DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible.

Thank you.
LATTICE APPROXIMATION IN THE STOCHASTIC QUANTIZATION
OF $(\phi^4)_2$ FIELDS

by

Vivek S. Borkar
Sanjoy K. Mitter

1The research of the second author was supported in part by the U.S. Army Research Office, Contract No. DAAL03-86-K-0171 (Center for Intelligent Control Systems, M.I.T.), and the Air Force Office of Scientific Research AFOSR-85-0227.
LATTICE APPROXIMATION IN THE STOCHASTIC QUANTIZATION OF \(\phi^4 \) FIELDS

Vivek S. Borkar
Tata Institute for Fundamental Research (TIFR)
P. O. Box 1234, Bangalore, India

Sanjoy K. Mitter
Department of Electrical Engineering and Computer Science
Laboratory for Information and Decision Systems (LIDS)
Center for Intelligent Control Systems
Massachusetts Institute of Technology
Cambridge, MA 02139
U.S.A.

I. INTRODUCTION

The Parisi-Wu program of stochastic quantization [8] involves construction of a stochastic process which has a prescribed Euclidean quantum field measure as its invariant measure. This program was rigorously carried out for a finite volume \(\phi^4 \) measure by G. Jona-Lasinio and P. K. Mitter in [6]. These results were extended in [2], which also proves a finite to infinite volume limit theorem. The aim of this note is to prove a related limit theorem, viz., that of the finite dimensional processes obtained by stochastic quantization of the lattice \(\phi^4 \) fields to their continuum limit, i.e., the \(\phi^4 \) process of [2], [6]. The proof imitates that of the limit theorem of [2] in broad terms, though the technical details differ. Note that this limit theorem can also be construed as an alternative construction of the \(\phi^4 \) process in finite volume.

The next section recalls the finite volume \(\phi^4 \) process. Section III summarizes the relevant facts about the lattice approximation to the \(\phi^4 \) field from Sections 9.5 and 9.6 of [4]. Section IV proves the limit theorem.

1The research of the second author was supported in part by the U.S. Army Research Office, Contract NO. DAAL03-86-K-0171 (Center for Intelligent Control Systems, Massachusetts Institute of Technology), and by the Air Force Office of Scientific Research, Contract No. AFOSR-85-0227.
II. THE (ϕ_2^γ) PROCESS

Let ICR^2 be a finite rectangle which, for simplicity, we take to be the unit cube $x = (x_1, x_2) = (0, 1) \times (0, 1)$. Let A denote the Dirichlet Laplace operator on A. It is diagonalized by the basis $e_k(x) = \sin(kx_1) \sin(kx_2)$, $x = (x_1, x_2)$, $k \in \mathbb{Z}^2$, $k^2 = k_1^2 + k_2^2$. In fact, $-A e_k = k^2 e_k$ where $k^2 = k_1^2 + k_2^2$. For $\gamma \in \mathbb{R}$, let H^γ denote the Hilbert space obtained by completing H^0 with respect to the inner product $<f, g> = \sum_{k \in \mathbb{Z}^2} (k^2)^\gamma <f, e_k> <g, e_k>$ where $<\cdot, \cdot>$ is the L^2 scalar product. Topologize $Q = \cup H^\gamma$ by the countable family of seminorms $||\cdot||_n = <\cdot, \cdot>_n^\gamma$ and $Q = \cup H^\gamma$ via duality.

Let $C = (-\Delta + 1)^{-1}$, $C(\cdot, \cdot)$ its integral kernel, C^γ its γth operator power, and μ_C the centered Gaussian measure on H^1 with covariance C [2], [6]. Let $\cdot : \cdot$ denote the Wick ordering with respect to C (see [4], Ch. 3; for a definition). The (ϕ_2^γ) measure on H^1 is defined by

$$\frac{d\mu}{d\mu_C} = \exp \left(-\frac{1}{4} \int :\phi^2 : \mu_C \right) \frac{d\mu_C}{Z} \quad [2.1]$$

where $Z = \int \exp \left(-\frac{1}{4} \int :\phi^2 : \mu_C \right) d\mu_C <\infty$.

See [4], Section 8.6, for details.

