
Dynamic Memory Optimization using Pool Allocation and Prefetching

Qin Zhao1, Rodric Rabbah2, and Weng-Fai Wong1,3

1National University of Singapore, Singapore-MIT Alliance
2MIT Computer Science and Artificial Intelligence Laboratory

3National University of Singapore, Department of Computer Science

Abstract

Heap memory allocation plays an important role in mod-
ern applications. Conventional heap allocators, however,
generally ignore the underlying memory hierarchy of the sys-
tem, favoring instead a low runtime overhead and fast re-
sponse times. Unfortunately, with little concern for the mem-
ory hierarchy, the data layout may exhibit poor spatial lo-
cality, and degrade cache performance. In this paper, we
describe a dynamic heap allocation scheme called pool al-
location. The strategy aims to improve cache performance by
inspecting memory allocation requests, and allocating mem-
ory from appropriate heap pools as dictated by the request-
ing context. The advantages are two fold. First, by pooling
together data with a common context, we expect to improve
spatial locality, as data fetched to the caches will contain
fewer items from different contexts. If the allocation patterns
are closely matched to the traversal patterns, the end result
is faster memory performance. Second, by pooling heap ob-
jects, we expect access patterns to exhibit more regularity,
thus creating more opportunities for data prefetching. Our
dynamic memory optimizer exploits the increased regular-
ity to insert prefetch instructions at runtime. The optimiza-
tions are implemented in DynamoRIO, a dynamic optimiza-
tion framework. We evaluate the work using various bench-
marks, and measure a 17% speedup overgcc -O3 on an
Athlon MP, and a 13% speedup on a Pentium 4.

1. Introduction

Memory latency is an important performance bottleneck
in modern high-performance architectures. Current practices
for hiding the memory latency range from architectural inno-
vations to compiler optimizations. In this paper, we describe
our memory optimizer (MO), with an emphasis on locality-
aware heap management, and data prefetching. In the former,
dynamic memory allocation requests in the program are re-
placed with customized memory management routines. The
custom allocators reserve large memory pools of the heap
space, and reassign smaller portions within the pool with suc-
cessive heap allocation requests. The end result is a seg-

regation of different data types into distinct regions of the
heap, often leading to improved reference locality. In the case
of data prefetching, future memory requested are anticipated
and fetched ahead of time in order to mask long memory ac-
cess latencies.

MO is implemented in DynamoRIO, a state of the art dy-
namic optimization framework [2]. MO can be readily ap-
plied to programs running directly on stock hardware, without
any modification or even knowledge of the program source
code. The locality aware heap allocator is designed to be sim-
ple and lightweight. It operates in two stages. First, as part
of the dynamic instrumentation system, it inspects all heap
requests, and creates a memory request monitor for each re-
questing call site. When a code region runs often enough to
be designated ashot, its monitors are inspected. If a monitor
is found to have recorded a consistent calling context, the cor-
responding memory request is routed to a custom pool allo-
cator. Otherwise, it is routed normally to the standard system
allocators. Thus, object instances that are likely to be of the
same type are grouped in continuous memory regions, while
dissimilar objects are segregated into different pools.

Such data layout optimizations not only improve the data
locality, but also affords more aggressive optimization op-
portunities via data prefetching. The key insight and con-
tribution in this paper is that data prefetching techniques that
are effective for scientific programs can now be easily ap-
plied to pointer-chasing applications—because their data ac-
cess strides become far more predictable. To perform data
prefetching, MO instruments the code traces extracted by Dy-
namoRIO to discover delinquent loads and collect stride in-
formation with extremely lightweight profiling. The profiles
then serves as a basis for dynamic prefetch injection. Our re-
sults suggest that pool allocation creates more opportunities
for data prefetching with strides.

We evaluate MO using benchmarks collected from Olden,
Ptrdist, and SPEC. The benchmarks were compiled with
gcc -O3 . MO yields a performance gain of 17% on av-
erage for an Athlon MP and 13% for a Pentium 4. For appli-
cations with little dynamic allocation and deallocation, MO
contributes a performance slowdown averaging less than 1%
beyond that contributed by DynamoRIO alone.



