing non-adaptive "local" pre-assignment policies that ini-
tially partition our jobs into disjoint sets J1 ... Jm, one for each machine. Scheduling then
proceeds in a non-adaptive fashion on each machine.

In this section, we compute Ji ... Jm by global list scheduling according to the WSEPT
ordering. In contrast to the preceding discussion, however, we run global list scheduling
not in "real time", but in advance, treating the processing time of each job j as pj. More
precisely, we consider the jobs in the WSEPT ordering (note this is slightly different for
the start deadline and completion deadline models). For each job, we assign it to the set Ji
(1 < i < m) for which p(Ji) is currently smallest. The process stops when P(Ji) > 1 for all
i E [m] (if we run out of jobs before this condition is met, we can continue to make progress
by using dummy jobs of zero value), and we let J' denote the set of any "leftover" jobs
that have not yet been assigned. Since pi < 1 for all jobs j, the pre-assignment algorithm
terminates with p (Ji) E [1, 2] for all i E [m].
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6.3.1 Identical Parallel Machines

Recall the definitions of the LPs for '1J(d) and 4*(d) from Chapter 3:

(D = max 1 wyxj 4*(d) max E wjx
jEJ jEJ

Zxjp < d Zxjj < d
jEJ jEJ

Vj E J : < X j 1 Vj E J : Xj <1

Lemma 23. For disjoint sets J1 ... Jm and J' as computed by list scheduling using the

WSEPT ordering, we have

m
" T(d) < Z Gjiuj'(d) in the start deadline model, and

S4 *(d) Z *Ud in the completion deadline model,

for any d > 2.

Proof. Let us focus on the start deadline model, as the same argument applies in the
completion deadline model. An optimal fractional solution for XI(d) with d > 2 includes
each job in Ji U ... U Jm to its full extent, as well as the most valuable md - p(Ji U . .. U Jm)

units worth of "mass" from J'. That is, the solution with respect to jobs in J' can be
computed by solving the LP for T y (d - p(Ji U ... U Jm)/m), which one can view as
the "residual" problem once the jobs in J1 U ... U J, are fixed. Now let us consider the
solutions of 4jeuy (d) .. . Jmurj,(d). Since d > 2 and p(Ji) E [1, 2], we know that these

solutions together also include all jobs in J U ... U Jm to their full extent, followed by
md - p(Ji U ... U Jm) worth of "mass" from J'. However, this case has the advantage
of being able to select the most valuable jobs in J' to an extent greater than one by
scheduling them fractionally across several machines. Viewed as a "residual" problem once
J1 U ... U Jm are fixed, the solution here in terms of J' is computed by solving the LPs
for Dy (d - p (Ji)) ... )ji(d - pJ(Jm)). We claim that the total objective value of these

solutions must be at least as large as the objective value in the preceding case, for the
LP for T yj(d - p(Ji U ... U Jm)/m). This follows from the fact that an optimal fractional
solution to the LP for T y (d - p(J1 U. . . U Jm)/m) can be decomposed into feasible fractional
solutions for the LPs for Dy (d - p(J1 )). .. y (d - p(Jm)) whose total objective values sum

to Ty (d - p(J 1 U ... U Jm)/m). l

Start Deadline Model. Suppose we take each set Ji and process it non-adaptively on
machine i according to the WSEPT ordering.

Theorem 15. Using WSEPT to process each set Ji gives a performance guarantee of 4 for
the problem P I pj - stoch,dj = 1 I E[Z wjVj].
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Proof. According to our analysis in Lemma 5 (when we analyzed WSEPT in the single ma-
chine case), we obtain an expected value of at least j#, (1)/2 for each machine i. Therefore,
we receive a total expected value of at least

(1) = juJ'(1) juj'(2) > -IF(2) -ADAPT.
=1i=1 i=1

The initial equality is due to the fact that p(Ji) > 1 for all i E [m], and also the fact that
jobs in J' have smaller "value density" (wg/p) than jobs in Ji.

Completion Deadline Model. In the completion deadline model, WSEPT by itself tends
not to be a good policy. In this case, we use the randomized round-by-value policy (Section
3.4) independently on each machine i to schedule the jobs in Ji.

Theorem 16. By using the round-by-value randomized non-adaptive policy to schedule
each set Ji, we obtain a performance guarantee of 32/7 < 4.572 for the problem P | pj
stoch, d, =1 I E[E w.U ]

Proof. According to Lemma 5, on each machine i E [m] the round-by-value policy obtains
an expected value of at least at least 7 Djsuy'(2)/32. Therefore, our total expected value is
at least

7 m 7 7
329 j1uy(2) > -T(2) - ADAPT.

Note that the round-by-value policy only considers the jobs in Ji for scheduling, and not
those in J' (so we don't try to schedule the same job on two different machines). l

6.4 Pre-Assignment by Shmoys-Tardos Rounding

We now consider the unrelated parallel machine model, where the value and processing time
of a job can depend on the machine to which it is assigned. Let wij and pij denote the value
and (random) processing time of job j if processed on machine i, and let w= wij Prpij < 1]
and pij = E[min(pij, 1)]. We can bound ADAPT in the unrelated machine model using
linear programs that generalize IF (d) and J*(d):

m n m n
T (d) max E wijxij T*(d) max E E w xij

i=1 j=1 i=1 j=1
m m

Vj E [n] : xi < 1 Vj E [n] Zix 1
n n

Vi E [M] xijpi i d Vi c [m] : - pij d
j=1 j=1

V(i,j) :O ix < 1 V(i, j) :0 < ix 1
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Just as before, we have ADAPT < T(2) in the start deadline model and ADAPT <
qf*(2) T(2) in the completion deadline model. This is argued, as usual (see for example

the proof of Theorem 2) by interpreting xij as the probability that an optimal policy P

attempts to schedule job j on machine i, and by showing that x is a feasible solution to
the LPs above (with d = 2) whose value is at least the expected value obtained by P. Note
also that by Lemma 3, T(.) and T*(-) are concave.