Let $0 < \epsilon < 1$ and $\mathcal{B}_k(\cdot)$, $k \in \mathbb{Z}^2$, a collection of independent standard Brownian motions. Define

$$W(t) = \sum_{k \in \mathbb{Z}^2} (k^2)^{-\gamma} \mathcal{B}_k(t) e_k(\cdot), \ t \geq 0.$$

This defines an H^1-valued Wiener process with covariance $C^{1-\gamma} [2], [6]$. The equation

$$d\phi(t) = -\frac{1}{2} (C^{-\gamma} \phi(t) + C^{1-\gamma} \phi^3(t, \cdot)) dt + dW(t). \quad [2.2]$$

with initial law μ can be shown to have a unique stationary weak solution as an H^1-valued process, defining an ergodic process called the (ϕ_2^γ) process. See [2], [6] for details.
III. LATTICE APPROXIMATION

Let \(\Lambda = \{2^{-n}, \ n \in \mathbb{Z}\} \) and pick \(\delta \Lambda \). The finite lattice \(\Lambda_{\delta} \) with spacing \(\delta \) is defined as follows: Let \(\delta \mathbb{Z} = \{\delta n | n \in \mathbb{Z}\} \) and \(\int \Lambda = \int \Lambda \cap \delta \mathbb{Z} \).

\[\Lambda_{\delta} = \Lambda \cap \delta \mathbb{Z}, \quad \Lambda_{\delta} = \operatorname{int} \Lambda_{\delta} \cup \delta \Lambda_{\delta} = \Lambda \cap \delta \mathbb{Z}, \quad \ell_2(\int \Lambda_{\delta}) \] is the Hilbert space with inner product

\[\langle f, f \rangle_{\int \Lambda_{\delta}} = \sum_{x \in \int \Lambda_{\delta}} \delta^2 |f(x)|^2, \]

viewed as a subspace of \(L_2(\Lambda_{\delta}) \). On \(L_2(\delta \mathbb{Z}) \), define the forward gradient \(\delta_{\alpha} \) in direction \(\alpha \) by \(\delta_{\alpha} f(x) = \delta^{-1} [f(x + \delta v_\alpha) - f(x)] \) where \(v_\alpha \) is the unit vector in the \(\alpha \)-th direction for \(\alpha = 1, 2 \). The backward gradient \(\delta^*_{\alpha} \) is its adjoint with respect to the \(L_2(\delta \mathbb{Z}) \) inner product.

Let \(-\Delta_{\delta} = \delta_{\alpha, 1}^* \delta_{\alpha, 1} + \delta_{\alpha, 2}^* \delta_{\alpha, 2} \). Then \((-\Delta_{\delta} f)(x) = \delta^{-2} (-4f(x) + \sum f(y)) \)

where the summation is over the nearest neighbours of \(x \). Let \(\Pi \) be the projection \(L_2(\delta \mathbb{Z}) \rightarrow L_2(\int \Lambda_{\delta}) \). The Dirichlet difference Laplacian \(\Delta_{\delta} \) is defined as \(\Pi \Delta_{\delta} \Pi \) and agrees with \(\Delta_{\delta} \) on \(\int \Lambda_{\delta} \).

Choose as a basis on \(L_2(\int \Lambda_{\delta}) \) the \((\delta^{-1} - 1)^2\) functions

\[\{e_k(x) = e_k(x) | x \in \int \Lambda_{\delta} \}, \quad k = \pi, 2\pi, \ldots, (\delta^{-1} - 1)\pi; \quad \alpha = 1, 2 \} \]

Lemma 3.1 ([4], p. 221) \(\{e_k^\alpha \} \) diagonalize \(-\Delta_{\delta} \) with

\[-\Delta_{\delta} e_k^\alpha = \lambda_{\delta}^\alpha e_k^\alpha, \quad \lambda_{\delta}^\alpha = 4\delta^{-2} \sum_{i=1}^{\delta^{-1} - 1} \sin^2 \left(\frac{\pi i}{\delta} \right) \]

Also, \(\langle e_k^\alpha, e_l^\beta \rangle_{\int \Lambda_{\delta}} = 1 \) if \(k = l \), \(0 \) otherwise

Lemma 3.2 ([4], p. 222) The map \(i : e_k^\alpha \rightarrow e_k^\alpha \) defines an isometric imbedding of \(L_2(\int \Lambda_{\delta}) \rightarrow L_2(\Lambda) \).

