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Abstract

Liquid water is a fascinating substance, ubiquitous in chemistry, physics, and biology.
Its remarkable physical and chemical properties stem from the intricate network of
hydrogen bonds that connect molecular participants. The structures and energetics
of the network can explain the physical properties of the substance on macroscopic
length scales, but the events that initiate many chemical reactions in water occur on
the time scales of 0.1 - 1 picosecond. The experimental challenges of measuring
specific molecular motions on this time scale are formidable.

The absorption frequency of the OH stretch of HOD in liquid D20 is sensitive to
the hydrogen bonding and molecular environment of the liquid. Ultrafast IR experi-
ments endeavor to measure fluctuations in the hydrogen bond network by measuring
spectral fluctuations on femtosecond time scales, but the data do not easily lend
themselves to a direct microscopic interpretation. Computer simulations of empirical
models, however, offer explicit microscopic detail but must be adapted to include a
quantum mechanical vibration. I have developed methods in computer simulation to
relate spectral fluctuations of the OH stretch in liquid D20 to explicit microscopic
information. The experiments also inform the simulation by providing important
quantitative data about the fidelity and accuracy of a chosen molecular model, and
help build a qualitative picture of hydrogen bonding in water.

Our atomistic model reveals that ultrafast experiments of HOD in liquid D20
measure transient fluctuations of the liquid's electric field. On the fastest time scales,
localized fluctuations drive dephasing, while on longer time scales larger scale molec-
ular reorganization destroys vibrational coherence. Because electric fields drive vi-
brational dephasing, the frequency of the OH stretch is particularly sensitive to the
microscopic details of the molecular potential. With collaborators, I have examined
the accuracy of emerging fluctuating charge models for water and the role that molec-
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ular polarizability plays in the vibrational spectroscopy.
In liquid water at ambient conditions, roughly 90 % of the hydrogen bonds are

intact. I have examined the fates and the fundamental chemical nature of the remain-
ing 10 % of the "broken" hydrogen bonds. We consider two reaction mechanisms that
describe how hydrogen bonds change partners. In the first scenario, broken hydrogen
bonds exist in stable chemical equilibrium with intact hydrogen bonds. In an alternate
scenario, the broken hydrogen bond is not a meta-stable chemical state but instead a
species that molecules visit during natural equilibrium fluctuations or when trading
hydrogen bonding partners. I show how the methods of condensed phase reaction
dynamics can be directly applied to vibrational spectroscopy of reactive systems and
how experimental 2D IR spectra can distinguish between the two mechanistic sce-
narios. Our data support the notion that broken hydrogen bonds are an intrinsically
unstable species in water and return to form hydrogen bonds on the time scale of
intermolecular motions.

Thesis Supervisor: Andrei Tokmakoff
Title: Associate Professor
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Chapter 1

Introduction

"Whiskey is for drinking. Water is for fighting over."

- Mark Twain, in a prophetic memorandum to the water community

1.1 Water is a prickly pear

Felix Franks once said, "Out of all the known liquids, water is probably the most

studied and least understood." [3] That oft-quoted punctual phrase is the sound-bite

version of what drives an active community of researchers and the research ideas

explored in this thesis. The Gordon Research Conference on water is a biennial

August meeting that draws the crowds from all over the world to Holderness, New

Hampshire so that scientists can spend a week sharing their ideas and research on

water. While this conference may sound like an Eden of scientific indulgement, as it

turns out, the water community is a shark pond. The water conference is a grueling

meeting, punctuated by vigorous theatrical discussions and stentorian arguments that
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feature the most prominent names in experimental and theoretical physical chemistry.

As an observer I have noted that this conference, and indeed the study of water, seems

to bring out the worst in people.

The reason why water is the center of a competitive research environment is

that, even after millennia of philosophical pondering and rigorous scientific inquiry

there are still important but unanswered questions about the physical and chemical

properties of liquid water. Detailed questions about how water solvates reactants

and products in chemical reactions and how it interacts with proteins and nucleic

acids form contemporary areas of research that straddle fields of biology, chemistry,

and physics. The answer to such fundamental questions will help us not only predict

how chemical and physical change occurs in water, but will also provide a better

understanding of the microscopic beginnings of life on earth.

1.2 A rebel in the family of liquids

Comparing water to "normal" or simple liquids is a bit like comparing the behavior of

chimpanzees to (most) human beings. Unlike most liquids, liquid water expands when

it freezes, solvates most chemicals but repels oil, flows more freely when squeezed,

and has an anomalously high melting and boiling point for a low molecular weight

substance. These phenomena have a common microscopic origin. In most liquids,

the mutual repulsion of atoms and molecules determine the structure of the liquid,

but in water the mutual attractions between molecules are what dominate.

The hydrogen bond was conceived in the early part of the 2 0th century. Mau-
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rice Huggins, an undergraduate in Gilbert Lewis' lab, proposed a strong attraction

between oxygen and hydrogen atoms to account for an aspect of bonding in or-

ganic chemistry [3]. Lewis invented the phrase "hydrogen bond" to describe these

connections that were an order of magnitude stronger than typical intermolecular

attractions ( 1 kJ/mol) but not as strong as covalent bonds ( 100-1000 kJ/mol).

Two of Lewis' colleagues, Latimer and Rodebush, thought that the hydrogen bond

might be the origin of water's mysterious properties. In his seminal work on chemical

bonding 1, the great chemist Linus Pauling theorized that the majority of the bonding

strength for the hydrogen bond in water was primarily electrostatic, and not derived

by partial electron sharing.

Hydrogen bonds between water molecules are the intricate and specific connec-

tions that give the substance its unique physical and chemical properties. At ambient

conditions, water molecules readily form hydrogen bonds. Each molecule can donate

two hydrogen bonds, one for each hydrogen, and accept two hydrogen bonds to the

oxygen atom. The water molecules sit at the vertex of linked tetrahedra. The tetrahe-

dral architecture of hydrogen bond connections is nearly unique to water and permits

an extended network of hydrogen bond connections to extend throughout space [19].

The structure of simple liquids looks similar to that of a dense gas, but the structure

of liquid water, at least locally, bears more resemblance to that of a crystal.

'The Nature of the Chemical Bond (1939)
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1.3 Adventures in silico

Molecular dynamics simulations (MD) have been indispensable tools that connect ex-

perimentally observed phenomena to their microscopic origins. MD simulations are

a computer model of the microscopic world that gives the researcher direct access to

atomistic detail. In MD simulations, one solves for the equations of motion for atoms

interacting through an empirical potential energy. In a corollary to Pauling's picture

of the hydrogen bond, conventional water potentials represent the forces of hydrogen

bonding with pure electrostatics. The virtues of MD simulations were evident early

in the history of computer simulation, when Rahman and Stillinger [17] performed

the first MD simulations of liquid water. From their simulations, they computed

many available experimental quantities with remarkable quantitative accuracy. More

importantly, the obvious microscopic detail provided a qualitative picture for the

structure of water. At the time these simulations were done, there were competing

ideas for the structure of liquid water that all made consistent predictions with avail-

able thermodynamic, x-ray and neutron scattering data [6]. The "mixture models"

envisioned the structure of the liquid as a heterogeneous mixture of molecular icebergs

floating in a sea of broken hydrogen bonds. The "distorted" or "random network"

models accounted for the difference between the liquid and solid by conjecturing that

the liquid maintains a similar hydrogen bond structure to ice, but that these bonds

are frequently distorted and deformed. Stillinger's [19] simulations showed, in no

uncertain terms, that the random network models provided a qualitatively accurate

picture of water.

20



1.4 The liquid state speed record

One reason why the mixture models and random network models of water were con-

sistent with available experimental data is that few of these data are sensitive to the

motions of individual water molecules. The hydrogen bond network is pliable and

the intermolecular dynamics are fast. For example, librations, or frustrated rotations

of molecules hold the liquid state speed record with a period of - 60 femtoseconds

(fs) 2. Intermolecular motions of most liquids at ambient conditions are considerably

slower ( 0.5-1 picosecond (ps) ).

In the last decade, advances in ultrafast laser technology have made time scales

on the order of 10 fs directly accessible to experiments. In an ultrafast experiment,

one prepares a dilute solution of a probe molecule in the liquid host. The absorption

frequency of the probe molecule is sensitive to the liquid's molecular environment.

Ultrafast spectroscopies of liquids typically use three coherent laser pulses separated

by controlled time delays to measure how the absorption frequency changes as the

liquid undergoes natural equilibrium fluctuations. This phenomenon is called "spec-

tral diffusion," because the absorption frequency of the probe molecule appears to

undergo a stochastic walk commensurate with the environmental fluctuations. Ul-

trafast experiments that use three pulses to interrogate the liquid are called called

third-order nonlinear spectroscopies, and they can observe changes in the molecular

environment on the time scale of z 100 fs - close to the time scale of the fastest in-

2In H2 0, the librations show a resonance at 600 cm- 1 , which is higher than kBT = 200 cm- 1

at room temperature. For some observables, the quantum mechanics of the librations becomes
important.
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termolecular motions. Solvation dynamics experiments in water, for example, study

how water solvates a dye molecule. Upon electronic excitation the dye molecule en-

ters a new electronic state with a different charge distribution than the ground state.

The water solvent reorganizes around the new charge distribution, and the absorp-

tion frequency changes as the solvent reorganizes. Solvation dynamics experiments

have revealed that the librations of water molecules play a critical role in solvation,

dissipating nearly 60-70 % of the excess solvation energy within ~ 100 fs [7, 10].

1.5 The molecule's perspective

Solvation dynamics studies elucidate solvation properties in water but do so by infer-

ring how the solvent reorganizes around an extrinsic probe. Often the chromophore

molecule is much larger than a water molecule and the excited electronic state is delo-

calized, so the solvent motions these experiments probe are not particularly sensitive

to the motions of individual molecules in hydrogen bonds. In a dilute solution of

HOD in liquid D20, the HOD molecule becomes a native molecular probe - a way to

measure equilibrium fluctuations as the molecules in the liquid experience them. The

vibrational transitions of the OH stretch play the role of the electronic chromophore,

but the environment being interrogated is more specific.

The OH stretch frequency is sensitive to the hydrogen bonding environment in the

liquid. Rundle's [14] and Badger's [1] earlier work motivated Novak [15], who summa-

rized the relationship between the interatomic oxygen length and the hydride stretch

frequency in hydrogen bonding crystals by comparing IR absorption frequencies to
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Figure 1-1: WOH vs. Roo for hydrogen bonding crystals from Novak [15]. Water
is in the region of "weak" to "intermediate" hydrogen bonds, with a Roo distance
of ;: 2.8 A. This graph inspired many time-resolved IR experiments that tried to
measure the equilibrium fluctuations of directly Roo by probing the relaxations of
WOH [4, 8, 9, 20].

interatomic ... O distances between hydrogen bonded pairs (Roo) measured with

x-ray crystallography (Figure 1-1). Novak's plot inspired a number of nonlinear ultra-

fast IR pump-probe spectroscopic studies of HOD in liquid D20. Those experiments

[4, 8, 9, 20] endeavored to observe the fluctuations of Roo directly by measuring the

spectral relaxation of the OH stretch. These experiments, and similar experiments by

our group, provide important new quantitative information about dynamics in liquid

water on the time scales of intermolecular motions.

MD simulations are my primary tools for relating spectral dynamics to their mi-
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croscopic origin. Chapter 2 describes third order nonlinear spectroscopies in detail

and explains the protocol I developed to compute OH frequency fluctuations and

nonlinear spectroscopic signals from MD simulations. In this chapter I also compare

the predictions of MD simulations to the experimentally determined absorption line

shape and equilibrium time correlation function (TCF) for the OH stretch frequency

(WOH)-

The coupling between the vibrations of the molecule and the remainder of the

liquid should be strong enough to observe fluctuations in the liquid, but not so strong

that making a vibrational excitation drives the system far from equilibrium. On-

sager's regression hypothesis states that in the "linear response" regime[5, 18, 22],

small perturbations prepared by an external source are indistinguishable from natural

fluctuations at equilibrium. Chapter 3 examines linear response of the HOD molecule

explicitly by comparing the rate that a nonequilibrium vibrational excitation returns

to equilibrium to the TCF of equilibrium frequency fluctuations.

Novak's relationship (Figure 1-1) shapes how we think about spectroscopy in the

liquid state of water, but building empirical relationships between molecular structure

from vibrational spectra is an old idea [2]. In Chapter 4, I relate WOH to a set

of physically motivated order parameters, and assign a microscopic origin to the

fluctuations of WOH that experiments measure.

Conventional water potentials for MD simulations approximate charges on the

molecules as fixed, but in real systems with explicit electronic degrees of freedom, they

are mobile. We have worked with collaborators at Columbia University to develop

methods for computing IR spectroscopies in contemporary polarizable models. In

24



'I

4

ZV*, cmo

Figure 1-2: IR absorption frequency shift from the gas phase vs. full width at half
maximum for hydrogen bonding compounds from Pimentel [16]. Stronger hydrogen
bonding red shifts frequencies and also broadens the width of the absorption. 2D IR
experiments acquire absorption frequency and width simultaneously.

Chapter 5 we compare results for IR spectroscopy to predictions from fixed charge

and fluctuating charge water models. Data from IR spectroscopy is directly useful

for examining the role of molecular polarizability on molecular length scales in liquid

water and also provides important data to improve upon the microscopic details of

empirical water models.

In the liquid, 90 % of the water molecules are engaged in three out of four possible

hydrogen bonds. At any instant in time, the remaining available hydrogen bonds are

thus "broken." In hydrogen bonding compounds, the width of the absorption line and
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red shift increases with the hydrogen bonding strength (Figure 1-2) [16]. Two dimen-

sional IR spectroscopy measures the line shape of the excitation as a function of the

preparation frequency. Chapter 6 uses the concepts developed for reaction dynamics

in complex systems to relate the dynamics of the absorption frequency measured in

ultrafast IR experiments to the hydrogen bond. We consider two scenarios for hy-

drogen bond rearrangements in water. In one scenario, broken hydrogen bonds are

stable chemical species that form an equilibrium with intact hydrogen bonds. Hy-

drogen bonds change partners by entering into the broken state before finding a new

partner [13, 12, 11, 21]. In the second scenario, broken hydrogen bonds are an in-

trinsically unstable molecular species that appear either as fluctuations of a hydrogen

bonded pair or as a transition state that molecules visit when changing hydrogen

bond partners.
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Chapter 2

Methods

Nonlinear IR spectroscopy is a powerful tool, useful for measuring how fluctuations

in molecular environments change the IR absorption frequency of a probe molecule

in a liquid host. The experimental data are often so complicated that only detailed

modeling can extract microscopic information. Classical MD simulations are explicit

computer models of the microscopic environment of a liquid and are one route to

microscopic insight when it is not directly available from experimental data. Classical

MD simulations use an empirical molecular potential energy function and Newton's

equation of motion to describe the evolution of a set of simulated atomic positions

and have to be adapted to include the quantum mechanical vibrations of the probe

molecule. All of the characteristic frequencies of the translations and rotations of

molecules in water are near or below thermal energies (except for the librations)

and are slow on the time scale of nuclear vibrational motion, but the vibrations

are an order of magnitude faster. In the language of quantum mechanics, there

is an adiabatic separation of time scales between the fast vibrational motions and
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the slower (classical) molecular translations and rotations that makes calculating

vibrational spectroscopy from classical MD simulations feasible.

In this chapter I summarize the formalism of third-order nonlinear spectroscopy

and describe the methods we have developed to compute IR absorption frequencies

from configurations in an MD simulation and compare the calculations to experi-

ments. Section 2.1 is an outline of nonlinear IR experiments and introduces the third

order nonlinear response function, R(3) (rl, T, r3 ). Section 2.2 reviews how to use time-

dependent perturbation theory on a microscopic Hamiltonian to obtain R(3 )(71, T, r3).

Section 2.3 describes how we have used the adiabatic separation between the quantal

vibration and classical degrees of freedom to obtain nonlinear response functions from

MD simulations. The subsection 2.3.2 introduces double-sided Feynman diagrams,

which are a popular method of representing mathematical terms in the expansion of

the response function pictorially, and shows how to compute them from MD simula-

tion. Section 2.4 is a detailed explanation of the algorithms I have used to write the

MD program and gives the specific parameters used in the simulations. Section 2.5

applies the adiabatic protocol developed in Section 2.2 to compute vibrational spectra

for HOD in D2 0 and compares results to recent linear and nonlinear IR experiments.

2.1 The nonlinear IR experiment

Nonlinear IR spectroscopy is a four wave mixing experiment where three input fields

generate a fourth signal field that emerges in a prescribed phase-matched direction.

Figure 2-1 is a diagram of the experiment in the traditional "boxcar" phase-matching
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sample
E3 T

Figure 2-1: Diagram of pulse timings and phase-matching in a nonlinear IR experi-
ment. I the boxcar geometry, the electric fields, delayed by timings r1 and T, create
a polarization in the sample that radiates a signal (pink) field that emerges in the
empty corner of the boxcar. T is called the "waiting time." The solid black line is
a heterodyning field that overlaps with the signal field during the time delay T3 and
measures the signal field interferometrically on a detector placed in the output plane.
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direction. Three laser fields interrogate the sample during sequential delay times r1 ,

and T, after which the liquid sample emits a signal during the detection time r3.

The detector measures the signal emerging with wavevector kp, after having probed

the system with wavevectors k1 , k2 and k3. For well-separated pulses in the boxcar

geometry (see Figure 2-1), there are two important phase matched wavevectors

kR= -k +k 2+ k3, (2.1)

kNR = k - k2 + k3,

where kR is called the "rephasing" or echo wavevector, and kNR the "non-rephasing"

wavevector. In practice, one generates these two signals by exchanging the arrival

times of pulses E1 and E2 in the experiment.

The laser pulses create a nonlinear polarization, P(NL)(r,t), in the sample that

radiates a signal field, £E(r, t). Because the envelope is longer in duration than the

inverse of the carrier frequency, we make the slowly-varying envelope approximation,

E (r, t) = ei("rc-wst)E (r, t) + c.c., (2.2)

p(NL)(r t) = i(kP-r-wt)p(NL)(r, t) + c.c. (2.3)

where Eq. 2.3 defines the amplitudes and envelope functions in relation to the real

fields and polarizations. In appropriate units, the signal field is the time derivative

of the polarization [6]

Es,(r,t) OP(NL)r, t) (2.4)
O9t
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In the frequency domain, Eq. 2.4 is

E(r, w) = iP(NL)(r, ). (2.5)

Because i = e4, the signal field radiates in quadrature to the polarization.

The third order polarization can be written in terms of the third order nonlinear

response function R(3) (ri, T, Tr3) as

P(3)(t) = d j dT dl-r R(3)(r, T,r 3): (2.6)

£(r, t - 3)6(r, t - r3 - T)£(r, t - 3 - T- Ti).

2.2 The formalism of nonlinear spectroscopy

R(3) (rl, T, r3) describes the material response to the three input fields. R(3) (T1i, T, 3)

is a time-dependent quantity, and can be calculated with an explicit microscopic

Hamiltonian. We will want to adopt a strategy where the vibrations are quantum

mechanical degrees of freedom but the remaining coordinates are classical. Each ob-

servable in classical mechanics has a corresponding operator in quantum mechanics.

Let us develop a system of compact notation and a way to calculate the time evolu-

tion of an observable and operator. An operator in quantum mechanics follows the

Heisenberg equation of motion, [18]

dO

= i[H, 0(t)], (2.7)

dt35
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O is a generic operator, H is the Hamiltonian, [... ] is the commutator, and h - 1.

In Hamiltonian classical mechanics, an observable is a function of all the positions

rN and momenta pN of the N particles in the system. The positions and momenta

are parametric functions of time, t. The time derivative of the observable, o(rN, pN; t)

follows from the chain rule of partial differentiation,

do(rN,pN;t) O ri o(rN,pN;t) +pio(r ,pN;t) (2.8)
dt Or t(2.8)

dt~~ 1t 9ri 9pi

By using Hamilton's equations

d ri _OH (2.9)

dt api'
dpi OH
dt Ori'

Equation 2.8 can be written with Poisson Brackets.1

d Ho(r ,pN)}. (2.11)
dt

With this cosmetic change, observables and operators evolve under the Liouvillian,

'Poisson Brackets between A(rN,pN) and B(rN,pN) are defined by

OA B A OB{A(rNPN),B(rN,PN)} A pi Or o (2.10)
9i ri9 9i
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dO = iCO (2.12)dt
do

= o,
dt

ilO = i[H, 0],

iCo = {H,o}.

Equations 2.12 can be solved as an initial value problem

O(t) = eiCtO(O), (2.13)

o(rN, pN; t) = eilto(rN, pN; 0), (2.14)

which defines the quantity G(to, t) = eit(tt ° ) as the propagator or Green operator

that propagates quantities from time to to time t. When to = 0, we use the shorthand

G(to = 0,t) G(t). (2.15)

The isomorphism represented by Equations 2.12 is useful to describe dynamics of

quantities that are functions of both classical phase space coordinates and quantum

mechanical coordinates.

The Hamiltonian describes the input electric fields and the radiation-matter in-
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teraction. The full Hamiltonian is

R = Hmatter + Hfield + AHmatter-field(t), (2.16)

where Hmatter is the microscopic Hamiltonian, Hfield is the Hamiltonian for the inter-

acting fields alone, and Hmatterfield(t) describes the interaction of the electric fields

with the matter. Hfield(t) is the bare field Hamiltonian, whose dynamics are irrele-

vant. We work in the limit where spontaneous emission is unimportant, and where

the characteristic interaction lengths are much smaller than the wavelength of the

light fields. In this limit we can treat the electric fields as classical variables, and use

the dipole or El approximation [18] to write

/Hmatter-field = -Am({Qmicro}), t) £(r, t), (2.17)

where m({Qmicro}, t) is the total dipole moment operator (a macroscopic quantity),

{Qmicro} are the microscopic degrees of freedom, and r is the position vector of the

electric field, £ at time t. A is an ordering parameter whose numerical value is unity,

but keeps track of the order of terms in a perturbation series.

There are a few simplifications we can make to the total dipole moment operator,

m. First, the total dipole moment operator is the sum of all dipoles in the system,

m= Em(i), (2.18)
i

because at low enough concentrations there is no interaction between the dipoles
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of absorbing molecules. Secondly, we are interested in vibrational transitions so we

expand the dipole moment operator into

(2.19)m = m() + Qj Qj '

i j

where Qj is the coordinate for the jth vibration, and m(°) is the permanent dipole

moment. We define t by
9 (i)

= amj Q (2.20)
i j 1Q

mj is called the transition dipole moment for the jth vibration. The laser fields

induce transitions between states so the diagonal matrix elements of are irrelevant.

We will need to treat the explicit time-dependence of the Hamiltonian separately.

For brevity of notation, we separate the time-independent part

Ho = Hmatter, (2.21)

from the time-dependent matter-field interaction

AV(t) = -AX({Qmicro},t) . E(r, t). (2.22)

The total Hamiltonian in Equation 2.16 becomes

(2.23)o= Ho+ AV(t).
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The time-dependent Schr6dinger equation is

i.J a(t)) = @(t)),
at

In the Schr6dinger representation, the time-dependence of an observable is

(O(t)) = ('I(t)lO I (t)). (2.25)

by expanding I(t)) in a complete basis ((t)) = En cn(t) n)), and accounting for

the weight of each state in the canonical ensemble, one can rewrite 2.25 as

(O(t)) = Trace(p(t)O), (2.26)

(2.27)p-HoI 1t)( (t) )( (t)I 3 1
P) Trace(e-Ho) ' kBT)

defines the density matrix. The off-diagonal elements of the density matrix describe

coherences between quantum states, and the diagonal matrix elements represent the

populations. The density matrix, in turn, obeys the Liouville equation

d p(t) = -iC(t)p(t).
dt

(2.28)

Because the field-matter interaction is time-dependent, the Liouvillian in Equation

2.28 is an explicit function of time. We switch from the Schrddinger picture to Dirac's
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interaction picture by making the substitution,

p(t) = e-iotp(t) (2.29)

where o is the Liouvillian for the time-independent part, Ho. Substituting Equation

2.29 for Equation 2.28 yields the equation of motion for the density matrix in the

interaction picture [18]

d p,(t) (.0
= -iACv(t)pI(t). (2.30)dt

pi(t) evolves only under the time-dependent perturbation. £v(t) is the Liouvilian of

the time-dependent perturbing Hamiltonian.

One develops the perturbation (Dyson) series for p(t) by integrating 2.30

p(t) = e-i°tp(-oo) + A dt'e-i°(t-t')(-iCv(t))p(tI). (2.31)

and iterating to the desired order in A.

