Using Cyclic Memory

Allocation to Eliminate

Memory Leaks

Huu Hai NGUYEN andMartin RINARD 2
ISingapore-MIT Alliance, National University of Singapore
2CSAIL, Massachusetts Institute of Technology

Abstract—We present and evaluate a new memory man-
agement technique for eliminating memory leaks in programs
with dynamic memory allocation. This technique observes tha
execution of the program on a sequence of training inputs to
find m-bounded allocation sites, which have the property that at
any time during the execution of the program, the program ony
accesses the lastr objects allocated at that site. The technique
then transforms the program to usecyclic memory allocation at
that site: it preallocates a buffer containing m objects of the
type allocated at that site, with each allocation returningthe
next object in the buffer. At the end of the buffer the allocaions
wrap back around to the first object. Cyclic allocation eliminates
any memory leak at the allocation site — the total amount of
memory required to hold all of the objects ever allocated at lhe
site is simply m times the object size.

We evaluate our technique by applying it to several widely-
used open source programs. Our results show that it is able
to successfully eliminate important memory leaks in these no-
grams. A potential concern is that the estimated boundsm
may be too small, causing the program to overlay live objects
in memory. Our results indicate that our bounds estimation
technique is quite accurate in practice, providing incorrect results
for only one of the 161 m-bounded sites that it identifies. To
further evaluate the potential impact of overlaying live objects,
we artificially reduce the bounds at other m-bounded sites and
observe the resulting behavior. The general pattern that emrges
is that overlaying elements of core data structures may makéhe
program fail. Overlaying application data, however, may impair
parts of the functionality but does not prevent the program
from continuing to execute to correctly deliver the remaining
functionality.

Index Terms— Cyclic Memory Allocation, Memory Leak

*This research was supported in part by DARPA Cooperativeeément
FA 8750-04-2-0254, DARPA Contract 33615-00-C-1692, theg&pore-MIT
Alliance, and the NSF Grants CCR-0341620, CCR-0325283, @@dR-
0086154.

|. INTRODUCTION

A program that uses explicit allocation and deallocatios ha
a memory leak when it fails to free objects that it will no leng
access in the future. A program that uses garbage collection
has a memory leak when it retains references to objects that
it will no longer access in the future. Memory leaks are an
issue since they can cause the program to consume increasing
amounts of memory as it runs. Eventually the program may
exhaust the available memory and fail. Memory leaks may
therefore be especially problematic for server progranas th
must execute for long (and in principle unbounded) peridds o
time.

This paper presents a new memory management technique
for eliminating memory leaks. This technique applies to-all
cation sites' that satisfy the following property:

Definition 1 (n-Bounded Access Propertyn allocation
site ism-bounded if, at any time during the execution of the
program, the program only accesses at most thesasbjects
allocated at that site.

It is possible to use the following memory management
scheme for objects allocated at a giverbounded allocation
site:

« Preallocation: Preallocate a buffer containing objects

of the type allocated at that site.

o Cyclic Allocation: Each allocation returns the next object
in the buffer, with the allocations cyclically wrapping
around to the first object in the buffer after returning the
last object in the buffer.

o No-op Deallocation:Convert all deallocations of objects
allocated at the site into no-ops.

This cyclic memory management scheme has several ad-

vantages:

o No Memory Leaks: This memory management scheme
eliminates any memory leak at allocation sites that use
cyclic memory management — the total amount of mem-
ory required to hold all of the objects ever allocated at
the site is simplym times the object size.

o Simplicity: It is extremely simple both to implement and
to operate. It can also reduce the programming burden —
it eliminates the need for the programmer to write code
to explicitly deallocate objects allocated at-bounded
allocation sites (if the program uses explicit allocation

1An allocation site is a location in the program that allosataemory.
Examples of allocation sites include calls tal | oc in C programs and
locations that create new objects in Java or C++ programs.

and deallocation) or to track down and eliminate all
references to objects that the program will not access in
the future (if the program uses garbage collection).

To use cyclic memory management, the memory manager
must somehow findn-bounded allocation sites and obtain
a boundm for each such site. Our implemented technique
findsm-bounded sites and estimates the bound=mpirically.
Specifically, it runs an instrumented version of the progoam
a sequence of sample inputs and observes, for each allocatio An investigation indicates that in these cases, the affiecte
site and each input, the bound observed at that site for that ~ Part of the program has been coded to either detect or
input? If the sequence of observed bounds stabilizes at a value tolerate inconsistent values.

m, we assume that the allocation siterisbounded and use Our conclusion is that cyclic memory allocation with empir-
cyclic allocation for that site. ically estimated bounds provides a simple, intriguingrake

One potential concern is that the boundobserved while tive to the use of standard memory allocation approaches for
processing the sample inputs may, in fact, be too small:rothe-bounded sites. It eliminates the need for the programmer
executions may access more objects than therlastbjects to either explicitly manage allocation and deallocationt@r
allocated at the site site. In this case the program may ayerkliminate all references to objects that the program will no
two different live objects in the same memory, potentialllonger access. One particularly interesting aspect ofeéhelis
causing the program to generate unacceptable results or eigethe indication that it is possible, in some circumstanoes
fail. overlay live objects without unacceptably altering thedegbr

To evaluate our technique, we implemented it and appli@f the program as long as the core data structures remain
it to several sizable programs drawn from the open-sourgensistent.
software community. We obtained the following results: This paper makes the following contributions:

« Memory Leak Elimination: Several of our programs « m-Bounded Allocation Sites:It identifies the concept of
contain memory leaks at-bounded allocation sites. Our anm-bounded allocation site.
technique is able to identify these sites, apply cyclic « Cyclic Memory Allocation: It proposes the use of cyclic
memory allocation, and effectively eliminate the memory ~ memory allocation forn-bounded allocation sites as a
leak. mechanism for eliminating memory leaks at those sites.

