Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2004-060 October 1, 2004
AITR-2004-007

Systematic Conformational Search with
Constraint Satisfaction
Lisa Tucker-Kellogg

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

Systematic Conformational Search with

Constraint Satisfaction
by
Lisa Tucker-Kellogg

Submitted to the Department of Electrical Engineering and
Computer Science in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2002

(© Massachusetts Institute of Technology 2002.
All rights reserved.

Certified by: Tomas Lozano-Pérez
Cecil and Ida Green Professor of Electrical Engineering and
Computer Science, Thesis Supervisor

Accepted by: Arthur C. Smith

Chairman, Department Committee on Graduate Students

Systematic Conformational Search with Constraint
Satisfaction
by
Lisa Tucker-Kellogg

Submitted to the Department of Electrical Engineering and Computer
Science on June 7, 2002, in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

Abstract

Throughout biological, chemical, and pharmaceutical research, confor-
mational searches are used to explore the possible three-dimensional
configurations of molecules. This thesis describes a new systematic
method for conformational search, including an application of the method
to determining the structure of a peptide via solid-state NMR spec-
troscopy. A separate portion of the thesis is about protein-DNA bind-
ing, with a three-dimensional macromolecular structure determined by
x-ray crystallography.

The search method in this thesis enumerates all conformations of a
molecule (at a given level of torsion angle resolution) that satisfy a set
of local geometric constraints, such as constraints derived from NMR
experiments. Systematic searches, historically used for small molecules,
generally now use some form of divide-and-conquer for application to
larger molecules. Our method can achieve a significant improvement
in runtime by making some major and counter-intuitive modifications
to traditional divide-and-conquer:

(1) OMNIMERGE divides a polymer into many alternative pairs
of subchains and searches all the pairs, instead of simply cutting in
half and searching two subchains. Although the extra searches may
appear wasteful, the bottleneck stage of the overall search, which is to
re-connect the conformations of the largest subchains, can be greatly
accelerated by the availability of alternative pairs of sidechains.

(2) PROPAGATION of disqualified conformations across overlapping
subchains can disqualify infeasible conformations very rapidly, which
further offsets the cost of searching the extra subchains of OMNIMERGE.

(3) The search may be run in two stages, once at low-resolution
using a side-effect of OMNIMERGE to determine an optimal partitioning
of the molecule into efficient subchains; then again at high-resolution
while making use of the precomputed subchains.

(4) An A* function prioritizes each subchain based on estimated

future search costs. Subchains with sufficiently low priority can be
omitted from the search, which improves efficiency.

A common theme of these four ideas is to make good choices about
how to break the large search problem into lower-dimensional subprob-
lems. In addition, the search method uses heuristic local searches
within the overall systematic framework, to maintain the systematic
guarantee while providing the empirical efficiency of stochastic search.

These novel algorithms were implemented and the effectiveness of
each innovation is demonstrated on a highly constrained peptide with
40 degrees of freedom.

Thesis Supervisor: Toméas Lozano-Pérez
Title: Cecil and Ida Green Professor of Electrical Engineering and
Computer Science

Acknowledgments

I am grateful to Professors Tomés Lozano-Pérez, Bruce Tidor, and Carl
Pabo for their leadership and to the people at all ranks in the AT Lab,
Tidor Lab, and Pabo Lab for fostering my development as a scientist.

I would also like to thank Barb Moore Bryant, Matt Cordes, Sue
Felshin, Greta Kaemmer, Kimberle Koile, Helen Mazarakis, Lena Nek-
ludova, Mark Rould, Temple Smith, Ellen Spertus, Amanda Tucker,
Greg Tucker-Kellogg, Ozlem Uzuner, Kathleen Wage, Ed Wang, and
Patrick Winston.

Chapter 2 describes work done jointly with Toméas Lozano-Pérez. Chap-
ter 3 is co-authored with Chad Rienstra, Chris Jaroniec, Morten Ho-
hwy, Bernd Reif, Mike McMahon, Bruce Tidor, Tomés Lozano-Pérez,
and Bob Griffin. Chapter 5 is co-authored with Mark Rould, Kristen
Chambers, Sarah Ades, Bob Sauer, and Carl Pabo.

Helen Mazarakis provided graphic design assistance that was was par-
ticularly important in the preparation of this document. The More
Magic group and the system administrators in Pabo Lab and Tidor
Lab provided support for the computationally intensive research that
led to this thesis. Financial support was provided by the Cecil H. Green
Chair Fund, the NIH (grant GM31471), and an NSF Fellowship.

Finally, I would like reiterate my thanks to Tomas Lozano-Pérez be-
cause of the sheer quantity of his help, both intellectual and practical,
including candid opinions, creative ideas, technical expertise, patient
encouragement, uninterrupted financing, and a corpus of running code.

Contents

1 Introduction
1.1 Context and Motivation
1.2 Conformational Search
1.3 Overview

2 Systematic Conformational Search
2.1 Elementary Search
2.2 Evaluating Voxels with Minimization
2.3 Divide-and-Conquer

3 The Structure of a Peptide by solid-state NMR

4 Merge Strategy Optimization
4.1 The Choice of Merge-Tree Can Be Important
4.2 How to Choose Good Merge-Trees?
4.3 Searching All Subchains (OMNIMERGE)
4.3.1 Mitigating the Cost of OMNIMERGE
4.3.2 Performance Examples
4.4 PROPAGATION (Arc Consistency)
4.4.1 Previous Work oL
4.5 Augmenting OMNIMERGE with A*
4.5.1 The A* Improvement
4.6 A Difficult Case

5 The Crystal Structure of a Protein—-DNA Complex

6 Conclusion
6.1 Outlook for Searching Larger Molecules
6.2 Contributions of the Doctoral Candidate

11
13

19
19
26
36

49

71
72
7
84
86
88
97
102
105
113
120

127

A Systematic Search Implementation
A.1 Definitions and Preprocessing
A.2 Options and Optimizations

B Merge-Trees for 1RST

Chapter 1

Introduction

Understanding the biological function of proteins and other flexible
molecules often requires investigating the possible conformations or
three-dimensional arrangements of atoms in the molecule. The famous
“protein folding problem” is, in essence, the problem of finding the
conformation with lowest Gibbs free energy. The problem addressed
in this thesis is enumerating conformations that satisfy a given set of
geometric constraints. The most important occurrence of this problem
is when NMR, spectroscopy experiments yield constraints on the geom-
etry of atoms in a molecule (interatomic distances and dihedral angles
in a molecule), and one then needs to determine what conformations
of the molecule are consistent with those constraints.

Chapter 2 describes a systematic method for finding conformations
that satisfy a user’s constraints. Chapter 3 is an application of that
method to determining the structure of a small peptide called fMLF (or
formyl-Met-Leu-Phe-OH), based on constraints from solid-state NMR,
spectroscopy. Chapter 4 is a set of novel algorithmic enhancements to
the methods of Chapter 2. Chapter 5 describes the determination of a
large structure (a protein molecule bound to a double-helix of DNA)
using a contrasting method, X-ray crystallography.

1.1 Context and Motivation

Protein Structure

Proteins, some of the most important types of molecules for life, are
made from simple building blocks called amino acids or, after they’ve
been connected, amino acid residues. The residues in a protein are con-

nected sequentially to form a flexible chain. The spatial arrangement
of a protein in three dimensions is called the protein’s conformation,
or its tertiary structure or, to emphasize the atomic-level resolution of
the arrangement, the atomic structure.

Each amino acid building block has one of twenty possible sidechains
attached to an invariant set of backbone atoms. Peptide bonds connect
the backbone atoms of adjacent residues in a protein, thus forming one
polypeptide backbone through the entire length of the protein. Because
the various sidechains along the backbone have different chemical prop-
erties, they attract or repel one another, creating a complicated and
non-uniform set of forces. The protein (both backbone and sidechains)
bends and folds in response to the forces and often converges to one
energetic minimum.

The sequence of amino acids, or primary structure, of a protein is
widely believed to dictate the protein’s tertiary structure, which deter-
mines the chemical activity and biological function. Other molecules
besides proteins have similar structural freedoms and often have similar
unique minimum conformations, but proteins are the canonical exam-
ple.

Structure Determination

Atomic structures are too small to observe directly, such as with a mi-
croscope. Structure determination is experimentally difficult, but it is
a high scientific priority for biologists, biochemists, and the pharma-
ceutical industry. Experimental methods for structure determination
must somehow align or amplify signals from many copies of the same
molecule, such as through crystallizing the sample so that all copies
have precisely the same orientation (as for X-ray diffraction in Chapter
5), or subjecting the tiny magnetic dipoles in the nuclei of the atoms
to an enormous magnetic field (as in NMR spectroscopy in Chapter 3).
The raw data from such experiments can, with extensive and sophis-
ticated processing, eventually provide sufficient information to deduce
the structure of a molecule at atomic resolution. X-ray diffraction
yields a map of electron density and NMR spectroscopy typically pro-
vides constraints on distances between particular pairs of atoms and
constraints on dihedral angles for rotatable bonds. Some molecules are
better suited to investigation by one method or the other, and both
methods have become extremely popular.

With the growing number of scientists performing these experiments
and with increasing automation of the structure determination process,
software test suites [38, 72, 39, 55] have been developed to provide sim-

ple but automatic measures of the quality of an atomic structure. For
X-ray crystallography, an analytical expression called the free-R [8] has
been adopted to help reduce unintentional overfitting of atomic struc-
tures to the observed diffraction data. (The structure in Chapter 5
is noteworthy in part for the rigor with which the free-R was applied,
relative to competing studies at that time.) It is conceivable that some
atomic structures determined by NMR, spectroscopy could also involve
some overinterpretation of the available experimental data [15]. That
is, there may be NMR constraint sets that permit a wider range of con-
formations than were originally identified. In any case, the ability to
determine the full range of conformations consistent with a set of con-
straints would certainly aid in error analysis and confidence measures
of structures determined by NMR.

A protein has hundreds or even thousands of degrees of freedom, and
its conformation space (like configuration space in traditional artificial
intelligence) is exponential in the number of degrees of freedom. More-
over, small increments in one variable can cause extreme and nonlinear
changes in properties of interest (such as whether the constraints are
satisfied). Absolute completeness in searching such a space may prove
as elusive as protein folding itself. The primary goal of this thesis is to
provide methods that guarantee some minimum interval of coverage,
even though absolute completeness on the continuous space is never
guaranteed.

The number of degrees of freedom that can be searched by our
methods is not yet enough for application to typical protein structures.
Therefore, as we make progress towards the eventual goal of systemat-
ically searching large structures, we address the important problem of
searching smaller molecules, such as peptides.

The constraints on the fMLF peptide, determined experimentally
by Rienstra et al., include multiple distinct alternative ranges for many
of the dihedral angles in the peptide. For example, the ¢ dihedral angle
of methionine (the M in fMLF) was determined by experiments to be
between -152.5° and -145.5° or between -92.5° and -85.5° or between
-8.5° and -3.5°. Systematic methods are particularly well-suited to con-
sidering disjoint alternative ranges for torsion angle constraints, and we
applied our methodology to the problem of determining what confor-
mations satisfy the fMLF constraints. By using a systematic method,
we were also able to provide a guarantee that all conformations con-
sistent with the constraints are either represented, within the margin
of the search interval, or else are able to escape detection by virtue of
being narrower than the search interval. By using a search interval of
only 5° (for all but the two most unconstrained torsions in the pep-

10

tide, which had a search interval of 30°), we provide an exceedingly
high degree of confidence that there is no other region of conformation
space that might satisfy the constraints but that somehow has been
overlooked.

The accuracy of structures determined from NMR data de-
pends even in principle on several factors in addition to the
quality of the data. The calculation is not a simple mathe-
matical transformation, but involves a search of the protein
conformational space to find all conformations compatible
with the given set of experimental constraints. The ade-
quacy of the search depends on the experimenter.

Zhao and Jardetzky, 1994
from J.Mol.Biol., 239: 601-607.

1.2 Conformational Search

Conformational search algorithms, and systematic conformational search
algorithms in particular, are used for many applications including dock-
ing [21, 52, 77, 53], homology modelling [46, 16, 18], the pharmacophore
problem [67, 69, 63], interpretation of crystallographic electron density
[75, 60], and determining stereospecific NMR. assignments [27, 68, 25],
as well as for interpreting NMR, constraints [4, 66, 13, 30] for outright
conformational analysis of important molecules [78], and for validating
heuristic search and molecular design methodologies [47].

Some of the differences among conformational search algorithms
include how they represent the molecular structures, what definition
of success they use, and what constraints they place on the search.
Some methods represent each conformation using Cartesian coordinates
for the atoms. The most popular representation, “rigid geometry,”

11

assumes that the lengths and angles of covalent bonds are held fixed
at their equilibrium values. The only remaining degrees of freedom,
dihedral rotations about single bonds, can then be represented as a
vector of torsion angles.

Most conformational search algorithms have an engine that gener-
ates many different starting structures from the breadth of the confor-
mation space, and then another module that evaluates each conforma-
tion to determine whether it is acceptable. Search methods can then
be categorized according to whether the engine for generating confor-
mations is systematic or stochastic. A systematic engine (sometimes
also called exhaustive) generates conformations deterministically, usu-
ally covering the conformation space at predefined intervals and in a
predefined order. A stochastic algorithm generates starting conforma-
tions using some type of randomness. A simple stochastic algorithm
might randomize the parameters of the conformation (the torsion angles
or Cartesian coordinates of atoms) directly. A more popular approach
uses chemically-inspired “move sets” to create a Markov random walk
through conformation space, tweaking structures in ways that attempt
to bias the sampling away from trivially unacceptable (self-colliding)
conformations. Many researchers adjust the transition probabilities in
a Markov walk to achieve importance sampling. The Metropolis al-
gorithm samples states with probabilities proportional to their Boltz-
mann weights. The famous simulated annealing algorithm is simply
a combination of the Metropolis algorithm with a slowly decreasing
temperature parameter. “Distance geometry” algorithms [13], devel-
oped specifically for the NMR, structure determination problem, search
stochastically for conformations that can be “embedded” in matrices
of interatomic distances.

Constrained Conformational Search

The constrained conformational search problem takes a primary struc-
ture (such as a protein sequence) and some constraints on the 3-
dimensional conformation of the molecule.

The goal is to enumerate the conformations of the molecule that sat-
isfy the constraints; that is, to output a list of atomic structures that
“cover” the space of feasible conformations. (Let us leave “coverage”
[65, 11] undefined at present.) The constraints are typically upper and
lower bounds on interatomic distances, but they can also constrain tor-
sional angles or even combinations of torsional angles. Whereas some
formulations of the conformational search problem (sometimes called
restrained search) involve ranking conformations according to prefer-

12

ences such as relative energies, the constrained version of the problem—
the problem addressed in this thesis—defines conformations as either
acceptable or unacceptable, with no preferences or relative order among
the acceptable conformations.

Systematic Approaches

There is an extensive literature on systematic approaches to the con-
strained conformational search problem. For reviews, see the book by
Andrew Leach [43], the article by Martin Saunders et al. [62], or other
sources [35, 7, 5, 17, 61].

One important commonality among systematic approaches is that
the user chooses the size of the interval(s) to use when generating start-
ing structures. In other words, the coverage is an independent variable.
In contrast, the independent variables for a stochastic search might be
the number of trials, the length of time, or even the probability of
coverage, but never the absolute minimum coverage.

In contexts where a guarantee is not required, stochastic searches
can create good conformational hypotheses very quickly, even for large
or underconstrained problems. Systematic methods are often too slow
for large or underconstrained problems because of the number of satis-
fying solutions to be enumerated.

The systematic approach has been used often for small molecules of
great interest such as drugs. Many of the earliest systematic methods
were originally developed for rings, and rings remain a popular appli-
cation for systematic methods [31, 26, 66, 1, 56, 76]. The systematic
approach has also been used for searches where the backbone is fixed
and only the sidechain conformations must be searched [41, 40, 44].

The goal of the thesis is not to compare systematic with stochastic
methods, nor to argue for the superiority of systematic methods. Both
systematic and stochastic methods are useful and important. Stochas-
tic methods are currently used far more widely than systematic meth-
ods, and the vast majority of conformational search questions that are
of interest to chemists and biologists tend to be cast automatically as
problems for stochastic search. By extending the state of the art in
systematic search, we hope both to tempt and to allow these scientists
to cast their questions as problems for systematic search.

1.3 Overview

This thesis consists of a method for systematic conformational search
and two structure determination projects. The conformational search

13

method is the centerpiece and it includes several novel ideas, with
demonstrations of how each innovation contributes to algorithmic effi-
ciency. The structure of the fMLF peptide is determined using the sys-
tematic search method. The second structure, a protein-DNA complex
determined using traditional X-ray crystallography, is methodologically
separate.

In the body of the thesis, our description of the systematic search
method starts with elementary search algorithms and then builds up
our method as a series of modifications or new levels beyond the elemen-
tary algorithms: the voxel model, divide-and-conquer, OMNIMERGE,
merge-tree optimization, propagation, and prioritizing subchains with
an A* cost function.

Voxel Model

The voxel model, proposed by Tomés Lozano-Pérez, divides confor-
mation space into small hypercubes called voxels, and the goal of the
search is recast in terms of continuous voxels, instead of discrete points.
We attempt to enumerate all voxels that contain any satisfying region
of conformation space, instead of enumerating regularly spaced points
that satisfy the constraints.

One advantage of this model is that it allows the issue of complete-
ness to be addressed at the level of local search, not just as a global
problem. However, the primary motivation for using the voxel model is
that it can provide a systematic guarantee of how finely the space has
been examined (namely at the width of the voxels), while also allowing
the use of non-systematic methods at the local level. Within a voxel, we
can evaluate points using randomness, heuristics, or any search method
with good empirical performance. Our method uses minimization to
evaluate and search each voxel.

Divide-and-Conquer

The second improvement uses divide-and-conquer to decompose the
search of the full molecule into many small searches. Other groups have
also applied the idea of divide-and-conquer to conformational searches
(sometimes called “buildup procedures” or “combine operations”).
We divide the molecule chain into smaller and smaller subchains,
enumerate the solutions for the smallest subchains, and then combine
the solutions for small subchains to create solutions for larger sub-
chains, until solutions have been enumerated for the whole molecule.
A “merge-tree” directs how the chain is divided into subchains, and we

14

show that the choice of merge-tree can be critically important to the ef-
ficiency of a divide-and-conquer search. The novel portion of this work
is a comparison of the empirical performance of divide-and-conquer
with alternatives. In addition, we clarify the distinction between the
size of a subchain and the size of a subproblem.

OmniMerge

We propose an algorithm that searches all possible subchains instead
of just the particular subchains specified in one merge-tree. Quite
counterintuitively, the run time of OMNIMERGE is sometimes better
than divide-and-conquer. If the subproblems defined by a particular
merge-tree do not exploit the available constraints very well, it may
be preferable to solve all subproblems (including the ones that don’t
exploit the constraints very well) rather than to solve only the default
subproblems.

The key insight is that during most divide-and-conquer searches,
most of the run time is consumed by one merge operation, usually
the final merge of the right and left halves of the molecule. Because
OMNIMERGE searches all subchains, it has many alternative left and
right fragments to choose from when confronting the final bottleneck
step. For a molecule with 10 residues, there will be 9 choices: one
residue on the left and nine on the right, two on the left and eight on the
right, etc. Although the time required to search every possible fragment
can be substantial, is can easily be less than the time to perform the
final merge using a poor default choice of fragments. A crucial concept
throughout this research is to improve the speed of searching a chain
by making a good choice of which right and left fragments to combine.

Merge-Tree Optimization

We develop cost functions to evaluate alternative merge-trees, based
not just on minimizing the size of the subchains but the size of the
subproblems. Instead of assuming that the length of a subchain reflects
the complexity of searching it, we consider the number of solutions for
a chosen subchain as well as the number of solutions for the subsequent
subchains implied by the first choice of subchain. The cost functions
we develop in the merge-tree optimization section require knowing how
many satisfying voxels there are for each subchain. Once the infor-
mation is available, the cost function is amenable to optimization by
dynamic programming and an optimal merge-tree can be computed.
Searching a molecule with OMNIMERGE provides the required in-
formation, the number of satisfying voxels for each subchain. Several

15

other circumstances may also necessitate searching the same molecule
more than once, but in general one can always search a molecule once
at low resolution, compute the optimal merge-tree for low resolution
searches of the molecule, and then use that same merge-tree for a higher
resolution search.

Propagation

When we search every subchain of the molecule, many of the subchains
will overlap each other, which is a form of redundancy. Any time we
have two subchains that share at least one residue, we would like to
reuse some of the information about what torsion angles are allowed
or disallowed for those residues. We discovered a way to formalize this
desire with the concept of arc consistency (or constraint propagation),
a common artificial intelligence technique for general constraint satis-
faction problems. However, the name “constraint propagation” may
be misleading because instead of applying the technique directly to the
constraints on conformations (the distance constraints and dihedral
constraints provided by NMR experiments), we create new, higher-
level constraints requiring that overlapping subchains must have so-
lution sets that are compatible with each other. To be more precise,
each conformation of one subchain must be compatible with at least
one conformation of the overlapping subchain, or else it is illegal. We
use a simple propagation algorithm to enforce arc consistency between
the solution sets of overlapping subchains. This reduces the number of
candidate conformations for each subchain and results in a substantial
improvement to run time.

Ordering Subchains

The final and most complex innovation we present is the idea of choos-
ing the order in which to search the subchains. If the cost of searching a
subchain will be high, it is postponed until all better alternatives have
been searched. If a subchain is postponed until after the whole molecule
chain has been searched, that is the same as skipping it entirely.

The flexibility of skipping arbitrary subchains opens up an expo-
nential breadth of possible “merge-strategies.” Merge-trees are some
of the possible merge-strategies, but another merge strategy might be-
gin evaluating one merge-tree and then skip to another if the first is
disappointing.

When choosing which subchain to search next, we evaluate each
according to an A* cost function that reflects both the cost of searching

16

the subchain and an optimistic estimate of the potential contribution
of the subchain to the search of the whole molecule.

Commonality

A common thread running through many of our ideas is investing com-
putational resources in order to identify which subproblems will be
cheapest to solve. The extra computation involved, whether searching
small subproblems or calculating the costs of alternatives, can pay off
dramatically if it allows the overall method to avoid searching a sub-
problem that is astronomically time consuming. Thus, the potential
benefit of the computational investment may be enormous, whereas
the worst-case cost from using these methods is limited to the time
spent performing the extra calculations. In the final section of Chapter
4 we examine cases expected to have minimal benefit from the extra
investment, but even in these cases, the combined package of improve-
ments in our method still manages to provide more than enough benefit
to compensate for the “overhead” time of using it.

17

18

Chapter 2

Systematic
Conformational Search

To explain the search algorithm we have designed, we start with ba-
sic search methods and then explain the modules we have designed as
improvements to the basic framework. The most important improve-
ments in this chapter are using minimization to evaluate small regions
of space, and using divide-and-conquer to build up the whole solution
using solutions to smaller (lower-dimensional) subproblems. Chapter 4
will continue from there to explain further improvements that build
upon divide-and-conquer.

2.1 Elementary Search

Suppose the molecule to be searched has N rotatable bonds as the only
degrees of freedom (the “rigid geometry” model), and suppose one has
chosen some resolution, say 120 degree increments in each dimension of
torsion space, as constituting the desired level of detail for enumerating
satisfying conformations.

Gridsearch

The simplest systematic search algorithm is gridsearch, a type of generate-
and-test search. If a grid (a higher-dimensional cubic lattice) were
drawn over the N-dimensional search space with, in this case, 120 de-
gree spacing in each dimension between adjacent points, gridsearch
would iterate over every gridpoint and evaluate the molecular confor-

19

mation corresponding to each point; hence the name. The only note-
worthy features of gridsearch are simplicity, ease of implementation,
and low overhead. In the pseudo-code below,! the subroutine that con-
verts a torsion representation of a structure into an all-atom represen-
tation in Cartesian coordinates is called INSTANTIATECONFORMATION.

GRIDSEARCH
For 60, = 120°,240°,360° {
For 6> = 120°,240°,360° {

For 6y = 120°,240°,360° {
Structure S = INSTANTIATECONFORMATION
([01,02,...,0N]).
Output S if it satisfies all the constraints.

Gridsearch is a form of British Museum Search, which is to say it
simply generates and checks every possibility. The run time of GRID-
SEARCH is always exponential in the number of torsions.

Treesearch

Backtracking is an elementary systematic algorithm for solving con-
straint satisfaction problems, and when applied to conformational search
problems it is often called Treesearch [48]. Treesearch differs from grid-
search because it evaluates each partial vector of torsion angles each
time the vector is extended or altered, instead of waiting until angles
have been provided for all the torsions.2 Provided that the torsions are
ordered according to adjacency in the molecule, each partial vector of
torsions, called a partial path in search terminology, corresponds to a
unique conformation for a contiguous fragment of the molecule. (The
fragment contains all atoms in the bond frames of the assigned torsions.
Bond frames are explained in appendix A.) Treesearch evaluates each
fragment it creates before extending the instantiation. A fragment can

1 For simplicity, we write the pseudo-code with N nested loops as if N were an
absolute constant. Whether the algorithm is actually coded using explicit iteration
or recursion does not change the substance of the algorithm.

2We draw no distinction [25] between the iterative and recursive forms of this
algorithm.

20

be evaluated by determining whether the constraints active on (or rel-
evant to) that fragment are satisfied. (Active constraints are discussed
in section 2.3.)

TREESEARCH
For 0 = 120°,240°,360° {
Structure s; = INSTANTIATECONFORMATION([61]).

If structure s; satisfies all its active constraints,
Then For 02 = 120°,240°,360° {
Structure s = INSTANTIATECONFORMATION([01, 62]).
If structure s satisfies all its active constraints,
Then For 03 = 120°,240°,360° {

Then For On = 120°,240°,360° {
Structure Sy =
INSTANTIATECONFORMATION
([01,02,0s,...,0N]) .
Output S if it satisfies
all the constraints.

P

The pseudo-code for Treesearch is like that for Gridsearch except
that an evaluation is done after the assignment step of every loop, not
just after the assignment in the innermost loop.

Comparison

The advantage of Treesearch over Gridsearch is apparent if you consider
what happens when some fragment smaller than the whole molecule
actually is found to violate some constraint. Whereas gridsearch would
automatically evaluate all extensions of the bad start, treesearch prunes
away that whole branch of the search tree and skips ahead to the next
fragment. See Figures 2.1 and 2.2.

When pruning occurs, the number of conformations pruned is expo-
nential in the number of uninstantiated torsions. When few variables
are instantiated, the probability of finding violations of an active con-
straint may diminish, but the reward from such a find is much larger.

The run time of TREESEARCH can be exponential, like GRIDSEARCH,
but it can also be polynomial if constraints prune most of the branches.
In the extreme case where all but one possibility is pruned for every tor-

21

&1

o LAAMLAN

X X XX XXX XX X XXX XX X X XXX X XX X X

—

N

Figure 2.1: A depiction of how Gridsearch might sample three an-
gles per bond on a molecule with three bonds. All
branches are explored and evaluation only occurs after
angles have been assigned to all bonds.

NO

o, /N /N

of A

Figure 2.2: A depiction of Treesearch (or backtracking) showing the
evaluation (“MAYBE” or “NQO”) for conformations of
partial fragments of the molecule. The branches that
appear in gridsearch (above) and not in treesearch are
said to be “pruned.”

22

sion, the run time of TREESEARCH could even be linear in the number
of torsions. See Figure 2.3.

KOO ORNO;

- NONNN
LA

Figure 2.3: An ideal case for TREESEARCH.

One disadvantage of treesearch is that IV evaluations of overhead
must occur before the first whole conformation can be considered for
output. Gridsearch in contrast has virtually no overhead. If no con-
straints are active on fragments smaller than the whole molecule,? then
treesearch will perform worse than gridsearch. However, in circum-
stances where some constraints are active on smaller pieces of the mole-
cule (which means fragments smaller than the whole can be disqualified
and the search pruned), then treesearch will be a clear winner.

Completeness

Note that when treesearch excludes a high-dimensional slab of space
based only on evaluating a lower-dimensional fragment of the molecule,
the algorithm’s completeness guarantee, such as it is, does not diminish.
Higher-dimensional versions of the same gridpoints would have been
excluded by the same constraints during a gridsearch.

The conformations that correspond to regularly spaced gridpoints
are not necessarily representative of all nearby conformations. Satis-
factory regions of conformation space that don’t intersect the chosen
gridpoints will be missed. While one might be tempted to think of
all systematic search methods as guaranteeing complete coverage of

30ne such circumstance might be if the trial conformation is constrained such
that the intensities of its overall diffraction pattern must match a set of crystallo-
graphic intensity data.

23

the space, in fact these systematic methods only guarantee that some
conformation in each region of space was considered.

Figure 2.4: A two-dimensional example showing how a variety of
shapes with non-trivial volumes can theoretically exist
without intersecting any of the gridpoints.

Intuitively we understand that if a satisfactory region of conforma-
tion space exists and was not identified by the search, then that region
must somehow be “narrow” enough to have avoided detection. Fig-
ure 2.4 shows a variety of large shapes that are “narrow” enough to
avoid a 2-dimensional grid. The human instinct to consider such grids
“thorough enough” to exclude significant volumes is what allows ma-
gicians to amaze audiences by placing an assistant in a box and then
sticking swords through the box.

Rotamers

Because biologically interesting proteins are generally folded into low-
energy conformations, algorithms like gridsearch or treesearch some-
times turn out to work very well for conformational search problems
when their search intervals coincide with the patterns of low-energy
conformations that we will call rotamers [58, 54].

Although single covalent bonds generally permit full rotation, there
are certain angles of rotation about a bond that cause slight steric
clashes between its neighboring atoms, and some that avoid or minimize
the clash. See Figure 2.5. Suppose two large atoms are connected by a
covalent bond, and suppose each has tetrahedral geometry, with bonds
to three other small atoms. Even though the three atoms on each side

24

Figure 2.5: For a pair of bonded atoms with tetrahedral geome-
try, torsional angles of 120°, 240°, or 360° cause steric
clashes, and torsional angles of 60°, 180°, and 300° do
not.

are pointing away from the central bond, torsional rotations that place
the small atoms in closest proximity (in an “eclipsed position”) cause
steric clashes and are less favorable than other rotations.

These clashes, combined with the fact that energetically unfavorable
conformations are improbable, cause the set of likely torsional angles
to be divided into distinct ranges. For example, if steric clashes are
minimized when a torsional angle is at 60, 180, or 300 degrees, then the
most energetically favorable (and the most probable) conformations for
that torsional rotation will have angles in the ranges of 6044, 18044, or
300+4 degrees, for some value of 4. With two adjacent rotatable bonds,
the spread of likely conformations looks like a grid. See Figure 2.6.

Rotamers were originally defined as clusters of sidechain confor-
mations that correlate with locally optimal torsion angles and that
were found to occur frequently in X-ray crystal structures [58]. We
will use the term rotamers more generally to refer to any likely or
frequently-occurring neighborhood of conformations for any molecu-
lar fragment [49]. Some modern conformational search algorithms
even use rotamers explicitly as their representation of conformation
space [14, 44].

When our algorithm searches for conformations that satisfy con-
straints, we will not generally require the conformations to be in ro-
tamers, but we would like the option of searching rotamers first or
of calibrating the resolution of our search to match regular intervals of
rotamers. This corresponds to the “succeed first” approach to variable-
ordering in generalized constraint satisfaction problems. For example,

25

360°

300° || 2
] 1- i :i’:" R F
2 J 1 -
- 240
< . -
9 o -:. - 3. -
5 1807 —&
fe) ° . -
- 120° -

60°| |-
o’ -

(e}

0° 60° 1200 180° 240°300° 360°

torsion one

Figure 2.6: A hypothetical scatter plot of angles for two dihedral
angles with tetrahedral geometry.

the TREESEARCH algorithm using 120° resolution should instead use
the following assignments in place of the original values:
For 6; = 60°,180°, 300°

2.2 Evaluating Voxels with Minimization

Conformation space is continuous, even though we discretize it for our
representations. Consider again a grid drawn over the N-dimensional
search space, with a given level of resolution, but instead of evaluat-
ing the conformations that happen to correspond to the grid points,
consider evaluating the little multi-dimensional volumes of conforma-
tion space, the voxels defined by the grid. (The term voxel refers to
a unit of higher-dimensional volume by analogy to a pixel as the unit
of a two-dimensional picture.) Instead of asking whether each grid-
point conformation satisfies the constraints, we ask whether there exists
any conformation in the voxel that satisfies the constraints. The voxel
model is a previously unpublished idea of Tomas Lozano-Pérez. This
thesis is the first application, test, and demonstration of performance
for the voxel model. Because the voxel model is such a simple, readily-

26

implemented idea, it may prove to be the most popular aspect of our
systematic search methodology.

A one-dimensional voxel is a range of torsions, such as [30, 60], and a
d-dimensional voxel consists of d independent, simultaneous ranges for
d adjacent torsions. A set of torsions are adjacent if they are connected
in the original molecule by a path of bonds that does not include any
other rotatable bond (that is, if they form a connected component of
the bond tree described in appendix A).

There is no general, perfectly accurate way to determine whether
a satisfying conformation exists in a given volume. However, we can
certainly do better than evaluating one point per volume.

We will often use a satisfying point in a voxel as an easy and useful
representation for the whole voxel. Rather than enumerating satisfying
conformations that happen to fall at regularly-spaced intervals, the goal
of the search problem will now be to output one satisfying conformation
from each voxel that contains a feasible region. We now formulate
VOXELIZED TREESEARCH, the treesearch algorithm in terms of voxels
instead of points. Whenever convenient, we will try to center our voxels
on rotamers.

VOXELIZED TREESEARCH
For Range f1 = [0 120°], [120 240°], [240 360°] {
If voxel (Rangef;) has a satisfying
conformation,
Then For Rangefs = [0 120°], [120 240°], [240 360°] {
If voxel (Rangef;, Rangef>) has a satisfying
conformation

Then For Rangefs = [0 120°], [120 240°], [240 360°] {

Then For Range fy = [0-120°], [120-240°],
[240-360°] {
If voxel (Rangef;, Rangefs,..., Rangefy)
has a satisfying conformation,
Then output that conformation.

