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Jaime Dawn Choi

Submitted to the Department of Chemistry on January 18, 2005 in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy in Chemistry.

ABSTRACT

A discussion of the anomalous low-temperature thermal properties of amorphous
materials is first given as a theoretical framework in which the rest of the thesis is treated. The
theory models the form and function of microscopic dynamical and structural features that are
thought to be common to amorphous materials, which interact strongly with ultrahigh frequency
acoustic waves and creating the anomalies. The model has been found to well reproduce the
measured anomalous thermal conductivity of silica glass. Separately, an experiment which
utilizes impulsive stimulated thermal scattering is used to measure the anomalous low-
temperature thermal conductivity of a molecular glass, glycerol. The results, taken in the context
of the aforementioned theory, illustrate the ambiguity of using a macroscopic measurement to
quantify microscopic parameters.

However the validity of the microscopic assumptions of the theory has heretofore been
difficult to test directly due to a lack of a proper experimental method. The remainder of the
thesis is devoted to developing a technique of generating ultrahigh frequency acoustic waves,
which can be used to directly probe the dynamics and structure believed to dominate the low-
temperature thermal properties of amorphous materials. The generation of ultrahigh frequency
tunable narrowband acoustic waves is accomplished with a novel retroreflection-based ultrafast
pulse shaper. It generates optical pulse sequences of frequency tunable between 2-2000 GHz
through movement of a single delay line. Optical to acoustic conversion by aluminum
transducers yields acoustic waves with bandwidth limited by the metal temporal response to 2-
500 GHz. The detection of the ultrahigh frequency acoustic waves is accomplished with a novel
grating-based interferometer. The alignment, flexibility, and calibration of the interferometer is
described.

Lastly the use of the technique is illustrated for the characterization of the structure and
dynamics of silica glass, the prototypical amorphous material, at room temperature and at 20 K.
The room temperature results are considered in terms of the only other data available in the
literature, and the 20 K data are considered in terms of the theory of amorphous materials, as no
other information has been published in this temperature and frequency range. Both results
suggest that current models of amorphous materials be reconsidered.

Thesis Supervisor: Keith A. Nelson
Title: Professor of Chemistry
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Chapter One

Introduction

The field of study of disordered materials encompasses a tremendous host of materials,

including polymers; ionic, molecular, and network glasses; and their cousins, molecular, polar,

and glass-forming liquids. The common feature of these materials, here labeled generally

"glasses," is solely that they lack long-range structure. They are homogeneous on the bulk scale.

However a glass possesses features at the molecular length scale dominated, as in the crystal, by

inter- and intra- molecular forces determined by the chemical composition. It is unusual then to

find the same result repeated over and over in nature: that most glasses exhibit remarkably

similar trends in their bulk physical and thermal properties.' The natural, if counterintuitive,

conclusion is that therefore the lack of structure determines key elements of the disordered

material's character. A discussion of a model of the microscopic origins of this result is

presented in Chapter 2.

An experiment that typifies the universal thermal behavior of glasses is described in

Chapter 3. A non-contact all-optical technique, impulsive stimulated thermal scattering (ISTS) is

utilized to measure the bulk thermal diffusion2 in the temperature range 1.4-20 K in a molecular

glass, glycerol, and relate the result to the thermal conductivity, K. The same unusual behavior

that has been hotly debated since the seminal work performed by Zeller and Pohl3 decades ago is

observed - with some unusual features. As the temperature is increased in the glass from 1.4 K,

an increasing number of high-frequency phonon modes become available to carry heat

diffusively through the glass. This results in an increase in the thermal conductivity. However

near 10 K, the thermal conductivity is found to plateau in glycerol, as it does in nearly every
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other glass. That is, the additional modes populated with increasing temperature do not carry

additional heat: they fail to propagate significantly. At low temperature, the ISTS measurement

yields some unusual results showing a thermal conductivity which is very low, but rises with a

temperature dependence more expected of a crystal. Possible origins of this observation are

discussed.

The thermal conductivity experiment highlights the intriguing question that has yet to be

satisfactorily answered: what happens to the heat-carrying phonons? Models have been

developed which attribute the non-propagation of high-wavevector acoustic phonons to

interactions with dynamical fluctuations and static structural heterogeneity,4' 5' 6 and these models

are used are used to reconstruct the bulk thermal conductivity, as discussed in Chapter 2.

However the weakness of these models is that they have not been reliably tested by any

convenient method, but instead rely on a bulk measurement to surmise the behavior of myriad

multiple microscopic modes and interactions. The goal of the remainder of the thesis is to make

a direct measurement of the microscopic modes of the glass, and to compare the result to the

models which have stood for decades.

Chapter 4 describes the development and implementation of a high-frequency/high-

wavevector acoustic method of probing the structure and dynamics of disordered materials.

High frequency acoustic phonon properties are the key determinants of the thermal anomalies

discussed in Chapters 2 and 3. In the method, a narrowband acoustic wave of a selected

frequency co is generated at the front of a sample of interest via combination of a novel ultrafast

pulse shaper called the Deathstar that generates pulse sequences with widely tunable repetition

rates, and a thin "transducer" aluminum film which converts the shaped optical waveforms into

tunable-frequency acoustic waves that propagate into the sample. Chapter 5 describes the
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development, alignment, and calibration of a new interferometer7 that is used for quantitative

measurement of the transmitted acoustic amplitude at each selected frequency at the back of the

sample. Taken together, the acoustic generation and detection methods enable direct

examination of phonons throughout the high-frequency (GHz) range, approaching the "end of

the acoustic branch." 8

Chapter 6 presents the results of the high-frequency/high-wavevector experiment on

silica glass, which was chosen because it is extremely well characterized by a broad variety of

methods, including thermal conductivity, specific heat, and some high-frequency acoustic

measurements, at many temperatures including the region of the thermal conductivity plateau. In

this chapter reliable measurements are presented at narrowband acoustic frequencies up to 300

GHz. The frequency-dependent phonon mean free path is presented at both room temperature

and 20 K, and results for both are shown to be surprising in the context of widely accepted

modes and previously reported experimental results for thermal conductivity and high-frequency

phonon behavior. The results demand a reconsideration of the mechanisms for reduced phonon

and thermal transport in glassy materials.

The methods developed for study of high-frequency phonons are not restricted to glasses

or even to solids. As an indication of future prospects, data from a polymer sample at

temperatures below and above its glass transition temperature are presented. The results illustrate

the possibility of direct assessment of high-frequency phonon propagation and the fast structural

relaxation dynamics that mediate phonon propagation in the liquid state.

15
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Chapter Two

The Interaction of High-Frequency Acoustic Waves with Amorphous Materials

2.1 Introduction: Low-temperature Anomalies of Glasses

For decades, the unusual thermal properties of glasses at low temperatures have remained

an unresolved and hotly debated issue in physical chemistry. Glasses, whose many classes

comprise a significant subset of disordered materials, have anomalous specific heat, thermal

conductivity and acoustic properties at low temperatures, compared to the crystalline forms of

the same materials. An even more unusual result is that nearly every glass - network, metallic,

ionic, molecular, and polymer - exhibits quantitatively comparable values of these anomalous

properties, usually within an order of magnitude.1' 2'11 The "anomalous" properties are those

related to the propagation of phonons, or acoustic waves, through the glass. Their universal

observation implicates the intrinsic disorder of the glass as modifying the transport of energy by

the phonons. Probing and understanding the nature of this modification is the main goal of this

thesis. Understanding the relationship between the microscopic dynamical and structural

features of the glass, the measurable specific heat and thermal conductivity, and the high

frequency acoustic spectrum expected based on these features measurements, is the goal of this

chapter.

2.2 Modeling the Phonon-Structure Interaction

The interactions of acoustic phonons with microscopic features of the glass have been

strongly implicated in the anomalous macroscopic properties. For example, the bulk heat

17



capacity Cp of a crystal increases rapidly with temperature, CA--TS, as more and higher energy

phonon modes become available to carry heat.3 However, at the lowest temperatures Cp of the

corresponding glass is much higher than that of the crystal, due to the presence of "excess" low-

frequency phonon modes, as shown in Figure 2.1. Without these modes, the graph would appear

as a straight line. These modes are believed to arise from structural transitions between the

numerous possible quasi-isoenergetic local configurations for particles in the glassy matrix,

which can be described approximately as two-level systems. Around 10 K, an additional set of

"excess" modes appear, as illustrated in Figure 2.1. These have been correlated with high-

frequency modes which have been observed around 1 THz in inelastic x-ray,4 '5 inelastic

neutron,6 7 and light8 scattering experiments as well as time-domain dielectric spectroscopy,9

called the Boson peak. The excess heat capacity for a glass can be successfully described by:l l

C(T)= a1T + a3T3 2.1

where the coefficient for the linear term is found to be remarkably similar for different classes of

glasses,. indicating a similar density of "extra" modes arising from disorder. The origin of the

numerous high frequency excitations is still unsatisfactorily resolved,l°'0 and their identification is

one of the targets of this thesis. The excitations have been attributed to, e.g., the glass behaving

simply like a disordered crystal wherein every atom is displaced from its lattice site,l' from

heterogeneity on extended molecular length scales affecting phonon transport on much longer

length scales,'2 or from the hybridization of the heat-carrying acoustic phonons into vibrational

modes at the molecular level.13 14 At the most fundamental level, the common feature of these

varied postulates is that the universally observed "extra" excitations, and the consequent

macroscopic observables at low temperatures, arise from the structural, rather than chemical,

character of the glass.

18
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Figure 2.1. Excess low frequency (grey) and high frequency (striped) modes observed in the
heat capacity of silica glass. Adapted from Reference 15.

The same microscopic properties that are implicated in the anomalies in Cp are also

believed to drastically affect the values and temperature dependence of the thermal conductivity,

tK. As shown in Figure 2.2, Kc grows as T3 in a-quartz, the crystalline form of SiO2. The

conductivity grows rapidly with temperature as an increasing number of unhindered system

eigenmodes become thermally excited and therefore available to carry heat. In contrast, in the

glassy state the conductivity is suppressed, grows more slowly as 72, and in a temperature range

near 10 K more or less ceases to increase with temperature, or "plateaus." The thermal

excitation of the same distribution of acoustic phonons as exist in the crystal does not result in

the same ability to transmit heat through the sample. At temperatures near the plateau, the high-

energy thermally excited acoustic phonons do not carry significant additional heat. The

appearance of excess modes in Cp at this same temperature, as shown above, implies that the

thermal phonons are absorbed into these modes instead of propagating normally. These

macroscopic observations11 instigated the development of microscopic models for the interaction

19



between high-frequency acoustic waves and the microscopic details of the glass, and to a large

extent spurred the whole field of study of amorphous materials.

Termpemlu, K

Figure 2.2. Experimentally measured thermal conductivity of crystalline and vitreous silica, as
well as the mixed crystal KCI:CN. Adapted from Reference 11.

Even more remarkable than the thermal anomalies found in silica glass, are the facts that

1) that the thermal conductivity of nearly all glasses plateaus near 10 K, and 2) the value of the

thermal conductivities of nearly all glasses lie within an order of magnitude of each other. Yet

the anomalies do not simply arise from the presence of defects or impurities in the material

(glasses possessing the maximum possible number of defects). A crystal with a high defect

concentration, KCI:CN, also shown in Figure 2.2, has a lower KI value than the glass at low

temperatures, and yet shows much faster growth in Kc with temperature, implying good phonon

propagation at high wavevectors. In the case of KCI:CN the suppression of K has been shown to

arise from resonant phonon scattering from CN quasirotational states; it is typical for a crystal
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bearing impurities to show anomalies that are specific to both the crystal and the defect.38 For

the amorphous case, the reduction in the thermal conductivity must arise from microscopic

properties which are not very particular to the material, but instead are related to the inherent

structural disorder.

This section connects the measurable bulk thermal conductivity to the microscopic

processes and structures within the glass, using the "standard" tunneling model'6'1 7 to describe

reductions in the mean free path of the heat-carrying acoustic phonons. It should be noted that

this is one of several models for the glassy state.8 '19 However, its reliability for modeling

anomalies in the thermal and low-frequency acoustic properties of amorphous materials at low

temperatures makes it an excellent starting point for a discussion of the relation between

microscopic (mostly unobservable)20 and macroscopic (observable) properties. The thermal

conductivity K increases in a material as temperature is increased, as more and higher energy

phonons become available to transport heat. This is expressed as the kinetic formula:3

1 ~max

K(T) = 3 Ca(i,rT)VaAa(Cr, T)d 2.2
a o

where the heat capacity C(,T) expresses how much heat is carried by phonons of reduced

frequency = hco/k. The phonon group velocity v gives the speed at which the phonons can

move energy. It is generally not expressed as a frequency or temperature dependent quantity as

experiment has shown it to be dispersionless in most measurements. This section treats it in the

same manner, anticipating the direct experimental results on frequencies up to 300 GHz

presented in Chapter 6, and in view of other results indicating little change in the speed of sound

up to 400 GHz and over a wide temperature range.2 6'21 The phonon mean free path AI(,T)

describes how far the phonons travel before being damped or scattered inside the material. The

21



branch (phonon polarization) index is indicated for all parameters by a. The expression is

integrated over all frequencies throughout the Brillouin zone, up to the Debye frequency max,

which is determined to be 360 K (-7.5 THz) for silica glass,2 6 as compared with 552 K (-11.5

THz) for a-quartz crystal.ll After summing over the transverse and longitudinal branch

contributions, values are obtained that can be compared to the experimentally measured

temperature-dependent thermal conductivity.

The quantity of primary interest for understanding the anomaly in K is the phonon mean

free path, A( &c ,T), which expresses the ability of phonons to propagate through the material, and

thereby to carry heat. In contrast, the heat capacity expresses the number of modes available to

transport heat. The total temperature-dependent specific heat, including the density of states, of

phonons of frequency & is given by the Debye form:

C (&, T) = , ' 1)2 2.3
2r2 3va T2 (e&IT -l)2

Clearly the total heat capacity is dominated by the highest frequency phonons. This implies that

the strongest modifications to K are related to these high frequency phonons. Equations 2.2 and

2.3 may be simplified somewhat by averaging the contributions from the longitudinal and

transverse branches, so that v,-> v:

2.4

Experiment indicates the validity of this approximation in a glass, though in a crystal anisotropy

precludes its use..

The variations in the phonon mean free path 2(&,T) owing to microscopic details of an

amorphous material, using Equation 2.2 to determine the resulting thermal conductivity, are the

key feature of the tunneling model. These contributions include: phonon-mediated tunneling
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between minima of structural two-level systems, Ares( ,T); thermally-activated relaxation

processes, Are( ,T); and the Rayleigh scattering of phonons from microscopic density

fluctuations arising from structural inhomogeneities, ,ra,y()). Lastly, ,min accounts for the fact

that a propagating phonon mode with wavelength shorter than the length of a minimal structural

unit cannot be supported in the material. Ain is calculated using the Debye temperature from

Equation 2.2, and is found to be -0.6 nm in silicate glasses, -1.1 nm in amorphous polymers, and

-0.4 nm in metallic glasses. This is comparable to the size of a crystalline unit cell of the same

material.22 The total reduction in the mean free path is described by:2 9

2(C' T) -( (), T) + i1 (e), T) + ay ( '))) + min 2.5

The specifics of the contributions to (,T) are described individually below. Again, while

there are alternate models, the tunneling model description of the microscopic features that

impact the bulk thermal properties of a glass does an excellent job of duplicating most of the key

observed low-temperature thermal and low-frequency acoustic anomalies.

Figure 2.3. Structure of crystalline and vitreous silica, and three possible two level systems
indicated by 1, 2, and 3 as described in the text. Adapted from Reference 23.
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At very low temperatures, T<5 K, the thermal conductivity of the glass is suppressed by

more than an order of magnitude and grows more slowly with temperature than that of the

crystal, as T2 instead T3. A large amount of experimental evidence2 4 suggests that a wide

distribution of structural two-level systems (TLS) interacts with thermal phonons, reducing

,(& ,T). While the true identity of the TLS remains to be conclusively proven, the means by

which they arise from disorder are illustrated in Figure 2.3, which contrasts the structures of

cristobalite, a crystalline form of SiO2, and vitreous silica. Full circles indicate silicon atoms and

open circles oxygen atoms. While the crystal has only a single state, the disorder in vitreous

silica makes possible a number of "defect modes" marked by the numbers 1, 2, and 3, which are

examples of possible TLS. The motion indicated by "1" is the transverse motion of an oxygen

atom in a double-well potential. "2" is motion between two other minima, but in the bond

direction. "3" shows the rotation of an SiO 4 tetrahedron..

All of these motions can approximately be described as occurring within double-well

potentials, as shown in Figure 2.4. The states are nearly isoenergetic, but are separated by a

small energy difference A and barrier height V. At temperatures low enough that the dominant

thermal phonon energies are much smaller than the barrier between the states, V 0 3kBT, only

the ground states of the wells are occupied, described by energy hQs/2. The two states have a

small population difference AN. Phonons of energy A0=hSe- ' resonantly mediate tunneling

between the two states. The overlap u between the two states24 is related to the separation d

between the wells, the mass m of the tunneling "particle," and the barrier height, P=d(2mV/lh)y.

The resulting reduction in the phonon mean free path is expressed by:

A2-'s (, T) = Am tanh 2.6
res ~2T
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where the constant A describes the coupling between the TLS and acoustic phonons. This can be

expressed as:

A- = kB°'2 2.7
hpv3

where p is the material density, no is the average density of states (DOS) of TLS, and y describes

the TLS-phonon coupling constant..

- f
Figure 2.4. Asymmetric double-well potential with barrier height Vand minima energy

difference A. Tunneling through barrier and transitions over barrier are shown. Adapted from
Reference 25.

A key feature of the tunneling model is the assumption of a wide and flat distribution of

TLS states. These arise from a constant (but unrelated) distribution of energy differences A and

also of tunneling overlap terms A between the states, which arise from a broad density of barriers

V. These simple assumptions reproduce low-temperature thermal and low-frequency acoustic

data remarkably well. However the physical basis of the assumption is debatable. The

development of a model for the TLS distribution is limited by the lack of understanding of their

origins. The value of A is usually determined phenomenologically by fitting the low-temperature

part of the thermal conductivity curve, where this effect dominates.2 6 The value of lres( b ,T)
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described by Equation 2.6 is shown in Figure 2.5 at several temperatures. Frequency is given in

Hz as well as in Kelvin. As the temperature is increased, Ares( i ,T) actually increases since the

equilibrium population difference AN - 0, and while tunneling transitions between the states

continue, phonon absorption due to this effect becomes negligible.27

Reduced Phonon Frequency (K)

0.05 0.5 5 50
10 . ... .

I~~~~ .. , ... 

1

0.1 . .fiv
" 0.01 I
Iv

0
1E-3

C
E-4

1 E-5

1 E-6

1E-7 .......
1E9 1E10 1E11 1E12

Phonon Frequency (Hz)

Figure 2.5. Phonon mean free path in glass due to resonant interactions with a flat distribution
of structural two-level systems. Parameters used for SiO2 from Reference 26: A=3.5x104 m-'K 1 .

At higher temperatures where the energies of the dominant thermal phonons exceed the

barrier height V illustrated in Figure 2.4, e.g. when V < 3kBT, phonons induce thermally-assisted

"hopping" transitions between the TLS minima. Because there are many different kinds of

motion in a glass, and the thermal motion of the surrounding atoms disrupts coherent transitions

of the two-level system,25 there is a much more complicated distribution of activated processes

than would be expected for a thermally activated Arrhenius-type process, which would yield

26
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th =t' exp(-V/kBT). Because the tunneling model assumes a broad distribution of TLS

asymmetries and energy splittings, their relaxations occur with a wide variety of characteristic

time constants, described by:24

_y2E3 Et-1= coth 2.8
2;rh4 pv 5 2kBT

where E=(A+Ao2 )/2 is the energy of the transition and the constants are the same as those for

Equation 2.7. It should be noted that this relaxation time has an important impact on

measurements of quantities that interact with the TLS. Depending on the experimental time

scale, possibly only a subset of the TLS distribution would be probed, which can lead to some

conflicting results for the same parameters measured by different techniques.. Implications of

this effect are discussed in Chapter 3. The resulting attenuation of phonons interacting with this

relaxation is given by:

-Y2 ( M(k2 h k2h'
(9, T) f= 2 %pl fdEsech2 ( k SE ) dt - tmi ( + kh-22t2 2.9

2kBTpv 3 0 , -2 2COn-l~~t [, 1 t

where the temporal dependence comes from the relaxation of TLS as in Equation 2.8, tmin is the

shortest timescale of TLS motion, when E= 0o, e.g. there is no asymmetry between the wells (but

still overlap) and the longest relaxation time has been measured to be at least 104 seconds in

silica glass (e.g., infinite for the current experimental methods.)28 The delayed response of the

TLS to the acoustic wave results in energy dissipation, and due to the non-resonant character of

the interaction the relaxation absorption cannot be saturated.2 4 The solutions of the integration in

the high and low frequency or temperature limits of the phonon-relaxation interaction are

considered separately. When the temperature is high, or the frequency is low, cot, 1 1 and:
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e/(a), T) = - 2.10
2

Here the coefficient A is the same as in Equation 2.7, and reflects the density of states as well as

transition probability between the TLS. When the temperature is low, or the frequency is high,

ot 1 [1 1 and:

i,- (Ci, T) = -BT 3 2.11
2

Here the phonon mean free path experiences a strong reduction with increasing temperature.

The coefficient B is, like A, related to the phonon-system coupling and the speed of sound in the

material:

B= Brky
2 2.12

12ph3v 5

The value of B can be somewhat more ambiguous to determine than A, because its contribution

to the thermal conductivity curve is never isolated. It is typically found by fitting the curve

above -2 K and through the plateau region, where it overlaps with the structural term described

below by Equation 2.14. The high and low temperature limits of Equation 2.9 may be combined

with the interpolation formula:2 9

:(rcQ, T) Ati+ 1 ) 2.13

The reduction in Al( ,T) from the interactions in Equation 2.13 is shown in Figure 2.6.

As shown in Figure 2.2, the thermal conductivity is suppressed at low temperatures, and

this is described well by the interactions summarized in Equations 2.6 and 2.13. However the

plateau is totally unexplained by these. In order for KC to cease growing with increasing

temperature, phonons of increasing energy that dominate the heat capacity near 10 K, in
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Figure 2.6. Phonon mean free path in glass due to relaxational interactions with a flat
distribution of structural two-level systems. Parameters used for SiO2 from Reference 26:

A=3.5x10 4 m'lK -1 , B=3x10 -3 K-2.

Equation 2.3, must stop propagating. Because glasses have in common that they 1) possess a

large amount of disorder, and 2) exhibit quantitatively similar anomalies in properties mediated

by phonon transmission, their heterogeneity is a likely source of interference with propagation.

When a material appears homogeneous on the length scale of the acoustic wavelength, phonons

propagates in the elastic limit, with minimal scattering. But as illustrated in Figure 2.3, disorder

in the glass yields static density fluctuations at a molecular as well as an "extended" scale, where

clearly the elastic limit does not hold. Phonons with wavelengths of comparable scale to these

heterogeneities will experience strong scattering in this limit, and will be "damped" rapidly (i.e.

will have reduced mean free path) rather than propagate. The frequency Qco above which

propagation stops is known as the Ioffe-Regel crossover, and has been demonstrated with
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inelastic x-ray scattering (IXS) to occur at a around 1 THz in SiO2
30 and around 2 THz in

densified SiO 2,
4'31 where the length scale of the heterogeneities is reduced via the densification

process. These frequencies coincide with the frequencies of the phonons which dominate the

thermal conductivity at the onset of the plateau, at -10 K for SiO2 as shown in Figure 2.2, and

-20 K for densified SiO2. At these high acoustic frequencies, no periodic structure exists to

support a propagating wave with a well defined wavevector. This has been called "the end of the

acoustic branch."3 2 Below SQo the elastic limit still is not entirely appropriate, and there is strong

interaction between the phonons and the "extended" structure of the glass.4 Between the elastic

limit and the crossover, the tunneling model postulates Rayleigh scattering of phonons from the

heterogeneous microscopic structure of the glass:

r (3) = Di4 2.14

The interaction is with static structural variations, and is therefore temperature independent. The

functional form expressed by Equation 2.14 is shown in Figure 2.7.

The Rayleigh scattering strength D is related to the magnitude of the density variations

that cause scattering:

D v h ) 2.15

where ((Av/v)2) is the mean squared variation in the acoustic velocity due to heterogeneities,

and a is the average spatial extent of structural correlations in the glass.. The value of D can be

though of as a first-order description of the "structure" of the glass. There has been heated

debate on the physical significance of the phenomenologically determined magnitude of D, 120

m 1K4, required to suppress K to its typical value..' 33 If one assumes an extremely disordered

material, with correlation lengths on the order of the bond lengths, such as the Si-O bond
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distance 0.16 nm in silica glass, D is calculated to be an order of magnitude too low. But as

shown in Figure 2.8, the local structure is correlated through the glassy network over a distance

of several bond lengths, estimated in SiO2 glass to be 0.45 nm. The variation in density owing to

static heterogeneity on this length scale yields a contribution to D of 4 mlK4 , underestimating D

by a factor of 30. The remainder of the strong scattering can be estimated to result from a wide

distribution of Si-O-Si bond angles, yielding strong variations in resistance to local shear or

compression, reflected in a variation in Si-O-Si bending frequencies, that can yield the additional

velocity fluctuation required to make D physical, ((Av/v)2 ) = 0.1.. However this value seems

extremely large, so it is unclear whether this description is accurate. The dynamics in this

picture, like those for the TLS, arise directly from the presence of disorder. Note that this

particular explanation for the network glass would require translation to the microscopic picture

of an ionic or molecular glass in order to yield quantitatively similar results for the bulk

observable anomalies. The details of each material must be considered, but the general result is

an intrinsic consequence of structural heterogeneity in the amorphous material.

The net effect of the interactions between heat-carrying acoustic phonons and the

microscopic details of the glass, using Equations 2.6, 2.13, and 2.14 as described by the

tunneling model, with a term for the minimum mean free path included as discussed above, is:

A(ci,T) = Ao tanh .,+ -+ I) +D4 +2.16
f2T -fi2 6 5-+w BT31 i' ·) 2.16

The total phonon mean free path expressed by Equation 2.16 is shown in Figure 2.9 at several

temperatures, in the "high frequency" range in which structural correlations and two level

systems strongly mediate the propagation of acoustic waves. At low frequencies, there is some

modest temperature dependence in A(AT) owing to TLS interactions, but all frequencies above
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100 GHz are dominated by the Rayleigh scattering described by Equation 2.14, up to a cutoff

around 1 THz above which propagation ceases entirely. Figure 2.9 shows the temperature

variation of the mean free path for different frequency phonons. Again, frequencies above

around 100 GHz have no temperature dependence, as the dominant phonon-material interaction

is Rayleigh scattering arising from static structural variations.