It did not, however, cause the program to fail and in fact
left the program able to execute code that accessed the
overlaid objects to continue on to provide the remaining
functionality. When the reduction caused the program
to fail, the involved objects participated in core data
structures with consistency properties that cut across
multiple objects. Finally, in some cases the reduction did
not impair the observed behavior of the programs at all.

Accuracy: We evaluate the accuracy of our empirical e
bounds estimation approach by running the programs on
two sets of inputs: a training set (which is used to estimate
the bounds) and a larger validation set (which is used to
determine if any of the estimated bounds is too small).
Our results show that this approach is quite accurate: the
validation runs agree with the training runs on all but
one of the 161 sites that the training runs identifynas .
bounded.

Impact of Cyclic Memory Allocation:; In all but one

of the programs, the bounds estimates agree with the
values observed in the validation runs and the use of
cyclic memory allocation has no effect on the observable
behavior of the program (other than eliminating mem-
ory leaks). For the one program with a single bounds
estimation error (and as described further in Section IV-
A.3), the resulting overlaying of live objects has the efffec
of disabling some of the functionality of the affected

Empirical Bounds Estimation: It proposes a method-
ology for empirically estimating the bounds at each
allocation site. This methodology consists of instrument-
ing the program to record the observed bound for an
individual execution, then running the program on a range
of training inputs to find allocation sites for which the
sequence of observed bounds is the same.
Experimental Results: It presents experimental results
that characterize how well the technique works on several
sizable programs drawn from the open-source software
community. The results show that cyclic memory alloca-
tion can eliminate memory leaks in these programs and
that the programs can, in some circumstances, provide
much if not all of the desired functionality even when
the bounds are artificially reduced to half of the observed
values. One intriguing aspect of these results is the level
of resilience that the programs exhibit in the face of
overlaid data.

program. The remaining functionality remains intact; the The remainder of the paper is structured as follows. Sec-
error does not cause the program to fail or otherwisn Il presents an example that illustrates our approach.
interfere with its continued operation. Section Ill describes the implementation in detail. Sectid

» Bounds Reduction Effect: To further explore the po- presents our experimental evaluation of the technique: Sec
tential impact of an incorrect bounds estimation, wgon V discusses related work. We conclude in Section VI.
artificially reduced the estimated bounds at each site and
investigated the effect that this artificial reduction had
on the program’s behavior. In most of the cases this
reduction impaired some of the program’s functionalityS

Il. EXAMPLE

Figure 1 presents a (simplified) section of code from the
quid web proxy cache version 2.4.STABLE3 [4]. At line
9 the proceduresnnp_par se allocates a buffelbuf p to

2In any single execution, every allocation site has a boun@which may - i > "
hold a Conmmuni ty identifier. At lines 20 and 21 the

be, for example, simply the number of objects allocated ait $ite).

. 1: u_char =
proceduresnnpDecodePacket writes a reference to the 3! snnp_par se(struct snnp_session * session,

allocated buffer into a structucheckl! i st allocated on the 3- struct snnp_pdu * pdu,
stack; at line27 it writes a reference to the buffer into its 4: u_char * data,
parameter ¢. The procedursnnpDecodePacket passes 5: int length)

bothcheckl i st andr g on to other procedures. This pattern ?f {

repeats further down the (transitively) invoked sequente og:

procedures. 9: bufp = (u_char =)xmalloc(ComunityLen+1);
The proceduresnmpDecodePacket is called by the 10: return (bufp);

proceduresnnpHand| eUdp, which passes a pointer to itselfl1: }

as an argument t@om®Bet Sel ect, which then stores a 12: static void

reference tosnnmpHandl eUdp in a global table of structs 13: snnpDecodePacket (snnp_request _t * rq)

indexed by socket descriptor numbers. The program then uéés {

the stored reference as a callback. :
Any analysis (either manual or automated) of the In‘et|m@7;

int CommunitylLen = 128;

u_char *Community;
acl Check_t checkli st;

of the buf p buffer allocated at lin@® in snnp_par se would 18: Community =
have to track this complex interaction of procedures and ddtd: snnp_par se(&Session, PDU, buf, len);
structures to determine the lifetime of the buffer and eith&9: checklist.snnp_comunity =

(char) Conmunity;

insert the appropriate call tr ee or eliminate all the refer- . ,
. . . . : if (Comunity)

ences to the buffer (if the program is using garbage codegti 53- al | ow = acl CheckFast (
Any such analysis would, at least, need to perform an intex4: Confi g.accessLi st.snnp, &checklist);
procedural analysis of heap-aliased references in thepces 25: if ((snnmp_coexist_V2t oV1(PDU))
of procedure pointers. In this case the programmer either wif" f& (Comuni t—y)Oo&& (allow) {
unable to or failed to perform this analysis. The progra rg->comunity = Communi ty;

