
Using Cyclic Memory Allocation to Eliminate
Memory Leaks

Huu Hai NGUYEN1 andMartin RINARD 2

1Singapore-MIT Alliance, National University of Singapore
2CSAIL, Massachusetts Institute of Technology

Abstract— We present and evaluate a new memory man-
agement technique for eliminating memory leaks in programs
with dynamic memory allocation. This technique observes the
execution of the program on a sequence of training inputs to
find m-bounded allocation sites, which have the property that at
any time during the execution of the program, the program only
accesses the lastm objects allocated at that site. The technique
then transforms the program to usecyclic memory allocation at
that site: it preallocates a buffer containing m objects of the
type allocated at that site, with each allocation returning the
next object in the buffer. At the end of the buffer the allocations
wrap back around to the first object. Cyclic allocation eliminates
any memory leak at the allocation site — the total amount of
memory required to hold all of the objects ever allocated at the
site is simply m times the object size.

We evaluate our technique by applying it to several widely-
used open source programs. Our results show that it is able
to successfully eliminate important memory leaks in these pro-
grams. A potential concern is that the estimated boundsm
may be too small, causing the program to overlay live objects
in memory. Our results indicate that our bounds estimation
technique is quite accurate in practice, providing incorrect results
for only one of the 161 m-bounded sites that it identifies. To
further evaluate the potential impact of overlaying live objects,
we artificially reduce the bounds at other m-bounded sites and
observe the resulting behavior. The general pattern that emerges
is that overlaying elements of core data structures may makethe
program fail. Overlaying application data, however, may impair
parts of the functionality but does not prevent the program
from continuing to execute to correctly deliver the remaining
functionality.

Index Terms— Cyclic Memory Allocation, Memory Leak

∗This research was supported in part by DARPA Cooperative Agreement
FA 8750-04-2-0254, DARPA Contract 33615-00-C-1692, the Singapore-MIT
Alliance, and the NSF Grants CCR-0341620, CCR-0325283, andCCR-
0086154.

I. I NTRODUCTION

A program that uses explicit allocation and deallocation has
a memory leak when it fails to free objects that it will no longer
access in the future. A program that uses garbage collection
has a memory leak when it retains references to objects that
it will no longer access in the future. Memory leaks are an
issue since they can cause the program to consume increasing
amounts of memory as it runs. Eventually the program may
exhaust the available memory and fail. Memory leaks may
therefore be especially problematic for server programs that
must execute for long (and in principle unbounded) periods of
time.

This paper presents a new memory management technique
for eliminating memory leaks. This technique applies to allo-
cation sites1 that satisfy the following property:

Definition 1 (m-Bounded Access Property):An allocation
site ism-bounded if, at any time during the execution of the
program, the program only accesses at most the lastm objects
allocated at that site.

It is possible to use the following memory management
scheme for objects allocated at a givenm-bounded allocation
site:

• Preallocation: Preallocate a buffer containingm objects
of the type allocated at that site.

• Cyclic Allocation: Each allocation returns the next object
in the buffer, with the allocations cyclically wrapping
around to the first object in the buffer after returning the
last object in the buffer.

• No-op Deallocation:Convert all deallocations of objects
allocated at the site into no-ops.

This cyclic memory management scheme has several ad-
vantages:

• No Memory Leaks: This memory management scheme
eliminates any memory leak at allocation sites that use
cyclic memory management — the total amount of mem-
ory required to hold all of the objects ever allocated at
the site is simplym times the object size.

• Simplicity: It is extremely simple both to implement and
to operate. It can also reduce the programming burden —
it eliminates the need for the programmer to write code
to explicitly deallocate objects allocated atm-bounded
allocation sites (if the program uses explicit allocation

1An allocation site is a location in the program that allocates memory.
Examples of allocation sites include calls tomalloc in C programs and
locations that create new objects in Java or C++ programs.

and deallocation) or to track down and eliminate all
references to objects that the program will not access in
the future (if the program uses garbage collection).

To use cyclic memory management, the memory manager
must somehow findm-bounded allocation sites and obtain
a boundm for each such site. Our implemented technique
findsm-bounded sites and estimates the boundsm empirically.
Specifically, it runs an instrumented version of the programon
a sequence of sample inputs and observes, for each allocation
site and each input, the boundm observed at that site for that
input.2 If the sequence of observed bounds stabilizes at a value
m, we assume that the allocation site ism-bounded and use
cyclic allocation for that site.

One potential concern is that the boundm observed while
processing the sample inputs may, in fact, be too small: other
executions may access more objects than the lastm objects
allocated at the site site. In this case the program may overlay
two different live objects in the same memory, potentially
causing the program to generate unacceptable results or even
fail.

To evaluate our technique, we implemented it and applied
it to several sizable programs drawn from the open-source
software community. We obtained the following results:

• Memory Leak Elimination: Several of our programs
contain memory leaks atm-bounded allocation sites. Our
technique is able to identify these sites, apply cyclic
memory allocation, and effectively eliminate the memory
leak.

• Accuracy: We evaluate the accuracy of our empirical
bounds estimation approach by running the programs on
two sets of inputs: a training set (which is used to estimate
the bounds) and a larger validation set (which is used to
determine if any of the estimated bounds is too small).
Our results show that this approach is quite accurate: the
validation runs agree with the training runs on all but
one of the 161 sites that the training runs identify asm-
bounded.