2.3 Predictionsfor Macroscopic and Microscopic Behavior of Glasses

The greatest strength of the tunneling model is that despite its simplicity, it does an

excellent job of reproducing most thermal and spectroscopic data obtained from many different

classes of amorphous materials. However, it is disconcerting that different classes of

measurements which purport to yield the same information on a particular material frequently

give conflicting evidence for the validity of the tunneling model.34 For example, broadband

acoustic measurements35 performed in silica glass up to frequencies of 440 GHz suggest that the

phonon mean free path goes as w2, as opposed to o4 as indicated by the tunneling model and its

agreement with thermal conductivity measurements. Phonon spectroscopy measurements in a

similar range, using the superconducting tunnel junction technique, indicate a phonon mean free

path at 1 K varying as co3 or as co6, a striking difference.36 '3 7 Somewhat worrisome also is the

recent discovery of an amorphous solid, CdGeAs2, that appears to completely lack structural

two-level systems. In the same study it was also found that the gradual increase of defects in a

crystal caused the development of glass-like thermal anomalies, despite the crystallinity.38 These

results imply that TLS do not naturally or necessarily arise from amorphous structure.
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Despite the inconsistencies, the tunneling model does reproduce the temperature

dependence of the thermal conductivity very well, using Equations 2.2 and 2.3 with parameters

described throughout the text, as shown in Figure 2.11. Data taken from Reference 12 are

included in order to illustrate the excellent quantitative and qualitative agreement between the

tunneling model and the measured conductivity. The small offset between the model and the

data is an artifact resulting from the digitization of the data. An additional line showing the

calculated conductivity without a contribution from Rayleigh scattering is included for

comparison. This illustrates clearly that the testing of the tunneling model, or any model of low-

temperature amorphous solids, and determination of model parameters through measurement of

thermal conductivity is insufficiently stringent to give confidence in the model's validity or in

the physically meaningful interpretation of its parameters.
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Figure 2.11. Thermal conductivity of a glass, calculated with the tunneling model using
parameters for silica glass as described in the text. Data were adapted from Reference 12. The

dashed line shows the conductivity of a material with no Rayleigh scattering contribution as
described by Equation 2.14.
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It is clear that accurate measurements of both bulk thermal conductivity and frequency-

dependent phonon behavior are necessary for reliable understanding of glassy behavior. While

the subsequent chapters of this thesis present a novel approach to the important problem of

frequency-dependent phonon characterization, reliable measurement of thermal conductivity also

presents significant challenges. Quantitative measurements have not been reported for most

glass-forming materials. Given the similarities in behavior among glasses with widely varying

microscopic structures, measurements are needed a wide range of samples. In Chapter 3,

measurements are presented for a common organic glass former, glycerol, and the results are

compared to the model described in this chapter. As will be illustrated, the most notable

weakness of the tunneling model and the conventional determination of its parameters is that

they rely upon bulk measurement of very few macroscopic parameters to characterize the results

of several processes, each of which is the result of a weighted average of microscopic parameters

and phonon characteristics. A direct measurement of the phonon properties as a function of

frequency and temperature would far more incisively reveal the phonon-material interactions; as

mentioned before, attempts to date of such measurements have frequently given conflicting

results with each other and with the tunneling model. The development of a novel technique to

directly generate the acoustic phonons in the crucial frequency range presented in Figure 2.9 is

the subject of Chapter 4, and new data on their interactions with microscopic processes in silica

glass is presented in Chapter 6.
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Chapter Three

Low Temperature Thermal Anomalies of Glycerol

3.1 Introduction

The subject of this chapter is the anomalous low-temperature thermal conductivity of the

molecular glass glycerol, which is an extremely well characterized material above its glass

transition temperature Tg=180 K. The thermal conductivity is of particular interest because it

provides an indirect measurement of the underlying structure and dynamical processes in the

glass, as described in detail in Chapter 2. The phonons that carry heat through a glass are

absorbed and scattered by dynamical processes and static heterogeneities within the material,

resulting in a sharp reduction in the thermal conductivity of the glass relative to that of its

corresponding crystal. By modeling the possible microscopic phonon-material interactions, one

can hope to understand the anomalous bulk conductivity. However, conventional determination

of the thermal conductivity can present many challenges. It usually involves some variation of

preparing a bulk sample, heating one end of it, and measuring the time-dependent temperature

rise at the other end." 2 To quantify the conductivity, the contribution from any sample holder

must be independently measured and subtracted, any radiative (photon) heat transfer contribution

eliminated, and then the non-exponential time-dependent temperature rise at thermometers

placed at different locations in the sample must be modeled.

Here a different class of conductivity measurements, based on the well-established

impulsive stimulated thermal scattering (ISTS)3'4 technique, is exploited. ISTS is a non-contact

method wherein the sample is gently heated by absorption of crossed laser pulses, and the

resulting spatially periodic thermal expansion gives rise to changes in the material's density and
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refractive index that form a bulk transient grating pattern. These changes are monitored via

coherent scattering of probe laser light from this pattern. As the deposited heat is transported

from grating peaks to (unheated) nulls by thermal diffusion processes, the scattered signal varies

measurably in time. In this configuration, a well-defined wavevector magnitude q is determined

by the spatial period of the excitation interference pattern, and therefore a simple single-

exponential decay, directly related to the thermal diffusion constant, describes the time-

dependent signal I(t):

I(t) e/ 'h 3.1

The decay constant th can be used directly to calculate the thermal diffusion constant D

(unrelated to the Rayleigh scattering parameter discussed in Chapter 2) and the thermal

conductivity K, by:

32
t; = Dq2 - 3.2

PCP

where the wavevector q, along which the diffusion constant is measured, may be varied by

changing the experimental geometry in order to test for the expected q-2 dependence of rth and to

reliably determine the value of K. The density p and the heat capacity Cp are bulk values of the

glass that may be obtained from independent measurements,5 or from models. The relative

simplicity of the ISTS measurement and its analysis permit versatile and reliable determination

of KC in bulk and thin film samples.6 ,7 However, most ISTS measurements to date have been

conducted on samples at relatively high temperatures, i.e. 77 K and above. Since the thermal

expansion coefficients of materials are strongly reduced at low temperatures, so are ISTS signal

levels. ISTS measurements at low temperatures therefore can be more difficult than those at

elevated temperatures.
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The class of molecular glasses is significantly underrepresented among studies of

amorphous materials. The subject of the experiments presented in this chapter is the thermal

conductivity of the molecular glass glycerol, C3H5(OH)3 . Glycerol is thoroughly studied above

its glass transition temperature Tg-180 K, where it exhibits the two-step dynamics typical of a

glass-forming liquid - a fast "P-relaxation" process that is often interpreted in terms of motions

that do not disrupt intermolecular networks, i.e. the motions of a particle inside its cage, and a

slow and strongly temperature-dependent "a-relaxation" process corresponding to the correlated

motions of many particles.89 The dynamics above Tg of a network (e.g., silicate) glass are

characterized by an activation energy that is temperature independent and by Arrhenius-like

behavior, which arise from the relative simplicity of the intermolecular interactions determined

by the covalent network. In particular, we expect in such "strong" glasses a relatively small

number of deep local potential energy minima that control local structural arrangements.

However the dynamics of a molecular liquid, shown in Figure 3.1, are complicated by the lack

l0104

V
Figure 3.1. Dynamical ranges of temperature-dependent slow and fast processes in glass-

forming liquids. Adapted from Reference 10

43



of a strong intermolecular potential, instead determined typically by weak van der Waals

interactions. While the spectrum of a network glass above Tg would certainly be characterized

by "fast" and "slow" dynamics, the temperature-dependent interrelationship is far less interesting

and can be explained by simulations which describe the dynamics as transitions between two

minima, separated by a barrier of energy E. More "fragile" glasses are expected to have energy

landscapes with many shallow local minima of comparable energies, with a broad distribution of

activation energies. Glycerol, with its hydrogen-bonded network, is intermediate between these

two limiting cases.

LU

10

10 "Fragility" factor m 100

Figure 3.2. Relationship between high temperature activation energy E for correlated motion in
the liquid state, the glass transition temperature Tg, and the "fragility" or weakness of interaction

m between the particles. Adapted from Reference 11.

Like the tunneling model for glasses discussed in Chapter 2, the main theory12 which

describes these dynamics is hotly debated. The typical frequencies of these dynamics, along

with the "microscopic excitations" described in Chapter 2 can be well-separated in time - by up

to 12 orders of magnitude difference - but are still believed to couple to each other. Also
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debated is the connection between these complex liquid-state dynamics and the presence of the

aforementioned thermal and acoustic anomalies in the glassy state.13 4' 15 For example, the onset

of the glass transition Tg, where dynamics are dominated by high-frequency motion, has been

found to be directly related to the activation energy E of correlated motion at high temperatures,

similar to the barrier to motion between structural two-level systems in the glassy state, and to

the "fragility" m, or weakness of intermolecular interaction, as shown in Figure 3.2. Because of

their unusual properties and rich behavior, molecular glasses are in a sense the "quintessential"

glass-formers.

However the nature of the microscopic excitations in a molecular glass has not been

studied extensively. A recent and extremely thorough review of the acoustic and thermal

properties of disordered solids1 6 by one of the founders of the field was remarkably unable to

locate a sound velocity for glycerol below Tg. A single measurement of its low-temperature

thermal conductivity and heat capacity is found in the literature. This chapter describes the new

use of an all-optical method to determine the low-temperature thermal conductivity of glycerol,

as a representative of a wide class of hydrogen-bonded molecular glasses. The current result

differs markedly from that of a more traditional experimental method..'7 The possible reasons

for this difference are addressed experimentally and also in the framework of the model

described in Section 2.2. The low temperature acoustic dispersion is also addressed in the 50-

250 MHz range.

3.2 Impulsive Stimulated Thermal Scattering: Experiment and Results

Impulsive stimulated thermal scattering (ISTS) is a well established method of probing

thermo-elastic phenomena in a wide variety of samples, on multiple timescales..' Generally the
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technique involves heating of the sample in a spatially periodic pattern, by crossing two laser

pulses inside the sample where they interfere and are partially absorbed. The resulting changes

in the refractive index induced by the material response are probed by diffraction of variably

delayed laser pulses, or, as in our case, of a continuous wave (cw) laser beam. The experimental

layout is shown in Figure 3.3. A phase mask is used to diffract the short excitation laser pulse

indicated in black (200 ps, A=1064 nm, 500 gJ, from a home-modified Spectron Nd:YAG laser

which is Q-switched, mode-locked, and cavity-dumped) into multiple orders. The phase mask

(Pm) was designed 18 in order to maximize energy in the +1 orders of diffraction, which are

spatially filtered and crossed inside the sample by a two-lens imaging system. For this

experiment L1 was a horizontally mounted cylindrical lens, f=15 cm, and L2 was a spherical

lens, also f=15 cm. This resulted in an excitation spot which imaged the horizontal features of

the phase mask with a roughly 1:1 ratio, and was vertically focused, with a total spot size of 2.5

mm x 100 jpm.

OW

Figure 3.3. Transient grating experiment with differential optically heterodyned detection.
Excitation beam is shown in black, probe beam in grey, and diffracted signal in dotted line. OW:

optical window; Pm: phase mask of variable periodicity; L1 cylindrical lens,f=15 cm; L2
spherical lens,f=15 cm; PD: photodiode.
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The grating spacing of the phase mask (1-100 pm) and the imaging ratio of the telescope

define the angle O at which the two excitation beams cross, and determines the wavelength A of

the interference pattern inside the sample:

A= 3.3
2sin(0/2)

The excitation wavevector is given by q = 2yr/A, and can be easily varied between 6.3x104 m'-

and 6.3x106 m 1 by translating the phase mask to different etched patterns. The 1064 nm light is

very weakly absorbed by the glycerol sample in the 2nd overtone of the OH stretch. The sudden

heating causes rapid thermal expansion, which launches counter-propagating acoustic waves of

wavelength A and frequency f = v/A. On a longer timescale, the deposited heat slowly diffuses

from the heated peaks to the unheated nulls of the temperature grating. The thermal and acoustic

responses modulate the refractive index of the glycerol, resulting a transient grating of

wavevector magnitude q.

To monitor the time-dependent material response, a cw probe laser beam indicated in

grey (532 nm, 30 mW, Coherent Verdi) is introduced to its own optimized phase mask

collinearly and directly above that of the excitation beam. Likewise it is diffracted into many

orders and the ±1 diffracted orders are selected and crossed inside the sample by a two-lens

telescope, generating a second grating which is spatially overlapped with the excitation grating.

The spatial phase of the probe grating may be varied relative to that of the excitation grating with

the optical windows OW. The geometry ensures that the probe beams arrive at the Bragg angle

of the transient grating inside the sample,19 where a small amount of their light (_10 44-10
-5) is

diffracted, as indicated by the dotted lines. The transmitted part of each probe beam is collinear

with and phase-coherent with the diffracted signal from the other probe beam, for optically
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heterodyned detection of the signal. The signal in each beam is focused into one of two diodes

in a custom-built differential detector (Cummings Electronics Labs, North Andover, MA). The

two diodes have the same gain but are biased oppositely to each other, and the two signals are

combined electronically. The signal intensity Is observed at the positively biased diode is given

by the heterodyne equation:

= ( +)2 = R + + 2 I cos D 3.4

where ID is the intensity of the beam diffracted from the transient grating, IR is the "reference"

intensity of the undiffracted probe beam (I R -ID IR), and 'D is the total optical phase

difference between the diffracted and reference beams. The optical phase of the field in the (+)

direction experiences a r/2 phase shift due to the static phase mask, and the field in the (-)

direction experiences a -/2 phase shift. Then they both experience an additional shift resulting

from the spatial phase of the excitation grating pattern relative to the probe grating, which may

be varied with the optical windows inserted in the probe beams. The signal intensity Is

observed at the negatively biased diode is given by:

IS = -I R - ID - 2/R-I cos( - ) 3.5

The total phase difference may be optimized by rotating the optical windows to yield maximum

differential signal when F = 0, a, 2ar, etc.:

IS = IS + I S-= 4JI 3.6

A traditional heterodyne detection scheme is described by Equation 3.4, where the reference

beam intensity IR adds to the signal an unavoidable background. In that case, IR must usually be

significantly attenuated in order to limit the amount of light (and the accompanying laser noise)

that reaches the photodiode, and also to limit the electrical signal (and the accompanying
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electrical noise) that is then amplified (to a level that must be kept below the saturation or

damage level) in a digitizing oscilloscope. However this requisite attenuation also reduces the

heterodyne signal level, 2J/i . In the differential detection geometry, far higher light levels

of IR -10 mW could be introduced to both diodes, whose electrical outputs are added prior to

processing by an on-board high-bandwidth (3 GHz) amplifier. The amplified signal is acquired

and averaged by a fast digitizing oscilloscope (Tektronix TDS6000 series, 4GHz).

The optical geometry of ISTS is extremely well-suited to temperature-controlled

measurements because it is non-contact and it allows an almost arbitrarily large distance between

the final lens L2 and the sample. After alignment of the experiment on an unenclosed sample, a

cryostat (Janis SVT-200, Wilmington, MA) with windows for optical access on four sides was

inserted in the beam path, with the glycerol sample inside and in the plane of focus of L2. The

cryostat was of a "sample-in-vapor" style, with the sample immersed in helium gas that had been

heated to a desired temperature at a vaporizer. This eliminated any stringent requirements for

thermal contact between the sample and coldfinger or temperature sensor. The temperature at

both the sample and the vaporizer was monitored with silicon diodes (Lakeshore Cryotronics

DT-670, Westerville, OH) and the heater output was controlled by a Lakeshore 331 temperature

controller. The temperature at the sample was taken below 4.2 K by filling the sample chamber

with liquid helium, sealing it, and then reducing the pressure above the liquid with a standard

rotary pump. The glycerol sample cell was assembled by placing a 1/4" thick 1" outside diameter

rubber o-ring on a /4¼" thick 1" diameter sapphire window, and filling it with anhydrous glycerol.

A second sapphire window was placed on top of the o-ring, and the sandwiched assembly was

held together with two metal plates and 4-40 screws. A new sample was made at the beginning

of each cool-down cycle to avoid water contamination which occasionally resulted from
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condensation during the previous warm-up cycle because the sample is not kept under vacuum in

this sort of cryostat.

Measurements requiring the sample to be submerged in liquid helium were problematic

and required modification of the experiment. One of the benefits of ISTS is that the phase fronts

of the excitation pulses arrive parallel to each other at the sample, resulting in a volume grating

which can extend for several millimeters through the depth of the sample, especially if large

excitation spots and small crossing angles are used.18 It was found that this volume grating

extended outside of the glycerol sample and generated low-frequency acoustic modes in the

helium, as shown in Figure 3.7, which temporally overlapped with the thermal diffusion

processes in the glycerol. In order to avoid signal contributions from the beams crossing inside

the liquid, two additional modifications to the experiment had to be made to confine the

excitation region inside the glycerol. First, an additional lens was included in the setup prior to

the phase mask, which adjusted the horizontal size of the pump and probe spots in order to

minimize the depth of overlap. A horizontally mounted cylindrical lens which focused the

beams into the phase mask resulted in an excitation region at the sample which was roughly 150

pmrn x 100 pm. This introduced the added complication that as the phase mask was translated to

smaller grating spacings, i.e. larger crossing angles, spherical aberrations as well as dichroic

effects in L2 resulted in systematically poorer overlap between the pump and probe beams.

Choice of a very large diameter lens L2 (3") reduced this effect somewhat. Alignment was

carefully optimized by inserting a CCD camera in the sample plane, and ensuring that all beams

overlapped over a wide range of grating spacings. As an additional precaution against beam

overlap inside the liquid helium, sapphire windows of 3/8" thickness were glued to the outside of

the sample cell. Despite this, some helium contribution to signal was observed at the lowest
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temperatures, and is presented slightly later in this section. Generally by careful data acquisition

and analysis, the effect was minimized. It should be noted that the signal from liquid helium is

not due to ISTS, since the excitation wavelength is not absorbed even weakly by the liquid

helium. Instead, acoustic wave generation occurs due to impulsive stimulated Brillouin

scattering (ISBS). This effect is normally considerably weaker than ISTS, but in the present case

the ISTS signal is weaker than normal because of the weak absorption of 1.06 m excitation

light by the glycerol and the low thermal expansion constant of the sample at low temperatures.

It is clear from the difficulty of avoiding the effect that ISBS signal is unusually strong in liquid

helium, indicating a particularly strong electrostriction constant, or Brillouin scattering cross-

section, in helium.2 0

The goal of this experiment is to measure the thermal conductivity, but the ISTS data also

yield the acoustic velocity and (generally) attenuation rate as well. The time dependent signal is

given by:

Is(t) = (A + B)eh /° -Ae/ cos(2rft) 3.7

Here A and B are the strengths of the thermal and acoustic parts of the signal, and are unrelated

to the parameters of the tunneling model described in the previous chapter. The thermal

diffusion time is given by rth, from which the thermal conductivity will be calculated, and the

apparent acoustic damping rate is approximated by rac. In the present case the apparent damping

is a convolution of the actual damping rate a, which is exponential, and the loss of signal due to

the propagation of the acoustic waves away from the probe region, which is Gaussian.. This

effect can be seen below in Figure 3.15, which includes a fit of Equation 3.7 to the signal data.

Signal from glycerol held inside a cryostat at 5.0 K is shown in Figure 3.4 on a linear scale to

emphasize the single-exponential thermal decay, in Figure 3.5 on an expanded linear scale to
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Figure 3.4. ISTS signal in glycerol at 5 K, 15 micron grating spacing, plotted on a linear scale to
emphasize the single-exponential thermal decay.
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Figure 3.5. ISTS signal in glycerol at 5 K, 15 micron grating spacing, plotted on an expanded
linear scale to emphasize the acoustic contribution to signal.
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Figure 3.6. ISTS signal in glycerol at 5 K, 15 micron grating spacing, plotted on a logarithmic
scale to emphasize the linearity of the single-exponential thermal diffusion contribution to signal.

1.0

e

0t
C

a
c

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4
0 1000 2000 3000 4000

Time (ns)

Figure 3.7. ISTS signal in glycerol at 1.8 K, 15 micron grating spacing, with strong contribution
from liquid helium signal.
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emphasize the acoustic oscillations, and in Figure 3.6, on a logarithmic scale to emphasize the

linearity of the single-exponential thermal diffusion contribution to signal. As discussed

previously, at very low temperatures strong signal contributions arise from excitation beam

overlap inside of the liquid helium in which the sample is immersed; this effect is demonstrated

in Figure 3.7.

The transient grating wavelength was carefully calibrated to within 1% accuracy prior to

the experiment, by making the same ISTS measurement in ethylene glycol at 294 K (room

temperature), but inside the cryostat with the same geometry as the low-temperature glycerol

experiment. Ethylene glycol has a temperature-dependent acoustic velocity v near room

temperature given by:21

vO =(1.658 Ian-2.1x 10-3 km x (T-298 )) 3.8
S ~sK

100-

u,
I=
E 80-
0,

.E
OCD

_ 40-

lu 20-

....... I I . I I I I

0 20 40 60 80 100

Nominal Grating Spacing (microns)
Figure 3.8. Calibration of transient grating spacing in ethylene glycol using a series of phase

masks with different spatial periods d. The nominal grating spacings are given by A=d/2,
calculated assuming the two-lens telescope had a 1:1 imaging ratio.
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By taking the Fourier transform of the acoustic part of the ISTS signal, and using the resulting

acoustic frequencyfo with the calculated velocity v0=1666 m/s, the grating wavelength A could

be determined via A = vo fo. The periodicity of the etched phase mask, versus the acoustic

wavelength inside the material determined in this manner, is shown in Figure 3.8. The phase

mask to transient grating imaging ratio was found to be 1:0.97.

With the wavevector q = 2r/L of the measurement well characterized as described

above, the thermal conductivity is obtained in glycerol by first determining the time constant rth

of the exponential decay of the signal, by fitting the data numerically to Equation 3.7. The

results of this fit are shown in Figure 3.9 for three different grating wavelengths (wavevectors).

The variation with wavelength is quite apparent, and naturally arises from the difference in

length scales along which heat must diffuse from the heated peaks of the transient grating to the

unheated nulls. It should be noted that if the mean-free path of the dominant phonons

responsible for thermal diffusion is longer than the experimental grating wavelength, then the

transport will be characterized by ballistic rather than diffusive dynamics.2 2 The possibility of

this case is experimentally addressed later on in this section. The thermal diffusion constant D

can be easily obtained from the rth signal fits via the relation:

1
D(T) = 3.9

th(T)q2

The value of D(T) is shown in Figure 3.10 for the grating wavelengths/wavevectors shown in

Figure 3.9, as well as for a 36.0 micron grating spacing, which was obtained in a measurement

made months earlier. Excellent agreement between values of D(T) from the different grating

wavelengths is found at higher temperatures. At lower temperatures the scatter is within the

error of the wavevector calibration, but appears systematic enough to warrant further study.
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The calculation of the thermal conductivity K from D(T) is extremely straightforward, and

is given by the relation:

K(T)= D(T) 3.10
pC, (T)

where p and Cp(T) are the density and bulk heat capacity, respectively. The heat capacity data

and density data generously provided by Professor Miguel A. Ramos (Universidad Autonoma de

Madrid) obtained as described in References 5 and 17 are presented in Figure 3.11 on a linear

scale, and in Figure 3.12 divided by T3 in order to illustrate the extra modes present in the glass,

over the T3 dependence predicted for the crystal, as discussed in Section 2.2 and shown in Figure

2.1 for silica glass. Ramos' data were found to be in good agreement with values found

elsewhere at temperatures above 2 K.23

Using the values of D(T) obtained through ISTS in Equation 3.10 with values of p and of

Cp from Ramos, the thermal conductivity was calculated. The result is presented along with

Ramos' results obtained by a more conventional method in Figure 3.13, also provided by

Professor Ramos. Also shown is the conductivity of silica glass calculated using the tunneling

model and associated parameters, as described in Section 2.2 and shown in Figure 2.11. The

ISTS data are extremely consistent across the different grating spacing measurements, and show

a strikingly different behavior than Ramos'. Generally, the ISTS values are roughly 0.2 Wm-lK1l

lower than that measured by the standard approach, and show an unexpected temperature

dependence below 10 K. Possible origins of the large difference are discussed in Section 3.3.
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Figure 3.13. Thermal conductivity measured at several grating wavelengths/wavevectors by
ISTS, compared to that measured by the more conventional method used by Ramos, et. al., as in

Reference 2. Also included is silica glass conductivity as discussed in Chapter 2.
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Values of the acoustic velocity at the wavelengths described above were measured

concurrently with the diffusion data. The peak frequency of the acoustic wave at each calibrated

grating spacing in Figure 3.8 was obtained by Fourier transformations of the data, and the result

is presented in Figure 3.14. A linear fit to the data allows precise determination of the acoustic

velocity, which is found to be 3750 m/s at 5 K.

3.3 Discussion

The large discrepancy between the result of ISTS and of the conventional method for the

thermal conductivity of glycerol raises many concerns regarding the experiment. As shown in

Figure 3.13, the ISTS results are consistent across multiple measurements. The fits of Equation

3.7 to the raw data are excellent, as shown in Figure 3.15. The acoustic part of the fit appears

less than optimal, and this is due to propagation out of the probing region as mentioned in

Section 3.2. First the general characteristics of the conventional and ISTS results are addressed,

and later the possible sources of the difference will be discussed in terms of the theoretical

framework of Chapter 2 and tested experimentally.

At the lowest temperatures, T<2 K, thermal phonons are modeled to induce tunneling between

quasi-isoenergetic states of structural two-level systems (TLS), as described by Equation 2.6.

This typically yields the power law K- 2 for the bulk conductivity of the glass, as compared with

the Debye result ic- 3 for the crystal. This difference is one of the main "results" discussed

regarding thermal anomalies of glasses. However both the conventional and ISTS experiments

discussed here have a low-temperature limit of -1.7 K, limiting discussion of this feature. At

higher temperatures, above 2 K, the thermal conductivity data are not usually described in terms

of a "characteristic" power law, and instead the focus shifts to the onset of the plateau near 10 K.
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Figure 3.15. ISTS data at 3.30 K, 15 !pm grating spacing, and fit using Equation 3.7

However it is apparent that the conventional and the ISTS data have remarkably different

temperature dependence below the plateau. A fitting program (OriginPro 7.0) was used to

determine the power laws of different temperature regions of the thermal conductivities, -,

from the two glycerol measurements, as well as from the silica glass calculation performed in

Section 2.2 which reproduces the literature measurements at all temperatures of interest as shown

in Figure 2.11. The results are presented in Table 3.1. The different temperature regions were

chosen by examining the temperatures where the trends in the conductivity curves from the

various materials and measurements show a distinct change, such as shown in Figure 3.17. For

the silica glass, the numerical integration of Equation 2.2 (performed in Matlab) has a low-

temperature limit of 0.6 K, so the temperature range considered here does not contain the "pure"

TLS resonant contribution, resulting in a power law somewhat lower than K-T 2. Between 1.6-

3.9 K, where the thermal conductivity is determined by resonant as well as relaxational TLS-
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Temperature (K) m, Silica M, Glycerol (Ramos) m, Glycerol (ISTS)
0.6-1.6 1.57 N/A N/A
1.7-3.9 0.95 1.04 2.87
1.7-7.1 0.64 0.80 2.85
7.1-12 0.086 0.14 0.59
12-21 0.13 -0.032 0.42

Table 3.1. Fits of the thermal conductivity to a power law, K:--T , in various temperature ranges
for silica glass as calculated in Chapter 2, and for glycerol, from traditional measurement as from

Reference, and from ISTS measurement. Errors were less than 10% in all fits.

phonon interactions, the curve for silica becomes nearly linear with temperature, K-T, as does

Ramos' data. In stark comparison, the ISTS measurement yields a power law that nearly

duplicates that expected of a crystal, Kc-J3. However the magnitude is much lower than that of

the crystal, as well as that of Ramos' data, indicating that this phonon-material interaction is

extremely strong, but deviates from that described by Equation.2.16. This behavior persists all

the way up to 7.1 K, as shown in Figure 3.16. Above this temperature, the behavior crosses over

to a different power law, described roughly by c-T1 2. The silica glass and Ramos' data cross

over to a nearly temperature-independent value, K-7 0.

