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I. Introduction

Let w. be a standard n-dimensional Brownian motion, and let x.
be an n-dimensional diffusion which is the solution to the following
stochastic differential equation:

dxt = f(xt)dt + dwt (1.1)

where fi E Clb(Rn), i=l,...,n. We are interested in-computing the
asymptotic behavior of

P(kll-xll<e) = ; (1.2)

P(llwl<£)

as e -4 0, where ¢ is a deterministic n dimensional continuous
function on [0,T] and, for any f E C([O,T] -4 Rn),

ltIl 4- max IN(t)l (1.3)
tE[O,T]

and I I denotes the Euclidean norm in R n .

This problem was investigated by physicists in the context of
statistical mechanics and quantum theory cf. [1], [2]. A rigorous
mathematical treatment was initiated by Stratonovich and carried
out by Ikeda-Watanabe, Takahashi-Watanabe and Fujita-Kotani, in
various degrees of generality, cf. [3], [4], [5], [6]. In particular, the
two last references treat the case where (1.1) is a general s.d.e (i.e.,
with state-dependent diffusion coefficients), and the diffusion
evolves on a manifold.

The analysis above was restricted to the case of ~ E C2 (Coo in
[5], [6]; however it seems that their technique can be pushed through
up to cover C 2). In that case, it was shown that

J(O)exp((-lljll-4)K(E)) < J(¢,e) < exp((lll+j+1)K(e) + II¢Ije)J(O) (1.4)

where K(e) -4 0 and
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T T

J() = lim J(4,£) = exp -f J(l(sf((s)-f( ds + 2 vf(Q(s))ds] (1.5)

0 0

In the context of the estimation of trajectories of diffusions,
there was a need to evaluate (1.2) for certain 4 which are not
necessarily C2; for a specific class of random 0 (which correspond,
roughly, to 4(t) = ft vsds, where v. is a Brownian motion which is

independent of w.), it was shown by probabilistic methods in [7] that
still J(q) = lim J(4,e), a.s. Pv.

Our goal in this paper is to evaluate lim J(4,e) for 4 which are
not in C 2[0,T]. That will allow, in the estimation problem considered

in [7], to include feedback in the observation model. The main result
is collected in the theorem below.

Theorem 1. For qe Cl+a, a>O deterministic, lim J(O,e) = J(O)
where J(O) is defined by (1.5).

We remark that, in the case of a diffusion evolving on a
manifold (or, more specifically, in the case of state-dependent
diffusion coefficients), the functional J(O) involves an additional term,
related to the scalar curvature; however, the result J(,e) --> J(Q) still

holds, c.f. the remark in the end of section 3.
We note that Takahashi [13, remark 1, page 379] has claimed a

stronger version of theorem 1 and it's converse. However, no proof
is given, nor has one been published since. We did not succeed to
prove the theorem in the stronger form appearing in [13].

We conclude this introduction by a "cheap" proof of our results
for 0 e Cl+a, a > 1/2, of a converse result when 4 E Aa 2, °° where

Aa2,° denotes the fractional Sobolev space (cf. [8]), a < 1/2, and by

some notation conventions. Section 2 includes a description of the
problem in terms of a PDE approximation problem, and section 3
includes the proof of our main theorem.
Let 4 E C l+ a, l>a > 1/2, and let 4(8) denote the mollification of 4 by a
8-mollifier. By extending appropriately ¢(t) for t<0, let 4(0) = 4(6)(0).
Then (c.f. [8]), 11i-0(6)11 < c5 l+a, 11(S0)II < Cc -1 , and
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P(llx-0l[ < E) < P(llx-0(S)jl<C+C 1+a) < P(llwll<c+8)J(0(5)exp(K(E)(jj$ (8)11+1)+C£ a8- 1)