• Impact of Cyclic Memory Allocation: In all but one
of the programs, the bounds estimates agree with the
values observed in the validation runs and the use of
cyclic memory allocation has no effect on the observable
behavior of the program (other than eliminating mem-
ory leaks). For the one program with a single bounds
estimation error (and as described further in Section IV-
A.3), the resulting overlaying of live objects has the effect
of disabling some of the functionality of the affected
program. The remaining functionality remains intact; the
error does not cause the program to fail or otherwise
interfere with its continued operation.

• Bounds Reduction Effect: To further explore the po-
tential impact of an incorrect bounds estimation, we
artificially reduced the estimated bounds at each site and
investigated the effect that this artificial reduction had
on the program’s behavior. In most of the cases this
reduction impaired some of the program’s functionality.

2In any single execution, every allocation site has a boundm (which may
be, for example, simply the number of objects allocated at that site).

It did not, however, cause the program to fail and in fact
left the program able to execute code that accessed the
overlaid objects to continue on to provide the remaining
functionality. When the reduction caused the program
to fail, the involved objects participated in core data
structures with consistency properties that cut across
multiple objects. Finally, in some cases the reduction did
not impair the observed behavior of the programs at all.
An investigation indicates that in these cases, the affected
part of the program has been coded to either detect or
tolerate inconsistent values.

Our conclusion is that cyclic memory allocation with empir-
ically estimated bounds provides a simple, intriguing alterna-
tive to the use of standard memory allocation approaches for
m-bounded sites. It eliminates the need for the programmer
to either explicitly manage allocation and deallocation orto
eliminate all references to objects that the program will no
longer access. One particularly interesting aspect of the results
is the indication that it is possible, in some circumstances, to
overlay live objects without unacceptably altering the behavior
of the program as long as the core data structures remain
consistent.

This paper makes the following contributions:

• m-Bounded Allocation Sites:It identifies the concept of
an m-bounded allocation site.

• Cyclic Memory Allocation: It proposes the use of cyclic
memory allocation form-bounded allocation sites as a
mechanism for eliminating memory leaks at those sites.

• Empirical Bounds Estimation: It proposes a method-
ology for empirically estimating the bounds at each
allocation site. This methodology consists of instrument-
ing the program to record the observed bound for an
individual execution, then running the program on a range
of training inputs to find allocation sites for which the
sequence of observed bounds is the same.

• Experimental Results: It presents experimental results
that characterize how well the technique works on several
sizable programs drawn from the open-source software
community. The results show that cyclic memory alloca-
tion can eliminate memory leaks in these programs and
that the programs can, in some circumstances, provide
much if not all of the desired functionality even when
the bounds are artificially reduced to half of the observed
values. One intriguing aspect of these results is the level
of resilience that the programs exhibit in the face of
overlaid data.

The remainder of the paper is structured as follows. Sec-
tion II presents an example that illustrates our approach.
Section III describes the implementation in detail. Section IV
presents our experimental evaluation of the technique. Sec-
tion V discusses related work. We conclude in Section VI.

II. EXAMPLE

Figure 1 presents a (simplified) section of code from the
Squid web proxy cache version 2.4.STABLE3 [4]. At line
9 the proceduresnmp parse allocates a bufferbufp to
hold a Community identifier. At lines 20 and 21 the

proceduresnmpDecodePacket writes a reference to the
allocated buffer into a structurechecklist allocated on the
stack; at line27 it writes a reference to the buffer into its
parameterrq. The proceduresnmpDecodePacket passes
bothchecklist andrq on to other procedures. This pattern
repeats further down the (transitively) invoked sequence of
procedures.

The proceduresnmpDecodePacket is called by the
proceduresnmpHandleUdp, which passes a pointer to itself
as an argument toCommSetSelect, which then stores a
reference tosnmpHandleUdp in a global table of structs
indexed by socket descriptor numbers. The program then uses
the stored reference as a callback.

Any analysis (either manual or automated) of the lifetime
of thebufp buffer allocated at line9 in snmp parse would
have to track this complex interaction of procedures and data
structures to determine the lifetime of the buffer and either
insert the appropriate call tofree or eliminate all the refer-
ences to the buffer (if the program is using garbage collection).
Any such analysis would, at least, need to perform an inter-
procedural analysis of heap-aliased references in the presence
of procedure pointers. In this case the programmer either was
unable to or failed to perform this analysis. The program
uses explict allocation and deallocation, but (apparently) never
deallocates the buffers allocated at this site and therefore
contains a memory leak [1].

When we run the instrumented version of Squid on a variety
of inputs, the results indicate that the allocation site at line 9 is
an m-bounded site with the boundm = 1 — in other words,
the program only accesses the last object allocated at that site.
The use of cyclic memory allocation for this site with a buffer
size of 1 object eliminates the memory leak and, to the best of
our ability to determine, does not harm the correctness of the
program. In particular, we have used this version of Squid in
our standard computational environment as a proxy cache for
several weeks without a single observed problem. During this
time Squid successfully served more than 60,000 requests.