By looking at the slopes of the different thermal conductivity data sets, the temperature

ranges over which different behavioral regimes occur can be distinguished more easily. As

shown in Figure 3.17, the silica and Ramos' data behave qualitatively in the same manner, with a

gradual reduction in slope that flattens around 10 K. Around and above 10 K, the ISTS data

follow a qualitatively similar trend. However at low temperatures the ISTS data exhibit an

increasing instead of decreasing slope, reaching a maximum near 7 K before crossing over to a

more expected behavior. The increasing slope, and in particular the T3 dependence reminiscent

of that observed in crystalline solids suggest that the mean free paths of low to moderate

frequency phonons (those thermally excited at temperatures below 7 K) have a frequency
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dependence more closely resembling that of crystalline solids than that of most glasses. Yet the

low absolute values of the thermal conductivity strongly suggest that the acoustic phonons are

interacting strongly with structural rearrangement dynamics (i.e. with TLS) in glycerol. Taken

together, the results may point to an unusual distribution of TLS splittings and/or energy barriers,

such that although phonons at all frequencies are strongly damped, the transport of higher

frequency phonons relative to those at low frequencies is better than in other low-temperature

glasses. Thus as the temperature is raised, the thermal conductivity increases at a higher rate

than in other glasses.

0.25.

- 0.20.

, 0.15-

0.10.

- 0.05-

I.-
O fl3.

0 2 4 6 8 10 12 14 16 18 20 22

Temperature (K)

Figure 3.16. Fit of the power law K- 2. 8 5 to the thermal conductivity of glycerol measured by
ISTS. A linear dependence is expected, K-T 1.
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Figure 3.17. Derivative of thermal conductivity data for silica glass as calculated in Chapter 2,
and for glycerol, from traditional measurement as from Reference 17, and from ISTS.

The strengths of the various phonon-material interactions posited by the tunneling model

are usually phenomenologically determined by fitting different temperature regimes of the

measured thermal conductivity curve to the curve calculated by integrating Equation 2.2 while

varying the magnitudes of different terms in Equation 2.16. The strength of the phonon-TLS

interaction is normally determined independently by varying the parameter A described by

Equation 2.6 to match the slope of the thermal conductivity below 2 K. As neither data from

Ramos, et. al. or from the ISTS measurement extends into this temperature range, the value of A

cannot be independently determined and so here is determined simultaneously with the other

interaction strengths described by B and D by fitting the full curve of Equation 2.16. It should be

emphasized that the tunneling TLS still contribute to the reduction of the thermal conductivity

even at higher temperatures. The value of the acoustic velocity v was obtained from the

literature2 4 for silica, and from the acoustic measurement described in Section 3.2 for glycerol,
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assuming the shear velocity is one-half the longitudinal velocity and using Equation 2.4. The

results of the fits are presented in Table 3.2. The fitted curves can be seen in Figure 3.18. The

low-temperature part of the ISTS curve is very poorly fitted by the tunneling model. The

difficulty of fitting the ISTS data lies in its extremely low magnitude, which is not predicted by

the tunneling model.

Parameter Silica Glycerol (Ramos) Glycerol (ISTS)
A, ml'K' 3.5x10 4 2.6x10 4 2.7x0 5

B, K-2 3.0x10- 3 1.3x10 '4 8.7x10-6
AB/2, m-lK- 53 1.69 1.17

D, m'lK 4 120 190 137
V, ms' 4100 2905 2905

Table 3.2. Strengths of the various microscopic parameters described by Equation 2.16, fitted by
comparing the measured thermal conductivity to that calculated by numerical integration of

Equation 2.2.
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Figure 3.18. Fits of ISTS and Ramos' data to the tunneling model, Chapter 2. Fit parameters are
given in Table 3.2.

65



The silica glass and Ramos' glycerol data have comparable magnitudes of parameters

that describe the TLS resonant and low-frequency/high-temperature relaxational interaction, A in

Equations 2.6 and 2.10, while the ISTS result is an order of magnitude higher. The larger value

is necessary, within the context of this model, in order to give the very low thermal conductivity

values determined from ISTS measurements at the lowest temperatures. The value of the

Rayleigh scattering term, D, is fairly comparable for all the measurements. The product AB/2, in

Equation 2.11, describes the strength of the high-frequency/low temperature limit of the TLS

relaxational interaction, which is much smaller than for silica and is comparable for the two

glycerol measurements. The far lower value of B determined from the present results is

necessary, again in the context of this model, in order to yield the rapid, -iT increase in thermal

conductivity with temperature. To summarize, the net phonon interactions (within the

description of the tunneling model) with structural TLS are enhanced in glycerol as compared

with silica glass for resonant and low-frequency/high-temperature relaxational dynamics, but are

significantly reduced for the high-frequency/low temperature relaxations. It should be also noted

that the fit of the bulk ISTS thermal conductivity curve was adequate near the plateau, but that

the actual conductivity was significantly overestimated by the tunneling model at low

temperatures. This strongly implies that there is a dynamical process which is observed in this

particular measurement, but not accounted for by the form of the model expressed by Equation

2.16.

Lastly the differences between the ISTS results and the more conventional measurement

are explored to try to understand the nature of the discrepancy. For example if the difference AKc

is taken between the two measurements, as shown in Figure 3.19, the difference increases rapidly

with temperature to a peak near 4 K, before gradually decreasing. The shape of the curve is
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qualitatively reminiscent of Figure 3.12, which illustrates the number of excess modes available

to hold heat in the glass, and is reproduced here. The temperatures of the maxima are within -3

K of each other, but it is unclear whether the similarity is coincidental. The presence of

additional modes near this temperature could certainly explain the plateau in the conductivity. If

the ratio K/IT is taken, as shown in Figure 3.20, a qualitative change in the behavior can be seen in

the data from each technique. However it appears that the change in the ISTS data fall very

close to the temperature at which the excess of modes appears in the heat capacity, strongly

pointing to a similar origin of both behaviors.

In trying to understand the difference between the ISTS and more traditional

measurement of the thermal conductivity, two issues are of initial concern. First is the

possibility that the bulk specific heat used in Equation 3.10 is not valid in this experiment. This

could be due to a temporal overlap of the thermal diffusion with a dynamical process in the glass.

For example a time-dependent heat capacity was observed recently in supercooled liquid

glycerol.2 5 When the time scale of the a-relaxation process described in Section 3.1 overlaps

with the time scale of the thermal diffusion, the modes are observed to interact very strongly.

The thermal diffusion becomes reduced and non-exponential as thermal energy flows into

collective motions of the network, rather than propagating normally. In the current experiment

there is concern that at low temperatures, the transitions of some subset of the two level systems

described by Equations 2.6 and 2.9 occur on the same timescale as thermal diffusion. As

mentioned before, the TLS relax with a characteristic time t described by Equation 2.8. This

yields a time dependence in the linear part of the heat capacity:26

2 I4t
C(t, T) = k2 ,k2T In- 3.11

12 t,

The interaction with a distribution of two-level systems would be seen as nonexponential
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thermal diffusion that could not be fit to a single time constant rth,27 and a deviation from the

relationship expressed by Equation 3.9 i.e., rth would not go as q-2

A second issue is the possibility that the mean free paths of the dominant thermal

phonons involved in heat transport are longer than the grating spacing along which the diffusion

constant is measured. For spacings of many microns, this is implausible at higher temperatures

where heat transport is dominated by phonons of very high frequencies and low mean free paths.

However, at 1.8 K, thermal excitation extends to acoustic modes only scarcely above 30 GHz

frequencies, and their mean free paths could well be in the micron range. Both of these effects

on the signal were tested by measuring rth while varying the wavevector and holding the

temperature constant. The grating spacing was varied between 15-85 plm. The effect of varying

the grating spacing over this range was to smoothly change the thermal diffusion time by nearly

two orders of magnitude, from 0.2 s - 10 s. The results at 6.1 K and 1.8 K are shown in

Figure 3.21 and Figure 3.22, respectively. With the exception of some data scatter there appears

to be no discernable wavevector dependence of the thermal diffusion in this temperature and

frequency range. The notable scatter in Figure 3.22 is attributed to a small signal contribution

from helium, as shown previously in Figure 3.7. This yields an extremely low- frequency

component to the signal (-2 MHz) which oscillates on a similar time scale to the thermal decay,

and is therefore difficult to subtract out completely. It appears that within the constraints of our

experiment, the bulk Cp used in Equation 3.10 is appropriate. The slope of the linear fit to each

data set yields the diffusion constant at that temperature. Here the value D=-2.12x10-5 m2s' is

found at 6.1 K, and D=4.08x10-5 m2s -1 at 1.8 K. This is in good agreement with the values in

Figure 3.10.
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3.4 Conclusions

The low-temperature thermal conductivity values obtained by ISTS and presented here

represent a departure from the values obtained by a more traditional heater/thermometer based

measurement. The ISTS measurement appears to be quite robust, in that it a) yields a single-

exponential decay, requiring a single fitting parameter for data extraction, b) allows for optical

access to the sample, such that the quality of the supercooled glass (including cracking that may

occur upon cooling and that may influence thermal transport measurements) can be assessed, c)

may be used to determine the thermal diffusivity across a wide variety of wavevectors, and d)

allows the extraction of the acoustic velocity as a concurrent, and relevant, measurement. A

weakness of the measurement is that it is not possible to make independent measurements of K

and Cp, so the use of outside data is required to separate the contributions of the two variables to

the diffusion constant. Despite this, the addition of ISTS thermal conductivity measurements to

the library of techniques for study of low-temperature glasses can substantially benefit the field.

The present results illustrate the value that it can play in providing reliable quantitative results in

a versatile, non-contact manner.

The present results, showing a temperature dependence of the thermal conductivity at

temperatures below the plateau region that is substantially different from that expected of

glasses, strongly call for further study of thermal conductivity in molecular glasses including

both hydrogen bonded and van der Waals materials. The question is raised as to whether the TLS

distribution in molecular glasses might be systematically different from that in ionic glasses,

leading to consistently different temperature-dependent behavior as observed in the one case

reported here.
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Chapter Four

Generation, Modeling, and Characterization of Narrowband Acoustic Waves
in the GHz Regime

4.1 Introduction

This chapter describes a novel method of generating high-frequency and high-

wavevector acoustic waves for the characterization of complex materials. When acoustic waves

propagate with velocity v within a material, they interact with density variations which may be

static or dynamic in nature. If the inverse of the acoustic frequency is on the order of a

characteristic relaxation time zc (o c - 1), of if the inverse of the acoustic wavevector q=colvs

approaches the order of a structural element with size d (qd - 1), the acoustic velocity and

attenuation rate change in a detectable way, enabling the experimentalist to probe the dynamical

process or structural element characteristics. Thus, the higher the frequency, the smaller or faster

the feature of the material that may be probed. A versatile method for optical generation and

detection of tunable, narrowband acoustic waves throughout the GHz range has not been

reported to date. Here for the first time the generation of coherent narrowband acoustic waves

throughout the ultra-high frequency range 1-1000 GHz is demonstrated, using a conceptually

simple but novel ultrafast pulse shaper called the "Deathstar." This frequency window, which

has been difficult to access by other methods, now enables the robust measurement of structural

features with sizes on order of 10 mrn to 10 nm, and dynamical processes with characteristic

times of 1 ns to 1 ps. The high end of this frequency range is particularly important for the study

of disordered materials, because it includes the range within which structural heterogeneity

causes acoustic waves to cease propagating entirely, e.g., "the end of the acoustic branch."' The
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generation of high frequency optical waveforms and their conversion into acoustic waves, their

modeling, and their use for the characterization of nanoscale structures such as thin films and

heterogeneity in amorphous materials are demonstrated.

Photoacoustic spectroscopy has been used for many years to understand the properties of

complex materials - for example to characterize mesoscopic structures, which may behave

differently than their bulk counterparts,2 to probe subsurface elements or defects3 , and to

characterize electronic properties of nanocrystals.4 Optical acoustic spectroscopy is particularly

well-suited for the study of materials because it allows static or dynamic density fluctuations to

be probed in a non-contact manner, in a wide range of frequencies (especially high frequencies)

and in many sample and experimental configurations. Generation and detection of tunable,

narrowband acoustic waves through optical means has long been possible in the MHz frequency

range, with impulsive stimulated thermal scattering, or ISTS.5 The technique consists of

crossing two short (-100 ps) laser pulses inside the material of interest, where they interfere with

a wavelength that depends on the angle at which they cross and on the optical wavelength.

Absorption heats the material, and concurrent rapid expansion launches counter-propagating

acoustic waves with a wavelength that matches that of the laser interference pattern. The

experimental geometry has been extensively refined and simplified in recent years,6 allowing

easy tuning of the acoustic wavelength. This approach has permitted generation of acoustic

waves with wavelengths as long as a few hundred gm (typical frequencies of tens of MHz), and

as short as 1 m (typical frequencies up to a few GHz).7 The time-dependent change in

refractive index resulting from the propagating acoustic wave is typically probed with a third

laser beam. A detailed description of the use of ISTS to probe the low-temperature MHz

acoustic and thermal properties of a disordered material is given in Chapter 3.
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A number of methods for optical generation and detection of acoustic waves of micron

through nanometer wavelengths have emerged in recent years,8 '9 '10 enabling the characterization

of ever smaller and faster features of materials. A technique known as picosecond ultrasonics is

used to reach acoustic frequencies in the GHz range. ' 2 Broadband acoustic wavepackets (i.e.

single-cycle pulses) with frequency components up to 440 GHz 8 have been generated through

optical irradiation of a thin metal film by a subpicosecond laser pulse. As in ISTS, the

concurrent rapid expansion of the material launches an acoustic wave, in this case longitudinally

through the plane of the film. The frequency content and initial amplitude of the acoustic pulse

are limited by several factors, which will be discussed in more detail in Section 4.3. The

acoustic wave may propagate out of the film in which it was generated and into and through

underlying layers for broadband study of their material properties. Typically, partial reflections

of the wave at interfaces within the sample are detected as "echoes" upon their return to the

excitation film surface, usually via time-resolved measurement of strain-induced changes in

reflectivity of the initial excitation film, or "transducer".8' 9 27 In some cases the acoustic waves

are instead detected through coherent scattering12 or interferometry.13'14 Fourier analysis of the

reflected or transmitted waves allows study of the frequency-dependent material response. The

broadband approach of picosecond ultrasonics is complicated by both the low signal-to-noise

ratios typical at the highest frequencies of interest and the difficulty of unambiguous extraction

of both the frequency-dependent velocities and damping rates from the detailed form of the

reflected acoustic wavepackets, although in some cases it has been accomplished.' 5

Acoustic spectroscopy would benefit tremendously from a narrowband approach, which

would reduce the experimental information content to be extracted from a single measurement at

a given frequency to simply the acoustic velocity v, and damping coefficient a. Then by tuning
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the frequency, variations in vs and a resulting from structural and dynamical interactions would

be obtained to shed light on the material properties. Narrowband acoustic waves in the 1 GHz - 1

THz range have been generated by a few methods, but with difficulty or without versatile

tunability of the frequency. Femtosecond optical irradiation of multiple quantum well (MQW)

structures has been used to generate acoustic waves in the -700 GHz range. Here, the spatial

periodicity of the wells determines the frequency of the acoustic wave; this has the unfortunate

consequence that a different structure must be used to generate each different frequency.'6

Despite this limitation the upper frequency range is impressive. The broadband picosecond

ultrasonics technique described above also has a narrowband analog. After the thin metal film is

irradiated, the resulting acoustic wave may resonate inside it with a frequency that depends on

the film's thickness and acoustic velocity, and an intensity that depends on the film's interface

reflection coefficients (described in Section 4.3).17 Each time the echo completes an additional

round trip inside the film, partial transmission into the sample yields an additional "cycle" of a

narrowband acoustic pulse. Frequencies up to 320 GHz have been generated by this method.'7

A limitation of this particular technique is, as above, that a new transducer must be fabricated to

generate each frequency of interest. Further, if the transducer and the sample have similar

acoustic impedances, then the echo amplitude will be very weak, leading to frequency-broadened

acoustic waves with few cycles.

A more flexible method of generating acoustic waves between the frequencies 1-1000

GHz would have myriad applications in the study of mesoscopic structures and picosecond

dynamics. Concentration of all the acoustic energy into a narrow frequency range offers

enhanced signal/noise levels at the selected frequency, and as mentioned above, simplifies data

analysis tremendously. The cost of this simplified analysis is that many separate measurements
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at different frequencies must be made in order to deduce the full frequency-dependent material

response. A suitably robust and versatile approach to tunable narrowband acoustic wave

generation would make thorough characterization of materials in this crucial frequency range

possible. This thesis chapter reports a novel method for the optical generation and detection of

tunable, narrowband acoustic waves throughout the GHz regime. The method is based on an

ultrafast pulse shaper called the "Deathstar," which uses a multiple retro-reflection technique to

generate optical pulse sequences which are then converted into longitudinal acoustic waves using

a thin metal transducer, as in picosecond ultrasonics. This yields an acoustic waveform which is

a convolution of the metal response and the optical input.18 The principle and alignment of the

pulse shaper are described, and the resulting optical waveforms characterized, in Section 4.2.1.

The details of sample preparation are discussed in Section 4.2.2. The detection scheme is briefly

described in Section 4.2.3, and in much more detail in Chapter 5. In Section 4.3 the conversion

of the optically shaped pulses into acoustic waves is quantified and experimentally demonstrated

at extremely high frequencies. Although the narrowband acoustic waves could be detected upon

their return to the same film surface after partial reflections at interfaces, as is the usual case,8 '13

detection at the opposite side of the film was used in order to reduce time-dependent signal

contributions due to electronic and thermal responses of the irradiated film, better isolating the

signal due to the propagating acoustic wave. In Section 4.4 implementation of the widely used

acoustic mismatch model for calculating acoustic waveforms at these frequencies in multilayer

samples is demonstrated. Results of the model are compared to data. Sections 4.5 and 4.6

illustrate the information about complex materials that can be obtained from this technique. The

resonant excitation of nanoscale structures with narrowband acoustic waves, as a method of

determining their thickness, is demonstrated in Section 4.5. In Section 4.6 the effects on
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ultrahigh frequency acoustic wave speeds and attenuation rates upon propagation through a

disordered material is demonstrated. The use of a sample design which simplifies extraction of

absolute damping rates while requiring no assumptions regarding the material of interest, is

demonstrated. Preliminary data from silica glass are shown, and the results are compared to

those of other measurements. Lastly in Section 4.7, conclusions on the effectiveness of the

experimental method for probing the structure and dynamics of complex materials are drawn.

4.2 Experimental Design

4.2.1 Deathstar Pulse Shaper

The "Deathstar" is an ultrafast pulse shaper which generates optical pulse trains with

frequencies tunable between 1-1000 GHz. The field of pulse shaping is replete with schemes to

generate ever more complicated sequences of pulses,'9'20 and with experiments that formerly

required a table full of optics.21 However, these widely used methods are most suitable for

generation of pulse sequences in the 1-100 THz frequency range,2 2 due to their inherently limited

temporal window. In order to access lower frequencies, with as wide a dynamic range as

possible, the Deathstar pulse shaper was designed. It is shown in the upper part of Figure 4.1

along with the rest of the experimental setup. The laser (not shown) is an amplified Ti:sapphire

system consisting of an Innova-400 argon pump laser, Mira-900 oscillator, and RegA-9000

amplifier (Coherent, Inc., Santa Clara CA) whose output is a 200 fs pulse with 6 gJ energy,

centered at 800 nm. The repetition rate was set to 75 kHz in order to provide enough time for

complete thermal diffusion from the sample between laser pulses. A single laser pulse is

introduced to the system of retro-reflectors in the pulse shaper, where it completes a series of

80



round trips as shown. Each time the pulse passes the custom designed variable reflector (O.I.B.

GmbH, Jena Germany), part of the pulse is transmitted. The reflection coefficients of the

different parts of the variable reflector, the design of which is shown in Figure 4.2, were chosen

so that temporal envelope of energies of pulses leaving the pulse shaper is roughly Gaussian.

The system of mirrors following the pulse shaper compensates for the -20 cm round trip that

each subsequent pulse traverses, to temporally re-overlap the pulses when the delay line is fully

forward (to the right in the figure).

I

evenly spaced
excitcAion pulses

Figure 4.1. Deathstar pulse shaper, sample, and interferometric detection.

6.4% 13.8% 24.5% 37.3% 51.7% 70.4% 100%

Figure 4.2. Design of variable reflector. Substrate is fused silica 2.5 cm high by 7 cm wide.
The backside of the optic has an antireflective coating for 800 nm light.
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By adjusting the position of the delay line (Owis, Staufen Germany) in the pulse shaper

(towards the left in Figure 4.1) the spatial, and therefore temporal, separation between all of the

pulses is increased evenly. When the delay line is at its maximum extension to the left, the

pulses are separated by 500 ps, resulting in a 2 GHz pulse train. This limit could easily be

lowered through use of a longer delay line. Here the limit was chosen to overlap with the highest

frequencies accessible by ISTS, as described in Section 4.1. The upper frequency limit of the

pulse shaper is roughly 2 THz, and is constrained here by the laser pulse duration. It should be

noted that the acoustic bandwidth, being a function of the transducer performance, is limited to

roughly 500 GHz as described below in Section 4.3. An additional component of the pulse

shaper is an ultrafast pulse stretcher (not shown) which is used to modify the duration of the

incoming single pulse to any arbitrary length between 200 fs and 200 ps. This stretcher is

external to the laser, and is comprised of two parallel holographic gratings (1800 lines/mm,

Spectrogon US, Parsippany NJ) separated by a distance tunable by an additional delay line

(Owis, Staufen Germany). It was designed to tune the duty cycle of the optical pulse train in

order to narrow or broaden the frequency content of the waveform. In most cases it was found

that using the shortest possible pulses generated the optimal acoustic response, and so the

stretcher is not used routinely. With different sample and metal transducer parameters from those

typically usually used in this chapter, in particular for considerably thicker metal films, the

stretcher could play a useful role. After the optical waveform is optimized for the experiment, the

pulses are focused through a common lens to a single spot of 120 pm diameter at the sample.

Their conversion to acoustic waves is described in the following section.

The pulse shaper was aligned in two stages. First, the retroreflector assembly on the

delay line was optimized so that its translation on the stage did not result in motion of the

82

-



outgoing beam. Then, the angle of the variable reflector and its partner optic Oust below it in

Figure 4.1) were adjusted to make all of the pulses from the shaper parallel in both near field and

far field. Lastly the partner optic was translated along a path perpendicular to its orientation,

horizontally in the figure, to adjust the inter-pulse distance so that one pulse was transmitted

through each unique part of the variable reflector. The second stage of alignment involved

optimizing the positions of the series of mirrors following the pulse shaper in order to precisely

re-overlap all seven pulses temporally when the delay line at or near its minimum extension, to

the right in the figure. The round trip distance (i.e. timing) of consecutive pulses was measured,

and this was first roughly corrected by placing the sets of mirrors after the shaper to

approximately make up the difference. The sample was replaced with a thin BBO crystal, and

the positions of the mirrors were adjusted until temporal overlap was found between every pulse

inside of the crystal. A single "probe" laser pulse could be mixed with the shaped waveform

inside the BBO to yield a cross-correlation to ensure optimal overlap.

Once the pulse shaper was aligned, the frequency of its output pulse sequence was

adjusted simply by moving the delay line. Here the ease with which a variety of optical

waveforms is demonstrated. Covering nearly 3 decades of frequency, the waveforms are

generated with an arbitrary duty cycle by simply moving this delay line and, if desired, the one in

the pulse stretcher. Cross-correlations for high frequencies, between 1 THz and 250 GHz,

without the use of the external pulse stretcher are shown in Figure 4.3. Cross-correlations for

lower frequencies, 50 GHz and 5 GHz, with the pulse stretcher adjusted to yield a 50% sine-like

duty cycle to the waveform are shown in Figure 4.4. The intensity envelope in all scans appears

somewhat rougher than the actual pseudo-Gaussian profile of the pulse intensities; this results
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Figure 4.3. Cross-correlations of shaped pulse train with a single pulse, at high frequencies: 1
THz, 750 GHz, 500 GHz, 250 GHz, without use of additional pulse stretcher.
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Figure 4.4. Cross-correlations of shaped pulse train with a single pulse, at "low" frequencies: 50
GHz and 5 GHz, with use of additional pulse stretcher to yield a 50% duty cycle.
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from the fact that the shaped pulses arrive at slightly different angles at the BBO crystal,

therefore experiencing slightly different conversion efficiencies into blue light when overlapped

temporally with the reference pulse for the cross-correlation. Acoustic wave generation is not

affected in a significant way by the angular variation of the beams, as will be demonstrated by

the measured acoustic wave packet profiles in Section 4.3.

4.2.2 Sample Preparation

The sample is a "sandwich" structure which consists of 1) a thin metal film for the

excitation of acoustic waves, in this case aluminum; 2) the sample of interest, in this case silica

glass; and 3) a second aluminum film which allows the time-dependent displacement resulting

from the arrival of the acoustic waves to be detected by a reflection-mode interferometer. The

"excitation" aluminum film transducer was deposited in-house onto a sapphire substrate by

electron-beam assisted evaporation at a pressure of 10-6 torr. High-resolution profilometry was

used to determine the aluminum film thickness, which was found to be 17.6 nm. The amorphous

silica glass (SiO2) was hard-coated on top of the aluminum film by plasma-enhanced chemical

vapor deposition (PECVD). This deposition technique was chosen in favor of sputtering or

evaporation because the PECVD film characteristics more closely match those of bulk SiO2,

which is well characterized.8 Different thicknesses of glass were coated on top of different parts

of the excitation film, so that by translating the sample in the beam path, the propagation length

of acoustic waves in the glass could be varied, simplifying extraction of absolute damping rates

and velocities from the raw data as demonstrated below in Section 4.6. The sample was

fabricated by first coating a thin layer of silica glass onto the entire substrate with aluminum

film, then masking roughly /4 of the structure with a microscope slide. An additional thin layer
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of silica glass was coated over the remaining exposed structure, then an additional /4 of the

substrate was masked; this procedure was continued across the sample so that there were four

distinct thicknesses of glass on top of the aluminum film. The thicknesses of SiO2 were 135, 210,

480, and 1010 nm, and were determined by a combination of 1) ellipsometry and 2)

profilometry. They were also later characterized acoustically, using the technique described in

Section 4.5. In order to accurately determine acoustic damping through the glass, thicker films

(e.g., longer propagation lengths) were used for acoustic frequencies with low damping rates,

and thinner films were used for frequencies with higher damping rates, in order to maintain a

detectable signal but still have strong enough attenuation to measure reliably. A second

aluminum film, identical to the first, was deposited on top of the various silica glass regions.