Let \(\Pi_{\delta} \) be the projection operator on \(L_2(\Lambda) \) which truncates the Fourier series at \(k/\pi = \delta^{-1} \), so that

\[\Pi_{\delta} \sum_{k} a_k e_k = \sum_{k} a_k e_k \quad \text{where} \quad \sum_{k} \text{denotes the summation over} \]

\[B_{\delta} = \{k = (k_1, k_2) | 1 \leq k_1, k_2 \leq \delta^{-1} - 1, i = 1, 2 \}. \quad \text{Then} \quad i_{\delta}^\alpha = \Pi_{\delta} f |_{\Lambda_{\delta}} \]

We can consider \(C_{\delta}(-\Delta_{\delta} + 1)^{-1} : L_2(\int \Lambda_{\delta}) \rightarrow L_2(\int \Lambda_{\delta}) \) as an operator on \(L_2(\Lambda) \), via the above isometry, i.e., let \(C_{\delta} = \Pi_{\delta} C_{\delta}^\alpha \Pi_{\delta}^\alpha \) where the \(C_{\delta} \) on the right (resp. left) acts on \(L_2(\int \Lambda_{\delta})(\text{resp.} L_2(\Lambda)) \). As an operator on \(L_2(\Lambda) \), its kernel \(C_{\delta}(x, y) = \sum_{(k_1, k_2) \in B_{\delta}} (\delta^{-1} - 1)^2 e_k^\alpha(x) e_k^\beta(y) \), when restricted to the lattice points in \(\int \Lambda_{\delta} \), coincides with the matrix entries of \(C_{\delta} \) as an operator on \(L_2(\int \Lambda_{\delta}) \).

Lemma 3.3 ([4], pp. 222-224) \(\| C_{\delta} - C \| \leq (0 \delta^2) \) as operators on \(L_2(\Lambda) \),

Moreover, \(\sup_{x, y \in \Lambda} \| C_{\delta}(x, \cdot) \|_{L^p(\Lambda)} \leq (0 \delta^2) \) for \(p < (2\delta^{-1}, 1) \).
If \(\phi \) is a Gaussian field with covariance \(\mathbf{C} \)
\(\phi_{\delta}(x) = (i_{\delta}^{*} \phi)(x) \) for \(x \in \text{int} \Lambda_{\delta} \) defines a Gaussian lattice field with covariance \(\mathbf{C}_{\delta} = i_{\delta}^{*} \mathbf{C}_{\delta} i_{\delta} \).

The field \(\phi_{\delta} \) can be realized by a Gaussian measure on \(L_{2}(\text{int} \Lambda_{\delta}) \).

Explicitly, letting \(x \in \text{int} \Lambda_{\delta} \), \(d\phi_{\delta}(x) \) denote the Lebesgue measure on \(\mathbb{R} \cap \text{int} \Lambda_{\delta} \), the above measure is given by

\[
d\mu_{\delta} = (\det \mathbf{C}_{\delta})^{-\frac{1}{2}} \pi^{-\frac{1}{2}} \int_{\text{int} \Lambda_{\delta}} \exp \left(-\frac{1}{2} \sum_{x,y \in \text{int} \Lambda_{\delta}} \phi_{\delta}(x)^{\dagger} \mathbf{C}_{\delta}^{-1}(x,y) \phi_{\delta}(y) \right) \prod_{x} d\phi_{\delta}(x).
\]

This is the lattice analog of \(\mu_{\mathbf{C}} \). The lattice analog of \(\mu \) can now be defined as follows: Define for \(f \in L_{2}(\text{int} \Lambda_{\delta}) \),

\[
\phi_{\delta}^{n}(f) = \delta^{2} \sum_{x \in \text{int} \Lambda_{\delta}} \phi_{\delta}(x) \cdot \mathbf{F}_{\delta} f(x).
\]

The lattice analog \(\nu_{\delta} \) is given by

\[
d\nu_{\delta} = \exp \left(-\frac{1}{4} \phi_{\delta}^{n}(1) \right) d\mu_{\delta} \left\{ \left(\int \exp \left(-\frac{1}{4} \phi_{\delta}^{n}(1) \right) d\mu_{\delta} \right) \right\}^{1/2} [3.1]
\]

For \(k \in B_{\delta} \), let \(\{ \mathbf{e}_{k}(\cdot) \} \) be a collection of independent standard Brownian motions. For \(0 < \varepsilon < 1 \), define

\[
\mathbf{B}_{\varepsilon}(t) = \delta^{2} \sum_{x \in \text{int} \Lambda_{\delta}} (\lambda_{k}^{\delta} + 1)^{-\varepsilon} \mathbf{B}_{k}(t) \mathbf{e}_{k}(\cdot), \quad t > 0.
\]