III. I MPLEMENTATION

Our memory management technique contains two com-
ponents. The first component locatesm-bounded allocation
sites and obtains the boundm for each site. The second
component replaces, at eachm-bounded allocation site, the
invocation of the standard allocation procedure (malloc in
our current implementation) with an invocation to a procedure
that implements cyclic memory management for that site. This
component also replaces the standard deallocation procedure
(free in our current implementation) with a modified version
that operates correctly in the presence of cyclic memory
management by discarding attempts to explicitly deallocate
objects allocated in cyclic buffers. It also similarly replaces
the standardrealloc procedure.

A. Findingm-Bounded Allocation Sites

Our technique findsm-bounded allocation sites by running
an instrumented version of the program on a sequence of

1: u_char *
2: snmp_parse(struct snmp_session * session,
3: struct snmp_pdu * pdu,
4: u_char * data,
5: int length)
6: {
7: int CommunityLen = 128;
8:
9: bufp = (u_char *)xmalloc(CommunityLen+1);

10: return (bufp);
11: }

12: static void
13: snmpDecodePacket(snmp_request_t * rq)
14: {
15: u_char *Community;
16: aclCheck_t checklist;
17:
18: Community =
19: snmp_parse(&Session, PDU, buf, len);
20: checklist.snmp_community =
21: (char *) Community;
22: if (Community)
23: allow = aclCheckFast(
24: Config.accessList.snmp, &checklist);
25: if ((snmp_coexist_V2toV1(PDU))
26: && (Community) && (allow)) {
27: rq->community = Community;
28: snmpConstructReponse(rq);
29: }
30: }

31: void
32: snmpHandleUdp(int sock, void *not_used)
33: {
34: commSetSelect(sock, COMM_SELECT_READ,
35: snmpHandleUdp, NULL, 0);
36: if (len > 0) {
37: snmpDecodePacket(snmp_rq);
38: }
39: }

Fig. 1. Memory leak from Squid

training inputs. As the program runs, the instrumentation
maintains the following values for each allocation site:

• The number of objects allocated at that site so far in the
computation.

• The number of objects allocated at that site that have been
deallocated so far in the computation.

• An observed boundm, which is a value such that 1) the
computation has, at some point, accessed an object allo-
cated at that sitem−1 allocations before the most recent
allocation, and 2) the computation has never accessed any
object allocated at that site more thanm − 1 allocations
before the most recently allocation.

The instrumentation also records the allocation site, address
range, and sequence number for each allocated object. The
address range consists of the beginning and ending addresses
of the memory that holds the object. The sequence number
is the number of objects allocated at that site prior to the
allocation of the given object. So, the first object allocated
at a given site has sequence number 0, the second sequence
number 1, and so on.

The instrumentation uses the Valgrindaddrcheck tool to
obtain the sequence of addresses that the program accesses as
it executes []. The instrumentation processes each addressand
uses the recorded address range information to determine the
allocation site and sequence number for the accessed object.
It then compares the sequence number of the accessed object
with the number of objects allocated at the allocation site so
far in the computation and, if necessary, appropriately updates
the observed boundm.

When the technique finishes running the program on all
of the training inputs, it compares the sequence of observed
boundsm for each allocation site. If all of the observed bounds
are the same for all of the inputs, the technique concludes
that the site ism-bounded with boundm. In this case, the
technique generates a production version of the program that
uses cyclic allocation for that allocation site with a buffer size
of m objects.

B. Finding Leaking Allocation Sites

Consider an allocation site with an observed boundm. If
the difference between the number of objects allocated at that
site and the number of deallocated objects allocated at thatsite
is larger thanm, there may be a memory leak at that site. Note
that our technique collected enough information to recognize
such sites.

It would be possible to use cyclic memory allocation for
only such sites. Our current implementation, however, uses
cyclic memory allocation for all sites with an observed bound
m. We adopt this strategy in part because it simplifies the
overall memory management of the application and in part
because gives us a more thorough evaluation of our technique
(since it uses cyclic allocation for more sites).

C. Implementing Cyclic Memory Management

We have implemented our cyclic memory management
algorithm for programs written in C that explicitly allocate
and deallocate objects (in accordance with the C semantics,
each object is simply a block of memory). Eachm-bounded
allocation site is given a cyclic buffer with enough space for m
objects. The allocation procedure simply increments through
the buffer returning the next object in line, wrapping back
around to the beginning of the buffer after it has allocated the
last object in the buffer.

A key issue our implementation must solve is distinguishing
references to objects allocated in cyclic buffers from references
to objects allocated via the normal allocation and deallocation
mechanism. The implementation performs this operation every
time the program deallocates an object — the implementation
must turn all explicit deallocations of objects allocated at m-
bounded allocation sites into no-ops, while successfully deal-
locating objects allocated at other sites. The implementation
distinguishes these two kinds of references by recording the
starting and ending addresses of each buffer, then comparing
the reference in question to these addresses to see if it is within
any of the buffers. If so, it is a reference to an object allocated
at anm-bounded allocation site; otherwise it is not.