. . . : snnpConstruct Reponse(rq);
uses explict allocation and deallocation, but (appargniyer »g. }

deallocates the buffers allocated at this site and thezef@o: }
contains a memory leak [1]. 31 void

When we run the instrumented version of Squid on a variey: snnpHandl eUdp(i nt sock, void *not_used)
of inputs, the results indicate that the allocation sitére 9 is 33: {
anm-bounded site with the boung = 1 — in other words, 34: commBet Sel ect (sock, COVM_SELECT_READ,
the program only accesses the last object allocated atitbat SES it (len > 0) {Snana”dl eldp, NULL, 0);
T.he use of <_:ycl|c memory allocation for this site with a buffe : snnpDecodePacket (Snnp_rq)
size of 1 object eliminates the memory leak and, to the best4y- }
our ability to determine, does not harm the correctnessef thg: }
program. In particular, we have used this version of Squid in
our standard computational environment as a proxy cache fy. 1. Memory leak from Squid
several weeks without a single observed problem. During thi
time Squid successfully served more than 60,000 requests.

training inputs. As the program runs, the instrumentation
1. | MPLEMENTATION maintains the following values for each allocation site:

o The number of objects allocated at that site so far in the
computation.

o The number of objects allocated at that site that have been
deallocated so far in the computation.

o An observed bound:, which is a value such that 1) the
computation has, at some point, accessed an object allo-
cated at that site» — 1 allocations before the most recent
allocation, and 2) the computation has never accessed any
object allocated at that site more than— 1 allocations
before the most recently allocation.

Our memory management technique contains two com-
ponents. The first component locatesbounded allocation
sites and obtains the bound for each site. The second
component replaces, at eaelrbounded allocation site, the
invocation of the standard allocation procedumal(l oc in
our current implementation) with an invocation to a proaedu
that implements cyclic memory management for that sites Thi
component also replaces the standard deallocation prozedu
(f r ee in our current implementation) with a modified version
that operates correctly in the presence of cyclic memory
management by discarding attempts to explicitly deallcat The instrumentation also records the allocation site, eskir
objects allocated in cyclic buffers. It also similarly rapés range, and sequence number for each allocated object. The
the standard eal | oc procedure. address range consists of the beginning and ending addresse
of the memory that holds the object. The sequence number
is the number of objects allocated at that site prior to the
allocation of the given object. So, the first object allodate

Our technique findsn-bounded allocation sites by runningat a given site has sequence number 0, the second sequence
an instrumented version of the program on a sequence mfmber 1, and so on.

A. Findingm-Bounded Allocation Sites

The instrumentation uses the Valgrinddr check tool to D. Variable-Sized Allocation Sites
obtain the sequence of addresses that the program accessesdyme allocation sites allocate objects of different sizes a

Itseexse(t:#éersegé):;jZZIgztélrjgznrt:;mg F?] r}%‘;ﬁ?;.esnegcgeigfxzE'ﬁerent times. We extend our technique to work with these
u ge | : ds of sites as follows. We first extend our instrumentatio

allocation site and sequence number for the accessed JOb]FeCéhnique to record the maximum size of each object alldcate
It then compares the sequence number of the accessed obd?cét

. . ; . ach allocation site. The initial size of the buffer is &et
with the number of objects allocated at the allocation site S times this maximum size — the initial assumption is that

Iﬁ;'ggzgrcganggta;ﬁln and, if necessary, appropriatelyateel the sizes observed in the training runs are representdtihe o
v unde. - . silzes that will be observed during the production runs.
When the technique finishes running the program on al .
L . t the start of each new allocation, the allocator has a
of the training inputs, it compares the sequence of observeda‘

boundsn for each allocation site. If all of the observed bound%ertam amount of memory remaining in the buffer. If the newl

. . allocated object fits in that remaining amount, the allocato
are the same for all of the inputs, the technique conclud) g

o . . aces it in the remaining amount, with subsequently atkdta
that the site ism-bounded with boundn. In this case, the X 9 q Y

technique generates a production version of the program t Q]ects placed after the newly allocated object (if they i)

. : . : . . e newly allocated object does not fit in the remaining anhoun
uses cyclic allocation for that allocation site with a buff&ze but does fit in the buffer, the allocator places the allocated
of m objects. X

object at the start of the buffer. Finally, if the newly alkded
object does not fit in the buffer, the allocator allocates & ne
B. Finding Leaking Allocation Sites buffer of sizemaxz (2« m*r,3xs), wherer is the size of the

Consider an allocation site with an observed bowndif newly aIIocated.object anglis the size of the largest existing
buffer for that site.

the difference between the number of objects allocatedat th Note that althouah wina thi tensi itin th
site and the number of deallocated objects allocated asiteat ote that although applying this extension may resuit in the
location of new memory to hold objects allocated at the, sit

is larger thann, there may be a memory leak at that site. Nott%I total t of devoted to the obiects allocated
that our technique collected enough information to recogni € fotal amount of memory devoted to the objects afocate
at the site is still a linear function of the size of the latges

such sites. ingle object allocated at the site, not a function of the b
It would be possible to use cyclic memory allocation fopnd € object allocated at the site, not a function o tne hem
. : : 8f objects allocated at the site. Because of this bound on the
only such sites. Our current implementation, however, uses . .
. . ; . amount of memory allocated at the site, we do not consider
cyclic memory allocation for all sites with an observed bdun L . .)
he possibility of these allocations to constitute a paédnt

m. We adopt this strategy in part because it simplifies tﬁe
o in ndpemory leak.