6.4.1 Unrelated Parallel Machines, Completion Deadline Model

The linear programs for both T(d) and T *(d) solve a problem whose minimization variant is
known as the fractional generalized assignment problem. In terms of assigning n jobs with
deterministic processing times II . .. pA to m unrelated parallel machines, the variable xzij

indicates the fraction of job j to assign to machine i. The generalized assignment problem
is typically phrased in terms of minimizing the cost of the assignment, whereas in our case
we are maximizing its value.

We now employ a rounding technique due to Shmoys and Tardos [50]. Restricting our
focus to the completion deadline model, suppose we optimally solve the LP for V*(1). The

Shmoys-Tardos procedure takes this fractional solution and rounds it to an integral solution
of equal or higher total value. The main benefit of the procedure is that it ensures that for

each machine at most a single job will "overflow" the deadline d = 1 (treating processing
times as being deterministic and set to p,). Since pj < 1 for each job j, this gives us
an integer solution of value at least V*(1) that is feasible for V*(2). From this we obtain
disjoint sets of jobs Ji . . .Jm to process on each machine.

Theorem 17. By using the round-by-value randomized non-adaptive policy to schedule

each set Ji, we obtain a performance guarantee of 64/7 < 9.143 for the problem R I pj ~

stoch, dj = 1 |E[ZwjU].

Proof. We use the same argument as in Theorem 16. Starting with the upper bound

ADAPT < V*(2) < 24*(1), we can bound T *(1) by a sum of single-machine solutions,

41*(1) < (2),

(i=)

where the notation 4  means the V*,(-) function using values w". and mean truncated

sizes pi,. (i.e., the parameters we get when we view machine i as an isolated single-machine

problem by itself). We conclude the proof by using Theorem 5 to argue that on each

machine i, the round-by-value policy obtains expected value at least 7I4 (2)/32. El

6.5 Pre-Assignment by Randomized Rounding

Our final method for pre-assigning jobs to machines involves the use of randomized rounding.
Technically, we have already used randomized rounding in a sense, because the preceding
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technique of Shmoys and Tardos is a type of "dependent" randomized rounding (it, as well
as the following technique, can also be derandomized). In this section, we discuss the use
of "independent" randomized rounding, where we randomly assign each job independently
from all other jobs.

6.5.1 Unrelated Parallel Machines, Start Deadline Model

Consider the problem R I p2 ~ stoch, dj = 1 E[E wjVj]. As usual, we solve T(2) to obtain
a fractional solution x whose value is an upper bound on ADAPT. For our randomized
rounding step, we assign job j to machine i with probability xij /2. For each job j, we ensure
that it ends up assigned to at most one machine by laying out disjoint segments of lengths
Xi /2 on a unit interval and randomly choosing a single point on the interval. If you recall
the "coin flip" randomized rounding procedure we used in Chapter 5, the current procedure
can be interpreted in a similar fashion: we assign job j to machine i with probability xij,
but when it comes time to schedule job j we flip a fair coin to decide whether to schedule
or skip over it. After randomized rounding, we are left with disjoint sets of jobs J1 ... Jm
to schedule on each machine.

L heoerL U. U upposVe We U piO ces)ses euch set Ji ti the WS5ELP oi deIL ing 1-1 Imtacinle i.Thi

yields a performance guarantee of 4 for the problem R I pi - stoch,dj = 1 | E[ZwjVj].

Proof. Let us index the jobs according to the WSEPT ordering. We then define

Mi2 = Xik/Pik.

k=1

Just as in the case of the "coin flip" randomized rounding from the preceding chapter, we
claim by Markov's inequality that the probability job j would be successfully scheduled on
machine i (not considering whether or not j is actually chosen to be scheduled on machine
i) is at least 1 - Mi,_ 1/2. Note that this quantity is in [0,1] since x is feasible for the
LP for '(2), and hence Mij <; 2 for all (i, j) E [m] x [n]. Continuing in the style of the
randomized rounding argument from the preceding chapter, we define two random variables:
Wij, which takes value 1 with probability xij/2 and zero otherwise, and Xij taking the value
1 if it would be possible to schedule job j on machine i (so E[Xij] ;> 1 - Mij1/2), or zero
otherwise. Job j is scheduled on machine i only of both of these indicators turn out positive:
Xij = 1 indicates that there is still enough time prior to the deadline to schedule job j on
machine i, and Wij = 1 indicates that our randomized rounding assigns j to Ji. Since Wij
and Xij are independent, the total expected value we obtain is therefore

M n m n

E [ wijWijXZ] =wiE[WijE[Xij]
i=1 j=1 i=1 j=1

m n
wij Xij I ig_

- 2 2
i=1 j=1
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Figure 6-3: Getting rid of the 2 M1 _1 term.
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> -ADAPT.
~4

The only mysterious step above involves the vanishing (2 -M 1) term. This follows

from the same geometric argument as used in the proof of Lemma 5. Consider a particular
machine i E [in] In Figure 6--3, the area of the shaded rectangles is j-1 ) j(2 Mi3 1)

and this is lower bounded by the area of triangle ABC, which is Eg_ wizg

6.5.2 Individual Deadlines, Start Deadline Model

For the problem R |Pj ~stoch I E[Z wjV3] where jobs have individual deadlines, random-
ized rounding gives a performance guarantee of 8 following exactly the same argument as
in the single-machine case. Let us first generalize the LP for 'I'(-) for this case:
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We still have ADAPT < T(2) since the solution x derived from an optimal adaptive policy
P is feasible for T(2) and its objective value is the expected value obtained by P. Feasibility
follows from the fact that each packing constraint can be considered as its own individual
single-machine instance, and by applying Lemma 1.