D. Variable-Sized Allocation Sites

Some allocation sites allocate objects of different sizes at
different times. We extend our technique to work with these
kinds of sites as follows. We first extend our instrumentation
technique to record the maximum size of each object allocated
at each allocation site. The initial size of the buffer is setto
m times this maximum size — the initial assumption is that
the sizes observed in the training runs are representative of the
sizes that will be observed during the production runs.

At the start of each new allocation, the allocator has a
certain amount of memory remaining in the buffer. If the newly
allocated object fits in that remaining amount, the allocator
places it in the remaining amount, with subsequently allocated
objects placed after the newly allocated object (if they fit). If
the newly allocated object does not fit in the remaining amount
but does fit in the buffer, the allocator places the allocated
object at the start of the buffer. Finally, if the newly allocated
object does not fit in the buffer, the allocator allocates a new
buffer of sizemax(2 ∗m ∗ r, 3 ∗ s), wherer is the size of the
newly allocated object ands is the size of the largest existing
buffer for that site.

Note that although applying this extension may result in the
allocation of new memory to hold objects allocated at the site,
the total amount of memory devoted to the objects allocated
at the site is still a linear function of the size of the largest
single object allocated at the site, not a function of the number
of objects allocated at the site. Because of this bound on the
amount of memory allocated at the site, we do not consider
the possibility of these allocations to constitute a potential
memory leak.

IV. EVALUATION

We evaluate our technique by applying it to several sizable,
widely-used programs selected from the open-source software
community. These programs include:

• Squid: Squid is an open-source, full-featured Web proxy
cache [4]. It supports a variety of protocols including
HTTP, FTP, and, for management and administration,
SNMP. We performed our evaluation with Squid Version
2.4STABLE3, which consists of 104,573 lines of C code.

• Freeciv: Freeciv is an interactive multi-player game [2].
It has a server program that maintains the state of
the game and a client program that allows players to
interact with the game via a graphical user interface. We
performed our evaluation with Freeciv version 2.0.0beta1,
which consists of 342,542 lines of C code.

• Pine: Pine is a widely used email client [3]. It allows
users to read mail, forward mail, store mail in differ-
ent folders, and perform other email related tasks. We
performed our evaluation with Pine version 4.61, which
consists of 366,358 lines of C code.

• Xinetd: Xinetd provides access control, logging, protec-
tion against denial of service attacks, and other manage-
ment of incoming connection requests. We performed our
evaluation with Xinetd version 2.3.10, which consists of
23,470 lines of C code.

Note that all of these programs may execute, in principle, for
an unbounded amount of time. Squid and Xinetd, in particular,
are typically deployed as part of a standard computing envi-
ronment with no expectation that they should ever terminate.
Memory leaks are especially problematic for these kinds of
programs since they can affect the ability of the program to
execute successfully for long periods of time.

Our evaluation focuses on two issues: the ability of our
technique to eliminate memory leaks and on the potential
impact of an incorrect estimation of the boundsm at different
allocation sites. We perform the following experiments for
each program:

• Training Runs: We select a sequence of training inputs,
typically increasing in size, and run the instrumented
version of the program on these inputs to findm-bounded
allocation sites and to obtain the estimated boundsm for
these sites as described in Section III-A.

• Validation Runs: We select a sequence of validation
inputs. These inputs are different from and larger than the
training inputs. We run the instrumented version of the
program (both with and without cyclic memory allocation
applied atm-bounded sites) on these inputs. We use
the collected results to determine 1) the accuracy of the
estimated bounds from the training runs and 2) the effect
of any resulting overlaying of live objects on the behavior
of the program.

• Conflict Runs: For eachm-bounded allocation site with
m >1, we construct a version of the program that uses
the bound⌈m/2⌉ at that site instead of the boundm. We
then run this version of the program on the validation
inputs. We use the collected results to evaluate the effect
of the resulting overlaying of live objects on the behavior
of the program.

To evaluate the impact of cyclic memory allocation on
any memory leaks, we compare the amount of memory that
the original version of the program (the one without cyclic
memory allocation) consumes to the amount that the versions
with cyclic memory allocation consume.

A. Squid

Our training inputs for Squid consist of a set of links that
we obtained from Google news and a set of SNMP queries
that we generated from a Python script that we developed
for this purpose. The training inputs have from 157 to 556
links and from 10 to 50 SNMP queries. Our validation input
consists of a larger set of links (4290) from Google news and
SNMP queries (100) from our Python script. The validation
SNMP queries also contain more variables (4) than the training
queries (1).

1) Training and Validation Runs:Our training runs de-
tected 36m-bounded allocation sites out of a total of 60
allocation sites that executed during the training runs; 28.3% of
the memory allocated during the training runs was allocatedat
m-bounded sites. Table I presents a histogram of the observed
boundsm for all of them-bounded sites. This table indicates
that the vast majority of the observed bounds are small (a
pattern that is common across all of our programs). The

validation run determines that the observed boundm was too
small for 1 out of 36 allocation sites (or 2.8% of them-
bounded sites). In this case we say that the validation run
invalidatedthese sites.

m 1 2 3 14
sites 32 2 1 1

TABLE I

m DISTRIBUTION FORSQUID

Table II presents the percentage of executed allocation sites
that the training runs identify asm-bounded sites, the percent-
age of memory allocated at these sites, and the percentage of
invalidated sites (sites for which the observed boundm was too
small) for each of our programs. In general, the training runs
identify roughly half of the executed sites asm-bounded sites,
there is significant amount of memory allocated at those sites,
and there are almost no invalidated sites — the training runs
deliver observed bounds that are consistent with the bounds
observed in the validation runs at all but one of the 161 sites
with observed boundsm in the entire set of programs.

