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A NOTE ON STRATEGY ELIMINATION IN BIMATRIX GAMES ,:,

Donald E. Knuthl , Christos H. Papadimitriou l, and John N. Tsitsiklis2

ABSTRACT: In bimatrix games we study the process of successively eliminating strate-
gies which are dominated by others. ~We show how to perform this simplification in, O(n)
time, where n is the number of strategies. We also prove that the problem is P-complete,
which suggests that it is inherently sequential.

1. INTRODUCTION

A two person (or bimatrix) game is a pair of m x n matrices A, B, with integer entries.
This game is played between two players A and B. Player A chooses a row i, player B
simultaneously chooses a column j. As a result, A receives aij (dollars, say), and B receives

bij.

An easy way to simplify a bimatrix game is to eliminate from both A and B any
strategy (row or column) that is- dominated by another. We say that strategy i of player A
dominates strategy i' of the same player if aji > a-,i for j = 1,..., n. Similarly, strategy j of
player B dominates strategy j' of the same player if bij > bij, for i = 1,.. ., m. Obviously,
both player A and B can avoid playing dominated strategies, with no deterioration of
the outcome. Thus, all dominated strategies can be eliminated. Furthermore, deletion of
dominated strategies may result in new domination, and so on, until we are left with a
reduced game, in which no further elimination is possible. Strategy domination, and its
obvious generalization to many players, has long been a well-known notion of simplification
in games. More recently, a new concept of rationality was proposed, based on strategy
domination [Be, Pe]. In this note we look at the algorithmic aspects of the process of
producing a reduced game.

The obvious algorithm for doing this is to repeatedly test each pair of strategies for
domination, and to delete the strategies that were found to be dominated. Since there
are O(m 2 + n 2 ) pairs to be examined, each test entails checking n (or m) inequalities,
and the whole process must be repeated after each row or column deletion, the most
straightforward algorithm takes O(mn(m + n) 2 ) = O(m + n)4 time overall. But there is a
faster (O(m + n) 3 ) algorithm, based on a rather well-known technique that can be called
"obstruction counts". For each pair of strategies, we can maintain and update a count of
the opponent strategies that prevent the first from dominating the second.

We do not know how to improve this algorithm asymptotically. In fact, it is not at all
obvious how to determine in o((m + n) 3 ) time whether there is any domination (in other
words, whether or not the given game is already reduced). We show that this can be done
asymptotically faster in the case of 0 - 1 entries of the matrices, by reducing the problem
to matrix multiplication. This technique, however, does not appear to extend to the case
of integer entries, or to the problem of finding the final reduction.

We also discuss the issue of whether the process of reducing a bimatrix game can
be satisfactorily solved in parallel. In general, a parallel algorithm is considered to be
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satisfactory if the time delay is polynomial in the logarithm of the length of the input,
and the number of processors used is polynomial in the length of the input. The class
of problems solvable with such algorithms is called NC. It is clear that NC is a subset of
P. The important question for parallel computation, analogous to the P=?NP enigma for
sequential computation, is whether NC=P. That is, while P=?NP asks whether there are
problems in NP that are inherently exponential, NC=?P asks whether there are problems
in P that are inherently sequential. It is considered likely that such problems do exist, but
no proof has been found.

All algorithms that we know for finding the reduced game of a given bimatrix game
are incapable of dramatic parallel speedups, since they wait for a strategy to be eliminated
before eliminating the ones triggered by its deletion. Is this an inherent difficulty of the
problem? Certain other problems for which only iterative algorithms are known (linear
programming, maximum flow, or Markov decision-making), have been shown P-complete:
A problem is P-complete if all other polynomially solvable problems are reducible to it in
logarithmic space. Among all problems in P, the P-complete problems are the least likely
to be in NC, and thus they are most probably inherently sequential. In the last section
we show that the problem of computing the reduced game of a given bimatrix games is
indeed P-complete. By contrast, testing whether a game is already reduced is trivially in
NC. Our positive results hold for arbitrary bimatrix games, whereas our negative result is
true even for zero-sum games (games such that A + B = 0).