(1.6)
but

P(Ilwl<y) = K(y,T) exp - 1 T, (1.7)
(Y)2

where , 1 is the first eigenvalue of the Dirichlet problem in the

unit ball (c.f. [4] and also below, and K(y,T)74 0K. Therefore,

P(Ix-q11<£)< J(O)exp(K(E)([I;(3 )[I + 1))exp(k T(-2 -1c_6a 1)
P(llwlI<C) 1 2 (E+C6l +) 2

(1.8)

By choosing 6 = eY, one gets that in order to demonstrate theorem 1

we need

~(- --- 3£0 Oy> 3 (1.9a)
o2 (,£+cC0l+a))2 l+ca

+Y(oCL--) £0 < 1 (1.9b)
1-a

and therefore,

3 1

1+a 1-ac

and a solution for y exists if a >1/2 . A similar argument holds also

for the lower bound, and the "cheap" proof is completed. Note also
that a weak version of a converse to the theorem holds for Oo Ac2, o,
a<l/2 but Oe Aat,2, ° °, all a' > 0, where A2,°° denotes the fractional

(p=2) Sobolev space, c.f. [8]: indeed, let 4 (5), denote the

mollification of 0 by a 8-mollifier. Again, (c.f. [8]),



5

Jo Tl1(6 ) 12ds > c(62(a-l)), 11(6S ) 11< ca-2-a'; plugging into (1.7), one has that

P(lx-wll<) < C exp(-c8 2(a-l) + X T + 6a-2-a) (1.10)
P(IwlIk<£) 11 2

To show that the ratio of probabilities in theorem 1 converges to zero
as c -> 0, we need to show that the R.H.S. of (1.10) -> 0, for 6 = ey.

But, similarly as above, one gets the pair of conditions:

1 11 <y<l
1-a xa

which possess a solution for a < 1/2.

Our goal will be therefore to "close the gap" left by the cheap
proof; we do that by reducing the problem to the case of f _ 0 (no

drift), following [4], and then transforming the problem to a PDE
one. This will allow us to get much tighter bounds on the distance
between the "regularized" solution (with 4(6)) and the solution to the

original problem, and that will yield the sharp estimates announced
in the theorem above.

Notations
Throughout, £2 denotes the unit ball in R n, and Ef- denotes the

ball in R n with radius e. II Ilk denotes the k-th, p=2 Sobolev
norm in Q, i.e.

'llk=( X J(Da4~)2dx)1/2
lal<k

where the domain of the integration (Q2, cQ) will be clear from the
function involved.

v* denotes the transpose of a vector v.
u*v denotes the composition of u and v, c.f. section 3.
1I II denotes the sup-norm, and I I denotes the Euclidean norm

in R n.
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II. An associated PDE formulation.

In this section, we reformulate (1.2) in terms of an associated
PDE. A similar approach can be found also in [5].
We start by noting, following [4], that, for e0C1[O,T], xt-O(t)
satisfies:

d(xt-O(t)) = ((t)dt + f(xt-O(t) + 4(t))dt +dwt (2.1)

By Girsanov's transformation, one has:

T T

P(llx-I<e) = E(exp(j(f (wt+-(t)) -$*(t) ) dwt-- I f ((t)+w-(t)t)-(t)l dt)llwl<)
P(lwlIke) o o

(2.2)

Note that

T T T T

f (Wt+(t))dwt= f (()(t))dwt+ JwV f*()(t))dw + O(w2)dwt,
o o o o

where Vf denotes here the matrix of partial derivatives of f and
also

T T

((t))dwt = (WT () - t (a ()(t))j(t)dt (2.3)
0 0 i,j j

and, by Ito's lemma
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T [WT[2_T T (IwT[2_T)

Jwt Vf(O(t))dwt = Vf((t))( T I (T V f((t))*(-T)t)dt
0 0

T T

+ | i ((t))Wtidwt= (1111 + lll)O(E2) + jV . f((t))dt +

iJ j Dx. 20

T

+ J E (xl.)(O(t))wtdwJt (2.4)
o iDXj j

where Vof denotes here the divergent of f; combining (2.2), (2.3)
and (2.4), one has:

T T

P(lIx-l<e) = exp(-1 Jlf(A(O)) - (t) 2dt- 2 IV·f((t))d).
P(llwlke£) 2 0

E(exp(0(e2)(1111 + 1111) + dwJh-0 -ax (O(t))witdwt

T T

+ j (Iwl2 )dwt- j q*(t)dwt) I llwi < £) (2.5)

0 0

By lemmas of [4, pg. 451] (see also [6]), (which are the main part of
the proof in [4]),

T

E(exp c J(lwl2)dwtl Iwll<e) 40°1 Vc (2.6a)

0

T

E(exp cJ k()w~tdwt I lwIke41 Vc (2.6b)

0

and therefore, to compute (2.5) we need only compute



9

T

E(exp - *(t)dwtl Ilwlke).
0

and show that it converges to 1 as e - 0. Let us define

T

A - E(exp -J *(t)dw t Ilw Ill<)P(llwll<£).
0

Then, by Girsanov's theorem

T

A=exp Jl(t) I dt)P(llw-11 < e)

Let u(z,t,x,s) be the fundamental solution of

1 -
at = Au + ;(t)Vu + 21 (t) 2

u(z,t,x,s) I = 0 (2.7)

i..e. the solution of (2.7) such that, for each continuous f(x),

im Ju(z,tx,s)f(x) dx = f(z)
t---S FQ

Such a solution exists and is unique by the maximum principle
(cf. [ 9 , ch. 1-2]). Then

A = u(z,T,O,0)dz (2.8)
En~~~~~~~~~~~~~~~~~~28
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Our goal will therefore be to compute bounds on the
fundamental solution of (2.7). It turns out that one can find
explicitly the solution to a related equation (eq. 2.3a), and then by
perturbation techniques relate the two. Towards this end, let )(8)
be a 8 mollification of 0 (for example, with a Bessel potential, or
otherwise, cf. [8]), and let u(s)(z,t,x,s) be the fundamental solution
of:

ut = Au( + f(t)Vu( + +(()(t)- (t))Vu()( ) (2.9a)

u( )(z,t,x,s) =0 (2.9b)

In the sequel, let j(8)(t) = 0(s)(t) - ¢(t). We will assume throughout,
without mentioning it, that llj(8)(t)ll < 1.

Our line of attack will be as follow: we first show below that

i dzu)(z't'O's) X- 1 for t - s2>o > 0 uniformly in 6>0, i.e. that if in (2.8) one
p(llwll<e)

substitutes u(5) instead of u one has the required convergence
(lemma 2.2). We then show in section 3 that

idz(u( )(z,t,O,s) - u(z,t,O,s))
EQ £0--)0

-- 0,

P(llwll<e) 8(£)--o

where 8(e) -- 0 in an appropriate way, thus establishing the required
convergence. To demonstrate this last convergence, note that the
solution to (2.7) can be represented by the classical parametrix
method in terms of an infinite series involving the solution of (2.9)
(theorem 3.1). Estimates on us(z,t,x,s) which we prepare in the
remaider of this section are crucial in obtaining the required
convergence.

We use the following classical result:



Lemma 2.1
u(8)(z,t,x,s) exists and is unique. Moreover, there exists a c

independent of £, 8, such that

lu(&)(z,t,x,s)l < (/2 exp Ic(t-s)] (2.10a)

IVu ()z,t,x,s)I < e+lxp -( (-x) ) (2.10b)

(t-s)
(t-s) 2

In particular,

IVu ()(z,t,x,s)l < C V 1/2 < g < 1 (2. 10c)
(t-s)Llz-xl n 2 u.

IVu(8)(z.t.x.s)l < C (2.10d)
(t-s)glz-xl n+l' -2

Proof. The estimates (2.10a) and (2.10b) are the well know Arronson
estimates. For an easy derivation of them, we refer to [12] and
references there. (Note that in [12], only (2.10a) is proved, however
(2.10b) follows easily by differentiating throughout in the proof).
(2.10c), (2.10d), which are the only estimates we will need, follow
easily from (2.10a), (2.10b). A different, more cumbersome proof of
(2.10c), (2.10d) via the parametrix method appears in [9, ch. 1,
section 4-5]. Finally, uniqueness follows from the maximum
principle.

