
Designing a Processor in Bluespec

by

Nirav Hemant Dave

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 2005

(Massachusetts Institute of Technology 2005. All rights reserved.

Author
Department of Electrical Engineering and Computer Science

Jan 14, 2005

n~. /
Certified by..........

........... '................. .-V - I-

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

/

Accepted by ...

Arthur C. Smith
Chairman, Department Committee on Graduate Students

ARCHIVESAnd +~~~~~
I 'I 1R RI E S i

LIBRARIES

MASSACHUSETTS INS1I D''

OF T1rCHNOLOGY

MAD 1 L nn I

I/. , Z-

-..... ._---------- _ -- I ~ ____···_

Designing a Processor in Bluespec

by

Nirav Hemant Dave

Submitted to the Department of Electrical Engineering and Computer Science
on Jan 14, 2005, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract
In this thesis, we designed a 2-way out-of-order processor in Bluespec implementing
the MIPS I integer ISA. A number of scheduling optimizations were then used to
bring the initial design up to the same level of cycle-level concurrency as found in
standard RTL-level designs. From this, a general design methodology is proposed to
effectively express, debug, and optimize large Bluespec designs.

Thesis Supervisor: Arvind
Title: Professor of Electrical Engineering and Computer Science

3

4

__·___

Acknowledgments

There are many people who have in some way contributed to this work and any

attempts at an exhaustive list would surely be incomplete. I shall try to properly

acknowledge those few who have had the most significant impact.

First, I would like to thank my advisor Professor Arvind for his solid belief in

the importance of this work and encouragement to make this into an actual thesis.

Without his ever-present interest in this work, I am sure that I would have only a set

of unfinished processor designs and a disheveled organization of personal beliefs as to

how Bluespec was meant to be written.

I would also like to thank my parents who never let me forget that no matter how

good I am, how well I do, or how proud they are of me, that I can always can and

should be better.

I would also like to thank Ravi Nanavati, Mieszko Lis, Jacob Schwartz, and the

rest of the Bluespec Inc. team for putting up with my confusion when I started,

enduring the complaints about the compiler when it did not do as I expected, and

sagely granting me the perspective on how difficult improving the compiler can be by

assigning me to make the enhancements to the compiler which I had been asking for.

I would also like to thank my former and current officemates Charles O'Donnell,

Michael Pellauer, Daihyun Lim, Ryan Newton, and Karen Brennan who put up both

with my endless chatter about this research and english advice when they were trying

to work.

I would also like to my Nickolas Fotopoulos, my long-time friend and housemate

for putting up with my over-exuberance for all this time and for taking time out of his

busy schedule which I strongly suspect was slotted originally for some much needed

sleep.

Lastly, I would like to acknowledge the supreme help of Boston's cold winters which

convinced me so often to spend the night at the office working diligently instead of

trudging home.

5

6

�

Contents

1 Introduction

1.1 Organization

2 Bluespec

2.1 Bluespec Syntax

2.2 The Bluespec Compiler

2.2.1 Scheduling

3 High-level Processor Microarchitecture

3.1 Modular Interfacing

3.2 Fetch

3.3 Instruction Memory

3.4 Decode Unit

3.5 ALU

3.6 Memory Unit

3.7 Data Memory

3.8 Reorder Buffer.

4 Initial Implementation

4.1 Satellite Modules.

4.1.1 Instruction Memory

4.1.2 Branch Table Buffer Unit

4.1.3 Fetch Unit

7

13

14

15

15

17

17

21

21

25

26

26

26

26

27

27

29

29

29

30

30

................................

................

................................

................

................

................

................

................

................

................

................

................

................

4.1.4 Decode Unit .

4.1.5 ALU Unit

4.1.6 Data Memory

4.1.7 Memory Unit

4.1.8 Register File

4.2 Reorder Buffer.

4.2.1 Storage

4.2.2 Lookup Organization

4.2.3 Design Complications

4.2.4 The ROB Module .

4.2.5 Per Slot Rules

4.2.6 Additional Rules . .

4.2.7 Interface Methods..

.for the

for the

. . . .

Reo. rde.

. . .

Reorder

.

Buffer

. . . .

5 Design Refinements

5.1 Separating Rules to Simplify Organization

5.2 Inter-Module Latency

5.3 Improving compilation with Disjointness Information . . .

5.4 Removing False Conflicts from High-Level Information . .

5.5 Removing Redundant Data Reads

5.6 Cleaning up Writeback Muxing

5.7 Reducing Branch Misprediction Penalty

5.8 Removing Conflicts with Special Registers

5.9 Performance Results.

6 General Methodology for Large-Scale Design

6.1 Improving Debugging

6.1.1 Saving Intermediate Values Via RWires

6.1.2 Retaining Accurate Timing while Displaying Values

6.2 Determining When Rules Fire

6.3 Improving Compile Time

8

31

31

31

32

32

32

34

34

35

36

37

39

41

....... .41

....... .43

....... .45

..... . .45

..... . .47

..... . .48

. 49

50

51

53

53

53

54

56

57

31

. . . .

................................

................

................

.

..

.......................

.

.

.

.

.

6.3.1 Modular Organization 57

6.3.2 Mutual Exclusion Inclusion 57

6.3.3 Removing Unnecessary Conflicts 58

6.3.4 No-inlining Function Calls 58

6.4 Improving Scheduling 59

6.4.1 Determining Conflicts From Compiler Output 59

6.4.2 Verifying Rule Firing 61

6.4.3 Checking Rule Ordering 62

7 Conclusion 65

9

10

_� __�

List of Figures

2-1 Diagram of a Standard Module (courtesy of Bluespec Inc.) 16

2-2 Diagram of Compiler Flow (courtesy of Bluespec Inc.) 18

3-1 High Level Design of Processor 22

3-2 Submodule Organization 23

3-3 Separated Module Organization Style, Arrows Showing Data Flow . . 23

4-1 State Transitions of a Slot in the Reorder Buffer 33

5-1 FIFO-based Get-Put Style Communication Channel 43

5-2 Initial design with an extra cycle of latency 44

5-3 Final design which removes latency 44

5-4 Multi-Ported Register(MPReg) as seen from outside and internally.. 47

5-5 Initial Rule Organization for Writebacks 48

5-6 Final Organization 48

5-7 Design of Bypassing FIFO 49

11

12

Chapter 1

Introduction

The need to speed up the hardware design cycle has caused industry to look at more

powerful tools for hardware synthesis from high-level descriptions. One of these tools

is Bluespec. Bluespec is a strongly-typed hardware synthesis language which makes

use of the Term Rewriting System(TRS)[2] to describe computation as a series of

atomic state changes.

Bluespec has been used at Sandburst, Bluespec Inc., MIT, and CMU to describe

a variety of complex hardware designs. Previous work has also shown that small

but complex designs described using TRS, the formalism underlying Bluespec, are

amenable to formal verification [1]. It has also been shown that a simple 5-stage

MIPS pipeline and other similarly complex hardware designs can be synthesized from

TRS's quite efficiently [2, 3, 6]. What remains to be seen is if the correctness-centric

Bluespec design approach is able to generate RTL that is comparable to handwritten

Verilog.

In this work, we explore the design of a 2-way superscalar processor core with

a centralized reorder buffer system implementing the MIPS I ISA. Performance will

be measured by the achievable amount of "cycle-level parallelism" of the individ-

ual atomic actions within the design. While there will not be an explicit focus on

clock frequency, we will only consider microarchitectures which reflect a reasonable

hardware design.

