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Abstract

We present a novel framework to exert a topology control over a level set evolution. Level set meth-
ods offer several advantages over parametric active contours, in particular automated topological
changes. In some applications, where some a priori knowledge of the target topology is available,
topological changes may not be desirable. A method, based on the concept of simple point bor-
rowed from digital topology, was recently proposed to achieve a strict topology preservation during
a level set evolution. However, topologically constrained evolutions often generate topological bar-
riers that lead to large geometric inconsistencies. We introduce a topologically controlled level set
[framework that greatly alleviates this problem. Unlike existing work, our method allows connected
components to merge, split or vanish under some specific conditions that ensure that no topological
defects are generated. We demonstrate the strength of our method on a wide range of numerical
experiments.

1. Introduction

Active contours constitute a general technique of matching a deformable model onto an image by
means of energy minimization. Curves or surfaces deform within a 2-dimensional or 3-dimensional
image subject to both internal and external forces and external constraints. Since their introduction
by Kass et al. in [13], active contours have benefited many computer vision research areas (image
segmentation [3], surface reconstruction [19, 4], shape modelling, visual tracking [18], and stereo-
vision [5, 12, 7], etc.).

Depending on the implementation, there are essentially two ways of representing an active con-
tour. Parametric approaches encode the manifold of interest with an explicit representation using
a Lagrangian formulation, while geometric active contours are represented implicitly as level sets
of functions defined on higher-dimensional manifolds in an Eulerian formulation [17]. Geometric
active contours, which have been introduced by Caselles et al. [3], offer many advantages over
parametric approaches. In addition to their ease of implementation, level sets do not require any pa-
rameterization of the evolving contour. Self-intersections, which are costly to prevent in parametric
deformable models, are naturally avoided and topological changes are automated. Also, many fun-
damental properties of the active contours, such as the normal or the curvature, are easily computed
from the level set function.

The ability to automatically change topology is often presented as an advantage of the level
set method over explicit deformable models. However, this behavior is not desirable in some ap-
plications. This is typically the case in biomedical image segmentation, where the topology of the
target shape is prescribed by anatomical knowledge. In order to overcome this problem, a topol-
ogy preserving variant of the level set method has been proposed [10]. The level set function is
iteratively updated with a modified procedure based on the concept of simple point from digital
topology [1]; the final mesh is obtained with a modified topology-consistent marching cubes algo-
rithm. This method ensures that the resulting mesh has the same topology as the user-defined initial
level set.



While such topological preservation is desired in some applications, it is often too restrictive.
Because the different components of the contour are not allowed to merge or to split up, the num-
ber of connected components will remain constant throughout the evolution. This number must be
known by the user a priori and the initial contour must be designed accordingly. Also, the sensitivity
to initial conditions, which already limits the applicability and efficiency of active contour methods,
is considerably increased. The initial contour must both have the same topology as the target shape
and be close enough to the final configuration, otherwise the evolution is likely to be trapped in
topological dead-ends including large geometric inconsistencies (cf Fig.1 b&e).

While being able to control the topology of an active contour is an attractive feature, forcing
it to remain identical through an evolution constitutes a very strong constraint. In this paper, we
propose a method to exert a more subtle topological control on a level set evolution. Some a priori
knowledge of the target topology can be integrated without requiring that the topology be known
exactly. Our method greatly alleviates the sensitivity to initial conditions by allowing connected
components to merge, split or vanish without introducing any topological defects (such as handles).
For example, an initial contour with a spherical topology may split into several pieces, go through
one or several mergings, and finally produce a certain number of contours, all of which will be
topologically equivalent to a sphere. A subset of these components may then be selected by the user
as the desired output (typically the largest component if one spherical contour is needed, the others
being caused by noise).

Our approach is based on an extension of the concept of simple point to multi-label images, that
we have called multisimple point. This criterion ensures that no topological defects are generated
while splitting or merging the components of the object. This algorithm fills the gap between the
original level set framework and topology preserving level set methods.