The usefulness of equation (2.9) lies in the fact that it's
solution is easily represented; to do that we need some auxilliary
results, which are regrouped in (a)-(c) below; (2.13) is the
representation of the solution we will use in the sequel.
Lemma 2.2

Let (ym(X), Xm) denote the normalized (w.r.t. L2(Q))
eigenfunctions and eigenvalues of the Dirichlet problem in the unit
ball in Rn, i.e.
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Aym(X) = -mYm(), x e Q (2.11 la)

Ym(x) I Il=l = 0 (2.11b)

Then:
(a) There exists a unique eigenvector associated with the

minimal eigenvalue Xo, and Xo > 0.
(b) The set {Xm} is discrete, and, if N(X) denotes the number of

eigenvalues s.t. Xm < X (including multiplicity), then

N(X) = KXn/2 + o(;n/2), as X -- oo (2.12)

(c) ym(x) e L2(Q); Moreover, Vk, Im(x)llk < o and Iym(X)l <

C(;m)n/ 2 :
Finally, ym(x) spans L 2 (Q).

(d) The following limit exists (pointwise, uniformly in (z,x)
for t-s > Coc 2, for all £ and in L2(cQx[O,T])) and is the fundamental
solution of (2.9):

u( )(z,t,x,s) = lim uj(z,t,x,s) m exp )(-)(-)
j-->oo -oo m=- e 2

t

exp(-(m (8)(t)(z) -0 (8)(s)x)) exp ( l J i)(t) _ (-C)/2d: (2.13)

Proof: For (a), c.f. [10]. (b) is theorem (14.6) of [11]. That ym(x) E

L 2(42) follows from theorem (16.5) of [11]. To see that lym(x)ll < co,

note that

llAym(x)l 0 = IXml, 1kYm(X)ll0= IXmlk (2.14)

Therefore, by the Sobolev lemma (c.f., e.g., theorem (3.8) of [11],
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lYmll2k- <Cmk(llAYmllO + I Cm,k(lmlk+l) < (2.15)

Moreover, since wn[n/2]+ 1 CG C(Q), one has also

([-]+1/2)

lYm(X)l < kXm (2.16)

Finally, we show (d). Note that

1 hm(t -s ) z x
m(m(-) exp-()z-exp m( exp-zx)exp( )() - ()l 2d) I

_k 4 m (t-s) (2- 1)
-_ n - 2 m

m=i E E

<k n jn/2 j exp 2 < (2.17)

£ j=l

where we have used (2.12); note that the convergence is uniform for
t-S>E2o0 , is independent of e for t-s>e2zo and also that it holds even
after scalling by exp -(Xo(t-s)/e 2). The convergence in L2(cix[O,T])
is very similar, and will not be used in the sequel.

It is easy to check , similarly, that the convergence holds also
for the derivatives of uj( 8 )(z,t,x,s) (w.r.t. t (once) and w.r.t. z twice),
and that lim uj( 6)(z,t,x,s) satisfies (2.9). It remains to check
therefore that it is indeed a fundamental solution.

Let f(x) be a Co-' (on cQ) function (and in particular,

f(x) = yi(-)f with < oo). Let
i=l i=l

e(t,s,z) = Ju(6)(z,t,x,s)f(x)dz- f(z) (2.18)

we have then
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< ~~ii~ex -'. (t -s )
IIe(tsz)lo < f[exp 2 - 1]- 1]

i=1 E

Let ko be such that

i=ko

and to such that

exp ( ° ) > 1-

one has then

IleF < 2y

for t-s<eo, and since y is arbitrary, we have

L2 (d2)
0 < o (2.19)

t --S

Similarly,

ke2 -2i( t - s )