overall memory management of the application and in par

because gives us a more thorough evaluation of our technique

(since it uses cyclic allocation for more sites). I\V. EVALUATION

. . We evaluate our technique by applying it to several sizable,
C. Implementing Cyclic Memory Management widely-used programs selected from the open-source sttwa

We have implemented our cyclic memory managemef@mMmunity. These programs include:
algorithm for programs written in C that explicitly alloeat « Squid: Squid is an open-source, full-featured Web proxy
and deallocate objects (in accordance with the C semantics, cache [4]. It supports a variety of protocols including
each object is simply a block of memory). Easitbounded HTTP, FTP, and, for management and administration,
allocation site is given a cyclic buffer with enough spaaerfo SNMP. We performed our evaluation with Squid Version
objects. The allocation procedure simply increments thhou 2.4STABLE3, which consists of 104,573 lines of C code.
the buffer returning the next object in line, wrapping back « Freeciv: Freeciv is an interactive multi-player game [2].

around to the beginning of the buffer after it has allocates t It has a server program that maintains the state of
last object in the buffer. the game and a client program that allows players to

A key issue our implementation must solve is distinguishing interact with the game via a graphical user interface. We
references to objects allocated in cyclic buffers fromnefiees performed our evaluation with Freeciv version 2.0.0betal,
to objects allocated via the normal allocation and deatlona which consists of 342,542 lines of C code.

mechanism. The implementation performs this operatioryeve « Pine: Pine is a widely used email client [3]. It allows
time the program deallocates an object — the implementation users to read mail, forward mail, store mail in differ-
must turn all explicit deallocations of objects allocatedra ent folders, and perform other email related tasks. We
bounded allocation sites into no-ops, while successfutigl-d performed our evaluation with Pine version 4.61, which
locating objects allocated at other sites. The implemantat consists of 366,358 lines of C code.

distinguishes these two kinds of references by recordieg th « Xinetd: Xinetd provides access control, logging, protec-
starting and ending addresses of each buffer, then congparin tion against denial of service attacks, and other manage-
the reference in question to these addresses to see if ithHmwi ment of incoming connection requests. We performed our
any of the buffers. If so, it is a reference to an object alleda evaluation with Xinetd version 2.3.10, which consists of
at anm-bounded allocation site; otherwise it is not. 23,470 lines of C code.

Note that all of these programs may execute, in principle, fealidation run determines that the observed bounaas too
an unbounded amount of time. Squid and Xinetd, in particulamall for 1 out of 36 allocation sites (or 2.8% of the-
are typically deployed as part of a standard computing entieunded sites). In this case we say that the validation run
ronment with no expectation that they should ever terminaiavalidatedthese sites.

Memory leaks are especially problematic for these kinds of

. - m 1[2]3]14
programs since they can affect the ability of the program to Fstes 3o T2 T 111
execute successfully for long periods of time.

Our evaluation focuses on two issues: the ability of our
technique to eliminate memory leaks and on the potential
impact of an incorrect estimation of the boundsat different
allocation sites. We perform the following experiments for
each program: Table Il presents the percentage of executed allocatien sit

« Training Runs: We select a sequence of training inputshat the training runs identify as-bounded sites, the percent-
typically increasing in size, and run the instrumente@d® of memory allocated at these sites, and the percentage of
version of the program on these inputs to findbounded invalidated sites (SiteS for which the observed bouwndas too
allocation sites and to obtain the estimated bounder ~Small) for each of our programs. In general, the trainingsrun
these sites as described in Section IlI-A. identify roughly half of the executed sites msbounded sites,

. Validation Runs: We select a sequence of validatiorthere is significant amount of memory allocated at those site
inputs. These inputs are different from and larger than ti#@d there are almost no invalidated sites — the training runs
training inputs. We run the instrumented version of th@eliver observed bounds that are consistent with the bounds
program (both with and without cyclic memory allocatiorPPserved in the validation runs at all but one of the 161 sites
applied atm-bounded sites) on these inputs. We us@ith observed bounds: in the entire set of programs.
the collected results to determine 1) the accuracy of the

TABLE |
m DISTRIBUTION FORSQUID

Application | % m-bounded | % memory | % invalidated

estimated bounds from the training runs and 2) the effect Squid 60.0 283 538
of any resulting overlaying of live objects on the behavior Freeciv 50.0 75.2 0.0

Pine 63.7 36.8 0.0
of the program. Xinetd 64.7 94.8 0.0

« Conflict Runs: For eachm-bounded allocation site with
m >1, we construct a version of the program that uses TABLE Il
the bound[m /2] at that site instead of the boumd. We MEMORY ALLOCATION STATISTICS
then run this version of the program on the validation
inputs. We use the collected results to evaluate the effect
of the resulting overlaying of live objects on the behavior 2) Memory Leaks:Squid has a memory leak in the SNMP
of the program. module; this memory leak makes squid vulnerable to a denial