Application % m-bounded % memory % invalidated
Squid 60.0 28.3 2.8

Freeciv 50.0 75.2 0.0
Pine 63.7 36.8 0.0

Xinetd 64.7 94.8 0.0

TABLE II

MEMORY ALLOCATION STATISTICS

2) Memory Leaks:Squid has a memory leak in the SNMP
module; this memory leak makes squid vulnerable to a denial
of service attack [1]. Our training runs indicate that the
allocation site involved in the leak is anm-bounded site with
m=1. The use of cyclic allocation for this site eliminates the
leak. Figure 2 presents the effect of eliminating the leak. This
figure plots Squid’s memory consumption as a function of the
number of SNMP requests that it processes with and without
cyclic memory allocation. As this graph demonstrates, the
memory leak causes the memory consumption of the original
version to increase linearly with the number of SNMP requests
— this version leaks memory every time it processes an SNMP
request. In contrast, the memory consumption line for the
version with cyclic memory allocation is flat, clearly indicating
the elimination of the memory leak.

3) Effect of Overlaying Live Objects:Recall that the valida-
tion run invalidated one of them-bounded sites. The resulting
object overlaying causes Squid to generate incorrect responses
to some of the SNMP queries in the validation input. This
allocation site allocates SNMP object identifiers, which are
then stored in the SNMP MIB tree. This tree is used to look
up SNMP variables to respond to SNMP queries. Because the
validation input queries a larger number of variables than the
training runs, the SNMP object identifiers conflict in the MIB
tree. When Squid attempts to look up the data for overwritten

 71

 72

 73

 74

 75

 76

 77

 78

 79

 0 100 200 300 400 500

M
em

or
y

co
ns

um
pt

io
n

(1
00

K
B

)

Number of SNMP requests

Squid memory consumption

Original
Cyclic allocation

Fig. 2. Squid memory consumption

SNMP object identifiers, it cannot find the data in the tree
and returns an empty response. Queries for identifiers that
were not overwritten return the correct response. Despite this
conflict, this version of Squid continues to execute throughthe
SNMP queries and correctly implements its remaining web
proxy functionality.

In hindsight, the identification of the SNMP object identifier
allocation site as anm-bounded site reflects an inadequacy in
the training runs, which all use the same number of SNMP
variables. Varying this number of variables in the trainingruns
would cause the observed bounds from the different training
runs to vary and the technique would then (correctly) conclude
that the site is notm-bounded.

4) Conflict Runs:For Squid, the training runs find a total of
four m-bounded allocation sites withm greater than one; one
of these sites (the one withm=14) is the site discussed above
in Section IV-A.3. We next discuss our results from the conflict
runs when we artificially reduce the sizes of the observed
bounds at the other sites. These results provide additional
insight into the potential effect of overlaying live objects in
this program.

The first site we consider holds metadata for cached HTTP
objects; the metadata and HTTP objects are stored separately.
When we reduce the boundm at this site from 3 to 2, the
MD5 signature of one of the cached objects is overwritten by
the MD5 signature of another cached object. When Squid is
asked to return the original cached object, it determines that
the MD5 signature is incorrect and refetches the object. The
net effect is that some of the time Squid fetches an object even
though it has the object available locally; an increased access
time is the only potential externally visible effect.

The next site we consider holds the command field for the
PDU structure, which controls the action that Squid takes in
response to an SNMP query. When we reduce the boundm
from 2 to 1, the command field of the structure is overwritten
to a value that does not correspond to any valid SNMP query.
The procedure that processes the command determines that
the command is not valid and returns a null response. The net
effect is that Squid is no longer able to respond to any SNMP

query at all. Squid still, however, processes all other kinds of
requests without any problems at all.

The next site we consider holds the values of some SNMP
variables. When we reduce the boundm from 2 to 1, some
of these values are overwritten by other values. The net effect
is that Squid sometimes returns incorrect values in response
to SNMP queries. Squid’s ability to process other requests
remains completely unimpaired.

B. Freeciv

Freeciv is designed to allow both human and AI (computer
implemented) players to compete in a civilization-building
game. Our training inputs for Freeciv consist of from 2 to
30 AI players. The sizes of the game map range from size 4
to size 15 and the games run from 100 to 200 game years.
Our validation input consists of 30 AI players and a map size
of 20. The game runs for 400 game years.

1) Training and Validation Runs:Our training runs de-
tected 42m-bounded allocation sites out of a total of 84
allocation sites that executed during the training runs; 75.2%
of the memory allocated during the training runs was allocated
at m-bounded sites. Table III presents a histogram of the
observed boundsm for all of the m-bounded sites. As for
the other programs, the vast majority of the observed bounds
are small. All of the observed bounds in the validation run are
consistent with the observed bounds in the training runs; the
use of cyclic memory allocation therefore does not change the
observable behavior of the program.

m 1 2 > 2
sites 39 3 0

TABLE III

m DISTRIBUTION FORFREECIV

2) Memory Leaks:It turns out that Freeciv has a memory
leak associated with an allocation site repeatedly invoked
during the processing of each AI player. Specifically, this
allocation site allocates an array of boolean flags that store the
presence or absence of threats from the oceans. The training
runs determine that this allocation site is anm-bounded site
with m=1. Cyclic memory allocation completely eliminates
this memory leak.