2. Pool Allocation

Our pool allocation strategy can lead to better performance
in two ways. In applications where the data structure traver-
sal matches the data allocation order, the pooling strategy can
expose more regular strides. For example, consider a search
through a linked-list of records. Each record consists of a
key field, a data field, and anext field pointing to the
next record in the list. Thekey and next fields are ac-
cessed consecutively, until a match is found. It is only then
that thedata field is accessed. If the data stored in each
record is itself a heap object, and worse, the data varies in
size form record to the next, there are various undesirable ef-
fects on the spatial locality of the working set. Namely, data
are unnecessarily fetched from memory, consuming valuable
bandwidth. Also, since variable length data intervene be-
tween thekey andnext fields, the strides within a record,
and across successive records will appear irregular. Thus, the
segregation of different object types can improve spatial lo-
cality, and concomitantly, overall performance. Furthermore,
because pool allocation may expose more regular strides, a
simple prefetching strategy can anticipate future references
and shorten their memory access latency.

MO is implemented in DynamoRIO, a dynamic optimiza-
tion framework. In DynamoRIO, when the basic blocks are
first interpreted, all calls to standard dynamic memory alloca-
tors (e.g.,malloc andcalloc ) are replaced with calls to an
allocationwrapper. The wrapper, in addition to the standard
parameters passed to the dynamic allocators, requires one ad-
ditional parameter: thememory request monitor(MRM). We
associate a unique MRM with each call site. The MRM is
a data structure used to record the size of previous dynamic
memory allocations originating at the call site. If the last en-
try matches the size of the new request, the MRM is said to
contain a valid context.

DynamoRIO occasionally promotes chains of basic blocks
to optimized traces. This is done to improve the performance
of frequently executed code. When a region is promoted,
MO inspects the monitors in the region. If the monitor has
recorded a valid context (i.e., recent requests from the call
site were identical with respect to the size), the optimizer re-
places the call to the wrapper with a call to a custom alloca-
tor. Otherwise, the call is replaced with the original call to
the standard allocator provided by the system. The custom
allocator reserves a large memory pool to service incoming
requests. With each new request, it reassigns an appropriately
sized region in the pool.

MO requires that all allocations within a pool are of the
same size. Thus, allocations from a pool are as simple as
incrementing a pointer. In the case of deallocation from a
pool, the custom allocator uses a stack to maintain the list of
free regions. Newly freed regions are pushed onto the stack,
and incoming requests are eventually serviced form the stack.
When the free list is exhausted (i.e., the pool is completely

assigned), a new pool twice the size of the previous pool is
reserved. Similarly, when all objects in the pool are freed, the
pool is deallocated.

On the occasion that a pool request does not match the ex-
pected data size, the requested is routed to the standard sys-
tem allocators. The rational is that allocations of the same
object type will often match in size, and MO should focus
on the common case scenarios. Any requests to reallocate a
dynamic data structure are also handled by the standard al-
locators, with the caveat that if the reallocated data were or-
ganically resident in a custom pool, the space is reclaimed for
future requests.

3. Data Prefetching

Our data prefetching strategy is motivated by previous re-
search [1, 17] which has shown that in many programs, long
latency cache misses are dominated by only a small number
of static loads. These loads are commonly known asdelin-
quent loads. MO identifies delinquent loads at runtime using
a low-overhead profiler.

The memory optimizer does not instrument and profile all
memory operations, but rather only a specific subset. Since
the profiling is done online, the alternative is prohibitively
expensive. MO profiles memory instructions that

• Execute frequently — delinquent loads must also be fre-
quently executed instructions, so our profiler only instru-
ments instructions found in traces, which are hot code
fragments derived from the executing program by Dy-
namoRIO.

• Reference the heap — stack and global data references
usually exhibit good locality behavior, and hence they
are not instrumented. In the x86 ISA, instructions ac-
cessing memory throughESP or EBP are considered
non-heap references.

• Do not use the index register — in the x86 ISA, array
references typically use an index register. The profiler is
thus biased toward pointer dereferences, rather than ar-
ray accesses which are likely to exhibit relatively better
cache performance.