2. Background
2.1. Topology

Topology is a branch of mathematics that studies the properties of geometric figures that are pre-
served through deformations, twistings and stretchings, hence without regard to size, absolute posi-
tion.

Here, we focus on closed contours (i.e. compact surfaces) in three dimensions. Any compact
connected orientable surface is homeomorphic to a sphere with some number of handles. This num-
ber of handles is a topological invariant called the genus. For example, a sphere is of genus 0 and a
torus is of genus 1. The genus g is directly related to another topological invariant called the Euler
characteristic x by the formula y = 1 — 2g. The Euler characteristic is of great practical interest
because it can be calculated from any polyhedral decomposition of the surface by xy =V — F + F,
where V', E and F' denote respectively the number of vertices, edges and faces of the polyhedron.

Homeomorphisms are used to define the intrinsic topology of an object, independently of the
embedding space. For example, a knotted solid torus has the same genus as a simple torus, or a
hollow sphere as two spheres. In order to topologically differentiate these surfaces, one needs a
theory that considers the embedding space. Homotopy, which defines two surfaces to be homotopic



if one can be continuously transformed into the other, is such a theory that provides a measure of an
object’s topology (see [11] for an excellent course in algebraic topology).

2.2. Digital topology

Digital topology provides an elegant framework, which transposes the continuous concepts of topol-
ogy to discrete images. In this theory, binary images inherit a precise topological meaning. In par-
ticular, the concept of homotopic deformation, necessary to assign a topological type to a digital
object, is clearly defined through the notion of simple point. An extensive discussion of these con-
cepts can be found in the work of Mangin et al [16]. In this section, some basic notions of digital
topology are presented. All definitions are from the work of G. Bertrand, which we refer to for more
details [1].

A 3D binary digital image I is composed of a foreground object X and its inverse, the comple-
ment X . We first need the concept of connectivity, which specifies the condition of adjacency that
two points must fulfill to be regarded as connected. Three types of connectivity are commonly used
in 3D: 6-, 18- and 26-connectivity. Two voxels are 6-adjacent if they share a face, 18-adjacent if they
share at least an edge and 26-adjacent if they share at least a corner. In order to avoid topological
paradoxes, different connectivities, n and 7, must be used for X and X. This leaves us with four
pairs of compatible connectivities: (6,26), (6,18), (26,6) and (18,6). In the following, we note N, ()
the n-neighborhood of a point z, i.e. the set of grid points which are n-adjacent to . We also set
N;(z) = No() \ {a}.

An n-path 7 is a sequence (possible empty) of points zg...x; with x; adjacent to x;_; for i =
1,..., k. The path is elementary if all points in the sequence are different except possibly x¢ = wy.
An elementary n-path is simple if each point of 7 has, at most, two n-adjacent points in 7. If
To = Tk, then 7 is closed. Finally, we note that any path from x( to ), contains an elementary path
and a simple path from x( to xy.

Once the concepts of connectivity and path have been introduced, the notion of topological
defect can be defined. Topological defects in a digital volume are consistuted of holes (i.e. handles)
and cavities. While a cavity in an object X (resp. X) is easily detected as a finite 7--connected (resp.
n-connected) components of X (resp. X), the notion of hole is not simple to define. The presence
of a hole in X (resp. X) is detected whenever there is a closed n-path (resp. 77-path) in X (resp. X)
that cannot be deformed in X (resp. X) to a simple point.

We then go to the definition of a simple point. This concept is central to the method of [10] and
to our method. A point of a binary object is simple if it can be added or removed without changing
the topology of both the object and its background, i.e. without changing the number of connected
components, cavities and handles of both X and X. A simple point is easily characterized by two
topological numbers with respect to the digital object X and a consistent connectivity pair (n, 7).
These numbers, denoted T}, (, X) and Ty (x, X ), have been introduced by G. Bertrand in [1] as an
elegant way to classify the topology type of a given voxel. The values of T, (z, X) and T3 (z, X)
characterize isolated, interior and border points as well as different kinds of junctions. In particular,



a point is simple if and only if T),(z, X) = Tx(x,X) = 1. Their efficient computation, which
only involves the 26-neighborhood, is described in [2].