The third order polarization is P(3 ))(r,t) = Trace(,up(3)(t)), and

rt rti rt
p(3)(t) = (-i) 3 A3 dt3 dt2 dtl [V(t3 ), [V(t 2), [V(tl), p(°)(-oo)]]], (2.32)

-00 -00 -00

where p(°)(-cc) is the unperturbed density matrix in the infinite past, the {tk} are

dummy variables used in the integration, and V(t) = e°tV(0). Taking the electric

fields outside the nested commutators and inserting 2.32 for the polarization, and

changing the limits of integration of the time vatiables (See Fig. 2-1) defines the
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third order response function.

R(3)(tl, t2,t3) = (i)3 0(tl)O(t2 )0(t3 )Trace(lz(O)[Al(t3 ), [(t 2), [(tl), [p(°)(-oo)]]]]),

(2.33)

where the step functions (t) enforce causality. The polarization is

-p(3)(t) I dr3 j dr2 drl R(3)(ri, T, r3): (2.34)

£(r, t- 3)s(r, t - r3-T)(r, t- - T- Ti).

The: operator denotes a tensor contraction. R(3)(T1, T, T3) contains all of the mi-

croscopic information accessible in nonlinear IR experiments. Each commutator in

Equation 2.33 acts to the left and right and so generates a pair of terms. There

are 2 = 8 possible pairings, half of which are complex conjugates, leaving only four

independent expressions. Quantum mechanical correlation functions obey detailed

balance, so that in the time domain

(O(t)O(O)) = (O(O)O(t))*. (2.35)

Using Equation 2.35 cancels the factor of i and turns R(3) (Tr, T, Tr3) into a real valued

quantity.

The interaction picture has removed the interactions with the laser fields from the

calculation of R(3 )(ri, T, r3), because /i is not a function of the radiation variables.
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2.3 Response functions from MD simulations

We will discuss the details of how MD simulations provide a sets of atomic configura-

tions in Section 2.4, but this is not the difficult part of the problem. We first need to

motivate the spectroscopy from a microscopic Hamiltonian so that we know how to

adapt the the classical MD simulations. In this section, we take it as given that we can

generate a classical set of atomic positions with a computer simulation and develop a

formalism for computing vibrational frequencies from atomistic configurations of the

liquid.

We use the adiabatic separation of time scales between the fast vibrations and

the slower translations and rotations of the molecules. In Section 2.5 we specialize

the discussion to the OH stretch of HOD in liquid D20, but the adiabatic strategy

is generally applicable. It begins by partitioning a generic microscopic Hamiltonian

for the vibrations of a molecule in a liquid host. A general form for Hmatter is

Hmatter = Hs({P}, {Q}) + Hsb({P}, {Q}, r,pN) + Hb(rN,pN). (2.36)

In Equation 2.36, H8 is the quantal system Hamiltonian, Hb is the classical "bath"

Hamiltonian, and Hb is the coupling between system and bath. {P} and {Q} are the

momentum and position operators of the system Hamiltonian in internal coordinates.

We represent the system Hamiltonian with a complete set of eigenstates that we know,

Hsla) = Eala). (2.37)
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To generate more useful expressions for R(3)(rTj, T, r3), we insert a complete set of

system states (la)}) on each side of the operators in Equation 2.33. For example,

the term where each of the dipole operators acts on the left of the density matrix

R(3 (r1, T, T3 ) = -iTrace(p(O)t,(T3)l,(T)t,(Tl)p(-oo)), (2.38)

becomes

R(3) ( 1, T, T3) = -i E Trace(tiab(O) bc(T3)/cd(T)uda(l)pz(a) (-oo)).
a,b,c,d

(2.39)

In 2.39, ab(t) = (ali(t)lb), and we have assumed that the unperturbed system is in

pure state a)(al at equilibrium in the infinite past.

2.3.1 The adiabatic solution

The bath coordinates in the Hamiltonian (Equation

slower than the quantal coordinates and momenta.

imation to the Hamiltonian, and for each frozen or

atomic positions in the MD simulation the adiabatic

2.36) are classical and are much

We make the adiabatic approx-

"clamped" configuration of the

Schr6dinger Equation is

(H.({P}, {Q}) + Hb({P}, {Q},rN;t))1IT(rN;t) = (rN;t)1[(rN;t)). (2.40)

Hsb is a function of time, so we return again to the familiar interaction picture to
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obtain an expression for the Green operator on A,

G(t)tA = Gj(t)Go(t)l (2.41)

The Liouvillian splits into

ifclassical = {Hmatter ... } (2.42)

if-quantum = i[Hmatter, ' ] (2.43)

The dipole operator is a function of both the rotational state of the molecule, which

is classical, and the vibrational state of the molecule, which is quantal.

I = A({Q})e(rN), (2.44)

In Equation 2.44, e(rN) is the unit vector of the transition dipole and is attached to

the molecule. In the adiabatic scheme, there is no ro-vibrational coupling (the bath

positions are clamped) so the vibrational and rotational averages are separate. The

classical Liouvillian {Hb,... } propagates e, so that R? ) (TIr, T, r3) becomes

R(3) (r, r3) -i E (e(O)e(rl)e(T)e(T3)) x (2.45)
a,bc,d

Trace(uab(O)gubc(T3),uyd(T)Ada (T1)Paa (-00))

The first term in brackets is the orientational response function. It is the tensor

part of the response and describes how the sample responds to the input polarization
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fields. After the tensor contraction with the polarization vectors of the input fields

in Equation 2.35, the orientational response function is

Yijkl (r, T, r3) = ((e(O) l)(e(rlT) i)(e(T) j)(e(r 3) k)), (2.46)

where i, j, k, and I are the polarization directions of the input fields in the laboratory

frame interacting in chronological order.2 The second term in brackets is the vibra-

tional response function for R(3) (Tr1 , T, T3 ), which we denote simply as R(3) (rT1 , T, T 3) I.

Inserting a complete set of system states on either side of (t) returns

E: a)(a(jp(t)jb)(bI = E la)(alei~bt G,(t)(Go(t)z)lb)(bl, (2.50)
a,b a,b

We use the interaction picture to evaluate the quantum propagator,

ei~quantumt - = Usb(t)tUs(t)tLUs(t)Usb(t). (2.51)

The time-evolution operators are the results of solving the adiabatic Schr6dinger

2 Detailed analysis[8], shows that for a spherical rotor, a good series of approximations leads to
the results

1 4

1 2Yzz(rl,T, r3) = -cl(rl)cl(r 3)(1 + -c2(T)), (2.47)
9 5Yyyzz (lXT, 3)- =9c1 (T1)c1(7'3) (1 +q- c2 (T) ).(.8

and that these are the only two independent orientational response functions for an isotropic system.
The ca(t) are the time-dependent coefficients

c.(t) = (P.(e(t) e(O))), (2.49)

and P, is a Legendre polynomial of degree n.
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equation in the interaction picture,

Us(t) = eHst,

USb(t) = e -i f dt Hb(t')

(2.52)

(2.53)

It is difficult to work with e- i f dt' Usb(t') , because it is not necessarily diagonal in the

system eigenstates. To extract the diagonal part, introduce the projection operator

P

PHsb =E la) (alHb a) (al.
a

(2.54)

We assume that

Hsb as

the off-diagonal elements are small and write the matrix elements of

Hsb(rN;t)ab = abEa(r ; t) + A(1 - ab) Hsb(rN; t)ab. (2.55)

The interaction

part.

Green operator can be replaced to O(A) with its projected diagonal

e-i f dt' PHb(t') + 0(A). (2.56)

Replacing the interaction propagator with its projected part is sometimes called the

"pure dephasing" approximation [19, 13], and gives an expression for ,u(t) in the

adiabatic approximation.

(2.57)G(t)t = E la)eicclassicalt(labe-i fo dt'(ea(rN;tt)-eb(rN;tt)) (bI.
a,b

Because lab are just matrix elements, we can associate the Green Operators with the
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density matrix and transform Equation 2.39 into

R(3)(ri, T, r3) =-i Trace (adIzdcIlcbIabGbc(T3)Gcd(T)Gda(-l)p(a)(O)) (2.58)
a,b,c,d

2.3.2 Pictorial perturbation theory and expressions for HOD

in D2 0

It is often more intuitive to represent a perturbation theory pictorially. In a diagram-

matic perturbation theory, pictures represent mathematical terms in the perturbation

expansion. Equation 2.57 describes how the laser pulses in the experiment cycle the

system through various coherences, and gives Equation 2.58 a nice diagrammatic

representation. For example, during the first time period, r, the Green Operator

propagates the density matrix from the pure state a)(al to a coherence Ib) (al.

Let us denote each of the terms in Equation 2.58 by au where u is a vector that

contains the system indices a,b,c and d. In this compact notion, Equation 2.58 is

R(3) (, T, T3) = -i E Cu. (2.59)
u

The Cru are all the terms in the system Hamiltonian, but only some of them will be

resonant with the input fields. The a, that survive after making the rotating wave

approximation can be calculated by drawing the double-sided Feynman diagrams 13].

As an example let us calculate one diagram for the rephasing experiment. The
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Diagrammatic symbol Mathematical term || Physical process

/ +kInput pulse with wavevector k
I+k Absorption

l -___- __k Stimulated Emission
-k Input pulse with wavevector -k
-__ _ _ _ __k _Absorption

x l -k Stimulated Emission

to ab [ a) (be - i todt'wb(t')a ab Coherence with frequency Ea - £b.
Ibbl lb) bi Vibrational population in b

Table 2.1: Diagrammatic rules for constructing response functions from double-sided
Feynman Diagrams. For every interaction on the left side of the density matrix,
multiply the diagram by -1. By selecting a phase-matching condition (eg. -k 1 + k2 +
k3), one draws a diagram for every combination consistent with that phase-matching
direction. Vertical bars denote the ket and bra sides of the density matrix and time
progresses in the vertical direction. Figure 2-2 is an example of one diagram from the
rephasing wavevector geometry.

experimental phase-matching condition is

k = -k + k2 + k3. (2.60)

If one represents the density matrix by two solid vertical lines where time progresses

in the vertical direction, the picture resulting from Equation 2.58 is Figure 2-2. Table

2.3.2 translates the diagramamatic pictures into mathematical terms for the response

functions.

For the rephasing phase matching condition, there are two diagrams for the fun-

damental transitions, but only one for the overtone transition. The diagram for the

overtone transition has an even number of left side interactions, but the fundamentals

have an odd number. Hence the diagrams for the overtone and fundamental transi-

tions are out of phase with one another. Summing over all the diagrams consistent

49



1;3 1 0

T 00

'Cl 01
00

G1 0 (T1 +T,c 1 +T+C3 )

Go o (C1 ,T)

Go 1 (0,'ct1 )

(('r ,T,;3) = 1g1014<G01(0,;1) G00( 1 ,T) G1 0(c1 +T,t3+T+; 3)>

Figure 2-2: Feynman diagram for the rephasing phase-matching geometry. The left
hand side of the Figure is a Feynman diagram calculated for the echo phase-matching
direction, k = -kl + k2 + k3. The negative wavevectors face towards the left
and the positive ones face towards the right. The numbers in the middle of the
diagram label the states of the density matrix. The system begins in the ground
state, p(aa)(-oo) = 10)(01. Calculating Feynman diagrams starts by enumerating all
the diagrams consistent with the given phase-matching direction. The right hand
side is the diagram that labels the time intervals that are the arguments of the Green
Operators. This particular diagram is o01,oo,1o.
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with the rephasing phase-matching direction (kR = -kl + k2 + k3 ) gives

2-o1, o 12 I2(exp (i 1

-121 121I12 (exp i dt wlo 

RR(71, T, T3) =
ri +T+r3

dt w1o (t) - i dt woo(t) )
r1 +T 

T1 +T+T3
(t) _i Jdt L021 (t) ) -C. C.

T+T

In Equation 2.61, the brackets are the average over the classical degrees of freedom,

and w1o0 (t) = £1(rN;t)- £o (rN;t). For the nonrephasing phase-matching direction

(kNR = k - k2 + k3)

RNR(T1,T, T 3) =

21/Lol2lolJ2(exp (i f " dtwlo(t) i r dtwo(t)1 .0ep- 'O(- +T
/ rtl r~~~Ti +T+r3\

-IA2 i 12IL1o12(exp (i j dt wo(t) - if dtw2 (t))) - c.C.
Oi+T

(2.62)

The sign change on the fo ... term between Eqs. 2.61 and 2.62 arises from the

difference in the wavevector -k - k between phase-matching conditions. This

flips the sign of the coherence during the first time period w01 -- w1o and wo1 = -w0o.

In the pure dephasing approximation, we have neglected the processes of vibra-

tional relaxation and energy transfer. Unfortunately, serious fundamental inconsis-

tencies arise when one attempts to compute energy transfer rates between classical

and quantum degrees of freedom [3]. While improvised protocols exist for calculating

these rates based on Landau and Teller's formula [9], a more satisfactory calculation

likely requires elaborate quantum or semi-classical dynamical rules that are beyond
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the scope of the current study. Recent experiments find a vibrational relaxtion and

energy redistribution time of ~ 700 fs [11, 5]. We expect the consequences of neglect-

ing vibrational energy redistribution to become most severe after this time scale.

2.4 Simulation details

The adiabatic strategy allows us to compute WOH from an atomic configuration, and

MD simulations provide a chronological set of positions, rN. Here are the details.

In the constant energy constant volume (NVE) scheme for MD, Newton's equation

propagates the positions of all the atoms forward in time. Because numerical simu-

lations of Avagadro's number of particles are computationally infeasible, one focuses

instead on a smaller number of molecules (typically between 100 and 10,000). If the

system is large enough, the boundary conditions are unimportant. Conventionally,

one uses periodic boundary conditions so that r? = ri+nL, where L is the box-length

determined by the simulated density, r? is the position of atom i in the nth image

box and n is a vector of integers. The physical motivation for this particular choice

of boundary conditions is that they replicate the central box ad infinitum[l].

At the beginning of the simulation, one generates a molecular configuration that

is reasonably close to a configurational state in the liquid. The dynamics proceed

by assigning each atom a random velocity chosen from an appropriate Boltzmann

distribution and then equilibrating until there is no memory of the initial configu-

ration. I have chosen 107 D2 0 molecules and one HOD molecule. To generate the

initial configuration, I have put the oxygen atoms at the points of a face centered cu-
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bic (FCC) lattice and given the molecules random orientations. The thermodynamic

state point for D20 at T= 298K corresponds to a density of 1.104 _ . I have used

the Box-Muller algorithm to generate normal random deviates for the velocities of

each molecule[15] with a standard deviation consistent with the number of degrees of

freedom and the simulated temperature of 298 K.3 After roughly 10 ps of simulation

time, the system loses memory of the initial nonequilbrium configuration (FCC lattice

with random orientations) and relaxes to an equilibrium configurational state of the

liquid.

The key ingredient in an MD simulation is the potential energy function for all of

the atoms in the system. Our mainstay potential is the extended simple point charge

model (SPC/E) [2]. We use this potential almost exclusively, except in Chapter 5

when we run MD with other polarizable and fixed charge potential energy functions.

In the SPC/E model of water, all of the OH bonds are fixed to 1.0 A, and the OHO

angle is 109.47° . One is always free to choose three independent units of measurement.

Natural units for water are kJ/mol for energy, femtoseconds for time, and A for

length. Each atomic site has a partial charge and they interact according to Coulomb's

Law,

Uelectrostatic = (2.63)
i jj34i U

where the sum is over all atoms in the central box and their periodic images. In the

3 For N molecules, the number of degrees of freedom, Nf, is 6N- 3 because each molecule is free
to translate and rotate in three dimensions but the total momentum of molecules in the central box
is zero, placing three constraints on the degrees of freedom
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units I have used,

ZH = 15.796VkJ/mol A, (2.64)

4 fs2 kJ/molmD 202 x 104 2 ,/m (2.65)

4 fs2 kJ/mol
mH = 1.01 X 104 A2 /mo, (2.66)

mo = 16.00 x 104 fs2 kJ/mol (2.67)
A 2

In the above, m is the mass of either hydrogen (H), deuterium (D), or oxygen (),

z the charge, and rij is the distance between atoms i and j. The oxygen atoms also

interact through a Lennard-Jones 6-12 potential,

e = 0.6502kJ/mol (2.68)

= 3.16555725812892 A (2.69)

VLJ(r) = 4E ((si) _ (si)) ,(2.70)

1
ULJ = Z Z VLJ(rJ). (2.71)

i I,J:I

I and J are the oxygen atoms of two different molecules. Because the Lennard-Jones

potential is short range, I did not include molecules in the sum with rij > L, where L

is the box length, and calculated the Lennard-Jones potential energies and the forces

with the appropriate shifted force potentials [1].
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Ewald sums

The electrostatic forces in Eq. 2.63 are long-range, but at large separations (rij > L)

they are between periodically replicated images. The Ewald method makes use of the

boundary conditions to provide a computationally feasible way to handle this sum

[1]. In the Ewald sum, the atoms in the central box are screened with a Gaussian

screening function. The potential energy for all (screened) atoms in the central box

is

1 erfc(srij) zizj
Vreai S nj(2.72)

i j, ri

where N is the screening parameter and erfc(z) is the complementary error function,

erfc(z) = 2 f dte- t2. The screening function has to be subtracted from Equation

2.72. This is done in reciprocal space. The potential energy between the periodically

replicated images is
k2

27r e - 2~-
Vk = L E k 2 IS(k)l2 (2.73)

where S(k) = Eji zie ik ri is the ionic structure factor. The Fourier transform interacts

atoms on the same molecule, and these terms are subtracted out in real space. The

screening parameter partitions the sum of the potential energy between real space and

k-space. I found the screening parameter to be 5, and that the sum for the potential

energy as a function of the number of wavevectors converged at z 200 wavevectors

[1].
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Constraint dynamics

Each atom in the simulation experiences a force, Fi = -ViVsPc/E where

VSPC/E = Vrea + Vk + VLJ (2.74)

is the SPC/E potential energy function. All molecules are rigid in the SPC/E po-

tential, and there are two ways to run dynamics with this constraint [1]. One way

is to compute the forces on the center of mass for each molecule and the torques in

the principal axis directions, and the other way uses "constraint dynamics." We have

chosen to use constraint dynamics for their computational simplicity and efficiency.

The equations of constraint are holonomic, meaning that they can be written as a set

of equations [7]

Ir, -r/i 2 -d2 = 0, (2.75)

where d is the distance between atoms a and /3 on the same molecule. The La-

grangian for the system with constraints is 4

L(rN, vN)= E Z 2 m -2 E E VSPC/E(ri, rj)-E rAaVconstraint(ra, rg). (2.76)2 2
i j, i C

In Equation 2.76, i and j are the intermolecular indices and a and 3 are indices for the

intramolecular atoms. The constraints have been absorbed into Vconstraint(ra, r3) =

4 One can rationalize this Lagrangian from Hamilton's principle. Hamilton's principle finds equa-
tions of motion by minimizing the action along a trajectory, AS = 6 ftto L(vN, rN, t) = 0. Without
constraints, Lagrange's equation (Eq. 2.77) minimizes the action, but with holonomic constraints
the minimization can be accomplished by introducing Lagrange multipliers.
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Ir. - rol2 - d'. Lagrange's Equation is

d OL(rN, vN) _ OL(rN, vN) &vi N)) ~ ~ ~ 0.(2.77)dt ( vi ) ri(

Substituting the Lagrangian (Equation 2.76) into 2.77 yields Newton's equation of

motion for atom i

mi dt) = i + ,ig, (2.78)

Where fi =-ViVsPc/E is the unconstrained force and g = - AaBVaVconstraint(ra, ra)

are the forces of constraint on atom i.

It is impossible to solve the equations of motion in a molecular system with a

realistic potential and more than a few degrees of freedom exactly. Instead, MD

algorithms use time-domain finite difference methods to solve the equations of motion

approximately. A stable integrator that stores positions, velocities, and forces at

each time step is the Velocity-Verlet integrator. In the Velocity-Verlet algorithm, the

unconstrained positions (rN) and velocities (vN) advance according to[1]

ri(t + t)~ = ri(t) + vi(t)6t+ mAt (2.79)

vi(t + it), = vi(t) + F + + ) t. (2.80)

The next update incorporates the forces of constraint. The constrained positions

advance according to

ri(t + t) = ri(t) + 2mi gir)(t)6t2. (2.81)
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The velocities at time t + t follow a similar rule

v(t + it) = vi(t)" + 2I 9()(t + t)it. (2.82)

The RATTLE algorithm finds the the Lagrange multipliers for the constraint forces in

g(V) and g(r) iteratively. I have found that only 3-6 iterations per atom are necessary

to achieve a tolerance of O(10- 5 ) A. Because the equations of motion are solved

approximately, there is a finite probability of violating energy conservation so that

the total energy of the system will continuously rise over the course of the simulation.

For the time step that I have chosen (t = 3 fs), the velocities have to be re-normalized

by their thermal values every 10 ps. This re-scaling interval is an order of magnitude

longer than the dynamics of interest and keeps the energy fluctuations to O(10 - 4 ) of

the total energy

Some tricks in MD simulations

There are a few tricks that I have used to speed up the MD simulations. The first is

in storage for the positions, velocities, and forces. It is important to ensure that the

array that stores these items enters the CPU cache at the beginning of a loop and

remains there until the loop is finished. In C and C++, this corresponds to writing

the multidimensional array with the spatial index last (i.e. r[nmolecules][natoms][3]).

It is time-consuming to evaluate transcendental functions, such as square roots.

It is particularly costly in the inner loop of a force evaluation. The real space part

of the Ewald sum is a pair-wise interaction that only depends on the separation
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between atomic pairs. Calculating the separation between two atoms requires taking

the square root, and the evaluation of the Ewald term is expensive because it contains

several transcendental functions. For the real space part of the Ewald sum, I have

built a look-up table to evaluate the value of the force and potential energies as a

function of the distance squared between atomic pairs.

The k-space part of the Ewald sum (Eq. 2.73) is a spatial Fourier transform

of a real-valued quantity. As such, the potential energy is symmetric with inver-

sion through k = 0. In other words, Vk = Vk. I have used this symmetry and

only done the k-space part of the sum for half of the wavevectors. The second

half is related by inversion. When building the Fourier coefficients, I have used

the recursion relationship ei(n+m) - eineim. Examples of my code can be found at

http://web.mit.edu/-joel/www/Thesis/Code.

Hydrogen bonding geometries and the first solvation shell

Typically, one identifies a hydrogen bond in water with the intermolecular oxygen

distance Roo and the cosine of the "hydrogen bonding angle", cos(aO). Figure 2-3

illustrates these coordinates. I will call these the "geometrical criteria." A conven-

tional approach is to define a characteristic function, h [12] that is a binary variable

deciding whether or not the chosen pair is hydrogen bonded according to (Figure 2-3)

1 if cos(a) > cos(30o) and Roo < 3.5A;
h =

0 otherwise.

In Chapter 4, we will interested in the molecules in the first solvation shell of
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= 3.5 AA

Figure 2-3: Illustration of the geometrical criteria for hydrogen bonding. The critical
fmgle cx is 30°, and the critical value of Roo is 3.5 A.

HOD in liquid D2 0. I have identified the "first solvation shell" as the four nearest

neighbors surrounding the HOD molecule. Out of these, I have determined the hy-

drogen bonding partner by selecting the largest value of cos(a) out of the four nearest

neighbors. This selection strategy allows one to assign a hydrogen bonding partner

even during transient fluctuations away from a hydrogen bond .

60

0
#0

# 0 ^I-
LAi---

la
-



2.5 Calculating vibrational frequencies for HOD

in liquid D 2 0

We now specify our formalism to calculate the spectroscopy of the OH stretch of HOD

in liquid D2 0. Recall the Hamiltonian (Eq. 2.36)

H = Hs({P}, {Q}) + Hsb(pN, rN, {P}, {Q}) + Hb(pN, rN). (2.83)

As before, {P} and {Q} are the momenta and atomic displacements of the vibrations

in internal coordinates, and pN and rN are the classical momenta in atomic Cartesian

coordinates. The "bath" Hamiltonian, Hb, describes the translations and rotations

of the molecules in the liquid, or the slow coordinates. The potential energy in Hb

is a classical molecular dynamics potential (SPC/E). H, the "system" Hamiltonian

is the operator describing HOD's vibrational eigenstates in the gas phase. It is a

function of the fast degrees of freedom, {P} and {Q}. The system-bath Hamiltonian,

Hsb, couples the fast and slow coordinates. For HOD in liquid D2 0, there are two

internal hydride stretch coordinates and a bend. The mechanical anharmonicity is

large, but the kinetic coupling is small relative to the perturbations from the liquid

environment (the experimental IR spectrum shifts _ 200 cm -1 to the red in going

from the gas to the liquid), so we can neglect the kinetic coupling. Within these

approximations the system Hamiltonian in Equation 3.1 is one-dimensional.