IIA (t,s,z)l en < K gi (k) [exp 2 1]
i=l 

where

Az , 2(k) < Akg(x): = (gi(k) and g(k)< oo.
i=l i
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As above, one has then that IjAk e(t,s,x)llo',n -- 0, which implies by
the Sobolev lemma that e(t,s,z) -- 0 pointwise. Therefore, one has
that, in the sense of distributions in D'(re, lim uj(s)(z,t,x,s) is equal
to the (unique, by [9, ch. 2]) fundamental solution of (2.9). Since, as
is easily checked, for (t-s) > 0 both this limit and the fundamental
solution are continuous in z,x, they are equal everywhere, which
concludes the demonstration of the theorem.

We establish below some estimates which will turn out to be
useful in the perturbation analysis of section 3;
Lemma 2.3

u-?)(z,t,x,s) 1 exp -%(t-s) [exp(-(Q(()(t)z-;(4)(s)x))]y (-) y0(.) + A(z,t,x,s)]
£n E2 E 

(2.20a)
where

-AX(t-s) 2
k exp-2 if (t-s) > 'Co2, AX A 1 -X0

1 0

IA(z,t,x,s)l < k

n 2 if (t-s) < 'oC02, 1/2 < < 1

(2.20b)

and k is independent of c,6.
Similarly,

1 -o(t) z x
Vu(8)(z,t,x,s) = exp [exp -($ (8)(t)z - ()(s)x(V yo(To)(-) -

Z X
- ( )(s)e Y o( ) + B(z,t,s,x)]

(2.21a)
where
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k exp -A(t-s) if (t-s) > %e2

IB(z,t,x,s)l <
k n+l

if (t-s) < o£2, 1/2 < !t < 1
(tS)gtlz_xl n+l ' 2 g

(2.21b)

Proof. The upper bound in (2.20b) and (2.21b) follows immediately
from the representation (2.13) and the method of proof of lemma
(2.2). The short time estimates (the lower line of (2.20b) and
(2.21b)), follow directly from the derivation of [9, ch. 1, section
3,4], or from [12].

Lemma 2.4
Let Ci(z,t,x,s), i=1,2 satisfy

ki -Ax(t-s) t-s > £2~
E2i "Pl z t-s>2 0

IC.I <

ik.( )i n-6 0 < t - s < :0E2, 1 > Oi > 0, n+1 > n+Yi > 0
(t-s)i Iz-xln+

(2.22)
Then

t

IJj Ci(z,t,x,s)dxdsl < k k k(n+i-+ (2.23)

(with similar bound when the integration w.r.t. x,s is replaced by an
integration w.r.t. z,t), and
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Ci*Cj(z,t,x,s) 1-I I C i(z,t,x',s')Cj(x',s',x,s)dx'ds'l <
'r s&

kk .k. (n +(OAP i-t i+2( -
1

i ) ^( Pj-' j + 2(1-j )) exp t-S > £22
1 j £2 0

kkk £ pi+[j+n-i-7?j-21i-2gj+2
1 __ jt - S • E2 t0

t-s °v(ii+gLj-1) Z-X ov(Yi+yj+n)
2-7) ' '

(2.24)
Proof

First, note that

t t-'OO 1

n+Pi

S-2 ~S Z _ (t-S) zxl

< (kkO'2 + kk+ n+IP+2(1-li)-y

from which (2.23) follows.
Considering (2.24), let first (t-s) < e2 ro; one has then

t

IIl(t-s)l I lci(ztxJ s)lcj(x',s',xs)ldxJds <

k.k. | ids I i+1xj+n-yi-j ddx
(t-s<' ~ ~ dx' (2.25)

s (t-s)O (st-s)lj n z - xl+ lxl x In+
E E

We recall the following (c.f., e.g., [9, pg. 14]):
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S dx,' Ik la-bln-alP if n<a +,3

Ila-xl alx'-bl k if n>oc + 

(2.26)
Applying (2.26), one has from (2.25)