2.3. Topology preserving level sets

Han et al. [10] have used the concept of simple point to design a topology preserving variant of
the level set framework. The binary object of interest is the interior of the contour, i.e. the domain
where the level set function is strictly negative: X = {z | ®(x) < 0}. The digital topology of X is
preserved during the evolution by the means of a modified update procedure detailed in Algorithm 1,
below. This approach prevents digital non-simple grid points from changing sign, therefore retaining
the initial digital topology throughout the level set evolution.

For this method to be useful, it must be complemented with a topology-consistent isocontour
extraction algorithm. Standard marching squares or marching cubes algorithm [15] do not generate
topologically consistent tessellations. In order to alleviate this problem, Han et al. have designed
a modified connectivity-consistent marching contour algorithm, by building a specialized case ta-
ble for each type of digital topology. Using the topology preserving level set algorithm and the
topology-consistent marching contour algorithm in conjunction, with the same digital topology
(n,m) throughout the process, guarantees that the output mesh is topologically equivalent to the
user-defined initial level set.

Algorithm 1 Topology preserving level sets. Han et al. [10]

for all iterations do
for all grid points do
Compute the new value of the level set function
if the sign does not change then
Accept the new value
else {sign change}
Compute the topological numbers
if the point is simple then
Accept the new value
else
Discard the new value
Set instead a small value of the adequate sign

3. Methods

The simple point condition is a very efficient way to detect topological changes during a level set
evolution. However, in many applications, the topology preserving level set method of Han et al. is
too restrictive.

The primary concern is topological defects such as cavities and handles, which are difficult to
retrospectively correct [9, 6, 8, 14]. On the other hand, changes in the number of connected compo-
nents during the evolution are less problematic. Different connected components are easily identified



using standard region growing algorithms. A subset of them may be selected by the user as the final
output, typically the largest one if a single component is needed, the others being imputable to noise
in the input data.

We extend the concept of simple point to allow distinct connected components to merge and split
while ensuring that no additional handle or cavity is generated in the object. For example, an initial
contour with spherical topology may split into several pieces, go through one or several mergings,
and finally produce a specific number of surfaces, all of which are topologically equivalent to a
sphere.

3.1. From simple points to multisimple points

The different values of T}, and T characterize the topology type of a given point z, providing
important information with regards to its connectivity to the object X. In particular, isolated points
are characterized by 7,, = 0 and T = 1, while different junctions by 7, > land Ty = 1.
This additional information can be used to carefully design a multi-label digital framework, which
allows different connected components to split, merge or vanish under topology control.

A point is multisimple if it can be added or removed without changing the number of handles
and cavities of the object. Contrary to the case of simple points, the addition of a multisimple point
may merge several connected components, and its removal may split a component into several parts.

We note C),(z, X) the set of n-connected components of X \ {x} that are n-adjacent to z.
If the cardinality of this set is strictly greater than one, the addition or removal of x involves a
merge or a split respectively. A point is multisimple if and only if it is simple relatively to each
component of C,(x,X) taken separately, resulting in an elementary criterion using topological
numbers. Formally, a point is said to be multisimple relatively to an object X if and only if:

Tz, X) =1 (1)

VCeCy(x,X), Th(z,C)=Tx(x,C)=1. @)

proof In order to verify that the concept of multisimple point does not introduce any topological
defects in the volume, we need to show that the addition or deletion of a multisimple point x does
not introduce any holes or cavities in any of the connected components C' € C,(x, X) or X, where
X = U, G U{e}. B

A simple point = € X, characterized by T),(x, X) = Tx(z, X) = 1, can be removed without
changing the topology of the image. This implies a one-to-one correspondence between the con-
nected components, the holes of X and X and the connected components, the holes of X \ {z} and
X |J{z}, the n-connectivity being used for X and the 7-connectivity being used for X. Using this
property, the proof can easily completed as follow.