Often, the most practical and computationally efficient way to find Hb is to

expand the bath Hamiltonian as a Taylor series in the internal coordinates (and
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possibly momenta) and quantize them [14] in the system basis set. Hb is usually

a slowly-varying function of the system coordinates and a low order approximation,

usually first or second order, is sufficient. We truncate the expansion at second order

in Q so that the system-bath Hamiltonian becomes

Hsb = FQ + GQ2. (2.84)

To build the Q and Q2 matrices, we used the local mode Hamiltonian of Reimers

and Watts [16] and numerically integrated the eigenfunctions of the Morse oscillator

from Watson, Henry, and Ross [21]. Figure 2-4 A is a diagram of the adiabatic

scheme. We have chosen notation that is commensurate with Oxtoby's [14], where,

F is the derivative of the potential energy at Q = 0, keeping the center of mass for

the vibration fixed.

6Vspc/E,(Q, {.}) P0 oFF = =VSPC-E(Q, Io = (- - F-). (2.85)
a9Q WOH rmo mH

Fo (FH) is the force on the oxygen (hydrogen) atom and mo (mH) is the mass of the

O-Hoxygen (hydrogen) atom, OH = fH and i is the reduced mass, mHmO Analyticaloxygen (hydrogen) atom, rOH--I--H
I1T07H I MH+MO'

expressions for G appear in Appendix A. The first and second terms of F are the

(mass-weighted) bath-induced forces on the oxygen and hydrogen atom, respectively,

in the direction of the OH bond. In general, the magnitude of the OH component

of the force for the hydrogen is comparable to that on the oxygen, but the inverse

mass-weighting makes the second term larger. The forces on the hydrogen are purely
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Figure 2-4: Schematic of the adiabatic separation used to compute the spectroscopy of
HOD in D2 0 (A), and a comparison to the experimental data from Fecko et al. [5] for
both the correlation function (B) and (D) and the IR absorption lineshape (C). The
lineshape in B is 200 cm-1 wide (FWHM) and exhibits some of the asymmetry in
the experimental absorption experiment, but is nearly 70 cm - ' narrower and peaks
roughly 30 cm - ' to the blue of the experimental spectrum. The correlation functions
both have a sharp initial decay, a beat, and a longer time decay.
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electrostatic, and so the vibrational frequency is particularly sensitive to the electric

field evaluated at the proton. The dot product with OH implies that electric fields

in the direction of the OH bond make F the largest, and hence are most effective at

inducing frequency shifts.

Once we have the system bath Hamiltonian, we solve the time independent Schr6dinger

equation for the vibrational eigenstates for the frozen or clamped configuration of the

slow variables at time t, rN(t).

(H.({P}, {Q}) + HSb({P}, {Q}, rN; t))I I(rN; t)) = £(rN; t)Il(rN; t)). (2.86)

We assume that the couplings between the quantum mechanical oscillator and the

classical degrees of freedom are weak enough that we can use the self-consistent mean

field method of adiabatic quantum mechanics [20] without worrying about the forces

of the OH oscillator on the atomic Cartesian coordinates. One can solve for these

forces by applying the Hellman-Feynman theorem to the matrix elements of H~b with

the adiabatic quantum states in 2.86,

FHellmanFeynman(t) = (I(r(t))(-Vi Hsb)(rN(t))). (2.87)

Here, FHellman-Feynman(t) is the force from the quantum mechanical OH vibration on

atom i, and Vi is the gradient with respect to atom i. As the appendix shows,

computing derivatives of Hb becomes cumbersome. Omitting the Hellman-Feynman

forces means that the expectation value of the total Hamiltonian is not a constant
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of the motion. The penalty for not including the Hellman-Feynman forces in the

molecular dynamics is judged by the fluctuations in the total energy, given by the

standard deviation of WOH, 7
WOH. UWOH is - 100 cm - 1 , or about half kBT. We

address this issue by including the Hellman-Feynman forces in Chapter 3, where we

show that their effects are small.

2.5.1 Comparison to experiment

We would like to compare predictions from MD simulation to experimental vibrational

spectroscopic data for the OH stretch of HOD in liquid D2 0. The absorption spectrum

is proportional to the Fourier transform of the dipole-dipole correlation function [23]

roo0u(w) ocw] dteiwt(,(t) .,jit(0)) (2.88)
-00

Using the Green operators in the adiabatic picture, the OH absorption lineshape is

£ ~~~~~~~~~~~~a(w) oc w j dt eiwt(exp(- dt' 6(r(t')N) - £(r(t)N)o)) (cos(e(t) e(0)))e- t.

(2.89)

The vibrational lifetime T1 is included as an empirical factor that represents how the

flow out of the population 1)(11 affects the coherence 10)(11.

The lineshape computed from the simulation is roughly the same shape as the

experimentally measured one, but is z 70 cm - ' too narrow (FWHM). The reason

for the discrepancy most likely lies in the width of the frequency distribution. This

distribution is 265 cm - 1 wide (Chapter 4), so spectral diffusion can only narrow
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it. The experimental C~(t) evaluated at t = 0 provides an estimate for the mean

squared value of the distribution that is nearly 60 % larger than that computed from

the simulation.

Recently, our group has measured the IR3PEPS and pump probe spectroscopy of

the OH stretch in liquid D20 [5]. From the data, Fecko et al extracted C,,(t).

C~, (t) = (woH(t) WoH(O)), (2.90)

where 5WOH(t) = Wo(t)- (woH) [5, 4, 22].

To get C(t) from MD simulations, we can solve Equation 2.36 to any desired

degree of accuracy. In this Chapter and in Chapter 4, we use second order time

independent perturbation theory to approximately diagonalize Hb at each time

step. To second order the vibrational energies are

n(2) = (nI Hsb(rN,Q;t) In) + E (n Hsb(rQ;t)k) 2 (2.91)g(O) ~~(2.91)

-~~~~~~~~~~~ (0) k,nsk - k

Here {(n)} and £n) are the unperturbed states and energies, respectively. For the

matrix elements of HOD, the second order term is usually smaller than the first

order term so first order perturbation theory is reasonably accurate. Furthermore,

differences in the diagonal matrix elements for Q2 are smaller than those for Q for

low-lying vibrational states. If we neglect the G term in Equation 2.84 and ignore
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the forces on the oxygen atom, at first order the system-bath Hamiltonian is

E -OHn E, (2.92)

Hsb : zHQE,

where the electric field, E appearing in equation 2.92 is that generated by all the

molecules in the simulation and their periodic images and ZH is the charge of the

proton. At this level of approximation, Hb is isomorphic with the first order Stark

shift Hamiltonian,

Hstk = tE, (2.93)

after making the substitution

- . E = zHQOH E. (2.94)

The correlation function from simulation decays initally with a fast time constant

of 35 fs, has a beat that peaks near 125 fs, and has a long time decay of - 600 fs.

Figure 2-4 compares the experimental and simulated Cw (t). The correlation func-

tion extracted from the experiment decays with a fast time constant, exhibits a beat

that peaks at 180 fs, and has a long time decay of 1.4 ps. Given the simplicity of

our approximations, the agreement between experiment and simulation in Figure 2-4

for both the absorption spectrum and C~(t) is notable. Because there have been

several different approaches to computing the IR lineshape and C" (t) with classi-

cal molecular dynamics potentials that all achieve similar results, the disagreement
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between the simulation and experiment probably does not highlight a problem with

the frequency calculation itself [17, 10]. There are several approximations that one

has to make to extract C(t) from the experiment. Strictly speaking, the IR3PEPS

experiment can only extract C, (t) reliably when the pulses have infinite bandwidth,

the frequency fluctuations obey Gaussian statistics, the lifetime of the excited state

is very long on the time scale of frequency fluctuations, and the nonresonant back-

ground is small relative to the absorptive signal. These approximations are not quite

satisfied for HOD in D2 0. Atomistic models based on simple strategies nonetheless

reproduce many qualitative features in C~,(t) and give an explicit microscopic model

that we use to analyze the vibrational spectroscopy of HOD in liquid D2O.
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Chapter 3

Adiabatic quantum mechanics and

the vibrational spectroscopy of

water

Onsager's regression hypothesis relates transport, kinetics, and other non-equilibrium

phenomena to fluctuations at equilibrium [6, 1]. Many successful theories recast non-

equilibrium dynamics in terms of a minimal set of equilibrium correlation functions

[5, 6, 1, 9]. Spectroscopic experiments generally measure the response of a sample

to a weak perturbing field. The fluctuation-dissipation theorem and linear response

relate the rates of energy gain or loss from the field to the equilibrium fluctuations.

In the condensed phase, researchers have traditionally relied on classical MD sim-

ulations to translate experimentally measured quantities such as vibrational lifetimes

and dephasing correlation functions into atomistic information about molecular liquid
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motions. Theoretically, it has been a challenge to formulate a protocol that treats

the quantum mechanical coordinates of the vibrations and the classical translations

and rotations of molecules consistently.

Classical MD simulations are most reliable in cases where the electronic degrees

of freedom are fast relative to any other motion and there is not significant electron

correlation between molecules. In these situations, simple empirical and electrostatic

potentials represent the average over the quantal electronic degrees of freedom. The

vibrational stretch coordinates are typically constrained to be rigid because the ener-

getic cost for deforming a molecule is high relative to thermal energy. Introducing a

vibrational degree of freedom into a classical simulation presents new challenges that

must be addressed. The theory must not only describe how the quantum mechani-

cal vibrations depend on the classical degrees of freedom, but also how the classical

coordinates depend on the quantum mechanical ones. This latter requirement is the

most challenging.

We use an approach that treats the classical and quantum mechanical coordinates

self-consistently. We solve the problem by allowing the classical coordinates to evolve

according to Newtons equation. For various configurations of the liquid simulation, we

solve the time independent Schrddinger equation for the vibrations and then compute

the forces from these coordinates on the classical degrees of freedom with the Hellman-

Feynman theorem. The expectation value of the Hamiltonian is a constant of the

motion, and hence the classical dynamics are self-consistent.
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3.1 Methods

Recall the system bath Hamiltonian used extensively in Chapter 2.

H = Hs(P, Q) + Hsb(Q, rN) + Hb(pN, rN). (3.1)

P and Q are the momenta and positions of the vibrations in internal coordinates,

and pN and rN are the classical momenta and coordinates. The "bath" Hamiltonian

Hb describes the translations and rotations of the molecules in the liquid, or the

slow coordinates. We will employ the SPC/E potential for Hb. H , the "system"

Hamiltonian is a matrix for the vibrational eigenstates of the molecule in the gas

phase. It is a function of the fast degrees of freedom, P and Q. The system-bath

Hamiltonian, Hb, couples the fast and slow coordinates. We have found Hb by

direct expansion but instead of the Hamiltonian Hb = FQ + GQ2, we truncated

the expansion at first order so that Hb = FQ. We did this because computing

higher derivatives of the potential energy in the MD simulation is computationally

expensive, and the first order term should be sufficient for qualitative accuracy.

As before, we solve the time-independent Schr6dinger equation for the vibrational

eigenstates for the frozen or clamped configuration of the slow variables,

HII(rN;t)) = £((rN;t)lI(r;t)). (3.2)

The eigenstates and energies are functions of the bath state at time t, rN(t). After
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averaging over the fast degrees of freedom, we impose total energy conservation.d(H) _ O(H) .0(H) (
~ E 5~- pi --5 i= 0. aa

dt = Pi+ r(33)i

The brackets (...) represent the expectation value of the Hamiltonian and the dot

denotes a derivative with respect to time. Equation 3.3 says that if the bath can

change the vibrational frequencies over a given time interval, the vibration must do

work on the bath over that same interval so that the total energy remains conserved.

Evidently, Eq. 3.3 returns Hamilton's equations for rN and pN. We use them to

propagate the dynamics of the classical degrees of freedom by calculating the forces

on atom i,

-.ZHbO (Hsb)
F=- Or + Or(3.4)i 22Ehi 9rj + arj(3)

The first term is the conventional force from the MD potential, but the second term

is the force from the quantum system on the classical variables. We can re-write it

using the Hellman-Feynman theorem.

O(Hsb) = ( (rN; t)l OHsb (R(t))). (3.5)

Formally, these equations are a closed self-consistent solution for both the vibrational

energies and classical dynamics. However, it is difficult to exactly diagonalize the

Hamiltonian for arbitrary configurations of the bath, and some approximation is

necessary. Expanding the eigenstates with time-independent perturbation theory in

Hsb, we solve for the energies in Eq. 3.2 and forces in Eq. 3.4 to arbitrary order in
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perturbation theory. If Hb is not perturbative, the solution is more difficult.

Although this method couples the quantal and classical coordinates in a self-

consistent way, it suffers from the usual problems of a mean-field approach [7]. Specif-

ically, we neglect coherences between the classical and quantum mechanical coordi-

nates. As a result, TCFs calculated with this technique do not satisfy microscopic

reversibility because the mean field Hamiltonian in Equation 3.3 is symmetric under

time reversal.

It is most convenient to neglect the forces from the quantum mechanical coordi-

nates on the bath. Indeed, these forces are frequently ignored. One can argue that

this omission may not be important when studying equilibrium fluctuations, however,

Hellman-Feynman forces appearing in Equation 3 should not be neglected if one is

interested in vibrational relaxation rates. While a comprehensive atomistic model of

vibrational spectroscopy must include these processes, we neglect them for the time

being and focus on the equilibrium problem self-consistently. It is easy to introduce

vibrational relaxation through Landau-Teller [3] theory based on Equation 3.

3.2 Linear Response Theory

Conceptually, spectroscopies designed to measure spectral diffusion are variants of

hole-burning experiments. In these experiments, one saturates parts of the absorption

band and monitors the time dependent spectrum as it recovers to equilibrium (Figure

3-1 A). In a transient hole burning experiment, one measures the time dependent

average frequency of the hole as spectral diffusion proceeds, w(t). The overbar reminds
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us of the non-equilibrium average.

Bakker's transient hole burning work on water infers a rather large vibrational

Stokes shift for the OH stretch of HOD in D2 0 [8]. If the HOD molecule appears

much different in vibrationally excited states than in the ground state, the Stokes

shift will be large. If the Stokes shift is very large, the excitation of the OH stretch

may push the system away from equilibrium so that spectral dynamics will not reflect

the more interesting equilibrium fluctuations of the system.

The total Hamiltonian in Equation 3.2 depends on the vibrational state of the

molecule. We can write the average energy difference between the ground and first

excited state as

H(t) = ((t)jHlO(t)) - (t)((O(t)lHl(t)) - ((t)jHjll(t))), (3.6)

where the function (t) is the auxiliary field that brings the system from v =0 to

v =1 (Figure 3-2 B). If a laser pulse burns a hole at t=0, (t) is the heavyside step

function. Dynamic linear response theory based on equation 3.6 relates the hole-

burning measurement to equilibrium fluctuations of the energy difference between

v =0 and v =1.

S(t) = WOH(t) - WO() (6 WOH(t)WOH(O)) (3.7)
WOH(0)- WOH(OO) (6WOH)

Here, WOH(t) = ((l(t)Hj1l(t)) - (0(t)jHjO(t))) and 6 WoH(t) = WOH(t)- (OH), and

the Stokes shift is WOH(0)- W)OH(OO).
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Figure 3-1: Experiments designed to measure spectral diffusion are variants of a
hole burning experiment. In the hole burning experiment, a pump laser saturates a
transition, and a probe beam delayed with respect to the pump records the spectrum's
return to equilibrium (inset).
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Figure 3-2: Cartoon of solvent reorganization after vibrational excitation. In a spec-
tral diffusion experiment, a laser pulse excites a molecule at t=0 (left panel). The
surrounding molecules rearrange to accommodate the molecule in the excited state
(right panel). If the excitation does not drive the system too far fromn equilibrium,
the time dependent reorganization seen in hole-burning experiments is the same as
the equilibrium frequency fluctuations.
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We ran MD simulations on a system of 107 D2 0 molecules and one HOD molecule.

The RATTLE algorithm propagated the dynamics of the classical degrees of freedom,

but at each time step we added to these the Hellman-Feynman force from the OH

oscillator. We equilibrated 5000 independent trajectories in v =0. After equilibration,

we switched the HOD molecule in each trajectory into v =1 and calculated S(t) by

averaging the time-dependent transition frequency over the trajectories.

These data are preliminary. I have noticed that the total energy in the system does

not remain constant, but there is a long time instability that appears after _ 1 ns of

simulation time that causes the total energy to decrease by ,~ 40 % before it plateaus.

This instability is likely a bug in the program, but has been very difficult to isolate.

Figure 3-3 shows the results of the calculation. From the calculation, the Stokes

shift was 24 cm- 1 , about a factor of three smaller than Bakker's estimate. If we

expand Hsb to second-order in Q, but neglect the Hellman-Feynman forces, the linear

response estimate of the Stokes shift is _ 50 cm-1 [4].

In studies of elecronic solvation dynamics, where an organic dye molecule replaces

the HOD, researchers have found significant deviations between S(t) and the normal-

ized correlation function [2]. The deviations are most severe when the molecule either

changes shape upon excitation, or acquires a dramatically different dipole moment

in the excited state. The Stokes shift in electronic experiments is about an order of

magnitude larger than we predict for HOD in D2 0. From this perspective, it is not

surprising that the agreement between S(t) and the normalized frequency correlation

81



1.0

0.8

0.60
,4-I

0.4
o_3:-.C')

0.2

0

0 200 400 600 800 1000
t/fs

Figure 3-3: Testing linear response for the vibrational spectroscopy of the OH stretch
of HOD in D2 0 according to Equation 3.7 (preliminary data). The molecule enters
v =1 at t=0. The average is non-stationary because the solvent must reorganize to
accommodate the excited HOD molecule. The non-equilibrium average is over 5000
trajectories where the HOD molecule enters the first vibrationally excited state at
t=0. Error bars are one standard deviation. The solid line shows the normalized
frequency-frequency correlation function of the molecule in v =0, C(t)/C(0). Linear
response accurately describes spectral diffusion because when HOD enters =1, it
does not perturb the solvent much.
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function is so good. It confirms our notion that spectroscopy of low energy vibrational

states yields information about equilibrium fluctuations in liquid water.

In conclusion, we have presented a self-consistent method for computing vibra-

tional frequencies that borrows many ideas from the theory of electronic structure [7].

Imposing energy conservation on the expectation value of the Hamiltonian gives the

forces from the quantum mechanical coordinates on the classical degrees of freedom.

We test the predictions of linear response for the vibrational spectroscopy of HOD

in liquid D20 and find that nonlinear spectroscopies designed to measure spectral

diffusion do not drive the system out of the linear response regime.
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Chapter 4

Electric fields drive vibrational

dephasing

Hydrogen bonds are the scaffolding of life, bridging adjacent strands of nucleic acids,

stiffening proteins and functionalizing enzymes. Liquid water forms a network of

hydrogen bonds that connect molecular participants together. By simulating empir-

ical models of water, researchers have made substantial progress in identifying the

molecular motions and fluctuations that generate fleeting fractures in the network

and entice molecules to "change allegiances" by trading hydrogen bonding partners

[36, 44, 31, 43]. Unfortunately experiments by themselves have been relatively un-

fruitful in revealing truly microscopic motions in water. Thermal averaging in linear

spectroscopies and scattering experiments makes it impossible to detect signatures

from groups of molecules in subtly different environments [46, 6, 19, 40]. How-

ever, provided there is a well-defined relationship between the vibrational transition

frequency and molecular liquid structure, nonlinear IR spectroscopy overcomes this
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obstacle by coherently preparing molecules in spectrally distinct environments and

measuring their subsequent relaxation dynamics [14]. From this perspective, the fre-

quency becomes a marker through which one can monitor the dynamics of the liquid

as it moves through its myriad of possible configurations.

The coordinates that are often used to identify a hydrogen bond between two

water molecules depend only on the relative distance and orientations of two molecules

(Chapter 2). On the length scales of these connections ( 3 A) one imagines that

the availability of nearby hydrogen bonds dictates the structure and dynamics of the

liquid, but a hydrogen bonded pair also interacts with more distant partners through

a network of hydrogen bonds. The fluctuations of the network can entice the hydrogen

bonded pair to sever its hydrogen bond and accept new bonds from new partners.

It is from this viewpoint that we describe the molecular environments in water the

terms local and collective. We imagine that there is at least a conceptual separation

between the HOD and its proximal hydrogen bonding partner (bonded to H) and the

remainder of the liquid.

Experiments and computer simulations[11, 25, 8], have found that on molecular

length scales water molecules undergo fast (tens of fs), localized intermolecular vibra-

tions but on length scales larger than one solvation shell, descriptive variables are no

longer molecular in origin. This is the regime of density and polarization fluctuations,

where groups of molecules move in concert. Such long ranged fluctuations can cause

instabilities in a hydrogen bond and force molecules to find new hydrogen bonding

partners, thereby reorganizing the local structure.

Examples where collective motions of water molecules dominate observables that
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are ostensibly molecular come from electron transfer and solvation dynamics [45]. In

the Marcus scenario, long wavelength electric field fluctuations drive electron transfer

and stabilize the reactants and products of a chemical reaction when the partici-

pants are adjacent to one another in the liquid [45]. The work of Balucani et al.[3]

provides another example. By using the theory of Gaskell and Miller [17, 16], they

were able to describe the center of mass velocity autocorrelation function of water in

terms of collective and longitudinal currents. The competition between longitudinal

and collective currents at early times produces fast fluctuations of the interatomic dis-

tance between oxygen pairs. These fluctuations support anomalously high wavevector

acoustic modes and produce the "beat" seen in the velocity autocorrelation function

[4, 5]. It might seen natural to assume that the beating motion is very delocalized,

but the dispersion relationship shows that it only involves molecules in the first and

second solvation shells [40].

The earlier work of Badger [2] and Rundle [34] identified quantitative relation-

ships between the degree of hydrogen bonding and the OH stretch frequency (OH),

but in 1974, Novak [35] showed that for hydrogen bonding solids there is a strong

correlation between the oxygen-oxygen distance, Roo, (Figure 4-2) and WOH. Ea-

ger to observe hydrogen bond breaking in real time, experimentalists turned to time

resolved transient hole burning (THB), a technique popularized in the studies of struc-

tural dyanmics in low temperature glasses and biological photochemistry [48, 20]. In

these experiments, a narrow band pump pulse saturates a fraction of the molecules

in a broad absorption band. Thermal agitation causes molecules to lose memory of

their initial environments. When this happens their frequencies shift and the spectral
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"hole" fills back up. If lifetime of the transition is much longer than the time scales

for spectral diffusion, linear response theory relates the rate of spectral relaxation in

a THB experiment to the equilibrium frequency fluctuations [14].

In 1991, Lauberau published the first IR transient hole burning experiment on the

OH stretch of HOD in liquid D2 0, a model system for studying dynamics in water

with IR spectroscopy. From his data, he inferred a time scale for single hydrogen

bond breaking and multi-component structural rearrangement because he assigned

spectral components to different types of hydrogen bonds [18]. The study reports

several time scales for spectral relaxation in water, but the shortest time scale they

report is close to their time resolution ( 1 ps). Other THB experiments give a time

scale of between 500 fs and : 700 fs for the long time component of spectral diffusion

[49, 15]. These experiments argued that the 700 fs - 1 ps decay corresponds to the

hydrogen bond kinetic making and breaking rate between HOD and it's hydrogen

bonding partner, but such an interpretation relies heavily on a strong correlation

between the geometrical variables that identify a hydrogen bond and WOH that is

unique and persistent on the time scale that the hydrogen bond remains intact (:

1 ps). For Laubereau's interpretation to be accurate, there must also be a strong

correlation between OH and the degree of tetrahedrality in the first solvlation shell

of HOD.

Recently, several computational studies on the nonlinear IR spectroscopy of HOD

in liquid D2 0 have appeared [26, 27, 29, 28, 38, 39]. These studies present a simple

picture of vibrational dephasing, where the short time decay arises from fluctuations

in the distance between the centers of HOD and its hydrogen bonding partner, and the
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long time relaxation measures hydrogen bond breaking [28, 29]. These investigations

have argued for an entirely local picture for vibrational spectroscopy in water, where

the only important participants are the HOD molecule and its hydrogen bonding

partner. A number of studies also have used MD simulations to examine the relation-

ship between Roo and WOH in the liquid phase. The studies have determined that

the correlation between Roo and WOH remains present but becomes more modest in

the liquid [38, 29], but ultimately reach the same conclusion as the experimentalists

about the long time decay of frequency fluctuations.

With an atomistic model of the vibrational spectroscopy of the OH stretch, we

find a reasonably good correlation between the OH frequency and the geometrical

hydrogen bonding variables, cos(a) and Roo, but these correlations are just a man-

ifestation of the much stronger relationship between the frequency and the electric

field that the molecules in the liquid impart on the proton. With the exception of

the hydrogen bonding partner, molecules in the first solvation shell do not exert a

large influence on the OH stretching frequency. Thus, IR experiments on the OH

stretch are not sensitive to specific dynamics of hydrogen bonding partners not di-

rectly bonded to the proton. We conclude that electric field fluctuations drive the loss

of vibrational coherence at all times. At short times these fluctuations reflect changes

in local geometries between HOD and its hydrogen bonding partner. Of course, local

geometrical reconfigurations are not independent from larger length scale polariza-

tion and density fluctuations that dominate relaxation on picosecond time scales.