13

1.1 Organization

Chapter 2 gives a review of Bluespec's syntax and semantics. Chapter 3 discusses the

high-level abstract design of an out-of-order superscalar MIPS I processor. In Chapter

4, we discuss how to most naturally translate this abstract design into Bluespec. In

Chapter 5, we discuss how to improve the compilation results to meet our performance

goal. In Chapter 6 we generalize our work in Chapter 5 to form a methodology to

effectively represent, debug, and tweak large Bluespec designs. Finally, we present

our conclusions in Chapter 7.

14

__

Chapter 2

Bluespec

Bluespec is a hardware description language (HDL) which compiles into TRS. This

intermediate TRS description can then be translated through a compiler into either

in Verilog RTL or a cycle-accurate C-simulation.

In Bluespec, a module is the representation of a circuit in Bluespec. It is the

object which is compiled into RTL. Each Bluespec module roughly corresponds to a

Verilog module. A module consists of three elements: first, state such as registers,

flip-flops, and memories; second, rules which modify that state; lastly are interfaces

which provide a mechanism for interaction with the internal structure of the module.

2.1 Bluespec Syntax

In Bluespec there are two types of modules. The first, shown in Figure 2-1, is a

standard module with state elements including other modules, rules, and interface

methods. The second is a primitive module which is just a wrapper around an actual

Verilog module.

State elements are all specified explicitly in a module. The behavior of a module

is represented by its rules each of which consists of a state change on the hardware

state of the module (an action) and the conditions required for the rule to be valid

(a predicate). It is valid to execute (fire) a rule whenever its predicate is true. The

syntax for a rule is:

15

intel

Figure 2-1: Diagram of a Standard Module (courtesy of Bluespec Inc.)

"RuleName":
when predicate

==> action

The interface of a module is a set of methods through which the outside world in-

teracts with the module. Each interface method has a predicate (a guard) which

restricts when the method may be called. A method may either be a read method (a

combinational lookup returning a value), an action method, or a combination of the

two, an actionvalue method.

An actionvalue is used when we do not want a combinational lookup's result to

be made available unless an appropriate action in the module also occurs. Consider a

situation where we have a module consisting of a single FIFO and we want to provide

a method which gives access to the head of the FIFO, and atomically causes the head

value to be dequeued whenever it's used. Thus we would write the following, where

do is used to signify an actionValue and theFifo is the FIFO instance.

getHeadOfFIFOmethod = do

16

Module

face

rules

state

_
t i

.4

theFifo.deq

return theFifo.first

The abstract model of execution of a Bluespec circuit is as follows. For any initial

hardware state, we have some set of executable rules. Each cycle, we randomly select

one of these rules and execute it, thereby changing the state.

This abstract model is of course very inefficient, so in the timing-dependant de-

scription we allow multiple rules to fire at once. To insure correctness we require that

any transition from one state to another in the real description must be obtainable

by a valid sequence of transitions (single rule firings) in the abstract system.

2.2 The Bluespec Compiler

The Bluespec compiler can translate Bluespec descriptions into either Verilog RTL or

into a cycle-accurate C simulation (see Figure 2-2). It does this by first evaluating the

high-level description of the design into a TRS description of rules and state. From

this TRS description the compiler schedules the actions and transforms the design

into a timing-aware hardware description. This task involves determining when rules

can fire safely and concurrently, adding muxing logic to handle the sharing of state

elements by rules, and finally applying boolean optimizations to simplify the design.

From this timing-aware model, the compiler can then translate this into either a RTL

or C implementation of the design.

2.2.1 Scheduling

We call the task of determining what subset of rules should fire on a cycle given

its state and in what order should rules be fired in a single cycle, scheduling. Un-

derstanding how the Bluespec compiler schedules multiples rules for cycle-by-cycle

execution is important for using Bluespec proficiently. Optimal selection of which

17

Bluespec
System Verilog
compiler

*

simulation or
synthesis tools

incorporation into
imulation or verificatio

environment

Figure 2-2: Diagram of Compiler Flow (courtesy of Bluespec Inc.)

18

.bsv
(high level description of
how to produce the rules

for a design)

I~~

evaluate
high-level I

description

purely a list of rules

II

(Verilog implementation
of the list of rules)

.h .c
(C implementation
of the list of rules)

I
I
I
I

I
I
I

I

I

I

I

I

I

I

I

I

I

subset of firable rules to fire in a single cycle is an NP-hard task, so the Bluespec

compiler resorts to a quadratic time approximation.

Determining Rule Contents

Due to the complexity of determining when a rule will use an interface of a module,

the Bluespec compiler assumes conservatively that an action will use any method

that it could ever use. That is to say, if an action uses a method only when some

condition is met, the scheduler will treat it as if were always using it. This leads the

compiler to make to conservative estimations of method usage which in turn causes

conservative firing conditions to be scheduled.

Determining Pair-wise Scheduling Conflicts

Once the components (methods and other actions) of all the actions have been deter-

mined, we find all possible conflicts between each atomic action pair. In the case that

two rule predicates are provably disjoint, then we can say that there are no conflicts as

they can never happen in the same cycle. Otherwise, the scheduling conflicts between

them is exactly the set of scheduling conflicts between any pair of action components

of each atomic action.

For example, consider rules "rulel" and "rule2" where rulel reads some register

rl and rule2 writes it. Registers have the scheduling constraint "read < write",

which means that calls to the read method calls must happen before the write

method call in a single cycle. Thus this constraint is reflected in the constraints

between rulel and rule2 ("rulel < rule2"). If rulel were to also write some register r2

and rule2 were to read it we would have the additional constraint ("rule2 < rulel").

In this there is no consistent way of ordering the two rule, so we consider the rules

conflicting with sequential ordering restrictions (as they will never happen together,

it doesn't matter how they are ordered to happen concurrently).

19

Generating a Final Global Schedule

Once we have determined all the pair-wise conflicts between actions we create a total

temporal ordering of the actions. To do this, the compiler orders the atomic actions

by some metric of importance, which we shall call "urgency". It looks at each action

in descending urgency order. When we look at an action, we place it to prevent the

most conflicts with already ordered rules in the total ordering. Once its ordering has

been determined, we say the rule can be fired in a cycle when both its predicate is met

and there are no more urgent rule which conflict with it in that total ordering. Once

the compiler has considered all atomic actions in turn, we have a complete schedule.

20

Chapter 3

High-level Processor

Microarchitecture

We can view the out-of-order processor abstractly as the collection of units shown

in Figure 3-1. Each of these abstract units map to a single Bluespec module. For

a correct implementation, each Bluespec module must meet the associated abstract

unit's requirements, which are listed below.

3.1 Modular Interfacing

The first basic and far-reaching consideration needed is how interaction between mod-

ules should be described in Bluespec. While the final hardware descriptions the com-

piler will generate will be essentially the same, the Bluespec representation for these

different approaches are quite different. Thus the major consequence of this choice is

the ease of description of our design.

The very first thing that occurs to us is that we could simply pass the interface

of the receiving module into the sending module as shown below. Then a rule in the

sending module could be invoked to call a receiving method in the receiving module.

This a very natural to describe the interaction.

21

I I "I I

I I

I
I BTB

I~~
Fetch Un,~~~~~~~~~~~~~~~i

F r r

Fetch UniI

I Fetch Unit -3- Decoder

Instruction
Memory I

Fetch/Decode
Logic

Data
Memory

Mem Unit

ALU

Figure 3-1: High Level Design of Processor

mkModuleSend receiving_module =

module

rules

"send" when True ==>

action

receiving_module. receive (data)

This however has two problems. First, it is not possible for the sending module to

be compiled modularly. This is because the implementation of the receiving module

may change how the sending module is allowed to call it's interface methods. The

second is that there is no way to send data in both directions. This is due to the

fact that the Bluespec compiler forbids mutually recursive definitions, to simplify the

compiler's job and to maintain better readability of code.