27

Minimization as search

Gradient descent and other types of local optimization can be powerful
search tools if local optima don’t provide too great an obstacle to ex-
ploration. Motivated by the hope that our voxels might be sufficiently
small to permit minimization to traverse much of the voxel before get-
ting stuck, we chose local minimization (as opposed to explicitly global
methods) for finding satisfying conformations within a voxel. Minimiza-
tion of potential energy functions and other non-energetic objective
functions has long been a popular tool for all types of conformational
search and conformational analysis, usually alone but occasionally in
conjunction with explicitly systematic search methods [45, 43].

Constraints on the conformation of a molecule can be trivially con-
verted to an objective function by summing the squared violations of
the constraints. Assigning proper relative weighting to disparate types
and units of violation is less obvious. Extrapolating from a case that in-
volved experimental data, we chose weighting coefficients proportional
to the inverses of the standard deviations of the experimental mea-
surements that gave rise to the constraints. If an additional standard
deviation in the data for the distance constraints would be 0.1 A on
average, and 2° on average for the torsion data, then a violation of 0.1
A in the distance constraints should receive the same absolute penalty
as a 2° violation of the torsion constraints.

Note that the objective function created here has nothing to do with
potential energy or with ranking the desirability of conformations. The
constraints determine whether or not a conformation is acceptable, not
how good it is relative to other good conformations. We use mini-
mization of a constraint violation function as a heuristic for searching
within a voxel for satisfying conformations. The ensemble of confor-
mations output by our algorithm would still have to undergo energy
minimization before they could be screened according to energetic cri-
teria.

The minimizer always starts from some initial point in the voxel,
perhaps the same point that gridsearch would have chosen, and then
searches within the voxel for points that minimize the objective function—
that is, for conformations with smaller violations of the constraints.
The minimization halts when the violation function is sufficiently close
to zero (success) or when a maximum number of iterations has been
reached (failure).

For the actual minimizer, we tried a quasi-Newton minimization
method [59] and we added additional penalties in the objective func-
tion to prohibit solutions outside the voxel being searched, but we found

28

Figure 2.7: The search within a voxel is guided by minimization of
constraint violations.

that a more effective and efficient method in practice is FSQP [42] (Fea-
sible Sequential Quadratic Programming), a suite of constraint-based
nonlinear programming methods that never considers points outside
the restricted domain of the voxel. Note that for our use of this opti-
mization software, the constraints on the molecule (such as the limits
on interatomic distances) had already been incorporated into the ob-
jective function, and what the FSQP saw as “constraints” were merely
the voxel boundaries. In either case, the user would specify a starting
point in the voxel, a maximum limit on the number of steps or iter-
ations the minimizer can spend searching for a solution, and possibly
also parameters for multiple passes to reset the minimizer to different
locations in the voxel. With either method, the result of the mini-
mization attempt(s) would become the answer to whether a satisfying
conformation exists within the voxel.

Minimization within Treesearch

If voxels are defined (and iterated over) by a treesearch algorithm, the
first voxels defined will have only one dimension, then two dimensions,
and so on. Treesearch defines a (d+1)—-dimensional voxel only if it is an
extension of a d—dimensional voxel that was already found to contain
a feasible region. When the minimizer begins evaluating the (d+1)-
dimensional voxel, we can initialize its starting conformation such that
the first d torsions have the same solution found previously. Then only
the newest, d+1 torsion must be chosen arbitrarily.

Note that this reuse of previous information is not relevant for the
basic version of treesearch because without minimization, the midpoints
(or gridpoints or rotamer-centers or whatever points represent the vox-

29

els) are the only conformations evaluated. Without minimization, the
same conformation is chosen for evaluation whether one chooses the
midpoint of a voxel and then extends its dimension, or if one extends
the voxel and then chooses its midpoint.

When running treesearch with minimization, we choose in many
cases to perform two or more passes of minimization, if the first pass
fails. The first pass uses the d-dimensional solution found at the previ-
ous level of the search, initializing only the (d+1)-st dimension arbitrar-
ily to the center of the range. The second pass uses the midpoint of the
voxel, which is the middle of the range for all (d+1) dimensions. When
we do perform more than two passes, the additional starting points are
chosen at random from within the voxel.

Multi-resolution Search

Another strategy we considered for evaluating whether a voxel contains
satisfying conformations, assuming that the voxel has already failed
to yield any satisfying conformations during some preliminary, low-
resolution search, is to search within the voxel systematically at a higher
level of resolution.

For example, if a user is interested in knowing how many 120° ro-
tamers satisfy a set of constraints, voxels would be defined with 120°
resolution. Some voxels might have a large obvious region of satisfy-
ing conformations that could be found just by evaluating the midpoint
of the voxel or by performing a minimization-search starting from the
midpoint of the voxel. Other voxels that fail at this level of search
might nonetheless contain small or obscure feasible regions, and for
these case we would like to search more closely. For example we could
begin a gridsearch at 30 degree resolution within the voxel and quit the
gridsearch as soon as one feasible solution in the voxel is found.

Performing gridsearch as a second-pass filter on voxels that fail a
first-pass is very different from performing gridsearch on the entire
space. Not only will we avoid performing gridsearch on voxels that
have “obvious” satisfying conformations, but we will avoid performing
gridsearch on d-dimensional voxels unless they are extensions of (d—1)-
dimensional voxels that are already known to contain some feasible
region.

We will use the term “multi-resolution” search to mean evaluating
voxels using minimization followed by gridsearch.

30

Results

To verify that our minimization method for evaluating voxels is a better
way to evaluate voxels than other options (such as systematic sampling
or random sampling), we constructed two simple test problems and
searched them using treesearch with different methods of voxel eval-
uation. The first problem uses a set of distance constraints that are
easily satisfied and we measure how many satisfying conformations are
found by each method. The other problem uses an extensive set of
distance constraints—only satisfied by a single narrow region of con-
formation space—and measures how extensive the search must be in
order to locate that satisfying region.

For both problems, we started with a tetrapeptide of polyalanine
folded so its ¢ and 1 angles were all —57°. (The WHATIF [72] software
uses ¢ and v angles of —57° as the canonical backbone for alpha-helical
conformations, so we will refer to this peptide as helical despite its short
length.)

Figure 2.8: The structure of a helical tetrapeptide of polyalanine.

No hydrogens were modeled, and all the peptide bonds were rigidly
fixed at 180 degrees, leaving two rotatable bonds per residue. Since the
phi rotation of the first residue does not have enough heavy atoms at
the N-terminus to define it uniquely, the molecule has only 7 degrees
of freedom in total. The run time results throughout this thesis are
rounded off from hundredths of seconds to whole seconds or to three
significant digits, whichever precision is greater.

We took the set of all interatomic distances between 2.5 and 6.0
angstroms in the helical structure as the available pool of interatomic
distances to constrain. Given the 20 atoms in the tetrapeptide, there
are 124 pairs in this set. For the first problem, we used 10 percent

31

of the available distances (selected at random) and constrained those
pairs to be within plus or minus 0.5 A of the values found in the helical
structure. For the second, “tight” problem, we used all of the available
distances and constrained them to within plus or minus 0.1 A of the
helical values.

The first problem (with many possible solutions) requires solutions
at 120° resolution and uses van der Waals radii set to 90% of the
half sigma values* from the CNS library parallhdg.pro [9, 20]. For
the first problem, the constraints (distance constraints and hard-sphere
van der Waals constraints) are considered to be satisfied if the sum of
the squared constraint violations is < 0.005 A2. The tighter problem
uses 40° resolution, 85% of half sigma and a threshold of < 0.0005 A2
for the sum of the squared violations of the constraints.

For all runs, the voxels are defined by treesearch according to res-
olution and without regard to how the voxels will be evaluated. Since
treesearch would define 1-dimensional and 2-dimensional voxels and
evaluate them before defining higher-dimensional voxels, an unsatisfac-
tory region of space would always have the opportunity to be excluded
at low dimension (“pruned”) before being searched at higher resolution.

VOXELIZED TREESEARCH was applied to both problems, with vari-
ous voxel-evaluation methods as subroutines to decide whether a voxel
contained any satisfying conformations. (See Figures 2.9 and 2.11.)

e Random sampling. We tried random sampling for both prob-
lems. Random sampling repeatedly selects conformations (uni-
formly at random) from inside the voxel, with the maximum num-
ber of samples determined by some cap. For the first problem we
tried not only absolute caps but also caps that depend exponen-
tially on the number of dimensions of the voxel (that is, the cap
is proportional to the volume being searched).

e Systematic sampling. We tried some form of systematic sam-
pling for each problem. For the first problem, we tried multi-
resolution search with one pass of minimization followed by eval-
uation of regularly spaced points (gridsearch) in the voxel. The
tightly constrained problem turned out to be easy enough that a
single run of minimization could find the answer, so for the tight
problem we tried gridsearch within each voxel but without any
minimization.

4 Sigma is the distance at which two atoms of the same type have zero van der
Waals interaction energy. Any closer and they would start to repel each other.

32

Method for Run Time Conformations
Evaluating Voxels (seconds) Found
Evaluate 1 random point per voxel 0.09 1
Evaluate 10 random points per voxel 0.16 1
Evaluate 100 random points per voxel 1.61 5
Evaluate 1,000 random points per voxel 22.6 13
Evaluate 10,000 random points per voxel 265 36
Evaluate 100,000 random points per voxel 2,761 81
Evaluate 1,000,000 random points per voxel 27,536 114
Evaluate 10,000,000 random points per voxel 268,199 128
Minimize once, then gridsearch with 60° resolution 3.78 103
Minimize once, then gridsearch with 51.4° resolution 29.0 119
Minimize once, then gridsearch with 45° resolution 28.3 108
Minimize once, then gridsearch with 40° resolution 26.4 109
Minimize once, then gridsearch with 36° resolution 193 127
Minimize once, then gridsearch with 32.7° resolution 189 119
Minimize once, then gridsearch with 30° resolution 183 114
Minimize once, then gridsearch with 27.7° resolution 900 134
Minimize once, then gridsearch with 25.7° resolution 917 132
Minimize once, then gridsearch with 24° resolution 827 107
Minimize once, then gridsearch with 20° resolution 3184 131
Minimize once, then gridsearch with 17.1° resolution 9518 137
Minimize once, then gridsearch with 12° resolution 114,441 146
Minimize once, then gridsearch with 10° resolution 400,202 147
Minimize 1 time per voxel. (up to 5 steps) 0.64 49
Minimize 1 time per voxel. (up to 10 steps) 1.11 85
Minimize 1 time per voxel. (up to 20 steps) 1.75 101
Minimize 1 time per voxel. (up to 50 steps) 2.13 103
Minimize 2 times per voxel. (up to 50 steps) 3.92 134
Minimize 5 times per voxel. (up to 50 steps) 8.55 157
Minimize 10 times per voxel. 15.6 162
Minimize 100 times per voxel. 139 167
Minimize 1,000 times per voxel. 1,354 171
Minimize 10,000 times per voxel. 13,382 171
Minimize 100,000 times per voxel. 133,556 171

Figure 2.9: Treesearch on a tetrapeptide of polyalanine, with loose
constraints, and a variety of methods for evaluating
whether there are any satisfying conformations within
each voxel. Because the search of a voxel exits at the
first success, it is possible for a random search with a
higher bound on the number of steps (such as 119™) to
finish sooner than a search with a lower bound.

33

e Minimization. Finally, minimization was used in both prob-
lems, with a variety of caps on the number of steps and passes.

For voxel-evaluation methods that sample many points (whether
systematically or at random) the sampling is halted when the first
satisfying conformation in the voxel is found. However, for those voxel-
evaluation methods to conclude that no satisfying conformations exist,
they must have tried and rejected all the candidate points for that
voxel.

In the first problem, where many voxels contain satisfying confor-
mations, minimization dramatically outperformed random sampling in
the number of conformations it finds for comparable amounts of time
(see Figure 2.10). In contrast to the smoothly improving complete-

Comparing Methods of Voxel-Evaluation
180 L] AR L A B R LA B AR
« * * *

L * i
160 %

minimization

N
o
T
I

* 8 o

X

o

T

O
OO0 O
>

=)
=]
T
%
O
I

multi-resolution

o]
o
T
>
I

60 random sampling 1

Number of Conformations Found

Ll Ll Ll PR
10’ 10° 10° 10
Time in seconds (logscale)

Ll el

Figure 2.10: A plot of the data from Figure 2.9 with stars for runs
using minimization, circles for runs using the multi-
resolution method, and triangles for runs using random
sampling.

ness with time for the minimization and random sampling methods,

34

the multi-resolution method performed erratically. We hypothesize
the performance plot is dispersed between the minimization curve and
the random sampling curve because multi-resolution search is a hy-
brid method, using aspects of the minimization search and aspects of
the sampling search; however, further investigation of this phenomenon
remains for future research.

In the tighter problem, where only a small region satisfies all the
constraints, minimization found the one satisfying voxel easily, whereas
the other methods had to sample so many points that they consumed
several orders of magnitude more time than minimization. (All simu-

Method for Run Time Conformations
Evaluating Voxels (seconds) Found
Evaluate 1 million random points per voxel | FAILED 0
Evaluate 2 million random points per voxel 6,186 1
Evaluate 3 million random points per voxel | FAILED 0
Evaluate 4 million random points per voxel 11,962 1
Evaluate 9%™ random points per voxel FAILED 0
Evaluate 109%™ random points per voxel 17,894 1
Evaluate 119%™ random points per voxel 16,636 1
Evaluate at gridpoints with 4.0° spacing FAILED 0
Evaluate at gridpoints with 3.8° spacing 17,341 1
Evaluate at gridpoints with 3.6° spacing 31,470 1
Minimize once per voxel. (up to 5 steps) | FAILED 0
Minimize once per voxel. (up to 10 steps) 0.18 1
Minimize once per voxel. (up to 50 steps) 0.19 1
Minimize twice per voxel. (up to 50 steps) 0.29 1

Figure 2.11: Treesearch on a tetrapeptide of polyalanine, with tight
constraints, and a variety of methods for evaluating
whether there are any satisfying conformations within
each voxel. The times for failed runs are not shown be-
cause failures can occur at any time during the search,
sometimes quite early.

lations reported in this thesis were performed on a Dell Precision 420
with 933-MHz speed processors, with a surplus of RAM memory, unless
otherwise specified.)

Sampling without minimization (at random or at gridpoints) per-
formed much worse than minimization, both when measuring the amount
of repetition required to find a narrowly-defined region, and when mea-
suring the completeness of finding a broad region. The problems we

35

constructed here do not by any means represent the breadth of applica-
tions where conformational search might be used. However, these two
cases were chosen for simplicity of design and evaluation and were not
optimized to sabotage any particular method of voxel-evaluation. Mul-
tiple orders of magnitude in increased performance for all the cases we
studied (four orders of magnitude in Figure 2.11 and later five orders
of magnitude in Figure 2.15) were sufficiently persuasive to us that we
chose to perform minimization with voxels for all future conformational
searches.

2.3 Divide-and-Conquer

Divide-and-conquer partitions a large problem into pieces, solves the
pieces, and assembles the solutions of the pieces into a solution for the
large problem. Divide-and-conquer is typically used recursively, with
large pieces divided into medium pieces, which are divided into small
pieces, etc. After explaining how to apply divide-and-conquer to the
conformational search of macromolecules, we explain and demonstrate
the improved efficiency of conformational searches that use divide-and-
conquer.

Divide-and-conquer is powerful because it allows violating regions
of conformation space to be removed from further consideration based
on evaluating low-dimensional pieces of the overall problem. Just as
treesearch is an improvement over gridsearch because it evaluates “pre-
fix” fragments of the molecule instead of only evaluating conformations
of the complete molecule, divide-and-conquer is an improvement over
treesearch because (A) it evaluates individually every piece it adds, be-
fore adding it onto an existing conformation, (B) once a subproblem
is solved, the answer is saved for use in future contexts rather than
reinvented, and (C) it can define its subproblems so that their average
size (voxel dimensionality) is smaller than for treesearch.

Previous Work

The divide-and-conquer idea has appeared in many forms throughout
the history of conformational search. Divide-and-conquer has been ap-
plied to docking searches [77] as well. In the mid-1980’s, Scheraga and
colleagues developed a “buildup” procedure [57, 71, 23] which has been
successfully applied to a variety of applications [45]. Their buildup pro-
cedure enumerates the low-energy structures of single residues, com-
bines them and minimizes to create low-energy dipeptides, combines
overlapping dipeptides and minimizes to create low-energy tripeptides,

36

and so on [45]. This method does not address quite the same problem as
ours because at each level it retains only a limited number of conforma-
tions with the best energies, not all the conformations with acceptable
energies. Other authors [12, 33] have used “buildup” procedures very
similar to that of Scheraga et al.

Gippert et al. [25, 24] published a set of programs for systematic
search including a divide-and-conquer module for use on top of an ab
initio search module. The ab initio method, DTAGS or “Distributed
Torsion Angle Grid Search,” is a cleverly optimized variant of grid-
search that enumerates feasible conformations for a small molecule or
fragment, provided that all the rotatable bonds are in a linear chain. Al-
though DTAGS itself cannot search branched molecules such as amino
acids, this limitation is overcome by using DTAGS on each branch and
then reattaching the pieces. The reattachment is done pairwise accord-
ing to a tree and each “combine operation” (SPACEJOIN) pairs every
possible conformation for one fragment with every possible conforma-
tion for the other fragment. This is the same idea we use, although
with several differences in implementation. NEWMOL then converts
then evaluates whether the combined fragments satisfy the constraints.
Gippert et al. articulated the problem of choosing a good “binary tree”
for divide-and-conquer, which is a topic we address at length in Chapter
4.

Countless other methods build databases of protein structure frag-
ments and then build models for new proteins by piecing together com-
patible fragments from their databases [36, 34]. These “model building”
[43] methods are a form of “divide-and-conquer” with only one level of
division and reconnection.

Active Constraints

Whether evaluating a subproblem will remove conformations from fur-
ther consideration depends on what constraints apply to that subprob-
lem. A constraint is not active until all of its variables are instantiated;
that is, until angle values are assigned to all the torsions necessary to
define coordinates for the atoms being constrained. Henceforth, the
constraints on a subchain will denote the set of constraints that are
active when the torsions in only that subchain are instantiated, and
a satisfying conformation [for a subchain] will be a conformation that
satisfies all active constraints [on that subchain].

For (z < y), let 2—y denote the subchain extending from residue
z to residue y, inclusive of both. An interatomic distance constraint
between two different atoms of residue 6 is active on subchain 6-6 or on

37

subchain 1-99, but not on subchain 3-5 because subchain 3-5 does not
provide torsion angles (which uniquely determine atomic coordinates)
for the bonds of residue 6.

This seems trivial until you consider that an interatomic distance
constraint requiring some atom in residue 1 to be within a few Angstroms
of some atom in residue 30 is active on subchain 1-30 but not on 1-
29. A conformation of subchain 1-29 that places residue 1 dozens of
angstroms away from residue 29 might satisfy all the active constraints,
even though there is certainly no possible way to extend or build onto
such a conformation so that the 30th residue would satisfy active con-
straints on the 1-30 subchain.

In cases as clear as this, the triangle inequality can use a tight
constraint on the atoms in residues 1 and 30 in order to infer looser
constraints on nearby atoms, such as between residues 1 and 29.

AB+ BC > AC

dist(1, 30)+dist(30,29) > dist(1,29)

[dist(1,30) < 3A] aND [dist(29,30) < X] = [dist(1,29) <
X + 34]

Our algorithm provides a “triangle smoothing” option that auto-
matically applies the triangle inequality to infer all possible additional
constraints. Some other algorithms also apply the tetrangle inequal-
ity [19]. Constraints created in this way can be considered “redundant”
or “trivial” because they include no novel information, even though
they attach existing information to new parts of the molecule.

The looser, inferred constraint would be active on subchain 1-29
and would prohibit the endpoints of subchain 1-29 from being dozens
of angstroms apart. However, there would still be some conformations
of 1-29 that satisfy the inferred constraint but that cannot be extended
in any way that would satisfy the constraint on 1-30.

The Combine Operation

The combine operation uses the satisfying conformations for two pieces
of a chain to define candidate conformations for the whole chain. One
can imagine how repeated use of combine operations could be used in
a divide-and-conquer strategy to build up the solution to the whole
problem based on solutions to smaller problems.

More formally, let S be the set of satisfying conformations for sub-
chain z—y and let S5 be the set of satisfying voxels for subchain @+1)—z,
where z > @41). Note that since a satisfying voxel is represented by a
satisfying conformation from within that voxel, we may speak of satis-

38

fying voxels interchangeably with satisfying conformations.

Any conformation of x—z can be divided into left and right pieces
corresponding to residues z—y and residues @+)—z. If a conformation
of x—z satisfies all the constraints active on x—z, then its left half must
also satisfy all the constraints on z—y and its right half must satisfy all
the constraints on @+)—z. However, not all conformations that satisfy
the constraints on the pieces also satisfy the constraints on the whole.

Therefore the set of all conformations of z—z derived by combining
any satisfying conformation for z—y with any satisfying conformation
for @)z is a superset of the satisfying conformation for z—z. Call it the
set of candidates. In order to determine which candidate conformations
satisfy the constraints on z—z, each must be evaluated individually.
However, the effort of checking each member of the candidate set is
generally far less than if the constraints on z—y and y—z had not already
been applied as filters.

Each candidate conformation corresponds to a unique voxel, and
verifying whether each one satisfies the constraints is the familiar prob-
lem of determining whether a voxel contains any satisfying conforma-
tions. We continue to use minimization to evaluate all voxels. Note,
however, that the volume of a voxel increases with dimension and the
problem of evaluating it (determining whether it contains any satis-
fying region of space) becomes significantly more difficult for higher-
dimensional voxels.

solutions solutions potential
for x X for y — solutions
for xy

ab

ap

Z X b —_— ab

. 8 af

ab

ofp

Figure 2.12: Combining 1D alternatives into all possible 2D combi-
nations.

39

Defining the Combined Conformation

In our implementation, we always divide a molecule chain at a bound-
ary between residues, and we define the resulting pieces such that both
pieces include the inter-residue bond and the atoms defining that bond.
Hence, when we combine satisfying conformations for left and right sub-
chains to create conformations for a larger subchain, each bond from
the larger subchain is first marked according to whether it appears in
only the left subchain, in only the right subchain, or in both. Then as
the combine operation proceeds, going through each possible conforma-
tion for the left subchain and each possible conformation for the right,
the combine routine creates a conformation for the large subchain one
bond at a time: For a bond that appears in only one subchain, its an-
gle (range of angles) can be taken directly from the angles of that child
subchain. For a bond that appears in both subchains, both subchains
must have compatible angles (the same range of angles), or else that
pair of conformations cannot be combined and is rejected. Note that
this procedure defines a particular conformation (a particular assign-
ment of angles for each bond) as well as a voxel (a range of angles for
each bond). When evaluating whether a combined voxel contains any
satisfying conformations, we will have the option of using this combined
conformation as a starting point for minimization, in addition to just
the midpoint of the voxel.

In proteins, amino acid residues are connected by peptide bonds.
Since peptide bonds are often fixed in a trans planar orientation (or
restricted to a narrow range around a planar orientation), the task of
reconnecting subchains at their inter-residue bonds is especially easy.
An interesting direction for future work would be to permit our com-
bine operation to operate on fragments with larger regions of overlap.
Although modifications to the actual combine operation would be triv-
ial, they would have profound implications for the issues discussed in
chapter 4.

Merge-Trees

The repeated division of large problems into smaller problems can be
depicted using a divide-and-conquer tree, which we will call a merge-
tree for short. For the application to conformational search, each node
of the tree corresponds to a subchain and searching that subchain is a
subproblem of the overall search algorithm. The leaf nodes correspond
to subchains that are small enough to search easily ab initio. (We search
leaf subchains using voxelized treesearch with minimization.) Each
internal node corresponds to a larger subchain such that the problem

40

of searching that subchain can always be solved by using the “combine”
operation on its left and right child subchains. The root of the merge-
tree is always the whole molecule.

For treesearch trees, each level corresponds to one torsion, the
branches at a level are the possible angle or angles ranges for a tor-
sion, and a path from root to leaf defines a single conformation. For
merge-trees (divide-and-conquer trees), each node is a subproblem, the
leaf nodes are the easiest subproblems, the root node is the whole search
problem, and the connectivity of the tree defines a strategy for how to
use the solutions to the leaf subproblems for solving the whole prob-
lem. Search trees are explored starting at the root progressing down
but merge-trees are traversed starting at the leaves.

Assume that the molecule to be searched is a chain of residues.
We often talk about amino acid residues in a protein but the whole
molecule could also be a single-stranded nucleic acid chain. Multiple
strands, docking, and quaternary structures are not currently possi-
ble. (Although the algorithmic changes necessary to implement the
six degrees of freedom necessary for docking or for searching quater-
nary structure might be relatively small, the resulting complexity of
the search problem is well beyond the scope of this work.)

Let us define a legal tree to be a binary tree such that (1) the leaves
of the tree have a one-to-one correspondence with the residues of the
molecule, (2) the left-to-right order of the leaves in the tree is the same
as the order of the residues in the molecule, and (3) every internal node
has two children. We now show that every legal tree is a merge-tree
specifying a possible strategy for divide-and-conquer.

Define the label at each internal node as the list of residues cor-
responding to the leaves in its subtree. Because leaves are sequential
from left to right in the tree, the residues for any internal node will
always form a single contiguous subchain of the whole molecule. The
root will be labelled with the subchain corresponding to the whole mol-
ecule. Because every internal node, I, has left and right children, the
subchains (possibly consisting of just single residues) at the left and
right child nodes correspond to left and right pieces of I’s subchain,
and I’s subproblem can be solved using the combine operation on the
solutions of its left and right child subproblem. Therefore, every legal
merge-tree corresponds to a divide-and-conquer strategy for searching
the whole molecule.

We assume that all merge-trees use single residues for leaves because
single residues are already small enough to search quickly, and there
is little potential benefit from dividing into smaller fragments than
residues. Larger units, such as dipeptides, could trivially be substituted

41

for single residues in the algorithm and throughout this discussion. In
any case, the leaves of merge-trees would be explored using a basic
method, such as TREESEARCH, no matter how the rest of the merge-
tree is constructed.

Divide-and-conquer as Merge-Tree Traversal

We can now describe the whole divide-and-conquer algorithm. Create a
default merge-tree according to the number of residues in the molecule
and traverse the tree from bottom to top (and without loss of generality,
from left to right) solving the subproblem at each node. Each subprob-
lem involves enumerating the satisfying conformations (voxels) for the
subchain at that node of the tree. For a leaf node, use treesearch (with
voxels and with minimization to evaluate the voxels). For an internal
node, perform the combine operation on the satisfying conformations
(voxels) from the left and right child subchains.

1-4

1-1 2-2 1-1 2-2 3-3 4-4

Figure 2.13: A linear or maximally-unbalanced tree on the left and
a fully-balanced tree on the right.

There may be many possible merge-trees for each molecule, but in
order for the average subchain size in the tree to be small, the divide-
and-conquer tree should be as balanced as possible. If a whole molecule
has N residues, then treesearch or divide-and-conquer according to a
“linear” tree (such as in Figure 2.13) must evaluate one subproblem of
each size between 1 and N — 1 before evaluating the whole molecule.
Divide-and-conquer with a fully balanced tree will evaluate many sub-
problems of size 1, 2 and 4, a few subproblems of size N/4 or N/2, and
never any subproblems larger than N/2 (other than the final evaluation
of the whole molecule).

42

If NV, the number of residues in the molecule, is a power of two, then
one can simply use the canonical, “full” or perfectly-balanced binary
tree with log,(N) + 1 levels. If N is not a a power of two, there are
many possible ways to create a reasonably-balanced tree with at most
[logo(N)] 41 levels (where [...] denotes the operation of rounding up
to the nearest integer.) For simplicity, our default tree will be created
as follows: starting with a full tree with 2M°22(M)1 leaves, delete the
2Mog2 (M1 _ N rightmost leaves and delete any internal nodes without
both (left and right) children remaining. For example, if N =9, build
a full tree with 16 leaves, delete the 7 rightmost leaves, remove unnec-
essary internal nodes, and the result is the same tree as in Figure 2.18.

Distinctions between Treesearch and Divide-and-Conquer

In some sense, treesearch is a special case of divide-and-conquer where
the division into pieces forms a “linear” tree instead of a balanced
binary tree.

However, there is a slight difference between divide-and-conquer
with a “linear” tree of subproblems and treesearch. Consider a molecule
with two rotatable bonds, one bond in each of two residues. Treesearch
would search the first bond, subchain 1-1, then extend the satisfy-
ing conformations of 1-1 with all possibilities for bond 2. Divide-and-
conquer would also start by searching subchain 1-1, but its next step
would be to search subchain 2-2, and finally it would extend the satisfy-
ing conformations of 1-1 with only the possibilities for bond 2 that have
already been found to satisfy the constraints on 2-2. Figure 2.14 dia-
grams which subchains are defined and searched by TREESEARCH and
by divide-and-conquer using either of the merge-trees in Figure 2.13.

Results

We searched three peptides with and without use of divide-and-conquer.
In all cases, divide-and-conquer was far more efficient than treesearch
alone.

The first case uses the same polyalanine tetrapeptide from the pre-
vious section. All atom pairs with distances between 2.5 and 6.0 A
in the helical structure were constrained to have distances within 0.1
A of the distances found in the helical conformation. Peptide bonds
were rigidly fixed at 180°. Van der Waals radii were set to 85% of half
sigma, the resolution was 40°, and the constraints were considered to
be satisfied when the summed squared violation was < 0.0005 A2, Run
times for systematic search with and without divide-and-conquer are

43

» (O) ®

- (O OO

Figure 2.14: Each circle (or oval) represents a search subproblem.
Treesearch would search a four-residue molecule as de-
picted in (a). (b) depicts divide-and-conquer with a
“linear” merge-tree and (c) depicts divide-and-conquer
with a balanced merge-tree.

Search Minimization to | Run Time
Method evaluate voxels? | (seconds)
Treesearch no 31,470.550
Divide-and-conquer no 3,009
Treesearch yes 0.29
Divide-and-conquer yes 0.13

Figure 2.15: Results of performing treesearch with and without
divide-and-conquer, on a tetrapeptide of polyalanine,
with and without minimization to evaluate each voxel.
Tight constraints were used, as in Figure 2.11.

44

shown in Figure 2.15. The top two lines use gridsearch with 3.6° spac-
ing to evaluate voxels instead of using minimization and are included
only to provide support for our decision to use minimization for all
voxel-evaluations (instead of just using it for evaluating treesearch vox-
els, which is the original context where we evaluated it). The bottom
two lines show that searching with divide-and-conquer takes less than
half as long as with treesearch alone. However, both algorithms run so
quickly that drawing general conclusions would be premature.

The second case also uses a helix of polyalanine, but with 16 residues
instead of 4. The dihedral angles of the peptide bonds are permitted to
vary between 175° and 185°. Including these omega angles, there are 47
degrees of freedom in the molecule. Again, the resolution of the search
is 40°, the summed squared violations are restricted to < 0.0005 A2,
and the van der Waals radii are set to 85% of half sigma. All pairs of
atoms with distances between 2.5 and 6.0 A in the helical structure were
constrained to have distances within only 0.05 A of the distances found
in the canonical helix conformation. These constraints again restrict
the satisfying region of conformation space very tightly, although with
the larger molecule and the added flexibility in the peptide bonds, two
voxels are feasible instead of just one. (One voxel contains the canonical
helix that generated the constraints and the second is the same except
for a deviation in the final angle of the final residue, offset slightly by
tilts of several peptide torsions.)

Search Minimization to | Run Time Number of
Method evaluate voxels? | (seconds) Minimizations
Treesearch yes 143 660
Divide-and-conquer yes 1.92 813

Figure 2.16: Results of performing search on a 16-residue helix of
polyalanine, with and without divide-and-conquer.

Figure 2.16 shows the run time as well as the number of minimiza-
tion subroutine calls for searching the 16-residue polyalanine with and
without divide-and-conquer. In both cases, voxels were evaluated using
up to two passes of minimization, each with up to 50 steps. Although
divide-and-conquer performs more minimization calls than treesearch,
divide-and-conquer is calling them with smaller subchains on average.
Despite performing more minimizations, divide-and-conquer runs two
orders of magnitude faster than TREESEARCH.

The third case is the 9-residue Strep-tag peptide from the peptide-

45

streptavidin complex [64], entry 1RST in the protein data bank [3].
The sequence of the peptide is Ala-Trp-Arg-His-Pro-Gln-Phe-Gly-Gly.
Figure 2.17 shows the atomic structure from X-ray crystallography and

\

Figure 2.17: Atomic structure of the Strep-tag, taken from its crys-
tal structure in complex with streptavidin (1RST in the
Protein Data Bank). The backbone bonds are shown
as colored cylinders and the sidechains as black lines.
Residue 1 is at the top.

Figure 2.18 shows the default merge-tree.

The 1RST peptide has several long sidechains that contribute con-
siderably to the conformational search problem. Of the 40 rotatable
torsions, 32 rotate freely (as opposed to peptide bonds), which is the
same number of freely-rotating torsions as in the 16-residue polyala-
nine. It addition, IRST has some explicit hydrogen atoms.

We used the bond lengths and bond angles from the 1RST crystal
structure, not idealized values. Because the 1RST crystal structure is
highly refined for its particular conformation, using the same search
parameters as for helical polyalanine would cause unavoidable van der
Waals clashes. Instead of reducing the van der Waals radii or increasing

46

/1_8\
1-4 5-8
1-2 34 5-6 7-8

A A AN

1-1 2-2 3-3 44 55 66 7-7 8-8 9-9
Figure 2.18: The default merge tree for 1RST.

the allowed threshold for the summed squared violations, we excluded
van der Waals interactions between atoms in the 1-4 positions of bonds.