Electrostatics couple these two relaxation mechanisms. The vibrational dephasing of

HOD in liquid D2 0 closely resembles Marcus' picture of electron transfer [45]. Our
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picture is highly suggestive of a reduced model for the vibrational spectroscopy of

water, where the only essential molecular feature is the hydrogen bonding interaction

between HOD and a single neighbor.

4.1 Results

Chapter 2 described our adiabatic model and MD methods to calculate the frequency-

frequency correlation function for the OH stretch. The qualitative agreement between

the simulation and the experiment is notable (Fig. 2-4). Equipped with an explicit

microscopic model, we examine the relationship between frequency and molecular

hydrogen bonding environments. Our analysis proceeds by defining a set of physically

motivated order parameters that classify the liquid environment. We then look for

statistical correlations between these order parameters and WOH. After establishing

the statistical significance of our chosen order parameters, identify a set of relevant

order parameters - those that are strongly correlated with WJOH. We then compare

the characteristic time scales of frequency fluctuations to those of the relevant order

parameters.

4.1.1 The role of the hydrogen bonding partner

Our atomistic model allows us to explore the connection between WOH and hydrogen

bonding structure in detail. Let us suppose that one could select a distribution of

molecules by labeling them with a short pulse laser that has arbitrary time and

frequency resolution. Figure 4-1 is a three dimensional probability density of the
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Figure 4-1: Still lifes of hydrogen bonded configurations visualized through the OH
frequency. This plot shows atomic probability densities of HOD's nearest hydrogen
bonding partner for various ranges of WOH. Surfaces represent the full width at half
maximum of the atomic probability density for the neighbor's hydrogens (white) and
oxygens (red). The first row is the distribution of E=, which peaks at 3450 cm -1

27rc
and is 265 cm- 1 wide (FWHM). The arrows designate the OH frequency for each
column. Numbers on the axes are distances in A for a coordinate system centered
on HOD's oxygen atom. The fourth row is the molecular configurations viewed from
the perspective of the OH bond. Spectral diffusion of WOH is the time evolution over
molecular geometries depicted in this figure. The blue side of the line shows cleaved
or severely strained hydrogen bonds. Clearly, WOH is not a simple function of Roo
for all frequencies.
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atomic distributions for the hydrogen bonding partner on the red, middle, and blue

side of the absorption line, calculated from our simulations. Each column in Figure

4-1 is the collection of molecules in a 50 cm- ' wide bin about the selected frequencies

(3300, 3450 and 3600 cm- 1 ). Isosurfaces represent the full width at half maximum

surface for the atomic density of the hydrogen bonding parther's hydrogen (white) and

oxygen (red) atoms. Progressing from the red side of the line to the blue side of the

line, the oxygen density goes from being tightly localized to diffuse. All the surfaces

seem to exhibit nearly azimuthal symmetry about the OH bond. The hydrogens of the

nearest neighbor point away from the HOD molecule and do not significantly shift the

frequency on the red or middle of the band, but become more important on the blue

side of the line, filling the space that the oxygen atom does in the strongly hydrogen

bonded case. We imagine that the structure that these densities depict comes from a

progressive weakening in hydrogen bonds in moving from the red side to the blue side.

It is obvious from these surfaces that Roo is not the only coordinate that determines

WOH. Moving from red to blue, the correlation with the hydrogen bonding angle, a,

becomes more significant as Roo becomes less significant. A successful variable that

describes the relationship between WOH and local intermolecular structure must at

least be a function of Roo and a.

Recall that Roo and a are convenient descriptors of hydrogen bonding in com-

puter simulations. To examine the relationship between hydrogen bonding coordi-

nates and the frequency, we computed joint probability distributions of WOH and

local hydrogen bonding variables Roo and cos(a). Figure 4-2 shows the results. We

calculated the joint probability distributions by making bivariate histograms of the
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order parameters and WOH. The correlation coefficient, p = ((x-(x))(WOH-(WOH))) quan-
a~aWOH

tifies the staistical correlation between a chosen order parameter x and WOH. o>x and

aWOH are the standard deviations of x and WOH. If WOH is a linear function of x,

then p2 = 1. p is normalized to -1 for anti-correlated variables to +1 for perfectly

correlated ones. p = 0 indicates statistical independence of x and WOH.

The statistical correlation between Roo and WOH is reasonably strong (p = 0.77),

but weakens at higher values of frequency and OH... 0O distance. Several researchers

have examined this relationship in detail with several different models and approaches

to the frequency calculation [32, 38, 29]. Their results are virtually identical to those

displayed in Figure 4-2 B. Comparing Figure 4-2 with the predictions from Novak's

[35] crystalline data suggests that the loss of sharp correlation between Roo and WOH

in the liquid comes from the higher degree of molecular disorder in the liquid. In the

liquid state, molecules explore larger hydrogen bonding angles (a) than in the crystal

phase. Figure 4-2 shows that as Roo becomes larger, deviations in the polar angle,

a are more severe, weakening the hydrogen bond.

Lawrence and Skinner [29] presented a graph similar to that displayed in 4-2, but

with P(WOH, a) instead of P(WOH, cos(a)). P(WOH, a) is zero at a = 0. To realize

a probability distribution consistent with the angular distributions of Figure 4-1, it

is important to compute the joint probability density for the angular variable as a

function of cos(a), and not a. The reason for this lies in the Jacobian that relates

the two probability densities.

P(cos(a), woH)d(cos(a))dwoH = P(a, WOH)l sin(a)dadwoH. (4.1)
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Figure 4-2: Joint probability distribution for intermolecular hydrogen bonding vari-
ables Roo and cos(a) with WOH. The geometrical criterion for hydrogen bonding
identifies hydrogen bonded pairs based on the values of Roo and cos(a) (A) defines
a and Roo and displays P(wuOH, cos(oa)). The correlation coefficient is -0.47. (B) Is
a linear interpolation of P(WOH, cos(a)) to linear spacing i a. It does not contain
the Jacobian for the transformation, and hence is nonzero at a = 0. (C) Roo shows
the stronger correlation to WOH than (A) with p = 0.77. At higher values of WOH the
correlation between WOn and Roo grows weaker while that between wol and cos(a)
becomes stronger.
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P(a, WOH) sin(a) IdoadwoH is the probability of finding a configuration with a value

of WOH in the interval [WOH, WOH + dwJoH) and a value of oa in [a, oa + de). When

a tends towards zero in linear strong hydrogen bonds, the probability density tends

towards zero as sin(a)lda. This singularity produces a beguiling distribution that

suggests the most probable hydrogen bond geometry is bent instead of linear.

4.1.2 The first solvation shell and tetrahedrality

Ice is a honeycomb network of strong hydrogen bonds, where each molecule donates

and accepts two bonds. In the liquid state, tetrahedral order persists [10] on the

length scale of one solvation shell, but longer range crystalline order disappears. The

vibrational absorption spectrum of the OH stretch is slightly different in water and ice.

In hexagonal (Ih) ice, the IR spectrum is broader and shifted to the red with respect

to the liquid. This fact led Laenen and Laubereau [24, 23] to hypothesize that the

value of WOH describes the ordering, or degree of tetrahedrality in the first solvation

shell. We examined this hypothesis by looking at the joint probability distribution of

WOH with the tetrahedrality order parameter, q, defined as

3 3 4 1

8 . 3q = 1-8 E E (r°°> r°°k + 3) X (4.2)j=l k=j+l

where the unit vectors point from the oxygen of HOD to those of first solvation shell

molecules j and k [10]. If the first slvation shell forms a perfect tetrahedron about

HOD, q = 1. The average of q vanishes in the dilute gas, which prefers no local order.

Typical values in the liquid range from 0.5 to 0.9 [10]. Figure 4-3 shows that there is
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negligible correlation between the OH frequency and the degree of tetrahedrality in

the first solvation shell.

4.1.3 Electric field order parameters

The hydrogen bonding variables, Roo and cos(oa) correlate reasonably well with WOH.

However, as Figure 4-1 suggests, it is possible to devise a function of these variables

that exhibits an even stronger correlation with WOH. To isolate the specific contribu-

tion of the hydrogen bonding partner and molecules in the first solvation shell from

the rest of the liquid, we defined the electric field order parameters E0 and E1 to be

the electric field at the proton from the hydrogen bonding partner and molecules in

the first solvation shell, respectively, in the OH direction [12]. It is also useful to

define the "collective" electric field, Ec, as the field on the proton from all molecules

except the hydrogen bonding partner by making the following decomposition,

EC= E-E 0 . (4.3)

Figure 4-4 shows the joint probability densities for the electric field order parameters.

E0 is more strongly correlated to WOH than either Roo or cos(oa) (p = 0.89). Adding

molecules in the first solvation shell shifts the position of the maximum of the join

probability density, but does not improve the correlation.

Figure 4-1 shows that in the red and middle of the frequency distribution, the

hydrogen atoms of the hydrogen bonding partner point away from the HOD molecule.

Because the hydrogen densities for the red and middle of the frequency distribution are
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so similar, we can conclude that the hydrogen atoms are not important for determining

the frequency in these regions of the spectrum. In these regions, the oxygen atom

dominates the electric field at the proton and it is easy to express E0 in terms of WOH

and cos(a). When working in units where the OH bond has a length of unity (A for

SPC/E), we obtain

E0 oc Roocos() -1 (4.4)
(Roo2 + 1- 2Roo cos(o)) (4.4)

On the blue side of the line, the hydrogen atoms of the nearest neighbor begin

to play a more pronounced role in perturbing WOH. For these configurations, the ap-

proximate system-bath Hamiltonian is a dipole-dipole interaction between the dipole

of the hydrogen bonding partner and the Stark dipole (Equation 2.93) of HOD. This

interaction introduces extra intermolecular variables, and there is no simple relation-

ship between E0, Roo and cos(a). These diverse configurations seen in figure 4-1

distort the probability distributions in Figure 4-4 A and 4-4 B on the blue side.

Another simple electrostatic argument explains the weak dependence of WOH on

tetrahedrality (q). The OH bond is one leg of the hydrogen bonded tetrahedron

in the first solvation shell. The remaining three legs of the tetrahedron are nearly

orthogonal to the OH bond, with an angle of ~ 109° . The dot product in equation

2.92 significantly diminishes their contribution to the frequency shift relative to that

from the nearly collinear hydrogen bonding partner. The OH frequency is so sensitive

to the hydrogen bonding partner that it is an insensitive probe of the remainder of

the molecular structure in the first solvation shell.
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4.2 Dynamics

IR spectroscopy measures response functions, that in perturbative limits can be ex-

pressed in terms of equilibrium time correlation functions, such as Cw(t) [33]. These

equilibrium TCFs are the connection between simulation and experiment, and de-

scribe the time scales of natural fluctuations at equilibrium. Because intermolecular

motions in water are fast ( _ 100 fs), building intuition about vibrational spectroscopy

based on joint probability densities alone can be misleading. Figures like 4-1 are in-

structive to motivate a set of meaningful order parameters, but cannot not be relied

on to provide a comprehensive picture of vibrational spectroscopy because they ignore

the dynamics of molecular environments.

Understanding the spectroscopy in terms of molecular motions lies in quantify-

ing the relationship between the dynamics of the relevant order parameters and the

frequency. Joint probability distributions and statistical correlations of the statics

identified a set of relevant order parameters, E0, E, E, and Roo.Figure 4-5 is a

plot of the normalized TCFs for Roo and q for times less than 500 fs. As q corre-

lates poorly with frequency, the dynamics of q do not follow the dynamics of WOH.

The correlation function in Roo, the interatomic oxygen distance, displays a more

pronounced beat than in C, (t).

E correlates strongly with WOH, and its TCF bears remarkable resemblence to

CW (t). Figure 4-6 highlights the short time part of the normalized correlation func-

tions for the electric field order parameters. The local field correlations, (Eo (t)3Eo (0))

display the same beat at 125 fs seen in C(t). The reason is that the local field
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Figure 4-6: Dynamics of order parameters based on the electric field at the proton.
Fluctuations along the hydrogen bond control the relaxation before - 200 fs. The
fluctuations of the local field follow C(t). The collective electric field fluctuations
resemble the dielectric response of water. A shoulder appears near 60 fs from
molecular librations outside the first solvation shell.
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component in the direction of the OH bond is nearly parallel to the displacement of

Roo. The local electric field fluctuations between HOD and its hydrogen bonding

partner produce the beat in Cw(t), but their molecular origin is the hydrogen bond

vibration between oxygen atoms.

The beat in Cw(t), (Eo(t)6Eo(0)) and Roo is also present in the velocity-velocity

autocorrelation function of water. Analysis of the velocity-velocity autocorrelation

function has revealed that the beat corresponds to density fluctuations in the liquid

that behave more like those of a disordered solid than a liquid. The speed of sound

at the beat frequency is - 3.2 km/s, about twice as fast as the speed of sound of

water in the hydrodynamic regime. The fast speed of sound in water corresponds to

fluctuation wavelengths of - 3-8 A [36, 4, 5, 47, 40]. This peculiar behavior can be

explained by hydrogen bonding [4, 5]. Hydrogen bonds are energetically favorable

between the hydrogen and oxygen atoms of the bonding pair, but it is energetically

unfavorable between the oxygen atoms. This repulsion of the oxygen atoms gives rise

to an underdamped oscillation in the density fluctuations [47, 40, 4, 5].

The collective electric field fluctuations (E¢(t)Ec(O0)) exhibit a shoulder at ~ 60

fs from librational motions. The shape of this function is remarkably similar to what

Lang et al.[25, 42] have measured for the solvation correlation function of an electronic

chromophore in water. Additionally, Song and Chandler [42] have shown that for

simple solute geometries, the solvation polarizability resembles the collective electric

field fluctuations displayed in Figure 4-6. This observation further supports the notion

that for vibrational spectroscopy of HOD in liquid D2 0, the prominent molecular

feature is the hydrogen bonding partner. The remaining electric field fluctuations
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follow the dielectric relaxation of a (modified) dielectric.

Figure 4-7 focuses on the the long time decay of the normalized TCFs for OH

and each of the order parameters. The long time (> 200 fs) exponential decay time is

nearly the same ( 600 fs) for all of these functions, yet many of the order parameters

are qualitatively different. For example, the tetrahedrality, which shows poor statis-

tical correlation with the frequency and exhibits different short time dynamics than

frequency fluctuations, decays with the same long time constant as C""(t). The sim-

ilarity in the decay times after 200 fs for such different measures of the molecular

environment suggests that this is the regime where collective fluctuations dominate.

After - 200 fs, cooperative intermolecular arrangements, density and polarization

fluctuations destroy correlations for the order parameters after - 200 fs.

Analyzing the interplay between local and collective electric fields sheds light

on the types of molecular and cooperative motions that dephase the OH vibration.

Specifically, Figure 4-8 compares the Fourier transform of the correlation function

C(w) = dt C(t)exp(iwt), or spectral density, for (Eo(t)6E o (O)), to that of the

cross correlation function between the local and collective electric fields, Ccross(t) =

(6E,(t)6Eo(0)). The integral over spectral density of the cross correlation function is

negative.

adw Ccross(W) = 7r Ccross(t = 0), (4.5)

PEEo = Ccross(t = ) (4.6)
aEC 0 Eo

PECEO is the correlation coefficient between the local and collective electric fields.
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Figure 4-7: Semrnilog plot of the normalized time correlation functions for the order
parameters studied in the text. The time constant of the exponential decay after 
200 fs for qualitatively different order parameters is - 600 fs. The long time decay
of C,,(t) characterizes electric field fluctuations on longer length scales than the
distance between molecules in the first solvation shell.

105



A
1I

12

10

,8
,E 6

. 4

o0 2

-2

-4

9

- E 0(co)8E0('(o)

E10 x 8E,(@)8Ec-)|

F=T -- ==__

-'p
0 200 400 600 800 1000

e/2,c/cm-1

Figure 4-8: The Fourier transform of the cross correlation function (red line) be-
tween the local and collective electric field fluctuations reveals the phase relationship
between these variables as a function of frequency. When HOD and its proximal
hydrogen bonding partner approach each other and the local field strength increases,
the medium polarizes in the opposite direction to minimize the electrostatic energy.
The low frequency peak, however, is in phase with the local electric field fluctuations.
Because this part of the spectral density corresponds to the exponential decay of the
electric field fluctuations, the change in sign from negative to positive indicates that
the long time exponential decay of correlations in Figure 4-7 is cooperative. The
dotted black line is the baseline, included for contrast.
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The integral in Equation 4.5 is an example that illustrates how averaging over a

dynamical quantity (Ccross(w)) returns a static one (PECEO). Because PEcEo is negative,

the local and collective electric fields are anti-correlated, but Figure 4-8 shows that

only part of the spectral density is negative. The frequency dependence in Figure

4-8 reveals that the collective field opposes changes that increase the field strength

between HOD and its hydrogen bonding partner when the frequency is larger than

a few wavenumbers. The high frequency molecular motions, librations and hydrogen

bond vibrations, polarize against high frequency changes in the local electric field.

Alternatively, the local electric field is shielded from the more cooperative polarization

fluctuations on short time scales. The zero frequency peak in Cross(w) is positive.

It corresponds to the long time exponential decay of Ccross(t), indicating that the

motions that decorrelate EC and E0 at long times are in phase with each other. After

; 200 fs, the TCFs (Eo(t)6E o (0)) and (Ec(t)6Ec(O)) decay exponentially and the

local and collective fields fluctuate in concert with one another. These data appear

to support a dispersion relationship, where shielding between the local and collective

fields is important for frequencies greater than m (200 fs)-1, while lower frequencies

correspond to collective polarization fluctuations with wavelengths longer than the

intermolecular spacing of the first solvation shell ( 3 A). The longer wavelength

fluctuations drive vibrational dephasing in the long time regime (t > 200 fs) and

participate in de-correlating the order parameters on the time scale of ~ 600 fs.
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4.3 Discussion and conclusions

We employed a simple adiabatic strategy combined with time independent perturba-

tion theory to compute vibrational frequencies of HOD in liquid D20 with atomistic

MD simulations. The strategy is accurate, computationally efficient and lends itself to

a straightforward physical interpretation. The predictions of our model compare well

with recent experimental data [13]. Joint probability distributions reveal statistical

relationships between a set of physically motivated order parameters that classify the

liquid environment and WOH. The correlation between wOH and the variables that de-

scribe local molecular geometries in the vicinity of the HOD molecule (q,cos(a), Roo)

are manifestations of the stronger underlying correlation between WOH and the elec-

tric field at the proton. The strong correlation between OH and the electric field

explains the weak connection between frequency and the tetrahedrality of the first

solvation shell, as well as the nearly azimuthal symmetry that Figure 4-1 displays

about the OH axis on the red side of the line. As Fig. 4-6 shows, adding the electric

field contributions from molecules in the first solvation shell does little to improve

upon the correlation between WOH and E0 alone. These observations argue for a

separation of length scales between between the proximal hydrogen bonding partner

and the rest of the molecules in the liquid.

Classical electrostatic forces dominate (over, for example, dispersion forces) in de-

termining the optical spectroscopy of polar liquids. Solvation dynamics experiments,

for example, view the collective response of solvent in response to rapid changes in the

charge distribution of a chromophore. Treating the solute's environment as a linearly
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responding polarizable medium often yields accurate predictions for the dynamics of

solvation energy measured in experiments or computed in simulations [42, 41].

There is mounting evidence that vibrational dynamics in polar solvents are sim-

ilarly governed by electrostatics. Rey and Hynes [37] found that the electrostatic

forces dominated non-Coloumbic forces in their study of vibrational dynamics of the

CN- anion in water. Kwac and Cho [22] have computed vibrational frequencies for

small peptides by solving the Schr6dinger equation for the vibrational coordinate un-

der the influence of the electrostatic potential from the peptide and solvent molecules.

The physical picture we proposed in Ref. [12] and have described in detail in this

paper is much simpler still: to a very good approximation instantaneous vibrational

frequency shifts are directly proportional to the liquid's electric field at a single point

in space (rH) projected onto a single direction (rOH). This connection is a powerful

concept for interpreting and calculating spectral diffusion. Corcelli and Skinner[9], for

example, have recently exploited the strong correlation between vibrational frequency

and electric field at the proton to devise a hybrid QM/MM method for computing

vibrational frequencies.

Previous experimental [21, 49, 7, 24] and simulation [28, 38, 32] work has been

driven by the empirical relationships built by Novak [35], Badger[2], and Rundle[34]

but the spectroscopy of the OH stretch of HOD in liquid D20 is much richer than

previously imagined. IR spectroscopy measures transient electric field fluctuations.

At times prior to - 200 fs, these dynamics characterize fluctuations on short length

scales, where the density fluctuations are short ranged. Any information obtained

from IR spectroscopies about local hydrogen bond interactions between HOD and its
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Figure 4-9: Evolution of time and length scales in water. Initially, the HOD molecule
(center molecule) is hydrogen bonded to three partners. Between 30 and 100 fs, the
molecular motions are small, localized fluctuations in the hydrogen bond network.
After 200fs, corresponding roughly to the correlation time of C,(t), collective fluc-
tuations destroy the structure of the first solvation shell. After 600 fs have passed,
the molecules in the first solvation shell have little memory of their original positions,
and new molecular partners attempt entrance to the first solvation shell.
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hydrogen bonding partner is unreliable after 200 fs because after this time the relax-

ation becomes collective. Figure 4-9 is a chronological "time-elapsed photograph" of

how time and length scales evolve in water over several hundreds of femtoseconds,

and illustrates the drastic changes in the liquid environment between 0 and 600 fs.

At longer times (> 200 fs), there is a cross over to exponential relaxation that

includes both molecular participants and collective density and polarization fluctu-

ations. As Figure 4-8 shows, collective polarization fluctuations shield fast ( 200

fs) distortions of the local electric field. The characteristic shielding motions are

the libration and hydrogen bond stretch of the D2 0 molecules and are out of phase

with the local electric field fluctuations. The long time decay, seen as a zero fre-

quency resonance in the cross correlation spectrum, is in phase with the local electric

field fluctuations. At long times the relaxation originates from large scale cooper-

ative reorganization, not specific molecular motions such as hydrogen bond making

and breaking as some have suggested [28, 49, 7, 50]. Previous pump-probe experi-

ments have operated with time resolution that is longer than the characteristic time

of-200 fs [21, 49, 7, 24], and hence probe the time scale of collective polarization

fluctuations. Only recently have experimentalists performed measurements with suf-

ficiently short time resolution to observe dynamics that occur on molecular length

scales [50, 1, 30, 12, 13].

Our picture of vibrational dephasing in water resonates with Marcus' theory of

solvation dynamics, where by analogy the hydrogen bonding partner is an "inner

shell" participant whose dynamics are buffeted by a polarizing solvent [45]. Our

observations suggest that one may be able to understand the physical origin and
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qualitative features in vibrational dephasing experiments on hydrogen bonded systems

with a highly simplified model. For HOD in liquid D20, the model would consist of

only the hydrogen bonding partner as an essential molecular feature and represent all

other molecules as an appropriate polarizable dielectric. This picture may prove useful

when one is interested in the spectroscopy of complex systems where a mechanistic

description of vibrational dynamics is important and enigmatic, but fully atomistic

simulations are computationally costly. Such systems include large proteins that

contain side chains and backbone atoms hydrogen bonded to the aqueous solution,

as well as vibrational dynamics in mesoscopic but confined environments.
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Chapter 5

Polarizable water models in the

vibrational spectroscopy of water

Molecular dynamics simulations of empirical models have guided our understanding of

how water molecules play their essential roles in chemistry, biology and physics. Using

classical molecular dynamics (MD) simulations, Rahman and Stillinger [15, 14] made

remarkably accurate predictions of bulk thermodynamic, atomic pair correlation func-

tions, and transport properties. Stillinger [24] described the peculiar chemical and

physical properties of water in terms of the microscopic dynamics of the hydrogen

bond network and provided a consistent molecular level description of hydrogen bond-

ing in water. Indeed, it is unlikely that researchers today would have such robust and

refined methods without the notable early successes of MD simulations in water.

The potential energy models inspired by these early studies contain few character-

istically molecular features. Most empirical water potentials replace electron densi-

ties with point charges situated either at atomic or "virtual" sites near the molecule,
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rigid intramolecular bonds take the place of intramolecular vibrations, and a simple

Lennard-Jones potential represents the excluded molecular volume 1. Most experi-

mental data that validate such water potentials are either thermodynamic (surface

tension, specific heats), transport (diffusion and dielectric constants), or structural

quantitites (radial distribution functions). Such quantities are spatial and time aver-

ages over a large number of molecules and are not clean measures of the microscopic

details of a water potential.