3) Conflict Runs:Freeciv has threem-bounded allocation
sites withm greater than 1; all of these sites havem=2. All
three of these sites are part of the same data structure: a priority
queue used to organize the computation associated with path-
finding for an AI player. Each priority queue has a header,
which in turn points to an array of cells and a corresponding
array of cell priorities. The training and validation runs both
indicate that, at all three of these sites, the program accesses
at most the last two objects allocated. Further investigation
reveals that (at any given time) there are at most two live
queues: one for cells that have yet to be explored and one
for cells that contain something considered to be dangerous.
During its execution, however, Freeciv allocates many of these
queues.

The first allocation site we consider holds the queue header.
Reducing the bound for this site from 2 to 1 causes the size
field in the queue header to become inconsistent with the
length of the cell and priority arrays. This error causes the
program to fail.

Reducing the bounds for the other two sites causes either
the cell arrays or the cell priorities to become overlaid. In
both cases the program is able to execute successfully without
a problem. While the overlaying may affect the actions of the
AI players, it is difficult to see this as a serious problem since
it does not cause the AI players to violate the rules of the
game or visibly degrade the quality of their play.

C. Pine

Pine is a widely-used email program that allows users
to read, forward, and store email messages in folders. Our
training inputs have between 3 and 6 mail folders containing
between 54 and 141 email messages. Our validation input has
24 mail folders that contain more than 2,500 mail messages.

1) Training and Validation Runs:Our training runs de-
tected 72m-bounded allocation sites out of a total of 113
allocation sites that executed during the training runs; 36.8%
of the memory allocated during the training runs was allocated
at m-bounded sites. Table IV presents a histogram of the
observed boundsm for all of the m-bounded sites. As for
the other programs, the vast majority of the observed bounds
are small. All of the observed bounds in the validation run are
consistent with the observed bounds in the training runs; the
use of cyclic memory allocation therefore does not change the
observable behavior of the program.

m 1 2 3 93
sites 68 2 1 1

TABLE IV

m DISTRIBUTION FORPINE

2) Memory Leaks:Neither the training nor validation runs
revealed a memory leak in Pine.

3) Conflict Runs:Pine has fourm-bounded allocation sites
with m greater than 1. The first site we consider has a bound
m=93. The objects allocated at this allocation site are used
to hold mailcap information (this information defines how
MIME-encoded content is displayed). When we reduce the
bound m at this site from 93 to 47, some of the mailcap
information is overwritten. The effect is that Pine is unable
to launch some external viewers. In particular, it is unableto
launch a web browser to view external content. Even after
attempting (unsuccessfully) to launch the web browser, Pine
is able to continue to successfully perform other email-related
tasks such as reading, forwarding, and viewing content from
the mail messages.

The next site we consider has a boundm=3. This site
allocates nodes in a circular doubly-linked list; each node
points to memory holding the text in a Pine status line
message. Reducing the boundm from 3 to 2 causes the
list pointers to become inconsistent. The effect is that Pine

deallocates the text memory twice. Because the text objectsare
not allocated at anm-bounded site, these double deallocations
cause Pine to fail.

The final two sites both have boundm=2 and are both in-
volved in a list of content filters that convert special characters
for display. Reducing the boundm from 2 to 1 causes the list
to lose one of the filters. Although this loss did not affect our
validation run, it is possible that messages containing charac-
ters destined for the lost filter would be displayed incorrectly.
However, even after the resulting overlaying of objects, the
data structures remain consistent and do not interfere withthe
successful delivery of other Pine functionality.

D. Xinetd

Our training inputs for Xinetd consist of between 10 and 500
requests. Our validation input consists of 1000 requests. All
of these requests are generated by a Perl script we developed
for this purpose.

1) Training and Validation Runs:Our training runs de-
tected 11m-bounded allocation sites out of a total of 17
allocation sites that executed during the training runs; 94.8% of
the memory allocated during the training runs was allocatedat
m-bounded sites. Table V presents a histogram of the observed
boundsm for all of the m-bounded sites. All of the observed
boundsm are 1. All of the observed bounds in the validation
run are consistent with the observed bounds in the training
runs; the use of cyclic memory allocation therefore does not
change the observable behavior of the program.

m 1 ≥ 2
sites 11 0

TABLE V

m DISTRIBUTION FORX INETD

2) Memory Leaks:Xinetd has a leak in the connection-
handling code — whenever Xinetd rejects a connection (it is
always possible for an attacker to generate connection requests
that Xinetd rejects), it leaks a connection structure 144 bytes
long. Our training runs indicate that the allocation site involved
in the leak is anm-bounded site withm=1. The use of cyclic
allocation for this site eliminates the leak. Figure 3 presents
the effect of eliminating the leak. This figure plots Xinetd’s
memory consumption as a function of the number of rejected
requests with and without cyclic memory allocation. As this
graph demonstrates, the memory leak causes the memory
consumption of the original version to increase linearly with
the number of rejected requests. In contrast, the memory con-
sumption line for the version with cyclic memory allocation
is flat, clearly indicating the elimination of the memory leak.