Holes : since the connected components C; € C,(z, X) are not adjacent, any simple closed
pathin X = |J,; C; [J{«} is strictly contained in C; | J{«} for one of the connected components C';.
The multisimple criterion, which ensures that the point x is simple relatively to the component C';
(see Eq.2), guarantees that the addition or deletion of = does not create any n-holes in the process.



Similarly, any simple closed m-path in the background component X | J{z} is contained in C' for
any of the components C' € C,(z, X ). Therefore, Eq.2 ensures that no 7-holes are created in X

Cavities : the point z is simple relatively to each component C' € C,,(x, X ). As a consequence,
its addition or deletion does not introduce any cavities in any of the components C' or its comple-
ment C'. Finally, we note that no cavities other than the ones formed by the n-connected compo-
nents of Cy, (z, X) are generated in X. If this were the case, since the components of C',(z, X) are
not adjacent, this would mean that the cavity would have been created in one of the components
C € Cy(z, X), which would contradict what we have just proven.

When merging or splitting connected components by adding or removing a multisimple point, the
total genus (i.e. the total number of handles) of the different components is preserved. For example,
a torus and a sphere will merge into a torus. A double torus may split into two toruses or into a
double torus and a sphere. We note that, under this condition, an isolated point is a multisimple
point, which allows components to be created or to disappear.

3.2. Level set evolution under topology control

With the concept of multisimple point in hand, we are now ready to describe our new level set
framework. Similarly to the approach of Han et al. [10], we exploit the binary nature of the level
set function that partitions the underlying digital image into strictly negative inside points and pos-
itive outside points. During the evolution, we maintain a map L of labels coding for the different
connected components of X . The background X is assigned the 0 label.

The update procedure for each grid point at each iteration is described in Algorithm 3. The
simple point condition, more restrictive, is checked first, because it is computationally cheaper. If
the point is non-simple, then C,,(x, X') is computed in order to check the multisimple criterion.

Interestingly, if  is part of the background object and is a candidate for addition, C',, (x, X') can
be deduced directly from the map L. If x is a candidate for removal, the complete set C',(z, X)
must be computed. However, when dealing with components that do not possess any handles, the
most common situation in practice, the computation of C',(x, X) only involves local computations.

Algorithm 3 also describes how to consistently update the labels of the different connected
components. The more complex case is the removal of a multisimple point involving a split: in this
case, some unused labels must be assigned to the new connected components.

The resulting procedure is an efficient level set model that prevents handles and cavities from
being created during the evolution, allowing the number of connected components to vary.

3.3. Extension

In this section, we show how our method can be modified to allow the generation of cavities. Unex-
pected cavities, which can be interpreted as background n-connected components, might generate
large geometrical inaccuracies in level set evolutions that prevent their formation. This might be
of particular importance when dealing with noisy data or in medical imaging, when unexpected
medical structures, such as tumors, might exist in the volume to be segmented.



Algorithm 2 Level sets under topology control with handle and cavity preservation

Compute the new value of the level set function
if the sign does not change then
Accept the new value
else {sign change}
Compute the topological numbers
if the point is simple then
Accept the new value
if negative new value then
L(x) « the only non-zero label n-adjacent to z
else
L(z) <0
else {non-simple point}
Compute Cy, (z, X)
Compute the topological numbers of each component
if the point is multisimple then
Accept the new value
if negative new value then
Fill all C € Cy(x, X) with the same label
else
Fill each C' € Cy (z, X) with a different label
else {non-multisimple point}
Discard the new value
Set instead a small value of the adequate sign