Computer simulations use atomistic models to examine molecular chemistry in de-

tail, and are often a surrogate when experiments are unavailable. Molecular dynamics

(MD) studies are seldom concerned with macroscopic behaviors, but instead focus on

microscopic motions that facilitate electron and proton transfer, fold proteins, or par-

ticipate in biological catalysis between an enzyme and its substrate. The potentials

employed are typically parameterized so that they reproduce macroscopic bulk ther-

modynamic quantities and transport coefficients. For such macroscopic quantities,

molecular polarizability appears to play a marginal role, but on molecular length

scales (A), the microscopic details of a molecular potential should be important.

Electrons in real molecular systems are not stationary. Molecular electric field

strengths are high (I 1 ), so even a modest degree of polarizability in the molecule

will generate charge displacements. The simplest measure of the susceptibility for

the electronic coordinates in water comes from the variation of the molecular dipole

moment. Ab-initio MD simulations of liquid water predict that the molecular dipole

moment varies considerably in the liquid [20], which raises questions about the accu-

1Examples of such potentials are SPC, SPC/E, ST2, TIP3P and TIP4P
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racy of fixed charge models on molecular length scales.

The characteristic time scales of intermolecular dynamics in water are faster than

those of almost any other liquid. The fastest motion, the librations or hindered

rotations, have a periodicity of - 60 femtoseconds (fs) [23]. Femtosecond Raman [6]

and electronic solvation dynamics experiments [9] that do have sufficient bandwidth

to observe these fast motions in water usually probe collective motions of the liquid

or view molecular dynamics through a non-native probe molecule. Inelastic neutron

and x-ray scattering trade high spatial resolution for poor temporal resolution.

The hydride stretch frequency is sensitive to the local hydrogen bonding environ-

ment [13, 7] and to polarization fluctuations. By isotopically labeling a small number

of water molecules, femtosecond IR spectroscopy on the OH stretch of HOD in liquid

D2 0 views water's structural evolution on fast time scales with an ostensibly native

and vibrationally distinct probe. MD studies on the vibrational spectroscopy of water

have identified computationally efficient, robust and accurate methods for computing

the frequency of the OH stretch of HOD in D20 based on an adiabatic separation

between the fast vibrational motion and the translations and rotations of the D20

molecules [5, 7, 10, 17, 12]. Our simulations have revealed that the frequency of the

OH stretch measures the electric field strength at the proton, in the direction of the

OH bond [7, 5]. On short time scales (< 200 fs), spectroscopy of the OH stretch

measures distance fluctuations between the HOD molecule and its hydrogen bonding

partner (bonded to the H). On time scales longer than 200 fs, the OH stretch probes

the polarization fluctuations on length scales larger than a molecular diameter. Two

dynamical equilibrium time correlation functions (TCFs) provide the connection be-
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tween experiments and computer simulation. The equilibrium frequency-frequency

correlation function, C(t) characterizes the equilibrium fluctuations of the vibra-

tional energy [9]

C,(t) = ( WOH (t) WOH (0)). (5.1)

Here, (...) is an equilibrium ensemble average, 27r WOH is the transition frequency for

the 11) 10) transition of the OH stretch, and JWOH = WOH(t)- (WOH). Within

several reasonable approximations, one can retrieve this correlation function from a

three pulse photon echo peak shift (3PEPS) measurement [9] . The second TCF is

the second Legendre polynomial of the projection of the transition dipole moment,

Cor(t) = (P2(e(t) e(0))), (5.2)

where e(t) is unit vector of the transition dipole moment at time t. One obtains Cor(t)

by measuring the anisotropy in polarization-selective femtosecond pump-probe spec-

troscopy [11]. Although simple point charge type models show qualitatively similar

features in Cw,(t) and Cor(t) the experiments measure, the results from simulation

are not quantitatively accurate. For example, SPC/E [4] underestimates the variance

of the frequency distribution and time constant for the long time decay in C(t).

Pair distribution functions, thermodynamic and transport quantities in polariz-

able and nonpolarizable models are similar. Such quantities are measures of how

large ensembles of molecules behave, and are not particularly sensitive to micro-

scopic dynamics. Vibrational spectroscopy on the other hand, measures response
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functions. In perturbative limits, response functions can be expressed in terms of

TCFs. Fecko et al.[7] have recently performed nonlinear vibrational spectroscopies

with sufficiently fast time resolution to measure water's fastest intermolecular mo-

tions. Because WOH is sensitive to the electric field strengths, these measurements

provide a rigorous point of comparison for predictions from polarizable models on

microscopic length scales where the effects of molecular polarizability should be most

pronounced. For example, Xu and co-workers [25] showed that the largest discrepen-

cies between polarizable and fixed charge models appear in time correlation functions.

Xu et al.[25] showed that including molecular polarizability in empirical models of

water introduces a slight prejudice on the local environment when hydrogen bonds

change partners and also strengthens hydrogen bonds between molecules, lengthening

the time pairs of molecules spend hydrogen bonded to one another. The picture of

hydrogen bonding becomes qualitatively different when one allows the molecules to

polarize.

We examined the role of molecular polarizability in vibrational spectroscopy with

computer simulations of fluctuating charge (fq) models for water. In Section 5.1,

we describe the protocol developed to compute vibrational spectrosopies in the fq

and fixed charge models. In Section 5.2, we compare recent experimental results for

Cw(t), Cor(t), and IR absorption spectrum to simulations two qualitatively different

fixed charge and fq water models.
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5.1 Methods

In classical molecular dynamics, one imagines that the motions of the electrons are

fast relative to the nuclear degrees of freedom and that the density of molecules is

sufficiently low that neighboring molecules do not begin to share electron densities.

The electronic and vibrational energies are high with respect to kBT, so one can

"average" them out, replacing high energy vibrations with stiff bonds and fast electron

densities with appropriate point charges or dipoles. In these limits, classical mechanics

provides a reasonable description for the translations and rotations of molecules,

offering a computationally feasible method for studying the dynamics of complex

systems in the condensed phase.

In real molecular systems, particularly those with large or polarizable atoms, the

electronic degrees of freedom are not stationary on atomic sites. In fact, the molecular

dipole moment of water varies considerably in the liquid [20], with a full width at half

maximum (FWHM) of - 1 Debye. Fixed charge models average these fluctuations

away and replace them with an appropriate "mean field" value, evidently unable to

model energetic or dynamic effects of distorted or fluctuating electron densities. To

address this issue, Rick et al.[18] have developed fq models and methods for molecular

dynamics. This approach allows the electronic degrees of freedom to deform during

the course of the simulation but introduces only a modest additional computational

burden in most cases [18], providing an attractive alternative to ab-initio molecular

dynamics when molecular polarizability is important.

In the fq models, one specifies the molecular parameter set by defining the linear
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response matrix, J that describes how the charges and dipoles on the molecule, q,

respond to an external field, v [21].

q = -J-1v. (5.3)

In principle, one can solve the linear Equation 5.3 at each step in the simulation. In

practice, it is more efficient to employ the extended Lagrangian method to solve for

the electronic degrees of freedom [21].

Simulation Details

We have performed MD simulations of the SPC/E [4], SPCfq [18], TIP5P [19], and

TIP5Pfq [22] models for liquid water. The simple point charge model of water

(SPC/E) is an empirical potential energy where each atom has a fixed point charge.

The OH bonds are 1 Ain length and the angle between the OH bonds is 109.47 °. The

SPCfq model uses the same molecular geometry as SPC/E but allows the charges at

the atomic sites to vary in response to the fluctuations in the electric field surrounding

the molecule. The TIP5P model is a five-site potential for liquid water. The geome-

try of the molecule is set to the experimentally determined geometry, where the OH

bond lengths are 0.9572 Aand angle between OH bonds is 104.52°. Each hydrogen

atom carries a positive charge but the compensating negative charges are not on the

oxygen atom but rather at positions to mimic the lone pairs of oxygen. The original

TIP5P model was designed for simulations that do not include long range electro-

statics (i.e. Ewald sums). We have simulated the Rick's [19] re-parameterized version
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of TIP5P that has been designed for Ewald sums. The polarizable counterpart to

TIP5P, TIP5Pfq has been parameterized from ab-initio calculations and comes in

two flavors, POL5-TZ and POL5-QZ [22]. We have simulated the POL5-TZ model,

or POL5 model for short. In the POL5 model there is an additional polarizable dipole

on the oxygen atom that points out of the plane of the molecule.

The thermodynamic state point of liquid D2 0 at ambient conditions corresponds

to a density of 1.104 cm. We ran 17 independent realizations of one HOD molecule

dissolved 107 D2 0 molecule for a duration of 500 ps. During the initial equilibra-

tion period (10 ps), Nose-Hoover chain thermostats [1] kept each realization of the

simulation at constant temperature (298.15 K). After equilibration, we rescalled the

velocities at 10 ps intervals to ensure that the rescaling interval was an order of mag-

nitude longer than the dynamics of interest. The fluctuations in the total energy were

O(10- 4 ) of the total energy.

In the fq models, the electrostatic potential energy is a function of the values

of q. For the fq potentials, we solved Equation 5.3 at the beginning of the simu-

lation and used the extended Lagrangian method [18] to ensure that the electronic

coordinates remained on the minimum of the electrostatic potential throughout the

duration of the simulation. We assigned the electronic degrees of freedom fictitious

masses, and treated them as dynamical variables that propagate with the imposed

constraint of electroneutrality. The electronic mass was sufficiently small to decouple

the intramolecular electronic and nuclear degrees of freedom, but large enough to

average over transient fluctuations of the electronic coordinates that have negligible

effect on the nuclear dynamics [21]. To compute the long-ranged electrostatics, we
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used the particle-particle particle-mesh approximation to the Ewald sum, P3PME, to

include dipolar terms [26].

5.1.1 Calculating vibrational frequencies

In Chapter 2, we have described a computationally efficient strategy for calculating

the vibrational frequency of an HOD molecule in liquid D2 0 [7, 5]. We follow a similar

approach in this Chapter, but we need to adapt the adiabatic strategy because the

electronic degrees of freedom are faster than the vibration. As before, we partition the

total Hamiltonian, H as the sum of the system (HOD oscillator) bath (translations

and rotations of all molecules), and system-bath coupling.

H= H.(P, Q) + Hb(Q, q, rN) + Hb(pN, rN , q). (5.4)

H5 (P,Q) is the Hamiltonian of the OH stretch for HOD in the gas phase, which we

take from a spectroscopic gas phase Hamiltonian [16]; P and Q are the momentum

and position operators of the OH oscillator; Hb(pN, rN) is the bath Hamiltonian,

that describes all of the translations and rotations of the molecules, and r are the

atomic cartesian coordinates and p their momenta; Hb(Q, rN) is the system-bath

Hamiltonian that couples the OH oscillator with the classical degrees of freedom. The

potential energy V in Hb is an empirical water potential, TIP5P, POL5, SPC/E,

or SPCfq. The vibrational eigenstates and energies are solutions to the adiabatic
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Schr6dinger Equation,

( HS(P, Q) + H b(Q, q; {r}))jT(r(t))) = 6(r(t))jT(r(t))) (5.5)

The energies in Equation 5.5 are parametric functions of the bath coordinates, r at

time t.

One must be careful in performing the adiabatic separation for the fq models

because the electronic coordinates, q are fast relative to the vibrational motion of

Q. It would be incorrect to follow the previous method to find Hb by expanding

in a Taylor series about Q = 0, [5] without displacing the charges. Instead, we find

Hsb for both the fixed charge and fq models by holding all atomic positions fixed,

translating the H and O atoms that define Q in 0.1 A intervals while leaving the

center of mass for the vibration fixed. Q = Qo + iQ. With all r fixed the total

potential energy is a function of Q, V(Q). However, changing the position of Q alters

the values of q in the electrostatic potential so at each displacement of Q, we must

find the new values of q with the extended Lagrangian method. This ensures that the

electronic degrees of freedom remain on the minimum of the electrostatic potential

at each step in Q. By repeating this process for several values of the displacement,

we find Hb at each Qi,

HSb(Q, q(Q); {r})i = V(Q) - V(Q = 0), (5.6)

where V(Q = 0) is the potential energy at the position of Q prescribed by the
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intermolecular potential. Finally, we fit a third order polynomial to the discretely

sampled Hb to obtain a perturbative expression for Hb,

Hb = FQ + GQ2 + HQ3, (5.7)

and solve Equation 5.7 to second order in time-independent perturbation theory to

obtain the vibrational frequencies for the 1) - 10) transition at 12 fs intervals in

the simulation. While acquiring Hb, we simultaneously obtain the transition dipole

moment, u = o IQ=O, where is the dipole moment of HOD. The experimental data

used for comparison have been described in detail elsewhere [7, 8, 11].

5.2 Results and discussion

When comparing to experiment, the most straightforward quantity to examine is

the IR absorption lineshape. Figure 5-1 shows the predictions from the fq and fixed

charge models in comparison to experiment. The SPC/E potential is a "reference"

water potential. We have shown in Chapter 2 that this potential produces IR line-

shapes and TCFs that compare qualitatively well with experiment. The polarizable

counterpart, to SPC/E on the other hand, SPCfq predicts a lineshape that is in stark

constrast to the experimentally measured one. The origin of this disagreement is in

the distribution of frequencies for this model (Table 5.2). The standard deviation is

; 3 times larger than that estimated from experiment. Clearly, for the IR absorption

line shape predicted with this model is an outlier.
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Figure 5-1: Absorption spectra of HOD in D2 0 and comparison to experiment for
polarizable and fixed charge models. The absorption spectrum is slightly asymmetric
with a steeper tail on the blue side than on the red. The width (FWHM) of the
experimental spectrum is 245 cm- '. (A) Computed absorption spectra of SPCE and
SPCfq models of water. The SPCfq model predicts a spectral width in stark contrast
with experiment (FWHM of 670 cm-'). The SPC/E model has a FWHM of
- 200 cm- '. (B) The spectrum of the TIP5P model slightly underestimates the
width ( 190 cm -1 FWHM), but the POL5 model overestimates it by about the
same amount ( 300 cm - ' FWHM). Molecular polarizability increases the width of
the absorption line shapes dramatically, but the notable disagreement of SPCfq with
experiment implies that it is a poor model of molecular polarizability.
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The TIP5P potential gives an IR absorption lineshape that is narrower than the

experimental spectrum by t 50 cm - ' (FWHM) and shifted 140 cm - ' to the

blue. Its polarizable counterpart, POL5, is 60 cm- ' wider than the experimental

spectrum but peaks at nearly the same position. Including molecular polarizability

improves modestly upon the predictions from the TIP5P model for the IR absorption

line shape.

The IR experiments are sensitive to the dynamics of molecular environments. At

early times, these dynamics should be sensitive to the microscopic details of the poten-

tial energy, including the effects of polarizability. To make a quantitative comparison

between the TCFs from simulation and those extracted from the experiment, we fit

both TCFs with a bi-exponential function that models the decay of the fast and slow

parts.

CW(t) = Ae- t/ 'fast + Be-t/rsow, (5.8)

Cor(t) = Ae- t/T + Be-t/' r'. (5.9)

Table 5.2 summarizes the results of the comparison between predictions from the

water models and the experiments.

Figure 5-2 displays the normalized C(t) for the comparable fq and polarizable

models. These data exhibit some general trends. Including polarizability increases

the long time decay of C(t). Our results for the long time decay of C(t) are

consistent with the findings of Xu et al., who examined the decay of the hydro-

gen bonding characteristic function in water for polarizable and fixed charge models.
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Figure 5-2: Frequency-Frequency correlation functions for the OH stretch of HOD in
liquid D2 0 for various polarizable and fixed charge models (A) Normalized Cw(t)
for SPC/E (black) and SPCfq (red). SPCfq does not predict a beat. (B) Normalized
C,,(t) for TIP5P (black) and POL5 (red) models. The beat frequency in these
models is slightly closer to that measured from the IR3PEPS experiment. The long
time decay for both polarizable models is similar, with a time constant of - 1 ps,
and for both fixed charge models is - 600 fs. The short time exponential decay time
for all models is 30 fs.

132

I I I . I I I I I I . I I I

A - SPC/EI- SPCfq

I~~~~~~~~~~~~~~~~~~~~Ij Experiment
.1

a.z

I i l I lI I I I I 



Table 5.1: Summary of the results for fq and fixed charge models for TCFs and
comparison to the experiment. To maintain consistency, the experimental values
come from the bi-exponential fit of Equation 5.8, so that the values for the fast and
slow time scales are different than those reported in Chapter 4 and Ref. [8] because the
functional form is different. The standard deviation (OH = V/C,,(t = 0)) appears

27r
in the last column.

They found that the decay time of the long time component increased in the po-

larizable water models. While we disagree about the meaning of the decay of the

characteristic function, these results are consistent with the interpretation that the

long time decay of Cw(t) corresponds to a cooperative process, where the micro-

scopic details of the potential energy are unimportant. These results suggest that on

long length scales, molecular polarizability makes fluctuations more sluggish but the

specific details about the potential are not important on this time scale.

We have also calculated Cor(t) for the various water models. For the fixed charge

models, Cor(t) is the second Legendre polynomial reorientational correlation function

for the the OH bond, but for the fq models we computed the transition dipole moment

directly from the derivative of the molecular dipole moment with respect to the OH

stretch. Figure 5-3 shows the results. In general, the shapes of these functions look the

same. The underdamped oscillations at early times are from the librational motions

of water molecules. Interestingly, in SPCfq these motions are damped away, leaving

only a weak shoulder. TIP5P and POL5 show the opposite trend; the beats appear
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Experiment 35 1450 3.0 245 126
SPC/E 40 700 2.4 204 103
SPCfq 37 1360 3.2 670 411
TIP5P 30 650 2.0 190 190
POL5 43 1130 3.7 305 140
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Figure 5-3: Reorientational motion in fixed charge and fq models. (A) SPC/E (black)
and SPCfq (red) models of water. The SPC/E model shows underdamped beats from
the librations of individual molecules while the SPCfq model does not. (B) TIP5P
(black) and POL5 (red) show the opposite trend; the beats appear in the fq model
but not in the fixed charge one. The long time decays are all similar, but are longer
in the fq models than in the fixed charge models.
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in the fq model but not in the fixed charge one. Including molecular polarizability

makes the long time decay longer in all of these models, but all of the models predict

a decay time within - 30 % of the experimental value.

Unlike comparable fixed charge models (SPC,SPC/E,TIP4P), the TIP5P model of

water accurately predicts the anomalous density maximum above the freezing point

at 4° C [19]. It also gives reasonable results for the vibrational spectroscopy

of water. The predictions from the POL5 model are an obvious improvement over

those from TIP5P. Including molecular polarizability shifts the mean frequency down

to a more reasonable value. Because the mean frequency is the average electric

field at the proton, including molecular polarizability in the water model yields a

more accurate representation of the molecular electric field strengths. Likewise, the

standard deviation uwOH has improved by adding molecular polarizability. Taken as

a whole, however, POL5 only marginally gives better estimates for the experimental

data than SPC/E. Unfortunately, the computational cost of POL5 is much higher than

in any of the other models studied. There are situations where one could imagine

it would be profitable to use the POL5 model (for example in the cold liquid near

the freezing point), but one should employ the POL5 model only when quantitative

detail is of the essence, and molecular polarizability is known or anticipated to be an

important factor.

Remarkably, the long time decays for Cw(t) in all of the polarizable models are

similar, 1 ps, even though the short time dynamics for Cw(t) in these models

can be very different. In the SPCfq model, for example, the beat in C(t) is ab-

sent. The work of Balucani [2, 3] explains that the physical origin of the beat is the
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Figure 5-4: Center of mass velocity autocorrelation function for fixed charge and fq
models examined in the text. (A) SPC/E (black) and SPCfq (red) models of water.
The oscillations of Roo appear at the beat frequency in Cw(t) for these models also
appear in Cvv(t). The blue arrow illustrates that the beat absent in Cw(t) from
SPCfq is also absent in CW(t). (B) C,(t) for TIP5P (black) and POL5 (red). In
both of these models, the beat frequency is slightly higher than in SPC/E, mirroring
the same behavior for the beat in C(t).
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competition between the attractive electrostatic forces of hydrogen bonding and the

repulsive forces of neighboring oxygen atoms participating in a hydrogen bond. When

two molecules approach each other, the dipole between them increases in the SPCfq

model leading to an increased attraction, but the repulsion force is imbalanced. The

difference in the depth of the Lennard-Jones potential for SPCfq is nearly twice the

size as that in comparable fixed charge models [18].

We have examined the correlation function of Roo independently to confirm that

SPCfq does not properly capture this molecular motion. In SPCfq, both the beat in

Roo and the librational beats in Cor(t) are overdamped. The shortcomings of the

SPCfq model are evident in both the line shape and early time behavior of Cw(t).

The source of the problem most likely lies in the current parameter set for SPCfq.

The polarizability tensor element in the plane of the molecule but orthogonal to the

C2 axis of H2 0 is larger than the gas phase by almost a factor of two (2.26/A3 in for

SPCfq versus the gas phase value of 1.44/A3 ). We have examined the velocity-velocity

TCFs for all of the fixed charge and polarizable models as well (Figure 5-4). As one

would expect from the results for CW,(t), the dynamics of SPCfq at early times are

divergent from the predictions of the other models. This model shows no improvement

over predictions from SPC/E. On the contrary, the effects of molecular polarizability

in this model are highly exaggerated and lead to larger discrepencies between the

experimental data. The parameterization for SPCfq should be re-examined to better

balance the induced attractions from the polarizable interactions and the empirical

repulsions.
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Chapter 6

Hydrogen bond dynamics in water

There is extensive evidence that liquid water maintains the tetrahedral geometry of

ice on molecular length scales, but lacks about 10 % of the hydrogen bonds formed

in a perfect crystal. These broken hydrogen bonds could exist either as a species

in stable equilibrium with intact hydrogen bonds, or as frequent fluctuations that

encourage hydrogen bonds to change partners. A water molecule at ambient condi-

tions spends about half its time engaged in only three out of four possible hydrogen

bonds. Support for this estimate comes broadly, from latent heats of melting and

vaporization, from x-ray and neutron scattering [26], and in very detailed form from

MD simulations [29]. It is thus possible to conceive of a "broken hydrogen bond" as

a distinct molecular state, interconverting with the hydrogen bonded state (HB) at a

rate determined by the transition state separating them. In this scenario, hydrogen

bonds change partners in a stepwise mechanism. Alternatively, non-hydrogen bonded

species (NHB) could be an intrinsically unstable and transient state that appears dur-

ing natural fluctuations about a hydrogen bond or when molecules trade hydrogen
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bonding partners. This mechanism is concerted, where molecules trade hydrogen

bonding partners only when a new bonding partner becomes available. Indeed, these

possibilities, illustrated in Figure 6-1, immediately suggest a role for water in me-

diating the dynamics of biological, chemical, and physical change in solution. Such

questions remain unresolved because of the experimental challenges of isolating sig-

natures of NHB from HB on the time scale of intermolecular motions in water (,

100 fs).

Ultrafast infrared (IR) spectroscopy of the OH stretching vibration has opened

a promising new route for characterizing broken hydrogen bonds [15, 12, 33, 28, 35,

9, 27]. Chapter 4 showed that in a dilute solution of HOD in D2 0, the proton is

sensitive to hydrogen bonding and dielectric fluctuations [17, 22, 9]. As a result, the

average OH frequency is several hundred wavenumbers lower than in the gas phase,

and the line shape is broad (245 cm-'). The red-shift from the gas phase is roughly

proportional to the hydrogen bonding distance between donor and acceptor (Chapter

4). Thus, the high-frequency (blue) side of the IR spectrum reflects molecules that

interact less strongly with their neighbors, including NHBs [17, 16]. Femtosecond

spectroscopies that probe the time evolution of the OH stretch frequency, wOH(t),

for selected groups of molecules might provide a glimpse of hydrogen bonds breaking

and forming.

In Chapter 4, we compared C,(t) from simulation to that extracted from a

IR3PEPS experiment. Microscopic information about hydrogen bonding is most ap-

parent at short times (< 200 fs) in C,, (t), but on time scales longer than this, spectral

relaxation of WOH was insensitive to specific hydrogen bonding dynamics. As a result,
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Figure 6-1: Two different pathways for hydrogen bond rearrangement in water. (A)
depicts the stepwise mechanism where NHBs are in stable chemical equilibrium with
HBs. Hydrogen bonds rearrange by first entering into the NHB state and then by
re-crosssing the barrier to form HBs with new partners. (B) shows the concerted
mechanism, where NHBs are an intrinsically unstable chemical species. They appear
as distortions in the hydrogen bond network that are natural fluctuations at equilib-
rium or configurations that molecules visit when changing hydrogen bond partners.
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Figure 6-2: Hydrogen bonding relationships of HOD In D2 0 from MID simulations.
(A) The free energy as a function of WOH, defined by 3F( won) = -In(P(w woH)), sep-
arated into hydrogen bonded (HB) and non hydrogen bonded (NHB) contributions.
We used standard geometrical criteria (see text) to discriminate HB from NHB. (B)
The frequency distribution, P(wo[l) is a timne-average from several ergodic trajectories
of won. The dashed line is the cumulative probability of selecting an NHB molecule
as a function of woH. The probability of selecting NHB reaches 66 % at OH ~ 3600
cm -1 . The inset is a diagram of the geometrical criterion used to separate HBs from
NHBs.
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Cw(t) could not provide a detailed picture of how hydrogen bonds rearrange in water.