Suppose we solve the LP for T(1) (rather than T(2) as before) and then apply randomized
rounding as before, assigning job j to machine i with probability xij/2. This gives us
disjoint sets of jobs Ji . . . Jm to process on each machine. However, whereas in the preceding
(common deadline) case we processed each set using WSEPT, here we process jobs in order
of their deadlines, just as in Chapter 5.

T heorem 19. Randomized rounding followed by proccssing of jobs in order of their dead-
lines gives a performance guarantee of 8 for the problem R I p3 ~ stoch I E[ E wjVj].

Proof. We proceed as before, by indexing jobs in order of their deadlines and by defining

Mi =ZXik-ik.

k=1

Since we started with a feasible solution x to I(1), we know that Mij < dj. Now we define
random variables Wij and Xij as before, where Wij takes the value 1 with probability
xig/2 and zero otherwise, and Xij takes the value 1 if we would be able to schedule job j
on machine i based on its deadline (irrespective of whether or not we randomly decide to
schedule it). According to the proof of Lemma 10, E[Xij] > 1 - Mi,_ 1/(2dj) > 1/2. Since
Wij and Xij are independent, the expected value obtained by our randomized rounding
policy is

M n M n

E [Z wijWijXij = Z wijE[Wij]E[Xij]

i=1 j=1 i=1 j=1

i=1 j=1 2 2d

i=1 j=1

4

m n
'IF(A) max E E wijzij

i=1 j=1
m

Vj E [n] : z z<1

V(i, j) E [m] x [n] : xikE[min(pik, dj)] < Adj
k:dk _<dj

V(i,j) E [m] x [n] 0 < ix <1
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1
> -T(2)

8
1

> -ADAPT,
8

and this completes the proof.
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7. Discrete Distributions and Dynamic
Programming

This chapter adopts a slightly different outlook from most of the previous chapters, focusing
on problems with discrete, integer-valued processing time distributions. In such a discrete-
time setting, we can use dynamic programming (DP) to compute optimal and approximate
solutions to a variety of problems related to our fundamental stochastic scheduling problems.

The deterministic counterparts of many of our fundamental stochastic scheduling problems
are variants of the 0/1 knapsack problem. Although integer knapsack problems are NP-
hard, they are commonly solved in practice by assuming item sizes are small integers and
using DP. We begin this chapter by showing how this approach also applies to 1 1 p~
stoch, d. = d I E{E wjV,] and 1 I pj - stoch, dj = d I E[E wjUj] (the two problems on
which we focus our attention for most of this chapter) in the case where processing times are
small integers. However, there is an important fundamental limitation inherent in the use
of DP applied to these stochastic scheduling problems: it only seems capable of computing
an optimal ordered adaptive policy rather than general optimal adaptive policy. Recall from
Section 1.1.9 that an ordered adaptive policy considers jobs in the order they appear in the
input and for each one, either attempts to schedule it or irrevocably skips over it.

How good is an optimal ordered adaptive policy compared to a general optimal adaptive
policy? If we start with the ordering of jobs suggested by any of the non-adaptive policies
developed in earlier chapters, then an optimal ordered adaptive policy using this ordering
can only potentially deliver more expected value, never less. Therefore, we might view the
DP algorithms in this chapter as a heuristic means of squeezing more performance out of
our existing non-adaptive policies. If we start with an arbitrary ordering of jobs, then an
optimal adaptive ordered policy will give us at least as much expected value as we can
obtain in the fixed set model. Recall (again from Section 1.1.9) that the fixed set model
asks us to compute a single set of jobs, for which we only receive the value of the entire set
if all the jobs in the set successfully start/complete prior to our deadline. We show in this
chapter how to compute a 9.5-approximate (completion deadline model) or 8-approximate
(start deadline model) solution in the fixed set model for the stochastic knapsack problem,
which therefore also implies that an optimal adaptive ordered policy using any ordering
must deliver a solution that falls within these performance guarantees.
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The DP formulations for our stochastic scheduling problems are somewhat interesting in
their own right. Like many other stochastic DP formulations, we need to compute discrete
convolutions to solve each successive subproblem, so by using the Fast Fourier Transform
(FFT) we can improve the running time of these DP algorithms. Furthermore, for problem
variants in which we are allowed to schedule multiple "copies" of each job, we show how the
traditional FFT no longer helps, but that a recent technique from signal processing called
zero delay convolution can be used to improve our running times (and also the running
times of many other stochastic problems with DP formulations - see [13]).

7.1 Dynamic Programming and Ordered Models

Consider the deterministic problems 1 I dj = d | E[E wjVj] and 1 1 dj = d I E[ wjUj]
(i.e., the 0/1 knapsack problem in the start deadline and completion deadline models) in
which all processing times pj are integers in the range 0 ... d. It is well-known that these
problem can be optimally solved in O(nd) time using the following simple DP formulation:
let V[j, t] denote the optimal value one can obtain by scheduling only a subset of jobs 1 . .. j
with t units of time remaining until the deadline. Then for t > 0,

V[j, t] = max V[j-,t] (71)
V[j - 1, t - PJ] + Wj

where V[O, t] = 0 and V[j, t < 0] = 0 (in the start deadline model) or V[j, t < 0] = -oc
(in the completion deadline model) are our initial conditions. The optimal overall solution
is given by V[n, d]. In the stochastic case, we generalize this formulation in the following
natural way: let V[j, t] denote the optimal expected value we can obtain by scheduling a
subset of jobs 1 ... j (in reverse order, allowing adaptivity) with t units of time remaining
until the deadline. Then for t > 0,