This film "receives" the acoustic waves after propagation through the sample, and is displaced at

the air-aluminum interface in a time-dependent manner which is detected interferometrically.

The final sandwich structure is illustrated in Figure 4.5. In all measurements the acoustic waves

were excited at the aluminum-sapphire interface, at which rapid diffusion of heat away from the

excitation region was possible.

1010 rrn

Sappte

Figure 4.5. Sandwich structure for measuring acoustic properties of silica glass. The substrate
has a 1" lateral dimension and is 1/4¼" thick.
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4.2.3 Interferometric Detection

The traveling acoustic wave was detected with a variably delayed probe pulse at the air-

aluminum interface using a novel "grating" interferometer, which is described in greater detail in

Chapter 4, and shown above in the lower left of Figure 4.1. The benefits of the interferometer

are that the probe and reference arms travel on a common path, significantly reducing noise due

to air currents and table vibrations; and that the interferometer is quite compact, consisting of

only two optics. Briefly the interferometer works as follows: the two arms of the interferometer

are generated by diffraction from a binary phase mask pattern, which has an etch depth chosen to

maximize energy in the ±1 orders of diffraction for the optical wavelength2 3 (Digital Optics

Corp., Charlotte NC). These are called the "probe" and "reference" based on which one is used

to monitor the time-dependent sample response, although they are entirely symmetrical in the

interferometer. For interferometric detection, 390 nm light obtained by frequency doubling a

small part of the unshaped pump beam was determined to be much preferable to use of -800 nm

light, which has been experimentally observed to experience a much more significant signal

contribution from acoustic and thermal strain-induced reflectivity changes. The -400 nm

wavelength used here has only a minor reflectivity contribution, and also gives twice the

interferometric sensitivity to displacements. The comparison between -400 and -800 nm light

for interferometric measurement in this material system is demonstrated in Section 5.3, and the

difference in reflectivity signal contribution is given. The reflectivity change for 800 nm lightl l

is typically used in other experiments as the only source of signal,8 9 and does not allow for

calibration of displacement.

The periodicity of the phase mask could be varied between 2-100 plm, depending on the

experimental requirements for spacing between the two interferometer arms. Generally the
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larger the spacing, the smaller the inter-arm separation and the more stable the interferometer.

Here a 50 pm grating was used, yielding a roughly 1.5 mm interbeam spacing at the sample. A

lens, f= 18 cm, is used to focus the two beams onto the sample plane, where one of them (the

probe) is overlapped with the excitation beam inside a pinhole which the two beams approach

from opposite sides. The pinhole is then replaced by the sample. The probe beam experiences a

time-dependent change in path length (on the order of A/1000) due to the traveling acoustic

wave that is launched by the excitation pulse at the front of the sample. The probe and reference

beams are reflected at the air-aluminum interface at the back of the sample, recollimated by the

same lens, and recrossed onto the phase mask, where they diffract and the different orders

interfere with each other. The +1 order of the probe diffracts collinearly and phase-coherently

with the -1 order of the reference, approximately in the direction opposite to that of the incident

probe beam on the phase mask, and this yields the signal beam which is picked off with a thin

beamsplitter. The interferometric signal level varies with time as a function of the acoustically

induced displacement at the probe spot, and is detected with a lock-in amplifier. Signals from

bare transducers are shown in Section 4.3 and from the full sandwiched sample in Section 4.6.

4.3 Optic to acoustic conversion

Here the mechanism for converting shaped optical pulses into acoustic waves via thin

aluminum films, or transducers, is discussed. The numerical calculations in this section were

performed by K. Katayama. The generation of ultrasonic pulses via ultrafast irradiation of thin

metal films has been extensively studied and is fairly well understood.18 24' 25' 26 27 At the simplest

level, when a laser pulse of energy Q irradiates an area A of a metal film, it penetrates some
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distance described by 4= l/e intensity attenuation. The resulting temperature rise on the length

scale z into the film is given by:'8

CA; )4.1 
where R is the optical reflectivity of the film and C the heat capacity. For aluminum the value of

C at 800 nm is 8.3 nm, and the temporal duration of the laser pulse is unimportant so long as it is

sub-picosecond. The temperature rise is then expected to be reflected in the temporal and spatial

shape of the acoustic strain pulse r(z,t) launched in the plane of the film by:

-3(1- R)QP B -(z - vt)] 1-
q(z,t) = (AC 2 exp [ sgn(z - vt) 4.2

2AC(ov,ov x

Here /f is the linear thermal expansion coefficient, B is the bulk modulus, and v is the

longitudinal acoustic velocity in the material. The strain pulse is related to the displacement of

the film (e.g., the observable signal) by:

8u 1au
7(z,t) ='= I au 4.3

az v t

A problem in these expressions arises if thermal diffusion out of the excitation region occurs

more quickly than the acoustic wave can propagate away, e.g. in the case:

D 2> v, 4.4

where D is the diffusion constant. In metals D and 'vs are of the same order, so this effect does

broaden the acoustic strain pulse. However, this is not the only additional effect that must be

considered. In order to understand the true strain profile, the macroscopic picture described

above must be revised because it does not reflect the true dynamics which significantly broaden

the strain profile and limit the acoustic bandwidth. In particular, the dynamics of the "hot"

electrons produced through light absorption in the thin front region of the sample must be
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treated. Excited electrons travel at supersonic speeds through the material, much more quickly

than normal thermal transport, De -100D, 8 yielding the dominant broadening effect beyond

what is contained in Equation 4.2. An illustration of the broadening of the temperature

distribution in an aluminum film is shown in Figure 4.6.

Al FM

Figure 4.6. Temperature profiles in aluminum film expected from optical penetration depth into
the film (solid curve) and broadening of the response by rapid thermal and electron diffusion

through the film (dashed curve). Adapted from Reference 18.

A two-temperature model (TTM) 8' 25' 28 describes the dynamical processes which determine

the actual profile of the acoustic strain pulse, which is required here for understanding the

modifications to the pulse upon propagation through a complex sample. When a light pulse with

energy Q irradiates the metal film, it excites the electrons and raises them to a temperature Te

which is different from the lattice temperature. Over a few picoseconds, this energy is then

transferred into the acoustic phonon modes of the lattice, which have a temperature Tph.

Eventually the entire lattice cools to its equilibrium temperature. The equations of motion which

describe the two coupled temperatures of the system are:

rt = c( (T e)a-. S(,G(T
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pC P = G(Te-Tph) 4.6

where y is the electronic specific heat, p is the material density, and Ks is the electronic

conductivity, which is a temperature dependent quantity, simplified by the approximation:'8

s(Te) = T 4.7
Tph

through which it is related to the bulk conductivity Ke. S(z,t) expresses the source term, which is

here a single ultrafast laser pulse penetrating into the film, similar to that of Equation 4.1 but

including the temporal dependence of the pulse:2 9

S(z,t) exp 2.77 t 4.8

The value rp=0.2 ps describes the optical pulse duration. Lastly, G in Equation 4.5 describes the

transfer of energy from electrons to phonons. It is related to the electron-phonon coupling

constant by:18

G = 4.9
,rkB

where (O2) is the average of the square of the phonon frequency. The value of G is difficult to

obtain theoretically, and here is simply treated as an empirical value lx1017 Wm-3K'l obtained

from electron diffusion experiments reported in the literature.3 0

The temperature rise is calculated numerically with the system of Equations 4.5 and 4.6

for a single laser pulse as a function of depth into the film. The optical, electronic, and thermal

parameters used for the calculation are listed in Table 4.1. The mechanical parameters such as

density are listed later on in Table 4.2Table 4.2. M with those of other materials in the system.

From the
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Parameter Description Value
Pulse energy 100 nJ

A Beam diameter 400 gm
yp Pulse duration 200 fs

Z Optical penetration depth 8.3 nm
C Specific heat 0.9x103 J kg' K
R Optical reflectivity 0.88
B Linear expansion coefficient 26x10- K'
B Bulk modulus 75.2x 09 Pa
r Electronic heat capacity 30.5 J K 2m -3 x T
G Electron-phonon coupling constant lx10 7 W K- m 3

Table 4.1. Optical, thermal, and electronic parameters used in two-temperature model to
calculate acoustic waveforms resulting from optical excitation of aluminum films. Electronic

heat capacity requires multiplication by temperature to obtain the value.

solution to the equations the "effective" optical penetration depth, illustrated by the dashed line

in Figure 4.6, is determined to be roughly 18 nm. If the input to Equation 4.5 is the actual optical

waveform from the Deathstar pulse shaper, as shown in Figure 4.7, then the result may be used

in the thermo-elastic equation of motion to calculate, at the value of z corresponding to the back

of the sample, the displacement u(z,t) and strain au(z,t)/t , using Equation 4.3:

a2U(z,t) 2 a2 u(z,t) 3B Tph(z,t) 4.10
at2 s az2 p az

The calculated excitation transducer response is shown in Figure 4.8 for the "sandwich" sample

described above, with the aluminum film between sapphire and silica glass. Clearly the film's

response is much slower than the ultrafast input pulse duration, roughly 2.5 ps vs. 200 fs FWHM,

and ultimately this limits the maximum acoustic bandwidth to -500 GHz with the current

materials.

For the experiment, aluminum thickness values of approximately 15 nm were selected in

order to maximize the absorption of light by the transducer while at the same time keeping the
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Figure 4.8. Strain at the back of the excitation transducer from numerical calculation of thermo-
elastic equation of motion 4.10 using a two-temperature model to calculate the temperature

profile with Equation 4.5, with pulse shaper output at 150 GHz with 200 fs pulses. The sharp
edge at the end of the waveform is an artifact from the numerical calculation.
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acoustic bandwidth fairly high. Use of a thinner transducer would yield a higher bandwidth but

reduced signal. The measured response of a "bare" excitation transducer film, coated onto a

sapphire substrate but lacking the silica glass sandwich, to the shaped pulse train is demonstrated

here. In all cases the film was excited at the sapphire-aluminum interface and the acoustic wave

detected at the aluminum-air interface. This scheme was chosen instead of probing at the

aluminum-silica interface, because a strong signal contribution from the acoustic wave

propagating through the glass masks the aluminum signal. However the aluminum response is

directly proportional to that calculated above, differing only by a constant factor of the acoustic

reflection coefficient FA4-Sio2 at the interface. Figure 4.9 (a) and (b) show the displacement and

strain (calculated from the raw data using Equation 4.3) in a -15 nm aluminum film excited at 95

GHz. Figure 4.10 (a) and (b) show the displacement and strain at 190 GHz, and Figure 4.11 (a)

and (b) show the displacement and strain at 415 GHz, near the bandwidth limit of the film. The

strain was calculated by applying Equation 4.3 to the raw data.

The first notable feature of the three figures is a steady increase in the displacement as

each acoustic pulse, appearing as a "step," arrives at the probing region. This is a result of the

strain pulse having a nearly unipolar temporal profile, due to the large acoustic impedance

mismatch between aluminum and sapphire, where the pulse is generated.12 Typically in

photoacoustic experiments, strain is generated at the air-aluminum interface,8 resulting in a

bipolar strain pulse; in that case the signal returns to its baseline value after the pulse propagates

out of the probing region. Here sapphire is used because it rapidly conducts heat away from the

excitation region, allowing the sample to essentially fully cool between laser pulses. This

substrate effect has little consequence to the current experiment, contributing a quasi-dc

component to the signal, and can be avoided by choice of a different substrate with a somewhat
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Figure 4.9. (a) Displacement of 15 nm aluminum film resulting from shaped excitation at
95 GHz. (b) Strain in film. The arrow indicates the arrival of an acoustic "echo".
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lower acoustic impedance than aluminum.1 5 The shape of the acoustic features may be

understood more readily by examining the strain induced by the material response, and can be

seen to look as one might expect.

The conversion to acoustic energy may be observed readily with excitation at 95 GHz,

shown in Figure 4.9 (b). The arrival times of the seven pulses are apparent as sharp "peaks" in

the strain roughly 10 picoseconds apart. A notable difference from the TTM is that the peaks

appear somewhat sharper than expected from Figure 4.8. This results from a signal contribution

not only from acoustic displacement, but also from the presence of excited electrons that are

present during and shortly after the optical excitation pulse is interacting with the metal. This is

observable because the probe spot is separated from the excitation region by only the thickness

of the film, roughly 15 nm. Some probe light penetrates into the film to "see" the arrival of the

excitation pulses, and perhaps more importantly, the hot electrons rapidly (within the excitation

pulse duration) traverse the film as discussed above. In the short time during which the hot

electrons relax, the generated acoustic wave traverses the thin film with a single-time trip -2.3

ps, and so is not independently observable except as a broad tail to the electronic peak.

Following each excitation pulse at a time -4.6 ps corresponding to the acoustic round-trip

traversal time in the film, a distinct signal can be observed in both the displacement and strain

traces, corresponding to the arrival of an "echo" of the excited acoustic wave. Because its

frequency content is limited by the bandwidth of the transducer, and because the signal

contribution is purely acoustic, the wave appears rounded compared to the peaks resulting

directly from optically excited electrons. Then the next excitation pulse arrives at a time

corresponding roughly to twice the round trip time of the acoustic wave in the film, -9.2 ps. The

slightly earlier arrival of a second "echo" at this time is noted with an arrow in the figure.
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For excitation at 195 GHz, Figure 4.10 (b), the round trip time of the echoes so apparent

in Figure 4.9 (b) overlaps with the temporal spacing of the excitation pulses, and so the echoes

are not observed. However an additional "ringing" of the film subsequent to the last excitation

pulse arrival, which can be clearly seen at a time around 35 ps, is an indication that the acoustic

echoes experienced some constructive interference due to their temporal overlap. At 415 GHz,

Figure 4.11 (b), the time between electronic peaks is less than the acoustic traversal time through

the film, and it is not possible to independently assess the presence of acoustic waves in the

signal. Note that this does not rule out the presence of an acoustic response in the film. Figure

4.12 shows the expected weak generation of acoustic phonons at 400 GHz, calculated from the

TTM.

The generation of tunable, narrowband acoustic waves has been demonstrated, noting that

while the optical pulse shaping technique allows frequencies up to 1 THz, the use of metal

transducers limits the acoustic frequencies to a somewhat lower region.
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Figure 4.12. Generation of acoustic waves at 400 GHz calculated with TTM.
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4.4 Modelfor Propagation

Next the interaction of high frequency acoustic waves with the multilayer structures to be

used for spectroscopy is modeled as a way of understanding the actual signals obtained from the

measurement. The model is referred to as "acoustic mismatch theory," after Reference 8, and is

widely known and used without reference to a unique source. Quantifying the propagation of

acoustic waves through multilayer structures requires careful analysis of reflection and

transmission coefficients at each interface, as well as frequency-dependent acoustic velocities

and damping rates. The amplitude of the transmitted acoustic wave usig(z,)), i.e., the signal

detected at the end of the sample, depends upon the reflection and transmission coefficients at all

boundaries, as well as the temporal delay collected by propagation through the various layers.

The analysis method is taken from References 3 and 23, here for a multilayer sample consisting

of five materials: the sapphire substrate, excitation transducer, silica glass, receiver transducer,

and air, from left to right as shown in Figure 4.13.

Int. 1 Int.- 9 nt 3 int- 4

Figure 4.13. Multilayer system to be modeled.

The calculation is performed in the frequency domain, allowing frequency-dependent

dispersion and damping to be easily treated, and then Fourier-transformed into the time domain

to yield the expected signal. A longitudinal acoustic wave of arbitrary shape u,(z,t) is

launched through the plane of the excitation aluminum transducer film, as calculated above in

Equation 4.10, and it is assumed that no further modifications to the shape occur during
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propagation within the aluminum. Though acoustic broadening upon propagation through

hundreds of nm of aluminum has been observed,31 the film thicknesses here should exhibit a

comparatively negligible effect. This assumption is not made for propagation through the silica

layer, for which the frequency dependent acoustic properties are of interest. The frequency

content of the wave after generation in the aluminum is then given by the Fourier transform:

U(Z, cO) = I U.£ (z,t)ei-dt 4.11

When the wave travels through the aluminum layer and into the silica glass layer, it undergoes

partial transmission and reflection at the boundary which is determined by the mismatch of the

acoustic impedance Z=vp of the two materials:

- VAiPA1 - Vi02 P si 2rAl -SiO = APA i sO 4.12
VAIPAI + VSi 2 Psio

t Al-SiO= 2VAjPAj 4.13
VAIPAl + VSi0 PSQO

Where the notation and t indicates the reflection and transmission coefficients for a wave

traveling from left to right, as compared to F and to be used in the case of a wave traveling

right to left. The coefficients satisfy the boundary condition:

t=r+l 4.14

After partial transmission the wave propagates in silica glass with amplitude and phase given by:

Usio (Z,) = tI-SiO exp( iwz 4.15

Here the wave travels for a distance z=dsio2, where d is the thickness (determined experimentally

as described above in Section 4.2), before it experiences partial reflection at the silica-aluminum
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boundary, which can be described by Equations 4.12 and 4.13 with the appropriate values for

material properties.

The velocity with which the wave propagates through the silica layer is a frequency-

dependent complex quantity, related to the experimentally defined (i.e. real) frequency and the

complex wavevector by:

~( ) j a) _ _ _ _ _

A ( c ) 2 = v ( o) iv " (o) 4.16
q(w) q'(ao)+iq"(ao) q'(w)- =()) ) 4.16

For the discussion here the phase velocity v'()=wl/q'(w) is assumed to be frequency-

independent, v'(w) vo. This based on the results of previous experiments which show no

acoustic dispersion at high frequencies in glasses at low temperatures,32 and on the basis of

indirect observation via the thermal conductivity33 (see Section 2.2 for further discussion). The

imaginary part of the velocity is related to the observed damping coefficient a(o) q"(w) in

the material by the phase velocity:

v(a)a) =()v'(a)) 2a(W))v2 4.17
) q,(o)2 a) 

The damping coefficient a(a) varies strongly with frequency, and its experimental

determination across a wider and higher frequency spectrum than previously possible is one of

the goals of this thesis. In Chapter 2 its expected behavior at low temperature is calculated based

on a well-known model which relates the bulk thermal conductivity to microscopic interactions

of the acoustic wave with the glass. A shortcoming of this technique is that the interactions are

observed indirectly. In Chapter 6 the techniques described in the current chapter are used obtain

a preliminary acoustic spectrum a(a)) for silica glass, which is compared to the results of
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previous measurements at room temperature, and to the model from Chapter 2 at low

temperature where no other literature results are available. For the simulations performed here

based on the acoustic mismatch theory, the value of the damping coefficient may be fit

phenomenologically to the narrowband measurement at a particular frequency coo.

To calculate the signal uig(z,o), a system of coupled equations must be solved which

incorporates the optical input to the sample (which is a waveform of arbitrary shape) and the

response of each coupled layer, which are related to each other by reflection coefficients and

propagation times. A diagram of the system is shown in Figure 4.14. Here A and C are

aluminum, B is silica glass, and the interfaces are numbered 1, 2, 3, and 4, as in the schematic

Figure 4.13. Because the acoustic propagation through sapphire and air is uncoupled from the

rest of the system, only their interfaces with the other layers are treated. The coefficients an

describe the inputs to the various layers and interfaces, and bn describe the output of each layer

or interface, as in Reference 23. The values at the interface b come from the reflection and

transmission coefficients and t or and as shown above in Equations 4.12 and 4.13. The

values of the outputs b come from the propagation of the acoustic wave, as in Equation 4.15,

here using frequency-independent velocities v, for aluminum, air, and sapphire, and for silica

glass a constant phase velocity and a phenomenological damping coefficient,

VB = VO - ia () vo / co . The values of the mechanical properties of the materials modeled in this

chapter and Chapter 6 are listed in Table 4.2.

Figur4ult Int a1 b p int2 a 

Figure 4.14. Multilayer model system with inputs an and outputs bn from each interface
and layer. The system at upper right continues at lower left.
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Material Thickness Density Velocity Impedance
d (m) p (kg m-3) v (ms'1) Z (kg m 2 s '1 )

Sapphire N/A 3990 11100 44.3x106

Aluminum 18x10 9 2700 6420 17.3x 06

Silica glass Varied 2200 5900 13.0x106

PMMA Varied 1190 2830 3.37xl 0 6

Air N/A 1.29xl0 -3 331.5 0.428

Table 4.2. Mechanical properties of various materials discussed and modeled in this chapter, and
in Chapter 6.

The optical excitation of the system occurs at the boundary between sapphire and

aluminum, al. However the conversion into acoustic waves occurs inside the aluminum, and if

the numerically calculated TTM response of the aluminum is used for the optical input, then the

acoustic input to the system must be placed at as. The signal usig(z,o) will be measured at the

air-aluminum interface 4, as the output b4u. The system of coupled equations can then be written

as:

b 2 = b3

b, = exp(iodAv- )b 5

b4 = exp(io)dv')b 2

b5 = b2 + b7t2

a5 = b4 2 + b7r2 -b 6

b7 =exp(iwdBvl')b

b8 =exp(io)dBvB1)b 6

bg = b8F + b, t3

b, =b 8 t'3+b 1r3

bll = exp(iodcvc1) b13

b2 = exp(i)Odcv' )blo

b 3 = bi2r4

b14 = b1 2 t4

In order to obtain the signal output b,4, the system of equations must be solved

computationally, which was performed here by converting them into matrix form and solving in
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MATLAB as otherwise reported in Reference 23. This was then back-transformed into the time

domain to obtain the displacement signal Usig(z,t) and strain rlig(z,t):

Usig (z, ) = b 4 (Z, a) 4.18

usig (z,t) = 2r L b,4 (z, o-iSd 4.19

g (,t) = rsig (Z,t) 4.20
at

The calculated displacement resulting from excitation at 150 GHz and propagation

through 210 nm of SiO2 is plotted in Figure 4.15, and the calculated strain is shown in Figure

4.16. The input a5 to the simulation the result of the two-temperature model discussed in Section

4.3. The damping coefficient a(co)=l.lx10 6 at 150 GHz was determined experimentally using

the techniques described in Section 4.6, and can also determined by varying its value to improve

the fit to the data with somewhat less reliability, due to the dependence then on the initial

assumptions. For example as shown in Chapter 6 a fit to a different set of data from the same

sample yields a different fitted constant. The difference likely comes from some modeling

parameter which is more sensitive to the particulars of the sample or even the alignment than

expected. Also included is experimentally measured signal, which has a maximum displacement

of 0.48 nm as calibrated using the techniques described in Chapter 5. This displacement is

typical for experiments with various materials inside the sandwich structure, because the total

displacement comes from the thermal expansion following optical excitation.

Using Equation 4.3 the maximum strain is found to be 0.0041, which is comparable to

that calculated by the TTM for the strain after the first aluminum film, as shown in Figure 4.8. It

should be noted that the use of Equation 4.3 connects displacements only to the dynamical strain.

For example, the steady-state displacements seen near 175 or 275 ps in Figure 4.15 yield zero
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Figure 4.15. Calibrated displacement resulting from propagation of 150 GHz acoustic wave

through 210 nm silica glass, plotted with acoustic mismatch simulation using
a(150 GHz)=l.lxlO m l and the parameters listed Table 4.2.
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Figure 4.16. Calibrated strain resulting from propagation of 150 GHz acoustic wave through 210
nm silica glass, plotted with acoustic mismatch simulation using a(150 GHz)=l.lx 06 m- and

the parameters listed in Table 4.2.
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strain in Figure 4.16. However, propagations traveling at speed v, do produce a strain. The

typical value of the dynamical strain at the back of the sample following propagation through

multiple layers varies from sample to sample (and frequency to frequency) as the damping rate

of the acoustic wave is very sensitive to the microscopic parameters of the material, as shown in

Chapter 6 for the frequency-dependent acoustic damping in silica glass. However the magnitude

of the displacement is usually comparable from sample to sample, as it is related to the low-

frequency part of the acoustic envelope, arising from the deposition of heat into the sample. In

Figure 4.16 the simulation is normalized to the measured strain. However the modeling method

described in this section does yield an absolute magnitude of the expected transmitted strain of

0.0032 for the shaped optical input shown in Figure 4.7, which is comparable to that of the

measurement.

Mechanical engineers frequently describe the strain in terms of a steady state

displacement of the film relative to the thickness of the film, which in this case is much larger,

0.032. This large value can be rationalized because the film is not very thick, and the acoustic

envelope is at least as large so the dynamic strain across the acoustic response extends

throughout the film. Strains of this magnitude would not be likely without damage in larger

(macroscopic) samples. The steady state strain predicted by the two-temperature model

described in Section 4.3, based on thermal expansion, fall in line with the measured values. For

a spot size of 100 gm (within 20% of the actual value) and a total excitation energy of 1.3 pJ, the

temperature is calculated to rise to -1600 K. This yields a strain of 0.041, which is on the order

but somewhat larger than the steady-state strain measured in the film. However the melting

point of aluminum is 923 K, and it was indeed found that frequently the excitation energy had to

be significantly attenuated to -600 nJ avoid burning holes in the sample. With the variation of
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all the experimental parameters considered, the value of the steady-state strain is within about

40% of that expected from the models.

At a time of zero picoseconds in the experimental displacement shown in Figure 4.15, a

small rise in the displacement is observed, and in the experimental strain shown in Figure 4.16 a

series of small peaks can be clearly seen. The timing and shape of these features are strongly

reminiscent of those seen in Figure 4.10 (a) and (b), respectively. They result from the small

amount of probe light which leaks through the optically thin aluminum receiver film and is

modulated at the excitation region. This leakage may be incorporated into the simulation by

including a signal contribution just after interface 2 of Figure 4.14,

Usig (z, co) = bl4 (z, C) + Cb6 (z, o) - Cb7 (z, w) 4.21

where C is a coefficient which describes the intensity of the signal contribution from the

excitation region, and is related to the transmission of probe light through the receiver film.

Typically C-0.3, and is determined experimentally.

After roughly 50 ps a sharp increase in the displacement is observed in Figure 4.15 as the

phonons generated at zero ps arrive at the back of the receiving film following propagation

through the silica layer and both aluminum layers. The narrowband character of the wavepacket

can be seen as a weak oscillation superimposed on the rise. After roughly another 80 ps, a sharp

decrease in the displacement is observed, which correlates to the arrival of the first echo of the

wavepacket at the receiver transducer, following reflections first at the aluminum-air interface

and then the aluminum-sapphire interface. This echo has an inverted phase relative to the initial

displacement, e.g., is expansive rather than compressive, due to the large impedance mismatch at

the aluminum-air interface which yields a negative reflection coefficient via Equation 4.12

replaced with the proper material values, fairA = -1.00. When the negative-going echo reaches
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the aluminum-sapphire interface it experiences loss, but not a second inversion, rsaph-A = 0.43,

and so is still expansive when it returns to the probe spot. The difference in amplitude between

the displacement simulation and data can be attributed to the absence of two signal contributions

from the acoustic mismatch model - first, the leakage of the probe light through the sample, and

second, the relatively slow diffusion of heat away from the excitation region into the sapphire,

which returns the material to its original (unexcited) state after a few nanoseconds as can be seen

in Figure 5.7.