For this task, we turn to 2D IR experiments. Conceptually, the 2D IR experiment

spectrally labels molecules in different hydrogen bonding environments and observes

their evolution during the waiting time, T. It is a more informative technique that IR

3PEPS because the spectroscopic measure is not a two-point correlation function, but

rather a detailed map of how WOH evolves as a function of T. To translate dynamics

of WOH into motions of the hydrogen bond, we marry the concepts and methods of

nonlinear spectroscopy with those of reaction dynamics.

In Section 6.1 I develop the language of reaction dynamics in complex systems

and apply it to describe hydrogen bond dynamics in water. In Section 6.2 I show how

notions from reaction dynamics can be applied directly to spectroscopic observables.

Section 6.3 is a discussion of linear response relationships for frequency fluctuations

and shows that for a reactive system, including HOD in liquid D20, coupling of the

frequency to a reactive chemical coordinate generates nonlinear frequency dynamics.

The simulation guides our intuition for analyzing the 2D IR experiment, which I do

in 6.6 where I compute 2D IR spectra, compare them to experiment, and interpret

the results.

6.1 The language of reaction dynamics

Reaction dynamics is the art of identifying the few physically relevant microscopic

variables that participate in a complex many-bodied chemical reaction. This enor-

mous reduction in complexity returns a highly simplified description of the chemical
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reaction and provides a physical picture for how the reaction occurs. Hydrogen bond-

ing in water is a chemical reaction, akin to isomerization. Because I will draw on

many concepts from reaction dynamics, it is useful to discuss the general unimolec-

ular chemical reaction in detail before confining attention to hydrogen bonding in

water. Section 6.1.1 describes the phenomenology of reaction kinetics for reactions

in liquids. Section 6.1.2 shows how an comparable phenomenology based on linear

response theory for perturbations in the concentration of a species can be used to

analyze two-state reactive systems with MD simulations. For concreteness, I analyze

the hydrogen bond making and breaking reaction for HOD in liquid D20 using this

methodology [20, 19, 34]. By default, such analysis postulates a stepwise mechanism.

Section 6.1.3 introduces the important concepts of order parameters and reaction co-

ordiantes. For the vibrational spectroscopy of HOD in liquid D20, WOH is an order

parameter that aims to distinguish HBs from NHBs (Figure 6-2). In Section 6.1.5 I

review a technique that uses projection operators [36] to generate a Langevin Equa-

tion for the reaction coordinate in a reactive chemical system. Section 6.1.4 describes

how notions of stability in nonlinear dynamical systems typically used to locate the

transition state [7, 3] can also identify ambiguous chemical species (NHBs).

6.1.1 The anatomy of a chemical reaction

In a kinetics experiment in the laboratory, one measures the concentrations of reac-

tants and products as a function of time during the progress of a chemical reaction.

The chemical equation for the unimolecular (two-state) reaction is A = B, where A
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Figure 6-3: Free energies and phenemenology for a two-state chemical reaction. The
reaction coordinate is a progress variable for the reaction. The chemical states A
(reactants) and B (products) are minima of of the free energy along the reaction
coordinate. The blue line shows the free energy difference between reactant and
product states (Equation 6.2). The maximum of the free energy along the reaction
coordinate is the transition state. EACt is the Arrhenius activation energy. kAB is the
rate for the forward reaction.
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represents the reactants and B the products. The concentrations of A and B (CA and

CB) follow the familiar first order rate equations,

dCA(t) = kABCA(t) + kBACB(t), (6.1)
dt

dCB(t) kBACA(t) - kBACB(t),
dt

where kAB is the reaction rate for going from A to B and kBA is the reaction rate for

the reverse reaction. The reversible work needed to convert A to B is the free energy

difference between reactant and product states. In terms of the ratio of populations

between A and B at thermodynamic equilibrium,

e-S(FA-FB) - CA 1
GB k ' (6.2)
CB keq

where kq is the equilibrium constant for the forward reaction. The steady state

condition from Equation 6.1 can also be used to express the ratio of concentrations.

CA kBA (6.3)

CB kAB

Arrhenius noted that the log of the reaction rate vs. inverse temperature was a

straight line. His equation for the rate constant is another phenomenological expres-

sion that describes the temperature dependence of the reaction rate

EActln(kAB(T)) = ln(A) - RT' (6.4)
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where R is the ideal gas constant, A is the Arrhenius prefactor, T the temperature,

and EACt is the "activation energy." EAct is the slope in the plot of ln(kAB(T)) vs.

1
RT'

From kinetics experiments, one constructs a diagram that details the anatomy of

the chemical reaction. Figure 6-3 is the phenomenological picture of a unimolecular

chemical reaction. It has three key features; the reaction coordinate, which describes

the progress of the reaction; the reactant and product states, which are the free en-

ergy minima; and a transition state at the free energy maximum between reactants

and products. The free energy difference between the transition state and the reac-

tant state is the Arrhenius activation energy, EACt. The phenomenological rates and

free energies are useful for describing the rate of conversion between reactants and

products, but they do not explain how reactants transform into products.

6.1.2 Two-state kinetics and linear response theory

In this section we will show how a comparable phenomenology to that developed in

the previous section can be applied to MD simulations. Two putative species, A

and B are constructed and appropriate analysis of time correlation functions gives

the rates of going between A and B. This type of calculation is called a reactive flux

calculation. In water, the reactants (A) are HB and the products (B) are NHB defined

by the conventional geometric criteria, and the rates are the making and breaking

rates. The inferred rates are only sensible if both HB and NHB are stable chemical

species. In other words, the reactive flux calculation assumes a two-state chemical
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model.

The reactive flux calculation relates the changes in concentration to fluctuations

of concentrations at equilibrium. Conversely, if one believes the geometric criteria

distinguish between HB and NHB, one can locate the transition state and discern

how molecules make and break hydrogen bonds in the stepwise mechanism [5]. Here

I outline the framework of the reactive flux calculation and show that rates obtained

from it imply a stepwise mechanism for hydrogen bond dynamics in water.

If we focus on the hydrogen bonding state of the HOD molecule and ignore the

mutual diffusion of HOD and the hydrogen bonding partner, we can consider the

HOD molecule and its hydrogen bonding partner to be members of a closed system.

Over the distances between molecules in the first solvation shell, the sum of the

concentration of NHB and HB is constant. If NHB are a stable chemical species,

one can expect the concentrations of HB and NHB to satisfy the first order kinetic

equations,

d CHB
= kbreakCHB(t) + kformCNHB(t), (6.5)dt

d CNHB
dt = kbreakCHB(t) - kformCNHB(t).dt

The hydrogen bond breaking (making) rate, kbre is the probability per unit time

of breaking (forming) an intact hydrogen bond, and CHB is the number of hydrogen

bonded molecules per unit volume. Now imagine introducing a perturbation that

changes the concentration of NHB (i.e. CHB(t) -+ CHB(t) + CHB(t)). Because
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Figure 6-4: Schematic of two-state kinetics for hydrogen bond dynamics in water.
This model is implicit in most studies of hydrogen bond dynamics. The purple tra-
jectory re-crosses the barrier after approaching the transition state on the time scale
T-mol. The red trajectory passes through the transition state and commits to NHB
on a longer time scale. The characteristic function h(t) = 1 when the molecule is
engaged in a hydrogen bond and zero otherwise.
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d(CHBtCNHB) ~ 0, the perturbation also obeys first order kineticsdt

d CHB
dt = (-kbrea - kform)6CHB(t). (6.6)

The solution to 6.6 is

6 CHB(t) = CHB(O)e- "Trznt, (6.7)

1

Trxn -- kbreak + kform' (6.8)

equil = (CHB) = kform (69)
(CNHB) kbreak (6.9)

where ,equj is the equilibrium constant, and Trxn is the inverse of the reaction time.

Based on this phenomenology, a comparable picture to Figure 6-3 can be drawn for

the hydrogen bonding reaction in water (Figure 6-4).

To make a connection to Equation 6.6, imagine introducing a biasing force to the

Hamiltonian that changes the concentration of HB. The Hamiltonian describing the

perturbed distribution is

7 = -Ho - g(t). (6.10)

7Ho is is the Hamiltonian of the unperturbed system, the characteristic function g is 1

in NHB and 0 in HB, e is the auxiliary field that perturbs the concentration. Classical

linear response theory [36] relates the correlation function of g to the concentration

of HB.

6CHB(t) = CHB(0) (6g(t)6g(O)) (6.11)
(CHB) (CNHB) '

154



1.4

1.2

1

0.8

0.6

0.4

0.2

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

t/fs

Figure 6-5: Trajectory of the hydrogen bonding characteristic function from MD
simulation. In the two-state model, frequent fluctuations of h(t) occur on Tmol ' 100
fs, while the reaction time, Trxn indicative of barrier crossing is much longer (, 650
fs).

Comparing this to Equation 6.7, we see that Trxn is the exponential decay time of the

correlation function for (g(t)6g(0)). This function will not decay exponentially until

after microscopic molecular motions have relaxed on a time, Tmol. Loss of correlation

prior to T-mol is the result of fast re-crossings over the transition state.

Detailed balance allows one to obtain either the making or breaking rate from

the ratio of populations of NHB or HB and the computed rxn. Conventional studies

of hydrogen bond kinetics in water define the related characteristic function, h(t) =
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Figure 6-6: Reactive flux calculation for hydrogen bond breaking in the two-state
model. The top panel is the normalized TCF for the characteristic function h(t).
The bottom panel is the same plot on a log scale. The red line is a bi-exponential fit
that extracts Tran for the two-state model.
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1 - g(t). Recall that by the "geometrical criteria," [20] the characteristic function, h

is

1 if cos(a(t)) > cos(30°) and Roo < 3.5A;
h (t) =

0 otherwise.

Evidently, the exponential decay times for the TCFs of g and h are the same. Figure

6-5 is a diagram of the fluctuations in a trajectory of h(t), and Figure 6-6 is the

TCF (6h2(t)(O)) along with the bi-exponential fit to extract T-rxn. The similarity of the

decay times for C(t) and (6h(t)62h(O)) is notable. In contrast with the conclusions

in Chapter 4, Lawrence and Skinner [16] have concluded that this similarity along

with the relationship in Figure 6-2 implies that C(t) measures hydrogen bond

kinetics at long times. Correlations of (h(t)5h(O)) decay exponentially after Tmol,

but this does not validate the stepwise mechanism for hydrogen bond rearrangements

in water. Rather, the reactive flux calculation assumes a stepwise mechanism, and

computes a rate for the reaction within this framework. If NHBs are not a stable

species, (h(t)h(O)) does not describe barrier crossing but instead characterizes the

size of large fluctuations of HBs.

Notice that (h(t)h(O)) has the behavior one would anticipate for a barrier-crossing

reaction: there is a fast relaxation on the time scale of - 100 fs followed by an

exponential decay. At this stage it is tempting to conclude that hydrogen bonding

in water follows the stepwise mechanism, but recall that the reactive flux framework

assumes this mechanism at the beginning of the calculation. With only the data

from the reactive flux calculation, it is impossible to verify if the reaction is indeed

a stepwise process or if relaxation in the TCF of the population operator is only a
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characteristic of a complicated combination of Roo and cos(a).

6.1.3 Reaction coordinates and order parameters

The gross features of Figure 6-3 do not translate directly into a microscopic inter-

pretation. The statistical mechanics of configurations provides some insight into the

connection between the phenomenology developed in the laboratory and the role of

atoms and molecules in the reaction. The statistical interpretation of the entropy

for example, enumerates the configurations at the transition state. The number of

atomistic configurations at the transition state is Nt = e , where St is the entropy

at the transition state. In "energetically dominated dynamics", the entropy of the

transition state is negligible, and there are only a small number of configurations at

the transition state. In this case, the potential energy guides the dynamics of the

reaction and the transition state occurs at a saddle point in the potential energy

landscape that separates reactants and products. In a process like nucleation or pro-

tein folding there are several statistical degrees of freedom that participate in the

chemical reaction, so there can be many configurations a system can assume when

transforming between reactants and products. Like the transition state, the number

of molecular configurations in the reactant and product states scales exponentially

with the entropy of the reactant and product states. The number of saddle points

minima of the energy landscape scale exponentially with the number of degrees of

freedom. Many of these are unimportant for the dynamics at room temperature. A

language based on the statistics of configurations quickly lends itself to confusion. To
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avoid such confusion, we will adopt the terminology used to describe the statistical

mechanics of trajectories in reactive rare events [3, 7].

The order parameter is a variable that distinguishes between reactant and prod-

uct states. In the simplest case, the order parameter and the reaction are the same

variable. More generally, the order parameter is only related to the reaction coordi-

nate. For example, the interatomic distance of a dissociating diatomic molecule in the

gas phase distinguishes the stable covalently bonded dimer (reactant) from the stable

atomic constituents (products). It is also the reaction coordinate. Most reactions in

liquids are not so simple. The dissociation of table salt in liquid water provides an

example where the reaction coordinate and order parameter are different. Geissler

et al.[131 have found that the interionic separation serves as an order parameter to

distinguish reactant and product states, but it is not the reaction coordinate. The

dissociation mechanism requires a fluctuation in the local water density around the

NaCl pair that allows a water molecule to separate them. Dissociation into Na+

and C1- ions proceeds after six water molecules coordinate around the sodium atom.

Clearly, this solvation coordinate is nearly independent of the interionic distance order

parameter.

Experiments in the condensed phase seldomly measure the reaction coordinate

directly, but rather observe an order parameter characterizing reactant and product

states. As an example, consider an experiment that monitors the fluorescence inten-

sity of a reactant and product as a function of time in a fast mixing experiment. If

the reactant and product fluoresce at different wavelengths, the fluorescence intensity

is proportional to the concentration of the chemical species monitors the course of
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the reaction. For HOD in D2 0 the order parameter is WOH. Figure 6-2 shows that

WOH can, at least marginally, discriminate between HB and HNB molecules.

6.1.4 Reactive trajectories, attractors, and dynamical bot-

tlenecks

The free energy as a function of reaction coordinate, S, depends on the choice of

reaction coordinate.

(-F()) f dre-h(r)(S(r) - s) (6.12)
z'

In Equation 6.12, the chosen reaction coordiante S has a functional dependence on

the phase space coordinates r, and the Dirac function constrains the integral to

values where s = (r). Z is the partition function, and the free energy F(s) should

be understood as the reversible work required to constrain the equilibrium system to

a particular value of S = s. An unfortunate choice of S will lead to unrealistic barrier

heights (compared to the empirically determined EAct) for the transition state in the

postulated reaction coordinate.

Typically, EACt is sufficiently high relative to kBT that there is a separation of

time scales between the dynamics of barrier crossing and the duration of time spent

in either the reactant or product regions. Physically, this corresponds to a rate-

determining step, or dynamical bottleneck that trajectories navigate when moving

between reactant and product basins. Figure 6-7 illustrates the problem encountered

when the free energy maximum in a presumed reaction coordinate does not corre-

160



U-IL

q

Figure 6-7: Order parameters and reaction coordinates in a unimolecular chemical
reaction. q is an order parameter that distinguishes reactants from products. In the
example used in the text, it could be the distance between anion and cation in the
dissociation of table salt. The red "X" denotes the position on this coordinate where
trajectories go through the rate-determining step. If q is a good reaction coordinate
(black), the rate-determining step occurs at the free energy maximum. The purple
curve illustrates the case where q is a poorly chosen reaction coordinate. In this case,
the transition state separating reactants and products is in another coodinate.
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spond to the bottleneck. Because it is often impossible to guess what the reaction

coordinate is in a complex many-bodied system, it is more profitable in computer

simulations to focus on the dynamical bottleneck, that separates products and reac-

tants. Transition path sampling, for example, takes this approach [7, 3]. Either by

performing a long enough simulation or by importance sampling [7, 3], one identifies

a set of reactive trajectories from the simulation. Each trajectory passes through the

dynamical bottleneck. Once these paths are harvested, the reaction coordinate can

be inferred from them.

There are many atomistic degrees of freedom in a liquid and the intermolecular

potential couples many, if not all of these coordinates. As a result, the equations of

motion are nonlinear and trajectories in the system are chaotic. Trajectories with

infintesimally close initial conditions diverge exponentially in phase space. On the

computer, floating point round-off errors of - 0(10-15) cause trajectories to diverge

in phase space so that they are statistically distinct after 10 ps [7].

Physically, we expect that the reactant and product must remain stable to thermal

perturbations. For example, if we perturb the trajectory by instantaneously displac-

ing the momenta of all particles in the system by a small amount, short trajectories

(on the time scale of Tmol) should remain in either the reactant or product state. Fig-

ure 6-8 is a diagram of both the stable chemical species and the dynamical bottleneck

in a chemical reaction. The top panel of Figure 6-8 displays the requirement for sta-

bility. For the purposes of illustration, the ordinate and abscissa are configurational

variables that classify the trajectory, and the black arrows are short trajectories ini-

tiated in the region of reactants or products. The region in trajectory space where
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trajectories of duration Tmol relax back to the reactants or products is called the

basin of attraction for either reactants or products. The second panel illustrates the

dynamical bottleneck. It repels trajectories from the origin in all directions except X

so that only a small fraction of the trajectories successfully pass through the dynam-

ical bottleneck. The ensemble of configurations at the dynamical bottleneck, called

the transition state ensemble [7, 3], constitute the transition state for the reaction.

Likewise, the ensemble of configurations in the basins of attraction comprise the re-

actants and products [7, 3]. These identifications of both the transition state and the

reactants and products in the chemical reaction are based on notions of stability, and

are free from preconceived bias one might have about the reaction coordinate.

Because we assume the system is ergodic, the connection to theromodynamic free

energies and the features labled in Figure 6-3 comes from averaging over trajectories.

In the basins of attraction, for example, the density of trajectories is high, but in

the region of the dynamical bottleneck the density of trajectories is low. A "good"

reaction coordinate, to be defined in detail in Section 6.1.5, has a distribution of

commitors that is sharply peaked at the transition state [7, 3]. Figure 6-9 is a is a

cartoon of trajectories and free energies in a complex system.

6.1.5 Reduced equations of motion

Our discussion of reaction coordinates so far has been physically motivated. We want

to describe the motion of the complex reactive system with as few physically relevant

degrees of freedom as possible, and come up with a good approximation for how all the
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Figure 6-8: Trajectory maps and stability. X and X' are configurational coordinates
that for purposes of illustration classify trajectories. The top panel shows a stable
chemical species. The black arrows are short trajectories (on the time scale of -rxn)
that define the basin of attraction. Trajectories that initiate in the basin of attraction
for reactant or product do not pass through the dynamical bottleneck, but relax back
to reactants or products (red dot) with high probability. The bottom panel is a
cartoon of the dynamical bottleneck (blue dot). The outward arrows show trajectories
relaxing to reactant and product basins, located in the directions specified by the
red arrows. Short trajectories initiated at the dynamical bottleneck with random
momenta commit to reactant or product basins with equal probability. The ensemble
of configurations at the dynamical bottleneck comprise the transition state.
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Figure 6-9: Basins of attraction and dynamical bottlenecks. (A) is a cartoon that
illustrates a several reactive trajectories as a function of the S and S' reaction coordi-
nates. The arrow shows the dynamical bottleneck trajectories pass in going between
reactants and products. The trajectory density is high in the regions of the basins
of attraction, but low in the region of the dynamical bottleneck, leading to the free
energy landscape F (S, S') diagramed in (B). (B) The transition state is the point
at the dynamical bottleneck. In energetically dominated dynamics there are only
a few atomistic degrees of freedom that define the reaction coordinate: the basins
of attraction correspond to collections of minima on the energy landscape and the
transition state occurs at a saddle point.
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other coordinates behave in the reduced space. The projection operator formalism

of Mori and Zwanzig [36] provides a way to "project" out the irrelevant dynamics

from the motion along the reaction coordinate in a reactive chemical system. The

resulting equation is the generalized Langevin equation (GLE) where the extraneous

degrees of freedom appear as random noise. For concreteness, let us describe reactive

trajectories by their motions on the reaction coordinate, S. The total Hamiltonian

for the reactive system is

= 14(P, S)+ ?b(r N,p) + Hsb(rN, S). (6.13)

7-/(P, S) is the Hamiltonian of the pure reactive system, S is the reaction coordinate

and P its conjugate momentum; 7b the Hamiltonian for the "bath", which in this

case is the liquid in the absence of the reacting system; 7Hsb the coupling between the

reactive system and the liquid.

Recall that dynamical variables obey the Liouville equation, and for the reaction

coordinate

PA
A= , (6.14)

S

dA(t) = iLA(t). (6.15)
dt

The formal solution to 6.15 is A(t) = etA(O). While this solution is exact, it is

useless without further manipulation. Because Equation 6.15 is a linear differential
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equation, C is a Strum-Liouville operator whose vector space consists of all dynamical

variables. The Mori-Zwanzig approach [36] uses projection operators in the space of

the dynamic variables to eliminate the explicit functional dependence of the bath co-

ordinates. Following standard procedures, [21, 25] we integrate out the bath variables

by defining the projection operator P, such that

e-,Hb
g(r) -Z , (6.16)

Zb

PB = J dre-X(sb-w(R))g(r)B (6.17)

where dr is shorthand for drNdpN, Zb is the partition function for the bath, and

w(R) is the potential of mean force, e- w(R) - f drg(r)e-I H b. Using the operator

identity
/t

ei (1--P)t = eiCt + dr eiLTiP>ei( 1- P)C(t-T) (6.18)

yields the equations of motion

d S(t) _ P(t)
dt (6.19)dt M

d P(t) _ eitF- tdr (t- r)P(T) + F(t), (6.20)
dt F

here, F(t) is the "random force" e(1'-P)itF, F is the deterministic force, F =

_d(w(S)-,(Ps)) and M is the mass. Because Equation 6.20 is a re-writing of thedS ,anEqainrwrtn

Liouville equation, it is still exact. The memory kernel satisfies the fluctuation dis-

sipation theorem, (t) = { (Y(t)F(0)). The random force is orthogonal to A at all

times, and represents the motion of dynamical variables orthogonal to A.
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When the reaction coordinate is an obvious choice, Equation 6.20 can be solved

analytically by using a good approximation to the statistics of F(t), or equivalently,

modeling the memory function. Kramer's theory solves for mean first passage times

in 6.20 in the overdamped limit [36] and uses a Markovian model for the friction

(~(t) oc 6(t)). Gr6te-Hynes theory is a more detailed treatment that uses a harmonic

approximation for F and solves self-consitently for the friction at the transition state

in the high friction limit. Recently, Shental et al.[25] have developed an even more

detailed treatment that uses a mixed kinetic and mode-coupling theory to model the

memory kernel. Their results agree remarkably well with computer simulations of a

model system at early and late times.

Equation 6.20 does not tell us what the reaction coordinate is, but only how how

trajectories behave on it once it is chosen. If the reaction coordinate is "good", then

trajectories on it yield the same statistics as those in a fully atomistic computer simu-

lation. In the following section we generalize Eq. 6.20 to find a reduced description for

the dynamics of WOH, the order parameter in the vibrational spectroscopy of water.

6.2 Reaction dynamics perspective of vibrational

spectroscopy

We need to generalize equation 6.20 so that it is suitable for vibrational spectroscopy.

Because the reduced equations of motion are in terms of S and P, we need to develop

an analogous Hamiltonian to 6.13 where OH plays the role of the coordinate, S.
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WOH is an order parameter, and to make an analogy with Equation 6.20, we define an

order parameter, x, with the dimensions of length by

x = X(WOH), (6.21)

X(WOH) = mWOH + b. (6.22)

x is a linear function of WOH, specified by the slope (m) and intercept (b). Because x

has units of length, we expect an accompanying conjugate momentum, p to x so that

Hamilton's Equations are satisfied.

dx(t) p (6.23)
dt =M'

where M is the mass of the coordinate. We assume that the primary action of the

other degrees of freedom is to keep the HOD molecule in thermal equilibrium. These

"bath" modes interact with x and p. An simple model Hamiltonian for the system

and the bath is

= 2M + V(x)+ + Pi + qi i + x2) (6.24)2M2 2

the indexed qi and pi are the mass weighted coordinates and momenta of the thermal

bath and -yi measures the strength of the coupling of the frequency to bath mode i.

V(x) is an empirical potential energy. The system remains in thermal equilibrium

with the heat bath. By using Phillip Geissler's "favorite result of Gaussian statistics,"
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1

Tdx eaTXe-½K 'w - e½aT' K - 1'a ,~1 JdxeaT~e~ K2zT =e aTeK-l-a (6.25)(27)N det(Kl1)

the Canonical distribution function of x becomes

e-Ou(x)
P(x) = Z (6.26)z

where Z is the partition function, and U(x) is the potential of mean force, U(x) =

V(x). Indeed, Equation 6.26 immediately suggests a method to compute U(x) from

MD simulation. Solving Hamilton's equations with the Hamiltonian in Equation 6.24

yields the GLE for x and p, analogous to Equation 6.20

dx(t) = p(t)6
dt M (6.27)dt M'

dp(t) _ dU(x) _/ft , p(s)
dp(t) = dU(x) _tods (t- s) ) + F(t), (6.28)

dt = dx 

where the memory kernel and random force have specific definitions in terms of the

bath variables.