V[j, t] = max V[j'-1t] (7.2)
V'[j, t] + wjPr[pg t] (*)

where

t

V'[j,t] = ZV[j - 1,t - T]Pr[pj = T]. (7.3)
,T=0

In the start deadline model, we remove the Pr[pj t] term from (*). This DP formulation
computes an optimal ordered (actually, reverse-ordered) adaptive policy, since the recursive
formula above computes the best solution for jobs 1 ... j by deciding first whether or not
to schedule job j, and then by completing the scheduling using jobs j - 1 ... 1. The entire
ordered adaptive solution is encoded succinctly in terms of the "traceback" paths through
the DP subproblems. That is, by looking at how V[n, d] was computed (i.e., which term in
(7.2) was selected as the maximum), we can determine whether or not we should start out
by scheduling or skipping job n. After this decision (suppose we now have t units of time
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left), we look at the way V[In - 1, t] was computed to determine whether to schedule job
n - 1, and so on.

For the deterministic case, the ordering of jobs over time in our solution is not of any
consequence. However, in the stochastic case, our solution may be sensitive to the ordering
of items in our input, and we may not end up with an overall optimal adaptive policy. It
does not seem that there exists a DP formulation for computing a general (non-ordered)
optimal adaptive policy whose state space is polynomial in n and d. The difficulty is that
since jobs might need to be scheduled in almost any order, we need to remember in our state
space the subset of jobs that have already been scheduled, and this requires exponential
space.

As a final note, the DP formulations above can be generalized to accommodate individual
deadlines for jobs, in both the start deadline and completion deadline models. For the
remainder of this chapter, however, we assume common deadlines.

7.1.1 Efficient Computation Using the FFT

Using the deterministic formulation (7.1) in the previous section, we can solve the 0/1
knapsack problem in e(nd) time. One should note that this is only a pseudo-polynomial
running time due to the polynomial dependence on d (although it is polynomial in the
size of the input if we assume that each processing time pj is represented by a length-
(d + 1) vector Pr[pj = 0] ... Pr[pj = d]). A straightforward DP implementation based on
the stochastic formulation (7.2)-(7.3) runs somewhat slower, in e(nd2 ) time. In practice,
where values of d in the hundreds or thousands are common, the d2 term can be a significant
liability. Fortunately, we can improve the running time to E (nd log d) using the Fast Fourier
Transform.

Let us focus on evaluating (7.3) in E(nd log d) total time, since (7.2) only consumes ((nd)
time in total. Fixing a particular value of j, one can regard (7.3) for all values of t as
the computation of the discrete convolution between two sequences: V[j - 1,0 ... d] and
Pr[pj = 0] . . .Pr[pj = d]. The FFT can convolve two length-d sequences in 0(d log d) time,
giving us a total runtime 6(nd log d) to apply the FFT for each value j = 1 ... n. Note that
the "row by row" computation order of our table of DP subproblems is essential for this
approach to work.

7.1.2 Converting to a Discrete Distribution

If we do not have integer-valued processing times distributions in our instance to start
with, we can create such distributions by paying only a small penalty in terms of feasibility.
More precisely, for any E > 0, we can discretize job processing times so they are positive
integers in the range 1 ... D where D = = (n). After discretization, we can compute an
optimal ordered policy with DP (now in strongly polynomial time) that is at least as good
as an optimal ordered policy for the original processing times, provided that we inflate the
common deadline of our jobs by a (1 + E) factor. If we apply such a discretization scheme
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on top of one of our non-adaptive a-approximation algorithms, we therefore end up with
an (a, 1 + E)-pseudo-approximation algorithm. Note that this approach only applies when
our jobs share a common deadline.

The transformation we use is as follows. First, scale all processing times p, ... pn by a factor
of so they have the right magnitude. We then discretize each pj into a new integer-valued
distribution ' as follows:

" Pr[p = oo]:= Pr[pj > D].

" Pr[p = D] :=Pr[p= D].

" For 1 < t < D, Pr[p = t] = Pr[t < pj < t + 1].

" Pr[p' = 1] := Pr[p < 2].

" Pr[p = 01 := 0.

We are essentially "rounding down" the mass in the probability distribution of pj to the
next lowest integer, except for the case where pj < 1, in which we round up since we want
to end up with strictly positive processing times (we can skip this case if processing times
of zero are acceptable, as they are for the DP formulations in the preceding section).

A solution policy is now computed using the p distributions. Since a job with actual
processing time less than 1 (according to pj) appears to our algorithm as a job of processing
time 1, we choose to run our algorithm up to time D + n. At this point, we can be assured
that the actual amount of processing time spent is at least D. Therefore, any algorithm
applied to the discretized instance will have a deadline constraint that is no tighter than
that of the original instance, so we can still hope to achieve an expected value of ADAPT.
Furthermore, the actual processing time of a job may turn out to be up to one unit larger
than it appears to our algorithm. Hence, when our algorithm reaches its deadline at time
D + n, it may have actually spent up to D + 2n units of time. In terms of the original
deadline, we are spending at most (D + 2n) = (2 + 2n) = (1 + e)d units of time.