The concept of multisimple point evaluates if the addition or removal of a point will change the
number of handles or cavities of an object. In particular, this allows a single component to split into
several connected components, without introducing any topological defects. This splitting process
can be interpreted as the generation of one or several background cavities. Therefore, the extension
of the concept of multisimple point to both foreground and background components will naturally
allow for the formation of cavities during the level set evolution. Formally, a point « is said to be
multisimple relatively to X and X if and only if:

To(2,X) = 1
VO e Cy(r,X), Tp(x,C) =Tr(x,C) =1
or
To(z, X) =1

VC € Cr(r,X), Ty(z,C) = T(z,C) =1

In this modified level set evolution, background components need to be assigned distinct labels.
The map L of labels encodes the different connected components of X and X . For each grid point,
the conditions for multisimple point are verified relatively to X and X. Some care must be taken
in order to ensure that the map of labels is correctly updated. The first equation of each condition
guarantees that sign changes do not generate ambiguous label changes. For each point x € X



changing sign, only one single connected component C' of the inverse object X is adjacent to the
point x; unambiguously, the newly assigned label of z is the one of the component C'.

The resulting level set evolution allows for the generation of cavities, leading to a flexible model
that only prevents the formation of handles. We insist on the fact that digital topology does not
provide a consistent framework for multi-label images. However, by ensuring that no components
of the same object X or X are adjacent, topological inconsistencies are avoided.

3.4. Implementation Issues

During a level set evolution, most points of the narrow-band do not change sign and do not imply a
potential change of topology. The simple point condition, which only involves local calculations, is
computationally cheap and leads to an efficient algorithm (see [2] and [10]).

Similarly, when the initial level set components do not possess any handles, multisimple points,
which constitute a direct extension of the concept of simple points, only require local computations.
This situation is the most common in practice, since one is most often interested in segmenting
structures that have a spherical topology. However, we note that, when dealing with components
that do possess handles (i.e. such as a torus), the computation of the set C', (x, X') might be expen-
sive, as it involves finding the set of n-connected components of X \ {z} that are n-adjacent to x.

The merging of connected components into one single component can easily be done using the
label map L. If a point z is part of the background object and is a candidate for addition, C',(z, X)
can be deduced directly from the map L. The merging step simply amounts to assigning the same
label to each neighboring connected components.

One must be more careful when splitting components (i.e. split of a foreground component into
several components or generation of cavities). During the evolution, some components may need to
be split into several components, which requires the assignment of some unused labels to the new
connected components that must be previously identified. This can be done using standard region
growing algorithms.

Also, an update of the narrow band might generate a series of useless and computationally
expensive splits depending on the ordering of the points in the narrow band. This would be the
case, for instance, when a one-voxel wide region is iteratively broken into several pieces. In order
to avoid the useless generation of connected components, we prevent components from splitting
during the first pass in the narrow band by refusing sign changes of candidate voxels for a split.
They are assigned a small value of the appropriate sign and an indicative flag is used to signal a
potential component split. After the first pass, the multisimple condition is re-evaluated for each
candidate voxels and the components are retrospectively updated. Finally, we note that, in order to
avoid useless multiple splits of the same component into several pieces, every candidate voxel that
is adjacent to an updated voxel has its flag deleted once a split has happened.