The narrowband character of the waves is better revealed in the strain plot of Figure 4.16,

where the wave transmitted beginning around 50 ps has lost some of its modulation, due to

damping. The inverted echo beginning -80 ps later has reduced amplitude due to loss upon

reflection at the sapphire-aluminum interface, but also is damped relative to the initial wave.

Though the magnitude of the measured acoustic echo is somewhat larger than expected from the

calculated reflection and transmission coefficients at the various interfaces, the acoustic

mismatch model simulates the data quite well, even at later times with later echoes.

4.5 High Resolution Characterization of Nanoscale Structures

The coherent nature of the narrowband acoustic waves discussed in this chapter may be

employed for the high-resolution determination of the size of nanoscale structures, in a way that

has been not been previously possible. In this section the established use of broadband acoustic

waves to determine film thickness is illustrated, as an introduction to the technique. Then the

coherent superposition of narrowband acoustic waves is shown by tuning the Deathstar

frequency to cause constructive or destructive interference in a film, which either enhances or

suppresses the material response. Lastly, the use of constructive interference between multiple
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cycles of the narrowband acoustic waves inside a thin film to determine its thickness to angstrom

precision is illustrated. In all cases the measurement of film thickness is made by determining

the round-trip time of an acoustic wave inside the structure,

R 2 =d 4.22
Vs

where d is the structure size or film thickness, and vs is the longitudinal speed of sound taken

from the literature.8 Here it is noted that the accuracy of this technique is limited to the accuracy

of the acoustic velocity value, which may be frequency dependent or may vary due to the film

having different properties from the bulk. Measurements on a sample of known thickness,

determined independently through profilometric or ellipsometric measurements for example, can

be used to determine the sound speed in the film material and then enable further measurements

of film thickness for newly fabricated films of the same material.

For the broadband picosecond ultrasonics approach to film thickness determination, the

sandwich structure described in Section 4.2 was excited at the sapphire-aluminum interface with

a single optical pulse. The wave traveled through the aluminum film, into the silica glass, and

was detected interferometrically on the other side of the sample, as shown in Figure 4.17 (a) and

(b) along with a simulation of the data performed with the acoustic mismatch model described in

Section 4.4. Echoes at later times were also detected, allowing the round trip time of the acoustic

wave within the sample to be determined. The excited acoustic wave is dominated by a

relatively low frequency component,12 and so it was assumed that it propagates through silica

glass with the bulk low-frequency speed of sound, 5900 m/s.8 A good agreement between the

simulation and the data can be seen. The excitation strain pulse observed at t=0 in (b) is much

sharper than expected from the simulation, and is due to a signal contribution from excited

electrons, as discussed previously. The width of the wave after propagation is due to acoustic
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damping, which was not treated in the simulation. The oscillatory component between the two

pulses can be attributed to an artifact arising from a small amount of probe light reflecting from

the acoustic wave while it is traveling inside the silica glass, and interfering with the probe light

which reflects from the fixed back surface of the sample. 15 The period of this oscillation

depends on the sound speed and refractive index of the material, and the probe wavelength; if the

refractive index is known then the acoustic velocity may be measured using this information.9
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Figure 4.17. (a) Displacement resulting from single-pulse excitation of 1000 nm region of silica
glass sandwich structure described in Section 4.2.2 (b) Resulting strain in sample.

Figure 4.18 shows the single trip propagation time (rRy/2) for the different thickness

regions of the sample on the right axis, and the calculated acoustically determined thickness on

the left vertical axis, as a function of the measured location on the sample. The somewhat

smooth variation in thickness between the different regions is a result of the masking process

used to deposit the glass. For the thicker sections of the sample, good agreement was found

between the ellipsometric, profilometric, and acoustically determined thicknesses. However for

the thinnest section the ellipsometric measurement yielded a much lower value (95 nm) than that

determined by the other two methods. A discussion of the discrepancies between thickness
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Figure 4.18. Acoustically measured thickness of silica glass based on the single trip time of a

broadband acoustic wave in the sample.

measured by different methods is presented in Section 6.2.2, for an assortment of materials

which all show growing discrepancies between ellipsometrically and acoustically measured

thicknesses for extremely thin samples.

If the film is excited by a single pulse, echoes of the resulting acoustic wave resonate

inside it with a natural frequency

Afs= dV , 4.23
2d

For the samples discussed in this chapter, the observed resonance frequency occasionally varies

from this, due to the different boundary conditions at the two surfaces of the aluminum. For the

case of a relatively thick aluminum film, d>¢#, the acoustic wave may be thought of as

propagating in a "bulk-like" medium. When the wave propagates from the sapphire-aluminum

interface where it is excited, and reflects from the aluminum-air interface, it experiences an
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inversion due to the acoustic impedance mismatch, as discussed in Section 4.4. When this echo

subsequently reflects from the sapphire-aluminum interface it does not experience a second

inversion, so when it returns again to the aluminum-air interface (i.e., the probing region) it has a

negative phase relative to the previous trip. Thus, it takes two round trips for the echo to be re-

inverted to its original phase,

fre,d> = 4.24

In the case of the very thin aluminum films discussed in Section 4.3, d < eff and the acoustic

wave can no longer be thought of as "propagating" inside the film. In this non-propagative case

the mode does not experience inversion at the air-sapphire interface, and Equation 4.23 expresses

the resonant frequency. The thickness was gradually varied between "thick" and "thin," and the

crossover between the behavior limits has been observed to occur somewhere between 25 and 50

nm. This is an unusual result and could be the subject of further study. A very few selected

results are presented subsequently.

If, after excitation with an optical pulse, the film is excited by a second pulse at time

r = fr, the second incoming pulse overlaps temporally with the acoustic echo of the first pulse,

and the acoustic responses constructively interfere. By exciting with a sequence of pulses at the

frequencyfres, the acoustic response of the material can be greatly enhanced due to constructive

interference. The response of a 60 nm aluminum film (d> 1efr) driven at its resonant frequency by

a sequence of pulses from the Deathstar pulse shaper at 25 GHz is shown in Figure 4.19 (a). The

response is quite similar to that of the thinner film at higher frequencies, such as in Figure 4.10

(a). Also shown in Figure 4.19 (b) is the response of the film to excitation at twice its resonant

frequency, 50 GHz. Here the excitation pulses which generate acoustic waves at the sapphire-
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Figure 4.19. Displacement resulting from excitation of 60 nm aluminum film at (a) once and (b)
twice its resonant frequency, given by Equation 4.24, along with simulations described in

Section 4.4
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Figure 4.20. Strain resulting from excitation of 60 nm aluminum film at (a) once and (b) twice
its resonant frequency, given by Equation 4.24, along with simulations described in Section 4.4.
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aluminum interface arrive at exactly the same time as the negative-going acoustic echo of the

previous pulse, and the two pulses interfere destructively. The acoustic response can be seen to

be significantly suppressed, and nearly cancelled except for the large pulse in the middle of the

scan, which is much larger than the acoustic echo of the previous pulse and is not fully cancelled.

The scale of each plot is determined directly from the raw uncalibrated data (coincidence places

their magnitudes near one) and is the same for both scans; for example the first pulse in both

plots can be seen to be the same magnitude as it has not yet experienced interference effects, and

the total signal level is determined by the amount of heat deposited, which is the same for both

frequencies.

The resulting strain is shown in Figure 4.20 (a) for the 25 GHz excitation, and (b) for the

50 GHz excitation, along with simulations using the acoustic mismatch theory described in

Section 4.4. For the 25 GHz excitation, between the positive-going excitation pulses at -20 ps,

60 ps, 100 ps, etc., strongly negative-going echoes are observed at -40 ps, 80 ps, 120 ps, etc. In

the 50 GHz scan such strong features are not observed, and the series of small peaks at early

times, as well as the large peak around 60 ps, are due to the variation in the pulse energies across

the pulse shaping envelope. The interference appears slightly stronger in the 50 GHz scan than

the simulation would suggest; this may be an effect of a misalignment such that the energies of

the 2 d, 3rd, and especially 5 th pulses in the sequence give reduced signal intensities. These

reduced responses can also be seen in the 25 GHz data.

As shown in Figure 4.21, excitation of a -23 nm aluminum film at 140 GHz, i.e. at itsfres

given by Equation 4.23, yields a characteristic amplification of the response even after excitation

is complete. Excitation at one halffres is also shown, and acoustic echoes in between excitation

pulses are clearly resolved. The film thickness was otherwise characterized by ellipsometry and
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by a quartz microbalance in the deposition chamber where it was fabricated, to be approximately

15 nm, which agrees fairly well with what is expected.
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Figure 4.21. Excitation of 23 nm aluminum film at once and at one-half its resonant frequency.

Lastly the resonant excitation of a film is demonstrated as a method of determining its

thickness to excellent precision (again noting that the assumption of a literature speed of sound

limits the absolute accuracy). After the optical excitation of a film near its resonant frequency

(described by either Equation 4.23 or Equation 4.24 depending on the thickness) is complete, the

constructively enhanced response is manifested as acoustic "ringing" which persists for many

picoseconds. This can be clearly seen in the displacement, Figure 4.22, and in the strain, Figure

4.23, of scans where the -18 nm aluminum film described in Section 4.2.2 was driven below

(125 GHz), near (190 GHz), and above (225) its resonant frequency. The resulting enhanced

response near resonance is noted with an arrow. A few cycles of the constructive oscillation can

be seen by eye in the strain plot at 190 GHz.
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Figure 4.22. Displacement due to response of-18 nm aluminum film to excitation below, near,
and above its resonant frequency, described by Equation 4.23. Persistence of the film response
following after the arrival of the last (7th) optical pulse is apparent in the 190 GHz scan, noted

with arrow.
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Figure 4.23. Strain due to response of-18 nm aluminum film to excitation below, near, and
above its resonant frequency, described by Equation 4.23. Persistence of the film response after

the arrival of the last (7th) optical pulse is apparent in the 190 GHz scan, noted with arrow.
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By Fourier transforming the signals after excitation is complete, the presence of a

resonance condition may be evaluated. As shown in Figure 4.24, a 200% enhancement is found

in the Fourier amplitude of the film response after excitation at 190 GHz is completed, as

compared to that following excitation at 125 or 225 GHz. By varying the driving frequency of

the excitation in small steps using the Deathstar pulse shaper, and observing the frequencies and

amplitudes of enhancements in the acoustic response, the resonant frequency of the film could be

determined. In Figure 4.25 the driving frequency is tuned and the frequency of the largest peak

in the signal's Fourier spectrum is shown. Clearly when the driving frequency is within ±10

GHz of the resonance, the film responds at its resonant frequency. Where the driving and

response frequencies are the same the resonant condition is met, here at 188 GHz which

corresponds to a film thickness of 17.1 nm via Equation 4.23, in very good agreement with the

17.6 nm value found by high-resolution profilometry, which had an error of-10% (1.5 nm).
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Figure 4.24. Fourier amplitude of signal from an aluminum film following pulse shaped
excitation near and far from its resonant frequency.
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Figure 4.25. Response frequency of aluminum film as a function of driving frequency. Also
shown is a calculated response with no resonant interaction. Where the driving and response

frequencies match, the resonant condition is met (188 GHz).

Similar results are found by varying the driving frequency and observing the Fourier

amplitude of the signal at 1) the driving frequency, and 2) the resonant frequency of the film.

The results, shown in Figure 4.26, show an unmistakable enhancement in the film response near

188 GHz. Of particular interest is the enhancement at 188 GHz when the driving frequency is

100 GHz; this corresponds to driving the film near the first overtone of its resonance. This effect

can be seen also above in Figure 4.9, when the film is driven at 95 GHz and the film echoes once

between excitation pulses. It should be noted that the raw data have an inherent spectral

resolution of 3 GHz, which is limited by the short temporal window during which the data are

acquired. This limits the measurement accuracy to 17.1 0.3 nm, which is comparable to

commonly used methods such as high-resolution profilometry, or ellipsometry. Zero-padding

could be used to further enhance the spectral resolution, by expanding the temporal window of

the raw data with "zeroes" (e.g., with constant values that correspond to the beginning or end of
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the data) but is not done here, as the accuracy of the measurement is on the order of one or two

molecular layers for the entire film. The variation between the resonant acoustic measurement

and the high-resolution profilometry determination is about 3%, an excellent agreement within

the resolution of both measurements.
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Figure 4.26. Response amplitude of aluminum transducer at driving frequency and at resonant
frequency (190 GHz) as a function of driving frequency. Plots are vertically offset as an aid to

the eye.

In summary, the coherent constructive and destructive interferences within a narrowband

acoustic wave, and their use for the determination of film thickness with sub-nanometer

accuracy, have been demonstrated. This approach might have particular value in

characterization of subsurface layers of unknown thickness, whose presence might not be

apparent at all until driven on resonance to produce a detectable acoustic response.
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4.6 Using NarrowbandAcoustic Waves to Characterize Complex Materials

This section illustrates the measurement of frequency-dependent damping and dispersion

of a complex disordered material using the Deathstar pulse shaper, in this important frequency

range that has been otherwise difficult to access. In the broadband picosecond ultrasonics

method, the acoustic damping rate is extracted from the spectra resulting from Fourier

transformation of broadband data which have frequency components ranging from quasi-dc up to

-440 GHz. Either the magnitude of the excited strain is modeled and compared to the transmitted

strain,1 5 as was done in Section 4.4, or the magnitudes of echoes resulting from multiple round

trips inside the sample are compared to each other.8 The success of these methods is limited by

the ability to obtain adequate signal/nose ratios at the highest frequencies, which comprises a

modest part of the total spectrum, as well as by the ability to resolve the contributions to the

broadened transmitted wave from the modulation of different frequency components. To a lesser

extent the success is limited by the accuracy of the assumption of either the excited strain, or of

the material parameters p and v which determine the transmission and reflection coefficients at

each of the interfaces with which the wave interacts.

The Deathstar pulse shaping technique described in the sections of this chapter avoids

these problems by focusing much of the spectral energy of the acoustic waves into a very narrow

region. Then instead of attempting to acquire the entire spectrum in a single long sweep, the

damping coefficient and acoustic velocity may be obtained quickly and with high accuracy at

any desired frequency in the range 2-500 GHz. An additional simplification to the experiment

(which could also be employed in other techniques) is the use of a clever sample design, which is

described in Section 4.2.2 and illustrated in Figure 4.5. By allowing phonons of a given

frequency to travel through two different propagation lengths, e.g. 210 nm and 480 nm of silica
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glass, but with the excitation and detection films (and therefore conditions) otherwise identical,

the damping constant and velocity may be easily determined. The only difference in the sample

response comes from the difference in silica glass thicknesses dsio2. The difference in

transmitted amplitude as well as time of flight for a 150 GHz acoustic wave through the two

sample thicknesses can be seen in Figure 4.27.
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Figure 4.27. 150 GHz acoustic wave

100 150 200

time (ps)

transmitted through 480 and 1000 nm of silica glass.

By taking the Fourier transforms of the transmitted acoustic waves and comparing their

spectral amplitude I at the driving frequency o)o=1SOGHz for each sample, the damping rate may

be determined:

a(co0) = I In1Adi I48210nm(OO)Adr~ 0 '48O-- 2 o)1
4.25
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The careful processing of data to compensate for variation in experimental parameters such as

laser intensity is discussed thoroughly in Section 6.3.1. Similarly the acoustic velocity may be

determined by the difference in time of flight r of the acoustic wave through each film:

v ( = Adsi, 4.26
VSi2()O) =[r480nm()O)-210nm(.0O)] 4.26

The results of the experiment at 150 GHz are shown in Table 4.3, and are compared to literature

values from the picosecond ultrasonics method.

Damping Coefficient, m '1 Sound Speed, ms-'
Deathstar Technique 1.1 x 106 5790

Picosecond Ultrasonics, Ref. 8 5.7 x 106 5900

Table 4.3. Damping rate and sound speed in silica glass at 150 GHz for the technique described
in this chapter, and literature values.

4. 7 Summary

A new technique for the optical generation and detection of tunable, high frequency

acoustic waves based on a simple but novel femtosecond pulse shaping method has been

demonstrated. Further the resulting capabilities for location of acoustic resonances in

nanometer-scale structures and for frequency-by-frequency determination of GHz acoustic

parameters of complex materials have been illustrated. These capabilities permit the

determination of film thickness and other properties, and permit narrowband spectroscopy of

ultrahigh-frequency acoustic responses. Further study of the properties of multilayer film stacks,

amorphous solids such as glasses, polymers and block co-polymers, and liquids under variable

temperature and pressure conditions to reveal nanometer structural elements and picosecond

dynamics are under way, and some of these studies are described in Chapter 6.
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Chapter Five:

Grating Interferometry for the Detection of Thermoelastic Phenomena

5.1 Introduction

The broad applicability of optical interferometry to the analysis of surfaces and bulk

materials is reflected in the growing library of available techniques. Laser interferometers are

highly sensitive, non-destructive probes that can be readily adapted to numerous applications.

Topics of recent interferometric studies have included, e.g., the topology of surfaces,' 2 small

motions of surfaces;3 electrostrictive displacements in low-k dielectrics;4 and time-resolved

travel of bulk5 as well as surface6 '7'8 '9 acoustic waves. The current work demonstrates a novel

diffractive-optic based interferometer that is simple, stable, and compact. Use of a novel grating-

based interferometer for the purposes of imaging in-plane surface acoustic waves, as well as

point-detection of traveling through-plane acoustic waves and in-plane coherent lattice

vibrations, or phonon-polaritons, is illustrated in this chapter. The versatility of the

interferometer for different geometrical and temporal measurements is demonstrated, as is its

ease of alignment and use for sensitive quantification of displacements.

Ordinarily, laser interferometry is conducted by splitting a spatially coherent light beam

into probe and reference beams through partial reflection. The probe beam is sent through or

reflected off of the sample of interest, and the reference beam (sometimes referred to as a local

oscillator) is sent along a path of almost equal length (within the coherence length or spatial

extent of the laser beam). Again through partial reflection the two beams are recombined, and

small differences in their optical path lengths cause intensity changes in the interferometrically

recombined beam. These can be observed as spatial variations in a fringe pattern, for
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determination of topology, or as time-dependent fluctuations in intensity, to yield mechanical

dynamics. In both cases, resolution of displacements or phase shifts with sub-angstrom accuracy

is possible.l°

To optimize resolution and signal/noise ratio, the relative path lengths of the

measurement and reference beams must be held constant to within a small fraction of the light

wavelength. Vibrations of the optical elements in either beam path, air currents, and laser

pointing instability cause interferometric fluctuations which can be compensated via a wide

range of methods. For example, active feedback based on automated tracking of fringe intensities

and piezoelectric modulation of the reference beam phase was recently shown to yield A/100

accuracy in a Michelson interferometer," which is currently less than other methods due to

piezoelectric limitations, but is quite good. A good overview of sensitivity and signal-to-noise

issues of Michelson interferometers is also given in Reference 12. A common approach used in

numerous other designs is phase-shifting interferometry, in which five interferograms that are

piezoelectrically phase-shifted by /2 are acquired sequentially, and the phase data are

reconstructed computationally.'3 This results in high accuracy measurements but requires

extremely stable beam intensity during the sequential measurements and an extremely noise-free

environment.14' 15 A passive compensation method was recently introduced which uses a custom

grating mask in a modified Michelson interferometer to simultaneously obtain four

interferograms shifted by n/2 from each other, which can be subsequently analyzed to subtract

noise contributions from phase drift and laser fluctuations. A potential and simple adaptation of

this technique to the current design is discussed in Section 5.2. Another technique. uses single-

frame acquisition of interferograms with a Twyman-Green interferometer on a time scale (0.1-20

ms) much shorter than that of the mechanical vibrations (-100 ms) that cause noise.
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Sophisticated fringe analysis compensates for the lack of phase-shifting and averaging. A

general common feature of the above compensation techniques is the use of computational

algorithms (sometimes intensive) to control input beams or, alternatively, to analyze the output

interferograms. An interesting and very performant stroboscopic speckle-shearing interferometer

design was proposed in Reference 16.

An alternate approach to interferometry uses diffractive rather than reflective optics for

separation and recombination of the beams. Several designs for diffraction-based interferometry

have been developed over the years, and generally have the common features of a low number of

optical elements and a common-path for probe and reference beams, resulting in enhanced

stability even in noisy environments. One advantage of splitting probe and reference beams

through diffraction rather than partial reflection is that the phase fronts of the probe and

reference beam propagate parallel to each other, enabling retrieval of a centrosymmetric

interferogram which greatly eases analysis. A lateral shearing interferometer' 17 uses a double

transmission-grating design. The first grating diffracts light into many orders, and the +1 and -1

orders are selected and made parallel by diffraction off of the second grating which is spaced a

few millimeters away. The two first orders interfere and the pattern can be analyzed for phase

modulation of the wavefront. Tuning the inter-grating distance varies the shear ratio, and phase-

stepping is achieved by piezo-translation of the second grating. Performance has been directly

compared to a traditional Twyman-Green interferometer and found to be similar, but with much

less sensitivity to noise.

A reflective grating interferometer18 '19 has an extremely compact two-optic design that

folds the +1 and -1 orders of diffraction interferometrically onto each other. It can easily be

used in either a symmetric mode, which is sensitive to asymmetric errors in wavefront like coma,
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or in an asymmetric shearing mode to which can be used to study symmetric aberrations. A

three-grating Mach-Zehnder interferometer20 uses transmission gratings instead of mirrors to

split, direct, and recombine the probe and reference beams, so that a sample can be inserted for

analysis of, e.g., index of refraction. Non-diffractive common path designs have also been found

to be highly successful. Hurley and Wright2 l developed a modified time-division Sagnac

interferometer, in which polarizing beam splitters are used to generate probe and reference

beams that follow the same path, but are delayed in time relative to each other. The reference

samples the excitation region before t=O, and the probe at a variable time after t=O, then the two

beams are recombined by use of waveplate-beamsplitter combination. The interference pattern

reflects the time derivative of the sample displacement. Nikoonahad et al.22 developed a similar

common-path time-division interferometer and demonstrated its use for the study of picosecond

photoacoustics in multilayer metal-insulator assemblies.

Here a modified and extremely compact diffractive interferometer design is introduced.

Its sensitivity, stability and versatility through several examples in which thermoelastic responses

of materials are measured, is demonstrated. The applications involve fixed-point detection of

acoustic waves as well as lattice vibrations, or phonon-polaritons, as well as spatially resolved

imaging of thermally and acoustically induced strain. The material response is detectable due to

time-dependant changes in bulk refractive index or surface displacements caused by laser

excitation.

In terms of general design, the grating interferometer compares to those described above

in that it gives the probe and reference arms a common path, and it is comprised of a small

number of interferometric optics. Like the lateral shearing and three-grating Mach-Zehnder

interferometers, the independent probe and references are generated by transmission diffraction
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into multiple orders. In this case, only the +1 and -1 orders are selected, and their amplitude is

maximized by optimizing the etch depth of the binary grating. Like the reflective grating

interferometer, the current design is comprised of two optical elements (four for transmission

mode). The current design also has no crucial dimensions of alignment, in contrast with the

above which require the separate phase masks to be extremely parallel in the case of

transmission designs... or the mirror and grating to be at precisely 90 degrees to each other in the

case of the reflection design.. The current scheme allows for flexibility in the size of the region

sampled, is easily adaptable to reflection measurements of displacement or transmission

measurements of refractive index, and has utility for various time domains as well as static

applications. Lastly, robust data can be extracted directly from the recovered interferograms

without sophisticated computational analysis.

In Section 5.2, the alignment of the interferometer is described and its response is

systematically evaluated. Procedures for calibration are described. In Section 5.3, images of

time-resolved measurements of surface thermoelastic responses are presented. In Section 5.4,

the measurement of the time-dependent evolution of through-plane acoustic waves is

demonstrated, and is compared to the usual method, a change in probe reflectivity, by which they

are detected. Section 5.5 briefly describes the use of this technique to monitor the ultrafast

changes in refractive index resulting from coherent lattice vibrations, or phonon-polaritons,

traveling through a ferroelectric crystal. The performance of this novel interferometer is

summarized in Section 5.6.
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5.2 Alignment, Calibration, and Evaluation

5.2.1 Experimental Design

The diffraction-based interferometer is based closely on the robust diffraction-based

time-resolved transient grating, or four-wave mixing, experimental design2 3' 24' 2526 which was

described in Section 3.2, and is illustrated in Figure 3.3. In that setup, the interference patterns

formed by the interference of the +1 and -1 orders of diffraction of both the pump and probe

have been found to be extremely phase stable for hours with no external stabilization.2 7 Based

on this result, its adaptation to interferometry suggested itself. The current interferometer design

is shown in Figure 5.1 for transmission mode and reflection mode respectively, is based on this

result. The design is reminiscent of Figure 3.3.

VWindow
I I I If I2f f

Figure 5.1. Grating interferometer, transmission mode. Probe and reference arms are generated
at phase mask #1 and recombined interferometrically at phase mask #2. For adjustment of static
phase the window may be rotated. Pump may be introduced to sample in one of many ways as

discussed in text. Interferometric signal is indicated with dashed line. Distances relative to
lenses L1 and L2 focal length fare indicated.
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Reflective
Sample

f f
Figure 5.2. Grating interferometer, reflection mode. Probe and reference arms are generated and
recombined at same phase mask. Beams reflected from sample are indicated in medium grey to
aid the eye. The sample is tilted slightly downward so that the reflected interferometric beam

may be picked off with a mirror, without loss of interferometric quality. Distances are indicated.

A single beam is incident on the first phase mask and split into ±1 diffraction orders to

produce the probe and reference beams. In transmission mode, a second phase mask is placed in

the image plane of a two-lens telescope, e.g. in the sample position of the transient grating

measurement. The sample is placed in the Fourier plane of the first lens. Since the first phase

mask is in the focal plane of the lens, the probe and reference beams arrive at the sample parallel

and focused. The choice of the lens focal lengthf determines the desired spot size, and the phase

mask period A and optical wavelength A determine the probe/reference inter-beam spacing D.

Using the diffraction formula, Equation 3.1, the spacing may be determined by:

D = 2f tan = 2f A 5.1

where ® is the diffraction angle from the phase mask. The spacing should be minimized to

optimize the stability of the interferometer and is typically 0.5-5 mm in the experiments

presented here.
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In the case of reflection mode, the first lens recollimates the probe and reference beams

and recrosses them onto the phase mask. For transmission mode, a second lens spaced its focal

length away from the sample performs this function. In both cases, on the second pass through a

phase mask the probe and reference beams are diffracted into many orders. The newly diffracted

+1 order of probe and -1 order of reference are collinear, and recombine interferometrically. In

reflection mode, the interferometric signal beam is collinear with the original beam, but can be

deflected slightly downward by tilting the sample, and can be picked off with a mirror without

loss of signal integrity. The alignment requires no special care taken with the intra-optic

distances, though for transmission mode it is important to carefully match the first and second

sets of lenses and phase masks, since otherwise the beams are recrossed at the wrong angle and

do not interfere centrosymmetrically. Further, the first and second phase masks need to be

approximately vertically parallel to each other, which can be accomplished by placing the second

mask on a standard tilt stage and optimizing the outgoing interference pattern.