As a remark, all of the "true' approximation algorithms (producing a feasible solution) for
packing problems like the knapsack and multi-knapsack problems perform discretization
on item values rather than item sizes. There is a good reason for this: by rounding sizes
up, we might render the sole optimal solution infeasible if it just barely satisfies capacity
constraints. By rounding sizes down, we run into trouble with the smallest size class that
is rounded to size zero, since our algorithm now thinks it can pack an infinite quantity of
such items (which may not be feasible for the original instance). It seems that any rounding
in the space of sizes dooms us to a pseudo-approximation algorithm, but in our case this
seems to be the best route since the simplification gained in terms of probability distribution
structure is worth the small amount of potential infeasibility we incur.
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7.2 The Fixed Set Model

In this section we describe an 8-approximation algorithm for 1 | dj= 1 E[E wjVj] and

a 9.5-approximation algorithm for 1 I d = 1 E[E wjUj] in the fixed set model. As a
consequence, we obtain a constant-factor bound on the approximate performance of any
optimal adaptive ordered policy, regardless of the initial ordering of jobs we use. Note
that we assume for simplicity that d = 1 throughout this section (this is without loss of
generality).

Theorem 20. Consider the single-machine environment where all jobs share a common

deadline. For any ordering of jobs, an optimal ordered adaptive policy must receive at

least an expected value of ADAPT/8 (in the start deadline model) or ADAPT/9.5 (in the

completion deadline model).

The theorem follows from simple fact that an adaptive ordered policy can elect to schedule
only the jobs belonging to the best possible fixed set. Our objective value in this case will
be at least as good as in the fixed set model, and it can potentially be much better since
in the ordered adaptive model we get "partial credit" even if a subset of these jobs are

successfully scheduled.

Lemma 24. In the start deadline model, index our jobs according to the WSEPT ordering
( >L21 > ... > n), and let J be the smallest prefix of this ordering for which p(J) > 1/2.
Then the set J is an 8-approximate solution in the fixed set model.

Proof. Let j be the "final" job in J (according to the WSEPT ordering). Since p(J\{j}) <
1/2, Lemma 4 tells us that

Pr pi I > 1/2.

_iEJ\Ji}

In the start deadline model, all the jobs in J will therefore be successfully scheduled with
probability at least 1/2. Moreover, for the function 4(-) as defined in Chapter 3, we have
w(J) = D(p(J)) -(1/2) 4(1)/2 and by Theorem 1 we have ADAPT < 1(2), so
w(J) ADAPT/4. Our total expected value (w(J) times the probability that all jobs in

J are successfully scheduled) is therefore at least ADAPT/8.

In the completion deadline model, our 9.5-approximation algorithm is only slightly more

complicated. We take the better of two solutions, one of which the best single job, delivering
an expected value of

SINGLE = maxw ,

and the other solution is the set of small (pj < E) jobs J maximizing the objective

MULTI = max w'(J)(1 - p(J)).
Jcs
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Note that by Lemma 4, MULTI gives a lower bound on the expected value we can hope
to receive by using the set J. Also note that while it seems hard to compute MULTI
exactly, we can find a set J that yields an expected value of at least (1 - E)MULTI by
using the PTAS for knapsack. Suppose for simplicity that - E [0, 1/2] (although any range
[0, c] with c < 1 suffices) define the cutoff between large and small jobs, so pj < E < 1/2
for all j E S. Let V = maxies w (1 - Pi) maxies w/2, so we know that MULTI > V
and also MULTI < 2nV. Now round all job values down to the nearest multiple of clV/n.
The total value lost for any set is at most -V < eMULTI, and our values now effectively
lie in the range 0... n/-. We then use dynamic programming, in O(n3 /c) total time, to
compute an optimal set (whose value is therefore at least (1 - E) times that of a truly
optimal set prior to rounding). The DP subproblems are of the form A[j, v], specifying the
maximum possible value of (1 - p(J)) (equivalently, the minimum value of p(J)) over all
sets J C {1, 2,... j} C S with value precisely equal to v.

Lemma 25. Let B = max(SINGLE,MULTI). Then for E = vr - 2, we have B >
ADAPT/9.5, where ADAPT denotes the expected value obtained by an optimal adaptive
policy for 1 I dj = 1 | E [E Z wUj ].

Proof. Fix an optimal adaptive policy P for 1 I pj ~ stoch, dj = 1 1 E[E wjUj]. Consider
jobs as being small or large based on some threshold E, and let JS and JL denote the

(random) sets of small and large jobs that P attempts to schedule. Lemma 9 tells us that
E[w'(JL)] E[pL(JL)] SINGLE/c. We now argue that for any set T of small jobs,

w'(T) < ( I+ IjE) MULTI.

If p(T) > (1 + -)/2, then we use induction on ITI: let T' be a proper subset of T such that

-E < p(T') < '. Then by induction,

w'(T\T') < + 4(p(T) - (T')) MULTI.

Furthermore, since w'(T')(1 - p(T')) < MULTI, we have

1 - E2
w'(T') < w'(T')p(T')(1 - p(T')) < p(T')MULTI,

4

so

w'(T) = w'(T') + wv'(T\T') < I + E2 MULTI.

On the other hand, if [(T) < (1 + E)/2, then

w'(T)< I MULTI< I+4p(T) MULTI.
- 1-p(T) 1-2
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To conclude our proof, we have

ADAPT < E[w'(Js)]+E[w'(JL)]

S + 4E[p(Js)] MULTI + E[pL(JL)] SINGLE
-1 1- 2

4E[p(Js)] + E[p(JL)] B

< 1+max 4 2, E[p(JsUJL)]) B

4 1 -

< 1+2max 4 2 ,-)) B

and for e = V5 - 2 ~ 0.236 this gives us ADAPT < 9.48B. Recall that we do not know

how to compute MULTI exactly in polynomial time, although we can approximate this

quantity to within an arbitrary constant factor. Taking this factor to be small enough, we

obtain a 9.5-approximation algorithm that runs in polynomial time. E

In order to improve the performance guarantees for our fixed set approximation algorithms,
one approach to consider in the future might be to compare against a less aggressive adver-

sary than an optimal adaptive policy. For example, if we compare against the best possible

expected value for a fixed set, we might be able to improve our performance guarantees

substantially.