A better solution is to describe one module as a submodule of the other. In this

organization, the outer module could then have rules to push data into the inner

module to send data and rules to pull data out to receive it like shown in Figure 3-2.

22

Reorder
Buffer

i~~~~~~~~

:

I

II
I
I
I
II

I
I

I

I
I

I

I J

This gives us the two-way communication, but not in a natural way.

Module A Module B

Rule

Figure 3-2: Submodule Organization

This organization also has problems. Although we can now compile each modu-

larly, any time we change the submodule, we are forced to recompile the outer module.

More problematic, the only modules which can access the interface of the submodule

must be within the outer module. To make the methods available outside we must

add a similar interface to the outer module to allow us to pass calls through to the

submodule. This is both dissatisfying and unintuitive.

For our final solution we decided was to split each communication into two separate

methods: an actionvalue method in the sender and a method which takes a value of

the corresponding type in the receiving module. We could then make a wrapper

module which contains a rule to call the two methods atomically in a natural way, as

shown in Figure 3-3.

Figure 3-3: Separated Module Organization Style, Arrows Showing Data Flow

To better illustrate this consider the following example. ModuleA which passes

ModuleB a 32-bit value (having type Int). Module B, then does some determines

23

I

I- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ _

whether the value it is given is odd and returns a boolean value (having type Bool)

to ModuleA. Using the style the code would look something like:

mkModuleA =

module

<state and unrelated rules>

interface

-- method type: ActionValue (Int)

sendToModuleB =
actionvalue

<action to remove value>

return intValue

-- method type: Bool -> Action

getFromModuleB boolVal =

action

<action to handle bool>

mkModuleB =

module

(FIFO Bool) thefifo <- mkFIFO

interface

-- method type: ActionValue (Bool)

sendToModuleA =

actionvalue

thefifo.deq

return thefifo.first

-- method type: Int -> Action

getFromModuleA intVal =

let

isOddVal = isOdd intVal

in

action

thefifo.enq isOddVal

24

This allows us to keep our module structure exactly as envisioned in the high-

level design and keep our modules completely self-contained for modular compilation.

It removes the restriction of having a single master-slave relationship between any

module pair. Only the wrapper module and neither of the communicating modules

need to be explicitly aware of the other when described. Because of this, we chose to

use this style when describing the modules in our processor.

This organization has since been explicitly formalized into the Get-Put interfaces

in the Bluespec Standard Library.

Now that we have determined how the modules interconnect, we must determine

what each module is supposed to do. The rest of this chapter details the responsibil-

ities of each module in the design.

3.2 Fetch

The Fetch Unit contains the Program Counter (PC) which it uses to make requests

to the Instruction Memory. When it receives a response, the Fetch Unit passes the

response on to the Decode Unit. The Fetch Unit determines which instruction to

fetch, by consulting the Branch Table Buffer (BTB). The Fetch Unit contains an

interface by which the Reorder Buffer(ROB) can notify it of the new PC whenever

the ROB detects a branch misprediction. The Fetch Unit has an epoch register, which

it uses to tag every instruction which it passes on to the Decode Unit. The epoch is

a six-bit integer value which is incremented on every branch miss. The ROB ignores

all incoming instructions whose epoch values do not match it's local current value as

it implies that they are part of the mispredicted path.

25

3.3 Instruction Memory

The Instruction Memory takes requests from the Fetch Unit either during the same

cycle or in later cycles. It responds with a list of instructions starting at the address

requested. Responses must be returned in the same order as the requests were made.

3.4 Decode Unit

The Decode Unit takes 32-bit MIPS instructions from the Fetch Unit and decodes

them. It then passes the results on to the ROB in the order it was received. The

decode unit must maintain enough state to allow for some asynchronity between the

fetch unit and the execution units.

3.5 ALU

The ALU must be able to take tagged instructions that are ready to execute from the

ROB and execute those instructions. When the ALU returns a result, it must also

send the associated tag of the instruction. No restrictions are placed on the ordering

of the replies.

3.6 Memory Unit

The Memory Unit takes memory instructions (loads and stores) from the ROB with

all operands resolved (the address index, the address offset, and the value). To

simplify the complexity of the Memory Unit, we require that the memory instructions

must be sent in program order. It is equally easy to express other more complex

memory models in Bluespec. The Memory Unit makes any necessary memory accesses

and returns the results to the ROB. Speculative stores must be kept until they are

26

either invalidated or committed via two methods accessible by the ROB. Since this

is a uniprocessor model, we only have to enforce a relaxed memory model whereby

memory instructions to the same address must occur in order.

3.7 Data Memory

The Data Memory is very similar to the Instruction Memory. It must handle requests

from the Memory Unit and respond with the appropriate data on read requests.

Requests must be handled sequentially. More specifically, a write request's results

must be observed by all read requests which occur later in time.

3.8 Reorder Buffer

The Reorder Buffer (ROB) keeps track of the ordering of instructions it receives. It

tracks data dependencies between instructions, and passes the instruction results val-

ues to instructions waiting for them. Whenever possible the ROB commits the oldest

instructions that have been executed by writing the results back into the register file.

In this design, the ROB unit also contains the branch execution logic. On branch

misses, it marks all the false path instructions as killed and increments the ROB's

current epoch value. It also notifies the Fetch/Decode Logic of the correct program

counter and the new epoch. Subsequent instructions which do not have the correct

epoch will be thrown away when they are put into the ROB.

We make the assumption that responses from functional units may not occur in the

same cycle as a request to the functional unit (i.e. there are no purely combinational

functional units). There are no timing requirements placed on the design of the

Fetch/Decode Logic by the ROB[5].

27

28

�I�

Chapter 4

Initial Implementation

In this section we discuss the initial design which matches the MIPS ISA. This design

reflects what we thought to be a "natural" description of the design. The design

described here matches the abstract requirements but does not achieve the optimal

cycle-level parallelism. Most of the complexity in this design is found in the ROB

module. Because of this we will cover the ROB is much more depth.

Design improvements will be made in Chapter 5. As the design was clearly split

into definite units, and the interactions were explicitly determined in Section 3.1, we

need only look at each module's implementation in isolation.

4.1 Satellite Modules

This section covers all the modules except for the ROB which is discussed in Section

4.2.

4.1.1 Instruction Memory

The instruction memory is implemented as a simple one-level hierarchy. On receiving

an address, the memory enqueues the four-instruction block starting at that address,

29

which it then returns the next cycle. There is no additional circuitry to check for

repetitions or overlaps of sent requests, as the Fetch Unit is expected to handle any

such optimizations.

4.1.2 Branch Table Buffer Unit

The Branch Table Buffer Unit (BTB) consists of a table of a direct-mapped cache

of 8 address to next-address mappings. On a lookup from the outside world for the

next PC value, the BTB checks if the value is in its cache. If so, it combinationally

returns the recorded value. If not, it assumes the branch is not taken and returns

the next instruction's address (PC + 4). On an update by the ROB, the table entry

associated with the update's instruction address is updated in the BTB's cache.

4.1.3 Fetch Unit

The Fetch Unit state consists mainly of a PC, a nextPC, and an epoch register. The

PC value is used to as the request to the Instruction Memory. On the resulting

response from the Instruction Memory, the BTB Unit is consulted. If it returns that

the nextPC instruction is a taken branch, the PC is replaced with the nextPC value,

the nextPC value is replaced by the prediction determined by the BTB Unit, and we

send only the first instruction on to the Decoder. If it is determined not to be a taken

branch, we change the PC to the BTB's address prediction (PC + 8), nextPC to 4

more than that, and we send the first two instructions to Decode.