1 E +Pj+2n 2
1 (t-s) < kk.k. ( if yi+yj+n>O, L+gj.>1, t-S<£ o )

(tS) Jt z-x'l -

(2.27)
with similar bounds for the other cases of t-S< 2azo. We consider
therefore now t-S>e2,co. In this case, we get:

S+£ lo -AX(t-s')

11 (t-s)l < k.k exp - dx'ds'

t- s 6 (S'_-S) gJlx'_x n+
t SE21;0

k kU exp -AX(t-s) dx'ds'

tJ5ki k exp -AX(s'-s) Fn+Pi
+ J kikjIexp £+2 n(2.28)

t-£2 O £a (t-s') iLz-x'+ i

Using (2.22), one gets

l$l(t-sl x-AXt-s) (£n+£(n+2)^(n+i-Ti+2(1-ai))^(n+ j -yj+2(1-)))

< kkik exp -A?,(t-s) (,n+(0A(3i - Yi + 2(1-i))^([j - Y + 2 (1-lj)))

and1 te lo e 2

and the lemma is proved.
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ill. A Solution to the Original PDE

In this section, we construct, by a perturbation method, a
solution to eq. (2.7), based on u(8)(z,t,x,s).

Let L denote the operator:

L tv(z,t,x,s) A-j()(t)*Vv(z,t,x,s) + z)(t)v(z,t,x,s) (3.1)

As before, let * denote the composition of two functions in
the following form:

t

f l (z,t,x,s) * f2(z,t,x,s) a fl(z,t,x',s')f2 (x',s',x,s)dx'ds (3.2)
S &Q

Define

L1 :u )(z,t,x,s) -LO u (z.t.x.s) (3.3a)

and

Lk u(6)(z,t,x,s) aL L l u®(6u (3.3b)

Let

uj(z,t,x,s) - u(= )x's) + u (z,t,x,s) (3.4)
i=1

Finally, assume that e[ij( 8)11<l (which is possible if 8 is chosen not
too small). We will show that:

Theorem 3.1
(a) For any (t-s) > 0, ui(z,t,x,s) converges (uniformly in

z,x E E.Q) to a limit u(z,t,x,s);
(b) u(z,t,x,s) is the fundamental solution of (2.7).
(C) Let '7() = ell(6)ll.E °O, and let 1lj(8)(t)ll0=O(£) for some X>O.

Then, for any zo>O and (t-s)zto,
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exp S) n I u(z,t,x,s) - U((z,t,x,s)l E 0 (3.5)

uniformly in z,s, E eQ, and the rate of convergence is
controlled by

1

elli)11 + exp ( i - ° ), 1/2 < A < (1+x)/2 (3.6)

Proof
Part a: Note that, by lemma (2.3),

-xo(t-s)
exp

L u )(z,t'x',s) = exp(-(;(6)(t) z - (8)()X)) - e2 [ 1(tz),o(-)y0() +

z x A (-So( t 3-s)
+ 1(t)Vy (-)Yo(-)] + exp E (z,t,x,s) (3.7)

where

ldil < e11l()118 + (S)11 i() li (8)4 0 (3.8a)

Il l = IA I (3.8b)
1 £
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Kk(8)

t-t' <Xr 2

(tS)Zlzxlnf+l2 j 0

IEll I

e)(Pn+l xp,( -)2 )k t-S > T0 o 2

(3.8c)
where

k(8) A lj(8)lI + C211j(6)11 £_40 0

by our assumptions.
Using lemma 2.4, one obtains:

x (t-s)

2 z x z x

L * L exp exp -( ()(t)z-~ (8)(s)x)[6 2 o0 ()Y() + 2V y70(-)Y ( 2

-, (t-s)
+ exp 0 E 2(z,t,x,s) (3.9a)

where

1a21 < (K'K1(s))2 (3.9b)

1131 < (K'IQS) (t) 11 (3.9c)
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-AX(t-s)
(6) exp