When DynamoRIO constructs a trace, MO examines the code
fragment and adds a few new instructions per delinquent load
to write the base address referenced by the load to a desig-
nated profile in memory1. A counter is also added to the trace.
It is incremented on every entry to the code region, and when
it exceeds a thresholdt, it triggers an analyzer to inspect the
profiles associated with the trace.

1The number of new instructions varies with the number of delinquent
loads in the trace. We only record the base address of a memory reference.
For example if the instruction isebx ← [eax] 16, we only record the value
of eax .



benchmark native DR pool pft all

em3d 10.444 10.57 11.02 10.63 10.97
health 11.95 11.77 8.88 11.89 8.85
mst 12.7 13.28 13.14 12.29 12.07
treeadd 338.76 384.88 322.28 279.83 262.05
tsp 42.96 43.43 41.56 43.74 41.44
ft 99.33 99.63 26.79 38.37 8.42
ammp 754.68 762.15 746.65 722.3 694.35
art 780.12 789.14 812.18 787.66 813.227
equake 343.01 354.54 275.14 353.8 275.36
twolf 957.15 986.77 950.45 988.31 972.98

Table 1. Athlon MP execution time (in seconds).

In each profile, the analyzer finds the longest sequence
where the stride (s) between successive references is the
same. If the length of that sequence is greater thant

2 , and
the stride is greater than a quarter of the cache block size
(b), the corresponding load is considered delinquent. In this
case, the instrumentation code is replaced with an instruc-
tion to prefetch data at a distance approximately five cache
blocks away. A stride satisfying the constraintss ≥ b

4 was
empirically observed to amortize the prefetch overhead most
effectively. Shorter strides do not miss as often, and longer
strides can lead to one miss every four (or fewer) references.

The prefetch distance (p) is determined as follows:

p = (n× object size) + s

wheren is the number of objects to look ahead in the ref-
erence stream, and the stride offset adjusts for the location
of a field within the object. It is evident that the prefetching
heuristic is geared toward recursive data structures, with the
assumption that objects are located consecutively in memory
(as in an array of objects). Since our optimizer cannot quickly
determine the size of objects it intends to prefetch, it approx-
imates the prefetch distance using the block size instead. In
addition, we empirically determined the value ofn that leads
to the best performance. Hence, the prefetch distance is ap-
proximated as:

p = (5× b) + s.

In order to reduce prefetch overhead, MO compares the
profiles of multiple delinquent loads for redundancy. If two
or more loads access the same memory locations (e.g., they
share the same base register), only one prefetch instruction is
added to the trace.

4. Experiment Evaluation

We evaluated our memory optimizations using two differ-
ent x86 architectures. The first is an SMP system with two
1.2 GHz AMD Athlon MP processors, running Linux kernel
version 2.4.18-3smp. Each processor has a 64 KB primary
data cache, and an equally sized instruction cache. There is

benchmark native DR pool pft all

em3d 5.54 5.29 5.27 5.3 5.31
health 5.46 5.54 4.741 5.52 4.51
mst 6.54 6.47 6.47 6.59 6.46
treeadd 103.17 115.97 112.75 126.39 121.41
tsp 20.56 20.87 19.31 20.81 19.34
ft 16.36 16.48 3.58 14.38 3.18
ammp 409.65 429.12 404.74 415.79 397.24
art 389.58 376.57 300.758 362.23 280.87
equake 122.5 125.94 110.15 124.67 109.21
twolf 394.44 427.03 403.36 434.88 405.95

Table 2. Pentium 4 execution time (in seconds).

also a unified 256 KB secondary cache, with 64 byte cache
lines. The other system is a 3 GHz Intel Pentium 4 processor
with hyperthreading. It runs Linux kernel version 2.4.2smp.
The primary data and instruction caches are 8 KB and 12 KB
respectively. The unified secondary cache is twice the size of
the Athlon MP. It is 512 KB with 64 byte cache lines.

The benchmarks we use areem3d, health , mst ,
treeadd , andtsp from Olden,ft from Ptrdist, andart ,
equake , ammp, and twolf from SPEC 2000. All the
benchmarks were compiled withgcc -O3 . The Olden and
Ptrdist benchmarks are commonly used in the literature when
evaluating dynamic memory optimizations. Many of the
benchmarks from these suite run too quickly for meaningful
measurements, and were therefore omitted. We also evalu-
atedall of the SPEC benchmarks. We report the performance
results for only those benchmarks where the performance dif-
fered more than 1%. For the SPEC benchmarks we use the
reference workloads. In the case ofart which has two ref-
erence workloads, we used only one of them (namely the one
with startx = 110).