~(t) = E (72) cos(wjt). (6.29)

A popular form of Equation 6.29 uses the "density of states," g(w) = Ej 6(w -w)

to express 6.29 as a one sided cosine transform,

¢(t)=] dwg(w) ( 2) cos(wt). (6.30)
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The interpretation of the memory kernel in Equation 6.29 is unchanged. It repre-

sents the motion of all degrees of freedom orthogonal to x. Analogous to the Marko-

vian approximation used in Kramer's theory (Section 6.1.5), if we assume that all

bath modes are spectators and do not influence the dynamics of WOH, the friction is

Markovian.

(t)Markovian = r6(t). (6.31)

In Equation 6.31, r is the friction coefficient.

Simple and complex relaxation dynamics of C,,,,(t)

If the correlation function C,,,,(t) is a single decaying exponential it is a signature

of simple dynamics. One can easily show that the correlation function for (x(t)x(O))

from Equations 6.27 and 6.28 in the limit of a harmonic U(x) and Markovian friction is

a single exponential decay. When r is much larger than the frequency of the harmonic

well the decay will be underdamped, but (x(t)x(O)) still decays exponentially. In the

_rtoverdamped limit, (x(t)x(O)) oc e-Mt.

There are two sources that can give rise to a more complex C, (t); an anharmonic

potential of mean force, U(x) and a non-Markovian friction kernel. A non-Markovian

friction indicates that the bath modes are not merely spectators of the dynamics

in x. Though analogous approximations to the memory kernel can be developed

for Equation 6.29 that were discussed in Section 6.1.5, the physical interpretation is

fuzzy. Though difficult to justify, we hope that the only other significant coordinate

that interacts with WOH is the reaction coordinate, S. If this is the case, by observing
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the dynamics of WOH, we can observe the important features of the potential of mean

force U(S, WOH) and distinguish between the stepwise and concerted mechanisms.

6.3 Reactive dynamics from spectral fluctuations

of HOD in liquid D20

Analogies to transient hole burning experiments provide a route to relate spectral

dynamics measured in an ultrafast experiment to changes in concentrations of HBs

and NHBs. In transient hole burning experiments, One drives the system away from

equilibrium and measures the change in the spectrum as the system returns back to

equilibrium. For a linearly responding system, such a measurement can be related

to the equilibrium frequency fluctuations, Cw,,(t). This relationship provides a con-

venient measure of dynamical nonlinearities in WOH. Section 6.3.1 describes how the

time-dependent Stoke's shift introduced in this section can be used to interpret devia-

tions from dynamic linearity and motivates the development of a model linear system,

called the harmonic reference system. Section 6.3.2 describes spectral fluctuations in

the idealized linear reference system in detail.

Dynamic linear systems in statistical mechanics obey the statistics of Gaussian

fluctuations, while a nonlinear dynamical system does not. Section 6.3.3 uses the

Central Limit Theorem to ellucidate why frequency fluctuations are not Gaussian

for HOD in liquid D2 0. I show that if a spectroscopic measurement is designed to

measure chemical reaction dynamics through frequency fluctuations, these fluctua-

172



tions should not be Gaussian. In Section 6.4.1 I perform numerical simulations the

Generalized Langevin Equation developed for WOH to show that nonlinear WOH dy-

namics are not simply the product of an anharmonic potential of mean force. Indeed,

these dynamics are more involved because they are coupled to the hydrogen bonding

reaction coordinate in a complex way.

6.3.1 Transient hole-burning analogies

We need to formulate a way to analyze the statistics of vibrational frequencies and

connect them to chemical dynamics on the reaction coordinate. A convenient measure

of spectral dynamics is the time-dependent Stoke's shift, S(T). In a hole burning

experiment, the observer saturates part of the absorption spectrum with a pulse

narrower than the absorption line and then measures the first moment of the hole

as a function of the waiting time, T, as the spectrum returns to equilblirium. At

T = 0, the laser burns a hole in the spectrum and there is a sudden perturbation

to the Hamiltonian. Let Hg = (g({r})1-(g({r})) be the expectation value of the

vibrational Hamiltonian taken with respect to the adiabatic vibrational ground state

and He the same quantity but for the first excited state ( = 1) (Chapter 2). The

Hamiltonian as a function of time is,

H(t) = Hg + eO9(t)(He - Hg), (6.32)

where O(t) is the heavy-side step function and e measures the size of the perturbation.

The transition frequency is WOH = H-H. The hole burning experiment constructs
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the time dependent Stokes shift, S(T), defined by

S(T) = WOH(T)- WOH(OO) (6.33)
WOH(0)- WOH(°°)

The quantal degrees of freedom have been averaged out, so classical linear response

relates the time-dependent first moment of the hole, WOH(t) to the natural fluctuations

of WOH at equilibrium [11].

woH(T) = (WOH) + dt'R(t')0(T - t') + O(e2). (6.34)

In Equation 6.34, the response function R(t) is

R(t) = -0(t) d CL(t) (6.35)
dt

Equation 6.35 is called the second fluctuation dissipation theorem in statistical me-

chanics. The first appeared in Section 6.1.5. Using Equations 6.34 and 6.35, the

time-dependent Stoke's shift is

S(T) = (woH(T) woH(0)) + O(E ), (6.36)

((5 WOH)2)

6.3.2 The Harmonic reference system and hole-burning

Sometimes it is instructive to solve a problem in an exact model, where everything

is analytically tractable. The "Harmonic reference system" is such a model. It is
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obtained by replacing U(x) with a Harmonic approximation. The Hamiltonian from

6.24 becomes

Hre 2 2

Href M ++ .MQ2X2 + -Pi2 + 2w (qi + i 2 (6.37)

where Href is the Hamiltonian of the harmonic reference system. Obviously, the

equilibrium distribution function is a Gaussian in x. For this reason, the harmonic

reference system is sometimes called a Gaussian reference system.

Because we are interested in the dynamics of frequencies, let us examine how the

reference system responds to perturbations. Recalling that x is WOH with units of

length (Equation 6.21), we can write the Hamiltonian for the hole-buring experiment

(Equation 6.32) as,

H = Href - EO(t)X. (6.38)

The non-equilibrium distribution function, Pneq(, t) is useful for computing the time-

dependent average of x. Pneq(r, t) obeys the Liouville Equation,

Pneq(r, t) = (iLref + ice) Pneq(r, t), (6.39)
qOt

where Cref is the Liouvillian for the reference system and C, is the Liouvillian for the

perturbation. The formal solution is

Pneq(r, t) = e(i+ref+i4)tPeq(r), (6.40)
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where Peq(r) is the usual Canonical distribution function. Taking the Fourier-Laplace

transform of 6.40 returns

P.eq(r, z) = Pq(r), (6.41)
Z - iref - iE

which can be re-written as the Dyson Equation,

G-(z) = G(z) + G`- (z)VG-1 (z). (6.42)

In Equation 6.42, G-1 (z) is the Fourier-Laplace transform of the propagator eiCt and

V = i is the perturbing operator. Iterate Equation 6.42 to achieve an expansion

for G-1 (z) in terms of e.

Pneq(r, z) = 1 Peq(r) + - i Peq(r) + O(2). (6.43)
Z - iref Z - iLref EZ - iCref

Using the explicit form of the Liouvillian for the reference system, it is straightforward

to show that the series in 6.43 terminates exactly at first order in e. Taking the inverse

Fourier-Laplace transform, and then taking the average of x over the time-dependent

distribution yields
rt

x(t) = (x) + dt'R(t')EO(t - t'), (6.44)

which is the linear response result. Equation 6.44 is a linear relationship between

input ((t- t')) and output ((t) - (x)), and is the definition of a dynamic linear
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system 2. In the harmonic reference system, we have the identity

Sref(t) = (Jx(t)6x(O)) (6.45)

(6x(t)()) -C(t) (6.46)

For HOD in D2 0 (or any system for that matter), the deviations in S(T) from the nor-

malized correlation function are a measure of dynamical nonlinearity. The harmonic

reference system shows that this nonlinearity emerges through the anharmonicities in

the potential of mean force or from nonlinear coupling to bath modes, although this

latter possibility has a more clouded physical interpretation.

6.3.3 Gaussian statistics and linear response

We have seen that a Harmonic reference system generates a Gaussian equilibrium

distribution and that this system obeys linear response exactly. In Chapter 4, we

treated the frequency fluctuations as if they were a Gaussian random variable. We

justified this approximation ex post facto, by showing that it was one approximation in

a series of simplifications that we could make and still have a good agreement between

computer simulation and experiment for the IR3PEPS experiment. The assumption

of Gaussian fluctuations made computing the spectroscopy simple, because with this

approximation, R (3 )(Ti,T, T3) only depends on the two point correlation function,

Cow (t) .

2 The linear relationship is more apparent in Laplace space. Taking Laplace transforms, Equation
6.44 becomes x(z) - (x) = R(z)eO(z). The "transfer function" is R(z)
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Gaining physical insight into the non-Gaussian character of the distribution re-

quires a bit of statistics. Consider a finite time series for the frequency WOH, by dis-

cretizing the time interval, t so that ti = it, i = 1.. . N and J(i = OH(t)- Without'OH= OHt.Wihu

loss of generality, examine the distribution of frequency shifts, i = O -(WOH)

Now introduce some compact notion

6= (6,,..., 5N). (6.47)

Each of the i is a statistical degree of freedom. 6i is the sum of contributions to the

frequency shift from many molecules.

Natoms

i = N tomsE Y i (6.48)
j=l

where Yj is the frequency shift induced on HOD from atom j at time ti. If the number

of atoms inducing a frequency shift is large (here large is relative to the Law of Large

Numbers [24]), the Central Limit Theorem applies. In this limit, the distribution of

the {Y} is irrelevant, and the joint probability distribution for P(3) is a multivariate

Gaussian distribution,

P(6) =P-16- - ) (6.49)27rN/2det(C)1/2eXP( . C 1 ) (6.49)

where C - 1 is the inverse correlation matrix of the time series, and

Ci = ( woH (t) SwoH (tj)) (6.50)
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is the correlation function evaluated at time ti- tj . The distribution of 5 is obtained

from Equation 6.49 by evaluating it for 6 = (1, * , 51), and is obviously Gaussian.

The moment-generating function is the Fourier transform of P(6).

P(k) = JdxP(6)ei' , (6.51)

P(k) = exp(-2k C. k). (6.52)

Derivatives of the moment-generating function yield arbitrary correlations. For ex-

ample,

(|6m) = (- ak Ikm=OP(k) (6.53)

By inspection, all odd correlations of the distribution, (e.g. (6i6j6k)) are zero. Prob-

ability distributions are most conveniently expanded in terms of cumulants [24]. The

logarithm of the moment generating function is the cumulant generating function,

n(k) which terminates exactly at second order,

n(k) = -kT C k. (6.54)
2

Equation 6.54 shows that C is also the matrix of second cumulants.

All cumulants of order higher than two are identically zero in the limiting distri-

bution. This fact greatly simplifies the calculation of R(3) (r1,T, T3) because Wick's

Theorem applies. Wick's Theorem is a combinatorial rule for factorizing cumulants

of arbitrary order [24] that provides an exact resummation of an expansion because

all higher order even moments are combinatorics of the correlation matrix (function).
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Sung and Silbey [30], for example, use an equivalent theorem called the "Linked Di-

agram Theorem" that is a diagrammatic resummation of R(3) (r1 ,T, T3) where the

diagrams are cumulants of the propagator.

Familiar recipes based on Wick's theorem apply to calculating R(3 ) (T1 , T, T3 ) with

the adiabatic scheme developed in Chapter 4. Because the quantal degrees of free-

dom are already averaged out, there is no concern about time ordering or operator

commutation and R(3) (T1 , T, T 3) can be obtained by direct expansion. For example,

the rephasing response function for the (1 - (01 transition is (Chapter 2)

tl+T+t3
Rrephasing(tl, t2, t3) = (exp(i dt' woH(t' )-i i dt' WOH(t'))). (6.55)

J tl+T

In Equation 6.55, the brackets denote the average with respect to the equilibrium

distribution function. The cumulant approximation of Equation 6.55 is obtained

by expanding the argument of the exponential. In the harmonic reference system,

cumulants higher than second order vanish identically, so the result is

Rrephasing(tl, t2, t3)ref = (6.56)

ti tl +T+t3
exp(i( WOH)(t -- ) -- dt OH(t)))

° tx+T

where ... ) denotes the second cumulant of the quantity between the brackets.

Nonlinear frequency dynamics appear as asymmetric line shapes in the 2D IR

spectrum. When R (3)(r-, T,-'3) is not the same as the result obtained by cumu-

lant expansion, it is another indicator, directly measurable by experiment, that the
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dynamics are non-Gaussian and nonlinear. A technical problem emerges when com-

puting the vibrational response functions, R (3)(-i, T, T3) because they do not factor

into simpler functions of the two time correlation function, C"w(t). To compare with

experiment the asymmetries of the line shapes are important and we must compute

expressions like 6.55 by direct averaging.

In replacing the full distribution of P(6) with the limiting Gaussian distribution,

the Central Limit Theorem implied that the specific distribution of all the atoms that

induced the frequency shift was irrelevant. In Chapter 4 we showed that the geometry

of the hydrogen bonding partner has a profound impact on the value of the frequency

shift. The electric field at the proton from the hydrogen bonding partner (E0 ) ac-

counted for the majority of the frequency shift. The statistics of the coordinates

associated with E0 prevent the limiting distribution from being realized. For this rea-

son, the distribution of WOH in Figure 6-2 is not Gaussian. Intuitively, however, we

expect the deviations from the Gaussian approximation to be most significant at short

times, when the OH oscillator has not yet experienced the collective environment of

the liquid.

6.4 Nonlinear dynamics of WOH

The linear response solution for S(T) is independent of the initial selection interval of

WOH. When the dynamics are nonlinear and the frequency fluctuations not Gaussian,

the spectral response will depend upon the initial selection frequency. Figure 6-10

is the result from MD simulation for S(T) computed with a frequency distribution
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beginning on the blue side (Blue > 3600 cm-') and on the red side (wRed < 3300 cm-')

compared to the result for the idealized harmonic reference system. At the beginning

of the simulation, all frequencies within either of these ranges were identified and those

trajectories propagated forward in time to obtain the time dependent distribution

functions,

PRed ( WOH, T) = J dwo P(wo)P( WoH, TI Wo < 3300 cm- '), (6.57)

PBlue(WOH, T) = J dwo P(w o)P( WoH,T L > 3600cm-1), (6.58)

Where the distribution function P(Q, TJ < 3300cm - 1 ) is the conditional proba-2-7rc

bility of having a value of Q = WOH at time T given that WOH was less than 3300

cm - 1 at T = 0. S(T) was calculated from

wOHn(T) = JdWOHWOHPRed(WOHT), (6.59)

OHBue(T) = dwoH WOHPBIue( WOH, T). (6.60)

Indeed, the results of S(T) do depend on the initial probability distribution. The

difference between both curves for S(T) and the result for the harmonic reference

system are most pronounced at early times. This is consistent with the notions

developed in Section 6.3.3 and also in Chapter 4. For T < 200 fs, the HOD molecule

is still strongly interacting with the hydrogen bonding partner and has not yet sampled

the collective liquid environment. When T > 200 fs, more molecules contribute to

the frequency shift and the frequency fluctuations become more Gaussian.
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Because the HOD molecule interacts with the hydrogen bonding partner in a spe-

cific way, we exploit this aspect of the problem with 2D IR spectroscopy to learn

about hydrogen bonding dynamics from frequency shifts. Our arguments about the

behavior of the frequency fluctuations in the limiting distribution described by the

harmonic reference system are quite generic. Any spectroscopy designed to inter-

rogate the dynamics of a chemical reaction should exhibit nonlinear frequency dy-

namics. The strength of coupling between the frequency and the reaction coordinate

determines the extent of nonlinearity. The most popular approach for calculating

nonlinear spectroscopies uses the cumulant approximation to R(3)(r1 , T, r3). This is

an inappropriate approximation when one is interested in the dynamics of reactive

systems, because the cumulant approximation discards all of the information about

the coupling between the frequency and the reaction coordinate.

6.4.1 Brownian motion in the potential of mean force for

WOH

We have seen that S(T) is different on the red and blue sides of the line. We illustrated

that one possibility where nonlinearities can appear is in the potential of mean force,

U(x). Might we be able to explain the nonlinear dynamics of WOH simply by an

anharmonic potential of mean force?

If x evolves according to Brownian Dynamics, the finite difference solution to 6.27

and 6.28 advances x and p separately with a modified Velocity-Verlet algorithm [1]

that acquires an additional stochastic term at each point in time for both x and p to
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represent the dynamics the orthogonal coordinates of the bath induce. Fortunately,

if we assume the bath modes are spectators, their correlations are Markovian, and we

only treat x explicitly. The Velocity-Verlet algorithm is [1]

x(t + 6t) = X (t) + C1 tV(t) + c2(6t) (t) + ax(t) (6.61)M

v(t + t) = ov(t) + (Cl - C2)6t ( +2 F(t+ 6t) + v(t) (6.62)

where F(t) = (x(t)) is the deterministic force, v(t) is the velocity at time t, t isdx(t)

the stepsize, chosen to be small on the time scale of fluctuations judged by the size

of the correlation time I -F, and Gamma is determined from (x(t)x(O)) oc e-rt, and

5x(t) and 6v(t) are random numbers chosen from a bimodal Gaussian distribution in

x and v with a correlation coefficient px,v,

Px,v = t kBT (r 6t)-1(l - e-rat)2. (6.63)

Px,v is the correlation between x and v in phase space. The fluctuations in the two

variables become uncorrelated as the mass of the coordinate M becomes very large.

The coefficients are constants determined by the parameters F and 6t,

Co = e- r t (6.64)

c = (rt)-(1 - co), (6.65)

c2 = (rit)-l(1 - cl). (6.66)

185



The order parameter x was defined by the slope, m, such that x(3600 cm- 1 ) = +1

and x(3300cm- 1 ) = -1. I have chosen units where length and kBT were unity and

time was in fs. F was determined from the (approximate) short time constant of

the decay of C,,(t) (F = 5f) In these units, the mass is M = 4.2809 x 103, and

t = 1.0 fs. To get arbitrary values for U(x), I fit the PMF to a 1 0 th degree polynomial

(Figure 6-11). I ran - 1000 stochastic realizations of 1 ps duration trajectories of x.

Averaging x(T) over the realizations gave x(T) which I used to compute S(T) from

Equation 6.33.

Figure 6-12 shows the results from the Brownian Dynamics simulations. Indeed,

these results are not even qualitatively comparable to those from the fully atomistic

MD simulations. The beat on both the red and blue side is much stronger than in

the MD simulation and occurs at a lower frequency ( is). In the language of200 fs·

reaction dynamics, x is an order parameter, but it is not its own reaction coordinate.

Nonlinearities in WOH cannot be explained from the evolution on an anharmonic

potential of mean force.

6.5 2D IR spectroscopy of HOD in liquid D20

WOH is not its own reaction coordinate, but is coupled to the reaction coordinate for

hydrogen bond breaking (Figure 6-13 A) or switching (Figure 6-13 B). The nature

of this reaction coordinate will depend on which mechanism, stepwise or concerted,

molecules undergo when trading hydrogen bonding partners. Conceptually, one could

distinguish between the stepwise and concerted mechanistic possibilities by observing
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how frequency distributions prepared in different regions of the free energy surfaces

in Figures 6-13 and 6-13 evolve in time. The presence of a dynamical bottleneck

between NHB and HB implies a separation of time scales for fast fluctuations within

basins of attraction and for crossing the barrier between them. If this scenario were

accurate, the persistence time of molecules prepared in the NHB state should exceed

the time scale of intermolecular motions, Tmol. On the other hand, if NHB species

exist only as a transient fluctuation, molecules prepared on the blue side relax to line

center on the time-scale of Tmol. Basic intermolecular motions are librations (60 fs),

hydrogen bond stretching (180 fs) and hydrogen bond bending (550 fs) [23, 10]. A

reliable vibrational probe must remain coherent over these time scales. Our previous

measurement of the time correlation function C~ (t), showed that the coherence time

of WOH is 340 fs, longer than most intermolecular motions [18, 10].

Figures 6-2 and 6-13 show the quantitative connection between the populations of

HB and NHB species as well as the equilibrium distribution of WOH, P(WOH), com-

puted from MD simulation. Figures 6-13 A and B illustrate two possible scenarios

consistent with the computed P( WOH). In Figure 6-13 A, a free energy barrier sepa-

rates a metastable NHB state from the HB state [3]. 2D IR experiments are designed

to distinguish spectral fluctuations of HB and NHB. If NHBs form a separate chemi-

cal species, they must be stable to thermal fluctuations so that WOH characteristic of

NHBs remain in the blue region of the spectrum for times longer than characteristic

intermolecular fluctuations, TmoI.

2D IR spectroscopy probes the stability of NHB species by measuring the time-

development of OH oscillators that initiate from HB and NHB environments. Analo-
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Figure 6-13: Free energy landscapes as a function of WOH and the hydrogen bond
breaking (A) or switching reaction coordinates (B) corresponding to the stepwise
and concerted pathways, respectively. 2D IR. spectroscopy monitors trajectories of
wOH (yellow linlies). If a disordered liquid environment stabilizes NHBs ((A)), an
initially HB molecule enters NHB and resides there before thermal agitation pushes
it back over the barrier and into a hydrogen bond with another partner. In (B), NHB
is not a stasble species but a transition state that trajectories pass through as they
pass through as they switch hydrogen bonding partners. The top panel is the free
energy as a function of WOH, which is identical for either mechanistic scenario.
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gous to the correlation spectroscopy (COSY) experiment in NMR, 2D IR spectroscopy

is a Fourier transform technique that uses an excitation sequence of femtosecond IR

pulses with variable time delays. A 2D IR correlation spectrum, displayed as a func-

tion of two frequency axes ( 1 and cv3 ), is related to the conditional probability,

P(W3, TIwl), that given an initial excitation frequency w1, the target frequency w3 is

observed after waiting a time T. The 2D IR line shape has both a positive peak from

the fundamental transition (1) +- 10)), and a negative peak from (2) ,-1)) induced

absorption.

More specifically, 2D IR spectroscopy measures the 2D line shape as a function

of the waiting time, T. The contours of the 2D IR spectrum change as T increases

because the frequencies shift as molecular environments evolve [14]. A distribution of

absorption frequencies that is static during the T interval yields a diagonally elongated

line shape (Fig. 6-14 A). When environments interconvert on a time scale much faster

than T, the line shape for each resonance is symmetric with respect to reflection across

the w1 and W3 axes (Fig. 6-14 B) [31].

C,(t) shows both fast ( 50 fs) and slow dynamics ( 1.4 ps) [28, 35, 9, 2]. This

system lies between the fast and slow limits Figs. 6-14 and B describe. The duration of

the pulses determine the instrument response but not necessarily the time resolution

of the measurement. Our pulses were fast enough (45 fs FWHM) to resolve the fastest

spectral relaxations. Even so, the time resolution for the 2D IR experiment is not

dictated by pulse length but by the time scales of spectral fluctuations. A finite time

period AT is required to select a frequency resolution of width A\w 2. Ar defines

the measurement time. The microscopic dynamics blur the transition frequencies
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Figure 6-14: Cartoon of the 2D IR experiment in the fast and slow modulation
limits. The dotted black line in both figures is the line of zero amplitude, or nodal
line. The solid black line is the FTIR spectrum, which is nearly identical in either
case. (A) is the limit where the frequency fluctuations are static on the time scale
of the measurement, the frequencies in W3 will remain near where they were prepared
initially along w1. The result is a line shape that is symmetric and elongated along
the diagonal. The node between the fundamental and overtone peaks is parallel to the
diagonal. In case (B), the fluctuations are fast on the time scale of the measurement.
Frequencies labeled in wl migrate to the equilibrium distribution of W3 , yielding a
round line shape.
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during AXT so that the observation loses dynamic information over this interval. The

shortest measurable time interval in a 2D IR experiment of the OH stretch of HOD in

D2O is 150 fs. This time is faster than all molecular motions except for librations.

Figure 6-15 A displays experimentally measured 2D IR spectra of the OH stretch

of HOD in D20 for a variety of waiting times. Even at early waiting times (T

= 60 and 100 fs) that are smaller than typical intermolecular motions the spectra

show discernible differences between the spectral shapes on the red and blue sides.