2. THE CUBIC ALGORITHM

Before we describe our O(m + n)3 algorithm, let us note that there may be several choices
for strategies (rows and columns) to eliminate, and different sequences of deletions result

!1 0 1
in different reduced games. For example, even in the zero-sum game i 0 0 we can

get either (° ) or (0 °) as the reduced game, depending on the precise sequenceof

eliminations. However, the following reassuring result shows that these differences are
superficial:

Proposition 1. In a bimatrix game, the final reduced game is unique up to row and
column permutation.

Proof: Suppose that at some point during the deletion process a row i can be deleted
(presumably because it is dominated by row j). Naturally, we may choose not to delete
it immediately. We claim that either i is eventually deleted, or another row i' is deleted
which, when restricted to the columns that have not been deleted at the time of i"s
deletion, is identical to row i. For if row i is not eventually deleted, column j must be
deleted. (Column deletion does not harm row dominance.) However, the row jl that
caused j = jo to be deleted also dominates i, so it must also be deleted. Similarly, the row
j 2 that dominates jl also dominates i, and so on. The only possibility that may eventually
save i is for i itself to delete some row jt in this sequence. But this means that jt was at
the time of its deletion equal to i (since it both dominated i and was dominated by it).
The same argument holds for the columns. E-
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Our algorithm for finding the reduced matrix is based on the following idea: For each
pair of rows (i,j), let rij be the number of columns k such that aik > ajk; in other words,
rij is the number of columns which prevent row j from dominating row i. Similarly, cij is
the number of rows that prevent column j from dominating column i in matrix B. Notice
that these matrices can be computed in O(mn(m + n)) time in the obvious way.

Once the R and C matrices are initialized, the algorithm works in stages. At each
stage we examine both R and C matrices to discover a zero entry (this can be done
in O(m 2 + n2 ) time). If no such entry exists, the matrix is reduced and the algorithm
terminates. If on the other hand such an entry is found (say, rij 0), this means that row
j currently dominates i, and thus row i can be deleted. Once row i is deleted, we must
update the matrix C, since perhaps row i was one reason for which a certain column failed
to dominate another. In order to update cke (for columns k and e which have not been
already deleted) we simply subtract one from ckt iff row i was indeed one of the reasons
for which £ failed to dominate k, that is, iff bi,k > bit. Notice that the updating takes
time O(n2 ), or O(m2) if a column was deleted. Hence the total stage can be performed in
O(m + n)2 . Since there are at most m + n stages, we have:

Theorem 2. The reduction of a bimatrix game can be computed in time O(m + n) 3. -]

The problem of telling whether or not a given game is already reduced appears to be
significantly simpler. In this problem there is no interaction between rows and columns,
and thus we need only examine the problem of determining whether any row in a given
n x m matrix A dominates another. In fact, consider first the special case in which the
entries of A are 0 or 1. In this case the value of rii defined by the cubic algorithm is the
number of columns k such that aik = 1 and ajk = 0, and we may write

n

rij = E aikajk
k=l

where a = 1 - a. This is equivalent to the matrix equation

AT
R =AA

hence the problem can be solved by matrix multiplication in time O(m + n)c', where a is
the matrix multiplication exponent (currently known to be at most 2.375... [CW]).

This can be generalized to the case in which the entries of matrix A belong to a set of
r distinct values, say {0, 1,...,r- 1}. We define the matrices Ck and Dk, k = 0.... ,r -1,
as follows:

k (_ 1 if aij - k;
cij 0 otherwise,.

and
dk 1, if aij < k;

t' 10 otherwise.

Then clearly
r-i

R = CkDk,
k=l
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and the computation requires r - 1 matrix multiplications. This is not very exciting,
however, as r can be as large as mn.

3. P-COMPLETENESS

We shall show that the problem of computing the reduction of a iero-sum game is P-
complete by reducing the circuit value problem (CVP) to it. A circuit is a finite sequence
of triples C = ((xi, yi, z), i = 1, ... , k). For each i < k, xi is one of the "operations" false,
true, and, or, and not; the other components yi and zi are nonnegative integers smaller
than i. If ai is either false or true, the triple is called an input, and yi = zi = 0. If xi
is either and or or then the triple is called a gate, and yi, zi > 0. The value of a triple is
defined recursively as follows: The value of an input (true, 0, 0) is true, and the value of
(false, 0, 0) is false. The value of a gate (x;i, y, z) is the Boolean operation denoted by xi
applied to the values of the yith and zith triples. The value of the circuit C is the value
of the last gate. Finally, the CVP is the following problem: Given a circuit C, is its value
true? It is known [Co] that this problem is P-complete even if (a) there are no not gates;
(b) all and gates have or gates as inputs; and (c) or gates have and, false, or true gates
as inputs.