As shown in Figure 5.3, the interferometer can also be adapted to an imaging

configuration with the addition of a lens which focuses the laser beam onto the phase mask. The

probe and reference beams then arrive at the sample collimated, collect information about the

sample, and are interferometrically recombined at a second phase mask. The entire illuminated

region is imaged onto a CCD with an additional lens.

In all cases, the sample is perturbed by an excitation pulse or waveform that initiates

time-dependent changes in either bulk refractive index (transmission mode) or surface position

(transmission or reflection mode) which modulate the intensity of the interferogram as recorded

by a photodetector. The static phase difference of the probe and reference beams determines the

sensitivity of the interferometer, as described in Section 5.2.3. The static phase can be
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Figure 5.3. Grating interferometer, imaging mode. Same as in Figure 5.2, but including an
additional lens L1 to focus the probe at the phase mask, and lens L3 to image the interferometric
signal onto the CCD. The magnification of the used imaging system (ratio of image size and size

of probed sample area) is around 5 times.

independently controlled by rotating an optical window inserted in the reference beam, as shown

in Figure 5.1, or by shifting the phase mask slightly on a sensitive translation stage,

perpendicular to the beam direction. Potentially, phase stepping interferometry could be

implemented by adding a piezotranslator to the phase mask as in Leibbrandt, et. al.15 to enhance

the accuracy and reduce the noise of the measurement. Rather than serially acquiring data for

later processing, a simpler adaptation would be similar to that of Ho, et. al.s This method uses

simultaneous acquisition of phase-shifted interferograms to eliminate noise caused by beam

intensity fluctuations or air currents. At the second phase mask in our design, the most intense

signal beam contains the +1 probe order and -1 reference order and is diffracted collinearly with

the original beam. However, all other diffraction orders from the phase mask have a static phase

shifted by r from that of the signal beam, so collectively any change in signal intensity must be

offset by an equal and opposite change in intensity of the other orders, thereby conserving the

total energy of the light that reaches the second phase mask. By collecting the intensity of these

additional orders with a large lens into a second photodetector, and subtracting it from that of the

signal beam, fluctuations in the interferometer phase could be suppressed. For present
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demonstration purposes, the signal/noise and data acquisition times were found to be adequate

without such measures.

For the imaging of surface acoustic waves, the time-dependent material responses were

excited with a home-modified Nd:YAG laser (1 mJ, 200 ps, 1064 nm, Spectron Laser Systems,

Warwickshire, England). The response was monitored with nanosecond time resolution via a

pulsed diode laser (4 pJ, 15 ns, 905 nm, Power Technology, Little Rock AR), which was

attenuated to 800 nJ/pulse by selecting only one of 5 diode outputs for improved mode quality.

The pulses were synchronously triggered and delayed relative to the pump (DG535, Stanford

Research Systems, Sunnyvale CA). For the measurement of ultrahigh frequency acoustic waves

and phonon-polaritons, femtosecond time resolution was obtained through the use of a

femtosecond laser to generate short pulses (6 pJ, 200 fs, 800 nm, Coherent Inc., Santa Clara CA).

A beamsplitter was used to separate the excitation and probe pulses, and the relative timing was

adjusted with a variable delay line. In some cases the probe was converted to 400 nm light in a

non-linear crystal; the benefits of this are discussed in the appropriate sections. The excitation

pulses were used to irradiate both thin metal films, generating very high-frequency acoustic

waves that propagate through rather than in the plane of a thin film sample2 8 as described in

Section 3.2.2; and ferroelectric crystals such as LiNbO3, generating phonon-polaritons, which are

admixtures of optic phonons and electromagnetic waves in the terahertz (THz) frequency range

via impulsive stimulated Raman scattering.2 9 In both of these cases the excitation beam was

asynchronously chopped, and the small change in interferometric intensity (10-3-10 4) was

detected by lock-in amplification at the chopping frequency. The interferometric detection of

these phenomena are described in Sections 5.4 and 5.5, respectively.
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This interferometer design is simple and compact, in its most basic form involving only

the sample and two optical elements, a phase mask and a lens, which interact with the separated

reference and probe beams whose relative optical path length is critical. None of the optical

components needs to be aligned with more than ordinary precision, and it is routinely operated

without more than ordinary isolation from vibrations or air currents (e.g. on a laser table without

hydraulic legs, and without a cover or other separation from room air). Its phase stability and

robustness against vibrations are enhanced by the symmetry of the probe and reference optical

paths. The only asymmetry is the refractive index change or displacement induced by the pump

laser in the region where the probe beam interacts with the sample. In contrast, most other

interferometer geometries include reflections of separated probe and reference beams that result

in high sensitivity to vibrations of the reflecting elements. Quantitative characterization of the

phase stability of this interferometer will be presented with the different applications discussed in

further sections.

5.2.2 Spatiotemporal Limitations

The placement of the sample in the Fourier plane of a diffraction grating-lens pair, as

shown in Figure 5.1, introduces potential limitations in the combined temporal and spatial

resolution of the interferometer, particularly on femtosecond time scales. Because ultrafast

pulses have a frequency bandwidth which is more or less wide depending on the pulse duration

(-8 nm FWHM in the current case), the orders diffracted from the phase mask, e.g., the probe

and reference beams, will be also be spectrally dispersed in the plane of the sample. Their

shorter wavelength components will be diffracted by the phase mask at smaller angles and their

longer wavelength components will be diffracted at larger angles. If the excitation spot size and
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the sample response to it at any given time cover a large sample area compared to the broadened

probe and reference spot sizes, then this dispersion does not introduce an additional temporal

resolution beyond the pulse duration. However, if the excitation beam and the sample response

to it are small compared to the resulting probe and reference spot sizes, in particular along the

direction between the probe and reference beams, then the material response will only be

monitored by a subset of the probe spectral components at a given time. The time resolution will

be given approximately by the probe pulse duration multiplied by the ratio of probe to excitation

spatial dimensions. For longer pulses (with less bandwidth) monitoring slower phenomena, a

noticeable compromise of temporal resolution would not be observed. In the case of the

through-plane high-frequency acoustic waves, the probe and reference spot sizes are made much

smaller than the excitation spot, avoiding this problem.

However, in the case of a phonon-polariton wavepacket propagating at light-like speed in

the plane of the sample, the measurement could be "blurred" significantly by the limitation in

temporal resolution. Note that if the excitation pulse were cylindrically oriented in the

perpendicular direction, so that at any time the propagating response cut across all of the

dispersed spectral components simultaneously, then the temporal resolution would not be

compromised. The presence of temporal blurring in the case of the phonon-polariton

measurements presented in Section 5.5 was not observed, perhaps due to the relatively limited

optical bandwidth of the laser used for this particular experiment. All of the other results

reported are on sufficiently slow time scales so there is no significant limitation in temporal

resolution due to dispersion of the probe spectral components.
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5.2.3 Calibration, Resolution, and Noise Characteristics

A first feasibility test of the grating interferometer concerned its calibration, sensitivity

and stability. In each of these three aspects, the adjustability of the static phase plays a crucial

role in determining the optical path length (or phase) delay ; between the probe and reference

beams. The calibration of the output signal Vsig from the illuminated photodiode or CCD, i.e., the

assessment of the sensitivity dVsig/d, can be easily done. Vsig(4) may be expressed as:

V( +fi= + cos(2;r4 / 2) 5.2
i() 2 2

Vma, is obtained in the case of total constructive interference between the probe and reference

beams, i.e., when = 0, 2,... Vmin is obtained in the case of total destructive interference between

the beams, i.e., when = i2, 3/2,... These values of the static phase can be achieved by

adjusting either an optical window or by translating the phase mask, as discussed in Section 5.2.1.

The sensitivity of the interferometer as the phase delay is varied, (dVsig/d4 is then equal to:

ag = -(Vm - Vmn) sin(2r4 /A2) 5.3

The maximum sensitivity is therefore reached when the optical path delay is = 2/4, 32/4,...

Here the voltage level on the detector will be midway between Vmax and Vmin:

dig =(Vmax-Vmin)s 5.4
d4 1ma2

In practice, the maximum sensitivity for experimental operation can be achieved by finding the

Vmx and Vmin values, such as by viewing the output from the photodiode on an oscilloscope, and

then rotating the static optical phase so that the voltage level is midway between them.
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The calibration is routinely performed for the experimental schemes shown in Figure 5.1

and Figure 5.2, which are used for detection of the phonon-polaritons and through-plane ultrahigh

frequency acoustic waves described in subsequent sections. The chopper and lock-in amplifier

used in the experiment as described in Section 5.2.1 are employed in two ways. First, the lock-in

signal corresponding to the maximum amplitude of material response, at maximum

interferometer sensitivity, is noted. The chopper is then removed from the excitation beam and

placed in the probe beam prior to the diffraction grating. Then the amplified signals resulting

from chopping the probe with complete constructive and destructive interference are noted; these

are Vm,, and Vmi, respectively. These values are then used to compute the sensitivity via

Equation 5.4, and the signal resulting from the material response may be determined from this.

Typical fluctuations in the static interferometric intensity are on the order of 0.5%, due to

laser fluctuations and interferometric disturbances. Because this noise is larger than the signal

level (- 0.1%) the scans must be averaged for about 1 hour to achieve an adequate signal to noise

ratio. With this level of averaging, interferometric features as small as 0.01 nm are clearly

distinguishable, as shown in the following sections. As this corresponds to a size smaller than a

molecule, it is certainly adequate for most applications.

Note that the probe and reference beams as they are generated at the phase mask, and

again as they recombine at the phase mask, form an interference pattern whose period is half that

of the phase mask. The relative optical path delay values = 0, 2/4, /2,... correspond to a spatial

phase shift b between the original and regenerated interference patterns with values 0 = 0, 7d2,

,..., i.e. the peaks and nulls of the two interference patterns exactly overlapping, shifted by one-

fourth the period, shifted by one-half the period, etc. Note also that the signal level midway
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between Vma,, and Vmin can be set to zero if desired, in which case Vmin = -Vma,,x and the expressions

above are somewhat simplified.

5.3 Imaging Surface Acoustic Waves

The demonstrations described in Sections 5.4 and 5.5 involve making individual high-

sensitivity measurements at localized regions of a sample, with no significant variation of the

sample response across a single measurement region. However stroboscopic imaging schemes

are a much more efficient way of characterizing responses which vary in space as well as

time. 16'30 The interferometer design can be easily converted to an imaging scheme, as shown in

Figure 5.3, retaining all of its advantages as described previously. In this section images of

traveling surface acoustic waves are presented. Provided the pump and probe laser offer

sufficient time resolution and can be synchronized to the camera as described in the following

paragraph, this imaging interferometer can be implemented for any experimental time scale and

for any kind of displacements, in both transmission and reflection geometries.

An important non-optical experimental detail arises from the use of a CCD camera,

which has refresh and readout events which must be properly syncronized with the excitation and

probing events. Because the laser repetition rate was not greater than the CCD refresh rate by

more than an order of magnitude, the laser and the camera needed to be synchonized in order to

avoid having uneven numbers of laser shots being collected between readouts, which would

introduce >10% variations in image intensity from frame to frame. For the 60 Hz CCD camera

that was used, signal could not arrive at the camera at a rate exceeding 30 Hz due to the

interlacing of the even and odd pixel lines, which are read out alternately at a total rate of 60 Hz.

To minimize noise resulting from slow mechanical vibrations and air currents, it is useful to
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work in a differential mode, blocking every alternate excitation pulse in order to create a

background image which may be immediately subtracted from each image collected following

excitation. Due to the alternate interlacing of the CCD readout, requiring the even lines of

background to be subtracted from even lines of the signal image, the maximum possible effective

image averaging rate was 7.5 Hz. Use of a much faster-refreshing CCD, or increasing the

repetition rate of the pump and probe pulses to well above the 30 Hz refresh rate so the number

of laser shots per image would be the same, would eliminate the need for such slow

synchronization.

To excite surface acoustic waves, a 200 ps, 1064 nm laser pulse was used to irradiate the

backside of a Plexiglass sample which was coated with a very thin (100 nm) layer of chromium.

Optical absorption by the chromium resulted in rapid thermal expansion, launching

counterpropagating acoustic waves in the plane of the sample. For this demonstration, a short

focal length lens was displaced from the center of the pump beam path, inducing an 'arc'

aberration to the excitation region which was approximately 75 microns high and 500 microns

across. The surface displacements resulting from the excitation were approximately 1 nm in

magnitude. The acquisition of each frame, averaged over 400 shots, took about 1 minute. Signal

from a single probe pulse was recorded at each CCD readout, and at each alternate readout the

pump pulse was suppressed in order to produce a background image.

At the top of the first frame of Figure 5.4 the thermally induced surface displacements at

the excitation region, caused by absorption in the chromium layer and heating of the adjacent

Plexiglass, can clearly be seen as a white arc. This image, recorded at t=320 ns following

excitation, also shows an acoustic wave that has begun focusing and propagating toward the

center of the image, seen as a dark arc. The second frame at t-1.44 ps shows the acoustic wave
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Figure 5.4. Images of time-resolved surface acoustic propagation and focusing on Cr-coated
plexiglass. Images are 1.12 gs apart. Thermally induced displacements persist at the excitation

region. Area is approximately 500 gm square.

which is now focused at the center of the image, about 500 microns from the excitation region.

The third frame at t=2.40 gs shows the acoustic wave after further propagation and expansion

out of the central region of the sample. For all three frames, the thermally induced displacement

appears to have a roughly identical intensity and spatial profile, and this is due to the relatively

slow process of thermal diffusion which will eventually return the material to its original

(unexcited) state. In the latter two frames the acoustic wave can be seen to have a dark leading

edge, and a lighter following edge; this is because the excited wave is bipolar, with a

compressive part followed by an expansive part. This can be seen more clearly in Figure 5.5,

which shows corresponding cross sections of the intensities along a vertical line (averaged across

a width of 20 pixels) bisecting the images shown in Figure 5.4.

The high-intensity response on the left of each cross-section in Figure 5.5 results from the

thermally induced displacement, which is essentially static on the timescale of this measurement.

The right-propagating surface acoustic wave has an extremely sharp leading edge, and nearly

triples in amplitude between the first frame at 1=320 ns and the second frame at 1=1.44 gs, before

decreasing again in the third frame, at =2.40 ps. This is due to the focusing
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Figure 5.5. Cross-section of thermal and acoustic material responses imaged in Figure 5.4, at the
same times, averaged across central 20 pixels of image.

revealed in Figure 5.4, and is a result of the spatial pattern of the initial material excitation. It is

noted that even though optical excitation at the sample edge was below the damage threshold and

there was no direct photoexcitation of the center of the sample, the focused acoustic energy was

sufficient to tear the chromium film. This suggests that nonlinear acoustic responses may be

observed in this fashion.

5.4 Probing Ultrahigh Frequency Acoustic Waves

To investigate the high-frequency acoustic responses of materials, i.e. at frequencies

higher than those accessible by crossed-beam material excitation with impulsive stimulated

thermal scattering as described in Section 3.2, shorter pulse durations and smaller excitation and

probe dimensions need to be used. In crossed-pulse techniques, the smallest excitation region,

and hence the shortest acoustic wavelength, is limited by geometry to -2 microns. The use of

thin metal films as high frequency acoustic transducers is well-understood,2 8 '3 and is described

in Section 4.3. In this technique, sub-picosecond light pulses are used to heat a thin metal film,

launching through-plane acoustic waves via the photoacoustic effect. In moderately thin films

(sub-micron) the acoustic wavelength is determined by a convolution of the optical penetration

depth of light into the metal, typically -15 nm, and of the distance that hot electrons diffuse into
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the film before coupling into lattice phonons, -150 nm.3132 Films can also be fabricated which

are much thinner than either of these depths, in which case the acoustic wavelength is given by

the thickness of the film itself. By this excitation method, broadband acoustic wavepackets

containing frequencies over 400 GHz, and more recently narrowband acoustic wavepackets in

the same frequency range have been generated, as described in Chapter 4.3334 In both cases,

rapid expansion of the heated region of the film launches through-plane acoustic waves which

can be observed, along with their echoes, in the film. Typically these changes are observed via

strain-induced reflectivity changes in a delayed probe pulse at 800 nm.31,33,35 As discussed in

Section 5.1, picosecond acoustics are less frequently detected with interferometry.2 ' 22

The interferometer setup is as shown in Figure 5.2. The rest of the optical setup as well

as sample design, which are used together to generate ultrahigh frequency acoustic waves, are

discussed in Section 4.2. Many uncalibrated examples of signals obtained with the

interferometer are given in Sections 4.3-4.6 and 6.3-6.4. Data calibrated using the procedure

described above are presented in Figure 4.15, which show a displacement of 0.48 nm, with much

smaller features easily resolvable. A tremendous benefit of using interferometry is the

accessability to a quantitiative measure of the displacements and steady-state as well as

dynamical strains generated in the material, as illustrated in Section 4.4. In the initial iteration of

the ultrahigh frequency acoustic wave experiment described in Chapters 4 and 6 of this thesis,

800 nm light was used as the interferometric probe. However this generated some unexpected

signal contributions, which are presented here.

The response of the sample described in Section 4.2.2 with 1000 nm of silica glass to a

single excitation pulse, with interferometric detection at 800 nm, is shown in Figure 5.6. At zero

picoseconds, the signal jumps sharply when the pump pulse excites the sample as described
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Figure 5.7. Single-pulse excitation of acoustic wave in 1000 nm silica sample described in
Section 4.2.2. Long time scale to show signal dropping below "zero" of measurement.
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in Section 4.3. This launches an acoustic wave through the plane of the film, but two strong

signal contributions can also be seen, which indicate that the probe beam "sees" through the

entire sample. First is a strong oscillation with a period of roughly 50 ps, which results from an

interference between the phase of the probe reflected from the sample, and a tiny amount of light

which is reflected from the acoustic wave as it travels through the silica glass. The frequency of

the oscillation depends on the optical wavelength, refractive index, and sound speed in the

material.3 6 Another strong signal contribution is a large quasi-static background, which arises

from the presence of thermally-induced strain, which modulates the reflectivity of the

aluminum.33 The acoustic signals, marked with arrows and "*," are tiny compared to this. In

contrast, as shown in Figure 4.15, probing with 400 nm light does not yield a large thermal

background.

After excitation at zero picoseconds, the acoustic wave propagates through the multilayer

sample until it arrives roughly 200 ps later at the backside of the sample assembly. This event is

marked by the rightmost arrow in the figure. Here (the air-aluminum interface), it reflects with

inversion due to the low acoustic impedance of air, as described in Section 4.4, and travels back

to the excitation region 200 ps later. This event is marked by "*" in Figure 5.6, and can only be

seen because the probe beam optically penetrates the whole sample. The acoustic wave

subsequently wave reflects from this region (the aluminum-sapphire interface) and returns again

to the backside of the sample 200 ps later, as marked by the leftmost arrow. The thermal plus

acoustic signal overall looks fairly comparable shown in Figure 6.23, which represents the

"typical" reflectivity signal that is usually exploited to probe high-frequency acoustic waves.

The unusual result came upon examination of signal at longer times, as shown in Figure 5.7. The

signal can be clearly seen to drop below the "zero" level of the signal, corresponding to the level
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prior to excitation. Signal contributions like this are possible with interferometry because the

dynamical signal makes oscillates about a static phase (i.e., unchanging light level) which may

optimized for sensitivity of the interferometer, as in Equation 5.3. If there is a small increase in

the optical phase delay r of the probe beam, then there is a small increase in the amount of light

relative to that determined by the static phase. If there is a small decrease in , then the light

level decreases. However the signal resulting diffusion of thermal energy would be expected to

be seen as an expansion of the material which decays back to the initial state, as demonstrated for

the signals in Chapter 3, not to a contraction of the material.

To investigate this unusual result, the static phase of the interferometer was varied. As

can be seen from Equation 5.3, a rotation of the interferometer phase by a factor of r (i.e.

introducing a relative A/2 phase delay between the probe and reference beams) results in a signal

of equal strength and opposite amplitude. A "negative" going signal is possible, again because

the changes in the interferometric intensity are relative to the large static phase which determines

the sensitivity. As shown in Figure 5.8, rotation of the interferometer phase by r yields an

unusual result - a nearly nonexistent signal. The oscillations corresponding to interference

between the static reflection and the dynamic reflection from the traveling acoustic wave can still

be clearly seen to begin immediately after zero picoseconds. At times corresponding to the

arrival of the acoustic wave at the backside of the sample, at the excitation region, and back

again at the backside of the sample, sharp fluctuations in the phase of this oscillatory signal can

be seen. As in Figure 5.6, these events occur at times separated by the single-trip time of the

acoustic wave in 1000 nm of glass, 200 ps, and are marked by arrows and "*" as before. As seen

in Figure 5.9, at long times the signal level drops below zero again as was observed in Figure

5.7. Otherwise there is very little indication of the other signal contributions observed at the
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Figure 5.8. Single-pulse excitation of acoustic wave in 1000 nm silica
Section 4.2.2. Interferometer phase was rotated ,r degrees relative to
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Figure 5.9. Single-pulse excitation of acoustic wave in 1000 nm silica sample described in
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time scale to show signal dropping below "zero" of measurement.
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opposite interferometer phase.

If there are signal contributions resulting from not only a tiny interferometric phase shift

of the probe beam relative to the pump as had been assumed, but also from a tiny change in

reflectivity of the sample as in Figure 6.23, then the nearly perfect cancellation of the signal upon

rotation of the interferometer phase indicates that the strength of these two signal contributions is

nearly identical. The total change in signal intensity Is from both contributions can be expressed

as the sum of the small changes in the photodiode voltage, about the static voltage (VmaxVmin)

corresponding to maximal interferometric sensitivity, where the experiment is performed:

Isig = vref + sint 5.5

The reflectivity contribution is not related to the optical phase, only to the absorption of the

probe light by the aluminum. For a more detailed form of the signal intensity, the interested

reader is referred to Reference 28. Here it suffices to express the total reflectivity signal as

related to the small change in sample reflectivity 6R as modulating the total light level on the

photodiode:

sVVref = SR(Va - Vmin) 5.6

The interferometric contribution is related to the small change in optical phase (e.g. path length)

induced by the material response 56 as in Equation 5.3:

where the total phase (path length) is much larger than the small fluctuation, + S; ~; . When

'=O, i7, 2a ... , i.e. at the maximum sensitivity, then the total signal intensity is given by:

Isig = 6R(Vm -Vn ) + (Vm x - Vin) 5.8
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As the static phase of the interferometer is rotated by factors of 7r, the intensity of the total signal

goes from a sum to a subtraction depending on whether the total phase is given by an odd or

even number cycles.

As shown in Figure 5.8 and Figure 5.9, clearly upon rotation of the interferometer phase

by a factor of 7r relative to that shown in Figure 5.6 and Figure 5.7, the signal level due to the

sum of interferometric and reflectivity signals nearly disappears. The oscillatory signal which

has other origins is unaffected. The total signal level described by Equation 5.8 is close to zero,

and therefore:

i5R wa;: i5~; -5.9

This is a very useful result, because typically the measurements using a strain-induced change in

reflectivity of the probe as the signal have to make estimates of the magnitude of the strains

based on optical, electronic, and mechanical properties of the material.3 2 Typically it is simply

noted that A/R- 10-3 or smaller. Because the total displacement and therefore strain may be

easily calibrated interferometrically as described in Section 5.2.3, then the previous strain

estimates may be quantitatively evaluated.

In contrast to the results with an 800 nm probe, the signal obtained from an

interferometer with 400 light is shown in Figure 5.10. The sample is somewhat thinner, with 210

nm silica glass instead of 1000 nm, and is excited with an optically shaped 250 GHz pulsetrain as

described in Chapter 4, but otherwise the experiment is nearly identical. Qualitatively, the

acoustic signal contributions in the figures can be seen to be fairly comparable to those in Figure

5.6. At a time of zero picoseconds, a small feature can be seen which corresponds to the

excitation of the sample; the large rise at this time is not seen because the probe is modulated

only by the acoustic intensity, not by the presence of heat and excited electrons. At a time of
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-35 picoseconds, the acoustic wave arrives at the back of the sample, and is marked by an arrow

as in Figure 5.6. After another -70 ps, a negative-going echo returns, which is marked with a

second arrow. The signal in general shows no large background or oscillations, which is due to

the reduced reflectivity and transmission of the probe beam through the sample, respectively.

Shown in Figure 5.11 is the signal following rotation of the interferometer phase by a relative

factor of Ir. It is nearly identical to that with the unrotated phase, but has the expected negative

amplitude via Equation 5.8 for small AR. The difference between the two interferometric signals

rotated by Ir degrees relative to each other yields the pure reflectivity signal via this equation, and

the results are shown in Figures 5.12-5.14. The reflectivity contribution can be seen to be quite

small for the 400 nm probe, on average roughly 20% of the total signal amplitude, whereas at

800 nm it makes up the bulk of the signal.
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Figure 5.10. 250 GHz excitation of acoustic wave in 415 nm silica sample, probed with 400 nm
light.
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Figure 5.11. 250 GHz excitation of acoustic wave in 415 nm silica sample, probed with 400 nm
light. Interferometer phase was rotated r degrees relative to that in Figure 5.10.
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Figure 5.12. "Pure" change in reflectivity for 400 nm probe obtained from difference between
signals at interferometer phases rotated by a factor of 7r from each other.
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Figure 5.13. "Pure" change in reflectivity for 800 nm probe obtained from difference between
signals at interferometer phases rotated by a factor of r from each other.
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Figure 5.14. "Pure" change in reflectivity for 800 nm probe obtained from difference between
signals at interferometer phases rotated by a factor of ir from each other.
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5.5 Probing Lattice Vibrations: Phonon-Polaritons

Via the well-established technique of impulsive stimulated Raman scattering (ISRS), 800

nm excitation of a ferroelectric crystal such as LiNbO3 or LiTaO3 generates ionic displacements,

or optical lattice vibrations, which act like tiny antennas.27' 29' 30 The radiation generated by the

displacements inside the crystal simulates displacive motions in adjacent unit cells, which in turn

re-radiate. This admixture of ionic displacement and electromagnetic radiation is referred to as a

"phonon-polariton" (or more briefly, polariton) and it propagates at roughly 1/6 the speed of

light. For an exposition on the characteristics, control, and applications of polaritons, the

interested reader is referred to the thesis of David Ward, Polaritonics: An intermediate regime

between electronics andphotonics.3 7

The detection of phonon-polaritons via interferometry is illustrated in this section. A

transmission-mode interferometer, as shown in Figure 5.15. The probe wavelength chosen was

400 nm, which made it very easy to exclude scatter from the 800 nm pump pulse from the

photodiode, as shown in Figure 5.15. The excitation beam was from the Deathstar pulse shaper

described in Chapter 4, but here it was used to generate polaritons of tunable frequency, in this

case at 330 GHz.38 The sample was a thin film of LiNbO3. As shown in Figure 5.16 the

polariton is generated at the probe arm of the interferometer, and can be seen as a series of sharp

peaks corresponding to electronic excitation. Roughly 80 ps later, the polariton can be seen to

have traveled laterally (v = 60 im/ps) in the sample, and is detected in the reference arm of the

interferometer.