The dihedral angles of the peptide bonds were permitted to vary
between 175°-185°, the van der Waals radii were set to 85% of half
sigma, and the summed squared violations were restricted to < 0.0005
A2, Voxels were evaluated using up to two passes of minimization with
up to 50 steps per pass. Any pair of atoms separated by a distance
between 2.5 and 6.0 A in the crystal structure was constrained to keep
its distance within 0.05 A of the measurement from the crystal struc-
ture. Because the sidechains were so flexible, even in the presence of
these constraints, we chose to search them at lower resolution than the
backbone angles. The resolution of the search was 40° for backbone
angles and 120° for sidechains.

Search Runtime Conformations Number of
Method (seconds) Found Minimizations
Treesearch 13,661 648 54,848
Divide-and-conquer 2,046 657 6,712

Figure 2.19: Results of performing search on the 9-residue 1RST
peptide, with and without divide-and-conquer. Fig-
ure 2.20 shows the set of structures resulting from the
divide-and-conquer search. In all tests, the voxel cor-
responding to the crystal structure was among the an-
swers found.

47

Figure 2.19 shows that the search of 1RST with divide-and-conquer
was faster than with treesearch alone. In addition, treesearch per-
formed more minimizations on 1RST than divide-and-conquer and found
fewer satisfying structures. We hypothesize that these additional dif-
ferences are in part because treesearch’s examination of only the “pre-
fix” fragments of the chain is ill-suited to this problem. Performing a
divide-and-conquer search on 1RST with a “linear” merge-tree yielded
648 conformations after 14,353.41 seconds, thus confirming that the use
of “prefix” fragments (whether in treesearch or in divide-and-conquer)
is responsible for the poorer performance.

Figure 2.20: The ensemble of 657 structures found by the divide-
and-conquer search of 1RST. The structures are su-
perimposed along a central backbone bond, between
the carbonyl carbon of residue 5 and the nitrogen of
residue 6.

48

Chapter 3

The Structure of a
Peptide by solid-state
NMR

Article appeared in The Proceedings of the National Academy of Sci-
ences (USA) (2002) Volume 99, Number 16, Pages 10260-10265.

Published online before print, on July 29, 2002 (10.1073 pnas.152346599).

49

De novo determination of peptide
structure with solid-state magic-angle
spinning NMR spectroscopy

Chad M. Rienstra*"¥, Lisa Tucker-Kellogg$, Christopher P. Jaroniec*f
Morten Hohwy ¥, Bernd Reif*"l, Michael T. McMahon*T, Bruce
Tidor*$** 11 Tomds Lozano-Pérez% 1, and Robert G. Griffin* Tt

* Department of Chemistry, T Francis Bitter Magnet Laboratory, $ De-
partment of Electrical Engineering and Computer Science, and ** Bi-
ological Engineering Division, Massachusetts Institute of Technology,
Cambridge, MA 02139

Communicated by John S. Waugh, Massachusetts Institute of Tech-
nology, Cambridge, MA, June 10, 2002 (received for review January 25,
2002)

Abstract

The three-dimensional structure of the chemotactic peptide N-formyl-
L-Met-L-Leu-L-Phe-OH was determined by using solid-state NMR (SS-
NMR). The set of SSNMR data consisted of 16 *C-15N distances and
18 torsion angle constraints (on 10 angles), recorded from uniformly
13C-, 15N- and '®N-labeled samples. The peptide’s structure was calcu-
lated by means of simulated annealing and a newly developed protocol
that ensures that all of conformational space, consistent with the struc-
tural constraints, is searched completely. The result is a high-quality
structure of a molecule that has thus far not been amenable to single-
crystal diffraction studies. The extensions of the SSNMR. techniques
and computational methods to larger systems appear promising.

Introduction

Over the last two decades, multidimensional nuclear magnetic reso-
nance (NMR) methods have been developed which permit determina-
tions of globular protein structures in solution (1). To date most struc-
tures addressed with these techniques involve proteins with molecular
weights <20,000, but the continued development of new methodology
shows promise for studies of larger systems (2-6). Despite the success
of these approaches, there remain fundamental limits on the size and
physical state of molecules amenable to study with solution-state NMR.
In contrast, high-resolution solid-state NMR (SSNMR) methods have

50

no inherent molecular weight limit, and have for many years been used
to determine details of molecular structure for high molecular weight
systems. For example, specific structural features of intact membrane
proteins such as bacteriorhodopsin (effective molecular weight ~85,000)
(7, 8) and large enzyme complexes such as 5-enolpyruvylshikimate-3-
phosphate synthase (46,000) (9) and tryptophan synthase (143,000)
(10) have been reported. SSNMR methods have also been used to ex-
amine surface-bound peptides (11) and to determine a low-resolution
structure [1.9-A backbone root-mean-square deviation (rmsd)] of an
insoluble peptide fragment from [-amyloid (12) under experimental
conditions inaccessible to both solution-state NMR and crystallogra-
phy.

To date, essentially all structural NMR studies of solid peptides and
proteins have relied on site-specific incorporation of a pair of Spin—% nu-
clei, such as 3C13C and '3C45N. This approach has been very success-
ful and will likely continue to be important in experiments that address
detailed mechanistic questions in large biomolecular systems. How-
ever, recent advances in solid-state NMR methodology, most notably
the development of approaches to perform dipolar recoupling during
magic-angle spinning (MAS) (13, 14), in principle permit multiple dis-
tance and torsion angle measurements on molecules that are uniformly
13C and PN labeled (15-18). The development of these approaches
considerably simplifies preparation of samples for SSNMR, experiments
and concurrently opens the possibility of complete structural deter-
minations with solid-state MAS NMR. In this paper we describe the
realization of this goal with a complete structure determination of the
chemotactic tripeptide N-formyl-L-Met-L-Leu-L-Phe-OH (-MLF-OH)
(19). The structure of the peptide is based on sets of NMR data that
constrain 16 '3C-1°N distances and 10 torsion angles derived from a
series of MAS NMR experiments performed on uniformly 3C,!*N- and
I5N-labeled samples. Finally, we discuss extensions of the solid-state
MAS NMR techniques and computational methods used here to larger
systems.

Experimental Procedures

f-MLF-OH samples were synthesized by standard solid-phase methods
and HPLC purification (American Peptide Company, Sunnyvale, CA).
One sample, synthesized from U-'3C,'®N-labeled amino acids (Cam-
bridge Isotope Laboratories, Andover, MA), was used for all resonance
assignment experiments and the majority of the three-dimensional (3D)
torsion angle experiments (H-**N-13C-1H, 1H-13C-13C-1H, ’N-13C-

51

13C-15N). A second sample was prepared by dilution of the U-13C,**N-
labeled -MLF-OH peptide in natural abundance material in the ratio
of 1:9 and was used for the frequency-selective rotational-echo double-
resonance (REDOR) experiments. A third sample, synthesized from
15N-labeled amino acids, was used for the "H-'>N-'*N-'H torsion an-
gle experiments. In all cases, microcrystals of the -MLF-OH peptides
were grown by overnight evaporation from 2-propanol, and ~15-20 mg
of each polycrystalline material was packed into a 4-mm zirconia NMR,
rotor (Varian-Chemagnetics, Fort Collins, CO). Attempts to grow sin-
gle crystals suitable for diffraction studies were not successful. The
structures of the f-MLF methyl ester (MLF-OMe) and other analogs
of f-MLF have been determined by diffraction methods (20), but that of
the -MLF-OH acid form has not. Presumably the acid form does not
form large single crystals because of small differences in crystal pack-
ing forces, relative to the methyl ester. We note that the previously
published structure of - MLF-OH includes a D-Phe residue (21), which
is not present in the chemotactically active form (19).

MAS NMR experiments were performed on Cambridge Instruments
spectrometers operating at 400 and 500 MHz (courtesy of D. J. Ruben),
together with custom-designed 400- and 500-MHz multiple-resonance
transmission line probes, or a Varian-Chemagnetics (Fort Collins, CO)
500-MHz triple-resonance probe. All of the probes were equipped with
4-mm MAS spinner modules. The resonance assignment (22) and RE-
DOR experiments (16) were performed at 500 MHz, as were most of the
torsion angle experiments (!H-**N-13C-'H, 'H-13C-13C—'H, and °N-
13C-13C-15N), with the exception of 'H-*N-1N-1H (400 MHz) (23).
Typical radiofrequency field strengths were ~100-120 kHz on 'H dur-
ing recoupling periods, ~80-kHz two-pulse phase modulation (TPPM)
during chemical shift evolution periods (using TPPM decoupling; ref.
24), and ~60 kHz during cross-polarization. Fields of ~50 kHz or less
were used on the 3C and !°N recoupling channels. Additional details
regarding the pulse sequences and data acquisition periods are available
in prior publications (16, 18, 22, 23). Experiments were performed at
room temperature. Tensor magnitudes along the entire backbone ['H—
15N and 'H-'3C dipolar couplings and 3C’ chemical shift tensors| are
consistent with rigid lattice values. Further, the spectra and internu-
clear distances did not change when the temperature was lowered to
—30°C. Likewise the Leu side chain is rigid, based on local dipolar
field measurements. Signals from the Phe aromatic ring show evidence
of two-site conformational exchange, and the observed Met side-chain
dipolar couplings (F}CP—-HP 1B3CY7-1HY, 13Co-13CP) are ~25% less
than the rigid lattice values, consistent with small librations of the side

52

chain. Thus, apart from the Phe and Met side chains, we believe that
the structure shown below reflects little in the way of dynamic behavior.

Resonance Assignments

The initial step in a structural study by NMR involves the sequence-
specific assignment of the chemical shifts. Several multidimensional
chemical shift correlation methods for resolving and assigning peptide
13C and '°N resonances have been developed (22, 25, 26). Experiments
for 13C-13C assignments generally employ either a homonuclear zero-
quantum recoupling sequence such as RFDR, (27) or a double-quantum
sequence (28-30) such as SPC-5 (31). Heteronuclear assignments are ac-
complished with frequency-selective '>N-'3C double cross-polarization
methods (32, 33) refined with adiabatic passage techniques (34). Slices
from 3C—13C planes extracted from a 3D '*N-13C—13C experiment are
shown in Fig. 3.1 and serve to illustrate this point (22). The slices
correspond to the three N resonances, and the C connected to
each amide N appears in the 3C-'3C plane. Thus, the Leu N
slice (116.2 ppm) shows positive cross-peaks (blue) to the Met C’ and
Leu C®. Because the ¥C-13C correlations were established by using
double-quantum recoupling, the cross-peaks to Leu C’ and Met C* are
negative absorption (indicated by red cross-peaks). 2D B3C-13C ex-
periments and the 2D '3C-'3C planes from '"N-13C-13C experiments
also permit the resolution and assignment of the side-chain resonances.
These methods have already been used at high magnetic fields (750- to
800-MHz 'H frequency) in studies of larger proteins, yielding partial
assignments in the bovine pancreatic trypsin inhibitor (BPTI) (35) and
LH2 light-harvesting membrane protein complex (36) and a complete
de novo assignment of a 62-residue a-spectrin SH3 domain (37).

Torsion Angle Measurements

When spectral assignments are complete, multidimensional experiments
can be used to obtain two types of structural constraints: torsion angles
and internuclear distances. Measurements of backbone and side-chain
torsion angles (¢, v, and x) provide constraints on the local struc-
ture and usually involve experiments that employ one or two chemical
shift dimensions, and an additional dimension to record the evolution
under the local dipolar interactions. Thus, the angular information
is determined by the measurement of the relative orientation of two
dipolar tensors. For example, we recently described a 3D experiment
for constraining the torsion angles ¢;, 1;_1, and x! by 'H-15N-13C~
'H spectroscopy (18). Similar 3D *N-13C*-13C’-1°N (38, 39) and

53

13C (ppm)

5444 F | FU‘.' 'F{i Phe 15N
17524 L i | i 107.6 ppm
56.84 L' . L(l' fLp Leu 15N
17224 M| | Ma| - 116.2 ppm
5204 M| ' Ma| | Mp Met 15N
——V———T— 71— 125.5 ppm

180 140 100 60 20

13C (ppm)

Figure 3.1: Strip cross sections through the '°N planes of the 3D
I5N-13C-13C chemical shift correlation spectrum of f-
MLF-OH, showing the backbone resonance assignments.
The Met N plane (125.5 ppm) shows only 3C cross-
peaks from the Met residue. In contrast, the Leu °N
plane (116.2 ppm) shows Met and Leu "*C cross-peaks,
and the Phe N plane (107.6 ppm) displays Leu and
Phe 3C cross-peaks. Since *C—13C correlations were
established by using the SPC-5 double-quantum recou-
pling pulse sequence (31) the cross-peaks correspond-
ing to subsequent *C '3C dipolar transfers alternate
in sign (28) (blue and red for positive and negative ab-
sorption, respectively). Details of the pulse sequence
and experimental parameters used to record this spec-
trum can be found in ref. 22.

54

'H-13C2-13C/-15N experiments (40) can be used to constrain ;, and
'H-13C—13C—'H experiments (41) constrain the side-chain x; angles.
Finally, the projection angle 6; ;1 measured in a H;~!"N; ~1°N, -~
'H,, 1 experiment (23) further constrains ¢; and ;. We combined
data from four 3D experiments in f-MLF-OH: 'H-N-13C-'H, 'H-
130*13C*1H, 15N*13C*1SC*15N, and 1Hi715Ni715Ni7171Hi71- Each of
the torsion angle measurements is most precise when the correlated
dipole tensors are approximately collinear. Therefore, the SN-13C—
13C-15N experiment is very precise for 140° < pjf < 180°, and the 'H-
ISN-13Co—1H experiment for -150° < ¢ < —90°. The dephasing of
the Met C’-C® double-quantum coherence under C’-N and C*-N dipo-
lar couplings during the NCCN experiment in {-MLF-OH is illustrated
in Fig. 3.2. For this particular measurement, the best-fit simulation

— 0
a . IYlyet = 157 b
g 5
® Experiment
8 — Simulation 6
c 0.5- =~
o X 54
2 o
4
3 o0 @
o Residuals (x5) % 3
o S .:.‘ o 2
0.5 {7t s
A TR 1
! e bl B8 S T | | B T R | T T T T T L} T
00 05 10 15 20 25 -150 -100 -50 O 50 100 150
Time (ms) 1) (deg)
Figure 3.2: Measurement of ¥pret in -MLF-OH by the double-

quantum P*N-3C-3C-'5N experiment (38). (a) Ex-
perimental and simulated dephasing of the Met C'-C*
double-quantum coherence under the C’-N and C*-N
dipolar couplings. The best simulation yields a torsion
angle of £157° +1°. (b) rmsd between the NCCN sim-
ulation and experiment for the Met residue, calculated
as a function of .

gives the torsion angle |{yet] = 157°. The precision (£1 o) of this
experiment is +1°, due to the high signal-to-noise ratio of the NMR
data (> 1,000 : 1 in first data point of the dephasing trajectory), and
the fact that this result falls within the most sensitive angular region
of the experiment. For other torsion angle constraints (Table 1), the
precision ranges from £2° to +18°, and in all cases at least two (and
sometimes four or six) solutions are consistent with the experimen-

55

tal data, because of mirror-plane degeneracies. Determining multiple
NMR constraints on each torsion angle removes many of the degenera-
cies. For this reason we have combined the results from multiple 3D
torsion angle experiments to provide a total of 18 constraints on 10
torsion angles in -MLF-OH. All torsion angle solutions consistent with
the NMR data (based on 10,000 iterations of Monte Carlo simula-
tions) are allowed for purposes of searching the conformational space
(see below).

Table 3.1: Torsion angle structural constraints in f~-MLF-
OH determined by 3D MAS dipolar-chemical shift experi-

ments.
Most likely Less likely
Residue Angle Data type solutions, ° solutions, °
Met ¢ H-N;-C¢-H -150 £ 2 6 £2
-90 £ 2
P N-C¢-C}-N + 157 +£1 NA
108 +£18
-151 £+ 10
H-N;11-C3-H 161 +4 78 £5
-10 +£38
24 £+ 11
x!' H-Co-CPHy 163 +3 163 +3
=77 £ 3 -43 £33
x2 Hy-CP-C]-Hy +169 +2 NA
Leu ¢ H-N;-C¢-H -94 £ 2 NA
-146 £ 2
P N-C¢-Ci-N +91 +4 +45 +4
+ 120 +£4 +65 =+£5
H-N;41-C3-H -69 +£4 -178 £ 7
51 £4 -59 £10
+ 177 +£3
x! H-Co-CPH, 57 +3 NA
-64 +£3
+ 173 £33
X2 Hx-CP-Cl-H 65 +4 NA
-56 +4
Phe ¢ H-N;-C¢-H -163 £ 2 -45 +£6
ST 2 162 =+ 2
! H-Co-CP-H, 68 +4 NA
52 £+ 4

Four types of 3D experiments were performed, involving sets of nuclei
A-B-C-D: 'H-'*N-13C-'H (18), 'H-3C-'3C-'H (41), "N-13C-13C-1°N (38, 39),
and "H-'SN-*N-'H (23). In each experiment, B-C 2D chemical shift planes
were recorded as a function of the dipolar mixing time between nuclei A-B and
C-D. The modulation of the B-C cross-peak intensity reported on the relative
orientation of the A-B and C-D dipole vectors, and therefore the A-B-C-D

56

torsion angle (assuming invariant bond lengths and angles). Each experiment
yielded several types of data, as listed in column three. Because of mirror
plane symmetry, multiple solutions are possible in each experiment. Monte
Carlo simulations (18) were performed, with a minimum of 10,000
iterations, to determine all possible solutions. Solutions were grouped
within local minima; those that occurred in more than 20% of Monte
Carlo simulations are listed as most likely solutions (with +1¢ precision),
whereas those that occurred less often are indicated as less likely solutions.
[The results in cases where the B and C nuclei were not directly bonded
(e.g., H N; C? H) depended on two intervening torsion angles (e.g., ¢ and
x') in a coupled manner; several such 2D solution spaces were included in
the final calculations, but are not shown here. The determinations of v;
by means of H-N;;1-C#—H data presumed a trans peptide bond (w =
180°).]NA, not applicable.

Internuclear Distance Measurements

Long-range internuclear distances (3-6 A) provide highly useful com-
plementary constraints for the peptide structure. Determination of
these distances is particularly important because small errors in the
local torsion angle measurements can propagate over multiple bonds,
resulting in an increased uncertainty in the global fold of the peptide.
Furthermore, distance measurements can provide constraints on the
position of nuclei, which are inaccessible to dihedral angle measure-
ments (e.g., Met C®). Individual *C-13C and ®*C-!5N distances can
be measured in site-specifically labeled samples by using techniques
such as rotational resonance (R2) (42) or its variants [e.g., R2 tick-
ling (43)] and REDOR (44), respectively. Recently techniques have
been developed for accurate measurements of multiple 3C-3C (15)
and 3C-1°N (16) distances in uniformly *C,'*N-labeled molecules.
For 13C-15N dipolar interactions, selective recoupling is possible by
combining the REDOR technique (44) with selective Gaussian inver-
sion pulses (16). Using this approach, we have measured a total of
16 3C-1°N distances in £MLF-OH (14 distances > 3A), which are
assembled in Table 2. Several representative distance measurements
are illustrated in Fig. 3.3 and clearly demonstrate the strong depen-
dence of the decay of *C magnetization on the dipolar coupling to the
selected °N. The 3.12-A Met(C?)-Leu(N) distance further constrains
Yrter. The Met(CP)-Phe(N) and Leu(C?)-Leu(N) distances depend on
multiple torsion angles and are important in determining the shape of
the turn in the -MLF-OH backbone, and the conformation of the Leu
side chain, respectively. With 95% statistical confidence, 15 of the 16
measured distances have precision of 0.3 A or better.

57

TC—N, A

Atoms f-MLF-OH f-MLF-OMe fMLF-OH f-MLF-OH
FS-REDOR X-ray full structure CNS
Met(N) Met(CP) 252 + 0.02 2550 2.47 2.47
Met(C7) 3.20 + 0.03 3.04 3.25 3.23
Met(C*) 54 +0.3 5.71 5.85 5.63
Leu(C?) 57 +0.7 6.03 5.97 5.92
Leu(C%* 55 £0.3 6.28 5.92 5.80
Leu(N) Met(C%) 3.12 +0.03 3.20 3.07 3.02
Met(C?) 417 4 0.10 456 419 416
Met(C*) 55 +0.3 5.93 5.52 5.56
Leu(C%) 246 =+ 0.01 2.50 2.46 2.45
Leu(C%)* 3.64 4 0.09 3.63 3.53 3.52
Phe(N) Met(Cr) 34 +02 3.41 3.54 3.59
Met(C#) 4.12 £ 0.15 4.06 4.11 4.13
Met(C?) 4.8 £0.2 5.43 5.11 5.11
Met(C*) 52 +0.3 5.62 5.03 5.08
Leu(C%) 324 +0.12 3.12 3.15 3.11
Leu(C®* 54 403 5.38 5.34 5.32

In columns three and four are the average distances determined from the

56,975 structures generated by the full search procedure developed here and the
ONS calculation. Note that most of the experimental distance constraints are more
precise than is customarily observed in solution NMR experiments. The excellent
agreement between the experimental and calculated distances lends credence to
the structural model illustrated in Fig. 5.

* Leu(C) resonance frequency is 19.6 ppm (22).

Table 3.2: Comparison of the internuclear N '3C distance con-
straints in -MLF-OH, determined by using frequency-
selective (FS)-REDOR (16) and the distances in f-MLF-
OMe determined with x-ray diffraction (20)

58

Leu(C®)-Leu(N)

® Experiment
— Simulation

02— Residuals (x5)

0.0 .'.. PP PP il bt S— - =

-0.2 4
1 uf T L I Y T v I
] 5 10 18 20
Time (ms)
Met(CP)-Leu(N) Met(CP)-Phe(N)
1.0 d 1.0
0.8 ; ® Experiment 08 _-
i — Simulation -] >
0.6 06
=] [=]
w 2 w = ® Experiment
a 1 b %) — Simulation
02~ Residuals (x5) 02 Residuals (x5)
0.0 1= R ET Lt 00 = =
0.2+ 0.2 v
I T b T I I L] T I 1 I
0 5 10 15 20 0 5 10 15 20
Time (ms) Time (ms)

Figure 3.3: Measurement of carbon-nitrogen internuclear distances
in [U-'C,"”N]MLF-OH by frequency-selective RE-
DOR (16). (a) Structural model of MLF-OH display-
ing the distances measured in b—d. Experimental RE-
DOR S/Sq curves (So and S represent the reference and
dipolar dephasing experiments, respectively) and simu-
lations are shown for Met(C?)-Leu(N) (b), Leu(C?)-
Leu(N) (c), and Met(CP)-Phe(N) (d), and they corre-
spond to internuclear distances of 3.12 & 0.03 A (b),
3.64 + 0.09 A (c), and 4.12 + 0.15 A (d). A total of
16 distances between 2.5 and 6 A were measured in -
MLF-OH. Distance measurements were performed in a
sample prepared by cocrystallizing [U-'3C,'N]f-MLF-
OH with natural-abundance -MLF-OH in a 1:9 ratio, to
minimize the interference from intermolecular *C—**N
couplings. Details of the pulse sequence and experimen-
tal parameters can be found in ref. 16.

59

Computational Procedures

Since this is the initial determination of a molecular structure by MAS
dipolar recoupling techniques, it required us to develop new approaches
to calculating molecular structures from the collection of experimental
distance and torsion angle constraints. Accordingly, we have explored
two approaches to this problem, both of which are described below.
The first is based on simulated annealing and incorporates molecular
potentials configured to permit transitions among the multiple confor-
mations consistent with the structural constraints. Thus, during the
annealing protocol the structures are biased toward the closest minima
in the experimental rmsd plots at each time step. This prerequisite
requires that the force constants for these potentials be sufficiently low
to allow transitions among these minima. In a second approach we
have addressed a problem that is often ignored in NMR structure cal-
culations that sample the conformational space stochastically. In par-
ticular, these approaches do not necessarily guarantee that all regions
of conformational space are examined and therefore they may lead to
structures where the uncertainty in the final ensemble is anomalously
low. Here we address this issue by dividing the search space into dis-
crete nonoverlapping volumes and assign each volume as allowed or
disallowed, based on whether or not it contains viable structures. Or-
dinarily a search through such a space would be intractable for all but
the smallest molecular systems. To circumvent this problem, we devel-
oped a divide-and-conquer strategy that allows us to eliminate voxels
that contain conformations that violate the structural constraints. The
approach condenses the search space sufficiently so that significantly
larger problems may be computationally tractable with this procedure.

Simulated Annealing

An ensemble of 24 -MLF-OH structures was calculated by using the
SSNMR constraints collected above incorporated into the simulated
annealing protocol of Nilges et al. (45) and the program CNs (46).
The program was modified to accommodate the structural constraints
generated by the SSNMR distance and torsion angle experiments de-
scribed above. The internuclear distances were incorporated by using
a standard distance potential and the 95% confidence limits. For the
experimental torsion angle data sets, the simulations based on each ex-
perimental measurement were pooled according to the constrained an-
gles, and the resulting joint probability distributions enclosing the 75%
confidence limits were used. For example, the N-13C-13C-15N, 'H-
ISN-13Ce—1H, 'H-N; ;-13C*1H and 'H-*N-15N-'H experiments

60

were joined to define a constraint on the Met ¢ and v torsion angles.
Harmonic square wells, with the square wells enclosing the 75% confi-
dence limits, were incorporated directly into the source code for each
pair of angles. For many of these constraints, there are several distinct
minima. In these cases, the potential is written to permit switching so
that during the simulated annealing the structures are biased toward
the closest minima at each time step. Because of this requirement, the
force constants for these potentials had to be sufficiently low to allow
transitions between minima.

The results from the simulated annealing calculation are summa-
rized and compared in Table 2 with the experimental distance con-
straints from the frequency-selective REDOR experiments. In Table 3
we summarize and compare the torsion angles from the known x-ray
crystal structure of -MLF-OMe with the torsion angles calculated with
CNs. Note that in both cases there is excellent agreement between the
calculations and the experimental data.

Full Structure Search

In addition we developed a systematic computational procedure to an-
alyze the distance and torsion angle constraints. The simulating an-
nealing procedure used above typically samples the space of allowed
conformations stochastically, a procedure that does not ensure that all
regions of conformational space are sampled and thus may underes-
timate the uncertainty in the final structural ensemble. An alterna-
tive that overcomes this difficulty is to subdivide the search space into
discrete voxels (small nonoverlapping volumes that together entirely
fill the conformational space) and to assign each voxel as allowed or
disallowed, based on whether or not it contains structures that sat-
isfy the constraints. If each voxel were searched explicitly, the search
space would be intractable for all but the smallest problems. We have
adopted divide-and-conquer strategies to allow relatively large regions
of the search space to be eliminated if they contain a substructure
that violates the constraints. Such approaches can effectively prune
the search tree to make even large problems computationally tractable
(47).

The search space was constructed from 16 torsion angles, 10 of
which were constrained directly by the SSNMR data. Three additional
angles were peptide bonds and constrained to be within 5° of planar
(either cis or trans), and the remaining three angles had no direct tor-
sion constraints (¥phe, Xoy0, and X3e;)- Fixed bond lengths and angles

61

Angle, °

f-MLF-OMe {MLF-OH f-MLF-OH

Residue Angle x-ray full structure CNS

Met 0] -146.0 =+ 0.7 -145.5 150.6
Met P 151.3 £ 0.6 158.5 158.0
Met ! -61.2 +0.9 -85 -82.3
Met X2 1729 £+ 0.6 171.4 157.8
Met X’ 775 +£0.8 87.1 71.3

Leu w 169.6 =+ 0.6 175 -177.2
Leu 0] -67.7 +0.8 -89.5 -92.1
Leu P -49.1 £+0.8 -39.5 -44.0
Leu x! -59.9 £0.8 -58.7 -59.4
Leu 2 -1785 £08 -178.3 -176.5
Phe w 175.7 £ 0.6 176.1 180.0
Phe [0} -155.4 £+ 0.6 -166.5 -162.9
Phe ! 64.4 +0.8 55.7 53.1

Phe 2 -784 +0.9 -76.2 -89.2

The average rmsd error in the calculated torsion angles was 3.5° for the full
structure calculation and 1.0° for the cNs calculation.

Table 3.3: Comparison of the 14 torsion angles derived from the
SSNMR structures in f-MLF-OH with the corresponding
angles from the x-ray structure of -MLF-OMe (20)

62

were used to simplify the space, the values of which were determined
in trial calculations involving energy minimization from an extended
conformation with full freedom in the presence of intramolecular con-
straints alternating with the systematic search described below. Ex-
cluded volume (van der Waals) constraints were enforced, using 90%
of the radius values (o/2) from the all-hydrogen protein parameters in
CNs version 4.02 (46). Divide-and-conquer was implemented through
initial searches systematically performed for each residue independently
at a voxel grid resolution of 5° for all but the free torsion angles, which
were enumerated in 30° steps. In this initial search, each “residue”
included one additional atom along the backbone chain from its neigh-
bors to allow the join in the subsequent step. Each substructure voxel
was searched by first checking the center of the voxel to determine
whether this substructure satisfied the subset of constraints involving
only the atoms in the substructure (“active constraints”). If so, the
substructure was retained. Otherwise, the substructure was minimized
subject to the active constraints and the additional constraint that the
substructure remains within the voxel boundary [using CFSQP, a con-
strained nonlinear programming method (48), and an objective func-
tion that included only NMR constraints and excluded volume]. For
the search of each voxel, up to three minimizations were performed.
The midpoint of every voxel was always used as one of the starting
points for minimization, and additional starting conformations were
created by assigning each torsion angle either to the midpoint of its
range in the voxel or to other values in the voxel that had previously
been found, during the searches of other partial structures, to satisfy
local constraints. If any minimization resulted in a structure that sat-
isfied the active constraints, the structure and voxel was retained and
no further minimizations were performed. If no satisfying substruc-
ture was found, the voxel was eliminated. This procedure yielded 1,504
substructures for f~-Met, 432 for Leu, and 242 for Phe. In the second
phase of the divide-and-conquer strategy, these successful substructure
voxels were systematically joined without regard to constraints, result-
ing in ~650,000 structures for the f-Met-Leu “dipeptide.” Of these
possibilities all but 1,360 were eliminated because they violated either
NMR or excluded volume constraints (see Fig. 3.4). Similarly, joining
the f-Met-Leu “dipeptide” structures with the 242 Phe structures and
applying the constraints yielded the 56,975 allowed structures for the
tripeptide.

In Fig. 3.5 we illustrate the family of ~57,000 -MLF-OH structures
consistent with the SSNMR torsion angle and *C—1°N distance data

63

i-Met-Leu-Phe-OH
56,975 structures
16 torsions

~-Met-Leu

1360 structures
12 torsions
Leu Phe
1504 structures 432 structures 242 structures
7 torsions 6 torsions 5 torsions

Figure 3.4: An illustration of the divide-and-conquer strategy used
to search conformational space. Starting from the indi-
vidual residues (bottom) and progressing to the tripep-
tide, the number of substructures satisfying the SS-
NMR and excluded-volume constraints and the number
of searchable torsions are indicated.

64

and excluded-volume constraints. We can conclude that the experimen-
tal data defined most of the structure almost uniquely, but that some
ambiguity remains for the Phe ring and the chain termini. By one of the
usual criteria, the quality of the -MLF-OH structure is especially high
(0.02 A rmsd for the peptide backbone and 0.38 A rmsd for all heavy
atoms). However, it should be noted that because this peptide is small,
the rmsd values are not directly comparable with values computed for
proteins. Nevertheless, the backbone is fully constrained with the ex-
ception of the formyl group, which is not isotopically labeled in our
samples. Note that the formyl group was allowed to assume either cis
or trans conformation with low (= 5°) angular fluctuations. It therefore
appears in the figure as a carboxyl-like group. The carboxyl-terminal
carboxyl group, for which no SSNMR torsion angle technique currently
exists, is not constrained. Similarly, we presently do not have a method
to constrain y? and therefore the orientation of the Phe aromatic ring.
However, our experiments indicate scaled C° H® and C¢ He dipolar in-
teractions for the Phe ring, which are consistent with twofold flipping
observed in a number of cases (48, 49). The side-chain conformations
of Met have slightly greater uncertainty than the backbone, largely
because of the paucity of constraints on the Met S and C°¢.

More extensive data are presented in Tables 4-6, which are published
as supporting information on the PNAS web site, www.pnas.org. The
single structure used for Tables 2-6 is a representative selected from the
full structure search.

More extensive data are presented in Tables 4-6, which are published
as supporting information on the PNAS web site, www.pnas.org. The
single structure used for Tables 2-6 is a representative selected from the
full structure search.

Conclusions

We have determined the 3D structure of the chemotactic tripeptide
f-MLF-OH, based on solid-state MAS NMR constraints (torsion an-
gles and *C-15N distances) derived from uniformly 13C,!N- and >N-
enriched samples. Simulated annealing procedures and computational
methods that systematically search the entire conformational space
were used to define a set of structures consistent with the NMR mea-
surements. The prospects for extension of this work to larger systems
are very promising. We note that complete '3C and '°N chemical
shift assignments for a U-13C,'®N-labeled 62-residue SH3 domain from
a-spectrin have been performed by using solid-state NMR data alone

65

Figure 3.5: An illustration of a family of nearly identical structures
that were filtered from the total of 56,975 +MLF-OH
structures for ease of display. The set shown is repre-
sentative of the entire ensemble and is consistent with
the SSNMR torsion angle measurements, *C N dis-
tances, and excluded-volume constraints. The structure
of the backbone is of especially high quality (0.02 A
rmsd). Since the formyl group was not labeled, it was
permitted to assume both the cis and trans conforma-
tions in the calculation, and it exhibits the appearance
of a carboxyl group in the figure. The carboxyl terminus
and the Phe ring appear disordered because no torsion
angle methods currently exist to constrain the terminal
9 or x? angle. The ring conformation is largely deter-
mined by excluded volume constraints, and it is likely
undergoing twofold flips (see text). The Met and Leu
side-chain conformations are also relatively well defined.