Theorem 3. Given a zero-sum game, the problem of deciding whether a particular strat-
egy is eliminated in some reduced game is P-complete.

Proof: We know already that the problem is in P. For P-completeness, we shall reduce
the CVP to it. Given a circuit C we shall construct a zero-sum game A (B = -A) such
that row 1 of A is deleted in the reduced game if and only if the value of C is true. Suppose
that C has n or gates, and m triples of the remaining kinds. Then A is an (m+ 1) x (n+m)
matrix. The first m rows correspond to the m and, true, and false gates (assume that
the output gate is an and gate, corresponding to the first row of the matrix), and the first
n columns to the n or gates. The entries will be such that a line (row or column) can be
deleted if and only if the corresponding triple has value true.

We shall first describe the submatrix of the entries aid, 1 < i < m and 1 < j < n. We
have aij = 0 in this region, except of the following cases: (a) One of the two operands of
the and gate that corresponds to row i is the or gate corresponding to column j; in this
case aij = 3. (b) One of the two operands of the or gate that corresponds to column j is
the gate corresponding to row i; in this case aid =-3. (c) If row i corresponds to a false
gate, then aij = 2. Thus, a line corresponding to an and and or gate is all O's, except
that it has 3's and -3's at the positions corresponding to the gates adjacent to it. Rows
corresponding to true inputs are all O's, and rows corresponding to false inputs are all 2's
in the first n column positions, excepti for -3's where they are inputs.

The last of row matrix A is all l's: a,,,+,j = 1 for j = 1, ... , im + n. This means that
row m + 1 dominates any row corresponding to an and gate provided that its two columns
corresponding to its two or inputs have been deleted, and with them the obstructing 3's.
Also, row m + 1 dominates the true inputs, and fails to dominate the false inputs. Notice
that this is precisely what we need in order to support the correspondence between a
deleted row and a true gate.
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The entries ai,,,+j, i,j = 1,...m are such that one of the last m columns dominates
one of the first n columns if and only if the row corresponding to at least one of the inputs
of the corresponding or gate has been deleted. This is done simply by letting

,1 ifi=j;
ain+j =-' _ 1 otherwise.

(Recall that, since B = -A, column j dominates column j' if aij < aij, for all i.) This
completes the construction of the matrix A.

W\e claim that a line of A corresponding to a triple g, = (xt,ye, zt) is deleted if and
only if ge has value true'. The proof is by induction on e. For the basis, if the deleted line
is a row corresponding to a constant, then it cannot be a false, since such rows can never
be eliminated, and a row corresponding to a true input is always dominated by the last
row. If g9 is an and gate, then clearly its row is deleted if and only if it was dominated by
the last row (assuming that there are no two and gates with the same input in C) which
happens if and only if both columns at which this row has a 3 have been deleted. By
induction, this is equivalent to saying that both of the operants of gt have value true, and
thus so does the gate in question. Finally, if gt is an or gate, the corresponding column is
deleted if and only if it is dominated by one of the m last columns. This, however, means
that there are no two rows at which this column has a -3, which happens if and only if
at least one of these two rows has been eliminated. By induction, the corresponding gate
had value true, and thus so does the or gate.

It follows that row 1 of the matrix will be eliminated if and only if the value of circuit
C was true. Finally, it is clear that the above reduction can be carried out in logarithmic.
space (not counting input and output), since it only involves calculations on the indices
(i, j, £, etc.) of the gates and the lines of the matrix; such calculations can be done in
logarithmic space. O
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1 As we discussed in the beginning of Section 2, there may be many possible outcomes
of the strategy elimination process. However, it follows from our construction of matrix A
that whether one of the first m rows or n columns is deleted does not depend on the order
of the eliminations.
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