To evaluate the impact of cyclic memory allocation oRf service attack [1]. Our training runs indicate that the
any memory leaks, we compare the amount of memory ir3llocation site involved in the leak is an-bounded site with
the original version of the program (the one without cycli&”zl- The use of cyclic allocation for this site eliminates the

memory allocation) consumes to the amount that the versidf@K- Figure 2 presents the effect of eliminating the ledksT
with cyclic memory allocation consume. figure plots Squid’s memory consumption as a function of the

number of SNMP requests that it processes with and without
) cyclic memory allocation. As this graph demonstrates, the
A. Squid memory leak causes the memory consumption of the original
Our training inputs for Squid consist of a set of links thagersion to increase linearly with the number of SNMP recgiest
we obtained from Google news and a set of SNMP queries this version leaks memory every time it processes an SNMP
that we generated from a Python script that we developsghuest. In contrast, the memory consumption line for the
for this purpose. The training inputs have from 157 to 55@ersion with cyclic memory allocation is flat, clearly indiing
links and from 10 to 50 SNMP queries. Our validation inpuhe elimination of the memory leak.
consists of a larger set of links (4290) from Google news and
SNMP queries (100) from our Python script. The validation
SNMP queries also contain more variables (4) than the trgini 3) Effect of Overlaying Live Object®Recall that the valida-
queries (1). tion run invalidated one of thex-bounded sites. The resulting
1) Training and Validation Runs:Our training runs de- object overlaying causes Squid to generate incorrect rsgso
tected 36m-bounded allocation sites out of a total of 6Go some of the SNMP queries in the validation input. This
allocation sites that executed during the training runs3%8of allocation site allocates SNMP object identifiers, whicle ar
the memory allocated during the training runs was allocatedthen stored in the SNMP MIB tree. This tree is used to look
m-bounded sites. Table | presents a histogram of the observgdSNMP variables to respond to SNMP queries. Because the
boundsm for all of the m-bounded sites. This table indicatewvalidation input queries a larger number of variables then t
that the vast majority of the observed bounds are small tfaining runs, the SNMP object identifiers conflict in the MIB
pattern that is common across all of our programs). Thieee. When Squid attempts to look up the data for overwritten

Squid memory consumption query at all. Squid still, however, processes all other &infl
' ' ' Original —— requests without any problems at all.

Cyclic allocation ---%---

79

The next site we consider holds the values of some SNMP
variables. When we reduce the boundfrom 2 to 1, some
of these values are overwritten by other values. The netteffe
is that Squid sometimes returns incorrect values in regpons
to SNMP queries. Squid’s ability to process other requests
remains completely unimpaired.

78

7

76

75

74

Memory consumption (100KB)

Ll | B. Freeciv
Freeciv is designed to allow both human and Al (computer
2r 1 implemented) players to compete in a civilization-builglin
" , , , , game. Our training inputs for Freeciv consist of from 2 to
° 100 ot P q”‘: 400 %030 AI players. The sizes of the game map range from size 4
to size 15 and the games run from 100 to 200 game years.
Fig. 2. Squid memory consumption Our validation input consists of 30 Al players and a map size

of 20. The game runs for 400 game years.
1) Training and Validation Runs:Our training runs de-

SNMP object identifiers, it cannot find the data in the tregcted 42m-bounded allocation sites out of a total of 84
and returns an empty response. Queries for identifiers thd@ibcation sites that executed during the training runs2%&
were not overwritten return the correct response. Desige tof the memory allocated during the training runs was alledat
conflict, this version of Squid continues to execute throthgh at m-bounded sites. Table Ill presents a histogram of the
SNMP queries and correctly implements its remaining welhserved bounds» for all of the m-bounded sites. As for
proxy functionality. the other programs, the vast majority of the observed bounds

In hindsight, the identification of the SNMP object identifieare small. All of the observed bounds in the validation rum ar
allocation site as am-bounded site reflects an inadequacy igonsistent with the observed bounds in the training runs; th
the training runs, which all use the same number of SNMlse of cyclic memory allocation therefore does not change th
variables. Varying this number of variables in the trainings observable behavior of the program.
would cause the observed bounds from the different training

runs to vary and the technique would then (correctly) couelu m_ 172]>2
that the site is notn-bounded. #sites] 39 [3] 0O

4) Conflict Runs:For Squid, the training runs find a total of TABLE 1l
four m-bounded allocation sites witlu greater than one; one m DISTRIBUTION FORFREECIV

of these sites (the one witlh=14) is the site discussed above
in Section IV-A.3. We next discuss our results from the canfli
runs when we artificially reduce the sizes of the observed2) Memory Leaks:t turns out that Freeciv has a memory
bounds at the other sites. These results provide additiongdk associated with an allocation site repeatedly invoked
insight into the potential effect of overlaying live objedn during the processing of each Al player. Specifically, this
this program. allocation site allocates an array of boolean flags thae<tos
The first site we consider holds metadata for cached HT Pesence or absence of threats from the oceans. The training
objects; the metadata and HTTP objects are stored separaieins determine that this allocation site is mnbounded site
When we reduce the bound at this site from 3 to 2, the with m=1. Cyclic memory allocation completely eliminates
MD5 signature of one of the cached objects is overwritten hiis memory leak.
the MD5 signature of another cached object. When Squid is3) Conflict Runs:Freeciv has threen-bounded allocation
asked to return the original cached object, it determinas tlsites withm greater than 1; all of these sites hawe2. All
the MDS5 signature is incorrect and refetches the object. Ttieee of these sites are part of the same data structureraypri
net effect is that some of the time Squid fetches an object evgueue used to organize the computation associated with path
though it has the object available locally; an increase@sec finding for an Al player. Each priority queue has a header,
time is the only potential externally visible effect. which in turn points to an array of cells and a corresponding
The next site we consider holds the command field for ttegray of cell priorities. The training and validation runstho
PDU structure, which controls the action that Squid takes indicate that, at all three of these sites, the program aeses
response to an SNMP query. When we reduce the baundat most the last two objects allocated. Further investgati
from 2 to 1, the command field of the structure is overwrittereveals that (at any given time) there are at most two live
to a value that does not correspond to any valid SNMP quegueues: one for cells that have yet to be explored and one
The procedure that processes the command determines thaftcells that contain something considered to be dangerous
the command is not valid and returns a null response. The iiring its execution, however, Freeciv allocates many e§éh
effect is that Squid is no longer able to respond to any SNMRueues.