All instructions sent from the Fetch Unit are marked with the epoch value.

This value serves to tell the ROB which of the instructions it receives from the

Fetch/Decode logic are valid. On a branch misprediction notification, the Fetch Unit

increments its epoch value, and changes the PC and nextPC to the appropriate val-

ues. It then marks all the following instructions with the new epoch value. Thus the

Reorder Buffer can tell when it starts receiving instructions from the correct path.

30

4.1.4 Decode Unit

On an insert from the Fetch Unit, the Decode Unit decodes the given instruction(s)

and enqueues them into a 2-way FIFO. The interface to the ROB, may then extract

one or two instructions per cycle as needed.

4.1.5 ALU Unit

The ALU takes a single cycle for all instructions. On a request it computes the result

and enqueues it into a FIFO. The result is then dequeued from the FIFO when the

result is taken. All requests are marked with a tag. The ALU returns the same tag

as it received with each instruction it is given.

4.1.6 Data Memory

The Data Memory is a two-way cache which handles word-aligned addresses. As part

of each write request is a 4-bit mask to signify which bytes in the word are to be

written.

4.1.7 Memory Unit

The Memory Unit receives all memory instructions in program order from the ROB.

When received, store instructions are saved in a store buffer capable of holding 4

requests, and a response containing any errors is returned to the ROB. Loads are

placed into a LoadRequest buffer. When a load is able to be fired (after all previous

stores have been handled), a request is made to memory. On the response from

memory, the result is enqueued to be sent back to the reorder buffer. Store instructions

are removed from the store buffer on commits and invalidations from the ROB. In the

case of commits, they are then sent to the Data Memory. In the case of invalidations

(due to the instruction being on a false path), all pending stores found to be invalid

31

are discarded.

4.1.8 Register File

The register file has 2 write ports and 4 read ports. RO is hardwired to zero. In

addition to the 32 general purpose registers, there are two special registers (HI and

LO) used by 64-bit instructions (multiplies and divisions). These can be accessed

through separate read and write interfaces.

4.2 Reorder Buffer

The Reorder Buffer is by far the most complicated of the modules. Its performance is

pivotal to the performance of the design as a whole. As such, we shall invest a great

deal more time in describing its implementation than the other blocks

4.2.1 Storage

Instructions are kept in an ordered list of N "slots." each slot contains an instruction

and the associated values required for its execution, as well as the operand values,

the result, and some internal state to described the state of the slot and possible

instruction held in it. We use a headTag and a tailTag pointer to represent the oldest

slot used and the next slot in which an incoming instruction will be placed respectively.

To differentiate having the circular slot buffer being full and being empty we assert

that at least one slot must always remain empty. Below is the Bluespec description

of a slot.

struct Slot =
tag :: ROBTag -- the Slot's tag

state :: Reg State

ia :: Reg IA

32

insType :: Reg InstrType

opcode :: Reg (Bit osz) -- opcode size

tvl :: Reg TagOrValue -- operand

tv2 :: Reg TagOrValue -- operand 2

imm :: Reg Imm -- immediate field

dval :: Reg Value -- result

destReg :: Reg RegOrHiLo

predIa :: Reg PredIA -- for branches

Each slot consists of a number of registers, as shown above, which represent an

instruction template: the instruction address (IA), the predicted instruction address

(predIA), the slot's state, and two operand registers tvl and tv2 that store either the

tag of the slot generating the value or the actual value of the operand. We could have

represented each slot as a single register, but by using a multiple register design, we

help the compiler partition the data and generate better schedules.

Figure 4-1: State Transitions of a Slot in the Reorder Buffer

The state of a slot is either Empty, Waiting, Dispatched, Killed or Done. The

state transition diagram is shown in Figure 4-1. Empty signifies that the slot has no

instruction in it. Empty instructions only exist within the region that the headTag

and tailTag denote as non-active. When an instruction is inserted into a slot, it enters

the Waiting state where it will wait for its operand values to be resolved into actual

values. After both operand values have been resolved, the instruction in that slot

can be dispatched. This consists of changing the slot's state value to Dispatched and

sending the instruction to the appropriate functional unit. When the result is sent

33

back to the ROB and written into the slot, the slot enters the Done state. At this

point it can be committed and made Empty again. At any time, the branch resolution

rule can set the state of non-empty slots on a mispredicted path to Killed.

Instructions are committed in the ROB in the order they were inserted. To com-

plete an instruction one increments the headTag and writes the associated slot's state

register as Empty. To insert an instruction, the ROB increments the tailTag, places

the instruction into the slot at which the tailTag pointed.

4.2.2 Lookup Organization

We decided to keep track of the speculative state of the register file via a combinational

lookup through the slots. This could also be done with an additional structure which

kept the speculative value or tag reference of each register. The state would get

copied during branch instructions and restored if the branch was mispredicted. This

however is significantly more complicated to implement and so the simpler method

was chosen.

4.2.3 Design Complications for the Reorder Buffer

To match the MIPS I ISA we need to add a few additional complications to our

design.

First, the MIPS I ISA has a branch delay slot. When a branch instruction is

killed, we must not invalidate the instruction directly after it. If we resolve the

branch before this instruction has been inserted, the delay slot instruction will have

the wrong epoch. To prevent this from happening, we assert that branch instructions

cannot be resolved until the next instruction has been inserted into the ROB.

Secondly, some instructions generate 64-bit results (i.e. multiply and divide in-

structions). To keep from having to double the size of the result field in each slot,

we place these instructions into two consecutive slots with the high order bits in the

34

liI _

first slot, and the low order bits in the second. The slots will then be treated as an

atomic unit until the slots are committed.

4.2.4 The ROB Module

Below is a stylized Bluespec description of our initial design of the ROB. The sz value

is a integer which the ROB is passed at instantiation. It represents the number of

slots in the ROB. We can change this number to any value larger than 2 and maintain

correctness.

mkROB :: Interger -> Module ROB

mkROB sz = -- sz is # of slots
module
let

minTag = 0

maxTag = sz

--auxiliary functions

--(e.g. mkSlot & incrTag)

-- state elements

rf :: RegFile <- mkRegFile

curEpoch ::

headTag ::

tailTag ::

handlemissReg ::

slotList ::

Reg Epoch

Reg ROBTag

Reg ROBTag

Reg (IA,PC,Epoch)

List Slot

<- mkReg 0

<- mkReg minTag

<- mkReg minTag

<- mkReg (0,0)

<- mapM (mkSlot)

(upto minTag maxTag)

rules

<rules>

interface

enqueueInst inst

getALUInstr

35

getMEMInstr =

updateALU tag result =

updateMEM tag result =

missvalues

4.2.5 Per Slot Rules

Many of the actions which the ROB needs to be perform occur on a per slot basis.

These actions are best represented as a set of rules, each of which operate on exactly

one of the slots.

It may initially appear that generating these rules for each slot can be quite

difficult and restrictive, but due to Bluespec's good static elaboration, this task can

be easily done. We do this by writing a function to generate rules for a single given

slot as shown below. Then we can map this function, in the same way we would in a

standard functional language, over the list of all the slots producing a list of rules for

those slots. We can then add this rule list to our current list of rules for the ROB.

This also gives us the additional benefit of not limiting the number of slots in the

ROB when we make a design.

let

mkRules i = -- makes a slot's rules

rules

<rules>

in

mapM mkRules (upto minTag maxTag)

The specific rules of this type are described below.