66

(37), representing significant experimental progress. Because the meth-
ods used to obtain the torsion angle constraints are already 3D, they
are directly applicable to these larger systems; one structural constraint
can be extracted from each resolved cross-peak in the 2D 3C-13C and
13C-15N spectra, and the most critical constraints (¢, 1, x*) are derived
from the well-resolved 2 C®, 13C#, and ¥ CO signals. These approaches
are being applied to a-spectrin (37), bacteriorhodopsin (M.T.M., J.
Herzfeld, and R.G.G., unpublished work), and ubiquitin (C.M.R. and
A. E. McDermott, unpublished work). In proteins, distance measure-
ments are crucial for determining the global fold, and improved multi-
dimensional SSNMR methods for distance measurements in U-3C,15N-
labeled proteins are beginning to appear and will be used to measure
multiple distances in a single 3D experiment (17).

Acknowledgements

We thank L. J. Mueller, B. A. Tounge, M. Hong, and D. J. Ruben
for many helpful discussions during the course of this work. C.M.R.
acknowledges the support of a National Institutes of Health National
Research Service Award (GM-20134); C.P.J., the support of a National
Science Foundation Graduate Research Fellowship; M.H., the support
of a Danish Natural Science Council Postdoctoral Fellowship and a
postdoctoral fellowship from the European Human Frontier Science
Program; and M.T.M., the support of a National Institutes of Health
National Research Service Award (GM-20818). This research was sup-
ported by grants from the National Institutes of Health (AG-14366,
GM-23403, and RR-00995).

Abbreviations

SSNMR, solid-state NMR; rmsd, root-mean-square deviation; MAS,
magic-angle spinning; f-MLF-OH, N-formyl-L-Met-L-Leu-L-Phe-OH;
f-MLF-OMe, -MLF-OH methyl ester; 2D and 3D, two- and three-
dimensional; REDOR, rotational-echo double-resonance.

Footnotes

iPresent address: Department of Chemistry, University of Illinois, Ur-
bana, IL 61801.

€ Present address: Laboratory for Physical Chemistry, ETH-H6nggerberg,
CH-8093 Ziirich, Switzerland.

|| Present address: Laboratory for Organic Chemistry, TU-Munich, D-
85647 Munich, Germany.

67

1TTo whom reprint requests may be addressed. E-mail: rgg@mit.edu,
tlp@mit.edu, or tidor@mit.edu.

References

1. Wiithrich, K. (1986) NMR of Proteins and Nucleic Acids (Wiley,
New York).

2. Gayathri, C., Bothner-By, A. A., van Zijl, P. C. M. & MacLean, C.
(1982) Chem. Phys. Lett. 87, 192-196.

3. Tolman, J. R., Flanagan, J. M., Kennedy, M. A. & Prestegard, J.
H. (1995) Proc. Natl. Acad. Sci. USA 92, 9279-9283.

4. Tjandra, N. & Bax, A. (1997) Science 278, 1111-1114.

5. Pervushin, K., Riek, R., Wider, G. & Wiithrich, K. (1997) Proc.
Natl. Acad. Sci. USA 94, 12366-12371.

6. Yamazaki, T., Lee, W., Arrowsmith, C. H., Muhandiram, D. R. &
Kay, L. E. (1994) J. Am. Chem. Soc. 116, 11655-11666.

7. Creuzet, F., McDermott, A. E., Gebhard, R., van der Hoef, K.,
Spijker-Assink, M. B., Herzfeld, J., Lugtenburg, J., Levitt, M. H. &
Griffin, R. G. (1991) Science 251, 783-786.

8. Thompson, L. K., McDermott, A. E., Raap, J., van der Wielen, C.
M., Lugtenberg, J., Herzfeld, J. & Griffin, R. G. (1992) Biochemistry
31, 7931-7938.

9. McDowell, L. M., Klug, C. A., Beusen, D. D. & Schaefer, J. (1996)
Biochemistry 35, 5395-5403.

10. McDowell, L. M., Lee, M. S., McKay, R. A., Anderson, K. S. &
Schaefer, J. (1996) Biochemistry 35, 3328-3334.

11. Long, J. R., Dindot, J. L., Zebrowski, H., Kiihne, S., Clark, R. H.,
Campbell, A. A., Stayton, P. S. & Drobny, G. P. (1998) Proc. Nat.
Acad. Sci. USA 95, 12083-12087.

12. Lansbury, P. T., Jr., Costa, P. R., Griffiths, J. M., Simon, E. J.,
Auger, M., Halverson, K. J., Kocisko, D. A., Hendsch, Z. S., Ashburn,
T. T., Spencer, R. G. S., et al. (1995) Nat. Struct. Biol. 2, 990-998.
13. Griffin, R. G. (1998) Nat. Struct. Biol. 5, 508-512.

14. Dusold, S. & Sebald, A. (2000) Annu. Rep. NMR Spectros. 41,
185-264.

15. Nomura, K., Takegoshi, K., Terao, T., Uchida, K. & Kainosho, M.
(2000) J. Biomol. NMR 17, 111-123.

16. Jaromiec, C. P., Tounge, B. A., Herzfeld, J. & Griffin, R. G. (2001)
J. Am. Chem. Soc. 123, 3507-3519.

17. Jaroniec, C. P., Filip, C. & Griffin, R. G. (2002) J Am. Chem.
Soc. 124, in press.

68

18. Rienstra, C. M., Hohwy, M., Mueller, L. J., Jaroniec, C. P., Reif,
B. & Griffin, R. G. (2002) J. Am. Chem. Soc. 124, in press.

19. Showell, H. J., Freer, R. J., Zigmond, S. H., Schiffman, E., Aswaniku-
mar, S., Corcoran, B. & Becker, E. L. (1976) J. Ezp. Med. 143,
1154-1169.

20. Gavuzzo, E., Mazza, F., Pochetti, G. & Scatturin, A. (1989) Int.
J. Peptide Protein Res. 34, 409-415.

21. Morfew, A. J. & Tickle, 1. (1981) Cryst. Struct. Commun. 10,
781-788.

22. Rienstra, C. M., Hohwy, M., Hong, M. & Griffin, R. G. (2000) J.
Am. Chem. Soc. 122, 10979-10990.

23. Reif, B., Hohwy, M., Jaroniec, C. P., Rienstra, C. M. & Griffin, R.
G. (2000) J. Magn. Reson. 145, 132-141.

24. Bennett, A. E., Rienstra, C. M., Auger, M., Lakshmi, K. V. &
Griffin, R. G. (1995) J. Chem. Phys. 103, 6951-6958.

25. Sun, B. Q., Rienstra, C. M., Costa, P. R., Williamson, J. R. &
Griffin, R. G. (1997) J. Am. Chem. Soc. 119, 8540-8546.

26. Detken, A., Hardy, E. H., Ernst, M., Kainosho, M., Kawakami, T.,
Aimoto, S. & Meier, B. H. (2001) J. Biomol. NMR 20, 203-221.

27. Bennett, A. E., Ok, J. H., Griffin, R. G. & Vega, S. (1992) J. Chem.
Phys. 96, 8624-8627.

28. Sun, B. Q., Costa, P. R., Kocisko, D. A., Lansbury, P. T., Jr. &
Griffin, R. G. (1995) J. Chem. Phys. 102, 702-707.

29. Nielsen, N. C., Bildsoe, H., Jakobsen, H. J. & Levitt, M. H. (1994)
J. Chem. Phys. 101, 1805-1812.

30. Lee, Y. K., Kurur, N. D., Helmle, M., Johannessen, O. G., Nielsen,
N. C. & Levitt, M. H. (1995) Chem. Phys. Lett. 242, 304-309.

31. Hohwy, M., Rienstra, C. M., Jaroniec, C. P. & Griffin, R. G. (1999)
J. Chem. Phys. 110, 7983-7992.

32. Schaefer, J. & Stejskal, E. O. (1979) J. Magn. Reson. 34, 443-447.
33. Baldus, M. A., Petkova, A. T., Herzfeld, J. H. & Griffin, R. G.
(1998) Mol. Phys. 95, 1197-1207.

34. Hediger, S., Meier, B. H. & Ernst, R. R. (1995) Chem. Phys. Lett.
240, 449-456.

35. McDermott, A., Polenova, T., Bockmann, A., Zilm, K. W., Paulsen,
E. K., Martin, R. W. & Montelione, G. T. (2000) J. Biomol. NMR 16,
209-219.

36. Egorova-Zachernyuk, T. A., Hollander, J., Fraser, N., Gast, P.,
Hoff, A. J., Cogdell, R., de Groot, H. J. & Baldus, M. (2001) J. Biomol.
NMR 19, 243-253.

37. Pauli, J., Baldus, M., van Rossum, B., de Groot, H. & Oschkinat,
H. (2001) Chembiochem. 2, 272-281.

69

38. Costa, P. R., Gross, J. D., Hong, M. & Griffin, R. G. (1997) Chem.
Phys. Lett. 280, 95-103.

39. Feng, X., Eden, M., Brinkmann, A., Luthman, H., Eriksson, L.,
Graslund, A., Antzutkin, O. N. & Levitt, M. H. (1997) J. Am. Chem.
Soc. 119, 12006-12007.

40. Ladizhansky, V., Veshtort, M. & Griffin, R. G. (2002) J. Magn.
Reson. 154, 317-324.

41. Feng, X., Lee, Y. K., Sandstrém, D., Edén, M., Maisel, H., Sebald,
A. & Levitt, M. H. (1996) Chem. Phys. Lett. 257, 314-320.

42. Raleigh, D. P., Levitt, M. H. & Griffin, R. G. (1988) Chem. Phys.
Lett. 146, 71-76.

43. Costa, P. R., Sun, B. Q. & Griffin, R. G. (1997) J. Am. Chem.
Soc. 119, 10821-10830.

44. Gullion, T. & Schaefer, J. (1989) J. Magn. Reson. 81, 196-200.
45. Nilges, M., Clore, G. M. & Groenborn, A. M. (1988) FEBS Lett.
229, 317-324.

46. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros,
P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M.,
Pannu, N. S., et al. (1998) Acta Cryst. D 54, 905-921.

47. Tucker-Kellogg, L. (2002) Ph.D. thesis (Massachusetts Institute of
Technology, Cambridge).

48. Lawrence, C. T., Zhou, J. L. & Tits, A. L. (1997) Technical Re-
port TR-94-16r1 (Institute for Systems Research, Univ. of Maryland,
College Park).

49. Rice, D. M., Meinwald, Y. C., Scheraga, H. A. & Griffin, R. G.
(1987) J. Am. Chem. Soc. 109, 1636-1640.

50. Rice, D. M., Wittebort, R. J., Griffin, R. G., Meirovitch, E., Stim-
son, E. R., Meinwald, Y. C., Freed, J. H. & Scheraga, H. A. (1981) J.
Am. Chem. Soc. 103, 7707-7710.

70

Chapter 4

Merge Strategy
Optimization

Introduction

Chapter 2 described a systematic framework for searching the rota-
tional degrees of freedom of a molecule and evaluating whether voxels
(ranges of torsion angles) contain conformations that satisfy the user’s
constraints. A layer of divide-and-conquer search was constructed which
searches individual residues independently, then combines the satisfying
conformations to create candidate conformations for dipeptides, then
combines those to form larger subchains, etc. This divide-and-conquer
layer seems like it should be an improvement, and preliminary results
do indicate that it is, but let us examine more closely how the divisions
(the merge-trees) are chosen and how those choices influence efficiency.

We begin with an example that helps clarify the implicit assump-
tions of using a divide-and-conquer approach and that shows how im-
portant the choice of merge-tree can be for the run time of conforma-
tional search. Then we’ll consider the full range of possible merge-trees
and ask how to evaluate alternatives using available information.

Based on observations that low-dimensional searches are so much
faster than higher-dimensional searches as to be practically free, we ask
if there is any benefit to be had from doing “extra” searches. We will
explain the benefit and then the cost of searching all possible subchains
of one size before searching any subchains of a larger size. We formalize
this cost evaluation as a dynamic programming table and show how an
optimal merge-tree can be extracted from it.

Performing “extra” searches (searching more subchains than the

71

minimum necessary for a particular merge-tree) sets up two additional
types of flexibility that can enhance the overall search algorithm. First
and most importantly, sharing information from the result of one search
can simplify the search of an overlapping subchain; we describe how
constraint propagation can accomplish this sharing. Moreover, in some
cases the benefit reaped is more than enough to offset the cost of search-
ing the extra subchains in the first place. The second additional flex-
ibility is that we may choose the order in which the subchains are
searched. That sets up an opportunity to use the A* algorithm to
choose which merges to perform next, as if each merge towards con-
structing the whole molecule were a step in a partial path towards the
single destination of searching the whole molecule.

4.1 The Choice of Merge-Tree Can Be Im-
portant

We first motivate the research in this chapter by constructing an ex-
treme example, a molecule with a set of constraints such that using a
naive choice of merge-tree results in an exponential search and using a
seemingly unlikely merge-tree results in a polynomial search.

Problem Framework

In order to categorize example protocols as exponential or polynomial,
we will need to vary the size of the problem without changing the
nature or character of the problem. Therefore we will use variable-
length alpha-helices of polyalanine. (To define an alpha-helix of any
length, we apply torsion angles of ¢ = —57.0°, ¢ = —57.0°, and w =
180.0° to every residue in the chain.)

For the divide-and-conquer strategy in chapter 2, we used full, bal-
anced binary merge-trees by default. This default tree is not always
optimal, and we will show here that in the worst case, it could be
exponentially worse than optimal.

We will design a constraint set so as to sabotage searching with
the default tree but not to sabotage all possible merge-trees. Suppose
our molecule has 2% residues, the ideal number for the advantage of
the default trees. (When the number of residues in a molecule is not
a power of 2, especially if N = 2F 4 1, pathological cases for default
merge-trees are easy to imagine.)

72

The default merge-tree

The default merge-tree for a molecule with N = 2% residues would be
the full, perfectly balanced tree with (k + 1) levels, defined in section
2.3. (See Figure 4.1.)

/1_8\
/M\ /5‘8\
1-2 34 5-6 7-8

AN AN

1-1 2-2 3-3 44 55 66 7-7 8-8

Figure 4.1: The default merge-tree for a molecule with 2° = 8
residues.

Recall from section 2.3 that the most important reason for doing a
divide-and-conquer search is allow more opportunities for pruning the
search. By defining a tree without regard to the constraint set, there is
a possibility that the chosen fragments and merges may not correspond
to any active constraints and that no pruning will be possible.

The constraint set

Let us define a set of interatomic distances (for the same molecule of
N = 2% residues) such that when using the “default” merge-tree, no
constraints are active prior to the final merge. (The final merge is the
top-most in the tree, with the whole molecule as the result.) Constrain
the distance between atom ¢ and atom j if and only if

N
the residue of atom 7 is < 5

and the residue of atom j is > —.

Note that in this constraint set, distance constraints may be of any
length, not necessarily less than 5 or 6 A. For the “padding” on the
constraints, let us choose plus or minus 0.05 A from the measured
distance in the helical structure.

As we have defined it, this constraint set has no constraints within

73

the left half of the molecule nor within the right half of the molecule,
but has every possible constraint involving one atom in the left half
and the other in the right. As divide-and-conquer search traverses the
default merge-tree, bottom to top, no constraints will take effect prior
to the final combine operation, when the two halves of the molecule
are joined. Even if this set of constraints suffices to specify a unique
satisfying conformation for the whole molecule, the search will have
to explore and enumerate every self-avoiding conformation® of both
%—sized halves. Because the number of accessible conformations for
a subchain is exponential in the length of that subchain, the cost of
searching this molecule with a naive binary merge tree would be O(2

e2) e O(eN).

Some technicalities

When breaking a chain into two subchains at a peptide bond, we choose
to include the peptide bond (and therefore the atoms that define it) in
both subchain pieces. Because the C-terminal atoms of any residue are
used when defining the next residue, and the N-terminal atoms of any
residue are used when defining the previous residue, we also need to
exclude from our constraint set any interatomic distances where atom ¢
is at the C-terminus of residue 2¥~! or when atom j is at the N-terminus
of residue 251 4 1.

Applying the triangle inequality to all the entries of the molecule’s
distance matrix (the “triangle smoothing” option) would allow some
constraining information to trickle across the artificial boundary we're
erecting between the left and right halves of the molecule, and would
indirectly provide constraints that are active within the left half and
within the right half of the molecule. Atoms near the boundary, thus
constrained by the triangle inequality, would not contribute to the ex-
ponential growth of overall run time. The remainder of each half of
the molecule would behave the same, and exponential growth would
ensue, but larger examples would be required in order to display the
phenomenon as clearly as it can be displayed without the use of the
triangle inequality. Therefore we neglect to apply triangle smoothing
in this example.

L A self-avoiding or accessible conformation is one that doesn’t involve van der
Waals clashes.

74

The “manually-constructed” merge-tree

A merge tree that exploits the structure of the constraints might con-
ceivably allow a divide-and-conquer search of the same molecule with
the same constraints to cost far less. Any such tree would merge a
subchain from residue(s) < & with a subchain from residue(s) > £ at
the beginning of the search, not the end.

Let us define another merge-tree such that every merge has active
constraints. Call this the “manually constructed” merge-tree. Note
that this merge-tree would under other circumstances probably be
worse than the default merge-tree because its depth is linear, not log-
arithmic, in the number of leaves, and a substantial number of merges
involve minimizing fragments almost as large as the whole molecule. In
the default merge-tree, only the final merge requires such large mini-
mizations.

Build the “manually-constructed” merge-tree so that every merge
spans the artificial boundary between residues 2°~1 and 2¥=' +1. Start

Figure 4.2: A manually-constructed merge-tree for a molecule with
8 residues.

with the first, lowest-level merge between those two residues them-
selves. (See Figure 4.2.) Then merge 2¥~1 — 1 with the dipeptide.
Then merge another residue onto that tripeptide. We have chosen to
alternate adding a new residue from the left and from the right but
the key feature of this merge tree is that residues are added one at a

75

time onto the subchain that spans the boundary. Therefore all sub-
chains searched will have at least one residues on the left and at least
one on the right, which means every subchain constructed (except leaf
subchains) will have active constraints.

Results

We used divide-and-conquer (with VOXELIZED TREESEARCH on leaves)
according to the default and “manually constructed” merge-trees, to
perform a systematic search at 120° resolution on helical polyalanine
subject to the set of constraints we constructed above. The van der
Waals radii were set to 90% of half sigma,? and the threshold for
summed squared violations was 0.005 A2. The w torsions (for pep-
tide bonds) were permitted to vary between 175° and 185°.

Number of Run Time by Merge-Tree
Residues default manually-computed
2 0.19 0.19
4 64.4 1.35
8 2,500,000. 11.9
16 180

Figure 4.3: Run times with default and manually-constructed
merge-trees. ' The run time for the simulation of 8
residues with the default merge-tree was extrapolated
from an actual simulation that was terminated after
590333.590 seconds. In that time it had searched ev-
ery node below the root and had searched 1,618,126 out
of 6,638,760 candidates for the final merge.

Using the default merge-tree forces the algorithm to enumerate sat-
isfying conformations for the left and right halves, even though there
are no external constraints active on either left or right halves of the
molecule. Since the left and right halves have no active constraints, and
since the number of unconstrained (self-avoiding) conformations for a
molecule is exponential in the length of the chain, divide-and-conquer
with the default merge-tree must take an exponential amount of time.
No matter how divide-and-conquer calculates its conformations, sim-
ply enumerating the conformations for the left and right halves requires

2half of sigma in the CNS parameter set parallhdg.pro [9, 20]

76

exponential time. Indeed, exponential growth does accurately describe
the few trial runs we were able to complete.

In contrast, each time the size of the molecule doubles (each time
k increases by one), the run time of the algorithm using the “manu-
ally constructed” merge-tree increases by approximately a factor of ten.
This rate of growth is polynomial. By constructing the constraint set
adversarially with respect to a given merge-tree, we have created ex-
treme but vivid evidence for why the choice of merge-tree is important.

4.2 How to Choose Good Merge-Trees?

How can we choose merges that are appropriate to the constraint set
without manual intervention? All other things being equal, small sub-
chains can be searched more quickly than large ones. However, the
availability of active constraints is not always equal, and (as shown
in previous extreme example) the availability of active constraints can
be a far more important consideration when choosing a merge-tree for
divide-and-conquer than the sizes of subchains. The number of con-
formations does often correlate with the size of the subchain, but the
important thing is to choose subchains with few conformations.

Simple descriptions of divide-and-conquer usually explain that a
large problem is divided into pieces, the pieces are easy to solve, and
the solutions for the pieces are combined to create the solution for the
large problem. While that is entirely true, we emphasize that what
makes divide-and-conquer especially effective for constrained searches
of molecular conformations is that divide-and-conquer can isolate and
search the most highly-constrained pieces of the molecule and then use
the resulting small set of satisfying conformations to build satisfying
conformations for the rest of the molecule.

After discussing two intuitive considerations, locality and ordering,
we will define a cost function and a formal methodology for computing
an optimal merge-tree.

Locality

We say there is locality in a constraint set if the existence of a constraint
between atoms ¢ and j means it is more likely than average that atoms
near ¢ and atoms near j will also be constrained (by non-trivial or non-
redundant constraints). When a constraint set exhibits locality, it may
be possible to define some subchains with particularly large numbers
of active constraints, and those subchains might have particularly few
satisfying conformations. Whenever possible we want to satisfy clusters

7

of constraints with local, low-dimensional searches, so that we can avoid
instantiating extra variables.

In chapter 2 we mentioned three reasons for using divide-and-conquer
search over treesearch: because it evaluates individually each piece it
adds, because it stores the satisfying conformations of recurring clus-
ters of variables, and because it can allow you to define subproblems
with a smaller average size. An additional reason, related but crucial,
why divide-and-conquer improves efficiency is that it has the freedom
to choose well-constrained subproblems and to exploit the locality of
the constraint set. Good merge-trees define subproblems that have as
few satisfying conformations as possible. If all subproblems have the
same number of satisfying conformations, then choosing a merge-tree
that optimizes the average subchain length (like the default merge-tree)
would make sense, but subchains with short length are not necessarily
always the subchains with the smallest number of conformations.

Ordering

Consider performing treesearch at 120° resolution on a molecule with
four bonds. If there are many feasible possibilities for 61 and few for

Figure 4.4: The search is less efficient if the variable with many
legal assignments is instantiated first (left) instead of
last (right).

02, O3, and 04 (see Figure 4.4), then it is more efficient to search 6,
last instead of first. Likewise, if a molecule can be broken into well-
constrained subchains and poorly-constrained subchains, the search
will be more efficient if we build satisfying conformations for the well-
constrained subchains first and then, as late as possible, build onto
them the poorly-constrained regions with higher variability. Searching

78

well-constrained subproblems first corresponds to the “first-fail” ap-
proach to variable-ordering in generalized constraint satisfaction prob-
lems [29, 32].

An efficient merge tree isolates subproblems with well-constrained,
efficiently-enumerable solutions and puts them at the early nodes of
the merge-tree so that they can be solved first. It places unconstrained
subchains near the root of the merge-tree (unconstrained variables near
the bottom of the search tree) so that (A) they won’t have to be enu-
merated before needed (which is when everything is needed, in the final
search of the whole molecule); and (B) they won’t have to be enumer-
ated before the little constraint they do have is applied, namely when
all variables are instantiated and all constraints become active.

Cost Function

Before we attempt to design an algorithm that chooses a good merge-
tree, let us clarify our measure of cost. Recall that a merge-tree depicts
a divide-and-conquer search strategy: subchains corresponding to leaf
nodes are searched directly and interior nodes are searched by combin-
ing the solutions of the right and left child subchains.

The run time of searching a subchain depends on factors as di-
verse as the number of rotatable bonds, the number and sizes of atoms
attached to those bonds, the number and type of constraints, the in-
formation or the redundancy in the constraints, the number of voxels
with conformations that satisfy the constraints, and the ease of find-
ing satisfying conformations within each satisfying voxel. These factors
are in addition to user-defined constants such as the resolution of the
search and how long to search within each voxel before giving up.

Let us design a simple cost function that can be computed quickly
and that may correlate approximately with run times. Ideally the cost
function would be an accurate predictor of run time, but when in doubt
about how to define the cost, we will err on the low side so that the
cost will be able to serve as a lower bound on run time.

From this point forward, we consider the cost to be an abstract
entity that is defined and computed independent of the run time. After
the cost is defined and implemented, we will show that the cost function
is useful for making decisions, such as for choosing merges and merge-
trees. Although we intend the cost values to resemble run times, the
cost itself an exact quantity, not an estimate. The only reason we stress
this distinction is because the cost entities themselves will be estimated
later in this chapter.

Let us define the cost of searching a leaf subchain as the number

79

of feasible conformations (the number of solutions or satisfying voxels)
times the cost of searching each voxel. This choice ignores the cost
of ruling out regions of conformation space that have no satisfying
conformations, but a cost that counted every possible voxel (as with
GRIDSEARCH) would be an overestimate.

The search of a non-leaf subchain is performed by combining solu-
tions from left and right child subchains into candidates for the larger
subchain and then evaluating the candidate voxels. We define the cost
of searching a non-leaf subchain to be simply the number of candidate
voxels times the cost of evaluating a voxel. The number of candidates
is the number of solutions for the left child times the number for the
right. (This definition is not a strict lower bound because if the omega
torsion at the shared peptide bond has multiple allowed ranges, (e.g.,
cis as well as trans), then there may be some combinations that can
be ruled out immediately on the basis of incompatible ranges for the
shared torsion.

The cost of evaluating a voxel is more complicated and it depends
on the voxel. It can be insignificant if the initial voxel point given to the
minimizer (such as the midpoint) satisfies the constraints without need
for further minimization. In contrast, if the voxel contains no satisfying
conformations, the algorithm will choose a starting point, minimize
with perhaps 50 steps, fail, and repeat the whole process (with a fresh
starting point and 50 more steps of minimization) a predetermined
number of times before concluding that no satisfying conformations
exist.

We have chosen to define the cost of evaluating a voxel as the num-
ber of residues in the subchain, which is roughly proportional to the
number of dimensions of the voxel. We acknowledge that many sim-
plifications are inherent in this definition. Indeed, the square of the
number of residues (or the square of the number of torsions) might be
more accurate in more cases than our choice of the linear cost. How-
ever, we prefer to err on the low side (providing a guaranteed lower
bound) because this cost function will later be used to evaluate whether
to perform additional work searching small subchains in exchange for
possibly reducing the future costs of searching large subchains. If we
overestimate the costs of large subchains relative to small ones, the al-
gorithm could overestimate potential savings and waste its time. Our
cost function can then be expressed as follows:

80

NODECOST(leaf m)) = NUMSOLUTIONs(subchain mfm)
X VOXELCOST(I residue).

NODECOST(subchain m n) = NUMSOLUTIONS(subchain m z)
X NUMSOLUTIONs(subchain (i+1)7n)
X VOXELCOST(n -m+1 residues).

VOXELCOST(n residues) = n.

Since the cost of evaluating a non-leaf subchain was based on the
assumption that its child subchains had already been searched, the
entire cost of searching a non-leaf subchain from scratch is actually the
cost of all the nodes in its subtree. In particular, the cost of searching
the whole molecule is the sum of the costs of all the nodes n; in the
merge-tree I'.

TrEeCosT (I') = Z NoODECOST (S).
ser

The Optimum Cost

Given the number of satisfying conformations for every subchain, we
can compute the NODECOST for every subchain. Then, given enough
time, we could enumerate all possible merge-trees, compute their TREE-
CosTs, and determine the optimum.

We claim that the following function also computes the optimum
cost, over all possible choices for merge-trees, for the search of a given
molecule.

BESTTREECOST (subchain m—n)

NUMSOLUTIONS(subChain mfi)
NUMSOLUTIONS(subchain (i41)-n)
VOXELCOST(n — m + 1 residues)
BESTTREECOST(m—i)
BESTTREECOST((i+1) n)

MiInN

m<i<n

+ + X X

Dynamic Programming

Computing the BESTTREECOST is an ideal case for using dynamic
programming [2]. Let us build a dynamic programming table of BEST-
TREECOST entries such that the first residue of a subchain gives the
row of the entry and the last residue gives the column. Entry i—j of
the table would contain the BESTTREECOST of the possible subtrees

81

LAST RESIDUE IN SUBCHAIN

1 2 3 4 5 6 7 8 9

FIRST RESIDUE IN SUBCHAIN
o

Figure 4.5: One way to set up a dynamic programming table for
building up values of BESTTREECOST.

rooted at i—j. (See Figure 4.5.) An algorithm to fill in BESTTREE-
CosTs would start with the leaf subchains along the main diagonal of
the table, then proceed, in order of increasing number of residues, to fill
in another diagonal, using a linear number of look-ups from previous
entries to compute each new entry.

If we perform a 45 degree rotation on the table in Figure 4.5, then
the table entries are arranged from top to bottom in order of subchain
size, in such a way that merge-trees can easily be superimposed on the
tables; see Figure 4.6. The leaves are now along the bottom, in what
we will call a “diagonal row.” Rotating the table has the important
advantage of positioning each subchain entry approximately where it
would be in a merge-tree for creating that subchain, and that provides
a visual cue for the relationships between the entries in the “table.”
Although Figure 4.6 shows a default merge-tree superimposed on the
table, any merge-tree could be superimposed equally well.

The Optimal Merge-Tree

Computing a dynamic programming table of BESTTREECOSTs for a
molecule gives the optimal merge-tree as a side-effect. For each sub-
chain, m—n, the choice of 7 used in BESTTREECOST(m—n) gives the best

82

Figure 4.6: The same table as in Figure 4.5, rotated 45°, can be
aligned with the default merge-tree for 8 residues.

division of m—n into left and right children. As with any case of dy-
namic programming, although cost information is computed “bottom-
up” starting with small subchains, we read out the information in re-
verse order, “top-down,” for deducing the globally optimal merge-tree.
Taking the i chosen in BESTTREECOST(1-NN), we break the molecule
into two subchains, 1-m and (m+1)-N. Then we look up the choice
of i for BESTTREECOST(1-m) to break up that subchain, and so on
until reaching leaves. The set of divisions (i values) that gave rise to
the merge-tree with optimal TREECOST is the optimal merge-tree.

As in any case of dynamic programming, the number of satisfying
conformations for subchain 1-N cannot depend on how they were cre-
ated, whether by combining, say, 1-1 x 2-N or 17% X (%—l—l)fN . The
choice of 7 used for computing the BESTTREECOST of a child subchain
does not influence the BESTTREECOST of the parent.

This dynamic programming assumption is actually a version of our
previous assumption that a systematic solution to a conformational
search problem does not depend on how the systematic search was per-
formed. In other words, the voxels enumerated should be the same, ex-
cept for order, whether found by by TREESEARCH, divide-and-conquer,
or any other method, long as the constraints and the resolution are the
same.

This assumption does turn out to be false sometimes in practice.
Especially when a subchain has many degrees of freedom, the minimizer
can fail to find any satisfying conformations even when a satisfying
region in the voxel does exist. A difficult but potentially crucial area for

83

future research might be to study factors that influence completeness
and the probability of false negatives, such as whether the choice of
merge-trees matters in practice, or whether the choice of satisfying
solutions at low dimension (which are combined to create candidates
at higher resolution) can improve completeness.

4.3 Searching All Subchains (OMNIMERGE)

While performing a variety of conformational searches using divide-and-
conquer, we observed that a large fraction of run time is consumed dur-
ing the final combine operation to create the whole molecule. The time
taken to search the leaves or to perform the low-dimensional merges
is utterly dwarfed by the time for performing the higher-dimensional
merges. Therefore we ask if there is any conceivable benefit to be
reaped during high-dimensional searches (for example during the final
merge) if we performed some additional lower-dimensional searches.

Performing Locally Optimal Merges

Suppose we performed all possible dipeptide merges (1-2, 2-3, 3—4, 4—
5, ...) instead of just the pairs specified in some merge-tree (such as
1-2, 34, ...). Obviously this would require twice as much work, but
for the moment let us assume the cost of this extra work is insignificant.
Could anything be gained from it? Nothing is gained if the next goal
is to create tetrapeptides by combining pairs of dipeptides. If on the
other hand the next goal is to create tripeptides, then we would have
two different possible merges for creating each subchain and we could
choose whichever one has the lower NODECOST. For example, when
creating subchain 1-3, we could choose between combining subchains
1-1 x 2-3 or combining subchains 1-2 x 3-3.

Let OMNIMERGE be the algorithm that searches all possible sub-
chains of the whole molecule, in order of increasing size, and that
chooses the children for each combine operation so as to minimize the
NODECOST.

BeSTNODECOST(m-—n)
M NUMSOLUTIONS(m 1)
IN .
= m<i<n x NumSoruTions((i+1)-n)
x VOXELCOST(n —m +1).

If we have searched all subchains of length < [, we know how
many satisfying conformations there are for each subchain of length

84

< [, which is enough information to evaluate the various cost func-
tions (NODECO0sTs, BESTTREECOSTS, etc.) for subchains of length
< 1+ 1. As OMNIMERGE searches subchains of increasing length,
we can trivially fill in successive diagonal rows of the BESTTREE-
CosTs dynamic programming table. Filling in an entry of the table
requires up to [comparisons but note that we do not actually per-
form [merges; we compare the costs of [merges and perform the best
one. The cheapest merge according to BESTTREECOST is added to
to the dynamic programming table, and the cheapest merge according
to BESTNODECOST dictates which combine operation OMNIMERGE
actually performs. OMNIMERGE performs the locally optimal merge,
without regard for the costs of any subtrees, but it keeps track of which
merges would be globally optimal if the subtrees had not already been
provided. In other words, because the BESTTREECOST of m-—n takes
into account the costs of creating the subtree of m—n, it corresponds to
the globally optimal merge-tree for creating m n. In contrast, OMNI-
MERGE chooses child subchains according to BESTNODECOST, without
considering costs of creating the children.

Previous Work

Like OMNIMERGE, the “buildup” procedure of Scheraga et al. [57, 71,
23] also searches all subchains of the molecule. However, instead of
choosing the most favorable left and right child subchains to merge
(which is the key idea of OMNIMERGE), the buildup procedure always
creates an i-residue subchain by merging the subchain for the first i —1
residues with the subchain for the last i — 1 residues. The benefit
of a large overlap between the right and left children is that longer-
range constraints will have already been satisfied. (For example, if the
merge is to create subchain 1-8, then constraints involving residues
1-7 or residues 2-8 have already been satisfied; the only newly active
constraints would be between residues 1 and 8.) The disadvantage of a
large overlap between the children is that longer subchains tend to have
a larger number of satisfying conformations. (The number of conforma-
tions for the right child times the number of conformations for the left
could be very large.) This disadvantage is not a problem for Scheraga et
al. because they keep only a limited number of energetically-favorable
conformations for each subchain. Although their approach is not sys-
tematic, it is “closer” to systematic than many other popular search
methods, such as simulated annealing.