Algorithm 3 Level sets under topology control with handle preservation

Compute the new value of the level set function
if the sign does not change then
Accept the new value
else {sign change}
Compute the topological numbers
if the point is simple then
Accept the new value
if negative new value then
L(x) < the only foreground label n-adjacent to x
else
L(x) < the only background label -adjacent to x
else {non-simple point}
if { T(z,X) # 1 and Ti(z, X) # 1} then
Discard the new value
Set instead a small value of the adequate sign
else {check if the point is multisimple }
if Tr(z, X) = 1 then
Compute Cr, (z, X)
Compute the topological numbers of each component C' € Cp,(x, X)
if the point is multisimple relatively to X then
Accept the new value
if negative new value then
Foreground components’ merge
Fill all C € C,(z, X) with the same label
L(x) « the only foreground label n-adjacent to x
else
Foreground component split or deletion
Fill each C € Cy,(z, X) with a different label
L(z) « the only background label 77-adjacent to
else {non-multisimple point}
Discard the new value
Set instead a small value of the adequate sign
else {T(z, X) =1}
Compute Cr(z, X)
Compute the topological numbers of each component C' € Cr(x, X)
if the point is multisimple relatively to X then
Accept the new value
if negative new value then
Cavity formation or deletion
Fill all C' € Cr(z, X) with different labels
L(x) « the only foreground label n-adjacent to x
else
Merge of background components
Fill each C' € Cx(x, X) with the same label
L(x) « the only background label -adjacent to =
else {non-multisimple point}
Discard the new value
Set instead a small value of the adequate sign




4. Experiments and Applications

In this section, we present some experiments illustrating the performance of the proposed approach
and the panel of potential applications. In the following examples, we use the extended version of
our level set framework.

4.1. ’C’ shape

"C’ shape First, we consider the segmentation of a simple *C’ shape under two different initializa-
tions (c¢f Fig.1 a-c & d-f). Our method, columns c,f; is compared to the original level set formulation,
columns a,d, and the topology preserving model introduced by Han et al. [10], columns b,e. In the

Fig. 1. Segmentation of a *’C’ shape using a spherical initialization a-c and a rectangular initialization d-f. The top row
shows cuts of the 3D shape locating the initial component. a,d: Traditional level set evolution. b,e: Topology preserving
level set evolution. c,f: level set evolution under topology control. Differences of behavior are circled in the images. Note
that in both cases, our level set framework is able to correctly segment the shape of interest, without generating invalid
topology during the evolution.



case of this simple example, standard level sets produce accurate segmentations. However, they
do not provide control over the final topology, as illustrated by the second initialization, column d.
During the evolution, the level set automatically changes topology, temporarily generating a toroidal
shape.

On the other hand, topology preserving level sets, while guaranteeing the correct topology,
might easily be geometrically inaccurate (see Fig.1b,e). Topological barriers, generated during the
evolution to prevent topological changes, generate incorrect contour configurations which are dif-
ficult to retrospectively correct. We note that even close initializations (¢f column e) can lead to
inaccurate segmentations.

The behavior of our approach corresponds to a trade-off in between the previous two methods.
Our level set framework, which offers more flexibility during the evolution, greatly alleviates the
sensitivity to initialization. It provides a control over the topology of all connected components,
without enforcing strong topological constraints. The first initialization (¢f column c¢) produces a
level set evolution, which splits the active contour into three distinct components with a spherical
topology. While one of these components vanishes, the two other components merge, closing the *C’
shape. In this case, topologically controlled level sets behaved in exactly the same way traditional
level sets do. Our method is still sensitive to topological barriers, in the sense that it won’t allow
component to generate handles. However, it is less likely to be trapped into topological dead-ends
than a strict topology preserving model. This illustrated in Fig.1 f, where the spherical component
is prevented from generating a handle until it gets separated into two distinct components.

Fig. 2. Segmentation of a cubic shape containing 3 cavities. 10 initial seed points were randomly selected. Note how
components split, merge and disappear during the evolution, and how the active contour encloses cavities.



4.2. Formation of cavities

The second experiment, see Fig.2, illustrates the ability of our approach to generate cavities dur-
ing the evolution. The object to be segmented is a synthetic cube, containing 3 large cavities. 10
seed points, randomly selected inside and outside the volume, were used to initialize the level set
evolution reported in Fig.2. During the evolution, components merge, vanish and produce cavities,
generating a final accurate representation constituted of 3 spherical cavities and the main object. We
note that all the components are easily extracted, since they carry distinct labels that are iteratively
updated during the evolution.