7.3 High-Multiplicity Scheduling Problems

Another common type of integer knapsack problem arises when we think in terms of "job
types" (multiple copies of which can be included in a solution) rather than single jobs. For

example, we can assign a multiplicity ci to each job j, which specifies the number of copies

of job j available to schedule. In the extreme case, we can allow unlimited copies of each

type of job. This case is particularly nice from a DP standpoint, since it not only simplifies

our state space, but also allows us to compute an optimal (general, not ordered) adaptive

solution. Let us now abandon the d = 1 assumption from the preceding section and return

to the case where d and the pj's are integer-valued. For a deterministic problem, our DP

subproblems are now as follows: let V[t] denote the value of an optimal schedule if our

deadline is t units ahead. If we include a "dummy" job with pj = 1 and wj = 0 (a simple

way to avoid treating idle time as a special case), then

V[t] = max V[t - pj] + wj (7.4)

where V[j = 0] = 0 and V[j < 0] = 0 (start deadline model) or V[j < 0] = -oc (completion

deadline model) are base cases. In the stochastic case, V[t] is an expected value, and for
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t > 0 we have

V[t] = max (V[t] + wj Pr[pj t]) (7.5)

where

t
Vj[t] =ZV[t - r]Pr[pj =r]. (7.6)

T=1

Again, in the start deadline model we need to remove the Pr[pj < t] term from (7.5). Note
also that as opposed to the 0/1 case, we assume here for simplicity that processing times are
strictly positive. Furthermore, note that our discretization techniques from the preceding
section no longer apply in this case, since those techniques assume that an optimal solution
contains at most n jobs - therefore, for any "high multiplicity" problem instance we assume
that our processing time distributions start out being integer-valued.

7.3.1 Zero-Delay Convolution

A straightforward DP algorithm based on (7.5)-(7.6) runs in e(nd2) time. In the 0/1 case,
we managed to improve this exact running time to E(nd log d) using the FFT. Here, however,
we find that this approach no longer seems to work. The FFT is designed to convolve
two complete length-d sequences in e(dlog d) time, but the DP approach in (7.5)-(7.6)
requires the computation of the convolution of two sequences where one of the sequences
is being generated in an on-line fashion and then "fed back" into the convolution. It turns
out, however, that we can still speed up this sort of DP (so the running time drops to
E (nd log 2 d)) using a more sophisticated technique from signal processing known zero delay
convolution, developed by Gardner in 1995 [21]. In fact, zero-delay convolution can be
seen as a general-purpose technique for speeding up certain types of stochastic dynamic
programming algorithms [13].

We illustrate the technique of zero-delay convolution applied to DP using a simple example.
Let h[1 ... n] be the probability distribution of an integer-valued random variable X, so
h[i] = Pr[X = i]. What is the expected number of independent samples of X one can draw
until their sum reaches or exceeds some threshold T > n? We can answer this question
using a simple dynamic program. Letting A[j] be the expected number of independent
samples required to reach a sum of j, we have

A[j] = 1 + A[j - i]h[i], (7.7)

where A[j < 0] = 0 as a base case. Straightforward computation of A[1 ... T] by direct
application of (7.7) requires 0(nT) time. To improve this, we think of (7.7) as a special
type of convolution between two sequences A and h. In a standard convolution problem
we are given as input two pre-specified sequences to convolve. However, in this case the

sequence A is actually generated in an on-line fashion, with each successive element of A
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H0  H, H2  H3II hi i I I

h: h[l] h[21 hf[3] h[4] h[51 I[} h7 ht8] .

x * HO: x[ 1h[]I x[2h[] x[3h[l] xf4]h[1 [x[5}h1 I x[6]h[ ] I x[7]h[1 I x[8]h[1 ... O(T)

x * Hi: [ 1]h[2 I x[2]h[2]I x[312] x[4[21 x[5]h[2] x[61h[2] I xU7]h[2 O(T)
(x[1..21 * h[3..41) (x05.6] * h[3..4J)

x[2]h[131 +513 X[][]+
x[1]h[3] + x[2]Ih[41 x[5]h[3]

x * Hj2: __ O(T log 2)

x313 x [4]h[41
(x[3..41 * h[3..41) (x[7. 8] * h[3..41)

x[][]+x[4]h[5] +4[3]1[51 +
x{2]h[5] + x[][]+ x[3]h[61 +:

x* H 3: x[llh[5] [16 x]h[7 x[2]h[7l + O(T log 4)

x[11h[8]

(x[l..4J h[5..8).E

(x[5..81 *h[5..81)

Output: x[l]h[1] x[2]h[1] + x[3]h[1] + 2
(x * h) x[1]h[2] x[2]h[2] + .(T log n)

x[l]h[3]

Figure 7-1: Illustration of the zero-delay convolution algorithm. We divide
h into blocks H0 , H 1 , H 2 ,... of exponentially increasing size (except for

the first two, both of size 1). Each of these blocks is then convolved, in

parallel, against x, using buffering and block convolution. The output,
x * h (we denote by * the convolution operation), is obtained by summing

these partial results. Running times are specified in the rightmost column,
summing to 0(T log2 n). Applied to our example of computing A[1 ... T],
we would take each output element, increment it, and feed it back in as the

next input element.

depending on the results of the convolution so far. From a signal processing standpoint, we

can picture this as a discrete-time system with impulse response h (so any signal fed through

the system is convolved with h) where each output element is immediately incremented and

fed back as the next element of the input signal.