85

4.3.1 Mitigating the Cost of OMNIMERGE

Methods to improve the theoretical worst-case performance of an algo-
rithm often involve paying overhead costs for a sophisticated algorithm,
slowing down the answers to easy questions, in exchange for much bet-
ter performance on very difficult problems. In practice one could always
run a simple algorithm in parallel with a more sophisticated algorithm,
and if the naive approach gives a quick answer, halt both. The worst
case penalty for having the “insurance policy” of the sophisticated al-
gorithm would only be the use of twice as many processors.

We now present several variations that may run faster than OMNI-
MERGE in many cases, although they generally provide less “insurance”
than OMNIMERGE. Also, when a variation involves omitting some of
the subchains, the BESTTREECOST dynamic programming table will
not be filled in entirely and the globally optimal merge-tree can no
longer be computed as a side-effect of the search. Yet, in cases where
the conformational search result is more important than knowing the
optimal merge-tree, one of these suggestions might be appropriate.

Imposing an upper limit on subchain sizes

The cost of searching (combining and minimizing) large subchains can
be substantial. Is there some threshold size beyond which it becomes
too costly to search all possible subchains, compared with the savings
of choosing good merges? If N is the size of the whole molecule, there
will be high cost for searching subchains of size N — 1 and N — 2,
and one might argue that the likely benefit would be small. Since the
whole molecule can be searched by combining two subchains that are
roughly size %, one might prefer not to search any subchains that are
significantly larger than & (except of course the whole molecule).

Let LIMITED OMNIMERGE be the algorithm where we search all
subchains of length up to some limit L, where L is at least large enough
to include some right and left children of the root. (L > [4].) In
the experiments below, we chose L = 0.667N. LIMITED OMNIMERGE
searches many more subchains than would be searched using a default
merge-tree, but fewer than regular OMNIMERGE, and each subchain
search (except the final merge) gets to use its optimal children.

We could also use an algorithm that stopped searching all possible
subchains at a threshold smaller than half the size of the molecule, to
try to save more time. It could perform its final merges according to
some pre-determined strategy, such as a default merge-tree or some
greedy strategy that aims to create the longest possible subchain as
soon as possible.

86

Imposing a lower limit on subchain size

As described earlier, one could use dipeptides or other fragments larger
than single residues for the leaves of the divide-and-conquer algorithm.
Analogously, one could construct the dynamic programming table as
if amino acids were paired, thus reducing the size of the table and
significantly reducing the number of subchains to be searched. If we
think of the task of examining every possible subchain as itself as a
type of systematic search to find well-constrained subproblems, then
pairing the residues would still be a uniform and systematic search,
except with coarser resolution.

Requiring divisibility of subchain sizes

Another way to reduce the cost of an OMNIMERGE-like search is to im-
pose a divisibility requirement on the subchain sizes. Only subchains
with lengths divisible by d (or smaller than d) would be searched. As-
sume d|N and d < N. If the whole molecule has 10 residues and one
imposes a divisibility limit of 2, then subchains with lengths 1, 2, 4, 6,
8, and 10 would be searched (not just subchains sizes that are powers
of two). This would fill in every other diagonal row of the dynamic
programming table. Requiring divisibility of subchain sizes is similar
to having a lower limit on subchain sizes because it also “covers” the
space of all possible subchains, but at lower density, as if decreasing
the resolution of the search for well-constrained subproblems.

Removing orphaned subchains

When using one of the variants of OMNIMERGE that omits certain sub-
chains, we can often remove additional subchains from consideration if
all the larger subchains they could help create (via the combine oper-
ation) have already been removed. For example, if a molecule has 6
residues and LIMITED OMNIMERGE only searches subchains of up to
4 residues, then subchains of size 5 are removed from consideration.
Subchain 1-4 is potentially useful because it could be combined with
5-6 to create the whole molecule. Likewise 3—6 might be useful be-
cause it could be combined with 1-2. In contrast, 2-5 can never be
useful because combining it with anything (such as 1-1 or 6-6) would
create a subchain of size 5. Subchain 2-5 is within the size limit, but
the decision not to search subchains 1-5 or 2—6 leaves subchain 2-5
“orphaned.” Orphans can be removed from consideration without any
risk of increasing run time. However, with the PROPAGATION algo-
rithm introduced later in this chapter, it is conceivable that skipping

87

an orphaned subchains could worsen the run time.

Testing limited versions of OMNIMERGE

The methods suggested so far for reducing the run time of OMNIMERGE
searches involve skipping some subchains and not completing the en-
tire dynamic programming table. Such methods are difficult to evaluate
apart from some context (such as a particular molecule with a given
set of constraints) because the context determines how the skipped
subchain contributes to the overall solution of the problem. If the
skipped subchain happens to be part of the optimal merge-tree for the
whole molecule, or even just part of a locally optimal merge for some
subchain, then its removal might slow the search of that subchain, pos-
sibly enough to decrease overall performance. If the skipped subchain
is not part of any locally optimal merges (or if it is part of a locally
optimal merge but the suboptimal alternatives are almost as good)
then skipping the subchain will improve performance. The impact on
performance may be a bimodal distribution as contexts vary. Methods
that skip some subchains will sometimes perform better and sometimes
worse than OMNIMERGES. Although it might be interesting to test
many variants in many contexts, the preliminary trials in this chapter
will only use one additional variant of OMNIMERGE: LIMITED OMNI-
MERGE with an upper threshold on subchain size of L = 0.667 x N,
and with orphaned subchains removed.

Computing the optimal merge-tree at low-resolution

An entirely different approach to mitigating the cost of OMNIMERGE is
to compute the optimal merge-tree at lower resolution than the eventual
search. Assuming that the optimal merge-tree for searching a molecule
at low resolution is similar to (or sometimes even the same as) the
optimal merge-tree for searching the same molecule (with the same
constraints) at higher resolution, then one could perform OMNIMERGE
once at low resolution to compute the optimal merge-tree, and then
perform an ordinary divide-and-conquer search at high resolution using
the merge-tree that was found to be optimal at low resolution.

4.3.2 Performance Examples

The performance of OMNIMERGE (and LIMITED OMNIMERGE) may
be better or worse than divide-and-conquer, depending on whether the
default merge-tree is well suited to the molecule and the constraint set

88

for each particular case. (Divide-and-conquer was introduced in Sec-
tion 2.3.) Although we are about to present two major enhancements
to OMNIMERGE (PROPAGATION in section 4.4 and A* ordering of sub-
chains in section 4.5), we will first show how the unenhanced algorithm
performs.

We used the same parameters and the same constraint set for the
nine-amino acid 1RST peptide as in section 2.3.> When searching with
40° resolution for the backbone torsions and 120° resolution for the
sidechain torsions, there are hundreds of satisfying conformations. Dif-
ferent search methods yielded different numbers of satisfying confor-
mations after running for different amount of time, as reported in Fig-
ure 4.9.

We used the same merge-tree (Figure 2.18) defined in chapter 2 to
be our default, but in the case of 1IRST, the default merge-tree may be
an unusually poor choice because the leftmost residue (combined last in
the default) has more solutions by far than any other leaf. Therefore, we
also inspected the 1RST crystal structure visually and designed another
merge-tree that we thought might place nearby residues (residues likely
to have active constraints) together at low levels of the merge-tree,
while also preserving balance (which means minimizing the average
subchain size) in the tree. See Figure 4.7. No objective criteria were
used and we make no claims of optimality for this merge-tree.

As another comparison, we performed a full OMNIMERGE search
at low resolution (120° for all torsions); then, using the dynamic pro-
gramming table of BESTTREECOSTS produced as a side-effect of that
search, we determined the optimal merge-tree for searching at low res-
olution (see Figure 4.8). Finally, we performed the regular search (40°
for backbone torsions and 120° for sidechain torsions) with that merge-
tree.

In terms of run time, the default merge-tree is much worse than
the other methods. The manually-constructed merge-tree is compet-
itive with OMNTMERGE, and the fastest algorithms are LIMITED OMNI-
MERGE or low-resolution OMNIMERGE followed by a divide-and-conquer
search using the merge-tree that is optimal at low resolution.

The number of minimizations performed by divide-and-conquer with
the manual merge-tree is lower than the number performed by Lim-

3 Two passes of minimization per voxel; 40° resolution for the backbone torsions
and 120° for the sidechains; summed squared violations less than 0.0005 A2; hard
sphere van der Waals radii at 85% of half sigma; van der Waals interactions ignored
between atoms in the 1-4 positions of a covalent bond; peptide bonds restricted to
175°-180°. All interatomic distances in the crystal structure were measured and
for every pair of atoms between 2.5 and 6.0 A apart, we constrained those atoms to
maintain a distance within £0.05 A of the measured distance.

89

1-3 6-9

AANAWA

1-1 2-2 33 44 55 66 7-7 88 99

Figure 4.7: A manually designed merge tree for 1RST.

1-9
5-9
5-8
1-4
5-7
1-2 3-4 6-7
1-1 2-2 3-3 44 5-5 66 7-7 8-8 9-9

Figure 4.8: The optimal merge-tree for searching 1RST at 120° res-
olution.

90

Search Runtime Number of Conformations

Method (seconds) Minimizations Found
divide-and-conquer with

default merge-tree 2,046 6,712 657
divide-and-conquer with

manually-constructed tree 533 5,189 662

divide-and-conquer with
merge-tree optimized at
120° resolution 302 3,162 679

above plus cost of
OMNIMERGE at 120°

resolution 320 3,654 679
OMNIMERGE 536 7,271 679
LIMITED OMNIMERGE 312 5,709 675

Figure 4.9: Run times for simulations on 1RST searching all pos-
sible subchains, compared with using particular merge-
trees. (Recall that LIMITED OMNIMERGE searches all
subchains with lengths < 0.667N or up to 6 residues,
and orphaned subchains are also removed.) The fastest
time is colored green. The resolution of the search was
40° for backbone torsions and 120° for sidechain tor-
sions.

91

ITED OMNIMERCE, but the divide-and-conquer run time is significantly
slower. This suggests that divide-and-conquer, even when using the
manually constructed merge-tree, is performing more of its minimiza-
tions on high-dimensional subchains.

After performing OMNIMERGE at the regular resolution, we saw
that its optimal merge-tree is very similar to the optimum found for
lower resolution searches (see Figure 4.10). Of course, the higher reso-

1-9

5-9
6-9
6-8
—7

A\ /A\

-1 22 33 4455 66 7-7 88 9-9

Figure 4.10: The optimal merge-tree for searching 1RST at 40° res-
olution.

lution optimum is not available in advance, but if it were, it could be
searched in only 278 seconds (with 3222 minimizations).

All the methods found the voxels corresponding to the crystal struc-
ture (the structure which was used to generate the constraints and
which by definition satisfies the constraints). However, many of the
methods did miss some voxels. A “false negative” occurs when the
voxel-evaluator disqualifies a voxel that does indeed contain a satisfy-
ing conformation. As the size of voxels increases (due to low resolu-
tion, high dimensionality, or both) the number of extrema per voxel
increases, and the probability of false negatives increases. We have not
yet identified any other trends to explain the varying completeness of
the different searches here.

Figure 4.11 shows the manually-designed merge-tree for IRST an-
notated in red with the TREECOST for each subtree. The leaf subchains
are labelled in blue with the number of satisfying conformations. The

92

Figure 4.11: Satisfying conformations (blue) and subtree costs
(red), for subchains in the manual merge-tree of IRST.
For non-leaf subchains, the blue figures include the
number of combined candidates (before the arrow) and
then (after the arrow) the number of candidates found
to satisfy the constraints.

93

blue symbols for the non-leaf subchains are the number of candidate
conformations followed by how many of those conformations were found
to satisfy the constraints. The diamonds, arranged as in the dynamic
programming table of Figure 4.6, denote all the possible subchains of
the molecule. Blank diamonds are for subchains that are not searched
by this merge-tree. Appendix B has similar figures for other merge-
trees.

A visual display of the performance of OMNIMERGE components is
more difficult because left and right child subchains are chosen indepen-
dently for each combine operation. Figure 4.12 shows which subchains

Figure 4.12: Locally optimal merges for creating subchains of size 6
are in red, for creating subchains of size 7 are in blue,
for creating subchains of size 8 are in yellow, and the
chosen merge for creating the whole molecule is shown
in green. Merges for creating smaller subchains are
omitted for clarity.

were the children for the locally optimal merges that created the largest
subchains of IRST. Note a tendency of merges to reuse some of the par-
ticularly well constrained subchains (as indicated by clusters of merge
endpoints), such as subchain 5-9.

Figure 4.13 shows the number of candidate conformations OMNI-
MERGE evaluated for each subchain of 1RST, followed by the number
of solutions. (For leaf subchains, the number of candidate subchains is
not applicable and only the number of satisfying solutions is shown.)

All methods found the same number of satisfying conformations for

94

Figure 4.13: Each non-leaf entry contains the number of candidate
conformations, an arrow, and the number of satisfying
conformations.

all the subchains they searched in common, except the final subchain
(the whole molecule) for which the disagreement in number of confor-
mations found is reported in Figure 4.9.

The number of candidates evaluated in order to determine the num-
ber of satisfying conformations obviously does vary depending on the
method. For example, in the manual merge-tree, subchain 6-9 can only
be searched be combining 67 and 8-9, which gives 2x 455 = 910 candi-
dates. When OMNIMERGE reaches subchain 6-9, it chooses to combine
6—8 and 9-9 instead, which gives only 8 x 76 = 608 candidates.

Figure 4.14 shows the dynamic programming table with the BEST-
TREECOST of each subchain. Recall that the left and right child sub-
chains combined by OMNIMERGE are chosen to minimize the number
of candidates but the left and right children used for building up the dy-
namic programming table are chosen to optimize the cost of the whole
subtree. For example, the shaded entries in Figures 4.13 and 4.14 corre-
spond to subchain 3-5 of 1RST. The BESTTREECOST of subchain 3—-5
comes from choosing to combine subchains 3-3 and 4-5, which yields
a total cost 49.

95

Figure 4.14: A dynamic programming table for 1RST, with each
entry denoting the BESTTREECOST for the subtree
rooted at that subchain. A 45° rotation of this table,
as in Figure 4.5 may be more familiar.

BeSTTREECOST(1m, 1)
NUMSOLUTIONS (1,)

MIN x NumSoruTions(i + 1,n)
= : x VOXELCOST(n—m+1)
m<i<n .

+ BESTTREECOST(m, 1)
+ BeSTTREECOST(i + 1,7)
6
x 2
= x 3 = 49.
+ 6
+ 7

OMNIMERGE performs its search of subchain 3-5 by combining sub-
chains 34 and 5-5. Subchain 3-4 might be costly to create, but since
its search is already done, its results can be freely reused by OMNI-
MERGE.

BeSTNODECOST(m, n)

96

NUMSOLUTIONS(m, i)
_ M x NumSoLuTIONS(i + 1,7n)

msrsn x VOXELCOST(n-m+1).
8
= x 1 = 24.
x 3

4.4 PROPACGATION (Arc Consistency)

The penultimate and most promising upgrade to systematic confor-
mational search uses the idea of arc consistency [74, 73] to propagate
information about disqualified conformations from each searched sub-
chain to any other subchains that overlap it.

Motivation

When two subchains contain overlapping residues, any conclusions de-
duced about the overlapping residues during the search of one subchain
must also be true about the same residues in the other subchain. We
want to avoid deducing the same conclusion repeatedly.

For example, suppose we searched subchain 1-5 by merging 1-3 and
4-5, and suppose we discovered after evaluating all the candidate com-
binations that residue 3 always clashed with residue 4 unless residue
3 was in conformation X. In such a case, it is obvious to a human
that every conformation that includes these residues and satisfies the
constraints (including every conformation for the whole molecule) must
have residue 3 in conformation X. Suppose the next planned subchain
to search involves merging subchains 2-3 and 46 to create subchain
2—6. The current algorithm would have to consider all possible combi-
nations of 2-3 and 4—6 as candidates and would rediscover from scratch
that residue 3 must be restricted to conformation X, which is a waste
of effort.

That’s one case of a general problem of how to share information.
To generalize the challenge, any time a conformation (a combination
of torsion ranges for a subchain) is found to violate the constraints,
that combination should be pruned from consideration in all other sub-
chains as well. Although we have not yet found a suitable algorithmic
framework to distribute every kind of possibly relevant information,
the notion of arc consistency between overlapping subchains addresses
much of the need.

97

Arc Consistency

Arc consistency between variable A and variable B means that for each
value of A, there exists a value for B such that the value of A and the
value of B are consistent according to the constraint-arc between A
and B. This terminology derives from variables being vertices in a
graph and pairwise constraints on the variables being arcs between the
vertices. Enforcing arc consistency (also called constraint propagation)
can greatly accelerate solving a constraint satisfaction problem.

There are many ways to use arc consistency in the context of confor-
mational search.* For our application of arc consistency, each subchain
is a variable (which also makes it a vertex), each conformation is a
value, and two vertices are connected by an arc if the two correspond-
ing subchains have an overlap.

Consistency between two values according to a constraint-arc is de-
fined as follows: given that a value is a conformation, which really just
represents a voxel, and a voxel is a range of angles for each torsion,
then a conformation for subchain A will be called consistent with a
conformation for subchain B if and only if each bond that occurs in
both subchains is assigned to the same range of angles (or to overlap-
ping/compatible ranges) in the two conformations. The criterion of
arc consistency can finally be translated to our problem as follows. For
each conformation of subchain .4, there must exist a conformation of
subchain B such that the two conformations assign compatible ranges
of angles to each of the torsional bonds that they have in common. For
example, if subchain A and subchain B both contain torsion 6;, then
a conformation of subchain A placing torsion 6; in the range 30-60°
would not be “consistent” with a conformation of subchain B placing
torsion 6; in the range 90 120°.

Pitfalls to Avoid

There is a common misunderstanding about arc consistency, and also
a clash of vocabulary particular to this context. The misconception
that tends to occur frequently with any application of arc consistency
is that arc consistency forbids a value (conformation) for a variable
(subchain) when the value is found to be inconsistent with a value for
a linked (overlapping) variable. Actually, arc consistency only forbids
a value when it’s found to be inconsistent with every possible value for
the linked variable.

4Forward-checking is a limited form of arc consistency, applied during a back-
tracking search. The algorithm by Beusen et al. [6] called “treesearch with look-
ahead” can also be considered backtracking with forward-checking.

98

The vocabulary problem comes from confusing the original con-
straints imposed on the problem by the user (such as constraints on
interatomic distances) with the new requirements imposed on overlap-
ping subchains in order to facilitate the sharing of information. Hence,
we will always refer to the new requirements as constraint-arcs, and
“consistent” will mean the constraint-arcs are not violated, whereas
“feasible”, “satisfying,” or “legal” will refer to the status of the user’s
constraints.

In our application of arc consistency, the constraint-arcs are only
enforcing compatible angles for the common bonds between overlap-
ping subchains. A pair of perfectly good conformations that satisfy
all of the user’s constraints can be “inconsistent” if they don’t agree
on angles in the region of overlap. That could occur frequently, such
as if the conformations are part of distinct alternative solutions to the
overall problem. We forbid a value only when it is inconsistent with all
values for an overlapping subchain. We do not forbid a value when it
is inconsistent with just one value of an overlapping subchain.

PROPAGATION

We use a relatively standard algorithm for enforcing arc-consistency,
which we will simply call PROPAGATION [50, 51, 70]. PROPAGATION will
be run after each non-leaf subchain Sy (other than the whole molecule)
is searched. The propagation queue holds subchains with recently-
modified solution sets (in other words, subchains with new information
that needs to be propagated). Therefore, the algorithm starts by ini-
tializing the queue to hold Sp.

PROPAGATION
Queue «— Sop.
For each subchain, S, in the Queue {
For each searched subchain, 7, that overlaps S {
For each conformation 7; of 7 {
For each conformation d; of S {
If o} is consistent with 7; at overlapping
bonds, Then Next T7;
}
Comment {There is no o; consistent with 7}
Remove 7; from the conformations of 7.
Queue < Queue U {7}.

99

For our implementation of PROPAGATION, we have chosen to per-
form PROPAGATION only once per subproblem (after the combine op-
eration is done), rather than repeatedly during the combine operation
(each time a candidate is discarded). A problem for future research
might be to establish parameters to trigger PROPAGATION during a
combine operation if an expected chain-reaction could reasonably re-
duce the number of candidates currently under consideration.

PROPAGATION has no effect when used with divide-and-conquer on
a particular merge-tree because the only subchains that overlap each
other have an ancestor-descendent relationship. Since information al-
ready progresses from child to parent in an orderly fashion when using
a merge-tree (namely via the combine operation), there is no additional
unshared information to propagate. For example, in a default merge-
tree, subchain 1-4 overlaps subchain 3-4, and the solutions ruled out
during the search of 1-4 might be sufficient, with PROPAGATION, to
reduce the solution set for subchain 3 4, but since the only use for
subchain 3 4 was for creating 1 4, nothing is gained. No information
is propagated to, for example, subchain 4 5 because that subchain is
never considered. Only when doing the “redundant” work of searching
“extra” subchains is PROPAGATION truly applicable. Unless otherwise
specified, we will assume PROPAGATION always occurs in conjunction
with OMNIMERGE or LIMITED OMNIMERGE.

The overall effectiveness of OMNIMERGE with PROPAGATION com-
pared with, for example, divide-and-conquer on a default merge-tree,
will depend on whether the sharing of information can create enough
of a “chain reaction” to offset the additional costs of searching the ex-
tra overlapping subchains, minus the regained cost for being able to
use optimal merges, plus the cost of performing the PROPAGATION. In
other words, we need to try it to know.

In the case of a relatively unconstrained molecule, the PROPAGA-
TION algorithm will rarely create “chain reactions” because there are
many solutions for each subchain compatible with every solution for
every overlapping subchain. In a more tightly constrained system with
sparse solution sets, the removal of one solution for a small subchain
at one end of the molecule might dramatically reduce the solution set
for a neighboring subchain; the neighboring subchain is added to the
queue and its changed solution set is propagated, possibly reducing the
solution set for its neighbor, and so on across the whole molecule.

100

Performance Results

We ran variants of OMNIMERGE, with and without PROPAGATION, on
the 1RST peptide with the same constraint set and same parameters
as in section 2.3, page 45. PROPAGATION allowed both OMNIMERGE

Search With Run Time Number of Conformations
Method Propagation | (seconds) Minimizations Found
divide-and-conquer with

default merge-tree 2046 6712 657
divide-and-conquer with

manually-constructed tree 533 5189 662

divide-and-conquer with
merge-tree optimized

at 120° resolution 320 3654 679
OMNIMERGE 536 7271 679
LiMITED OMNIMERGE 313 5709 675
OMNIMERGE N 241 4390 664
LimiTED OMNIMERGE N 245 3957 695

Figure 4.15: Run times for simulations on 1RST searching all pos-
sible subchains, with and without propagation to en-
force arc-consistency. (The cost of the search using
the merge-tree optimized at low resolution includes the
cost of OMNIMERGE at low resolution. Compare with
Figure 4.9.) The resolution of the search was 40° for
backbone torsions and 120° for sidechain torsions.

and LIMITED OMNIMERGE to run significantly faster. See Figure 4.15.
The reduced number of minimizations is sufficient to account for the
faster speed. With PROPAGATION, OMNIMERGE ran more efficiently
than the LIMITED version, even though LIMITED runs faster without
PROPAGATION. This might be because the additional large, overlapping
subchains searched by OMNIMERGE revealed inconsistencies, and the
PROPAGATION from them allowed the search of the final subchain to
run more quickly.

PROPAGATION runs quickly relative to the cost of minimization, es-
pecially with increasing subchain sizes, and so we strongly recommend
using it whenever it is applicable. However, the disadvantage of using
PROPAGATION during an OMNIMERGE search is that it does not pro-
vide the necessary information for determining the optimal merge-tree.
Instead of computing the number of conformations of each subchain
that satisfy the constraints active on that subchain, we are determining
the conformations for each subchain that are both consistent with over-
lapping subchains and feasible with respect to the active constraints.

101

Without knowing the number of solutions for each subchain, unaided by
hints from overlapping neighbors, we cannot compute accurate TREE-
CosTs, much less BESTTREECOSTS.

Finally we note that in this case, completeness deteriorated for
OMNIMERGE and improved for LIMITED OMNIMERGE. Another draw-
back to using PROPAGATION, not clearly evident in this example, is that
PROPAGATION may easily decrease the completeness of a search. If
the minimizer (or whatever method is used to evaluate voxels) cannot
find any satisfying conformations in a voxel, that voxel is disquali-
fied, even if there is a satisfying region of space in the voxel. Because
OMNIMERGE considers all possible subchains, some combinations of
torsion ranges will be considered much more often than under divide-
and-conquer, sometimes in the context of high-dimensional voxels. The
repetition increases the probability of a false negative occurring at some
point. Without PROPAGATION, a single false negative in OMNIMERGE
would have no effect on the overall results unless the subchain with the
false negative participated in the merges that create the final molecule.
In contrast, PROPAGATION can spread a false negative to many over-
lapping subchains and cause the final results to be corrupted indirectly.
Even if the overlapping subchains already searched the same combina-
tion of torsions and correctly identified satisfying conformations in the
voxels, having it disqualified by one subchain might be enough to have
it disqualified in others.

4.4.1 Previous Work

The PROPAGATION algorithm we use with OMNIMERGE has a con-
ceptual similarity to the combination of “build-up” and “build-down”
projections used by Gippert et al. in their DTAGS and binary search
methods, but some background is required before the relationship be-
tween the concepts can be described.

The DTAGS (Distributed Torsion Angle Grid Search) algorithm [25,
24] searches linear chains of torsions (such as polypeptide backbones
without sidechains) and constructs lookup tables of the results. For
example, if a gridsearch has been performed at 10° resolution on a chain
of 4 torsions (61, 62, 03,0,), then the answers (allowed/disallowed) can
be stored as a four-dimensional (36 x 36 x 36 x 36) boolean matrix.

Whenever a conformation for a small subchain is found to vio-
late the constraints, DTAGS projects that information onto a host of
higher-dimensional tables. The overall idea is like the Rete algorithm
[22]. There is a lookup table for every possible subchain of consecutive
torsions (like our sets of all possible subchains except at the level of

102

torsions instead of residues). If a conformation for torsions 61—6, is
infeasible, then every subchain containing torsions 61—, has its lookup
table updated such that the sub-matrix of entries corresponding to the
disallowed angles for #; -6, are marked automatically as disallowed. For
example, in the table for (61,6, 03,04), if the boolean entry for the con-
formation (f; = 110°, 60, = 120°,03 = 130°, 6, = 140°) says disallowed,
then in the table for (01, 605,03,04,05), the “column” of entries corre-
sponding to (6, = 110°, 02 = 120°, 03 = 130°, 6, = 140°, and any value
of 65) would also get marked as disallowed.

Compared with a naive gridsearch algorithm, DTAGS is space-
intensive and performs an enormous number of projection operations
on bits, but it performs remarkably few floating-point operations and
it never computes the interatomic distance between the same pair of
atoms more than once. This is a stunningly creative trade-off. An em-
pirical comparison of its performance or else an analysis of its asymp-
totic efficiency would be helpful.

In the 1995 version of the DTAGS algorithm (Gippert’s doctoral
thesis [24]), the term “propagation” is used to describe the repeated
projection of disallowed conformations into higher-dimensional tables.
That use of the term propagation is not related to our PROPAGATION
algorithm nor to the “constraint propagation” algorithms within the
“constraint satisfaction” area of artificial intelligence. (The criterion
used by the 1995 version of DTAGS for ruling out conformations in
higher-dimensional tables is strictly weaker than the arc consistency cri-
terion used for constraint propagation between overlapping subchains.)

In the 1998 version of the DTAGS algorithm [25], another procedure
called “build-down” was added, and this brings us finally to the sim-
ilarity with our PROPAGATION algorithm. Whereas the DTAGS pro-
jection in the 1995 version (called “build-up” but not with reference
to the buildup procedure of Scheraga et al. [57, 71, 23]) uses single
disallowed conformations in a low-dimensional table to rule out sub-
matrices in high-dimensional tables, the new “build-down” procedure
finds whole sub-matrices in high-dimensional tables that are entirely
disallowed and uses that information to rule out the single correspond-
ing conformations in lower-dimensional tables. For example, with the
“build-down” procedure, if some large chain has no allowed conforma-
tions with 6, = 30°, then all smaller subchains of it can have 6; = 30°
excluded as well.

Recall the arc consistency criteria that we enforce with the PROP-
AGATION algorithm:

If subchains A and B overlap,

103

then for each conformation of subchain A,

there must exist a conformation of subchain B such that
the two conformations assign compatible ranges of angles
to each of the torsions that they have in common.

The filtering of conformations accomplished by the DTAGS “build-
down” procedure can be restated in similar terms as follows: (Differ-
ences are in boldface.)

If A is a subchain of B,

then for each conformation of subchain A,

there must exist a conformation of subchain B such that
the two conformations assign the same angle to each of
the torsions that they have in common.

The two methods define legal subchains very differently, but let us as-
sume temporarily that the concept of a subchain is not in question.
If we set aside the voxel model for the moment, then the arc con-
sistency criterion could use angles instead of ranges of angles. The
only remaining difference is whether the two subchains must have a
superchain-subchain relationship or an arbitrary region of overlap.

The “build-down” criterion alone is less general than the arc con-
sistency criterion because the superchain-subchain relationship is less
general than an arbitrary region of overlap. (The “build-up” criterion
alone is definitely less general than the arc consistency criterion.) The
combined application of both “build-up” and “build-down” might be at
least as general as arc consistency because it would conceivably allow
information to travel arbitrarily, including across overlaps. For exam-
ple, information about disallowed values for residues 3-5 could travel
from subchain 1-5 to subchain 3-8 by way of 1-8.

We conjecture (making allowances for the differences already men-
tioned) that any set of conformations satisfying both the “build-up”
and “build-down” criteria would also satisfy our arc consistency crite-
rion and vice versa. In other words, if the other components of two
algorithms (DTAGS and OMNIMERGE with PROPAGATION) were the
same, then their respective criteria for removing disallowed conforma-
tions seem like they would be equivalent, even though the motivations
and implementations are very different.

Gippert et al. also apply the combination of “build-up” and “build-
down” ideas to their divide-and-conquer method, a Cartesian-space
binary tree search. The “build-down” algorithm for use with their
Cartesian-space binary tree search is described using an analogy to
the DTAGS method rather than in full detail. Similarly, and for

104

lack of space, we suggest that the conceptual similarities between the
Cartesian-space binary tree search and PROPAGATION are analogous to
the similarities between DTAGS and PROPAGATION.

4.5 Augmenting OMNIMERGE with A*

Our method so far, OMNIMERGE with PROPAGATION, searches all pos-
sible subchains by combining small subchains into larger ones, and it
propagates consistent values across overlapping subchains. The final
innovation we present will be to choose the order in which subchains
are searched (possibly also skipping some subchains) rather than simply
searching all subchains according to the default ordering from OMNI-
MERGE.

In this introduction to the section, we provide some general intu-
itions for the ideas to be developed later. The next topic, buildable
sets and the buildability graph, will provide a formal description of the
space of all possible merge-strategies. Aside from the definition of a
“buildable” subchain, this topic may be considered optional. The topic
after that is the innovation itself, “the A* improvement” for selecting
which subchain to search next. The final topic looks at performance of
OMNIMERGE with the A* improvement.

The A* improvement is a subtle idea with several layers. The basic
idea was motivated by instincts acquired after observing many runs of
OMNIMERGE. With some molecules, there is an early bottleneck—a
“bad” subchain that is much more costly to search than other sub-
chains of comparable length. While other subchains might have some
right or left child subchains with many solutions, there is usually some
combination of left and right children with reasonably low product.
For the “bad” subchain, there is no good combination of right and left
children.

For example, in the extreme example at the beginning of this chap-
ter, we constructed constraints that leave the left half and right half
of the molecule unconstrained even though the whole molecule is well-
constrained overall. If the extreme constraints are applied to a molecule
with eight residues, then subchain 5-8 would qualify as “bad.” We will
revisit this case after describing the A* improvement.

Human instinct is to skip the search of the “bad” subchain. Cer-
tainly time would be saved in the short run, and limited harm would
seem to come of it in the long run, because many alternative subchains
are available to serve as right and left children for all subsequent merges.
Just as LIMITED OMNIMERGE chooses which subchains to skip based

105

on their lengths, we would like to choose which subchains to skip based
on information obtained during the searches of smaller subchains, such
as information about the number of solutions for various right and left
children.

One can consider exhaustively which single subchain might be best
to “skip,” or one can evaluate all possible merge-trees fully, but the
general space of all possible merge-strategies is astronomical. (For ex-
ample, the space of merge-strategies includes skipping combinations
of subchains, or searching some of the subchains in one merge-tree
and then searching the subchains of some other merge-tree.) Instead
of restricting ourselves to using very simple merge-strategies, (such as
merge-trees, or OMNIMERGE, or skipping a single choice of subchain),
we would like to navigate the full space of possible merge-strategies
and make choices on the fly using the information currently available.
When information shows particular subchains to be “bad” or “good,”
we would like to omit the bad subchains, search the good subchains
immediately, and otherwise take advantage of the freedom. If no useful
information is available, we can follow a simple default merge-strategy,
such as searching all subchains, and no harm would come from having
the extra freedom.

As we wander the space of merge-strategies, we obtain some degree
of new information each time another subchain is searched. If subchains
that looked “good” turn out to be worse than expected, a subchain
previously classified as “bad” might start to seem good by comparison.
Rather than omitting the “bad” subchain permanently, we will order
the subchains from good to bad and search the best subchain first. If
a subchain is ranked “bad” enough for long enough, the search of the
whole molecule chain will occur before the search of the “bad” subchain.
Since the search of the whole molecule marks the end of the program,
any subchain postponed until after the search of the whole molecule is
skipped. As in life, postponing something long enough means it never
gets done. Thus, we talk about how to order or prioritize subchains
instead of simply talking about which subchain(s) to skip.