Here the relative probe-reference displacement which generates interferometric signal

arises from a change in refractive index in the crystal. As described in Section 5.2.3, the

interferometer may be calibrated, and the results are shown in Figure 5.16. The typical
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maximum displacement due to electronic signal was found to be on the order of 50 nm, and due

to polaritons to be on the order of 0.5 nm. This information can be used to calculate the net

displacement of the ions within in the crystalline lattice due to modulation by polaritons, which

in turn yields a measurement of the differential polarizability of the crystal.3 9

Ia.
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Figure 5.15. Transmission mode interferometer, indicating introduction of excitation pulse to
sample, and in-plane motion of the polariton.
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Figure 5.16. Generation of polariton at probe interferometer arm, and detection at reference
interferometer arm, following propagation through -5 mm of LiNbO3.
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5.6 Conclusions

In summary, a new diffraction grating-based interferometer has been developed which is

simple to align and use, as well as calibrate. Its robust use for the imaging and point detection of

thermoelastic phenomena on multiple timescales and in various geometries has been

demonstrated.
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Chapter Six

Structure and Dynamics of Amorphous Solids in the GHz Acoustic Regime:
Silica Glass

6.1 Introduction

This chapter presents results obtained using a novel experimental technique to elucidate

the microscopic details of disordered solids. A femtosecond optical pulse shaper called the

"Deathstar" is used to generate acoustic waves in the frequency region 1-1000 GHz which has

heretofore been difficult to access, and yet holds a wealth of information on the nature of

disordered materials. A serious effort has been undertaken by many researchers in the last few

years to obtain detailed structural and dynamical information at a material's "extended" scale,

corresponding to the large-wavevector and high-frequency range where it can no longer be

described as isotropic or homogeneous, but rather as a complex structurally heterogeneous

network with unique dynamics arising from the numerous quasi-energetic states in its potential

energy surface. The effort to develop a theory which adequately describes the universal behavior

of disordered solids has been recently called the "solid state paradigm of complex systems."'

Understanding the common microscopic features of the different classes of disordered materials

is crucial to understanding the common macroscopic properties.

Several spectroscopic techniques have been applied in recent years to the problem of

determining the microscopic structure and dynamics of glasses, which probe different frequency

ranges of interest. These include: quasielastic light scattering (LS);2 Brillouin scattering (BS);3

superconducting tunnel junction techniques (TJ) which can be used to generate both longitudinal

(L) and transverse (T) acoustic phonons but only at very low temperatures;4 picosecond
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ultrasonics5'6 which is discussed in more detail in Chapter 4; and inelastic X-Ray7'8 and neutron9

scattering (IXS, INS). Frequently these techniques give conflicting information about the

material, as shown in Figure 6.1., Also presented is the acoustic damping spectrum which has

long been predicted on the basis of thermal conductivity measurements, which give an indirect

measure of the phonon-material interactions as discussed in Chapter 2. The conflicts between

the theory and the measurements, and the measurements with each other, have demonstrated the

complexity of the nature of disordered materials.
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Figure 6.1. Phonon damping spectrum in PMMA obtained by various experimental techniques

described in the text. Adapted from Reference 6.

This chapter presents a novel spectroscopic technique which directly and robustly gives

new information in the crucial "extended" wavevector and frequency range believed to give rise

to the unique bulk properties of the entire class of amorphous materials. This is done with the

hope of resolving some of the conflicting results obtained in previous years, and testing the

validity of the tunneling model, which is described in Chapter 2. Section 6.2 outlines many of
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the experimental details of the setup and samples. The optical setup, very briefly described in

Section 6.2.1, is comprised of the novel ultrafast "Deathstar" pulse shaper used to generate

narrowband acoustic waves of tunable frequency throughout the range 1-1000 GHz, which is

discussed in much greater detail in Chapter 4, and the "grating interferometer" detection scheme,

described in Chapter 5. Section 6.2.2 specifically addresses non-optical experimental

considerations, such as the design, fabrication, and characterization of the sample, which

influence the experimental results (and the ability to obtain results at all) in important ways. A

discussion of the method of data analysis is presented in Section 6.2.3.

In Section 6.3 new spectroscopic details in the "extended" range of silica glass, obtained

with this technique, are presented. This material is chosen as a starting point for the study of

disordered materials in general, as it has been studied more extensively than any other since the

field's inception.l °' The availability of literature data on its thermal and elastic properties makes

it easy to evaluate the effectiveness of the Deathstar technique relative to others, and to compare

with the results of long-standing models. Data between 50 and 300 GHz, between high (300 K)

and low (20 K) temperatures, are presented in an attempt to separate the dynamical and structural

contributions to the acoustic spectrum as much as possible within the current experimental

constraints. The 294 K spectrum is compared to the only other spectrum available in the

literature, and the 20 K spectrum is compared to the results of the tunneling model described in

Chapter 2, as no data in this frequency range at low temperatures is available in the literature.

Lastly, in Section 6.4 the results are summarized, and some new directions of the research are

briefly discussed.
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6.2 Experimental Details

6.2.1 Optical Setup

The generation of acoustic waves in the 1-1000 GHz range is accomplished by way of a

novel ultrafast pulse shaper called the "Deathstar," which is described in detail in Chapter 4.

Optical pulse trains of tunable frequency are used to irradiate thin aluminum films, which rapidly

expand, generating acoustic waves through the plane of the film. The acoustic wave travels out

of this film and into the material of interest, here a thin film of either silica glass or a polymer,

where it propagates with damping rate a(, T) and velocity v(c,T). The values of these

parameters are modulated by interactions within the material, and the identification of these

interactions is the goal of this Chapter. After propagation through the sample, the acoustic wave

propagates into a second aluminum film, where it is detected by a reflection mode grating

interferometer as described in Chapter 5. By varying the Deathstar frequency, the acoustic

spectrum may be determined for a material one frequency at a time.

6.2.2 Fabrication, Characterization, and Design of Samples

Several samples were employed in order to demonstrate both the wide applicability of the

Deathstar narrowband acoustic technique, as well as to explore the common microscopic features

of different classes of disordered solids. For a particular material, several samples of different

thicknesses were fabricated in order to greatly simplify data analysis. For the study of silica

glass, a single sample, with multiple thicknesses of the glass sandwiched between 18 nm

aluminum films, was fabricated and characterized using the techniques described in Section

4.2.2, and as shown in Figure 4.5. Neal Vachhani of the Materials Science Department at MIT
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fabricated the polymer samples, whose preliminary results are presented in Section 6.4. His

Master's thesis, Using Narrowband Pulse-Shaping to Characterize Polymer Dynamics, may be

referred to for a more detailed discussion of the results obtained thus far, and for the

considerations of fabricating ultrathin polymer samples.'1 For the study of PMMA, a number of

identical sapphire substrates were simultaneously coated with a first (excitation) aluminum film

via thermal evaporation. PMMA (540,000 g/mol from Scientific Polymer Products, Inc., Ontario

NY, or 500,000 g/mol from Polymer Laboratories, Amherst MA), was dissolved in toluene and

spin cast on top of the aluminum film. The concentration and spin rate parameters were varied

as reported in Table 5.1, to obtain different thicknesses of the polymers on different substrates.

After deposition the samples were annealed overnight at a temperature of 360 K. Lastly the

entire set of polymer-coated substrates was coated with second (detection) aluminum film, again

via thermal evaporation. The thicknesses of the aluminum, silica glass, and polymer films were

measured with ellipsometry, as well as with either the single-pulse or resonant acoustic

techniques described in Section 4.5, using the literature acoustic velocities for thin films of

PMMA (2830 m/s), silica glass (5900 m/s), and aluminum (6420 m/s).6 All of the material

parameters used are presented in Table 4.2. The results are presented in Table 6.1. In many

cases the results of the two measurement techniques were surprisingly different, as shown in the

rightmost column of Table 6.1. The consistency of the difference for a given material, with a

decreasing effect for thicker films, implies that ellipsometry may be relatively unreliable for the

determination of very thin film thicknesses.
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Material Mol. Wt. Conc. Spin Rate Ellips. Acoust. %

(mol (% by wt.) (rev/sec.) (nm) (nm) Difference
PMMA (A) 500,000 0.5 3000 15 19 27
PMMA (B) 540,000 0.5 2000 20 32 60

PMMA (C) 540,000 1.0 2000 50 77 54

PMMA (D) 500,000 3.0 2000 184 215 17

Silica (A) 60.1 --- --- 97 135 39
Silica (B) 60.1 ------ 190 265 39

Silica (C) 60.1 --- --- 438 480 12

Silica (D) 60.1 --- --- 947 1010 7

Alum. (A) 27.0 --- --- 15 23 53
Alum. (B) 27.0 --- --- 50 80 60

Table 6.1. Spin coating parameters of polymer films, and ellipsometrically and acoustically
measured thicknesses for all sample films.

Reference 12 assumed that for a very thin film of PMMA, 20-130 nm, the thickness

measured with ellipsometry was correct. The authors then used the picosecond ultrasonics

technique to find the timing of round-trip acoustic echoes within the film, and calculated the

acoustic velocity using the formula,

TRT = PM 6.1
Vs

where rRT is the round trip time and dpM is the thickness of the PMMA film. They found that

TRT was much shorter than expected, based on the ellipsometry thickness, especially for the

thinner films. This was attributed to a jump in the sound velocity from 2700 m/s in "thick" films

thicker than 40 nm, to 8000 m/s for the "thin" films of 20 nm - a nearly 300% change. A

perhaps more plausible explanation would be a systematic and growing error in ellipsometry for

films thinner than a certain thickness threshold. If rRT is smaller than expected, then assuming

the same acoustic velocity as a thicker film, the film could simply be much thinner than

expected. Also using the picosecond ultrasonic technique, Reference 6 reports a smaller velocity

discrepancy, on the order of 10-20%, for polymer films thinner than 40 nm, compared to what
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would be expected based on ellipsometry. This was observed for PMMA as well as others.

Based on the round trip echo time, this could again be taken to mean that the film is thinner than

ellipsometry indicates. In the case of the Deathstar method, the exact opposite case is found -

that the acoustically measured thickness is thicker than that from ellipsometry, by as much as

60% depending on the thickness of the film. Based on the arguments of the authors above, using

Equation 6.1 this would result in a slower sound velocity than that for the bulk, vs=1770 m/s for

the "20 nm" PMMA film. Taken together, there are very wide discrepancies between the

"measured acoustic velocities" for ellipsometrically measured 20 nm thin films of PMMA.

Between References 6 and 12, as well as the current measurement, a variation of -6200 m/s

using similar acoustic techniques exists. The results suggest, somewhat circumstantially, that

very thin films are not measured accurately (or even with a monotonic error) by ellipsometry.

The authors of Reference 6 choose to use Equation 6.1 to calculate the thicknesses of thin films,

using the "thick film" acoustic velocity and the measured acoustic round trip time. This is also

done here for all of the films, due to the dubious reliability of ellipsometry for this purpose. It is

possible that complications arise from the combination of thin polymer and metal layers, whose

partial reflections give rise to interferences that must be treated with considerable care.

The values of the reflection and transmission coefficients described by Equations 4.12,

4.13, and 4.14 in Section 4.4, are also important parameters for the success of the measurements,

because they determine the amount and form of the signal measured after propagation through

the multilayer sample. For the silica sample, the difference in acoustic impedance Z=pv, listed in

Table 4.2, between the aluminum and the glass is small: ZA=17x106 kg m2s 1, Zsiical3x10 6 kg

m 2s~- . This leads to a large transmission coefficient from the silica glass into the aluminum film,

t=0.87, yielding large signals. After the wave reaches the air-aluminum interface it reflects
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completely with phase inversion r=- 1.0, and travels back towards the aluminum-sapphire

interface where it is mostly transmitted, t=1.13, with a small partial reflection back into the

aluminum film, r=0.13. In the case of the polymer samples the situation is drastically different,

ZpMA=3.3X106 kg m 2 s- 1, leading to a much-reduced transmission coefficient into the aluminum

t=0.32. The only way of addressing this issue is to average the data longer. A less tractable

problem than weak signal is a persistent echo inside the aluminum film, due to the large

impedance mismatch with the PMMA. The reflection coefficient for the wave traveling from the

aluminum back to the PMMA is r=0.67, trapping much of the energy inside the aluminum and

resulting in a "ringing" of the film, which smears out the original acoustic response. This is

problematic for broadband (i.e. single-pulse) measurements where the shape of the waveform

transmitted to the sample is crucial to the analysis. For the narrowband measurements it is

somewhat less destructive as the magnitude of the total transmitted amplitude is the important

quantity. This problem was addressed by sometimes adding an additional coating of aluminum

to the aluminum film, to make the time it took the aluminum reflection longer than the time it

took for the original signal inside the PMMA to be recorded. In general, it may be best to seek a

more suitable transducer material to optimize transmission into polymer films while retaining

good photoacoustic bandwidth.

6.2.3 Acoustic Analysis

The damping coefficient and velocity of a high frequency acoustic wave may be easily

determined using the current technique and samples by observing the changes in amplitude and

temporal delay accrued by the wave upon propagation through two different thicknesses of the

material of interest, in otherwise identical samples. This method allows the measurement of
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material parameters while making no assumptions about any components of the sample, as the

only difference experienced by the wave between the two measurements comes from the

thickness difference. In this case the damping at a given measurement frequency coo is given by:

a(wo)0 In =-|I I 6.2
d, -d I, (co)

where dA and dB indicate the thicknesses of the thinner and thicker films of the material of

interest, and IA and IB are the amplitudes of the corresponding spectral peaks in the Fourier

transform of the time-dependent signal. The acoustic velocity may be determined by:

V() = dB -dA 6.3

where A and tr are the temporal delays of the acoustic wave through the two layers. Modest

errors in the thickness values of the disordered materials will add a constant offset value via

Equations 6.2 and 6.3 to the acoustic spectra discussed in Section 6.3, but will not change the

frequency dependence of the result, which is the most important feature of the acoustic spectrum.

Error in the aluminum thickness will alter the acoustic bandwidth, as discussed in Section 4.3,

but is irrelevant to the current results so long as both the thick and thin samples are coated with

identical aluminum films. For thin polymer samples, the properties of the material may be

influenced at and near the interface regions of the multilayer sample; the use of thicker samples

will minimize this effect.

6.3 Results for Silica Glass

In this section, selected raw and processed data obtained from measurements throughout

the 50-300 GHz frequency range will be presented as a way of illustrating the process of
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constructing the acoustic spectrum and of revealing the behavior of silica glass in different

frequency and temperature ranges. The preferred method of data analysis is without assumption

of any material parameters or models, using Equations 6.2 and 6.3, and results on this basis are

always taken as the most reliable. The acoustic mismatch model for propagation through the

multilayer sample can then be useful to confirm whether the experimentally determined damping

coefficient describes the behavior of individual data sets from different thickness samples.

6.3.1 Room Temperature Spectrum

As shown earlier in Figure 4.26, the amplitude of an acoustic wave at two different

sample thicknesses may be used to determine the damping constant. As shown Figure 6.2 (a) and

(b), tuning of the Deathstar pulse shaper allows the acoustic responses at different frequencies to

be compared readily as well. As before, the strain is calculated by taking the time-derivative of

the displacement data, using Equation 4.3. The values of the displacement and strain are not

routinely calibrated on an absolute scale, but they generally lie in the same range that was

discussed in Section 4.4, roughly a few tenths of a nanometer displacements and a few percent

strain. The transmitted wave at 150 GHz exhibits clear oscillations, however the scan at 300

GHz shows far stronger damping over the propagation length. Determining the frequency

dependent damping constants at room temperature is the goal of this section; the results will be

compared to the only other spectrum in this frequency and temperature range found in the

literature. 5 6 In Section 6.3.2 the frequency dependent damping at 20 K will be presented, and

compared to the tunneling model described in Chapter 2, as no other acoustic spectrum in this

frequency range, and below 80 K, can be found in the literature.
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Figure 6.2. Transmitted acoustic waves at 150 and 300 GHz through 210 nm silica glass: (a)
displacement, (b) strain.

Determination of the acoustic damping coefficients for multiple frequencies, sample

thicknesses, and temperatures requires careful acquisition and processing of the data, in order to

ensure that the difference in spectral amplitudes between measurements on different samples or

different sample regions may be accurately compared. Because each scan takes a fairly long

time to acquire, between 15 minutes to 1 hour depending on the scan length and resolution (with

at least 10 time steps required to resolve each acoustic cycle), the determination of the entire

spectrum using multiple thicknesses of films can take several days. Over this time the laser

power may fluctuate by up to 10%, and even the optical alignment can shift slightly. Therefore

the data need to be normalized to a consistent standard. The data presented in Figure 6.3, which

are scans with the excitation frequency at 200 GHz and with propagation through three

thicknesses of silica glass, were collected over the span of four days. As discussed in Section

4.4, a small amount of probe light leaks through the receiving aluminum film and observes the

excitation process of the sample at a time of zero picoseconds. This signal contribution persists

while at some later time, starting around 50 ps for the 210 nm sample, around 90 ps for the 480

nm sample, and 170 ps for the 1000 nm sample, the propagating wave arrives at the back of the

169



sample. The displacement corresponding to this initial contribution is subtracted, so that the rise

in the displacement caused by the propagating wave begins with an amplitude of zero. Then the

signals are normalized, which is accurate assuming that the transmission of the low-frequency

envelope which dominates the signal (about which the narrowband wave oscillates) will be the

same for excitation at the same frequency through different films. The validity of this procedure

is supported by the results of measurements conducted in succession on different SiO2 layer

thicknesses, which consistent give nearly identical signal levels for the acoustic wave envelope.

As seen in Figure 2.9, the expected damping rate for waves of frequencies less than 10 GHz is

less than lx104 m-1 , yielding an amplitude reduction of only 1% for propagation through 1 pm of

glass. The data shown in Figure 6.3, and all following data, have been processed in this manner.
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Figure 6.3. Displacement resulting from 200 GHz acoustic wave which has propagated through
210, 480, and 1000 nm of silica glass. Black lines are data with baseline subtraction and

normalization as described in the text. Grey lines are simulations using acoustic mismatch
model described in Section 4.4, with damping constant of 3.0x106 m-1 .
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Also shown in Figure 6.3 are simulations of the data, using the acoustic mismatch model

described in Section 4.4, which will be discussed in more detail later in this section.

The acquisition of data from different thickness samples must be performed with

identical resolution, and also with the same number of time points. The latter requirement is not

always practical, since for the thickest samples the times of propagation may be very long, with

little content before the arrival of the transmitted wave. To avoid extended scans, the

transformed strain data may be zero-padded in order to match the lengths of the time scans, as

shown in Figure 6.4 (a) for scans at 200 GHz through 210 and 480 nm of glass. The time axis of

the shorter scan is extended to match that of the longer scan, and assigned a strain value

corresponding to that of the final value of the original scan. The presence of a somewhat sharp

feature at this time is unimportant, because only a narrow temporal range is eventually selected

for Fourier transformation, as shown in Figure 6.4 (b). Only the signal corresponding to the

transmitted wave is transformed, in order to minimize contributions of high frequency noise (as

can be seen at times after 140 ps in Figure 6.4 (a) to the spectrum.
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Figure 6.4. (a) Zero-padding of strain data to ensure identical spectral content of Fourier
transforms of two data sets. (b) Cropping of extraneous data to minimize noise at frequency of

interest. Data sets are 200 GHz through 210 and 480 nm of silica glass
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The Fourier transformed spectra from scans through 210 and 480 nm of glass, processed

as shown in Figure 6.4 (b), are shown in Figure 6.5. As previously, the spectra contain a

comparable amplitude low-frequency component, and here it becomes apparent that this

component experiences little if any damping over these propagation lengths. The spectra show a

distinct peak at the driving frequency of the scan, and very little noise at other frequencies. From

the ratio of the amplitudes of the peaks shown here, I210 (wo )/I480(co0) = 1.67, using Equation 6.2

a damping rate of a=2.0x10 6 m is determined. The spectra resulting from Fourier

transformation of 480 and 1000 nm samples, processed identically, are shown in Figure 6.6. It

should be noted that in this case the 480 nm scan was zero-padded to match the length of the

1000 nm scan, to yield the same resolution in both scans. All of the data were handled as

similarly as possible, so their resulting spectral peak amplitudes could be accurately compared.

It is still seen that the low-frequency amplitudes for both spectra are similar, and that there is

little other content aside from the response at the driving frequency, though the noise in the 1000

nm spectrum is beginning to approach the level of the peak at 200 GHz. In this case

1480 (00)/Ii000 (0) = 2.41, yielding a damping constant of a= 1.7x106 m -1, which agrees fairly well

(within 20%) with that measured in the thinner pair of samples. These values, along with the

results at a few other frequencies where data could be obtained from three different thickness

samples, are presented later in this section, Table 6.2. Ideally a large number of different

samples would be available, and would allow for extremely accurate determination of the

transmitted amplitude as a function of thickness.
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Figure 6.5. Spectra of 200 GHz acoustic waves transmitted through 210 and 480 nm of silica
glass, following the processing described in this section. By taking the ratio of the peaks a

damping rate of 2.0x106 m l1 is obtained.
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Figure 6.6. Spectra of 200 GHz acoustic waves transmitted through 480 and 1000 nm of silica

glass, following the processing described in this section. By taking the ratio of the peaks a
damping rate of 1.7x106 m-l is obtained.
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Using the acoustic mismatch model described in Section 4.4, with the output from the

TTM described in Section 4.3 used as the acoustic input to the model, the scans may be

simulated using the measured damping rate. Here it was found that a damping rate of 3.0x106

m-1 fit all of the data scans quite well, which is somewhat larger than that measured via the data

itself. This implies some small error in the parameters in the model, which is reduced at lower

frequencies. The simulations to the displacement data for the three films were already presented

in Figure 6.3, however it can be more illuminating to examine the strain traces which emphasize

the oscillations resulting from the narrowband acoustic wave. Figure 6.7 shows the result for

propagation through 210 nm of silica glass, Figure 6.8 for propagation through 480 nm, and

Figure 6.9 for propagation through 1000 nm. The depth of modulation in the simulations can be

seen to be quite similar to the depth of modulation of the data. As shown later in this section, the

discrepancies between the measured damping values and the best-fit values using the acoustic

mismatch model vary somewhat with both frequency and temperature, suggesting a rather subtle

error in one of the adjustable parameters of the two-temperature model, compared to the actual

properties of this sample. In all cases the errors were modest, and generally support the support

the spectra obtained based on analysis of the raw data.
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Figure 6.7. Strain resulting from 200 GHz acoustic wave which has propagated through 210 nm
of silica glass. Black line is data with processing as described in the text. Grey line is simulation

using acoustic mismatch model (Section 4.4) with damping constant of 3.0x106 m- .
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Figure 6.8. Strain resulting from 200 GHz acoustic wave which has propagated through 480 nm
of silica glass. Black line is data with processing as described in the text. Grey line is simulation

using acoustic mismatch model (Section 4.4) with damping constant of 3.0x106 m-1 .
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Figure 6.9. Strain resulting from 200 GHz acoustic wave which has propagated through 1000
nm of silica glass. Black line is data with processing as described in the text. Grey line is

simulation using acoustic mismatch model (Section 4.4) with damping constant of 1.9x106 m-1l.
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Figure 6.10. Spectra of 150 GHz and 300 GHz acoustic waves transmitted through 210 nm of

silica glass. Amplitude of peak at 300 GHz is approaching the noise floor.
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To construct the acoustic spectrum, this procedure is repeated for as many frequencies at

which it is possible to collect data that can be analyzed. At the highest frequencies, this is

limited by the noise floor in the Fourier transforms. As shown in Figure 6.10, the Fourier

transformed spectra of the data shown in Figure 6.2 for transmission of 150 GHz and 300 GHz

acoustic waves through 210 nm of silica glass, the peak at 300 GHz is very weak compared to

that at 150 GHz. The intensity following propagation through 480 nm is yet substantially

weaker, and through 1000 nm is non-existent. In order to measure the damping coefficient as

accurately as possible for the highest frequencies, only the thinnest samples were considered.

Fabrication of much thinner samples than used in this thesis could enable the spectrum to be

extended at least up to 440 GHz,. and use of a "next generation" excitation transducer such as a

quantum well1 3 could allow access up to or exceeding 1 THz, where the propagation of an

acoustic wave would be expected to fail entirely.

For the measurements at lower frequencies, a different problem presents itself. As shown

in Figure 6.11 for the displacement, and Figure 6.12 for the strain, for scans with excitation at

125 GHz in samples of 480 nm and 1000 nm of silica glass, after the optical excitation is

complete there is some amount of time during which the acoustic wave propagates before arrival

at the back of the sample. However for the scan in the 210 nm sample, the optical excitation is

not yet complete before the acoustic wave arrives at the back of the sample. This results in an

additional complication to the data analysis. First, the background subtraction of the optical

input signal contribution is made more difficult because the final value of the contribution is

subsumed by the acoustic signal. This was compensated for by estimating the background level

based on scans at slightly higher frequencies, and could result in perhaps a 5% variation from the

actual value. Second, the choice of a proper window within which to perform the Fourier
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Figure 6.11. Displacements resulting from excitation at 125 GHz through 210, 480, and 1000

nm of silica glass. Through 210 nm silica, the propagating acoustic wave arrives at the back of
the sample before optical excitation is complete. Scans are vertically offset as an aid to the eye.
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Figure 6.12. Strain resulting from excitation at 125 GHz through 210, 480, and 1000 nm of
silica glass. Through 210 nm silica, the propagating acoustic wave arrives at the back of the
sample before optical excitation is complete. Scans are vertically offset as an aid to the eye.
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transform, as in Figure 6.4 (b) for 200 GHz where optical and acoustic overlap is minimal, is

unclear. Here a window excluding any contribution from the first and second acoustic pulses

was chosen for both the signal from the 210 nm and 480 nm samples, to ensure that the

comparison of spectral amplitudes is as reliable as possible.