Earlier waiting times are not shown because distortions in the signal arise from the

nonresonant response of the D20 when all pulses overlap. The line shape is broader

towards the blue side of the line (c > 3500 cm -') along the w 3 and anti-diagonal

axes than on the red side of the line (L < 3300 cm - '). Figure 6-15 C highlights

the difference in the anti-diagonal widths with a plot of these slices from the red

and blue side. The spectrum at T = 60 fs shows that even at small waiting times,

frequencies beginning on the blue side have moved nearly back to band center. As

T increases, both the red and blue sides of the line shape broaden as the frequencies

travel back towards the center of the OH stretching band. The slope of the nodal

line between the fundamental and overtone peaks during the T interval measures

vibrational dephasing. The slope as a function of T agrees well with a calculation

using our previously measured correlation function, C(t) (Fig. 6-15 D) [9].

MD simulations allow us to examine the microscopic origins of the 2D IR spectra

in mechanistic detail [16, 17, 22, 9]. The simulation strategies we used to compute

Cw(t) of an atomistic model in Chapter 4 [9] apply straightforwardly to calculations

of 2D IR correlation spectra [8].
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Figure 6-15: Comparison of experiment and simulation for the 2D IR spectra of HOD
in liquid D20 at a variety of waiting times. (A,B) 2D IR correlation spectra from
experiments (20) compared to the 2D lineshape calculated from MD simulation for a
variety of waiting times, T. The solid black line designates the diagonal axis (wl =
w3 ), and the white arrows orthogonal to it show where the anti-diagonal slices plotted
in C and E were taken from the surfaces. Plots of the slope of the node between the
fundamental and v = 12) - I) for experiment (D) and simulation (F) as a function
of waiting time, T. The slope of the node was calculated by fitting a straight line
through the node of each surface between the limits 3250 cm- 1 < < 3450 cm -1 .
The squares in D are the experimental points and associated error bars. The solid
line plotted along with the data in D is the predicted behavior using our previously
measured C,,(t) [9, 10].
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The 2D IR spectrum is a superposition of echo and grating phase matching direc-

tions. Within the Condon approximation, the response functions are

RRephasing(tl, T, t3) = E (ei f °l1 dt'wab(t')-i th++t3 dt'Wcd(t')) (6.67)
a,b,c,d

R (t T, ti) = E (eifodt'wab(t')-it t+T+t3 dt'Wcd(t')) (6.68)
a,b,c,d

Each term in the summand in Equations 6.67 and 6.68 is a double-sided Feynman

diagram au and a, b, c, and d are the resonant states of the diagrams consistent with

the phase matching directions kho = -kl + k2 + k 3 and kgrating = k- k2 + k 3,

where the subscripts on the wavevectors denote the time ordering of the electric fields

they represent. For reasons discussed in previous sections, Equations 6.67 and 6.68

must be computed by direct averaging in the simulation. When the pulse durations

are short relative to the decay of Recho and Rgrating their temporal envelopes may be

approximated by Dirac 6 functions so that the 2D IR spectrum is

S2D IR(W1, T, w3) ~ Real(RRephasing(-W1, T, w3)) + Real(RNonrephasing(W1, T, W3)),

(6.69)

The Fourier transform is of the rephasing response function, for example is

RRephasing(W1, T, w3 ) = dt dt3 eiW1t1+iW3t3RRephing(tl T t 3 ) (6.70)
-00 -00

where wl and W3 are the conjugate Fourier frequencies to time delays t and t 3,

respectively. The minus sign for w1 in Equation 6.69 cancels the sign difference
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between the first term in the argument of the exponentials in Equations 6.67 and

6.68.

Computed line shapes, plotted in Fig. 6-15 A, closely resemble the corresponding

experimental results in several key features. Most importantly, the blue side of the

line shape broadens along the w3 axis more rapidly than the red side does. The

anti-diagonal slices in Fig. 6-15 E, which compare particularly well with experiment,

highlight this fact. The slope of the nodal line decays with a time dependence similar

to C(t) (Fig. 6-15 F).

Time resolution in the computer simulation of 2D experiments is effectively un-

limited, because WOH is simply a function of instantaneous atomic positions. Spectral

dynamics can therefore be examined in greater detail. In particular, we can examine

the full distribution P(w3, Tiwl) by propagating configurations for which WOH initially

lies in a small interval around wl [22]. To contrast the dynamics of high (blue) and

low (red) frequency extremes of the 2D line shape we focused on two distributions of

initial frequencies termed PRed (w, T) and PBlue (w, T) for the red and blue sides of the

line, respectively. PRed (w, T) begins with < 3300 cm -1 while PBlue (w, T) con-27wcc

tains only "l > 3600 cm - ' initially. These time dependent frequency distributions27ec

appear in Fig. 6-16. The shapes of these distributions as they approach equilibrium

differ qualitatively. As anticipated from the 2D IR line shapes, PBlUe (, T) broadens

more rapidly than Ped (w, T). The underdamped oscillation in C (t) from the hy-

drogen bond stretch is pronounced for PRd (w, T) but absent in PBlue (, T). Instead,

the blue distribution quickly moves into the red side with a long tail, while the weight

of PBlue (, T) for frequencies greater than 3600 cm -1 decrease steadily.
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Figure 6-16: Time dependent probability distribution that originate on the red and
blue sides of the spectrum. The black arrows draw attention to the salient features
in the distribution functions. The dotted lines indicate the initial distribution at
T = 0 fs. On the red side, the beat at 125 fs is apparent in the recoil of the
frequency distribuiton. The width of this distribution widens prior to 200 fs, but
remains relatively compact on the return to equilibrium. On the blue side, however,
the distribution widens significantly at times prior even to 100 fs, indicating that there
are a significant number of molecules that return to the hydrogen bonds rapidly.
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In some respects the numerical results for the time-dependent distribution func-

tions seems consistent with the scenario sketched in Fig. 6-13 B. One might infer

that only intact hydrogen bonds have underdamped vibrational modes and that the

growing tail of Pblue (w, T) and steady decrease of high frequency amplitude reflects

passage over the free energy barrier separating HB and NHB species. The micro-

scopic details accessible in molecular dynamics simulations allow us to determine the

origins of computed spectral features directly. But to do so in terms of hydrogen

bond dynamics, we must categorize HB and NHB species. The geometrical criteria

provide conventionally accepted definitions of HB and NHB [20], and are useful for

diagnosing the stability of NHB in either of the scenarios depicted in Figs. 6-13 B

and 6-13 C.

If the NHBs comprise a metastable state, then short trajectories initiated from

this state should remain in NHB with high probability. The putative dynamical

bottleneck impeding hydrogen bond formation should become even more pronounced

if we continuously remove kinetic energy from the system by quenching the system to

a nearby local minimum of the potential energy surface as these trajectories evolve

[8].

Running dynamics with zero velocity (quenching) finds the nearest local mini-

mum in the multi-dimensional potential energy. When all the velocities are zero, the

RATTLE algorithm for the dynamics becomes [1]

ri(t + t) = ri(t) - 2-- (ViV(ri, ... ,rN) - i) (6.71)
2mi
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In Equation 6.71 all of the ri are the atomic positions, V(ri, ... , rN) is the potential

energy function, gi is the force of constraint on atom i that keeps the bond lengths

fixed and mi is the mass of atom i. Equation 6.71 is a "steepest descent" algorithm

that finds the closest minimum of the potential energy (i.e. where ViV - = 0 for

all i), when the positions are "quenched," giving the condition

r'(t + t) - (t) =0. (6.72)

The resulting collections of values, R* = {r,... , r}, are configurations of the

liquid that minimize the potential energy function. They are called the "inherent

structures" of the liquid [6].

In the inherent structures from typical quenched equilibrium H2 0 or D2 0 config-

urations roughly 99 % of the molecules participate in four hydrogen bonds. These

inherent structures do not have the long-range order of ice, demonstrating that even

disordered liquid environments can accommodate a saturated network of hydrogen

bonds. It follows that only a small fraction of NHBs maintain distances and angles

characteristic of broken hydrogen bonds upon quenching. Figure 6-17 illustrates our

quenching procedure for the high frequency distribution, PBlue (, T = 0). Roughly 7

% of the equilibrium configurations begin with w > WBlue. Of these 70 % begin NHB

(Fig. 6-2 A), but only 10 % remain NHB after quenching. The remaining NHBs

are not members of a separate metastable state, belonging instead to the basin of

attraction of intact hydrogen bonds.
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I (h) at equilibrium (h) for the inherent structures 
Blue side 0.32 0.92

Entire Ensemble 0.89 > 0.99

Table 6.1: Hydrogen bond fractions ((h)) at thermal equilibrium and among the
inherent structures. The blue side corresponds to - 7 % of the total population,
those configurations with WOH > 3600 cm -1. The entire ensemble is the fraction
of formed hydrogen bonds for all hydrogen bond possibilities (including D2... D2 0
bonds).

We assert that the only stable broken hydrogen bonds are those NHBs that do not

form hydrogen bonds upon quenching. A configuration in the basin of attraction for

NHB should move even closer to that attractor upon quenching, and should certainly

not convert to HB. The fates of NHB species at equilibrium (i.e., in unquenched dy-

namics) support this distinction, and validate the segregation into inherent structures.

If entropy were an important factor for the reaction, the classification by inherent

structures would fail to produce dynamics that behaved differently at equilibrium.

If a NHB at equilibrium is trapped inside the HB basin of attraction, it will

become HB upon quenching. We have classified configurations with > Blue as

either untrapped (NHB when quenched) or trapped (HB when quenched). Figure 6-

18 shows the fraction of these two groups of configurations that are hydrogen bound as

a function of time along equilibrium trajectories, along with the equilibrium fraction

of hydrogen bonds (89 %). The stable group clearly persists as NHB over longer

times. But even this rare collection decays quickly, with a rate of t (200 fs)- 1.

Broken hydrogen bonds that persist for 1 ps, approximately Trxn obtained in Section

6.1.2, or longer are indeed extremely rare.

A simple signature of a stable NHB species would be barriers in the order param-
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Figure 6-18: Equilibrium dynamics of untrapped (red line) and trapped (black line)
configurations on the blue side of the line. When a thermal configuration belongs to
the basin of attraction for NHB, is quenches to NHB but if it is confined to the HB
basin then the quenching configuration is trapped in the HB basin of attraction. The
dotted line is the equilibrium hydrogen bond fraction. Even the rare configurations
that quench to NHB wells relax back to the equilibrium hydrogen bond fraction in
200 fs. The species that quench into HB relax back faster, with a rate of 1o fs The
designation by inherent structures is meaningful because entropy does not play a
significant role. The difference between the equilibrium dynamics for trapped and
untrapped configurations confirms this notion. It is likely that there are only a few
degrees of freedom relevant to the hydrogen bonding state of one molecule.
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eters that we presume can distinguish HB from HNB. These order parameters are the

Roo distance and hydrogen bonding angle cos(a), the ... H interatomic distance,

and the potential energy of the dimer pair. Though the heights of the barriers may

not be realistic and they may not occur at the presumed bottleneck, we the order

parameters should not be orthogonal to the reaction coordinate. If NHBs are a stable

chemical species, there should be some barriers in the free energy as a function of the

order parameters.

First, consider the atomic pair radial distribution functions. The reversible work

theorem relates the potential of mean force to the radial distribution function, gij(r)

[4].

exp(-3Wij(r)) = gij(r). (6.73)

In Equation 6.73, Wij(r) is the potential of mean force (PMF) - the reversible work

required to separate atoms i and j by a distance r. It is also the free energy as a

function of the separation distance, r between atoms i and j (see Equation 6.12. The

radial distribution function is the density correlation function between atomic pairs

i and j,

gij (ri, rj) = (p(ri)p(rj)). (6.74)

In an isotropic fluid, gij(ri,rj) depends only on the separation vector r = r- rjl.

Figure 6-19 is a diagram of both the radial distribution function and the PMF for

the interatomic ... H distance for all pairs. The PMF displays a barrier roughly 2

kBT at rOH 2.45A. Some have suggested that a plausible cutoff to distinguish HB

from NHB is at the maximum of the PMF, 2.45 A[19].
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Figure 6-20 is the the radial distribution function and PMF for the interatomic

... 0O separation of all pairs. A reasonable criterion, and one that we adopt, is

to place a cutoff on Roo that restricts attention to HBs and NHBs within the first

solvation shell, defined by the first minimum of goo(r). This places the cutoff at Roo

= 3.5 A[19].

The radial distribution functions are calculated for all pairs in the simulation and

not restricted to only include the hydrogen bonding partner. Therefore, the PMF

from goo(r) is different than the free energy as a function of Roo, the interatomic

oxygen distance between the HOD molecule and only the hydrogen bonding partner.

Figure shows the free energy as a function of ... H if we only include the proximal

hydrogen bonding partner. There is no free energy barrier in this coordinate. For

every oxygen, there are two hydrogens on the same molecule. Comparing Figure 6-

21 to Figure 6-19 shows that the apparent maximum in WOH(r) and second peak in

90goH(r) corresponds to the distance between the oxygen of an accepting hydrogen bond

and the hydrogen atom more distant than the one donating to this hydrogen bond.

Indeed, the cutoff values for the intermolecular ... H distance inferred from the

radial distribution function appear misleading. The work of Csajka and Chandler [5]

shows that the value of .O-.. H . 2.25 A would coincide more closely with dynamics

of hydrogen bonds identified with the Roo and cos(a) criterion.

By only calculating the probability distribution function for the proximal hydrogen

bonding partner, the potentials of mean force for Roo, cos(a) and the dimer potential

energy Vpair, are obtained by applying Equation 6.12. Figure 6-23 is a diagram of the

free energy as a function of Roo, Figure 6-24 shows the free energy as a function
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Figure 6-20: Radial distribution function and potential of mean force for the ... O
separation between all atomic ... O pairs. There is a very modest barrier in Woo(r)
of ~ 0.1 kBT at roo = 3.5 A.
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The barrier in Figure 6-19 is from the second hydrogen atom on a donating molecule.
Thus, it represents the barrier to molecular rotation.
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Figure 6-22: Free energy as a function of the pair potential energy between only HOD
and it's proximal hydrogen bonding partner. There is no barrier in this coordinate.

of cos(a), and Figure 6-22 is a graph of the free energy as a function of Vpair. None

of these free energies exhibit a barrier, shedding doubt on the possibility that NHBs

exist as chemically stable species.
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Figure 6-23: Free energy as a function of Roo between only HOD and its proximal
hydrogen bonding partner. The dotted line shows the critical value of Roo conven-
tionally used in conjunction with a cutoff in o to determine if a pair is bound or
not.
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Figure 6-24: Free energy as a function of cos(o) between only HOD and its proximal
hydrogen bonding partner. The dotted line shows the critical value of a = 30° used
in conjunction with a cutoff in Roo to determine if a pair is bound or not by the
geometric criterion.
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6.6 Conclusions

When the absorption frequency is viewed as an order parameter, the methods of reac-

tion dynamics developed to describe the statistics of biased random walks on reactive

free energy landscapes apply straightforwardly to the vibrational spectroscopy of wa-

ter. For HOD in D2 0, the OH absorption frequency, WOH is the order parameter.

It can distinguish between HBs and NHBs with reasonable fidelity 6-2. In Section

6.4.1 we learned that it is not its own reaction coordinate. Chapter 4 and Section

6.3.3 showed that the specific interactions of HOD with its hydrogen bonding partner

prevented the statistics of the fluctuations from reaching the limiting Gaussian distri-

bution. These specific interactions made it impossible to even qualitatively describe

the dynamics of WOH on an anharmonic PMF. The strong coupling between WOH and

the hydrogen bonding coordinates is what the 2D IR spectroscopy exploits to measure

hydrogen bonding dynamics in water. As such, popular second cumulant approxima-

tions for R(3) (Ti,T, 73) discard the very information the experiment is designed to

measure. Recent experimental and theoretical work [27, 2, 16] that claims to measure

hydrogen bond dynamics in water by focusing on Cj,,(t) should be re-examined.

Our findings illustrate a shortcoming in the analysis of hydrogen bond dynamics

in water from MD simulations. MD simulations that use popular geometrical crite-

ria fail to distinguish between configurations that quench into a HB and those that

quench into an NHB. Figure 6-25 displays the distributions of cos(oa) and Roo for

the configurations with WOH > WBlue. Because there is significant overlap, there is no

obvious pattern in the geometries between HOD and its nearest hydrogen bonding
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partner that determines what the fate of a given hydrogen bond will be upon quench-

ing. The T = 0 value in Figure 6-18 is the hydrogen bond fraction for configurations

with WOH > WBlue. It is non zero for both trapped and untrapped configurations, in-

dicating that some NHBs that remain NHBs when quenched, but also that some HBs

quench into NHBs. It represents another failing of the standard geometric criteria to

provide qualitative information about the hydrogen bond in water.

2D IR spectra measure dynamical nonlinearities of WOH in the asymmetry of the

2D line shapes. Our 2D IR data, as well as qualitatively similar data from Fayer

and co-workers [27, 2], cannot be explained by a single transition whose frequency

fluctuations obey Gaussian statistics. If the OH line shape is composed of two species

corresponding to HB species on the red side and NHB species on the blue side, it

is plausible that their fluctuations would be different and result in asymmetries in

the 2D IR line shape. Empirical observations have shown that free OH resonances

are much narrower than their hydrogen bound counterparts. In general, stronger

hydrogen bonds are accompanied by a red shift and broader line width [28]. The

rapid broadening of the 2D line shape on the blue side is inconsistent with the notion

that NHBs experience small fluctuations within the NHB well, because frequencies

initially on the blue edge appear throughout the line shape within a few hundred

femtoseconds. Instead, the data support a picture where the NHBs form hydrogen

bonds on the time scale of mol. The short persistence time of these NHB species

is consistent with Stillinger's description of hydrogen bond dynamics in water as a

switching of allegiances [29]. Here strained or broken hydrogen bonds correspond to

OH oscillators in the blue edge of the OH line shape. Intermolecular motions, likely
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librations, may then push the oscillator into a new HB or back to the original HB. In

either case the result is a red shift in WOH on the time scale of Tmol.

The asymmetry in the 2D IR spectra reveals that the 2D line shape is composed of

two initially distinct species with different microscopic dynamics. Decomposing spec-

troscopic line shapes into components that represent contributions from presumed

molecular environments is a method of analysis prevalent in the spectroscopy of wa-

ter. Although this method is tempting, our results underscore the danger of this

approach. The most useful picture of hydrogen bond connectivity in water comes

from measurements that observe spectroscopic signatures through the time scale of

molecular fluctuations. In contrast, our results imply that NHB species identified in

recent x-ray absorption experiments [32] relax back to band center on Tmol and are

intrinsically unstable.

Explicit microscopic information available in MD simulations allows us to exam-

ine the features in the 2D IR spectra in mechanistic detail. Our MD simulations

show that neither the instantaneous geometric criteria for separating HB from NHB

nor the value of the OH frequency can determine the stability of an assumed NHB.

A typical configuration of the liquid has several instances of water molecules with

apparently broken hydrogen bonds. In fact, these are just frequent excursions within

the basin of attraction for hydrogen bound molecules. Previous MD studies using

geometric criteria have found a weak relationship between the kinetics of hydrogen

bond breaking and the number of hydrogen bonds with the donor and acceptor [20].

Conclusions derived from the two-state model, indeed many studies of hydrogen bond

kinetics in water [20, 19, 34], attach a meaning to broken hydrogen bonds that should
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be reconsidered. Though there are many specific definitions of hydrogen bonds, there

are no free energy barriers in any of the order parameters used to make the distinction

of NHB from HB. Quenching configurations before and after switching demonstrates

that hydrogen bonds do reorganize in concert [23]. NHBs that persist for much longer

than -mol are rare, and even these specimens find hydrogen bonding partners within

200 fs. For natural fluctuations at equilibrium, a broken hydrogen bond that is

stabilized by liquid disorder appears to be more of a curiosity than a key player.
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Appendix A

Appendix A

A.1 Expansions in internal coordinates

A practical problem emerges when computing the derivatives of the intermolecular

potential in internal coordinates. Internal coordinates are functions of bond stretches

and angles, for example. However, the intermolecular potential is a function of atomic

Cartesian coordinates. More generically, internal coordinates are generalized coor-

dinates that exclude overall translation and rotation of the molecule. Particular

subtleties arise in the direct expansion when applying the chain rule of partial differ-

entiation.

We illustrate the method employed to expand the hydride stretch coordinate to

second order, but emphasize that the method is simple and general. Direct expansions

are sometimes not applied even to simple systems [1, 3]. Instead, one finds the expan-

sion numerically by evaluating the potential energy at several small displacements of

the internal coordinate, gaining a more exact representation of HAs at the expense of

221



computational efficiency. More importantly, it is much easier to analyze an analytical

expression and determine which terms provide the largest perturbations than it is

to backtrack through numerical computations. As long as the coupling between the

vibration and the environment is a smoothly varying function, a low-order Taylor se-

ries approximation is sufficiently accurate. Direct expansion scales as (M- 1)O(N 2 ),

where M is the desired expansion order. It can be applied to systems with many

atomic degrees of freedom that define an internal vibrational coordinate. Including,

but not limited to, small peptides and proteins in solution.

Begin with the derivative of the potential in internal coordinates. The potential

is a function of atomic Cartesian coordinates, V = V(rl, ... , rN). N is the number

of atoms in the molecule. Let k be the number of equations of constraint. Because

the equations that constrain the overall translation and rotation of the molecule

are holonomic, the transformation equations between the atomic coordinates and

generalized (internal) coordinates are

rl (t) = r (Q1, , Q3N-k; t), (A.1)

rN(t) = rN(Q1, ' , Q3N-k; t).

We assume that these equations, along with the k equations of constraint are invertible

(the Jacobian of the transformation in Equations A.1 is non-zero). We are interested

in the derivative of the potential with respect to some internal coordinate Qj. It

is convenient to express the derivative operator by using the chain rule for partial
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derivatives.
N 1r i0 O

OQZ~ 9 V (A.2)aQj - E Oj ' Vi .

Applying the operator in Equation A.2 to the intermolecular potential provides

an expansion in the set of Qj to any order. If there is more than one generalized coor-

dinate, Hsb is a multidimensional function whose expansion is facilitated by defining

the operator,
3N-k 

D= QiQ' (A.3)
i=1

and writing
M

Hsb (Q1, ... , Q3N-k) = E D Hb (Q1, QN) (A.4)
j=1 

where M is the desired order of the expansion and Di is the operator in Equation

A.3 raised to the jth power and upon expansion all of the Qj in the derivatives are

evaluated at their equilibrium values in Equation A.4.

We demonstrate this technique by solving for the hydride stretch and give expres-

sions for F and G used in the computation. Recall that we wrote the system-bath

Hamiltonian that couples the vibrations to the environment as Hsb = FQ + GQ2,

where Q and Q2 are both operators in the system eigenstate basis. For a stretch,

the constraint is that the center of mass of the vibration remains fixed. We write

this constraint as R,~ = HmH+rom. We use the constraint equation explicitly by

shifting to the center of mass frame and writing the atomic positions relative to the
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center of mass

rH = m r, (A.5)
mO + mH

,mHro = mHr. (A.6)
mo+ M MH

With these substitutions, it is easy to express the derivatives in Equation A.2. The

result is 09 ~ /VH _V

IQ rHO* - H (A.7)

where is the reduced mass and rHO is the unit vector pointing from the oxygen to

the hydrogen. To generate the first term in the expansion, F, we apply the derivative

operator to the potential.

mH oF =-ll . ( Ff _ F0 ) (A8)

where FH is the force on the hydrogen (oxygen). Evaluating this term with the

Velocity-Verlet algorithm is free because the atomic forces are available at each time

step. The expression for F is the same one that Rey et al.[2] used in their study of

the vibrations of the CN- anion in water. Evaluating the second derivative, G, costs

only O(N 2 ), where evaluating Hsb for several values of Q costs O(N 2 ) at each step.

We write

1 2 V 12rHOrH (VOVOV 2VHVOV VHVHV\
G 2 Q 2 m momH + m(A.9)2~~~~ :H~ om ~
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where the: is the tensor contraction for the dyads on either side of the operator.

Ewald summation of V partitions the sum over molecules and their periodic images

by a pair-wise sum and a sum in reciprocal wavevector space, V = pair + Vk.

1 N N
V = E ((Iri - r) + E A(k)lS(k)l2, (i # j) (A.10)

i=l j=1 k

In the above, S(k) = E zie'k r' is the ionic structure factor, z is the charge of atom

1, A(k) is an amplitude, and (Iri - rjl) is the pair potential energy between atoms i

and j. The double gradient operator on V contains three types of terms.

V.VVpai = -(X" (ra,) reara + ( rA) (1- rra8)), (a ) (A.11)

VaVaVpair = Z (" (ra) rar,, + (ra) (1 - r,,), (A.12)

VaV3Vk = Z2kkA(k) (Real (czaeikr Z6 ,eik-r)) (A. 13)
k

Substituting A.13 in to A.9 yields the second term in the Taylor expansion for the

intermolecular potential.
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