In Table 1 (Athlon MP) and Table 2 (Pentium 4), we re-
port the execution times (i.e., user and system time) of each
benchmark. There are five columns per benchmark. The
first, labelednative is the measured runtime for the ap-
plication running natively. The column labeledDRrepresents
the program running in the DynamoRIO environment. The
column labeledpool is the runtime measured when using
DynamoRIO and pool allocation. The column labeledpft
corresponds to the runtime when using DynamoRIO and data
prefetching. The last column is labeledall , and it reports
the runtime when using DynamoRIO along with pool alloca-
tion and data prefetching. For each benchmark, we highlight
in bold the best performing optimization strategy. Note, we
report the best of three measurements for each column.

The relative performance of each scenario, as compared
to native execution, is illustrated in Figure 1 (Athlon MP),
and Figure 2 (Pentium 4). These graphs have four bars per
benchmark, and they are labeled in accord with the tables.
The native performance serves as the baseline, and hence bars
greater than unity imply degradation, bars equal to unity im-
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Figure 1. Athlon MP normalized execution time.

ply no change in performance, and bars shorter than unity
imply a performance improvement.

On the Athlon MP system, our memory optimizations of-
fer an average (arithmetic mean) speedup of 17% compared
to native execution. In the best case,ft ran 10× faster. This
benchmark first generates a graph and then constructs a min-
imum spanning tree. The pooling collocates all of the ver-
tices in one pool, and aggregates the edge data structures in
another. The reference patterns in the latter part of the com-
putation are identical to the graph construction order, and as
a result, the pool allocation strategy works quite well. The
prefetching heuristics are also successful at reducing the ex-
ecution time, and when combined with pool allocation, the
prefetching efficacy improves further. In almost all cases
where prefetching is successful in improving performance,
there is usually an added benefit when the optimization is
combined with pool allocation—even when pool allocation
alone does not lead to significant performance gains. We be-
lieve this is due to the new prefetching opportunities exposed
as a result of the custom allocation strategies. For example,
in the case ofmst , treeadd , andammp, the performance
gains when both optimizations are enabled exceed the addi-
tive advantage of each optimization alone.

In the case of the Pentium 4, the average speedup is 13%.
The trends are generally similar, with two exceptions. In
the case ofart , the pool allocation strategy improves per-
formance by 20% compared to native execution. In con-
trast, the same strategy does not affect the performance of
art on the Athlon MP. This benchmark does not have any
pointer data structures, but rather dynamically allocates ar-
rays of various sizes for a neural network simulation. We
believe the performance gains on the Pentium 4 are attributed
to its large secondary cache, and reduced cache conflicts. We
will use detailed simulations to further investigate this issue.
In this benchmark, prefetching is not very effective because
our heuristic ignores index memory operations. The profil-
ing only records the base registers used in the memory ac-
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Figure 2. Pentium 4 normalized execution time.

cess, whereas in array based computation, we will need to
also record and inspect the index registers.

In the case oftreeadd , data prefetching degrades per-
formance significantly on the Pentium 4. The optimizer adds
one prefetch instruction to the code. It is to prefetch the root
node passed to a recursive function responsible for nearly
95% of the total execution time. The prefetch is quite effec-
tive on the Athlon MP. On the Pentium 4 however, the same
prefetch instruction is responsible for more than a 20% degra-
dation in performance. The difference may be due to the way
prefetching is implemented in the two architectures. We used
the prefetchnta opcode for prefetching, but in various
test kernels, the impact of prefetching on performance varied
across the two machines. In general, prefetching was more
effective on the Athlon MP compared to the Pentium 4.