The two remaining ideas are about how to compute a quantitative
function that evaluates the priority of a subchain. They pertain to the
A* cost function itself, but still only at an intuitive level.

We would like to prioritize a subchain not just by the immediate
cost of searching it but also by the expected usefulness of the subchain
towards creating other merges. Furthermore, since the true goal is
to search the whole molecule, we consider defining the usefulness of a
subchain in terms of its relative contribution to a merge-tree for the
whole subchain. (Suppose we actually knew the costs of alternative

106

merge-trees and suppose we were going to search the molecule using
a merge-tree.) If two merge-trees for the whole molecule are chosen
by optimizing over all the same freedoms, except that merge-tree «
must use subchain A and merge-tree 8 must use subchain B, then the
difference in cost between « and 3 can be thought of as the difference in
value between subchains A and B. The immediate costs of searching
A or B might dominate the comparison of their merge-trees (which
would be like choosing which subchain to search next based just on the
immediate costs). The more interesting case is if A is more expensive
to search than B but « is less expensive than 3. That might occur if A
can be merged with a well-constrained subchain to create a search of
the whole molecule and B would have to be merged with an expensive,
unconstrained subchain before it could create a search of the whole
molecule. Under such circumstances, where A is the “missing link” for
reaching the final answer, we would like to choose A even though the
immediate search of B would be cheaper.

The final idea comes from the supposition that we might know the
costs of alternative merge-trees and that we might search the molecule
using a merge-tree. The number of conformations for each subchain is
unknown, but suppose we make estimates for these numbers and use
the estimates to predict an optimal merge-tree. For subchains in the
distant future, our estimates will have virtually no predictive power.
For subchains that might be searched in the near future (subchains for
which at least one left and right child have been searched), much better
estimates may be possible.

We will indeed attempt to perform the search using the optimal
merge-tree. At the beginning of the search, when virtually no informa-
tion is available, we will make a wildly optimistic set of estimates and
pursue their logical consequences for one step, which is for the search of
one subchain. When the results turn out to be disappointing, we will
revise the estimates and follow their logical consequences for one step.
Whenever a set of estimates is inaccurate, the next piece of incoming
information (the number of solutions found for the subchain previously
believed to be “best”) will disprove the initial estimates. The new in-
formation causes revisions not just in the estimates for the number of
solutions per subchain but also in the optimal merge-tree. We can al-
ways try to pursue the optimal merge-tree, but the optimal merge-tree
may shift after each subchain.

In the absence of any estimates with predictive power, the con-
stantly “disappointing” information and the constant shift from one
optimal merge-tree to another will end up causing all subchains to be
searched in order from small to large. In other words, if we have no pre-

107

dictive information, we will search the same subchains as OMNIMERGE!
OMNIMERGE is an excellent strategy if no information is available.
Meanwhile, if we can somehow estimate the optimal merge-tree cor-
rectly, then we may actually have a chance of searching according to
the optimal merge-tree.

Buildable Sets

Up until now we have talked about the different merge strategies as if
the question is which merge-tree to use. From that viewpoint, OMNI-
MERGE (without PROPAGATION) encompasses every possible merge
strategy because the results of every possible merge-tree can be re-
constructed easily from the results of OMNIMERGE.

However, there are yet other merge strategies that OMNIMERGE
neglects. Using the same language, a more general question, instead
of which merge-tree to use, is what parts of which merge-trees to ex-
plore, and in what order. This allows for the possibility of, say, al-
ternating between the subchains of two different merge-trees until one
seems clearly better than the other. OMNIMERGE considers all possible
merge-trees but it treats them uniformly; by searching all subchains in
a pre-determined order, OMNIMERGE precludes the possibility of skip-
ping ahead to a “later” subchain, such as a large subchain for which
particularly promising, well-constrained left and right children have
just been identified. We will now develop a more general language and
framework for considering possible merge strategies.

Let N be the number of leaf subchains (residues) in the molecule
being searched.

We define a buildable set of subchains to be a set of subchains such
that every element is either a leaf subchain or else it is buildable from
the other subchains in the set. Subchain S; is buildable from subchains
L; and R; if £; and R; can function as left and right children for a
combine operation to create S;. A complete (or incomplete) buildable
set is a buildable set that includes (or does not include) the whole
molecule as one of its subchains.

Recall from the definition of a legal merge-tree (in section 2.3) that
the subchains in a legal merge-tree are always a complete buildable set.

Buildability Graph

A buildability graph has a vertex corresponding to each buildable set
of subchains. Let V; denote either a vertex or its buildable set. A
directed edge, Es, connects vertex V;j to vertex V3 if and only if there
is a subchain § such that S is not in Vi, but adding S to Vi yields V5.

108

({S}UV; = V4.) Since V3 is buildable, then either S is a leaf or S is
buildable from the subchains in V;.

Suppose the molecule to be searched has only two residues (or two
pieces of whatever size we choose to search from scratch). The set of
possible subchains has three elements {1-1, 2-2, and 1-2}. The power
set of the set of subchains would have 22 = 8 elements, although not all
of those eight would be buildable sets. Figure 4.16 shows, for a molecule
with two leaves, the eight elements of its subchain power set, five of
which are buildable. Each vertex (circle) contains an arrangement of

a

b’®\
o T

d

NN

Figure 4.16: The buildability graph for a molecule with two leaves.
The disconnected vertices, f, g, and h, correspond to
elements of the power set that are not buildable.

~@

open and red-filled diamonds—reminiscent of the diagonal table (Figure
4.6) with all possible subchains—to depict which subchains are absent
or present in the set. The lower left diamond in each circle represents
the first leaf subchain, the lower right represents the last leaf subchain,
and the top diamond represents the whole molecule.

@ awaan
S o

Figure 4.17: Legend for Figure 4.18.

Figure 4.18 shows a buildability graph for a molecule with three
residues and six possible subchains (1-1, 2-2, 3-3, 1-2, 2-3, and 1-3).

109

Again the diamonds in each vertex correspond to the possible subchains
in a set, with the leaves in the bottom row, and the whole molecule at
the apex. Figure 4.17 is a legend.

Merge Strategies as Paths

Each vertex in the buildability graph corresponds to a knowledge state.
The subchains in the buildable set are the subchains that have known
solutions (that have been searched). Traversing a directed edge corre-
sponds to searching a subchain. The size of the knowledge state (the
number of subchains searched) grows by one for each step taken. There
are no dead-ends (no reachable vertices with zero out-degree) except
when all subchains have been searched, and the longest possible path
is from the vertex for the empty buildable set to the vertex for the set
of every possible subchain. (OMNIMERGE explores a longest possible
path.)

Finally let us define a complete build path as a path in the build-
ability graph from the empty buildable set to a complete buildable set.
Each merge strategy we have considered so far in this chapter (ignoring
PROPAGATION) corresponds to a merge strategy path.®

Contrary to first instinct, no merge strategy path could ever include
both vertex b and vertex c from Figure 4.16 or 4.18 because knowledge
state ¢ indicates ignorance about the first leaf subchain, not indiffer-
ence. Searching the first leaf and then the second would correspond
not to a-b-¢ but to a-b-d in Figure 4.16 or a-b-f in Figure 4.18. Also
perhaps contrary to instinct, complete build paths can terminate as
soon as any complete buildable set is reached, such as nodes n or o, not
just at the most complete set, node p. In a buildability graph, there is
a “finish line” beyond which any node is an acceptable goal.

The path through Figure 4.18 corresponding to the strategy of
divide-and-conquer with a default merge-tree is a-b-f-h-k-n. (Recall
that we chose in section 2.3 to traverse merge-trees from left to right

5The set of all possible subchains except those larger than 0.667*N (but smaller
than the whole subchain) is a complete buildable set because the removal of large
subchains cannot prevent small subchains from being buildable, and the only sub-
chain larger than 0.667*N, the whole molecule, is already buildable because of the
size % subchains. If integer d divides N evenly, then the set of all subchains that
are either smaller than d or divisible by d is a complete buildable set because sub-
chains of length kd for k > 1 can be built by combining subchains of length d and
(k—1)d. For subchains of length d or smaller, all possible subchains are available for
combination. Removing orphans does not alter the buildability of a set, although if
other factors have been chosen poorly (such as if d does not divide N evenly) then
it can alter the completeness of a set.

110

a molecule with three

Figure 4.18: The buildability graph for

n-buildable sets

ponding to no

. Vertices corres

residues

are omitted.

111

before going from bottom to top. Traversing the same merge-tree in a
different order would include paths such as a-b-f-i-k-n or a~-d-g-h-k-n.)
A linear-merge tree is identical to the default merge-tree when there
are only three leaves, so that path would be the same.

The path corresponding to OMNIMERGE is a-b-f-h-k-m-o. Instead
of going straight from k to the finish line, OMNIMERGE goes from k
to another incomplete state, m. As we know, OMNIMERGE searches
more subchains than divide-and-conquer does before yielding the final
answer, even for a molecule with only three residues. However, the final
edge in a path, the search of the whole molecule, tends to be the most
time-consuming step in the whole path, by far. Using OMNIMERGE and
going from k to m causes an additional dipeptide to be searched. The
benefits of this are, first, if the solution sets for the dipeptides (1-2 and
2-3) are not already consistent at their overlap, then PROPAGATION
can reduce the number of remaining solutions; second, more than one
possible combination of smaller subchains is available for the final step
of searching 1-3, and the additional choice of children might allow fewer
candidates to be considered.

Each diagram we have presented for visualizing search strategies
emphasizes different facets of the algorithms. The buildability graph
does not show which children are chosen at each step nor any costs.
It just guarantees that, whenever there is an edge present, there exists
some method for searching the subchain it adds. The buildability graph
highlights decisions about which subchains are searched and in what
order. Although we gain nothing by explicitly differentiating trivial
decisions, such as the order in which the leaves are searched, this model
highlights the variety of viable paths that do not correspond to any
particular merge-tree or nameable strategy. Divide-and-conquer using
a merge-tree never searches any “extra” overlapping subchains (it skips
ahead to larger subchains at every opportunity), and OMNIMERGE
always searches every overlapping subchain, never skipping anything.
There is a universe of other strategies in between these two extremes.

Growth in the number of options

The total number of possible subchains for a molecule with N leaves is
N(N +1)
N+ (N -)+(N_2)+1"':f'

Every legal merge-tree with N leaves has N — 1 internal nodes and
2N — 1 nodes total. Because the N — 1 internal nodes of a legal merge-
tree have no restrictions on arrangement other than the binary branch-
ing factor, there is a one-to-one relationship between ordinary binary
trees with N — 1 nodes and legal merge-trees with IV —1 internal nodes,

112

N leaves, and 2N — 1 total nodes. Therefore, the number of different
legal merge-trees with IV leaves is equal to the number of binary trees
with N — 1 nodes, which is % 2%\[:11) [37].

The number of possible sets of subchains grows exponentially with
the number of subchains, which itself is already quadratic in the num-
ber of residues. OMNIMERGE and its variants may exhaust the paths
through the small buildability graph in Figure 4.18, but for sufficient
N, the number of possible paths through the buildability graph will be
far greater than the number of merge-trees. There are many ways of
jumping around in the table of all subchains that do not correspond to
merge-trees or other named strategies. We wish to design an algorithm
that uses this insight, this flexibility, to perform a more efficient search.

4.5.1 The A* Improvement

We now describe an augmentation of OMNIMERGE that uses the A*
algorithm for choosing which subchain to search next. A* is often
described in conjunction with a search graph but the buildability graph
is a knowledge state graph. (In a search graph, you can explore many
alternative paths or partial paths by backing up and choosing another
branch. In a knowledge state graph, backing up would correspond to
deleting information.)

The main idea of A* is to decide among alternatives by scoring
each option according to a cost function that reflects the total cost of
reaching the goal by way of that option. The A* cost function typically
involves a heuristic to estimate the cost from the decision point to the
goal. Under A*, any uncertainty about the cost to the goal must be
resolved optimistically so that the estimated cost is a guaranteed lower
bound on the actual future cost if the option is chosen. Choosing
which subchain to search next according to a cost function contrasts
with plain OMNIMERGE, which chooses its next subchain according to
a blind left-to-right, bottom-to-top ordering.

The A* cost function

The general case for defining the A* cost function assumes that some
number of subchains have already been searched and multiple subchains
(including the whole molecule) have not been searched. How can we
compute the cost of searching the whole molecule by using a particular
subchain?

We already have a cost function, the BESTTREECOST, which gives

113

the cost of reaching the goal (of searching the whole molecule) by way
of the subchains in the optimal merge-tree. The BESTTREECOST for
a molecule can be computed if one knows the number of satisfying
conformations (number of solutions) for all its possible subchains. Fur-
thermore, a guaranteed lower bound on the BESTTREECOST could
be computed from guaranteed lower bounds on the number of solu-
tions. For subchains that have not yet been searched, make the most
optimistic (cheapest) guess and assume they will each have one so-
lution. Accordingly, we can compute ESTIMATED-BESTTREECOSTS,
ESTIMATED-NODECOSTS, or estimated versions of any of our cost func-
tions using the estimated numbers of solutions.

We could define f*(S), the A* cost of subchain S, to be the ESTIMA-
TED-TREECOST for searching the whole molecule using the best merge-
tree that includes subchain S. One disadvantage of this definition is the
possible inclusion of unsearched subchains in the subtree for S. Since
the purpose of this computation is to evaluate whether to search S next,
and any immediate search of S would be restricted to using left and
right child subchains that have already been searched, we will instead
define the cost f*(S) to be the ESTIMATED-TREECOST for searching
the whole molecule using the best merge-tree that (1) includes subchain
S and that (2) only uses searched subchains for constructing the cost
of the subtree of S.

The A* cost function, f*(S), is traditionally broken into two parts,
g*(S), the actual cost to reach S (without estimate), and h*(S), the
estimated cost from S to the goal. In that case, if S corresponds to the
black entry in Figure 4.19, then ¢*(S) would be computed using the
costs of the subchains in the red region and h*(S) would be computed
from costs of the subchains in the yellow region.

There are two trivial cases that we have, for simplicity, defined
separately. For any leaf subchain under consideration, we define its
A* cost to be small because all strategies depend on searching all leaf
subchains. Therefore leaves can safely and efficiently be searched first.
Conversely, unreachable non-leaf subchains should be scored so they
never come next. In other words, if there aren’t any searched subchains
that can serve as right and left children for a combine operation to
create subchain S, then the A* cost for S should be prohibitively high.

Before each non-trivial choice of which subchain to search next, we
compute f* for all unsearched subchains as follows. First we compute
as much as possible without making any assumptions or using any
estimates. The actual number of solutions for searched subchains is
used to compute TREECOSTS and ¢g* for as many subchains as possible.
Then we compute as much as possible using optimistic estimates but

114

Figure 4.19: Regions influencing (red) and influenced by (yellow)
the black entry when computing BESTTREECOSTS.

without focusing on any particular choice of subchain. This gives an
ESTIMATED-BESTTREECOST table including all subchains. Finally we
make one table for each possible assumption that requires a particular
subchain to be used. That is, for each unsearched subchain S, we make
a table Ng.

Just as the computation of the cost of the globally best merge-tree
is computed by filling in a dynamic programming table with BEST-
TREECOST (m,n) for each subchain up to the whole molecule, the
computation of the cost of the best merge-tree restricted to S will be
computed by filling in a dynamic programming table with an analogous
function, RXs(m,n), applied to each subchain up to the whole molecule.
One difference is that Ng is only computed for subchains that include
all the residues of S (the subchains shaded yellow in Figure 4.19).

Rg(m-n) contains the ESTIMATED-TREECOST for searching sub-
chain (m-n) using the best merge-tree that (1) includes S and that
(2) uses actual g*(S) costs to choose the best subtree rooted at S. Vg
(subchain §) is obviously just ¢*(S). We use this entry for s to build
up entries for larger subchains, as with dynamic programming to com-
pute BESTTREECOSTS except always making sure S is included in any
choice of merge-tree. Eventually Rs (subchain (1-N)) will give us f*(S).

Determining each new entry Rs(m,n) involves minimizing over a
choice of which left and right child subchains to combine. However,
with the Xg computations, the choice of i (the middle residue) is also re-
stricted so that one of the child subchains must contain all the residues
of §. The cost of that child’s subtree is taken from previous entries
in the Ng table and the cost of the other child is taken from the

115

ESTIMATED-BESTTREECOST table. (In the formula below, the left
child is assumed to be the one containing S.) Otherwise, if the residues
of § were divided between the left and right children of subchain m-—n,
then & would not be a part of the implied merge-tree.

Ns(subchain S) =g* (S)

Ns(subchain mfn) =

ESTIMATED-NUMSOLUTIONS (subchain m — i)
ESTIMATED-NUMSOLUTIONS (subchain i + 1 — n)
VoxeLCosT(n —m + 1)

R (subchain m—)
ESTIMATED-BESTTREECOST(subchain i 41 n)

[N
il

EN
s
3

Sc 8

=Y
+ + X X

The final entry in the table, Ng(subchain (1,N)) is equal to f*(S),
the A* cost for subchain S. After filling in tables Rz, Ny, Xy, for all
unsearched (reachable) subchains 7,U, V), the subchain with best A*
cost is chosen to be searched next. Although this cost function is elab-
orate, the cost of evaluating subchains using quadratic-sized dynamic
programming tables is generally insignificant compared with the cost
of actually searching those subchains.

Variations

A faster way to choose a subchain to search next would be to skip the
N tables and just compute an ESTIMATED-BESTTREECOST table for
the whole molecule. This would give both a lower bound on the search
of the whole molecule and an “optimal merge-tree” corresponding to
that best-case search. Then we would choose any reachable subchain
in the optimal merge-tree to search next.

The A* approach to ordering subchains is not necessarily optimal,
in the sense of providing a reasonable merge-strategy with best trade-
off of overhead versus strategy improvement. Some searches might run
faster using a greedier strategy, such as a cost function that estimates
only the remaining cost to the goal instead of the total cost. More
aggressive cost functions that don’t provide a guaranteed lower bound
might also be useful.

Using OMNIMERGE with A* (but without PROPAGATION) will eval-
uate all subchains necessary for computing the optimal merge-tree. Us-
ing PROPAGATION prevents the resulting table from being useful for
that purpose (as described on page 101), and algorithms that don’t use
A*’s guaranteed lower bounds or its evaluation of total costs will also

116

lose the guarantee of proving an optimal merge-tree as a side-effect of
the search.

Results

We searched 1RST using the same constraints and parameters as in
the previous test cases, but this time we included the use of the A*
algorithm to choose the order in which subchains were searched. Fig-
ure 4.20 shows the results of the simulations.

Search Propa- | With | Runtime Number of Conformations
Method gation | A* | (seconds) Minimizations Found
divide-and-conquer with

default merge-tree 2047 6712 657
divide-and-conquer with

manually-constructed tree 533 5189 662
divide-and-conquer with

optimized merge-tree 320 3654 679
LiMITED OMNIMERGE 313 5709 675
LiMITED OMNIMERGE N 311 5709 675
LimMITED OMNIMERGE v/ 245 3957 695
LimiTED OMNIMERGE v/ v/ 244 3604 695
OMNIMERGE 536 7271 679
OMNIMERGE v 555 7271 679
OMNIMERGE v 241 4390 664
OMNIMERGE v/ v/ 220 3968 662

Figure 4.20: Run times for simulations on 1RST searching all pos-
sible subchains, with and without PROPAGATION, with
and without the A* algorithm. The resolution of the
search was 40° for backbone torsions and 120° for
sidechain torsions.

The search of 1RST runs faster with A* than without (except in
the case of OMNIMERGE without PROPAGATION) but the improvement
almost insignificant, especially when compared with the improvement
in efficiency that PROPAGATION accomplished.

There are significant differences in costs between alternative merge
strategies for 1RST (in part because the molecule and its constraints
are very asymmetric). The A* algorithm can distinguish and exploit
these differences to create a more efficient search. The addition of A*
does not seem to have much effect on the number of conformations
found.

While OMNIMERGE without A* is forced to search every large sub-
chain, and LiMITED OMNIMERGE is forced to skip every large subchain,

117

OMNIMERGE with A* can choose to skip a large subchain (if, say, the
number of candidates for it would clearly make it more expensive to
search than just skipping ahead and searching the whole molecule), but
it still searches large subchains that have a possibility of participating
in an optimal merge-tree. Of course the vast majority of subchains ex-
amined by OMNIMERGE with A* do not turn out to participate in the
optimal merge-tree, but some of them do compensate by reducing the
solution sets of other subchains via PROPAGATION. In sum, we recom-
mend the use of the A* augmentation because it can avoid searching
the most poorly-constrained subchains in a molecule (a benefit with
unlimited potential), and at worst it requires extra arithmetic (a delay
with limited potential).

The extreme example

At the beginning of this chapter, we constructed artificial constraints on
a molecule (for example, on an eight-residue helix of polyalanine) such
that the right and left halves (subchains 1 4 and 5 8) are unconstrained
but constraints from the left half to the right half do constrain the
overall molecule tightly.

We searched an eight-residue helix with these constraints using
OMNIMERGE, and the number of conformations for each subchains
is shown in Figure 4.21. Note the large numbers for subchains 1-4 and
5-8. For non-leaf subchains, the two numbers provided are the number
of candidate conformations to be evaluated (before the arrow) and the
number of candidates found to satisfy the constraints (after the arrow).

If we searched the same molecule using PROPAGATION, the unique
ranges for subchains at the interface between the two halves would
propagate immediately to the rest of the molecule and the search would
complete extremely quickly, with or without the A* ordering.

OMNIMERGE searches subchains in a predefined order, from left
to right and from small to large. Figure 4.22 shows this order using
increasing color intensity to indicate the passage of time.

If we search the same eight-residue helix with extreme constraints
but using the A* function to select subchains, the order in which the
subchains are searched is shown in Figure 4.23. Black entries indicate
a subchain that has been skipped.

When the number of satisfying conformations is dramatic and obvi-
ous, such as for the extreme example without PROPAGATION, using A*
orders the subchains very decisively, skipping the right and left halves
of the molecule and choosing subchains “up the middle” of the table.

118

Figure 4.21: Subchain size statistics acquired by running OMNI-
MERCGE (without any PROPAGATION) on the eight-
residue helix with extreme constraints.

Figure 4.22: The order in which subchains are searched by OMNI-
MERGE is shown using increasing color intensity for the
passage of time.

119

Figure 4.23: The order in which subchains are searched by OMNI-
MERGE with A* ordering (but without PROPAGATION)
is represented by increasing color intensity.

4.6 A Difficult Case

We constructed a more difficult set of test cases using a 16-residue
helix of polyalanine. (See Figure 4.24.) We chose a length of polyala-

Figure 4.24: Sixteen residues of alanine with ¢ = —57.0°, ¢ =
—57.0°, and w = 180.0°.

nine with 2* = 16 residues so that the default merge-tree would be
well-balanced and we established short-range constraints that are ran-
domly distributed along the molecule. The constraints were generated
by forming the molecule into a helix, measuring all its interatomic dis-
tances, and among all atom pairs with a distance between 2.5 and 6.0
A, selecting some uniformly at random and constraining them to an
interatomic distance within some threshold (called the “padding”) of
the measurement. The selected pairs of atoms were chosen without
regard for atom types, nuclear-spin properties, or covalent bonding ar-
rangement, and therefore some constraints may be redundant with each
other and/or with the rigid geometry. The pairs of atoms were selected

120

independently for each of the trial constraint sets.

This is not expected to be a favorable case for OMNIMERGE and
its variants for several reasons. Because of the complete uniformity of
the molecule and the relatively uniform number of constraints for each
part of the molecule, we expect there will be little difference in cost
between alternative merge strategies. Thus, we expect that the merges
performed by OMNIMERGE (using the optimal choices of left and right
children) will not be significantly better than the merges in the default
merge-tree, and OMNIMERGE will have to search many more subchains
than the default merge-tree (quadratic instead of linear).

In particular, we expect the merges of large, overlapping subchains
to be a waste of time because there are no constraints on pairs of atoms
separated by more than five residues in the sequence. The only new
constraints that will become active when performing a combine oper-
ation on medium or large subchains will be short-range constraints at
the interface between the two children. If a small subchain that over-
laps the interface has already been searched and its results propagated,
then the high level merges will involve virtually no pruning. In that
case, LIMITED OMNIMERGE will certainly outperform OMNIMERGE.

We do expect PROPAGATION to be useful, although simply not per-
forming unnecessary searches of “extra” overlapping subchains might
be superior. Finally, we expect that the A* augmentation of OMNI-
MERGE will not be able to suggest an order of search that is signifi-
cantly better from the “default” order of plain OMNIMERGE.

Results

We searched the polyalanine peptide at 120° resolution for all bonds,
with up to five passes of minimization per voxel, according to five dif-
ferent trial conditions and sets of constraints. All peptide bonds (w
torsion angles) were constrained to between 175° and 185°. Hydrogen
atoms were excluded from the model.

Trial A constrained 70 pairs of atoms to within 0.05 A of their mea-
sured distance in the helix and all constraints were considered satisfied
when the summed squared violations were less than 0.0005 A2. All
search methods found 6 satisfying conformations. Parallel statistics
for each of the five trials appear in Figure 4.25. Figure 4.26 shows
the results of searches using the conditions in trials A, B, C, and D.
As expected, OMNIMERGE without PROPAGATION performs poorly; it
requires an order of magnitude more time than divide-and-conquer us-
ing the default merge-tree. Also as expected, LIMITED OMNIMERGE
universally outperforms OMNIMERGE, and PROPAGATION always im-

121

Number of Distance Sum-Sq Satisfying
Trial | Atom Pairs Constraint Violation Conformations

Constrained Padding (A) Allowed (A?) Found

A 70 0.05 0.0005 6

B 73 0.05 0.0005 15

C 503 0.5 0.005 15

D 385 0.5 0.005 30

E 294 0.5 0.005 varies

Figure 4.25: Five sets of parameters used for generating constraints
and running searches on 16-residue peptides of polyala-
nine. The right column shows the number of satisfying
conformations found by the searches.

Search With | Trial A Trial B Trial C Trial D
Method* A* | Run Time Run Time Run Time Run Time
divide-and-conquer with

default merge-tree 80.3 26.8 58.5 179

divide-and-conquer with
merge-tree optimized
at 180° resolution (11.2) (11.1) (45.5) (89.0)

above plus cost of
OMNIMERGE at 180°

resolution 98.3 65.8 55.3 114
OMNIMERGE

without propagation 1002 749 103 199
LIMITED OMNIMERGE

without propagation 633 380 75.0% 106
OMNIMERGE

with PROPAGATION 20.5 47.7 13.6 63.2
LiMITED OMNIMERGE

with PROPAGATION 18.2 14.4 11.0 21.0
OMNIMERGE

with PROPAGATION N 8.23 47.9 14.3 58.3
LIMITED OMNIMERGE

with PROPAGATION Vv 6.01 14.4 11.4 21.9

Figure 4.26: Run times for simulations on polyalanine (in seconds)
according to various search methods with four differ-
ent conditions. The limit of subchain size for LIMITED
OMNIMERGE was two-thirds of the size of the whole
molecule, or up to 10 residues.

*In trial C, LMITED OMNTMERGE only found 14 of the
15 conformations found by the other methods.

122

proves performance.

The surprise is that LIMITED OMNIMERGE (with PROPAGATION)
outperformed the default merge-tree in all trials. The fastest run time
for each trial is colored green. LIMITED OMNIMERGE (with PROPA-
GATION) required between 10 percent and 50 percent as much time as
the default algorithm.

Using A* to choose the order for searching subchains had mixed
effects, ranging from helping significantly in trial A, and helping in-
significantly in trial B, to hurting insignificantly in trials C and D.

As another comparison, we performed OMNIMERGE searches at
180° resolution (for all bonds) to obtain optimal low resolution merge-
trees; then the low resolution optimal trees were used for divide-and-
conquer searches at the regular 120° resolution. For the run times
of these searches, the times for just the optimized divide-and-conquer
searches are enclosed in parentheses, and the total times, including the
time for performing OMNIMERGE at low resolution, are shown with-
out parentheses. The lower resolution searches were initially performed
with only one pass per voxel, but OMNIMERGE at low resolution failed
to find any conformations that satisfied the constraints for trials A and
B. (These false negatives are not too surprising because 180° resolution
is coarser than the broadest rotamers, which are local minima. Multiple
minima per voxel would not reliably be explored using only one pass.)
Therefore, we repeated the low resolution searches for trial conditions
A and B with up to 5 passes of minimization per voxel, which required
much more time. Not surprisingly, the combined cost of low resolution
OMNIMERGE and high resolution divide-and-conquer is greater than
the default for trials A and B. However, for trials C and D, where the
lower resolution searches succeeded with only one pass per voxel, the
total time for low resolution optimization was faster than the default
algorithm.

More False Negatives

There was one additional constraint set, “Trial E”, with a larger num-
ber of looser constraints, that proved a particular challenge for any
of the methods to search completely. We followed up with repeated
searches using a larger limit on the number of passes per voxel. To
compare the completeness of the different methods, each method was
run with the maximum number of minimization passes per subchain set
to 5%, for k = 0,1,2,3,4,5. Figure 4.27 shows the number of confor-
mations found, according to the number of passes used, and Figure 4.28
shows the corresponding run times required. The results for three of

123

Search 1 Pass 5 Passes 25 Passes 125 Passes 625 Passes
Method # Confs # Confs # Confs # Confs # Confs
divide-and-conquer

with default tree 124 317 323 326 329
LIMITED

OMNIMERGE 60 300 323 326 331
OMNIMERGE 59 294 326 323 329
LiMITED OMNIMERGE

with A* 39 275 318 327 328
OMNIMERGE

with A* 48 292 322 328 328

Figure 4.27: The number of conformations found for simulations
that varied both the search algorithm and the num-
ber of passes of minimization per voxel. See also Fig-
ure 4.28. All variants of OMNIMERGE shown include

PROPAGATION.
Search 1 Pass 5 Passes 25 Passes 125 Passes 625 Passes
Method Run Time Run Time Run Time Run Time Run Time
divide-and-conquer
with default tree 157. 4,623. 24,392. 122,683. 616,051.
LIMITED
OMNIMERGE 18.1 244. 799. 3,252. 14,733.
OMNIMERGE 33.6 423. 987. 3,840. 13,644.
LiMiTED OMNIMERGE
with A* 13.7 253. 903. 3,340. 14,960.
OMNIMERGE with A* 32.0 403. 1,083. 3,129. 12,951.

Figure 4.28: The Number of seconds of run time for simulations
that varied both the search algorithm and the num-
ber of passes of minimization per voxel. See also Fig-
ure 4.27. All variants of OMNIMERGE shown include
PROPAGATION. Times are rounded to the nearest sec-
ond or to three significant digits, whichever significance
is greater.

124

the methods (default divide-and-conquer, OMNIMERGE with A*, and
LiMITED OMNIMERGE with A*) are also plotted in Figure 4.29. Divide-
and-conquer has the best completeness when using a small number of
passes, but OMNIMERGE performs best when using many passes.

We do not know whether the difficulty of enumerating the satisfying
conformations completely is because the constraint set for trial E is
particularly complicated in some way, or because the boundaries of
the satisfying space lie near the boundaries of the voxels, or because
of other factors. While systematic search methods are often hailed
for their completeness, we find here that false negatives are a critical
factor for evaluating the performance of systematic algorithms. As
dimensionality increases, with larger molecules, we expect this problem
to become an even more decisive factor.

350 ——ry ————ry ———y —rry
G----0----9©
300 =
el
c
=
O 250 B
L
(%)
c
RS
=
@© 200~ i
IS
=
RS
5
O 150+ E
S
=
[0)
o
€ 100 g
S
=z
50F - J
* -O- Default Merge-Tree
- % Limited Omni with A*
—%— OmniMerge with A*
0 il n ol n PR | PR n P
10' 10° 10° 10* 10° 10°

Time in seconds (logscale)

Figure 4.29: Plot of run time versus number of conformations using
the data from Figures 4.27 and 4.28.

125

Worst Case

For OMNIMERGE (or LIMITED OMNIMERCGE) with PROPAGATION and
A*, the worst possible case would be if the search problem had no active
constraints for any subchains smaller than the whole molecule, and ev-
ery subproblem were maximally unconstrained. Although divide-and-
conquer with a default merge-tree (and every other method we have
considered) would perform poorly on such a case, OMNIMERGE would
be by far the worst because it would evaluate the exponential num-
ber of possibilities for every subchain (two subchains of size N — 1,
three subchains of size N — 2, etc.) instead of evaluating them only
for two subchains of size %, four subchains of size %, etc. With
no conformations to disqualify, PROPAGATION could only add over-
head. With no subchains particularly well-constrained and no par-
ticular paths to the goal better than the others, A* could only add
overhead. OMNIMERGE would perform a quadratic number of extra,
exponentially-large searches, compared with divide-and-conquer using
a default merge-tree.

However, if no constraints are active until the final merge, all meth-
ods would require time exponential in NV, because the final merge would
have an exponential number of candidates, no matter how few confor-
mations actually turn out to satisfy the constraints.

At the start of this chapter we showed an example where a poor
choice of merge-tree, relative to the constraint set, could result in an
exponential search of a molecule even though another merge-tree exists
that can be searched in polynomial time. We now conclude the chapter
by postulating that no A* search will take exponential time unless all
possible merge-trees also take exponential time.

126

Chapter 5

The Crystal Structure
of a Protein—-DNA

Complex

Article appeared in Structure (1997) Vol. 5, No. 8, Pages 1047-1054.
The protein data bank accession code for this structure is 2HDD.