Note that because none of them-bounded allocation sites
in Xinetd havem greater than one, we do not investigate the
effect of reducing the bounds.

E. Discussion

Memory leaks are an insidious problem — they are difficult
to find and (as the discussion in Section II illustrates) can

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 200 400 600 800 1000

M
em

or
y

co
ns

um
pt

io
n

(K
B

)

Number of requests

Xinetd memory consumption

Original
Cyclic allocation

Fig. 3. Xinetd memory consumption

be difficult to eliminate even when the programmer is aware
of their presence. Our experience with our four programs
underscores the difficulty of eliminating memory leaks —
despite the fact that all of these programs are widely used,
and in some cases, crucial, parts of open-source computing
environments, three of the four programs contain memory
leaks.

Our results indicate that cyclic memory allocation enabled
by empirically determined boundsm can play an important
role in eliminating memory leaks. Our results show that this
technique eliminates a memory leak in three of our four pro-
grams. If the boundsm are accurate, there is simply no reason
not to use this technique — it is simple, easy to implement, and
provides a hard bound on the amount of memory required to
store the objects allocated atm-bounded sites. In this situation
there are two key questions: 1) how accurate are the observed
bounds, and 2) what are the consequences if the observed
bounds are wrong?

Our results indicate that the observed bounds are impres-
sively accurate — the validation inputs invalidate only one
of the 161m-bounded allocation sites. Moreover, our conflict
runs indicate that the programs are often able to live with the
overlaying of live data to continue to execute to successfully
deliver much of their functionality to their users. Of the 11
sites considered in the conflict runs, only 2 (one in Freeciv
and one in Pine) cause the program to fail if the bound is
artificially reduced. Artificially reducing the bounds at 6 of
the remaining sites impairs the functionality of part of the
program, but leaves the functionality of the other parts intact.
Artificially reducing the bounds at the remaining 3 sites leaves
the entire functionality intact!

One aspect of our implementation that tends to ameliorate
the negative effects of overlaying objects is the fact that
different m-bounded allocation sites have different buffers.
So even if one object overwrites another, the objects sharing
the memory will tend to have the same basic data layout and
satisfy the same invariants. This property makes the program
less likely to encounter a completely unexpected collection
of data values when it accesses data from an overwriting

object instead of the expected object. This is especially true
for application data, in which the values for each conceptual
data unit tend to be stored in a single object, with the values
in multiple objects largely if not completely independent.
For five of the four allocation sites whose reductions cause
functionality impairment, overlaying the objects allocated at
those sites causes the program to lose the data required to
implement the full functionality but does not harm the ability
of the program to execute code that accesses the overlaid
objects without failure. The program can therefore execute
through this code without failing, preserving its ability to
deliver other functionality.

This property is, however, much less true for the core data
structures, which tend to have important properties that cross
object boundaries. And indeed, the two allocation sites whose
artificial reductions cause the program to fail both allocate
objects that are involved in the core data structures. Moreover,
the causes of both program failures stem from inconsistencies
that involve multiple objects. In the case of Freeciv, the object
overlay causes a length field stored in one object to incorrectly
reflect the length of another object. In the case of Pine, the
object overlay causes two conceptually distinct list nodesto
refer to the same object.

Interestingly enough, for the three cases in which reduction
has no effect on the observable behavior, the program is
actually set up to tolerate inconsistent values in objects.In
one program (Squid) the program anticipates the possibility of
inconsistent data and contains code to handle that case. In the
other program (Freeciv) the program is able to successfully
execute with a range of data values. These two examples
suggest that many programs may already have some built-in
capacity to fully tolerate inconsistent objects.

V. RELATED WORK

Dynamic memory management has been a key issue in com-
puter science since the inception of the field. Some languages
(C, C++) rely on the programmer to explicitly allocate and
deallocate memory. One potential drawback of this approach
is the possibility of dangling references — the program may
deallocate an object, retain a pointer to the object, then use
the retained pointer to access the memory after it has been
recycled to hold another object. This memory management
approach also leaves the program open to memory leaks if it
fails to deallocate objects that it will no longer access in the
future.

Garbage collection [13], [10] eliminates the possibility of
dangling references by refusing to deallocate any reachable
object. The potential drawback is that the program may have
a memory leak if it retains references to objects that it willno
longer access.

Several researchers have recently developed static program
analyses that attempt to find memory leaks and/or accesses
via dangling references. Heine and Lam use synthesized
ownership properties to discover leaks and multiple deal-
locations [11]; Hackett and Rugina use an efficient shape
analysis to detect memory leaks in programs with explicit
deallocation [9]. Shaham, Yahav, Kolodner, and Sagiv use a

shape analysis to eliminate memory leaks in garbage-collected
Java programs; the idea is to use static analysis to find and
eliminate references that the program will no longer use [12].

All of these techniques entail the use of a heavyweight static
analysis. Because the analyses are conservative, they may miss
some leaks. Moreover, once the analysis finds the leak, it is
the responsibility of the developer to understand and eliminate
the leak.