The first allocation site we consider holds the queue headaeallocates the text memory twice. Because the text olbgeets
Reducing the bound for this site from 2 to 1 causes the simet allocated at am-bounded site, these double deallocations
field in the queue header to become inconsistent with tlause Pine to fail.
length of the cell and priority arrays. This error causes the The final two sites both have boumd=2 and are both in-
program to fail. volved in a list of content filters that convert special cluéees

Reducing the bounds for the other two sites causes eitlier display. Reducing the bound from 2 to 1 causes the list
the cell arrays or the cell priorities to become overlaid. Ito lose one of the filters. Although this loss did not affect ou
both cases the program is able to execute successfully wtithgalidation run, it is possible that messages containingatha
a problem. While the overlaying may affect the actions of thers destined for the lost filter would be displayed incatyec
Al players, it is difficult to see this as a serious problentsin However, even after the resulting overlaying of objectg th
it does not cause the Al players to violate the rules of thdata structures remain consistent and do not interfere tvith
game or visibly degrade the quality of their play. successful delivery of other Pine functionality.

C. Pine D. Xinetd

Pine is a widely-used email program that allows users Our training inputs for Xinetd consist of between 10 and 500
to read, forward, and store email messages in folders. ggfuests. Our validation input consists of 1000 requesis. A
training inputs have between 3 and 6 mail folders containifj these requests are generated by a Perl script we developed
between 54 and 141 email messages. Our validation input fi@&this purpose.

24 mail folders that contain more than 2,500 mail messages.1) Training and Validation Runs:Our training runs de-

1) Training and Validation Runs:Our training runs de- tected 11lm-bounded allocation sites out of a total of 17
tected 72m-bounded allocation sites out of a total of 113llocation sites that executed during the training runs3®dof
allocation sites that executed during the training runsg®6 the memory allocated during the training runs was allocated
of the memory allocated during the training runs was alledat-bounded sites. Table V presents a histogram of the observed
at m-bounded sites. Table IV presents a histogram of tt@undsm for all of the m-bounded sites. All of the observed
observed bounds: for all of the m-bounded sites. As for boundsm are 1. All of the observed bounds in the validation
the other programs, the vast majority of the observed bourig are consistent with the observed bounds in the training
are small. All of the observed bounds in the validation rum afuns; the use of cyclic memory allocation therefore does not
consistent with the observed bounds in the training rurs; tehange the observable behavior of the program.
use of cyclic memory allocation therefore does not change th

observable behavior of the program. ?sites 111 202
m 1 21 3] 93 TABLE V
#sites| 68 | 2 [1 1 m DISTRIBUTION FORXINETD
TABLE IV
m DISTRIBUTION FORPINE 2) Memory Leaks:Xinetd has a leak in the connection-

handling code — whenever Xinetd rejects a connection (it is

always possible for an attacker to generate connectiorestgu

that Xinetd rejects), it leaks a connection structure 14&edy

long. Our training runs indicate that the allocation siteoined

in the leak is ann-bounded site withn=1. The use of cyclic

with m greater than 1. The first site we consider has a bou Hocatlon for th|s. S't? eliminates the _quk. Figure 3 p_mese,

m=93. The objects allocated at this allocation site are us effect of ehmm_atmg the Ieal§. This figure plots Xlngstd

to hold mailcap information (this information defines how/"€Mory co_nsumptmn as afunc_:non of the numbe_r of reJect_ed

MIME-encoded content is displayed). When we reduce ﬂggquests with and without cyclic memory allocation. As this
raph demonstrates, the memory leak causes the memory

bound m at this site from 93 to 47, some of the mailcapg " f1h iqinal ion 1o i i N
information is overwritten. The effect is that Pine is urgablCONSUMPUON OFthe original version to incréase finear i

to launch some external viewers. In particular, it is undble the number of rejected requests. In contrast, the memory con

launch a web browser to view external content. Even aftgymption line -for-the. version .Wit.h cyclic memory allocation
attempting (unsuccessfully) to launch the web browsere Pif? Eatf ciﬁail)émdlcatmg the il';;gzt'on ;f(}he”me;pory It::a
is able to continue to successfully perform other ema#tesd ote thal because none o ounded aflocation sites

tasks such as reading, forwarding, and viewing content fro'HﬁX'?et]fj hg"em gtrﬁatgr thf;n one, we do not investigate the
the mail messages. effect of reducing the bounds.