Operand Update Rules

There are two separate rules per slot which update the tagged values with the actual

values. They look as follows:

36

"update TagOrValue 1":

when
(T tag) <- slotJ.tvl

==> let

slotTag = (getSlot tag)

in

action

if (slotTag.state == Done) then

slotJ.tvl :=(V slotTag.dval)

else

noAction

The above rule checks to see if the instruction in some slot, slotJ, associated with

the given tag has been executed and if so, it writes the value into the operand register.

Rules to Dispatch to Functional Units

Additionally, for each slot there is a slot dispatch rule per functional unit which

takes waiting instructions and places them into the FIFOs which will dispatch to the

appropriate functional units. The tag value that is enqueued along with the data sent

is the unique number associated with the particular slot.

"Dispatch to ALU":

when (slotJ.state == Waiting),

(V v) <- slotJ.tvl,

(V v2) <- slotJ.tv2,

(ALUTYPE == slotJ.instType)

==> let

aluInst = (aluInstfromSlot slotJ)

in

action

slotJ.state := Dispatched

fifo2ALU.enq aluInst

4.2.6 Additional Rules

Besides the rules defined for each slot, there are a number of other rules in the ROB.

These are described below.

37

Branch Execution Rule

Branch instructions are executed by checking the result, killing all instructions after

the branch, and passing the values of the new PC and epoch value to the fetch unit.

These killed instructions are left in the list to be removed by the commit rule. This

means that the tailTag is not modified on a branch miss.

"Resolve Branch":

when canFireBranch
==> let

inst = fifo2branch.first

correctIA = (calcNewIA inst)

slotJ = (getSlot inst.tag)

in

fifo2branch.deq

slotJ.state := Done

if (correctIA /= inst.predIA) then

action

-- Send information on branchmiss

handlemissReg := (correctIA,inst.IA,nextEpoch)

curEpoch := (nextEpoch)

else

noAction

Commit Rule

Commits are done by removing the oldest instruction from the slot list and writing

back any results to the register file for any instruction which weren't killed.

"Commit":

when headTag /= tailTag,

slotJ <- (getSlot headTag),

slotJ.state == Done,

not slotJ.err

==> action

headTag := (incrTag headTag)

slotJ.state := Empty

(rf.write slotJ.destReg slotJ.dval)

38

4.2.7 Interface Methods

The methods on the ROB correspond exactly to the appropriate Get or Put half of

each communication channel it needs.

EnqueueInst Method

The enqueueInst interface does two combinational lookups to see if the two operands

were generated by another instruction in the ROB. It writes either the tag of the

associated slot, or the value from the register file as appropriate into the operand

registers. It also marks the slot as waiting to be dispatched (i.e. the state is Waiting).

enqueueInst inst =

let

--slot to write into

slotJ = getSlot tailTag

--structure with values to write

slotVals = (getSlotValues inst)

in

action

tailTag := incrTag tailTag

writeSlot SlotJ slotVals

when (not slotListFull)

Methods to get Dispatched Instructions

The interface to get the instruction from the ROB and hand it to a functional unit

consists solely of a dequeue from the associated FIFO.

-- type: ActionValue -> ALUInstr

getALUInstr = do

fifo2ALU.deq
return fifo2ALU.first

39

Branch Miss Information Interface

The interface to get the new branch information which is sent to the Fetch Unit just

returns the value associated in the handlemissReg register. This register is set by the

branch execute rule.

missvalues = handlemissReg

Functional Unit Result Writeback Methods

Writebacks from the functional units write into the appropriate slot. This slot is

determined by the tag which is sent with the result.

updateMEM tag result =

let

slotJ = (getSlot tag)

in

action

slotJ.state

slotJ.err

slotJ.dval

:= Done

:= result.err
:= result.value

40

Chapter 5

Design Refinements

This section will discuss the problems inherent in the initial design and their sources.

We will then describe possible solutions, whether through the design modifications or

through changes to the compiler, and detail any problems that still require further

consideration.

5.1 Separating Rules to Simplify Organization

A number of rules may read and write any of the slots in the ROB. However, during

a given cycle they only operate on a small subset of the slots. As the compiler will

consider these rules to always access all of the slots' state, it finds a number of false

conflicts which causes inefficiencies in the scheduling.

A prime example of this is found in the commit logic of the ROB. A 2-way commit

action on all slots will only operate on a pair of consecutive slots. In our initial

implementation we use a single rule to do all of the commits. The scheduler then

infers that this one rule changes all of the slots, and causes the commit rule to conflict

with actions which affect other slots. This is clearly not correct.

If we break the rule into a set of smaller rules as shown below, where each rule

in the set handles a different subset of slots, it becomes clear to the compiler that

41

committing only ever operates on two consecutive slots at any one time, removing

these false conflicts.

-- function to generate one particular sub-rule

mkSlotRuleCommit :: Integer -> Rules

mkSlotRuleCommit j =

let

slotJ = (List.select slots j)

slotJplus_1 = (List.select slots incr(j))

(slotJ,slotJPO) = (List.select slotPairList j)

jb = fromInteger j -- The tag j represented in bits

in

"commit_subrule":

when True

==> action

<do_commit_action on slot and slotplusl>

-- add ALL of the commit sub-rules to the ROB rule list

addRules (List.joinRules (List.map mkSlotRuleCommit

(upto 0 (numSlots - 1))))

In the case of interface methods this strategy becomes more complicated. Because

we cannot split up a method into many different methods (as it would change the

interface), we must instead change the method into a dummy action which is respon-

sible solely for transporting the methods operand data (input) into the module. We

do this by writing the associated data into a state unit like a register or FIFO. Once

the data has been placed into the state element, it is globally accessible in the module

and we can split the interface method's original action into multiple rules as we did

with rules.

While this solves the problem of conflicts it does add an extra cycle of latency

42

between when the outside world called the method and when the module executed

it. To fix this we replace the state element with an "RWire", which is described in

Section 5.4.

5.2 Inter-Module Latency

The natural way of organizing hardware to meet the Get-Put style interface, is to

have a FIFO on the output path of the provider of the information. This can be seen

in Figure 5-1. When results are ready, they are enqueued into the FIFO. Then, when

the interface method is called they are taken from the head of the FIFO.

Figure 5-1: FIFO-based Get-Put Style Communication Channel

This methodology works very well when there is only one source of information.

For example, the Decode unit provides the ROB with all the instructions that it

needs to process at once, so when the decoder receives undecoded instructions from

the Fetch Unit, it can enqueue them into its output FIFO on the same cycle. This

means that an instruction will be ready to leave the decoder the cycle after it was

placed into the decoder.

However, in the case of dispatching instructions from the ROB, a FIFO does not

offer the appropriate latency. When an instruction in a slot is ready to execute it

must first be enqueued into the FIFO going to the appropriate FU (as shown in Figure

5-2). This adds an extra cycle to dispatch the instruction. As this is on the critical

43

Action(s)

generating
information

Sending Module

Action taking

information

Receiving Module

path, we want to remove this extra cycle. The natural solution is to merge all of the

dispatch rules to a functional unit and the method together into one atomic rule, as

in Figure 5-3. This rule will search for an appropriate instruction, mark it as sent,

and send the value. This allows us to avoid using a FIFO entirely.

This solves the cycle latency issue but causes a new problem. The new method

now appears to affect each of the slots, which as was discussed in Section 5 causes

inefficient scheduling. This will be resolved in the next section.

I

I

.
S
S

Slots

Figure 5-2: Initial design with an extra cycle of latency

Slots

Figure 5-3: Final design which removes latency

44

I

I

5.3 Improving compilation with Disjointness In-

formation

Some rules will never fire together, but the compiler still spends extensive time to

to see if they conflict. This can be quite expensive computationally if the action

predicates cannot be easily observed to be disjoint. A instance of this in the ROB

can be found between the rule which inserts an instruction into a slot and the rule

which updates an operand value for an instruction in the same slot. The former

requires the slot state be "Empty" and the later requires the slot state be "Waiting".