K'Kk 2 2 
(---).E En t-S>£2~;£ 0

IE2(z,t,x,s)I <
(KKk(<))2 1 t-s<• 2T

(t-s)2 l- 1 zn+2(1-2XJL ) o

(3.9e)

Since 2>2g>1, the singularity in (3.9e) is weaker than that of
(3.8c). By the same reasoning, one obtains that there exists a ko
such that

ko (t-s) z
Lt u (z,t,x,s) = exp -(()(t)z - (_)(s)x)exp ( ) o Y() +

O S "n E2

1 A (t-s) AX(t-s)
+ exp exp- )Ek

(3.10)

where

lac | 5 (K'K1 )I O (3.11a)

1Iko < m(8)(K'K)k° 1I (a) ) lI, with llm(a)ll -- °0, at least as fast as k(
2 0

(3.11b)

ko _< n()(K'K)k° with lln(8)ll Ez- 0 at least as fast as k()
(3.11c)

and
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_ Kk())ko
Ekol < n ( k 1

(3.11d)
Therefore, by the same argument as in [9,ch.1, eq. 4.7], one has that,
for k>ko

L (U( )(z,t,x,s) ) exp - -(8)(t)z - (8)(s)x)exp -t-oc yo () +
n E2

z - X (t-t) -AX(t-s)
+ Pk Vo(e) + +k] + exp( )exp(- Ek

(3.12)

with

l kl < (K'K1())k (3.12a)

k-< (1( )) llIj (t)lk (K'K)k (3.13b)
£

Ikl <(lljb(t)llK'r k ))k (3.13c)

and

(K' K ( t-s l-) k (k()k k
IEkI< - ) n (3.13d)

k ((1-g)k+l E 

By computing u(s)(z,t,x,s) * Lkt,, (z,t,x,s), the 1k term drops out due
to the integration

ax ° () Yo(-)dx = 0;

one has therefore, for t-s>O:
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Il u ( ) ·* L u( (z.t.x. s) < Ka( + exp 2 -AX(t-s) ( +2 exp )
j=k j= 1

(3.14)
.(8)

where la(e)j -<k )+ () E= O0 Ibl < ), and (3.14) is easily seen to converge,

uniformly in z,x.

(Remark: a similar proof holds also for the first two z
derivatives of u, for details, of. e.g. [9]).

Part b: The proof is identical to the one given in Lemma (2.2), due
to the fact that u(s)*Ltsku(O) has a weaker singularity in the origin
than u(8); we ommit the details.

Part c: By (3.10) (3.13) and the fact that by comparing with u(8),
the Pk term drops from (3.10), (3.12), one has that, for t-s >2 o, and
£, 6 small enough,

k (8~s)(z~t~x~s>>l < 1 (8~k(~) l(8)-k Xo(t-s)
lu(8)(z,t,x,s)*L (u()(z,t,x,s))I< 1 (K(k(8)+1 ())k exp 0

t,'8E E2

-o(t-s (ts) _A(t-s) j( k 1
+exp 2 exp )([(K) I 1 ]

C2 82 F I((1-t)k+l)

Therefore,

njlu(,t'xs) - (z,t,x,s)lexp o _.t. _< • [(K(k) +1 (8)))k +
2 k=l

( k

A X(t-s) 
exp(- ) (£ ) <

2 k
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_ _ _ ___ Kj 1- J< (1 + k ) )K + exp exp(-A O (- 3 ()
£2 £ £

(3.15)

By our assumptions,

lij11 -0O(£X-1), >0O;

Let 1/2 < g < (1+X)/ 2. In this case, the R.H.S. of (3.15) is bounded by

()) ()-AXo
(1( ) + k( ) K +(-)exp -)exp + ), q>O0 (3.26)

£ £ F2-q

Therefore, (3.5) holds and moreover the rate of convergence is
controlled as in (3.6).

Corollary 3.1. Assume ¢ E C l+ a , a>O; then theorem 1 in the
introduction holds.