127

Engrailed (GIn50—Lys) homeodomain—-DNA

complex at 1.9 A resolution: structural ba-
sis for enhanced affinity and altered speci-
ficity

Lisa Tucker-Kellogg, Mark A. Rould, Kristen A. Chambers,
Sarah E. Ades, Robert T. Sauer, and Carl O. Pabo

Abstract

Background

The homeodomain is one of the key DNA-binding motifs used in eu-
karyotic gene regulation, and homeodomain proteins play critical roles
in development. The residue at position 50 of many homeodomains
appears to determine the differential DNA-binding specificity, helping
to distinguish among binding sites of the form TAATNN. However, the
precise role(s) of residue 50 in the differential recognition of alternative
sites has not been clear. None of the previously determined structures
of homeodomain-DNA complexes has shown evidence for a stable hy-
drogen bond between residue 50 and a base, and there has been much
discussion, based in part on NMR studies, about the potential impor-
tance of water-mediated contacts. This study was initiated to help
clarify some of these issues.

Results

The crystal structure of a complex containing the engrailed Gln50—Lys
variant (QK50) with its optimal binding site TAATCC (versus TAATTA
for the wild-type protein) has been determined at 1.9 A resolution.
The overall structure of the QK50 variant is very similar to that of the
wild-type complex, but the sidechain of Lys50 projects directly into
the major groove and makes several hydrogen bonds to the O6 and
N7 atoms of the guanines at base pairs 5 and 6. Lys50 also makes an
additional water-mediated contact with the guanine at base pair 5 and
has an alternative conformation that allows a hydrogen bond with the
04 of the thymine at base pair 4.

Conclusions

The structural context provided by the folding and docking of the en-
grailed homeodomain allows Lys50 to make remarkably favorable con-

128

tacts with the guanines at base pairs 5 and 6 of the binding site. Al-
though many different residues occur at position 50 in different home-
odomains, and although numerous position 50 variants have been con-
structed, the most striking examples of altered specificity usually in-
volve introducing or removing a lysine sidechain from position 50. This
high-resolution structure also confirms the critical role of Asn51 in
homeodomain-DNA recognition and further clarifies the roles of wa-
ter molecules near residues 50 and 51.

Introduction

Altered-specificity variants can provide powerful tools for studying protein-
DNA recognition. The homeodomain, one of the key DNA-binding mo-
tifs used in eukaryotic gene regulation, provides a very attractive system
for this type of analysis: hundreds of related homeodomain sequences
are known, and there is a wealth of relevant biochemical and struc-
tural data [1]. Biochemical and genetic studies indicate that residue
50 is especially important in determining the differential specificity of
homeodomain-DNA recognition [2-5], playing a role in distinguishing
between binding sites of the form TAATNN. Glutamine is the most
common residue at position 50, but cysteine, serine and lysine occur
in other subfamilies [1]. The tightest and most specific binding occurs
when lysine is present at position 50. Biochemical studies of an en-
grailed Gln50—Lys variant (QK50) revealed that QK50 actually binds
more tightly to TAATCC than wild-type engrailed binds to TAATTA
(Table 5.1) [6]. We have pursued structural studies of this Lys50 vari-
ant to understand how it forms such a stable complex, to elucidate
the role of position 50 in homeodomain-DNA recognition, and—more
generally—to explore the structural requirements for designing altered-
specificity variants. We find that the Lys50 sidechain projects directly
into the major groove of the DNA and makes a set of hydrogen bonds

129

with the guanines at base pairs (bps) 5 and 6 of the optimal TAATCC
binding site. The Lys50 sidechain and these new contacts are accommo-
dated without requiring any major changes in the overall architecture
of the homeodomain-DNA complex.

Version of Engrailed DNA site*
TAATTA TAATCC
Wild type 0.079 21
QA50 0.19 3.4
QK50 0.32 0.0088

*Only one strand of the DNA subsite is indicated; binding studies used
20 bp duplex DNA sites.

Table 5.1: Equilibrium dissociation constants (in nM) for the com-
plexes with the wild type engrailed homeodomain, the
QAS50 variant, and the QK50 variant.

Results

We have crystallized the engrailed QK50 variant in complex with the
duplex TAATCC binding site, and have solved this structure at 1.9 A
resolution. The DNA duplex used for cocrystallization is homologous to
that used in studies of the wild-type complex and gave cocrystals that
are nearly isomorphous to the wild-type cocrystals studied by Kissinger
et al. [7]. Our refined model (using data collected at —150°C) has a free
R factor of 25.1% and a conventional R factor of 20.5% for data from
6.0-1.9 A resolution (Table 5.2). The overall structure of the QK50
complex is very similar to that of the wild type engrailed complex
(studied at 2.8 A resolution at room temperature): alignment of the
complexes by superimposing Ca atoms of the homeodomain (residues
10-55) and P and C1’ atoms of the TAATNN subsites (i.e. superim-
posing 24 atoms of each DNA duplex) gives a root mean square (rms)
deviation of 0.48 A, and confirms that the folding and docking are ex-
ceedingly similar. As in the wild-type complex, the homeodomain folds
as a globular domain with three « helices, and helix 3, the 'recognition’
helix, fits into the major groove of the DNA. An extended N-terminal
arm contacts the minor groove. Given that the wild-type and QK50
complexes are so similar, we focus our attention on Lys50 and Asn51.
These residues are critical for site-specific recognition and have been the

130

Data Collection

Resolution (A) 1.9
Measured reflections 92,610
Unique reflections 27,136
Completeness to 1.9 A (%) 94
Completeness in 1.97—1.90 A shell (%) 84
Rinerge™ (%) 3.5
Refinement

R factor’ (%) 20.5
Ryl (%) 25.1
Rms deviation of bond lengths (A) 0.011
Rms deviation of bond angles (°) 1.46
Number of nonhydrogen atoms 1,990
Number of water molecules 183
Rms AB (A?)t 2.32

* Rmerge = LI — (I)|/X1, where I =observed intensity and (I) = average
intensity of multiple observations of symmetry-related reflections.

1The R factors exclude 2564 reflections for which F < 2¢(F). Using all
data from 6.0 — 1.9 A, the R factor is 21.7% and the Riree is 26.5%.

iRms AB is the root mean squared difference between temperature
factors of covalently bonded atoms.

Table 5.2: Data collection (—150°C) and refinement statistics.

131

focus of much discussion when comparing NMR and crystal structures
of homeodomain-DNA complexes [7—14].

Interactions between Lys50 and the DNA

Figure 5.1 shows the electron density for Lys50 from the solvent-flattened
MIRAS (multiple isomorphous replacement with anomalous scattering)
map (using data collected at 10°C) and also shows the final refined
model (using data collected at —150°C). The overall placement of the
lysine sidechain is exceedingly clear: Lys50 projects into the major
groove towards the guanines of bps 5 and 6, and many of the key con-
tacts involve hydrogen bonds to the O6 and N7 atoms of these guanines
(Figures 5.1-5.4). The high resolution of our structure determination
allows us to see and refine alternate conformations for the terminal
atoms of Lys50. Conformation 1 (60% occupancy) places the terminal
NH;‘ group near the guanines of bps 5 and 6. In this conformation,
the closest contacts involve the O6 of the guanine at bp 5 (2.76 A) and
the 06 and N7 of the guanine at bp 6 (3.27 and 3.17 A, respectively).
The N7 of the guanine at bp 5 is slightly farther away (3.92 A), but
there is a bridging water molecule that contacts the N7 of this guanine
(2.88 A) and the terminal NH; of the Lys50 sidechain (3.17 A). Con-
formation 2 (40% occupancy) only moves the terminal N¢ of the lysine
by 1.42 A but the altered sidechain dihedral points the NH; somewhat
more towards the guanine at bp 5 and the thymine at bp 4. In this
conformation, the closest contacts involve the O6 of the guanine at bp
5 (2.78 A) and the O4 of the thymine at bp 4 (3.04 A). The N7 of the
guanine at bp 5 is 4.11 A away, but there are good contacts from the
bridging water molecule (which in this conformation is 3.17 A from the
N¢ and 2.88 A from the N7 of the guanine).

The role of Asn51

This high resolution cocrystal structure also provides important in-
formation about the role of Asn51 in homeodomain-DNA recognition.
The structure of the wild type engrailed complex at 2.8 A resolution [7]
indicated that Asn51 makes a pair of hydrogen bonds with the adenine
at bp 3 of the TAATTA site, and similar contacts were seen in the
a2 homeodomain-DNA complex [8]. There has been much discussion
about these contacts, since NMR, studies of the Antp-DNA complex
have suggested that Asn51 has multiple, rapidly-interchanging confor-
mations and have indicated that Asn51 might make water-mediated
contacts with the bases [9, 10]. Our structure of the QK50 variant con-
firms that Asn51 forms a pair of direct hydrogen bonds with the adenine

132

lle 45

Figure 5.1: Solvent-flattened MIRAS electron-density map con-
toured at 1.50, in the vicinity of Lys50 and bp 5 of
the TAATCC subsite. The model is our final refined
low-temperature structure, but a rigid-body motion has
been used to adjust for differences in cell dimensions
(between the 10°C map and the —150°C refined struc-
ture). The protein is shown in yellow and the DNA
in red. The two conformations of Lys50 are essentially
superimposed when seen from this orientation.

133

at bp 3, with distances of 3.04 A to the N7 atom and 3.09 A to N6. The
conformation and contacts that we observe for Asn51 are in excellent
agreement with those observed in studies of the Oct-1 [11], paired [12],
al/a2 [13], and even-skipped [14] homeodomain-DNA complexes. The
remarkable consistency of these structures (determined independently
and in different crystal forms) suggests that these crystallographic stud-
ies are giving the correct (time-averaged) conformation of Asn51. The
fact that Asn51 is so strictly conserved among the hundreds of known
homeodomains (see [1] for a review) and the fact that homeodomain
binding sites almost invariably have adenine at bp 3, suggests that
the Asnbl-adenine contacts may be similar in all homeodomain-DNA
complexes.

Figure 5.2: Stereo diagram showing base contacts made by Lysb0,
Asnb1 and associated water molecules in the QK50-
TAATCC cocrystals. Both conformations of the Lys50
sidechain are shown, and the three key water molecules
are represented as black spheres; hydrogen bonds are
shown as dashed lines. The numbering scheme for base
pairs corresponds to that used in Figures 5.3 and 5.4. A
Ca trace is shown for part of helix 3.

Water molecules in the binding interface

In addition to the direct hydrogen bonds made with the adenine at
bp 3, Asn51 is flanked by several well-ordered water molecules at the

134

protein-DNA interface. Perhaps the most striking interaction involves
a water molecule that bridges from the Od1 of Asn51 to the N6 of
the adenine at bp 4 (Figures 5.2 and 5.4). This water molecule has
excellent hydrogen-bonding geometry, with distances of 3.01 A to the
061 and 3.11 A to the N6 atom. This water molecule also bridges to a
second water molecule which, in turn, contacts the N7 of the adenine
at bp 4 (Figures 5.2 and 5.4). The distance between these two water
molecules is 3.15 A, and the distance from the second water molecule
to the N7 is 3.08 A. A third water molecule in this hydrogen-bonding
network contacts the N7 of the guanine at bp 5.

We note that there is a ‘tilt” in the Asn51 sidechain amide that al-
lows Asnb51 to maintain good hydrogen bonds with the adenine and yet
also allows it to interact well with the bridging water molecule. (This
tilt involves a rotation around x2, and the observed x2 angle (—37° in
our complex leaves the amide plane 27° out of the plane of the adenine.)
The observed tilt of the Asnb51 sidechain underscores the potential im-
portance of the bridging water molecule. It seems quite plausible as
suggested by Wilson et al. [15] that the water-mediated contacts with
the adenine at bp 4 may augment the sequence specificity provided by
the Ile47-thymine contact (Figure 5.3) and thus may help explain the
preference of the homeodomain for the canonical TAAT subsite. Exam-
ining other refined structures of homeodomain-DNA complexes shows
similar tilt angles for the Asn51 sidechains. Remarkably, we note that
a conceptually analogous bridging interaction also occurs in the «2
portion of the al/a2 homeodomain-DNA complex: here the terminal
atoms of the Argb4 sidechain, rather than a water, participate in a
hydrogen-bonding network that bridges from the Od§1 of Asn51 (2.99
A) to the 06 of the guanine at bp 4 (3.09 A).

Discussion

The role of position 50

As emphasized in the early biochemical studies [2-5], residue 50 plays a
key role in determining the differential specificity of the homeodomain,
helping to explain how homeodomains can distinguish one TAATNN
site from another. Correlating all the available data, however, high-
lights the fact that different residues at position 50 confer very differ-
ent degrees of specificity for their respective sites. Reviewing the earlier
papers [2-5], shows that the most striking cases of altered-specificity
mutations usually involve introducing or removing a lysine residue from
position 50: Key constructs are a Lys50 —Gln variant of the bicoid

135

Figure 5.3: Major groove contacts of the QK50 TAATCC complex.

Three residues make base contacts in the major groove:
Asnb51 makes a pair of hydrogen bonds with the adenine
at bp 3 (red); lled7 makes hydrophobic contacts with
the methyl group of the thymine at bp 4 (purple); the
primary conformation of Lys50 (yellow) makes hydrogen
bonds with the O6 of the guanine at bp 5 and with the
O6 and N7 atoms of the guanine at bp 6; the secondary
conformation of Lys50 (green) makes hydrogen bonds
with the O6 of the guanine at bp 5 and with the O4
of the thymine at bp 4. Hydrogen bonds are shown as
dashed lines and van der Waals contacts are indicated
with dotted spheres. For clarity, water molecules have
been omitted in this figure.

136

homeodomain [3], a Ser50—Lys variant of the paired homeodomain [4],
and a GIn50—Lys mutation in the fushi tarazu homeodomain [5]. In
every case, the Lysb0 variants of these homeodomains prefer to bind a
sequence of the form TAATCC and they presumably all make contacts
similar to those seen in the crystal structure reported here.

There are other cases in which the sidechains at position 50 only
have a marginal role in determining DNA-binding specificity. For ex-
ample, the Oct-1 homeodomain, with a cysteine at position 50, shows
sequence specificity for a 4 bp subsite (typically with the sequence
AAAT) but shows little specificity at positions that would correspond
to bp 5 and 6 of our current numbering scheme. Changing this cysteine
to glutamine has little effect on DNA-binding affinity [16,17]. Even
when glutamine, which is one of the most common residues at position
50, occurs in the wild-type proteins it may have only a modest ener-
getic contribution to binding: wild-type engrailed prefers a TAATTA
site, but a variant (QA50) which has alanine at position 50 binds the
TAATTA site only 2.4-fold less strongly than the wild-type protein (Ta-
ble 5.1) [6]. This modest energetic contribution of the GIn50 sidechain
(AAG = 0.5 kcal/mol) is fully consistent with the 2.8 A resolution
crystal structure of the wild type engrailed complex, in which the only
direct contact between GIn50 and the DNA bases is a van der Waals
contact with the methyl group of the thymine at bp 6.

When placed at position 50, lysine seems to have a clearer sequence
specificity than other residues tested and makes a greater energetic con-
tribution to binding. Thus, comparing the QK50 and QA50 variants
of engrailed shows that changing Lys50 to alanine gives a 390-fold re-
duction in affinity for the TAATCC sequence (Table 5.1; AAG = 3.4
kcal/mol) [6]. The numerous direct contacts made by Lys50 in our
QK50 structure, and the way that these lysine-guanine contacts fit so
well within the conserved structure of the complex, provide a simple
explanation for the efficacy of this residue in site-specific recognition.
Remarkably, these are the first direct hydrogen-binding contacts re-
ported for residue 50 in any homeodomain-DNA complex.

Base-specific electrostatic interactions

Our structure of the QK50-DNA complex also highlights the role that
‘electrostatic readout’ of the major groove may play in site-specific
recognition. Recent surveys of sidechain-base interactions in the known
protein-DNA complexes show that arginine-guanine and lysine-guanine
interactions are remarkably common [18, 19]. As hydrogen bonds in-
volving one charged partner can be very strong [20], and because the N7

137

Base
Pair

F-Y

(¥

Figure 5.4: Sketch of major groove contacts in the QK50-TAATCC
complex. Residues that make base contacts in the ma-
jor groove are shown in boldface. Phosphates are repre-
sented with circles, and hatched circles mark phosphates
that are contacted by the homeodomain. Arrows repre-
sent direct protein-DNA contacts. Small circles marked
"W’ denote water molecules, and finely-dotted lines rep-
resent water-mediated contacts. The numbering scheme
for the base pairs corresponds to that used in Figures 5.2
and 5.3; base pairs are numbered to represent a typical
homeodomain binding site in the form TAATNN.

138

of guanine is the most electronegative region in the major groove [21],
such contacts may make a major contribution to site-specific recogni-
tion. (A key lysine residue in the N-terminal arm of A repressor also
forms hydrogen bonds with a pair of guanines in the major groove [22,
23].) We presume that the binding affinity of the QK50 variant re-
flects both the intrinsic affinity of these lysine-guanine interactions and
the very favorable structural framework (provided by the rest of the
homeodomain-DNA complex), which holds lysine in an ideal position
for making these contacts.

Prospects for other altered-specificity variants

One of the underlying structural issues in protein-DNA recognition—
and one that is especially important when thinking about altered-
specificity variants—involves the complex interrelationship between the
overall folding and docking arrangement of a protein and the geomet-
ric requirements for particular sidechain-base interactions (COP and L
Nekludova, unpublished data). To what extent does the overall folding
and docking determine which sidechain-base interactions are geomet-
rically plausible at a given position? How often will a strictly local
substitution, such as the GIn50— Lys change in engrailed, allow new
DNA contacts that are as favorable or more favorable than the wild-
type contacts?

In thinking about these issues, it is interesting to re-examine the role
of GIn50 in the engrailed homeodomain. After seeing the important role
that glutamine-adenine contacts play in other protein-DNA complexes,
one might have imagined that glutamine would make a pair of hydrogen
bonds with one of the adenines in the preferred TAATTA binding site.
However, (as mentioned above) the only direct contact between GIn50
and the DNA is a van der Waals contact with the methyl group of the
thymine at bp 6, and changing GIn50 to alanine only gives a modest
(0.5 kecal/mol) reduction in affinity for the TAATTA site.

Modeling studies readily confirm the problems that would be in-
volved in trying to make canonical glutamine-adenine contacts from
position 50 of the homeodomain, and modeling thus helps explain why
these contacts do not occur in the wild-type complex. Surveying known
protein-DNA complexes shows that the most favorable glutamine-ade-
nine interactions (such as those seen in the A repressor [23, 24] and the
434 repressor [25] complexes) involve a pair of hydrogen bonds between
the sidechain and the base, and in these situations the terminal atoms
of the sidechain (Cvy, Cd, Ne and Oe) are roughly coplanar with the
adenine base. While keeping the protein and DNA backbones fixed

139

in the conformation of our QK50 crystal structure, we attempted to
superimpose the same ’canonical’ glutamine-adenine contacts seen in
the phage repressors onto residue 50 and bps 5 or 6 of the engrailed
complex (L Nekludova and COP, unpublished data). Regardless of
what sidechain x angles are used during modeling, there is no way that
canonical glutamine-adenine contacts can fit into the structural con-
text provided by the homeodomain. The position and orientation of
the polypeptide backbone at position 50 (vis-a-vis the DNA) provides
an ideal geometric arrangement for the lysine-guanine interactions, but
simply does not work as well for optimizing potential glutamine-adenine
interactions.

Other studies have revealed similar limitations in the design and se-
lection of DNA-binding proteins with altered specificity. For example,
biochemical and genetic studies involving systematic variation in posi-
tion 51 of the Oct-1 homeodomain and in bp 3 of the AAAT binding
site failed to reveal any other sidechain-base combination that would
work as well as the wild-type Asn51-adenine arrangement [26]. Glu-
tamine was particularly disruptive when placed at position 51 (causing
a 1,100-fold reduction in binding to the AAAT subsite), and it appears
that the structural context provided by the rest of the homeodomain-
DNA complex plays a critical role in determining which sidechain-base
interactions will be possible at any given position. The basic idea is
very simple and yet has broad implications for our understanding of
protein-DNA recognition: given the distinct sizes, shapes, and confor-
mational preferences of the sidechains, only one or two may fit well at a
given position in a complex. The overall folding and docking arrange-
ment of the protein (and the overall structure of the DNA) will help to
determine which contacts are possible.

Conclusions

These structural and biophysical studies of the QK50 variant provide an
interesting perspective on current studies of protein-DNA recognition.
The analysis of multiple conformations and of water-mediated contacts
has some meaningful role in the understanding of homeodomain-DNA
interactions, but we find that a lysine variant which can make direct
hydrogen bonds with the DNA bases binds more tightly and specifically
than the wild-type engrailed homeodomain. The crystal structure of
this altered-specificity complex shows there is nothing mysterious about
the tight binding: the homeodomain presents the Lysb0 sidechain in a
very favorable geometric and structural context (fixed by the conserved
folding and docking arrangement of the homeodomain), and the lysine

140

can make a set of direct, sequence-specific hydrogen bonds with the O6
and N7 groups of the guanines. (There is also a water-mediated contact
and an alternative conformation of the terminal atoms that allows a hy-
drogen bond with the O4 of a thymine.) Our structure gives a satisfying
explanation for the affinity and specificity of the lysine QK50 variant,
but challenging problems remain as we try to understand the limits of
altered-specificity variants. How often will such favorable substitutions
be possible? How do the overall folding and docking arrangements
help to determine what sidechain-base interactions will be possible at
a given position?

Biological Implications

Homeodomains are one of the most important eukaryotic DNA-binding
motifs, and they occur in many transcription factors that control dif-
ferentiation and determine cell fate. Homeodomains contain 60 amino
acids, which fold to form a module with three « helices and an extended
N-terminal arm. Homeodomain-DNA interactions have been studied
intensively both because of the intrinsic importance of the homeodom-
ain, and because the homeodomain has become a paradigm for the
analysis of protein-DNA interactions. Previous structural studies have
shown that helix 3, the ‘recognition’ helix, docks into the major groove
and makes many of the base contacts. Biochemical and genetic studies
have suggested that residue 50 of the homeodomain is especially impor-
tant for differential recognition, distinguishing among sites of the form
TAATNN. However, none of the previously determined structures of
homeodomain-DNA complexes has provided evidence for a stable hy-
drogen bond between residue 50 and a base, and there has been much
discussion about the potential significance of water-mediated contacts
in homeodomain-DNA recognition.

Biochemical data, showing that a Gln50—Lys (QKB50) variant of
the engrailed homeodomain has very high affinity and specificity for
a TAATCC site, motivated solving the structure of this complex, and
we find a set of very favorable Lys50-guanine contacts that readily
explain the biochemical data. The QK50-DNA structure also con-
firms the conserved docking arrangement of the homeodomain and the
critical Asn51-adenine contacts seen in the crystal structures of other
homeodomain-DNA complexes. The fact that there is a rigidly con-
served docking arrangement may help explain why other sidechains
(including the wild-type glutamine) cannot make such energetically fa-
vorable contacts from position 50. More generally, our analysis suggests

141

limits (only certain sidechains will fit at certain positions) that may oc-
cur in the design and selection of altered-specificity DNA-binding mu-
tants. Finally, our data suggest that direct sidechain-base interactions,
when geometrically compatible with the other contacts in a complex,
can provide greater affinity and specificity than water-mediated con-
tacts.

Materials and Methods

Protein expression and purification

The engrailed QK50 domain used in these studies contains 60 amino
acids from the Drosophila engrailed protein, but the glutamine residue
at position 50 of the wild-type homeodomain is replaced by lysine and
an N-terminal methionine is introduced in cloning. (Thus the sequence
of our peptide is the same as that shown in Figure 1 of reference [7],
except that lysine is present at position 50.) The QK50 variant was
expressed in Escherichia coli strain BL21 cells containing the DE3 plas-
mid [18]. Cultures were induced for 2.5 h with 0.3 mM isopropyl-3-D-
thiogalactopyranoside (IPTG) at 37°C. Soluble protein was purified
using ion exchange and reverse phase chromatography, and the purity
of the peptide was confirmed by gel electrophoresis, mass spectroscopy,
amino acid analysis, and protein sequencing (William Lane, Harvard
Microchemistry Facility).

DNA complex formation and crystallization

The complex was formed in 1 M ammonium acetate (to keep it sol-
uble), with a 2:1 molar ratio of QK50 peptide to duplex DNA. The
DNA used for cocrystallization, contains one TAATCC subsite, and

5 T G A G A A ¢cc G G A
c T c T T G G CCT AVY

na

T T T c C T T T C
A A A G G A A A G
when these DNA duplexes stack in the crystal, a related subsite with
the sequence AAATCC is formed by the juxtaposed DNA duplexes.
Crystals of the QK50-DNA complex were grown using the hanging-
drop vapor diffusion method [27]. Well buffer contained 0.73-0.80 M
ammonium acetate (pH 8.0) and 1% PEG 400. The best crystals grew
in three days at room temperature from a 2 ul hanging drop containing
the complex at a concentration of 10 mg/ml. Note that these conditions

are somewhat different from those used for crystallizing the wild-type

142

complex, which had been studied at 2.8 A resolution [7]. As with
the wild-type crystals, the QK50-DNA complex crystals form in space
group C2, but have cell parameters of a = 129.9 A, b = 45.45 A, ¢ =
72.75 A, p = 118.7° at 10°C. (The wild-type crystals have a = 131.2
A, b=4545A, ¢ =729 A, g =119.0° at room temperature [7].) Un-
der cryo conditions (—150°C), the cell parameters of the QK50-DNA
crystals are a = 127.7 A, b = 453 A, ¢ = 72.5 A, 3 = 119.5°. As
expected from studies of the wild-type complex, the asymmetric unit
of the QK50 crystals contains one DNA duplex, one homeodomain at
the TAATCC site, and a second homeodomain at the AAATCC site
that is formed by juxtaposed duplexes.

Phasing and refinement

Structure determination of the QK50-DNA cocrystals proceeded in two
stages: MIRAS was used for initial phasing and model refinement at
2.0 A resolution using data collected at 10°C; and final refinement to
1.9 A used data collected under cryo conditions. For MIRAS phasing,
data were collected on a Rigaku R-Axis IIC detector equipped with
Yale/MSC mirrors. Two crystals of the native and of each double-
or triple-iodinated DNA derivative were used and data were processed
with DENZO/SCALEPACK (written by Z Otwinowski and W Minor
and distributed by Molecular Structure Corp.). A constant tempera-
ture of 10°C was maintained at the crystal with an FTS AirJet crys-
tal cooling system. Derivatives were local scaled to the native using
MAXSCALE [28]. Cross-phased heavy-atom refinement (each deriva-
tive is refined separately using phases derived only from the other three
derivatives) was carried out with the program PHARE [29]. Solvent
flattening [30] was used to improve the phases. Heavy-atom parameters
were then re-refined to convergence using the solvent-flattened phases
as parent phases (without updating the phases during refinement), and
new MIRAS phases were recalculated [31]. This process of refining the
heavy-atom parameters using the solvent-flattened phases, recalculat-
ing MIRAS phases, and solvent flattening was repeated four times to
give the final electron-density map, free of any model bias (Figure 5.1;
Tables 5.3 and 5.4). The 2.8 A model for the wild-type complex [7],
with the appropriate changes in amino acid and nucleotide sequences,
was rebuilt into this density using TOM/FRODO [32, 33] and refined
to 2.0 A with XPLOR [34]. Higher resolution data, extending to 1.9
A, were obtained using cryocrystallographic methods. Crystals were
cryoprotected by adding glycerol to the hanging drop, with a final con-
centration of 30% (v/v) immediately prior to flash cooling. Data were

143

collected at —150°C and processed as before. In rebuilding to the cryo
data, rigid-body refinement was used to adjust for the differences in
cell parameters. Throughout refinement we made repeated use of sim-
ulated annealing omit maps and monitored the free R factor to avoid
overfitting the experimental data. The same free R list was used for the
10°C data and the —150°C data. Local scaling was used to correct for
absorption errors and anisotropic diffraction. The two monomers were
refined independently and have almost identical DNA contacts, but
discussion in this paper focuses on the homeodomain at the TAATCC
site as this binding site has the same sequence as that used in the bio-
chemical studies [6] and because this complex does not have a nick in
the DNA. (As in the wild-type complex, the other homeodomain binds
to a ‘nicked’ site formed by the juxtaposition of neighboring DNA du-
plexes.)

Native Derivative 1 Derivative 2 Derivative 3 Derivative 4

Todinated bases* T2, T8, C17 T2, T8, C18 T2, C17 T2, C18
Romerge (%) 44 47 5.5 48 5.0
Reross on I (%) - 18.3 27.6 16.6 25.5
Reross o0 F (%) - 13.1 20.2 12.3 18.7
Completeness to 2.25 A (%) 90 88 76 99 90
Completeness to 2.0 A (%) 76 79 65 86 81
Reuitis - 0.495 0.551 0.529 0.564
Phasing power - 3.25 2.59 3.01 2.40

*Numbering scheme for bases corresponds to that used in Figure 1b of reference [7].

Reross on I = sum(| Iy — Ip|)/sum(Iy). Reross o0 F = sum(|Fy — Fpl|)/sum(Fy).

Rewtis = sum(||Fpy + / — Fp| — |Fu,,,.||)/sum(|Fpg + /| — Fp|), for centric reflections only.
Phasing power = (sum(Fy_*)/sum((Fpg| — |Fpa,,,.|)?)%.

Table 5.3: MIRAS phasing statistics (data collected at 10°C).

Resolution shell (A) 94 62 46 3.6 3.0 26 22 20 2020
Figure of merit 0.93 095 093 0.89 0.86 0.79 0.65 0.46 0.73*

*Subsequent solvent flattening increases the mean figure of merit to 0.84.

Table 5.4: MIRAS figure of merit versus resolution.

Accession numbers

Coordinates are being deposited with the Brookhaven Data Bank. While
they are being processed, a set of coordinates may be obtained by send-
ing an e-mail message to pabo@mit.edu.

144

Acknowledgements

This project was supported by an NTH grant (GM31471) to COP and
used equipment purchased with support from the PEW Charitable
Trusts. We thank Lena Nekludova for help with some of the mod-
eling studies cited in this paper, and we thank Ernest Fraenkel and
Joel Pomerantz for helpful comments on this manuscript. LT-K was
supported by an NSF Pre-doctoral Fellowship.

References

1. Gehring W.J., Affolter M., Biirglin T.: 1994, Homeodomain proteins.
Annu. Rev. Biochem. 63: 487-526.

2. Hanes S.D., Brent R.: 1989, DNA specificity of the bicoid activator
protein is determined by homeodomain recognition helix residue 9. Cell 57:
1275-1283.

3. Hanes S.D., Brent R.: 1991, A genetic model for interaction of the
homeodomain recognition helix with DNA. Science 251: 426—430.

4. Treisman J., Gonczy P., Vashishtha M., Harris E., Desplan C.: 1989, A
single amino acid can determine the DNA binding specificity of homeodomain
proteins. Cell 59: 553-562.

5. Percival-Smith A., Miiller M., Affolter M., Gehring W.J.: 1990, The
interaction with DNA of wild-type and mutant fushi tarazu homeodomains.
EMBO J. 9: 3967-3974.

6. Ades S.E., Sauer R.T.: 1994, Differential DNA-binding specificity of
the engrailed homeodomain: the role of residue 50. Biochemistry 33: 9187
9194.

7. Kissinger C.R., Liu B., Martin-Blanco E., Kornberg T.B., Pabo C.O.:
1990, Crystal structure of an engrailed homeodomain-DNA complex at 2.8 A
resolution: a framework for understanding homeodomain-DNA-interactions.
Cell 63: 579-590.

8. Wolberger C., Vershon A.K., Liu B., Johnson A.D., Pabo C.O.: 1991,
Crystal structure of a MAT a2 homeodomain-operator complex suggests a
general model for homeodomain-DNA interactions. Cell 67: 517 528.

9. Billeter M., Qian Y.Q., Otting G., Miiller M., Gehring W., Wiithrich
K.: 1993, Determination of the nuclear magnetic resonance solution structure
of an Antennapedia homeodomain-DNA complex. J. Mol. Biol. 234: 1084
1097.

10. Billeter M., Guntert P., Luginbiihl P., Wiithrich K.: 1996, Hydration
and DNA recognition by homeodomains. Cell 85: 1057-1065.

11. Klemm J.D.; Rould M.A., Aurora R., Herr W., Pabo C.O.: 1994,
Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA
recognition with tethered DN A-binding modules. Cell 77: 21-32.

145

12. Wilson D.S., Guenther B., Desplan C., Kuriyan J.: 1995, High res-
olution crystal structure of a paired (Pax) class cooperative homeodomain
dimer on DNA. Cell 82: 709 719

13. Li T., Stark M.R., Johnson A.D., Wolberger C.: 1995, Crystal struc-
ture of the MATal/MAT«a2 homeodomain heterodimer bound to DNA. Sci-
ence 270: 262 269.

14. Hirsch J.A., Aggarwal A.K.: 1995, Structure of the even-skipped
homeodomain complexed to AT-rich DNA: new perspectives on homeodom-
ain specificity. EMBO J 14: 6280 6291.

15. Wilson D.S., Sheng G., Jun S., Desplan C.: 1996, Conservation
and diversification in homeodomain-DNA interactions: a comparative genetic
analysis. Proc. Natl. Acad. Sci. USA 93: 6886—6891.

16. Verrijzer C.P., Alkema M.J., van Weperen W.W., van Leeuwen H.C.,
Strating M.J.J., van der Vliet P.C.: 1992, The DNA binding specificity of
the bipartite POU domain and its subdomains. EMBO J. 11: 4993-5003.

17. Ingraham H.A. et al., Rosenfeld M.G.: 1990, The POU-specific do-
main of Pit-1 is essential for sequence-specific, high-affinity DNA binding and
DNA-dependent Pit-1-Pit-1 interactions. Cell 61: 1021-1033.

18. Ades S.E.: 1995, The Engrailed Homeodomain: Determinants of
DNA-Binding Affinity and Specificity. PhD Thesis. Massachusetts Institute
of Technology, USA.

19. Mandel-Gutfreund Y., Schueler O., Margalit H.: 1995, Comprehen-
sive analysis of hydrogen bonds in regulatory protein-DNA complexes: in
search of common principles. J. Mol. Biol. 253: 370-382.

20. Fersht A.R. et al., Winter G.: 1985, Hydrogen bonding and biological
specificity analyzed by protein engineering. Nature 314: 235-238.