As such, even though they may both write to the same exact state, they do not

have any scheduling conflicts. By stating explicitly in the predicate of the insert

rule that it only operates on empty slots the compiler can determine easily that

it is mutually exclusive with a number of other rules. This optimization causes a

substantial reduction in compile time.

5.4 Removing False Conflicts from High-Level In-

formation

In our initial design, there are a few situations where the compiler is not intelligent

enough to determine that two rules do not conflict. The best example of this is in the

state register in the slots of the ROB. At a high level, it is clear that we cannot do

any of grouping of rules larger than one on a particular slot at once (insert, dispatch,

writeback, commit). However, these actions can fire concurrently, and so the compiler

must verify that the instructions do not write to the same data at once. This requires

more high-level reasoning than is reasonable for current compiler technology.

One solution is to explicitly disambiguate the writes on conflicting registers. To do

this we will consider a hypothetical register with multiple non-conflicting write ports.

45

These ports are totally ordered so that the port with highest priority (the lowest

numbered port) which does a write will be observed. All others will be ignored. With

this new register we can solve the problem by having each rule write into a different

port wherever there is a conflict.

The question then is how to allow this to happen in Bluespec. With the atomic

action mindset, each rule or method happens in isolation and so it cannot tailor its

actions based on what others are doing. In the case of this register we would like each

port's action to be known by a central rule which would take this global knowledge

of the writes occurring and choose to do the appropriate write.

We achieve this by using RWires. An RWire is similar to a Verilog wire, but with

an exposed write enable bit (reads can see if a write is being performed that cycle).

Alternatively it can be viewed as a register where writes are performed before reads

in a cycle, with no ability to save values, and with a validation bit associated with

data. RWires allow us to have a global name space as in standard RTL. This in

turn lets us accomplish some optimizations that previously were not available. It is

worthy of note that RWires are "unsafe" in that they allow the introduction of timing

dependencies into our model and therefore must be used with caution.

This multi-ported register consists of a series of methods which all writes into

its own RWire. There is also a rule which reads the values from the RWires and

determines which value (if any exist) to write into the register.

With this new multi-ported register we are now able to explicitly tell the compiler

how to solve a large number of its write conflicts by placing conflicting rules writing

different ports with the appropriate relative priorities.

46

wo -

wl

rd

w2

w3 w3--

rd

Figure 5-4: Multi-Ported Register(MPReg) as seen from outside and internally

5.5 Removing Redundant Data Reads

With the methods described previously, almost all of the actions we expect to happen

concurrently no longer have conflicts. However, one important case remaining is the

conflict between inserting a value into the reorder buffer and removing one. The

reason for this is read-write sequencing. When we insert a value into the ROB, we

check the tail and head pointers to verify that there is space and then we update the

tail pointer. When we commit we check whether the oldest instructions are done,

mark the slots as empty and then update the head pointer. Each rule is reading a the

value of state which the other changes. As the Bluespec compiler will not implicitly,

forward values from one rule to another combinationally, it cannot find a consistent

ordering.

However this is simply a problem of representation. We know that any slot marked

Empty is free, so we can insert an instruction regardless of what the head pointer is.

Similarly, we know that any instruction marked Done cannot be Empty, and so we

do not need to check the tail pointer when we commit.

47

Reg

I

--30- Wo

__W_

-t
-- A-

While this allows us to remove one conflict, a sequential ordering conflict remains.

This is discussed in Section 5.8.

5.6 Cleaning up Writeback Muxing

Our ROB must handle writebacks from each of the functional units concurrently to

be considered a realistic model of a processor. With the method described in Section

5.4, we were able to circumvent this problem with a multi-ported register with two

ports. However, unlike the case of the state register, there is only ever one writer

which writes to each port with a certain number. With this high-level knowledge, we

can simplify our model, as seen in Figures 5-5 and 5-6, to merge all corresponding

RWires into one RWire per writing method. While this does not change the generated

hardware, it helps simplify the user's and compiler's views of the ROB.

Slots

Figure 5-5: Initial Rule Organization for Writebacks

Slots

Figure 5-6: Final Organization

48

5.7 Reducing Branch Misprediction Penalty

When the ROB is sending branch update information to the Fetch Unit on a branch

misprediction we have an extra cycle of latency between when the information is

calculated in the ROB and the cycle that the ROB notifies the Fetch Unit and BTB.

Using the method described in Section 5.2 we could fold the branch-execute rule

into the branch update methods. Unfortunately, the current implementation has the

update operation split between two methods to represent passing the data to both

the BTB unit and the Fetch Unit. We could combine these two methods into one

value method, and split it up outside of the reorder buffer, but this makes the method

description less understandable. To avoid this we look at other ways of reducing this

latency.

A solution inspired by Section 5.4 is to insert an RWire in between the methods

and the branch-execute rule to provide the combinational path. However, because

the consumer of the information is externally controlled, the ROB cannot know that

the method will be fired whenever the information is created. Ultimately, we need a

FIFO which allows for concurrent enq sequenced before deq on the same clock cycle.

This way we can still have a combinational path, but will not suffer from data loss if

other modules are not ready to take the information when it is presented. The design

of such a FIFO is shown in Figure 5-7.

Once we have verified that the other units will always be able to take values that

the reorder buffer generates, we can replace these bypassing FIFOs with a RWire to

reduce the hardware generated.

Figure 5-7: Design of Bypassing FIFO

49

IIIJ

P.

5.8 Removing Conflicts with Special Registers

After completing the above improvements to the design, we only achieve fifty percent

cycle-time throughput. The inefficiency lies with the insert and commit rules. The

insert rule reads from the register file while the commit rule writes into the register

file. Therefore the scheduling constraints on a register force all reads to occur before

writes. Thus, this use of the register file requires the insert rule to occur logically

first in a single cycle. However, the commit rule reads from the slot which the insert

rule writes to, which means that the reverse ordering must happen in a cycle. This

cyclic dependency causes a conflict.

At a high level, this is not a true conflict, as the values being stored into the

register file are duplicated in the slots, so the insert rule will always get the correct

answer when it searches through the slots, no matter when the commit happens in

relation to it. We would like to solve this by just telling the compiler to completely

ignore this conflict.

We do this by replacing all the registers in the register file with ConfigRegs,

a special register with no sequencing requirement between read and write. This

removes one of the sequential orderings, specifically the one forcing the insert to

happen before the commit. With this requirement gone, the rules can be scheduled

to fire concurrently.

While this works, it is somewhat unappealing as we have lost the safety associated

with having the sequential conflicts involving those registers. A better solution is to

replace the portions of the slot being read by the commit rule with registers in which

writes happen before reads (in Bluespec, a BypassReg). This exactly represents a

hardware latch. This reverses one of the sequential orderings and allows rules to

be composed sequentially, without us having to override the compiler's correctness

checking.

50

5.9 Performance Results

After the design improvements described in the previous sections, our two-way super-

scalar design was able to achieve a maximum IPC of 0.5 with a branch misprediction

penalty of 3 cycles.

Though most of the more than many-hundred-fold improvement in compilation

was due to improvements in the compiler's implementation of scheduling algorithms,

a factor of ten improvement was due entirely to organizational improvements and

conflict resolutions in the design.

51

52

___II�

Chapter 6

General Methodology for

Large-Scale Design

In the process of designing this out-of-order processor, we were able to find a number

of conventions and strategies which greatly improved debugging and organization of

large designs. This chapter discusses these insights.