The Fourier transforms of the 210 and 480 nm signals shown in Figure 6.12 following the

processing described in this section, are shown in Figure 6.13 (a) for a transformed window 55

ps long, and in (b) for a window 50 ps long, with the extra time removed from the leading edge

of the acoustic waveform. The ratio I 210(CO()/I4 80() at coo=125 GHz between the peak

amplitudes increases fairly significantly, from 1.02 for the 55 ps window (a), to 1.17 for the 50

ps window (b). It is clear that at relatively low acoustic frequencies and in relatively thin SiO2

layers, the partial temporal overlap of signal contributions from the front and back aluminum

layers leads to an uncertainty in the acoustic Fourier amplitude on the order of 10%. In this case

that is prohibitive since the total amount of damping in the thin layer is on the same order. It is

plainly apparent in Figure 6.12 that the acoustic amplitude varies very little between the 210 and

480 nm samples. Thus in the present sample, damping rates at low frequencies were determined

using data from the thicker layers only. In these data there is no temporal overlap between front

and back signal contributions, and there is more damping so the damping constant values are less

sensitive to slight changes in the data analysis. Note that the problem of overlap can be

eliminated in the future through the use of a slightly thicker aluminum layer as the "receiver"

transducer, substantially reducing the transmission of probe light and therefore reducing or

eliminating the signal contribution from the "transducer" film at front of the sample. Some

regions of the receiver film could be left thin or eliminated entirely so that the arrival times of the

excitation pulses could be observed when needed and the proper position of t = 0 on the time axis
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Figure 6.13. Fourier spectra of scans at 125 GHz through 210 nm and 480 nm of silica glass,
using temporal windows of (a) 55 ps and (b) 50 ps. The ratio I210(Co)/I480(Co0) is (a) 1.02
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Figure 6.14. Fourier spectra of scans at 125 GHz through 480 nm and 1000 nm of silica glass,
using temporal windows of(a) 100 ps and (b) 80 ps. The ratio I 480(Co)/Ilooo(coo) is (a) 1.45

yielding a=7.1x10 5 m-', and (b) 1.41 yielding a=6.6x10 5 m- 1.
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Figure 6.15. Fourier spectra of scans at 125 GHz through 480 nm and 1000 nm of silica glass,
using temporal windows of (a) 55 ps and (b) 50 ps. The resulting ratio I48 0(w0)/Iooo(CO) is 1.44

for both (a) and (b), resulting in a damping rate a=7.0xl 05 m'.
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could be established as in the present measurements. A slightly thicker "receiver transducer" film

layer would also be helpful, since excitation light that passes through this layer and excites the

receiver layer also gives rise to signal at short times.

Fourier transforms from the 480 nm and 1000 nm scans shown in Figure 6.12 are shown

in Figure 6.14. Because the data scans were much longer and there is no temporal overlap with

the data from the front aluminum film, the window size chosen for the Fourier transforms could

be widely varied, and the effect on the ratio I4s0(a0)/I0o0 (co) of the signal intensities could be

assessed. As the temporal window size is reduced for the scans through the thicker pair of

samples, as in Figure 6.14 with 100 ps and (b) with 80 ps windows, the low-frequency spectral

amplitudes increase a bit. This makes sense because spectral contributions from the noisy

baseline are removed with the shortened window. For these two windows, the ratio

I480( 0o)/I1 0O(O) between the peaks at coo=125 GHz is 1.45 for (a) and 1.41 for (b), which are

within 3% of each other. This small variation is somewhat exaggerated when the damping rate is

calculated from this value with Equation 6.2, to yield damping rates of 7.1x105 m' for (a) and

6.6x105 m-l for (b), which are within 8% of each other. Reducing the window size further, as

shown in Figure 6.15 (a) to 55 and (b) to 50 ps, by removing the 1st and 2nd cycles of the acoustic

wave as was done for Figure 6.14 (a) and (b), results in a similar discrepancy in the low-

frequency part of the spectrum. However the result for the thicker pair of films completely

disagrees with what is observed in the thinner pair: there is no change in the ratio between the

peaks. Both scans for the pair of thicker films yield a ratio of 1.44, and a damping rate of

7.0x105 m-', which is within 6% of that measured upon Fourier transformation of drastically

larger temporal windows. The main point is that as long as the temporal overlap between signal

contributions from front and back films is avoided, and as long as there is significant damping
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between the two thicknesses, then measurement of the damping constant with reason accuracy is

possible. The accuracy will be improved somewhat in future measurements on samples with

slightly thicker aluminum films. The results of the measurements are presented in Table 6.2.

To check the damping rates measured from the thinner and thicker films in a different

way, the time-domain data were simulated using the acoustic mismatch model employed earlier.

This avoids the windowing problem discussed above, because the model accounts for the

additional signal contributions resulting from the optical excitation of the sample, and even if the

signal contributions are not predicted quantitatively, one can examine the acoustic signal from

the receiver film at relatively late times, well after the signal from the front film has finished

changing. For this illustration simulations were performed at a frequency of 150 GHz instead of

125 GHz as discussed above. This is because the numerical calculation of the two-temperature

model acoustic waveforms that are used as the input into the acoustic mismatch model are very

time-consuming, and at the time of this publication had only been generated at 100, 150, 200

GHz, etc. However the 150 GHz scan in the thinnest film also exhibits temporal overlap

between the optical input and acoustic output, and the discrepancy between the measured

damping in thinner and thicker films is fairly large. By adjusting the apparent damping rate

a(co0) for each SiO2 layer thickness to match strength of the oscillations in Figure 6.16 for the

240 nm sample, Figure 6.17 for the 480 nm sample, and Figure 6.18 for the 1000 nm sample, the

damping rates which fit the scans vary somewhat different for the different thicknesses. They

also vary somewhat from that determined by the Fourier transform method for either pair of film

thicknesses. The Fourier transform gave a result of 5.5x105 mn' (not considered highly reliable)

for the thinner pair of films, 210 and 480 nm, and .1x106 m1 for the thicker pair of films, 480

and 1000 nm. Time domain fitting of the strain yielded a damping rate of 4.0x106 m-1 for the
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210 nm film, 3.0x106 mI for the 480 nm film, and 2.3 x106 m1I for the 1000 nm film. In all

cases, the amplitude of the modeled strain was fit to that of the measured strain (which itself is

on an arbitrary but consistent scale) by adjusting the damping constant. The fit, especially at 210

nm, requires a value of the damping constant that is quite high. This occurs because the TTM

prediction for the high-frequency acoustic amplitude (relative to the low-frequency component)

is far too high, and therefore strong damping in just 210 nm is the only way that the high-

frequency acoustic amplitude can be reduced sufficiently to allow a good fit to the data. At

higher acoustic frequencies than 125 GHz, the problem persists, but it is reduced since there is

some significant damping even in 210 nm at those frequencies. Similarly, for thicker films the

problem is diminished because of real damping. The values measured based on the FT analysis

are presented in Table 6.2.
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Figure 6.16. Strain resulting from excitation at 150 GHz in 210 nm of silica glass. The overlap
between the 6th, and 7 th pulses in the optical pulse train with the 1st and 2 "d pulses in the acoustic
pulse train following propagation to the back side of the sample are apparent. Also included is a

fit using the acoustic mismatch model with a damping constant a=4.0x0 6 m-1 .
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resulting from excitation at 150 GHz in 480 nm of silica glass. Also
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Figure 6.18. Strain resulting from excitation at 150 GHz in 1000 nm of silica glass. The optical
excitation is excluded so detail of high frequency oscillations may be easily seen. Also included

is a fit using the acoustic mismatch model with a damping constant a=2.3xl0 6 m- .
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Method a(125 GHz), mq a(150 GHz), mq a(175 GHz), m' a(200 GHz), m'
lo(1 2 10/48o)/Ad 2.9x105 5.5x10 1.5x106 1.9x10 6

log(4so/Iooo)/Ad 6.9xl0 5 1. lx10 6 1.7xl 0 6 1.7xl 06

Ratio 2.3 1.8 1.1 0.89

Table 6.2. Damping constants in silica glass measured at frequencies where information was
available for three different thickness films. "Ratio" expresses the damping observed in the

thinner film pair relative to the thicker pair

A final item of interest in the spectra is the apparent "shifting" of the peak to lower

frequencies, as shown at 200 GHz in Figure 6.6 and at 125 GHz in Figure 6.14 and Figure 6.15.

The meaning of this pair of results is unclear. It would certainly be expected that if the damping

increases strongly with frequency, then the high frequency contributions to the relatively broad

(FWHM - 25 GHz) would be damped more than the low frequencies as propagation increases.

This would result in a "shift" to lower frequencies, which is indeed observed for the thicker

films. However the frequency-dependent damping coefficients that we determine do not support

this interpretation.

The acoustic spectrum determined by the techniques described in this section is presented

in Figure 6.19, for the Fourier transform analysis of both the thinner and thicker pairs of data in

the regimes where they are reliable as described above. The gaps in the spectrum represent

frequencies where reliable information was not available due to uninterpretable Fourier

transforms of the data. For example, at 75 and 100 GHz, strong echoes were seen following the

arrival of the propagating acoustic wave, which may have been due to echoes inside one of the

aluminum films that were stronger than expected. The scan at 75 GHz produced an extremely

strong Fourier component at 125 GHz. These effects were not observed at other frequencies, and

they did not correspond to any expected resonant frequencies of the films as discussed in Section

4.5. The scan at 250 GHz was overwhelmed with noise but no explanation was found. The
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results in the middle frequency range and overall appear to show a roughly linear increase of the

damping constant with frequency, with a slope of 9.2x10-6 s/m (±1.4x10-6 ) using just the middle

frequency range. This is a remarkable result when the results are compared to the only other

acoustic spectrum for silica glass found in the literature, obtained by Maris, et al. The

picosecond ultrasonics techniques they use are described in Reference 5, and the spectrum used

in this chapter was taken from Reference 6. As shown in Figure 6.20, Maris, et. al., find a

quadratic dependence of the damping rate on the frequency. Also included in the plot is a value

at 35 GHz obtained from Brillouin scattering14 at room temperature which yields a damping

constant of 1.1x10 5 m'1.
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Figure 6.19. Room temperature acoustic spectrum from 50 to 300 GHz in silica glass, based on
comparison of Fourier amplitudes of waves transmitted through films of different thickness.
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Figure 6.20. Room temperature acoustic spectrum from 50 to 300 GHz in silica glass, based on
comparison of Fourier amplitudes of waves transmitted through films of different thickness.

Results are plotted along with spectrum obtained by Maris, et. al., References 5 and 6, as well as
a point obtained by Brillouin scattering by Courtens, et. al., Reference 14.

The dramatic quantitative difference between the results can be considered by again

turning to the raw data obtained via the two techniques. For the data shown from Maris, et. al.,

the spectrum was measured in a sample consisting of a thin -13 nm aluminum film, which

doubles as both excitation and detection film; a layer of silica glass which was one of a few

selected thicknesses between -25 and 500 nm; and a dense tungsten substrate. The acoustic

wave is generated by a single optical excitation pulse via the same processes described in Section

4.3, yielding in this case a single-cycle acoustic wave with frequency components up to -440

GHz. The sample response is measured directly via a strain-induced change in the aluminum

reflectivity of a variably-delayed probe pulse at 800 nm. Because heat generates strain in the

aluminum, and detection is made at the excitation spot, a slowly-decaying thermal contribution
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to the signal is seen for the duration of the measurement, as shown in Figure 6.21. For the signal

shown here the silica was 75 nm thick, and the measurement was made at 160 K. After

generation at the air-aluminum interface, the acoustic wave propagates through the silica layer,

reflects completely at the silica-tungsten interface, and returns to the excitation spot as an "echo"

where it is detected as an oscillation. Each echo has two cycles, due to a small partial reflection

experienced by the wave inside the aluminum film. By comparing the spectral amplitudes of

subsequent echoes of a broadband acoustic wave inside the sample, as shown in Figure 6.22, the

damping incurred by the acoustic wave upon propagation through twice the film thickness may

be determined. The data analysis is similar to what is done in this chapter, using Equation 6.2

but performing the division of amplitudes across the entire spectrum instead of performing a

frequency-by-frequency analysis. With the exception of a) the use of a single-cycle acoustic

wave, and b) detection at the excitation spot using a change in reflectivity, the two experiments

seem fairly comparable.

Signal
(arb)

0 20 40 Bo 80

Time (ps)
Figure 6.21. Single-pulse excitation of the aluminum-silica-tungsten assembly described in the
text. Acoustic echoes return to excitation spot where they are probed via strain-induced change

in reflectivity. Four echoes in the sample are apparent. Adapted from Reference 5.
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Figure 6.22. Comparison of spectral amplitudes of the three echoes seen in Figure 6.21.
Adapted from Reference 5.

At a frequency of 200 GHz, Maris, et. al., determine a damping rate of 1.0x107 m'1 .

Assuming this damping rate is accurate, upon propagation through 1000 nm of silica glass the

total transmitted amplitude would be 4.5x10-5 of the initial amplitude. In terms of our available

data, the amplitude corresponding to propagation through 210 nm of silica glass may be

considered an approximate "initial" amplitude. Then, the amplitude following propagation

through 1000 nm of silica may be considered simply to have traveled an additional 790 nm. The

expected amplitude measured at the end of the 1000 nm sample should be 3.7x104 of that

measured at the end of the 210 sample. As shown in Figure 6.23, and earlier in Figure 6.9 with

simulation, the five strongest acoustic cycles at 200 GHz appear to be resolved following

transmission through the additional 790 nm of glass. Using the damping rate of 1.8x106 m l1

determined by the Fourier analysis of the narrowband acoustic data presented in this section,

Beer's law predicts a transmission of 24% of the initial amplitude, in reasonable agreement with

the data presented in Figure 6.23 and Figure 6.24. Certainly more than 10
4 transmission is
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Figure 6.24. Spectra of 200 GHz excitation in 1000 nm and 210 nm films.
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can be seen.

The quantity of much interest to the field of disordered materials, as discussed in Chapter

2, is the temperature and frequency dependent phonon mean free path. This may be easily

computed from the measured damping rate at frequency oo by:

p (do T) = a((T) 6.4

The result is shown in Figure 6.25. The mean free path is roughly 1.5 pm at 60 GHz. Then it

gradually decreases with increasing frequency, to a value which remains near 0.5 Pm above 175

GHz.

50 100
I I

150 200

frequency (GHz)

Figure 6.25. Phonon mean free path as a function of frequency. Also
Maris, et. al., References 5 and 6.

included are results from
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The number of cycles that the acoustic wave propagates before damping by 1/e can give a

qualitative clue to the environment the acoustic wave experiences. This is computed by:

#cycles = AF = f 6.5
As vs

where f is the acoustic frequency (determined by the Deathstar) and vs is the speed of sound,

here given by the literature value 5900 m/s.5 As shown in Figure 6.26, the number of cycles

stays around 20 for most of the spectrum measured with the Deathstar technique. Maris, et. al.

show a number of cycles lower than 10 in all cases, and decreasing with increasing frequency.

This underscores the dramatic difference both quantitatively and qualitatively between the

current and previously reported results.
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Figure 6.26. Number of cycles the acoustic wave propagates before damping by 1/e. Also
shown are data from Maris, et. al., References and., and Courtens, et. al. Reference 14.
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The surprising frequency-dependent acoustic damping rates that have been measured

require a reconsideration of the mechanism for phonon scattering in disordered solids. It is clear

that a Rayleigh scattering model, as suggested in Chapter 2, is entirely inadequate since over a

rather wide frequency range there is nowhere near a fourth-power dependence (or even second-

power dependence) of the damping on rate on the frequency. The Rayleigh scattering result is

appropriate for scattering of sunlight in the upper atmosphere, where the distance between

scatterers is far longer than the light wavelength. Almost surely more appropriate for scattering

of high-frequency phonons in glass is a model derived from the scattering of light in turbid

media. This has been an extremely active area in recent years due to applications in biological

imaging, and although a simple analytical form for the wavelength dependence may not emerge,

experimental and simulation results for media with varying densities of heterogeneity and

varying degrees of index contrast have been reported. 5"'16 It is hopeful that a model along these

lines will permit rationalization of the present results and, going farther, that wavelength-

dependent phonon mean free paths will yield reliable estimates for the physical properties of

interest including average impedence constrast and correlation length scale.

To conclude this section, the room temperature acoustic spectrum has been determined

between the frequencies of 60 and 300 GHz. The robustness of the measurement method has

been demonstrated, and at the same time it has been shown to give remarkably different results

than observed in the only other measurement reported in the literature - a damping rate which

increases pseudo-linearly, rather than quadratically, with frequency, and whose values at the

higher frequencies are dramatically lower than those reported earlier. The interpretation of these

results will demand substantially revised models of phonon scattering in amorphous materials.
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6.3.2 Low Temperature Spectrum

The field of amorphous materials has its origins in the low-temperature thermal

anomalies measured in the early 1970's.17 As described in Chapter 2, by analyzing the shape of

the anomalous low-temperature thermal conductivity curve, a host of microscopic properties of a

glass can be described - with an undetermined level of uniqueness - via the "tunneling

model."1 8 9 These properties are modeled to describe interactions involving the acoustic waves

which carry heat through the glass, and these interactions yield the measurable bulk thermal

anomalies. The microscopic details incorporated by the model include phonon-mediated

tunneling between structural two-level systems below -2 K; relaxation processes above -2 K;

and at all temperatures very strong and frequency-dependent Rayleigh scattering of acoustic

waves from static structural heterogeneity. This yields a predicted acoustic spectrum, which is

shown in Figure 2.9, which has its most interesting features in the frequency range from 1 GHz

to 1 THz. In this frequency range, the Rayleigh scattering from inhomogeneity is predicted to

dominate the spectrum at all temperatures, exceeding the strengths of all other acoustic wave-

material interactions.

The most notable weakness of the tunneling model and the conventional determination of

its parameters is that they rely upon upon bulk measurement of very few macroscopic parameters

to characterize the results of several processes, each of which is the result of a weighted average

of microscopic parameters and phonon characteristics. Nonetheless, the model has remained

heavily used due to its success in reproducing many observed properties of glasses below 50 K,

as shown in Figure 2.11. Above this temperature, additional interactions such as multi-phonon

scattering events and the thermal saturation of the two-level systems could in some systems alter

the propagation of phonons in more complicated temperature and frequency dependent ways.
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The direct measurement of ultrahigh frequency acoustic phonons in this low-temperature region

has not been reported in the literature. Numerous techniques have been employed to test the

predictions of the tunneling model, as described in Section 6.1, but access to the relevant

frequency range, in the relevant temperature range, has been exceedingly difficult to achieve. To

that end, using the techniques described in the previous section, the measurements between 50

and 300 GHz were repeated in the same silica glass sample at a temperature of 20 K. This is the

first acoustic data in this frequency range presented in the temperature range of the thermal

conductivity plateau.

Execution of the measurements was somewhat more challenging at lower temperatures,

due to a few factors. The sample was placed inside of a sample-in-vapor cryostat (STVP-100,

Janis Research Company, Inc., Wilmington MA) which allowed excellent temperature control by

immersing the sample in helium gas at a selected temperature. Temperatures down to 1.6 K

were accessed in this manner, and originally the experiment was to be performed there.

However it was found that at temperatures below 15 K, the presence of increasingly dense and

turbulent helium gas created an insurmountable amount of noise in the interferometer which is

used to detect the subnanometer acoustic displacements. The static phase of the interferometer,

which is related to its sensitivity by Equation 5.3, could not be stabilized below -10 K. Between

10 and 20 K, the performance improved very much, but it was found that at 20 K and above the

times required to average scans to signal-to-noise were more similar to those at room

temperature. For this reason the experiment was performed at 20 K; use of a sample-in-vacuum

cryostat would likely yield access to measurements at lower temperatures, though access to the

lowest temperatures is more challenging with this type of cryostat. For the current purposes the

measurement at 20 K overlaps the high temperature end of the plateau in the thermal
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conductivity, as shown in Figure 2.11, and therefore should still be adequately explained by the

tunneling model.

Separately, the magnitude of the acoustic strain generated by multiple-pulse irradiation of

thin aluminum films is temperature dependent, as the heat capacity and thermal expansion

coefficient of the metal are temperature dependent, which in principle could be problematic.

However as discussed in Section 4.6 the use of a clever sample design allows any temperature or

frequency dependence of the acoustic generation process to be ignored. By allowing propagation

of the acoustic wave through multiple thicknesses of silica glass in an otherwise identical

sample, the only relative modification to the acoustic wave occurs from the additional

propagation length, as described by Equations 6.2 and 6.3 which include no other material or

excitation parameters.

The acoustic spectrum at 20 K was determined by comparison of the Fourier amplitudes

of acoustic waves which propagated through samples 210 and 480 nm thick. Signal at 150 GHz

in the 480 nm sample is shown in Figure 6.27 along with a simulation using a damping constant

of 1.5x106 m-', which agrees with that measured at this frequency by the Fourier method. The

spectrum is presented in Figure 6.28 along with the results of the room temperature

measurements (294 K) described in Section 6.3.1. The reliability of the values at lower

frequencies is limited somewhat by the fact that only thinner samples were used, for the reasons

discussed in Section 6.3.1. Though there is a substantial amount of variation in the data, it is

apparent that the magnitudes and overall trends are roughly similar to those found at room

temperature. This would appear to be consistent with expectations that scattering by static

heterogeneity is the dominant loss mechanism in SiO2 for acoustic phonons in the GHz

frequency range at essentially all temperatures up to 300 K.
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Figure 6.27. Strain at 150 GHz in 480 nm silica sample. Also shown is simulation using
acoustic mismatch model, using damping constant of 1.5x106 m 1 .
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Figure 6.28. Acoustic spectra at 20 K and at 294 K.
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Figure 6.29. Phonon mean free path at 20 K, 294 K, and that predicted by the tunneling model
(see Chapter 2).

The phonon mean free paths calculated from the damping coefficients with Equation 6.4

for the spectra at 20 and 294 K, along with those predicted by the tunneling model as described

in Chapter 2, are presented in Figure 6.29. At the highest frequencies, the value of the mean free

path measured by the experiments approaches that of the predictions, albeit with a much weaker

frequency dependence than anticipated. The mean free path in this region is modeled to be

dominated by Rayleigh scattering from structural inhomogeneity. While the small measured

mean free paths suggest a very strong scattering mechanism, the frequency dependence goes

roughly as co and definitely not as the predicted )4 which was used to explain the plateau in the

thermal conductivity, as shown in Figure 2.11. However, since the thermal conductivity is

dominated by phonons at high wavevectors where the density of states is high, the tunneling

model predictions still can be fit adequately to the thermal conductivity even though they do not
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describe the microscopic behavior well. The fact that the success of the model in fitting

macroscopic thermal behavior does not provide an adequate test of its microscopic

underpinnings is precisely the reason that more definitive measurements of the detailed

wavevector-dependent properties are needed.

6.4 Conclusions on the Properties ofAmorphous Materials at the Microscopic Level

The technique for generating ultrahigh frequency acoustic waves that has been developed

in this thesis holds great potential for addressing heretofore unanswered questions about the low-

temperature dynamical processes and structural features of amorphous materials. The effort to

develop the technique is justified by the remarkable and previously unobserved results that it has

produced on what is generally believed to be the best understood glass material. The results at

room temperature demonstrate that the damping rate is far lower, by an order of magnitude at

higher frequencies, than previously shown. The results at 20 K were expected to confirm the

predictions of the tunneling model, as described in Chapter 2. However while at high

frequencies the values agree fairly well with what is expected, the lower frequencies experience

drastically higher damping than expected. Further, the spectra at both 294 and 20 K seem to

agree quite closely, which demonstrates that their damping likely has a common origin -

structural heterogeneity. Studies at even lower temperatures might be expected to support this

conclusion. The very gradual increase in damping with frequency, as opposed to a damping

increasing as the fourth power of the frequency, suggests that while the Rayleigh scattering

model yields a fairly accurate magnitude of the damping of high-wavevector acoustic waves,

which duplicates the conductivity results, it is not at all an appropriate model of the true

interaction of phonons with the structure. A more physical model could be that of a wave
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propagating through turbid media. Surely as the acoustic waves they travel they see not a low

density of strongly scattering centers, but rather a near continuum of weakly scattering

heterogeneities. Further theoretical consideration is in order.

6.5 Future Directions

Currently studies are ongoing to explore the interesting new information which has

become available through the development of this technique. For example preliminary data have

been obtained in silica glass between the range 300-20 K, with hopes of testing the presence at

higher temperatures (-50 K) of two-level system relaxation effects which are not predicted by

the tunneling model, but have been seen at much lower frequencies.20 However the data quality

were relatively poor for a combination of reasons which would be addressed by several

improvements: 1) the laser system was recently updated, and should give much improved signal-

to-noise ratios; 2) use of a cold-finger instead of a sample-in-vapor style cryostat would reduce

interferometric noise in the detection system; and 3) access to an increased range of sample

thicknesses, some potentially with thicker aluminum films for detection of the acoustic waves

with little contribution from other signals. On the whole the preliminary data show similar

trends to that shown in this chapter.

The final section of this chapter points toward two important additional prospects for the

experimental approach that has been developed. We show in Figure 6.30 and Figure 6.31 data

from the polymer PMMA at 425 K. Polymer samples represent an additional level of complexity

due to their particularly broad distribution of dynamics over numerous timescales, many of

which may be correlated."1 In addition, at this temperature the sample is well above the
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Figure 6.30. Displacement at 100 GHz in 20 and 50 nm of PMMA, at 425 K (above Tg=4 10 K)
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Figure 6.31. Strain at 100 GHz in 20 and 50 nm of PMMA, at 425 K (above Tg=4 10 K).
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glass transition temperature Tg =410 K. The data collected at this temperature illustrate the

potential for direct study of high-frequency acoustic waves and the rapid structural relaxation

dynamics that mediate their properties in the liquid state, not only in polymers but in glass-

forming liquids generally. Currently studies are ongoing to explore the changes in the acoustic

spectrum of PMMA that occur with the onset of liquid-like dynamics as the polymer is raised

above its glass transition temperature.
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Developed new spectroscopic technique for the measurement of dynamical intermolecular processes in
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for 30 years.
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micelles, and used together with monolayers to create stable bio-mimetic materials "on a chip."

Engineered lateral features of monomolecular layers at the air-water interface; imaged with Brewster
Angle Microscopy; transferred to substrates for use as a prototype cholera biosensor.

205



LEADERSHIP
2001-2003
Co-founder and treasurer of "The Epicurean" club, MIT

Organized and led numerous monthly events centered on teaching cooking skills and food appreciation
to undergraduate and graduate students. Total club membership: 100.

Collaborated with club president to formulate direction and constitution of club activities, membership,
and budget. Hosted inaugural event, Sushi Night, which became an annual event by popular demand.

Wrote biannual budget requests to the MIT Undergraduate Finance Board.

1996-1997
Photography editor of Rice University student newspaper, the "Thresher"

Worked directly with the Editors-in-Chief to determine form and content of photography in weekly
student newspaper. Trained student photographers.

Modernized darkroom, converting from optical photo printing to an all-digital system of photo
manipulation.

Documented campus events such as: conference attended by Janet Reno, James A. Baker III, and Jack
Kemp; visits by Vanessa and Colin Redgrave, and Hakeem Olajuwon; sports such as college basketball
and Beer Bike.

Teaching Assistantships:
MIT 1999-2000 (Head TA, 2000) Thermodynamics and Kinetics
Rice University 1998 Advanced Organic Chemistry Lab

Awards:
Presented graduate research at Ultrafast Phenomena XIV conference in Niigata, Japan, July 2004
Poster Prize at MIT George Harrison Spectroscopy Lab Annual Meeting, 2004
Poster Prize at MIT George Harrison Spectroscopy Lab Annual Meeting, 2003
Los Alamos National Laboratory Pipeline Initiative Award, 1998
President's List, Rice University, 1997
National Merit Scholar, 1995

SKILLS

Spectroscopic techniques: Experimental design, femtosecond and picosecond ultrafast spectroscopy,
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