A fundamental computation performed by discrete-time signal processing devices is the

convolution of a long input sequence x[1 ... T] with the impulse response h[l ... n] of the

system. Since the Fast Fourier Transform (FFT) can convolve two length-n signals in

E(n log n) time, the usual approach is to buffer x into T/n length-n blocks and to convolve

each of these in sequence against h using the FFT. This requires only e(logn) time per

output element, but it has the unpleasant side effect of introducing some input/output delay

due to the buffering of x; that is, we must wait for n elements of x to arrive at the system
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Figure 7-2: Speedup obtained by using zero-delay convolution. The small
drops in performance for zero-delay convolution occur right after we cross
a power of 2 in T, since this causes the zero-delay algorithm to perform
quite a few more FFTs on larger subarrays.

before we can produce any output. Input/output delay is undesirable for obvious reasons
in many signal processing applications, and it is absolutely unacceptable for our problem
since we cannot advance the input signal until the complete result of the convolution thus
far is determined.

Zero-delay convolution eliminates input/output delay at the expense of only a small running
time penalty, producing each output element in E(log2 n) amortized time (this is incorrectly
analyzed as O(log n) time in Gardner's paper [21]). Assume for simplicity and without loss
of generality that n is a power of 2, and break the impulse response h into blocks of
exponentially increasing size (except the first two, which are both of size 1), as shown in
Figure 7-1. We then launch separate convolutions that move forward in parallel between
each block and the entire input sequence. By adding together the results of these sub-
convolutions, we obtain the final convolution of x with h. We convolve each block of h
against x using the standard buffering approach: for a block of size B we buffer x into T/B



blocks of size B and convolve them each in sequence using the FFT, which requires a total
of E( x B log B) = E(T log B) time. Note that the block decomposition of h is designed so
that buffering does not contribute to input/output delay. For example, in Figure 7-1 when

we convolve x with H 3 we initially buffer the values x[1 ... 4], but the result of convolving
these buffered elements against H 3 is not used in computing elements 1 ... 4 of the output.
The total running time spent convolving x with all of the blocks of h is

log n

E(T log ) = (T log2 ),
i=21

which amortizes to 0(log2 n) time per output element. Applying this technique to our
original problem of computing of A[1 ... T], we obtain an E(T log2 n) algorithm.

In order to develop a sense of how well the zero-delay convolution algorithm performs in
practice, Figure 7-2 shows the results of a simple computational experiment. Zero-delay

convolution was implemented in C using the well-known FFTW3.0.1 Fast Fourier Transform

library of Frigo and Johnson, and compared against the "naive" convolution approach for

the sample formulation (7.7) above, setting n = T (so the theoretical running times are

E(T log 2 T) for zero-delay convolution and O(T 2 ) for the naive approach). The zero-delay
approach seems to become superior for T > 2000 and improve from there. For problems

that are finely-discretized in the time dimension, a value of T in the mid thousands is

entirely conceivable in practice.

Let us now consider the use of zero-delay convolution to solve our original DP problem based

on (7.5)-(7.6). Here, we use a separate zero-delay convolution process (running in parallel)

for each job j = 1 ... n to compute the sequence V[.] according to (7.6), by convolving V[t]

against the sequence Pr[pj = 1] ... Pr[pj = d] as the entries of V[t] are generated one by
one. For each value of time t in sequence, we execute one "step" of each of our n parallel
zero-delay convolution processes to obtain V[t] ... Vn[t], which are then fed into (7.5) to

obtain V[t]. The value of V[t] is then fed back as the next element in the input sequence of

each zero-delay convolution process so that they may then compute V [t + 1] ... V,2 [t + 11,
and so on. The total time required for all n of the zero-delay convolutions is (nd log 2 d),
and this dominates all of the other work done by the DP algorithm.

7.3.2 Other High-Multiplicity Problem Variants

Many other stochastic DP problems fit the same general structure as our "multiple copies

allowed" variant of the stochastic knapsack problem, and hence are amenable to the zero-
delay convolution technique.

The Stochastic Knapsack Cover Problem. From a combinatorial optimization per-
spective, all of our deadline-constrained scheduling problems are "packing" problems. Many

of these problems also have "covering" analogs that also have reasonable interpretations in

practice. For example, the stochastic knapsack cover problem assigns costs to items (jobs)
rather than values, and asks for a minimum-cost collection of items whose total size (pro-
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cessing time) covers the entire knapsack capacity (exceeds our common deadline). In this
case, we typically focus exclusively on the "multiple copies allowed" variants, since oth-
erwise there might be some chance the we include all n items but still fail to cover the
knapsack due to bad luck. Derman et al. [16] describe an excellent motivation for this
problem in which we have a machine (e.g. an automobile) that must be kept running for
T units of time and that depends on some critical component (e.g. a battery) to run. We
have n types of components from which to choose, each with a deterministic cost and each
having a lifetime described by a random variable of known distribution. Our task is to
devise an optimal adaptive policy that selects a sequence of components over time that
keeps the machine running at minimum expected cost. The DP structure for this problem
is nearly identical to that of the packing variant from the preceding section, and we can use
zero-delay convolution to speed its running time from E(nT 2 ) to E(nT log 2 T).

The Stochastic and Dynamic Knapsack Problem. We can extend the packing DP
formulations above to solve a problem variant known as the stochastic and dynamic knap-
sack problem [44, 36], in which jobs arrive in an on-line fashion. For example, suppose
A3 [t] denotes the probability that a copy of job type j arrives when precisely t units of
time remain before our deadline. At this point in time if we are currently not processing
any job we may choose to accept this or any other arriving job and begin processing it.
Otherwise, if we decline the task it is cannot be recalled later (although another task of the
same type might arrive later). Papastavrou et al. [44] describe numerous applications of
stochastic and dynamic knapsack problems. Note that only packing problems make sense in
this framework, and that an optimal adaptive policy might involve "idle" time. If we pro-
ceed until a deadline at time d, zero-delay convolution provides an e(ndlog2 d) algorithm
that optimally solves this problem, improving the e(nd2 ) running time one would obtain
without zero-delay convolution.