6.1 Improving Debugging

As with any complicated system, showing that the design conforms correctly to your

high-level specification is difficult. The debugging methodology that hardware de-

signers use for Verilog does not work for Bluespec. The following new debugging

methods have shown themselves to be immensely helpful in finding problems with

our processor design.

6.1.1 Saving Intermediate Values Via RWires

When simulating Verilog, the designer is able to probe any value in his specification.

However, since Bluespec adds its own hidden signals and optimizations, intermediate

53

values can be lost after being passed through the compiler.

Often when debugging, these intermediate values are extremely useful, so it would

be beneficial if there was a way to force the compiler to keep the value. Our solution

is to write debugging information into RWires. With this one could probe the output

port of the wire and get the value. Using this approach also provides a validation bit

which tells us if the value we are looking at is currently valid.

It should be noted that the compiler's -inline-RWire flag cannot be used in

conjunction with this, as it will remove all RWires from the design.

6.1.2 Retaining Accurate Timing while Displaying Values

Displaying information to the screen is extremely useful for debugging. However,

displaying information from registers causes implicit reads. This may cause different

scheduling decisions by the compiler for designs that with displays than those made

for designs without them. Consider the following rules:

"Rule_l1":

when True

==> action

if (b >= 5)

regA := b*2
else

regB := regB + 1

"Rule_2":

when True

==> action

if (c >= 4)

regA := regA + 1;
else

regC := regC + 1

Currently these rules do not conflict, as they can be fired in the same cycle with

Rule_2 sequenced before Rule_1. However, if we add a display statement for debug-

54

ging as follows:

"Rule_1":

when True

=> action
$display "rulel: regA: d regB: %d " regA regB

if (b >= 5)

regA := b*2

else

regB := regB + 1

"Rule_2":

when True

==> action

$display "rule2: regA: %d regC: %d" regA regC

if (c >= 4)

regA := regA + 1;

else

regC := regC + 1

Then both rules now both read and write regA, therefore they cannot be scheduled

in the same cycle like originally described.

To fix this problem we must separate the display statements from the associated

rules. But we still only want to display register values when the associated rule

is fired. We accomplish this with careful use of RWires. Instead of displaying the

data,we write to a special RWire which has a zero-bit data. This signals when the

display should happen. Then we create a special rule which handles the register value

display. The above example turns into:

"Rule_1":

when True

==> action

ruleldisplay_RWire.wset ()
if (b >= 5)

regA := b*2

else

regB := regB + 1

55

"Rule_l_display":

when Just () <- rulel_displayRWire.wget
=> action

$display "rulel: regA: %d regB: %d " regA regB

"Rule_2":

when True

==> action

rule2_displayRWire.wset ()

if (c >= 4)

regA := regA + 1;

else

regC := regC + 1

"Rule_2_display":

when Just () <- rule2_display_RWire.wget

==> action

$display "rulel: regA: %d regC: %d " regA regC

This enforces that the register value displays will never cause our original rules

to fire as predicted before. However, the displays themselves may not fire because of

other dependencies. We can discover which of these may not fire as expected by use of

a fire-when-enabled pragma when compiling. Some reasonably simple scheduling

analysis will show why displays do not fire, but there is currently no mechanical way

to guarantee displays will always fire without causing scheduling changes.

6.2 Determining When Rules Fire

Sometimes it is useful to know when rules are ready to be fired and when they are

actually fired in a simulation. The -keep-fires flag forces the compiler to preserve

the CANFIRE and WILL-FIRE signals for each rule. These signify when a rule's

implicit conditions are met and whether the scheduler decided to execute the rule

respectively. With these, a user can determine whether or not a rule is firing as

expected.

56

_�

6.3 Improving Compile Time

As designs get bigger, compilation time of Bluespec increases hyper-linearly. To help

mitigate this effect, we have worked out a number of strategies which are effective at

bringing compilation times under control.

6.3.1 Modular Organization

One of the biggest issues with any large design is how to divide it into smaller,

more manageable parts. Modules and there interfaces provide a clean abstraction

boundary to help designer's accomplish this. However, we encounter a problem arises

when we wish to compile a many-module Bluespec design. In many naive design

organizations, the designer has neglected to make hard module boundaries between

intercommunicating modules, choosing instead to pass interfaces into the module

instantiations. As such, the design is not able to compile those modules separately.

The monolithic design compilation which must then take place is unnecessarily long.

To properly maintain a strong division between different modules in a design, a

designer should use the Get-Put methodology described in Section 3.1. This allows

both faster compilation as well as the ability to selectively recompile a subset of the

blocks in a design.

6.3.2 Mutual Exclusion Inclusion

Some of the information that the compiler spends a significant time trying to de-

termine is whether any particular pair of rules is mutually exclusive. Although for

almost all of the rule pairs in a design this information can be found almost instanta-

neously, the compiler has to brute force at the problem for a long time to determine

mutual exclusivity for certain pairs.

The designer can simplify the compiler's task by making the information more ob-

57

vious. This can be achieved by changing the representation to simplify the compiler's

task. Alternatively, the designer could add a scheduling pragma which explicitly notes

the correct conflict relationship between the rules. The former takes more thought,

but is guaranteed be maintain Bluespec's safety properties. The latter easily sidesteps

a lot of computation but shifts the weight of correctness of your ordering assertion to

the designer and should therefore be used sparingly.

6.3.3 Removing Unnecessary Conflicts

Some modules have actions which would operate correctly even if receiving a stale reg-

ister value. A standard example of this occurs in register files, where reads and writes

often have no ordering associated between each other as the designer has already

explicitly worked around stale read values in the design. In this case, the compiler

needlessly forces the read methods to occur before any write methods. To make

the compiler ignore this unnecessary sequencing, we replace the associated registers

with ConfigRegs, which are standard registers but without any temporal relationship

between reads and writes in a cycle.

6.3.4 No-inining Function Calls

Often there are large pieces of logic which we would like to duplicate multiple times.

An ideal example is the circuitry which decodes a single instruction in a superscalar

design. The logic block can be repeated multiple times without any changes. The

most natural way to express these is via function application. Unfortunately, when

the compiler tries to compile a module, by default, it expands out each instance

of the logic and optimizes each separately. Clearly, we would like the compiler to

optimize only the logic block only once. Therefore we attach a no-inline pragma to

the function. This causes the compiler to compile the function as a separate module

and then instantiate that module within the design. This prevents the compiler from

58

I _

having to evaluate the function more than once.

6.4 Improving Scheduling

When designing in Bluespec, the designer should have a good understanding of the

concurrency he expects from the design. However, the compiler must ultimately be

able to find the concurrency in the design for it to exploited. While this helps the

designer catch bugs in his design, it may also cause false restrictions to concurrency

to occur. This section discusses methods which were found to be effective at getting

to the heart of such scheduling problems.

6.4.1 Determining Conflicts From Compiler Output

The first step to handling a scheduling issue is to gain a good understanding of what

exactly is causing the problem. To do this we make use of a number of debugging

flags provided by the compiler.

First, we want to see a quick and dirty description of the conflicts which the

compiler determined. We do this by using the dump schedule flag, -dschedule.

This shows us the atomic actions in urgency order followed by the actions which will

prevent the rule from firing. So the following output:

parallel: [esposito: [RLRulel -> []],
esposito: [RLRule2 -> []],
esposito: [RLRule3 -> [RLRulel, RLRule2]],
esposito: [RLRule4 -> [RLRule2]]

says the rules are looked at in order Rulel, Rule2, Rule3, and finally Rule4.

Rulel and Rule2 will always fire when enabled and Rule3 will not fire when Rulel

or Rule2 are to be fired. Rule4 will not fire with Rule2 is fired.