Proof. Let

0 < ' < 1. , and 6 = 0', then lle(8)i11 < k E 86a- l 4 ° 0
1-a

and

I$¢)-~11 < K£a 'y

so that the conditions of theorem (3.1) hold. By (2.5) and (2.8), one
has

J(O) exp(0(e2)(II0II+II;II)+K(e)) u(z,t,x,s)dz
P(llx-e) I<e)_ e
P(llwlkc) P(llwll<e)
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J()exp(0(e2)(llll011+1ll) + K(e)) u()(z,t,O,O)dz
£g2

P(Ilwlk<£)

J(O) exp (0(e2)(llj(Il+jj$1)+K(E)) f(u(z,t,O,O) - u()(z,t,0,0))dz
+ £Q

P(llwIk<£)

(3.17)
Note that

Ju()(z,t,0,0)dz JYo(z)dz yo(0)

P(lwIl<F8) Yo(z)dz y0(O)

combining (3.17) with theorem (3.3) yields the corrollary.

Remark. We remark briefly on the case of diffusions evolving on
a manifold (or, more specifically, diffusions with state dependent
diffusion coefficients).

In that case, [6] have proved that

T T T

J(~) = exp -[ j ,$(t)- f(q(t)12dt 1 T + TJ(O) = exp -[J I div f(O(t))dt +1h- JR(O(t))dt]

0 0 0

where R(x) is the scalar curvature at the point x and the divergent is
taken on the manifold, we refer to [6] for the definitions involved,
and we point out where [6] used the assumption that ¢(t) existed and
how that can be avoided.

We recall some notations from [6]: a system of normal
coordinates is defined around ¢(t), and, in this system,

1 1 3
ciJ(t,x) = 'J + - Rimlj (t,O)x mx + o(x3 ) (3.18)

and we define the y process:

and we define the y process:
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d yt= 6ik(t,yt)dw k + Y(t,yt)dt (3.19)
k=1

where Iyi(t,yt)i = O(yt) and the exact form of y is unimportant to our
current needs. We recall again that, by [4, pg. 451], if Iqsl = 0(e2)
under the conditioning lwll < e is an adapted process, then

T

E(exp c J qsdwsl Iwsl < c) Eo4 1, C . (3.20)

Referring now to the proof in [6], we note that the only place
one needed the existence and boundedness of ~ was while attempting
to use theorem 2.2, pg. 442: using their notations, one has to
compute

A A E(exp c JFi(t) dwsl Ilylke (3.21)

where F(t) = f(t,O) - $(t), and f(t,O) is in C1 w.r.t. t. Assuming also
that 0 is in C1, [6] used the following estimate:
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T T

i F(t)dwt = JF (t (tYt)(dyt - (t,Yt)dt)
Of O 1o 0

T T

= fF (t)'(t,y)dyyt- F (t)o(t,yt)Y(t ,Yt)dt
0 0

(3.22)

since Il(t,yt)l = o(lytl) = 0(e) under the conditioning, the contribution
of the second integral is negligible. Considering the first integral,
note that in the normal coordinates,

6d(t,yt ) = I + O(y: ) (3.23)

By (3.20), the contribution of the second term is again
negligible, and therefore we are left with

E(exp(c F*(t)dy t) I Ilyll<)
0

In the case that F*(t) is C1 (which result from the assumption
0(t) E C1), integration by parts yields the pathwise convergence
(under the conditioning IlylI<E). In the general case, however, (3.21)
reduces to show that

B - E(exp(c J*(t)dy t) II . II < ) 4-- °1, Vc (3.24)
0

where

dy t= (I + c( t) ) dwt and c(y t) = 0(2)

The procedure which led to our estimates for the case c - 0
can be repeated, where now the operator L includes in it's first order
term an additional term of the form k e2(¢(6))2, which turns out to be
negligible. There is an even more direct way to see that, based on
lemma (2.1) of [6] or again on a version of 3.20 (c.f. [6], pg. 449]; we
ommit the details here.
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