4.3. Cortical segmentation

In a third experiment, we apply a naive approach to the difficult problem of cortical surface ex-
traction to illustrate the strength of our method. Excluding pathological cases, the cortex, which
corresponds to a highly-folded thin sheet of gray matter, has the topology of a sphere. The extrac-
tion of accurate and topologically correct cortical representations is still an active research area [6,
9]. In this example, the cortical surface is initialized with 55 spherical components, automatically
selected in a greedy manner, such that every selected point is located at a minimal distance of 10mm
from the previous ones (see Fig.3). During the evolution, the components progressively merge to-
gether and enclose cavities, resulting in a final surface composed of one single spherical component
with 5 cavities. The same evolution without topology constraint produces a final cortical surface
with 18 topological defects (i.e. handles).

Fig. 3. Segmentation of the cortex from an anatomical MRI. The initial level set was constituted of 55 connected com-
ponents. The final surface has a spherical topology, corresponding to an Euler number of 2. The same level set evolution
without topological control results in a final surface with 18 topological defects (Euler number of x = —34)

4.4. Segmentation of blood vessels

Finally, we show how our method could be applied to the segmentation of blood vessels from
Magnetic Resonance Angiography. Because these vessels do not split and merge, their topology is



Fig. 4. Segmentations of blood vessels in a 3D angiography under two different initializations. Top row: 20 seed points
were selected to initialize the active contour, which generates 3 components. Bottom row: An enclosing contour is used
to initialize the level set. After 9 mergings and 99 splittings, the final segmentation is constituted of 91 components,
53 of which were due to random noise. The last image in the black frame shows the final segmentation produced by a
topologically constrained evolution under the same initialization.

the one of several distinct components with no handles (i.e. each component has the topology of a
sphere). While traditional level sets produce segmentations that could include topological defects,
topologically constrained level sets would result in a slow and laborious segmentation. Since the
simultaneous evolution of several components, which cannot be merged together, can easily be
trapped in topological dead-ends, each component would need to be iteratively initialized, when the
evolution of the previous one has terminated.

On the other hand, our method offers the possibility to concurrently evolve multiple compo-
nents that can merge, split and vanish. The initial contour can be initialized by a set of seed points,
manually or automatically selected, or by a single enclosing component, without affecting much the
final representation.

Figure 4 shows the segmentation of an angiography under two different initializations. In a first
experiment (cf top row), 20 seed points were automatically selected at the brightest locations in
the MRA. The level set evolution iteratively merged most of the components, generating a final
segmentation with 3 spherical components. In the second experiment (c¢f bottom row), one single
global component, enclosing most of the object of interest, was used to initialize the active contour.
During the evolution, 9 components merged and 99 split producing a final segmentation composed
of 91 components, 53 of which were single voxel components due to random noise in the imaging
process.



5. Discussion and Conclusion

We introduce a new level set framework that offers control over the topology of the level set com-
ponents during the evolution. Contrarily to previous approaches that either do not constrain the
topology or enforce a hard topological constraint, our method exerts a subtle control over the topol-
ogy of each component to prevent the formation of topological defects, such as handles (or cavities
depending on the application and the choice of active contour model). Distinct components can
merge, split or disappear during the evolution, but no handles (or cavities) will be generated. In par-
ticular, a contour solely composed of spherical components will only produce spherical components
throughout the evolution. In this case, which is the most common situation in practice, all computa-
tions are local and the multisimple point checking can be done efficiently. The only computational
complexity comes from the generation of new components, as new labels need to be assigned to
each of them.

While the original level set model does not provide any topological control, topology preserving
level sets enforce a strong constrain that is often too restrictive. Our framework establishes a trade-
off in between the two models. It offers a subtle topological control that alleviates most problems of
methods that enforce a strong topological constrain (i.e. sensitivity to initialization and noise, simul-
taneous evolution of multiple components and speed of convergence). The experiments presented
in this paper illustrate some potential applications that could greatly benefit from our approach.
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