The next site we consider has a bound=3. This site
allocates nodes in a circular doubly-linked list; each node)
points to memory holding the text in a Pine status ling- Discussion
message. Reducing the boumd from 3 to 2 causes the Memory leaks are an insidious problem — they are difficult
list pointers to become inconsistent. The effect is thatePino find and (as the discussion in Section Il illustrates) can

2) Memory Leaks:Neither the training nor validation runs
revealed a memory leak in Pine.
3) Conflict Runs:Pine has fourn-bounded allocation sites

Xinetd memory consumption object instead of the expected object. This is especiallg tr
' ' oyicatigrs —— | for application data, in which the values for each concedptua
{ data unit tend to be stored in a single object, with the values
in multiple objects largely if not completely independent.
For five of the four allocation sites whose reductions cause
1 functionality impairment, overlaying the objects allaedtat
those sites causes the program to lose the data required to
1 implement the full functionality but does not harm the dbili
of the program to execute code that accesses the overlaid
objects without failure. The program can therefore execute
1 through this code without failing, preserving its abilitg t
deliver other functionality.
This property is, however, much less true for the core data
s s s s structures, which tend to have important properties thasscr
0 200 400 600 800 1000

Number of requests object boundaries. And indeed, the two allocation sitessgho
artificial reductions cause the program to fail both allecat
objects that are involved in the core data structures. Maeo
the causes of both program failures stem from inconsiséenci

N o _ that involve multiple objects. In the case of Freeciv, thggob
be difficult to eliminate even when the programmer is awatgerlay causes a length field stored in one object to inctiyrec

of their presence. Our experience with our four programgfiect the length of another object. In the case of Pine, the
underscores the difficulty of eliminating memory leaks —piact overlay causes two conceptually distinct list nottes
despite the fact that all of these programs are widely usggter 1o the same object.
and in some cases, crucial, parts of open-source computingnierestingly enough, for the three cases in which redactio
environments, three of the four programs contain MemoRLs no effect on the observable behavior, the program is
leaks. actually set up to tolerate inconsistent values in objelcts.
Our results indicate that cyclic memory allocation enableshe program (Squid) the program anticipates the possilofit
by empirically determined bounds. can play an important jnconsistent data and contains code to handle that caseeln t
role in eliminating memory leaks. Our results show that thisiher program (Freeciv) the program is able to successfully
technique eliminates a memory leak in three of our four pre@xecute with a range of data values. These two examples
grams. If the bounds: are accurate, there is simply no reasoguggest that many programs may already have some built-in

not to use this technique — itis simple, easy to implement, agapacity to fully tolerate inconsistent objects.
provides a hard bound on the amount of memory required to

store the objects allocatedatbounded sites. In this situation
there are two key questions: 1) how accurate are the observed
bounds, and 2) what are the consequences if the observedynamic memory management has been a key issue in com-
bounds are wrong? puter science since the inception of the field. Some langiage

Our results indicate that the observed bounds are impréS; C++) rely on the programmer to explicitly allocate and
sively accurate — the validation inputs invalidate only ondeallocate memory. One potential drawback of this approach
of the 161m-bounded allocation sites. Moreover, our conflicis the possibility of dangling references — the program may
runs indicate that the programs are often able to live with thileallocate an object, retain a pointer to the object, then us
overlaying of live data to continue to execute to succebsfulthe retained pointer to access the memory after it has been
deliver much of their functionality to their users. Of the 1tecycled to hold another object. This memory management
sites considered in the conflict runs, only 2 (one in Freecapproach also leaves the program open to memory leaks if it
and one in Pine) cause the program to fail if the bound fails to deallocate objects that it will no longer accessha t
artificially reduced. Atrtificially reducing the bounds at & ofuture.
the remaining sites impairs the functionality of part of the Garbage collection [13], [10] eliminates the possibilitfy o
program, but leaves the functionality of the other partadht dangling references by refusing to deallocate any reaehabl
Artificially reducing the bounds at the remaining 3 sitesvé=a object. The potential drawback is that the program may have
the entire functionality intact! a memory leak if it retains references to objects that it nll

One aspect of our implementation that tends to ameliordésmger access.
the negative effects of overlaying objects is the fact that Several researchers have recently developed static pnogra
different m-bounded allocation sites have different bufferanalyses that attempt to find memory leaks and/or accesses
So even if one object overwrites another, the objects sparivia dangling references. Heine and Lam use synthesized
the memory will tend to have the same basic data layout andnership properties to discover leaks and multiple deal-
satisfy the same invariants. This property makes the pmogrédocations [11]; Hackett and Rugina use an efficient shape
less likely to encounter a completely unexpected collecti@nalysis to detect memory leaks in programs with explicit
of data values when it accesses data from an overwritidgallocation [9]. Shaham, Yahav, Kolodner, and Sagiv use a

110

Memory consumption (KB)

30

Fig. 3. Xinetd memory consumption

V. RELATED WORK

shape analysis to eliminate memory leaks in garbage-¢etlecthen exploits this property to preallocate a buffemobjects

Java programs; the idea is to use static analysis to find aatd cyclically allocate objects out of this buffer. Thishiaue

eliminate references that the program will no longer usé.[1Zaps the total amount of memory required to store objects
All of these techniques entail the use of a heavyweightcstatillocated at that site at times the size of the objects allocated

analysis. Because the analyses are conservative, they ieay @t that site. Our results show that this technique can editain

some leaks. Moreover, once the analysis finds the leak, itingportant memory leaks in long-running server programs.