This defines an \(L_{2}(\Lambda) \)-valued Wiener process with covariance \(\mathbf{C}_{\delta}^{1-\varepsilon} \). The analog of [2.2] in the lattice case is

\[
d\phi_{\delta}(t) = \frac{1}{2} \left(\mathbf{C}_{\delta}^{-\varepsilon} \phi_{\delta}(t) + \mathbf{C}_{\delta}^{1-\varepsilon} : \phi_{\delta}^{n}(t) : \right) dt + dB_{\varepsilon}(t) \quad [3.2]
\]

where the operators act on \(L_{2}(\Lambda) \). \(\phi_{\delta}(\cdot) \) is viewed here as an \(L_{2}(\Lambda) \)-valued process. However, letting \(\phi_{\delta}(t) = \sum_{k} \phi_{\delta k}(t) \mathbf{e}_{k} \), [3.2] translates into an equivalent stochastic differential equation for finitely many scalar processes \(\phi_{\delta k}(\cdot) \) with locally Lipschitz (in fact, polynomial) coefficients. This ensures the existence of an \(a.s. \) unique strong solution to [3.2] up to an explosion time. That it does not explode \(a.s. \) is proved by a standard application of Khasminskii's test for non-explosion exactly as in [G], Section 3.

By identifying the vector \(\{ \phi_{\delta}(x), x \in \text{int} \Lambda_{\delta} \} \) with \(\phi_{\delta}(\cdot) \in L_{2}(\text{int} \Lambda_{\delta}) \), \(\nu_{\delta} \) can be considered as a probability measure on \(L_{2}(\text{int} \Lambda_{\delta}) \) and via the isometry \(i_{\delta}^{*} \), as a probability measure on \(L_{2}(\Lambda) \). We retain the notation \(\nu_{\delta} \) for the latter interpretation, as only this interpretation will be used henceforth. A computation similar to that of [2], Section 3, shows that the generator of the Markov process described by [3.2] is self-adjoint on \(L_{2}(\nu_{\delta}) \). By Theorem 2.3 of [3], the same holds for the associated transition semigroup of \(\{ \mathbf{T}_{t}, t \geq 0 \} \) of operators on \(L_{2}(\nu_{\delta}) \).

Thus for \(f, g \in L_{2}(\mu_{\delta}) \),

\[
\int f \mathbf{T}_{t} g \ d\mu_{\delta} = \int (T_{t} f) g \ d\mu_{\delta}.
\]

Letting \(f(\cdot) \equiv 1 \),

\[
\int T_{t} g \ d\mu_{\delta} = \int g \ d\mu_{\delta}, \quad \text{implying that } \mu_{\delta} \text{ is an invariant probability measure.}
\]
for $\phi_\delta(\cdot)$. In fact, the resulting process will be ergodic. We won't need this fact here, so we omit the details. From now on, [3.2] will always be considered with initial law ν_0.

IV. THE CONTINUUM LIMIT

This section establishes the main result of this paper, viz., the convergence of $\phi_\delta(\cdot)$ to the (ϕ^t) process as $\delta \to 0$ in A, in the sense of weak convergence of Q'-valued processes. Thus we consider $\phi_\delta(\cdot)$ as a Q'-valued process and ν_δ as a measure on Q' via the injection of $L^2(A)$ into Q'. From theorem 9.6.4, p. 228, [4], it follows that the finite dimensional marginals of the collection $\{\phi_\delta(e_k), k \in B\}$ under ν_δ converge weakly to the corresponding ones under ν as $\delta \to 0$ in A. Since ν_δ, ν are supported on H^1, it follows that $\nu_\delta + \nu$ weakly as probability measures on Q'. (A proof of the former assertion would go as follows: Since H^1 is Polish, it is homeomorphic to a \mathcal{G}_0 subset of $[0,1]^{\infty}$ whose closure $\overline{H^1}$ can be considered a compactification of H^1. As a measure on $\overline{H^1}$, $\{\nu_\delta\}$ are tight and for any weak limit point ν thereof, its restriction ν' to H^1 must yield the same finite dimensional marginals for $\{\phi(e_k), k \in B\}$ as ν. Thus $\nu = \nu' = \nu$.)

As a first step towards proving the continuum limit, we prove some tightness results.

Let

\[\phi_1(t) = \phi_\delta(t) \]
\[\phi_\delta(t) = \frac{1}{2} \int t \to (s) \, ds \]
\[\phi_\delta(t) = \frac{1}{2} \int t \to (s) \, ds \]
\[\phi_\delta(t) = B_\delta(t) \]

for $t \leq 0$. Pick $t \leq t_0$ in $[0,T]$, $\omega > T > 0$. In what follows, K denotes a positive constant (not always the same) that may depend on T, but not on δ. Let $f \in Q$.