Gheorghioiu, Salcianu, and Rinard present a static analysis
for finding allocation sites that have the property that at most
one object allocated at that site is live during any point in the
computation [8]. The compiler the applies a transformation
that preallocates a single block of memory to hold all objects
allocated at that site. Potential implications of the technique
include the elimination of any memory leaks at such sites,
simpler memory management, and a reduction in the difficulty
of computing the amount of memory required to run the
program. This analysis can be viewed as the static counterpart
of our dynamic techniques that determine an observed bound
m, but with the additional restriction that the boundm equal
1. An advantage of this analysis is that it is sound (i.e., the
analysis considers all possible executions and guaranteesthat
no execution will ever have more than one object from the site
live at any time); disadvantages include the need to develop
a sophisticated program analysis and the potential for the
analysis to conservatively miss allocation sites with at most
one live object.

Some memory management mechanisms enable the pro-
gram to overlay live data. A program with explicit deallocation
can deallocate an object too early, then use the resulting
dangling reference to access the storage that the deallocated
object occupied. If the memory manager has allocated another
object into this storage, there are, in effect, multiple objects
occupying the same storage. Providing a separate allocation
pool for each class of objects can preserve type safety even in
the face of premature deallocation and the resulting dangling
references [7].

Because our technique uses a separate buffer for each
allocation site, the resulting memory management algorithm
will typically preserve basic type safety even when the system
overlays live objects (although, strictly speaking, unsafe C
constructs such as unions can cause overlaying to generate
additional type safety violations). The remaining key cause of
program failure is corruption of the core linked data structures
(overlaying general application data usually has much less
severe consequences). This property suggests that it may be
possible to use data structure repair [5], [6] to make the
program substantially more robust in the face of this particular
form of corruption.

VI. CONCLUSION

Memory leaks are an important source of program failures,
especially for programs such as servers that must execute for
long periods of time. Our cyclic memory allocation technique
observes the execution of the program to findm-bounded al-
location sites, which have the useful property that the program
only accesses at most the lastm objects allocated at that site. It

then exploits this property to preallocate a buffer ofm objects
and cyclically allocate objects out of this buffer. This technique
caps the total amount of memory required to store objects
allocated at that site atm times the size of the objects allocated
at that site. Our results show that this technique can eliminate
important memory leaks in long-running server programs.

One potential concern is the possibility of overlaying live
objects in the same memory. Our results indicate that our
bounds estimation technique is very acccurate, misclassifying
only one of the 161 allocation sites it determines to bem-
bounded. Moreover, our results also show that the effect of
overlaying live objects is substantially less severe than might
be expected. Specifically, overlaying application data may
disable part of the functionality of the program, but usually
does not cause the program to fail. Our results therefore
indicate that cyclic memory allocation, enabled by empiri-
cal determination of the boundsm, may provide a useful
alternative memory management technique to more standard
techniques, which remain vulnerable to memory leaks.

REFERENCES

[1] CVE-2002-0069. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2002-0069.

[2] Freeciv website. http://www.freeciv.org/.
[3] Pine website. http://www.washington.edu/pine/.
[4] Squid Web Proxy Cache website. http://www.squid-cache.org/.
[5] Brian Demsky and Martin Rinard. Automatic Detection andRepair of

Errors in Data Structures. InProceedings of the 2003 ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA ’03), October 2003.

[6] Brian Demsky and Martin Rinard. Data Structure Repair Using Goal-
Directed Reasoning. InProceedings of the 2005 International Confer-
ence on Software Engineering, May 2005.

[7] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory safety
without runtime checks or garbage collection. InProceedings of the 2003
Workshop on Languages, Compilers, and Tools for Embedded Systems
(LCTES’03), June 2003.

[8] Ovidiu Gheorghioiu, Alexandru Salcianu, and Martin Rinard. Inter-
procedural compatability analysis for static object preallocation. In
Proceedings of the 30th Annual ACM Symposium on Principles of
Programming Languages, January 2003.

[9] Brian Hackett and Radu Rugina. Region-based shape analysis with
tracked locations. InPOPL ’05: Proceedings of the 32nd ACM
SIGPLAN-SIGACT sysposium on Principles of programming languages,
pages 310–323. ACM Press, 2005.

[10] Hans-J. Boehm and Mark Weiser. Garbage collection in anuncooper-
ative environment. InSoftware – Practice and Experience, number 9,
pages 807–820, 1988.

[11] David L. Heine and Monica S. Lam. A practical flow-sensitive and
context-sensitive C and C++ memory leak detector. InPLDI ’03:
Proceedings of the ACM SIGPLAN 2003 conference on Programming
language design and implementation, pages 168–181. ACM Press, 2003.

[12] Ran Shaham, Eran Yahav, Elliot K. Kolodner, and Mooly Sagiv. Es-
tablishing Local Temporal Heap Safety Properties with Applications to
Compile-Time Memory Management. InThe 10th Annual International
Static Analysis Symposium (SAS ’03), June 2003.

[13] Richard Jones and Rafael Lins.Garbage Collection : Algorithms for
Automatic Dynamic Memory Management. John Wiley & Sons, 1996.