Time-Varying Job Values. For either the packing or covering variants of the stochastic
knapsack problem (and also the stochastic and dynamic knapsack problem), our DP formu-
lations allow us to make job values/costs vary with time without introducing any additional
algorithmic complexity.

The Stochastic Shortest Path Problem. Consider a variant of the stochastic shortest
path (SSP) problem whose input consists of a graph G = (N, A) with n = INI nodes and
m = JAl directed arcs, where the length of each edge (i, 1) E A is a discrete positive-integer-
valued random variable lij whose distribution we denote Lij[-], so Lij[t] = Pr[lij = t]. We
are interested in finding a path from a specific source node to a specific destination node
d that gives us a maximum probability of arriving by some specified deadline d. In an
adaptive setting (where we choose an edge to follow, observe the instantiated length of the
edge, choose another edge accordingly, etc.) we can use zero-delay convolution to improve
the worst-case DP running time for this problem from E (md2 ) to e(md log2 d). Further
details can be found in [13].
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8. Concluding Remarks

One of the nice (or perhaps overwhelming, depending on your point of view) aspects of
the domain of scheduling is that for any new result, there is a nearly limitless supply of

even more sophisticated problems one could consider for future work. In this chapter, we

mention a few of the potential areas for further study along the lines of the research in this

dissertation. The most obvious direction for future work is to further improve the existing

results in the dissertation; for example, one could try to improve performance guarantees,
simplify or generalize some of the analysis, or conduct studies on the performance of various
techniques when implemented in practice.

All of the deadline-constrained problems we have considered have maximization objectives.

One can also consider the mirror image of each of these problems where the goal is to

minimize the cost of unscheduled jobs rather than maximize the value of scheduled jobs.
Although these two types of problems are equivalent from the perspective of computing an
optimal solution, the can behave very differently in terms of computing approximate solu-
tions. There is even a significant difference between deterministic and stochastic problems

in this setting. For example, the problem 1 1 pj - stoch, dj = d I E[E wj Uj] asks us to
devise a policy that minimizes the expected cost of jobs that we fail to schedule by the dead-
line. The deterministic analog of this problem is called the knapsack cover problem, and it
asks us to compute a minimum-cost set of jobs whose combined processing time "covers"
a space of time of size >jpj - d. In the stochastic case, we now have two distinct problem
variants: for a true "covering" problem, an adaptive policy would proceed by selecting jobs
one by one until their combined processing time is large enough; however, in our scheduling

problems what actually happens is that the adaptive policy choose jobs one by one that do

not belong to the cover (i.e., that are actually scheduled prior to the deadline), and stops
when the deadline is exceeded.

There are quite a few different common scheduling models and constraints we could inves-
tigate in conjunction with our stochastic deadline-constrained problems. For example, we
could consider shop scheduling models where jobs need to be processed on a collection of

different machines (although these problems tend to be quite difficult even in a determinis-
tic setting). In terms of constraints, an obvious type of scheduling constraint we have not
considered is the precedence constraint. However, precedence constraints combined with
deadlines seem to be a very problematic combination. In the deterministic case, the prob-



lem 1 | prec, dj = d | E[E wjUj] is known as either the precedence constrained knapsack
problem or the precedence ordered knapsack problem [37], and very little is known about
its approximability in general (the problem is NP-hard since it generalizes the knapsack
problem).

We have investigated quite a few interesting models in this dissertation (e.g., adaptive,
non-adaptive, ordered adaptive, fixed set, etc.) but there are still more models that are
perhaps reasonable to consider. One example that comes to mind is the "blackjack" model,
which is similar to the adaptive model but allows us to stop scheduling at any time and
keep our "earnings", or risk losing everything if we reach the deadline. Another interesting
model involves deterministic processing times but a random deadline (the distribution of
which is known in advance). In this case, since adaptivity is useless we would seek a non-
adaptive policy that maximizes our expected value (in either the start deadline or completion
deadline models). Finally, we can reconsider our assumptions that forbid cancellation and
preemption of jobs. It may be possible to achieve reasonable approximation results if jobs
can be terminated early or preempted, but remember that in this case our algorithms must
take advantage of this extra flexibility or else they cannot hope to achieve approximation
guarantees better than Q(n) in the worst case.

Another interesting direction might be to consider deadline-constrained stochastic schedul-
ing problems in which "hard" deadline constraints are replaced by "soft" penalties to our
objective function. In deterministic scheduling, a common example of this type of objective
is minimizing E wj (1 - erci). It turns out that the optimal ordering in this case is to use
decreasing order in terms of

wj e"Pi
1 - erp'

as one can prove using a simple interchange argument. More generally, one can consider
the objective E fj(Cj) for non-decreasing functions fj, although this case is NP-hard as it
generalizes the objective E wj U3 . In a stochastic setting, Weber, Varaiya and Walrand [61]
show that if the f3 's are convex and processing times are stochastically ordered as p1 ,t

-- st Pn (by pi st pj we mean that pi is stochastically smaller than pi: Pr[pi ;> X] 5
Pr[p ;> x] for all values of x), then list scheduling in this order (i.e., SEPT) is an optimal
policy for minimizing E[E fj(C)] on identical parallel machines without preemption. It
might be interesting to consider generalizing these results (either by removing restrictions
on the distributions of the pj's or by considering a more general class of fj's) with a goal
of computing good approximation algorithms.
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