the responsibility of the developer to understand and ekt One potential concern is the possibility of overlaying live

the leak. objects in the same memory. Our results indicate that our
Gheorghioiu, Salcianu, and Rinard present a static asalybpunds estimation technique is very acccurate, misclasgif

for finding allocation sites that have the property that asmoonly one of the 161 allocation sites it determines torbe

one object allocated at that site is live during any pointhie t bounded. Moreover, our results also show that the effect of

computation [8]. The compiler the applies a transformatigpverlaying live objects is substantially less severe thaghin

that preallocates a single block of memory to hold all olsiecbe expected. Specifically, overlaying application data may

allocated at that site. Potential implications of the tegha disable part of the functionality of the program, but uspall

include the elimination of any memory leaks at such sitegpes not cause the program to fail. Our results therefore

simpler memory management, and a reduction in the difficuliydicate that cyclic memory allocation, enabled by empiri-

of computing the amount of memory required to run theal determination of the bounds., may provide a useful

program. This analysis can be viewed as the static countergaternative memory management technique to more standard

of our dynamic techniques that determine an observed bourdhniques, which remain vulnerable to memory leaks.

m, but with the additional restriction that the boundequal

1. An advantage of this analysis is that it is sound (i.e., the REFERENCES

analysis C.onSId_erS all possible executions an.d guarathatas. [1] CVE-2002-0069. http://cve.mitre.org/cgi-bin/cvene.cgi?name=CVE-

no execution will ever have more than one object from the site” 2002-0069.

live at any time); disadvantages include the need to develdpl Freeciv website. http://www.freeciv.org/.

a sophisticated program analysis and the potential for t?'{g] Pine website, hitp:/www.washington.edu/pine/.

) . ! : . . Squid Web Proxy Cache website. http://www.squid-caoiwg.
analysis to conservatively miss allocation sites with atstno [5] Brian Demsky and Martin Rinard. Automatic Detection aRepair of

one live object. Errors in Data Structures. IRroceedings of the 2003 ACM SIGPLAN

S t hani ble th Conference on Object-Oriented Programming Systems, laagesy and
ome memory management mechanisms enabole € pro- Applications (OOPSLA '03)October 2003.

gram to overlay live data. A program with explicit dealldoat [6] Brian Demsky and Martin Rinard. Data Structure RepaiingsGoal-

can deallocate an object too ear|y, then use the resulting Directed Reasoning. IRroceedings of the 2005 International Confer-

. ence on Software Engineerinlylay 2005.
dangling reference to access the storage that the deaaldacab] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memoryfsty

object occupied. If the memory manager has allocated anothe without runtime checks or garbage collection Piroceedings of the 2003

object into this storage, there are, in effect, multipleects \(NorkShOP f)’” Languages, Compilers, and Tools for EmbeddstirBy
. - . LCTES'03) June 2003.

occupying the same sto_rage. Prowdmg a separate a"mat'%] Ovidiu Gheorghioiu, Alexandru Salcianu, and Martin Rid. Inter-

pool for each class of objects can preserve type safety @ven i procedural compatability analysis for static object doeation. In

the face of premature deallocation and the resulting daggli ~ Proceedings of the 30th Annual ACM Symposium on Principfes o
f 7 Programming Languageslanuary 2003.

rererences []] [9] Brian Hackett and Radu Rugina. Region-based shape sisalyith

Because our technique uses a separate buffer for each tracked locations. InPOPL '05: Proceedings of the 32nd ACM

allocation site, the resulting memory management algorith ~ SIGPLAN-SIGACT sysposium on Principles of programminguages
9 y 9 gor pages 310-323. ACM Press, 2005.

will typlcal_ly pres_erve basic type Saf?ty even When themt [10] Hans-J. Boehm and Mark Weiser. Garbage collection inuacooper-
overlays live objects (although, strictly speaking, upsé&f ative environment. IrSoftware — Practice and Experienceumber 9,
constructs such as unions can cause overlaying to genefate Pages 807-820, 1988.

. . . L Ell David L. Heine and Monica S. Lam. A practical flow-seivgitand
additional type S_afety V'Ol_at'ons)- The rer_nammg key eaob context-sensitive C and C++ memory leak detector. PloDI '03:
program failure is corruption of the core linked data stuues Proceedings of the ACM SIGPLAN 2003 conference on Progragimi
(veriayng general applcaion data usually has much Ioge (018 S i PRTELGHES L 60 A i 200
seve_re Consequences)- This property_ suggests that it ma tablishing Local Temporal Heap Safety Properties with Aggtions to
possible to use data structure repair [5], [6] to make the Compile-Time Memory Management. Trhe 10th Annual International

rogram substantially more robust in the face of this paldic Static Analysis Symposium (SAS ;0Bne 2003.
fomg of corruption y P [13] Richard Jones and Rafael LinGarbage Collection : Algorithms for

Automatic Dynamic Memory Managemerdbhn Wiley & Sons, 1996.

VI. CONCLUSION

Memory leaks are an important source of program failures,
especially for programs such as servers that must execute fo
long periods of time. Our cyclic memory allocation techréqu
observes the execution of the program to finebounded al-
location sites, which have the useful property that the g
only accesses at most the lastobjects allocated at that site. It