In Table 3 we report the number of prefetch instruction that
are injected into the instruction streams of the various bench-
marks. When pool allocation is used, the optimizer in some
cases was able to perform more prefetching. The profiling
analysis suggests the new opportunities are a direct result of
the custom allocation strategies. For some benchmarks such
as treeadd and tsp no prefetch instructions were added.
As we continue this research, we will explore new heuristics
to identify delinquent loads.

without with
benchmark pooling pooling

em3d 13 13
health 7 7
mst 4 6
treeadd 1 1
tsp 0 0
ft 8 10
ammp 41 44
art 11 11
equake 4 11
twolf 168 237

Table 3. Number of prefetch instructions.



Finally, we note that the pool allocation strategy increases
the memory footprint of the applications. This is largely due
to the delayed deallocation of pools (i.e., while objects within
a pool are deallocated, the heap space is not released until the
pool is empty). Also, the pool allocator may reserve more
heap space than necessary, especially since we double the size
of pools when they are filled. However, while the memory
footprint is larger, pool allocation leads to smaller working
sets because of increased spatial locality.

5. Related Work

Various strategies for locality-aware heap management ex-
ist [10, 6, 3, 20, 16, 18, 12]. They are characterized by one or
more of the following. First, they are not completely trans-
parent to the programmer and may require some manual re-
tooling of the application. Second, they may incur signif-
icant runtime overhead as objects are migrated in memory.
Third, they may violate program correctness in pointer-heavy
applications, due to pointer arithmetic. Some techniques try
to overcome the latter with source code analysis to discover
pointer aliasing, and attempt to guarantee correctness. By
contrast, our approach is (i) completely automated and trans-
parent; (ii) does not require access to the source code; (iii)
does not perform any runtime data migration; (iv) always
preserves correctness; and (v) is relatively lightweight, and
amenable to runtime adaptation and customization. Note that
if the application implements its own custom memory allo-
cator, all of the techniques, including ours, either require a
modification to the source code, or knowledge of the func-
tion names for the allocators (so that they are intercepted at
runtime).

In terms of data prefetching, there is also a large body
of work exploring static [4, 11, 14, 15, 21] and dynamic [5,
8, 9, 19] strategies. The static technique usually require ac-
cess to the source code, whereas the dynamic strategies re-
quire architectural extensions. There are also online prefetch-
ing strategies [7] that analyze memory access patterns to
predict future reference patterns and appropriately prefetch
data. Others [13] uses performance counters to identify delin-
quent loads and predict a stride between successive refer-
ences. Our work complements hardware based strategies, es-
pecially those geared toward stride prefetching. In contrast
to software techniques, our work does not require access to
the source code and uses simple heuristics to identify delin-
quent loads. Other heuristics are possible, and we continue to
explore various ideas to improve our system.

Our memory optimization strategies are implemented in
DynamoRIO. There are however other dynamic optimization
systems. We believe our work is equally applicable in such
systems.

6. Conclusion and Future Work

In this paper, we described a runtime memory opti-
mizer (MO) to perform locality-aware data layout, and data
prefetching. Our framework does not rely on static compiler
analysis, and is implemented in DynamoRIO, a dynamic op-
timization infrastructure. As part of DynamoRIO, we can run
a broad range of applications directly on commercial off the
shelf processors. The applications include pointer-chasing
codes written in weakly-types languages such as C and C++.
MO yields performance gains between 13-17% on average
for an Athlon MP and a Pentium 4.

One of the distinguishing characteristics of our memory
optimizer is that it does not require any knowledge of the
program source code and data structures. Instead, it imple-
ments simple heuristics to spatially cluster objects that are
likely instances of the same data type. In applications where
dynamic data allocation patterns are similar to subsequent
traversal patterns, the clustering boosts spatial locality and
leads to improved memory system performance. In addition,
the pooling together of objects leads to greater regularity in
the access patterns, thereby creating more opportunities for
data prefetching. Our optimizer leverages these opportunities
to perform data prefetching. MO implements a lightweight
profiler to identify delinquent loads, and injects prefetch in-
structions into the code stream when doing so is profitable.

We are currently extending our infrastructure to allow
for cumulative optimizationswhere dynamic optimizations
are carried forward from one run to another. We are also
experimenting with new heuristics for pool allocation and
delinquent loads identification. Lastly, while our infrastruc-
ture is Linux based, we plan to target systems running Mi-
crosoft Windows, and evaluate our memory optimizations us-
ing desktop applications.
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