59

From this we can see where rules are being prevented from firing. If a rule is

preventing another rule from firing and they should be able to fire concurrently, then

those rules' interaction represents concurrency the compiler cannot find in the design.

This line of reasoning will not pick out all possible conflicts because when rules which

can be shown to be mutually exclusive do not appear in this form. Having unwanted

concurrency loss there is much less likely as the designer writing the action predicates

is likely to notice if they are mutually exclusive.

To see mutual exclusion data you must look at the more verbose -show-schedule

which also contains all the same information as -dschedule but in a more verbose

form.

Once we determine which conflicts we are interested in, we can get a closer look

at the scheduling interaction between rules with the -show-rule-rel flag. This flag

takes as operands one wished to see the conflict analysis between.

Scheduling info for rules "ruleA" and "ruleB":

predicates are not disjoint

conflict:

calls to

RWirel.wget vs. RWirel.wset

regl.get vs. regl.set

conflict:

calls to

RWirel.wget vs. RWirel.wset

no resource conflict

no cycle conflict

no <+ conflict

In the above example, the compiler believes RuleA and RuleB are not disjoint,

which means that the compiler could not prove that the rules are mutually exclusive.

The rules have two scheduling restrictions between them, a read of the RWire RWirel

by RuleA and a write into it by RuleB, and a read of regl by RuleA and a write of

60

it by RuleB. RWires require that all reads must happen any writes on a cycle. This

means that that RuleA must happen after RuleB in a cycle. Registers require that

all reads happen before any writes to the register in a single cycle. This implies that

RuleB must happen before RuleA.

Looking at the "<" conflict RWirel. wget vs. RWirel. wset we see that if RuleA

is scheduled before RuleB the RWire conflict is the only conflict preventing parallelism.

At this point, we have a good idea of exactly what parts of the rules are causing

the scheduling conflict. Hopefully, we can now change the design to correctly change

the schedule.

6.4.2 Verifying Rule Firing

Sometimes rules are not executable when we would expect them to be. This is due

to the fact that by default the compiler will add implicit conditions to the rule, even

if the it is necessary only part of the time. For example, in the rule shown below,

we want to take one value from either of the two FIFOFs, whenever there is a value

and we can add to the output FIFO. A FIFOF is a FIFO with externally visible

"not Empty" and "not Full" signals. It is natural for the designer to expect that the

implicit conditions only prevent the rule from firing when both FIFOFs are empty

or the output FIFO is full, but the implicit rules are added to the entire predicate,

meaning that the compiler will decide the rule can only fire when both FIFOFs have

a value and the output FIFO is not full.

"Rulemergefifofs":
when True

==> action

if fifofl.notEmpty

action

fifoout.enq(fifof. first)

fifofl.deq

else if (fifof2.notEmpty)

61

action

fifoout.enq(fifof2.first)

fifof2.deq

else

noAction

The most straightforward method for the user to determine exactly what the implicit

condition for a rule is by looking at the predicate listing from the -show-schedule

flag. This states what the compiler believes is the full predicate on the action. If the

designer finds that the reason that a rule is not firing is due to implicit conditions

being added incorrectly, he can add the -use-aggressive-conditioning flag. This

flag makes the compiler take into account whether implicit conditions are caused by

predicated actions. By using this flag in the above case we would get the expected

predicate:

(fifofl.notEmpty II fifof2.notEmpty) && fifoout.notFull

instead of:

fifofl.notEmpty && fifof2.notEmpty && fifoout.notFull

The reason this transformation is not done by default is that in general this

results in a noticeable increase in hardware and timing length, and the optimization

is generally not needed.

6.4.3 Checking Rule Ordering

When the compiler cannot determine a temporal ordering for methods in a module,

it will make an arbitrary choice. Normally this is not a problem, but sometimes it

causes unexpected conflicts. An example of this occurs when we separately compile

two modules which have two independent Get-Put communication interfaces between

62

them. Since the channels are independent, there is no ordering between methods on

the same rule so the compiler chooses an random ordering in each module. However,

when we connect the two method pairs together into a two separate rules we now

have to deal with the artificial orderings we added when compiling each module. If

the compiler's choices are not consistent for the two modules, we will find that there

is an ordering conflict. To fix this we need to tell the compiler that the choices

that is makes cannot be completely arbitrary. We give the compiler artificial timing

restrictions for the methods by use of the internalscheduling pragma as shown

below. With this we can specify conflicts between any two atomic actions.

(* internalscheduling = "atomic_actionl SB atomicaction2" *)

63

64

�---l__----L·-···-·--··II_�

Chapter 7

Conclusion

Translating high-level descriptions into a Bluespec design is relatively simple if the

design does not have to worry about performance. Since we can look at each atomic

action in isolation, the task of debugging is greatly simplified. In this method the only

places where scheduling needs to be considered are places where optimizations have

been taken to reduce hardware, such as replacing what is a logical FIFO with a register

because the consuming action always takes the value on the next cycle. However, this

sort of change should be a final optimization and should be applied only after the

entire design has been verified and shown to meet the implicit assumptions necessary

for the replacement. Therefore, this sort of constraint shouldn't affect verification

much.

Once cycle-level performance considerations are added, the problem becomes more

complicated. If we avoid the use of "unsafe" module components, such as RWires and

ConfigRegs (which either ignore conflicts or reintroduce rule concurrency into the

model), then this only requires the designer to verify that the schedule ordering and

conflict analysis matches his high-level analysis. The designer can do this analysis

separately from correctness analysis.

If the designer cannot achieve the necessary cycle-time performance using only safe

65

module components, then he has no choice but to add unsafe components to meet

the requirements. Because of this, the designer must be aware of exactly what the

rules do when scheduled together. The designer must analyze how rules interacting

with the same unsafe modules behave when scheduled and verify that this matches

his intention. While this can be difficult, this analysis is exactly the same analysis

that a designer would have to use if the designer were to use a normal RTL language

to handle this concurrency.

While the design methodology presented in this paper makes analysis of compo-

sition and conflicts of atomic actions relatively straightforward, further work needs

to be done to help automate and simplify the scheduling analysis that the designers

must do. In addition, a new strategy for handling scheduling conflicts was proposed

[4] recently. This uses type of state, the Ephemeral History Register or EHRs, to

allow the compiler to change the design meet the designer's desired cycle-level con-

currency. This new approach provides many clear benefits, but it is still unclear how

one should approach the design process. Further consideration of this is needed.

66

Bibliography

[1] Arvind and X. Shen, Using Term Rewriting Systems to Design and Verify Proces-

sors, IEEE, Micro Special Issue on Modelling and Validation of Micro-processors

Vol. 19(3): pp. 36-46, 1999.

[2] J. C. Hoe, Operation-Centric Hardware Description and Synthesis, in Dept. of

Electrical Engineering and Computer Science: Massachusetts Institute of Tech-

nology, 2000, p. 139.

[3] J. C. Hoe, and Arvind, Synthesis of Operation-Centric Hardware Descriptions,

presented at IEEE/ACM International Conference on Computer Aided Design

(ICCAD), 2000.

[4] D. Rosenband The Ephemeral History Register: Flexible Scheudling for Rule-

Based Designs, presented at ACM/IEEE International Conference on Formal

Methods and Models for Codesign (MEMOCODE), 2004.

[5] N. Dave, Designing A Reorder Buffer in Bluespec, presented at ACM/IEEE In-

ternational Conference on Formal Methods and Models for Codesign (MEM-

OCODE), 2004.

[6] Bluespec Testing Results: Compairng RTL Tool Output to Hand-Designed RTL,

http://bluespec.com/images/pdfs/InterraReportO42604. pdf, 2004.

67