21. Saenger W.: 1984, Principles of Nucleic Acid Structure. Springer-
Verlag, New York, NY, USA.

22. Clarke N.D., Beamer L.J., Goldberg H.R., Berkower C., Pabo C.O.:
1991, The DNA binding arm of A repressor: critical contacts from a flexible
region. Science 254: 267-270.

23. Beamer L.J., Pabo C.0.: 1992, Refined 1.8 A crystal structure of the
A repressor-operator complex. J. Mol. Biol. 227: 177-196.

24. Jordan S.R., Pabo C.O.: 1988, Structure of the lambda complex at
2.5 A resolution: details of the repressor-operator interactions. Science 242:
893-899.

25. Aggarwal A., Rodgers D., Drottar M., Ptashne M., Harrison S.C.:
1988, Recognition of a DNA operator by the repressor of phage 434: a view
at high resolution. Science 242: 899-907.

26. Pomerantz J.L., Sharp P.A.: 1994, Homeodomain determinants of
major groove recognition. Biochemistry 33: 10851-10858.

27. Blundell T.L., Johnson L.N.: 1976, Protein Crystallography. Aca-
demic Press, San Diego, CA, USA.

28. Rould M.A.: 1997, Screening for heavy atom derivatives and obtain-
ing accurate isomorphous differences. Methods Enzymol. 276: 461-472.

146

29. Collaborative Computational Project Number 4: 1994, The CCP4
suite: programs for protein crystallography. Acta Cryst. D 50: 760-763.

30. Wang B.C.: 1985, Resolution of phase ambiguity in macromolecular
crystallography. Methods Enzymol. 115: 90-112.

31. Rould M.A., Perona J.J., Steitz T.A.: 1992, Improving MIR phasing
by heavy atom refinement using solvent-flattened phases. Acta Cryst. A 48:
751-756.

32. Jones T.A.: 1978, A graphics model building and refinement system
for macromolecules. J. Appl. Cryst. 11: 268 272.

33. Israel M., Chirino A.J.: 1991, TOM/FRODO wversion 3.0. University
of Alberta, Alberta, Canada: California Institute of Technology, CA, USA.

34. Briinger A.T.: 1992, X-PLOR Version 3.1: a System for X-ray
Crystallography and NMR. Yale University Press, New Haven, CT, USA.

Author Contacts

L. Tucker-Kellogg, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA 02139,
USA. MA Rould, and KA Chambers, Howard Hughes Medical Insti-
tute, Department of Biology, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA. SE Ades, and RT Sauer, Department of
Biology, Massachusetts Institute of Technology, Cambridge, MA 02139,
USA. CO Pabo (corresponding author), Howard Hughes Medical Insti-
tute, Department of Biology, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA. e-mail: pabo@mit.edu.

Keywords
altered-specificity mutation, DNA binding, homeodomain, protein-DNA
interactions, X-ray crystallography.

Received / Accepted

Received: 12 May 1997
Revisions requested: 5 June 1997
Revised: 7 July 1997

Accepted: 9 July 1997

Copyright
Copyright © 1997 Current Biology Publishing

147

Chapter 6

Conclusion

We have presented a core algorithm for systematic conformational search
(Chapter 2), an application of that algorithm to structure determina-
tion by solid-state NMR, (Chapter 3), some new ideas for improving
how the subproblems in conformational searches are defined (Chap-
ter 4), and a separate structure determination project involving X-ray
crystallography (Chapter 5).

6.1 Outlook for Searching Larger Molecules

We have made some progress at applying systematic search to larger
problems, but with moderate resolution, the number of voxels that
satisfy the constraints can be prohibitive to enumerate. Even when
using very tight constraints, the search time for moderate resolution
can still be very large. For lower resolution searches, incompleteness
becomes the primary obstacle, particularly with large molecules.

We have found cases with large molecules where a low-resolution
search fails to find any satisfying conformations, even if the constraints
have been designed around some known conformation. In other words,
low resolution gives us the expected problem of false negatives. Then,
when we increase the resolution of the search infinitesimally, the search
finds an astronomical number of conformations for the whole molecule.
This may be surprising but the reasons for it become clear with hind-
sight. Many boundaries of conformation space are hyperplanes instead
of rugged manifolds, and if the orientation of a boundary is degenerate
or exactly parallel to the definition of the voxels (such as 6 < 120°),
then the size of the solution set will not necessarily be continuous as
a function of resolution. The simplest case is when the feasible region

148

of conformation space is a tall, thin rectangular slab. When the search
fails to find any voxels with satisfying conformations, that means the
feasible region, if it exists, must be narrower than the interval of the
search. When the search explodes (when the solution sets become in-
tractable), the feasible region must be wider than the interval of the
search in several dimensions. Both situations can occur simultaneously
in large molecules because here can be both overconstrained and un-
derconstrained degrees of freedom in the same molecule at the same
time.

Preliminary trials (and tribulations) with Engrailed

We performed some preliminary searches of engrailed QK50 (residues
5-55, without hydrogens, as in Chapter 5), which has over three hun-
dred torsional degrees of freedom. The parameters were 40° resolution
for all torsions, 85% of half sigma for hard-sphere atomic radii, pep-
tide bonds constrained to within 5° of planar, and summed squared
constraint violations less than 0.001 A2. We first tried to search the
protein with distance constraints alone, constraining up to 100% of all
atom pairs that have a distance in the crystal structure between 2.5
and 6.0 A.

The final stage of the search, the merge that brings together the N-
terminus and C-terminus, requires satisfying many newly-active con-
straints. The “almost correct” conformations for the left and right
pieces had to be adjusted within the combined voxel via minimization,
but searching over 304 possible dimensions of dihedral variation proved
too difficult. Very tight distance constraints left so small a region of
feasible space that it could not be found in the high-dimensional voxel.
Loose constraints caused obvious problems as well.

We tried adding some dihedral constraints, which we structured
to resemble the dihedral constraints provided by the solid-state NMR,
experiments on fMLF. First, the angle value for the torsion to be con-
strained is measured in the crystal structure and a 10° range is defined
around that value. Then, two other 10° ranges were defined at random
in the remaining 350° span of angles (overlapping ranges were discarded
and randomized again). Finally, the torsion angle was constrained to
be in one of the three narrow ranges. We applied constraints of this
form to 61 torsions selected at random from among the non-peptide
bonds.

The combination of interatomic distance constraints and torsion
constraints was sufficient to allow our algorithm to search the engrailed
protein. With constraints allowing a 0.1 A range in interatomic dis-

149

tances for all short-range pairs of atoms, and with 61 torsions con-
strained as described, our method identified 54 voxels containing sat-
isfying conformations in 31,429 seconds. These trials were preliminary
and there may be any number of more practical circumstances (such
as a change in atomic radii) that would allow our algorithm to com-
plete the search. We are eager to try allowing larger overlaps between
the right and left children of a merge; larger overlaps the the merge
might reduce the difficulty we encountered in the final merge of having
many newly active constraints and of needing to adjust many of the
torsions within their voxels. Nonetheless, initial indications are that
increasing the number of degrees of freedom will provide greater chal-
lenges to systematic search methods than distance constraints alone
can immediately counterbalance.

Implications for future goals in systematic search

Even if an algorithm had perfectly complete and instantaneous knowl-
edge, simply listing the satisfying voxels for a protein in reasonable
time requires that the number of underconstrained degrees of freedom
be small. Also, because of how we have defined the problem, a single er-
roneous constraint that cannot be satisfied will cause the whole search
to fail. (Halting with no solutions is called “failing” in constraint sat-
isfaction parlance, but the term indicates the absence of solutions, not
a judgment about the quality of the algorithm or about whether the
result is a false negative.) Although both these “features” are what we
originally wanted, the results (and the frequency with with these results
occur) are frustrating “bugs” to users in practical circumstances.
Infeasible constraints. Our method can easily allow for small
violations of a constraint by modifying the criteria of acceptance, for
example 8 < 120° + € instead of # < 120°. This is what we do when
setting a small but nonzero threshold on the summed squared constraint
violations. Allowing k constraints to be grossly violated but strongly
enforcing the remaining constraints is far more complex but it is an
approachable and intellectually-appealing area for future research.
Explosion of solutions. Our method can assign different reso-
lutions to different degrees of freedom, and we found with the fMLF
structure that this contributes considerably to reducing the number of
voxels without sacrificing much information content. With the current
implementation, the user must specify the choices of resolution. When
we began these studies, defining the resolution as a strictly independent
variable seemed desirable, but a helpful feature might be an option for
the algorithm to suggest resolution intervals for each torsion based on

150

results of a preliminary search.

One of the most promising directions for future research in system-
atic conformational search methods may be to explore how the search
problem might be recast in different terms. A very useful contribution
would be a compact representation for the simultaneous variations in
different torsions, although there are questions about which information
to sacrifice and how inaccuracy could become amplified over the size of
the molecule. Torsion angle representations can become unwieldy for
large chains as a small change in one backbone angle can have a large
effect on the position of distant atoms. However, Cartesian coordinate
or distance matrix representations are often prone to poor covalent ge-
ometry on a local scale. Perhaps future methods will find a way to
combine the best aspects of torsion angle search for small subchains
with the best of Cartesian or distance-based methods for combining
larger subchains.

6.2 Contributions of the Doctoral Candi-
date

The contributions in this thesis involving structure determination (the
journal articles of Chapters 3 and 5) contain their own references, in-
troductions, and summaries of contributions. Here I highlight my pre-
viously unpublished results on systematic conformational search.

I designed, implemented, and demonstrated the practical impact of
four fundamental, interrelated, and truly novel improvements to the
state of the art in systematic conformational search:

e The OMNIMERGE algorithm searches all possible subchains and
uses the best choice of left and right child subchains for
each combine operation. The greatest significance of OMNI-
MERGE may be that it makes possible many of the other inno-
vations in this thesis. By itself it also can improve the search of
molecules for which default methods get trapped using needlessly
expensive components at the final merge of the search.

e The merge-tree cost functions evaluate alternatives for how
large problems may be broken into subproblems. A simple appli-
cation of dynamic programming to those functions, in conjunction
with results from any previous OMNIMERGE search of the same
molecule, yield the optimal merge-tree for the molecule.

e PROPAGATION enforces compatibility between overlapping

151

subchains by filtering out infeasible conformations from their
solution sets.

e An A* function selects which subchain to search next based on
current information about the sizes and costs of other subchains,
and based on estimates for the relative contribution of each sub-
chain towards the search of the whole molecule. Costly subchains
may be skipped entirely but low-cost subchains (ones that could
be part of an optimal merge-tree for the whole molecule) are never
skipped.

With Tomés Lozano-Pérez, I demonstrated the utility of the voxel
model, which allows efficient but non-systematic searches to be used
locally within a systematic context.

In addition, I adapted systematic search methods to a real dataset.
By searching the formyl-Met-Leu-Phe-OH peptide at an exceedingly
high resolution, we provided unprecedented confidence in the inter-
pretation of the constraints while determining a previously unknown
atomic structure.

152

Appendix A

Systematic Search
Implementation

A.1 Definitions and Preprocessing

Bonds

Each rotatable bond in a molecule defines a local reference frame, also
called an internal coordinate system [10]. Atoms that have invariant
relative positions (invariant over any rotation of torsion bonds) are
defined to be in the same bond frame (also called an “aggregate” [6]).
Figure A.1 shows the rotatable bonds (the torsions) of an amino acid
residue and Figure A.2 shows how the literal bonds can be converted
into a tree datastructure of bond frames. The default TREESEARCH
strategy uses an ordering of the torsions ¢1, tot3 ... such that if ¢; is the
parent of £; in the bond tree, then ¢; occurs before ¢; in the ordering.
The parent of ¢1 is the invariant coordinate frame; the parent of t5 must
be t1; the parent of t3 may be either ¢; or t2, and so on.

The bond tree should not be confused with the search tree. The
bond at the root of the bond tree is instantiated first, at the root of the
search tree, and the bonds lower in the bond tree are searched later,
lower in the search tree. However, a bond corresponds to a whole level
of the search tree, but it is only one edge in the bond tree.

Atoms

Given the coordinate frame of the parent bond frame and the rotation
of the bond connecting the child frame to the parent frame, one can

153

T 0
—C-4N49-C—4C-4N—

7

o

-

/Cy\
C51 02

Figure A.1: The rotatable bonds in a leucine amino acid.

compute the child coodinate frame. Bond frames and the torsion vec-
tors defining their relative orientations are the primary representations
used by our algorithm. Cartesian coordinates for atoms only exist for
the duration of subroutines that evaluate a conformation on the basis
of constraints on the atoms.

Atoms are specified as coordinates relative to their bond frame.
Two torsions are adjacent in the bond tree if there are no rotatable
bonds separating them. When adjacent torsions in the bond tree are
instantiated, the atoms in their respective bond frames have an exact
relative orientation, which permits calculation of the distance between
atoms in the two frames. For atoms in two arbitrary bond frames, ALL
intervening torsions must be instantiated before the relative orientation
of the frames can be computed and before the relative positions of the
atoms can be calculated.

A.2 Options and Optimizations

Atom hash

Another opportunity to improve efficiency is in the check for inter-
atomic distances that violate the user’s distance constraints or the van
der Waals constraints. Evaluating the constraint violations of a con-
formation is part of the inner loop of the search algorithm. Therefore,
efficiency gains in this stage can have a significant impact on total run-

154

Figure A.2: A tree of bonds.

155

time, even when the non-optimized algorithm is polynomial. Contrary
to popular opinion, the check of interatomic distances need not con-
sume quadratic time. We can exploit the short-range nature of most
distance constraints to design a procedure that is more efficient than
checking all pairs of atoms.

Van der Waals constraints, a special category of distance constraints,
are derived from the chemical structure of the molecule rather than in-
put by the user. They prohibit any atom from entering the volume
of another atom, unless the two atoms are covalently bonded or meet
other chemical criteria. Van de Waals constraints, although numerous,
only concern atoms in close proximity.

The user-defined distance constraints could theoretically require two
atoms to be separated by a large distance, but more often they tend to
require atoms to be close to each other.

Note that distance violation checks are performed only after a par-
ticular vector of torsions angles has been chosen (for example, the mid-
point of a voxel). Since the torsions define a unique conformation,
absolute three-dimensional coordinates are available for each atom.

Rather than computing the distances between all pairs of atoms
and checking those distances against the various constraints, we can
divide the 3-dimensional space of atomic coordinates into small cubes
(like the way we divide torsion space into small voxels), and hash the
atoms according to their cubes. (So far this only requires time linear
in the number of atoms.) Then we can iterate through the non-empty
hash cubes instead of iterating through pairs of atoms or through the
Cartesion space. Each hash cube will contain at most a constant num-
ber of atoms. For each hash cube, compute distances for all pairs of
atoms that are in the same or in nearby cubes, and check only those
distances against the constraints. This avoids considering the majority
of atoms pairs, which are in distant cubes.

The number of occupied hash cubes grows with the size of the mol-
ecule, but the number of pairs of atoms grows with the square of the
size of the molecule. Therefore, for large enough molecules, the hash
is a more efficient way to check van der Waals and other short-range
distance constraints.

For each user-defined constraint involving a long interatomic dis-
tance (such as if two atoms were required to be at least 20 angstroms
apart), that pair of atoms would have to be considered explicitly, in
addition to the iteration over hash squares. But as long as the num-
ber of constraints requiring long interatomic distances is much smaller
than the number of pairs of atoms, it will be more efficient to check
for short-distance violations using the hash and then for the remaining

156

constraints separately than to check all pairs of atoms.

Minimization options

We provide a variety of extra options for “tweaking” the minimizer
because the minimization is so important. However, we have not yet
determined what combinations of options is optimal, for this algorithm
or in general.

A popular heuristic for augmenting local minimization methods is to
repeat the minimization several times using randomized initial values.
We allow the user to specify the number of such restarts, called passes.
There are a variety of methods for choosing initial points (starting
torsion values) for the minimization, including complete randomization,
partial randomization (often called a “random kick”), or reuse of angle
values found during lower dimensional-searches). In the extreme case
where a user chooses many passes with totally random initial values,
but limits the minimization to zero iterations (beyond the evaluation
of the initial values), our method to evaluate voxels becomes identical
to random sampling.

The user may also choose for the number of passes to be a function
of the number of dimensions of the voxel. The number of passes can
be quadratic or exponential in the number of dimensions. These op-
tions for additional sampling were designed in response to the greater
occurrence of false negatives in higher-dimensional voxels.

Distances without Square Roots

We provide the option of using squared distances and squared bounds
throughout the method (including in the distance matrix) rather than
true distances, so that time-consuming square root operations may be
avoided. Let b be a bound on the distance between two atoms, and let d
be a measured distance between those atoms that has been determined
to violate the bound. For simplicity of notation, assume b is an upper
bound. Then, the magnitude of the violation, v, is approximated as
follows:

d—b

d? — v?
Vapproxr = 2%

v

The above approximation for the violations of distance constraints is
also used by the DIANA program for NMR interpretation [28].

157

Appendix B

Merge-Trees for 1IRST

Below are figures showing various merge-trees for IRST annotated with
the TREECOST for each subtree in red. Each leaf subchain is annotated
in blue with the number of conformations for the subchain, and each
non-leaf subchain has two blue numbers, the number of candidate con-
formations (before the arrow) and the number of candidates found to
satisfy the constrains (second).

Figure B.1: Subchains in the default merge-tree of 1RST.

158

9109126,
2616,

‘ 106
5 10 76

760455

Figure B.2: Subchains in the manual merge-tree of 1RST

Figure B.3: Subchains in the merge-tree that was determined to
be optimal for a low-resolution search of 1RST (120°

resolution for all bonds).

159

Figure B.4: Subchains in the merge-tree that was determined to be
optimal for a moderate-resolution search of 1IRST (40°
resolution for backbone bonds and 120° resolution for

sidechain bonds).

160

Bibliography

[1]

S. R. Krystek Jr. and D. A. Bassolino, R. E. Bruccoleri, J. T.
Hunt, M. A. Porubcan, C. F. Wandler, and N. H. Andersen. Solu-
tion conformation of a cyclic pentapeptide endothelin antagonist.
comparison of structures obtained from constrained dynamics and
conformational search. FEBS Lett., 299(3):255-261, 1992.

R. Bellman. Dynamic Programming. Princeton University Press,
1957.

H. M. Berman, J. Westbrook, Z. Feng et al., and P. E. Bourne.
The protein data bank. Nucleic Acids Research, 28:235-242, 2000.

D. D. Beusen, H. lijima, and G. M. Marshall. Structures from
NMR distance constraints. Biochem. Pharm., 40:173-175, 1990.

D. D. Beusen and E. F. B. Shands. Systematic search strategies
in conformational analysis. Drug Discovery Today, 1(10):429-437,
1996.

D. D. Beusen, E. F. B. Shands, S. F. Karasek, G. R. Marshall, and
R. A. Dammkoehler. Systematic search in conformational analysis.
Journal of Molecular Structure (Theochem,), 370:157-171, 1996.

H. Bohm, G. Klebe, T. Lorenz, T. Mietzner, and L. Siggel. Dif-
ferent approaches to conformational analysis: A comparison of
completeness, efficiency, and reliability based on the study of
a nine-membered lactam. Journal of Computational Chemistry,
11(9):1021-1028, 1990.

A. T. Brunger. Free R value: a novel statistical quantity for as-
sessing the accuracy of crystal structures. Nature, 355:472-475,
1992.

161

[9]

[14]

[15]

A. T. Brunger, P. D. Adams, G. M. Clore et al., and G. L. Warren.
Crystallography and NMR system (CNS): A new software system
for macromolecular structure determination. Acta Crystallograph-

ica D, 54:905-921, 1998.

G. Chang, W. C. Guida, and W. C. Still. An internal coordinate
monte carlo method for searching conformational space. Journal
of American Chemical Society, 111:4379 4386, 1989.

F. E. Cohen and M. J. E. Sternberg. On the prediction of protein
structure: The significance of the root-mean-square deviation. .J.
Mol. Biol., 138:321-333, 1980.

T. F. Coleman, D. Shalloway, and Z. Wu. A parallel build-up
algorithm for global energy minimizations of molecular clusters
using effective energy simulated annealing. Technical Report 130,
Cornell University, 1993.

G. M. Crippen and T. F. Havel. Distance Geometry and Molecular
Conformation. Research Studies Press, Ltd., Somerset, England,
1988.

J. Desmet, M. DeMaeyer, B. Hazes, and I. Lasters. The dead end
elimination theorem and its use in protein side-chain positioning.
Nature, 356:539-542, 1992.

J. F. Doreleijers, J. A. C. Rullmann, and R. Kaptein. Quality
assessment of NMR structures: a statistical survey. Journal of
Molecular Biology, 281:149-164, 1998.

J.-P. Doucet and J. Weber. Computer-Aided Molecular Design:
Theory and Applications, chapter Knowledge-based prediction:
model building from homology, pages 431-447. Academic Press,
1996.

J.-P. Doucet and J. Weber. Computer-Aided Molecular Design:
Theory and Applications, chapter 7.2 Exploring the conformational
space, pages 206—220. Academic Press, 1996.

M. J. Dudek, K. Ramnarayan, and J. W. Ponder. Protein structure
prediction using a combination of sequence homology and global

energy minimization: II. energy functions. J. Comput. Chem.,
19(5):548-573, 1998.

162

[19]

[20]

21]

24]

[25]

P. L. Easthope and T. F. Havel. Computational experience with an
algorithm for tetrangle inequality bound smoothing. Bull. Math.
Biol., 51:173-194, 1989.

R. A. Engh and R. Huber. Accurate bond and angle parameters
for X-ray protein structure refinement. Acta Crystallographica,
Section A, A47:392-400, 1991.

A. Fahmy and G. Wagner. Treedock: a tool for protein docking
based on minimizing van der waals energies. J Am Chem Soc,
124(7):1241-1250, 2002.

C. L. Forgy. Rete: A fast algorithm for the many pattern/many
object pattern match problem. Artificial Intelligence, pages 17-37,
1982.

K. D. Gibson and H. A. Scheraga. Revised algorithms for the
build-up procedure for predicting protein conformations by energy
minimization. Journal of Computational Chemistry, 8:826-834,
1987.

G. P. Gippert. New Computational Methods for 3D NMR
Data Analysis and Protein Structure Determination in High-
Dimensional Internal Coordinate Space. PhD thesis, Scripps Re-
search Institute, La Jolla, California, 1995.

G. P. Gippert, P. E. Wright, and D. A. Case. Distributed torsion
angle grid search in high dimensions: a systematic approach to
NMR structure determination. J. Biomol. NMR, 11(3):241-263,
1998.

N. Go and H. A. Scheraga. Ring closure and local conformational
deformation of chain molecules. Macromolecules, 3:178-187, 1970.

P. Guntert, M. Billeter, O. Ohlenschlder, L. R. Brown, and
K. Wiithrich. Conformational analysis of protein and nucleic acid
fragments with the new grid search algorithm found. Journal of
Biomolecular NMR, 12:543-548, 1998.

P. Gintert, W. Braun, and K. Wiithrich. Efficient computation
of three-dimensional protein structures in solution from nuclear
magnetic resonance data using the program diana and the support-
ing programs CALIBAS, HABAS and GLOMSA. J. Mol. Biol.,
217:517-530, 1991.

163

[29]

[30]

37]

[38]

R. M. Haralick and L. Elliott. Increasing tree search efficiency for
constraint satisfaction problems. Artificial Intelligence, 14:263—
313, 1980.

T. F. Havel. An evaluation of computational strategies for use in
the determination of protein structure from distance constraints

obtained by nuclear magnetic resonance. Prog. Biophys. Molec.
Biol., 56:43 78, 1991.

J. B. Hendrickson. Molecular geometry. i. machine computation
of the common rings. J. Am. Chem. Soc., 83:4537—-4547, 1961.

P. Van Hentenryck. Constraint Satisfaction in Logic Programming.
MIT Press, 1989.

B. E. Hingerty, S. Figueroa, T. L. Hayden, and S. Broyde. Pre-
diction of DNA structure from sequence: A buildup technique.
Biopolymers, 28:1195-1222, 1989.

L. Holm and C. Sander. Database algorithm for generating pro-
tein backbone and side-chain co-ordinates from a C alpha trace
application to model building and detection of co-ordinate errors.
Journal of Molecular Biology, 218(1):183-194, 1991.

A. E. Howard and P. A. Kollman. An analysis of current method-
ologies for conformational searching of complex molecules. Journal
of Medicinal Chemistry, 31(9):1669-1675, 1988.

T. A. Jones and S. Thirup. Using known substructures in protein
model building and crystallography. EMBO Journal, 5(4):819-822,
1986.

D. E. Knuth. The Art of Computer Programming, Second Edition,
volume 1, chapter 2.3.4.4 Enumeration of Trees, pages 385—389.
Addison-Wesley, 1973.

R. A. Laskowski, M. W. MacArthur, D. S. Moss, and J. M. Thorn-
ton. PROCHECK: a program to check the stereochemical quality
of protein structures. Journal of Applied Crystallography, 26:283—
291, 1993.

R. A. Laskowski, J. A. C. Rullmann, M. W. MacArthur,
R. Kaptein, and J. M. Thornton. AQUA and PROCHECK-NMR:
Programs for checking the quality of protein structures solved by
NMR. Journal of Biomolecular NMR, 8:477—486, 1996.

164

[40]

[42]

[43]

[44]

[47]

(48]

I. Lasters and J. Desmet. The fuzzy-end elimination theorem: cor-
rectly implementing the side chain placement algorithm based on
the dead-end elimination theorem. Protein Engineering, 6(7):717—
722, 1993.

I. M. Lasters, DeMaeyer, and J. Desmet. Enhanced dead-end elim-
ination in the search for the global minimum energy conforma-
tion of a collection of protein side chains. Protein Engineering,
8(8):815 822, 1995.

C. T. Lawrence, J. L. Zhou, and A. L. Tits. User’s guide for
CFSQP version 2.5: A C code for solving (large scale) constrained
nonlinear (minimax) optimization problems, generating iterates
satisfying all inequality constraints. Technical Report Technical
Report TR-94-16r1, Institute for Systems Research, University of
Maryland, College Park, MD 20742, 1997.

A. R. Leach. Molecular Modeling: Principles and Practice.
Addison Wesley, 1996.

A. R. Leach and A. P. Lemon. Exploring the conformational space
of protein side chains using dead-end elimination and the A* algo-
rithm. PROTEINS: Struct. Funct. Genet., 33(2):227-239, 1998.

J. Lee, H. A. Scheraga, and S. Rackovsky. New optimization
method for conformational energy calculations on polypeptides:
Conformational space annealing. Journal of Computational Chem-
istry, 18:1222 1232, 1997.

H. Li, R. Tejero et al., and G. T. Montelione. Homology modeling
using simulated annealing of restrained molecular dynamics and
conformational search calculations with CONGEN: application in
predicting the three-dimensional structure of murine homeodom-
ain Msx-1. Protein Science, 6(5):956-970, 1997.

O. Lichtarge, C. W. Cornelius, B. G. Buchanan, and O. Jardetzky.
Validation of the first step of the heuristic refinement method for
the derivation of solution structures of proteins from NMR data.
PROTEINS: Struct. Funct. Genet., 2(4):340-358, 1987.

M. Lipton and W. C. Still. The multiple minimum problem in
molecular modeling. Tree searching internal coordinate conforma-
tional space. Journal of Computational Chemistry, 9(4):343-355,
1988.

165

[49]

[50]

[51]

[53]

[54]

[58]

S. C. Lovell, J. M. Word, J. S. Richardson, and D. C. Richard-
son. The penultimate rotamer library. PROTEINS: Struct. Funct.
Genet., 40(3):389-408, 2000.

A. K. Mackworth. Consistency in networks of relations. Artificial
Intelligence, 8:99-118, 1977.

A. K. Mackworth and E. C. Freuder. The complexity of some poly-
nomial network consistency algorithms for constraint satisfaction
problems. Artificial Intelligence, 25:65 74, 1985.

N. Majeux, M. Scarsi, J. Apostolakis, C. Ehrhardt, and
A. Caflisch. Exhaustive docking of molecular fragments with ele-
crostatic solvation. PROTEINS: Struct. Funct. Genet., 37:88-105,
1999.

S. Makino and I. D. Kuntz. Automated flexible ligand docking
method and its application for database search. Journal of Com-
putational Chemistry, 18(14):1812-1825, 1997.

M. J. McGregor, S. A. Islam, and M. J. E. Sternberg. Analy-
sis of the relationship between side-chain conformation and sec-
ondary structure in globular proteins. Journal of Molecular Biol-
ogy, 198:295-310, 1987.

EU 3-D Validation Network. Who checks the checkers? Four vali-
dation tools applied to eight atomic resolution structures. Journal
of Molecular Biology, 276:417—-436, 1998.

J. T. Ngo and M. Karplus. Pseudosystematic conformational
search. Application to cycloheptadecane. J. Am. Chem. Soc.,
119:5657-5667, 1997.

M. R. Pincus, R. D. Klausner, and H. A. Scheraga. Calculation of
the three-dimensional structure of the membrane-bound portion of
melittin from its amino acid sequence. Proceedings of the National
Academy of Sciences (USA), 79:5107 5110, 1982.

J. W. Ponder and F. M. Richards. Tertiary templates for proteins:
Use of packing criteria in the enumeration of allowed sequences for
different structural classes. Journal of Molecular Biology, 193:775—
791, 1987.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.
Numerical Recipes in C: The Art of Scientific Computing, chapter
10.7 “Variable Metric Methods in Multidimensions”, pages 324—
328. Cambridge University Press, 1988.

166

[60]

[61]

(62]

[65]

[66]

(68]

[69]

R. J. Read and J. Moult. Fitting electron density by systematic
search. Acta Crystallographica A, 48:104-113, 1992.

M. Saunders. Encyclopedia of Computational Chemistry, volume
Volume 4, chapter Systematic and Random Search Methods for
Finding Conformers of Molecules, pages 2948-2950. John Wiley
and Sons, 1998.

M. Saunders, K. N. Houk, Y.-D. Wu, W. C. Still, M. Lipton,
G. Chang, and W. C. Guida. Conformations of cycloheptadecane.
a comparison of methods for conformational searching. Journal of
the American Chemical Society, 112:1419-1427, 1990.

K. J. Schleifer, E. Tot, and H. D. Holtje. Pharmacophore and pseu-
doreceptor modelling of class ib antiarrhythmic and local anaes-
thetic lidocaine analogues. Pharmazie, 53(9):593-602, 1998.

T. G. Schmidt, J. Koepke, R. Frank, and A. Skerra. Molecular
interaction between the strep-tag affinity peptide and its cognate
target, streptavidin. Journal of Molecular Biology, 255:753-766,
1996.

A. Smellie, S. D. Kahn, and S. L. Teigg. Analysis of conformational
coverage. 1. validation and estimation of coverage. J. Chem. Inf.
Comput. Sci., 35(2):285-294, 1995.

G. M. Smith and D. F. Veber. Computer-aided, systematic search
of peptide conformations constrained by NMR data. Biochem.
Biophys. Res. Commun., 134(2):907-914, 1986.

Y. Takeuchi, E. F. B. Shands, D. D. Beusen, and G. R. Marshall.
Derivation of a three-dimensional pharmacophore model of sub-
stance p antagonists bound to the neurokinin-1 receptor. .J. Med.
Chem., 41(19):3609-3623, 1998.

R. Tejero, D. Monleon, B. Celda, R. Powers, and G. T. Monte-
lione. HYPER: A hierarchical algorithm for automatic determina-
tion of protein dihedral-angle constraints and stereospecific C#H2

resonance assignments from NMR data. Journal of Biomolecular
NMR, 15:251-264, 1999.

W. Tong, E. R. Collantes, W. J. Welsh, B. A. Berglund, and A. C.
Howlett. Derivation of a pharmacophore model for anandamide us-
ing constrained conformational searching and comparative molec-
ular field analysis. J. Med. Chem., 41(22):4207-4215, 1998.

167

[70]

[71]

E. Tsang. Foundations of Constraint Satisfaction. Academic Press,
1993.

M. Vasquez and H. A. Scheraga. Use of buildup and energy-
minimization procedures to compute low-energy structures of the
backbone of enkephalin. Biopolymers, 24(8):1437-1447, 1985.

G. Vriend. WHAT IF: a molecular modeling and drug design
program. Journal of Molecular Graphics, 8(1):52-56, 1990.

D. Waltz. The Psychology of Computer Vision, chapter Under-
standing line drawings of scenes with shadows, pages 19-91. MIT
Press, Cambridge, Massachusetts., 1975. edited by P.H. Winston.

D. L. Waltz. Generating semantic descriptions from drawing of
scenes with shadows. PhD thesis, Massachusetts Institute of Tech-
nology, 1972.

C. E. Wang. Confmatch: automating electron-density map in-
terpretation by matching conformations. Acta Crystallogr D Biol
Crystallogr, 12:1591-1611, 2000.

C.-S. Wang. Efficient algorithm for conformational search of
macrocyclic molecules. Journal of Computational Chemistry,
18(2):277-289, 1997.

J. Wang, P. A. Kollman, and I. D. Kuntz. Flexible ligand docking;:
A multistep strategy approach. Proteins: Structure, Function, and
Genetics, 36:1-19, 1999.

M. Zacharias and H. Sklenar. Conformational analysis of single-
base bulges in a-form DNA and RNA using a heirarchical approach
and energetic evaluation with a continuum solvent model. J. Mol.
Biol., 289(2):261-275, 1999.

168

Previous Degrees and Awards

M.S. in Computer Science and Electrical Engineering, MIT, 1993.
Thesis: A Local Rule Paradigm for the Self-Assembly of Icosahedral
Viruses.

Advisor: Daniel Kleitman

B.S., Summa cum laude, in mathematics and computer science, Yale
University, 1990.

Thesis: Efficient Algorithm for reassembly of DNA restriction frag-
ments.

Advisor: Richard Beigel.

National Science Foundation Graduate Fellowship, 1991.
Anthony Stanley Prize in pure and applied mathematics, Yale Uni-
versity, 1990.

DeForest Prize in pure and applied mathematics, Yale University,
1990.

169