Lemma 4.1

\[E\left[\left(\int_{t_0}^{t_2} C_\delta^{t_2} \phi_\delta(t)(f) \, dt \right)^2 \right] \leq K \left| t_2 - t_1 \right|^2 \]

[4.1]

Proof: Using Jensen's inequality and stationarity of $\phi_\delta(\cdot)$, one obtains

\[E\left[\left(\int_{t_0}^{t_2} C_\delta^{t_2} \phi_\delta(t)(f) \, dt \right)^2 \right] \leq K \left| t_2 - t_1 \right|^2 E\left[C_\delta^{t_2} \phi_\delta(0)(f)^2 \right]. \]

Letting $M_\delta = \mu_\delta / \mu_\delta^{C_\delta}$, the expectation on the right is bounded by

\[\left[\int C_\delta^{t_2} \phi(f)^2 \mu_\delta^{C_\delta}(\phi) \right]^{1/2} \left[\int L_\delta^2 \mu_\delta^{C_\delta} \right]^{1/2}. \]

By Lemma 9.6.2, p. 227, [4], the second term above is bounded uniformly in δ. Using Feynman graph calculations, as in Theorem 9.5.3, p. 191, [4], one has

\[\text{Text should end on this page.} \]
\[\int |C_0^\phi (f)|^2 \, d\mu_\phi (\phi) \leq K \| C_0^\phi f \|_2^2. \]

Now
\[\| C_0^\phi f - C_0^\phi f \|_2^2 = 0 \sum_{e_k \in E} \langle f, e_k \rangle^2 \left(\lambda_k^2 + 1 \right)^2 I\{ k \in \mathbb{B}_0 \} - (\lambda_k + 1)^2. \]

The summand on the right can be dominated in absolute value by \(K_1 \langle f, e_k \rangle^2 \lambda_k^2 \) which is summable for \(f \in \mathcal{F}_0 \). By the dominated convergence theorem,
\[\lim_{\delta \to 0} \| C_0^\phi f - C_0^\phi f \|_2^2 = 0, \]
implying \(\sup_\delta \| C_0^\phi f \|_2 < \infty \). [4.1] follows. QED

Lemma 4.2
\[E \left[\int_{t_0}^{t_1} [\phi (f)]^2 \, dt \right] \leq K \| t_2 - t_1 \|^2. \quad [4.2] \]
This follows along similar lines.

Lemma 4.3
\[E \left[\left(B_0 (t_2) (f) - B_0 (t_1) (f) \right)^4 \right] \leq K \| t_2 - t_1 \|^2. \quad [4.3] \]

Proof The lefthand side equals
\[3 \| C_0^\phi (f) \|_2^2 \| t_2 - t_1 \|^2 \leq 3 \sup_\delta \| C_0^{(1-\delta)/2} f \|_2^2 \| t_2, t_1 \|^2. \]
As in the proof of Lemma 4.1, one can prove
\[\lim_{\delta \to 0} \| C_0^{(1-\delta)/2} f - C_0 f \|_2^2 = 0. \]
Thus \(\sup_\delta \| C_0 f \|_2 < \infty \) and the claim follows. QED

Corollary 4.1
\[E \left[\left| \phi (t_2) (f) - \phi (t_1) (f) \right|^4 \right] \leq K \| t_2 - t_1 \|^2. \quad [4.4] \]

Proof Follows from [3.2] and [4.1] - [4.3]. QED

Lemma 4.4
The laws of the processes \(\phi_1 (\cdot), \phi_2 (\cdot), \phi_3 (\cdot), \phi_4 (\cdot) \)
viewed as \((C([0, \omega]; Q)))^4 \)-valued random variables remain tight as \(\delta \)
varies over \(A \).

Proof By Theorem 3.1 of [7], it suffices to establish the tightness
of \(\phi_1 (\cdot) (f), \phi_2 (\cdot) (f), \phi_3 (\cdot) (f), \phi_4 (\cdot) (f) \) on \([0, T] \) as \((C([0, T]; R)))^4 \)-valued random variables for arbitrary \(T > 0 \) and \(f \in \mathcal{F}_0 \).
This, however, is immediate from the tightness of \(\{ \nu_0 \} \) (since \(\mu_0 \to \mu \)
weakly as a measure on \(H^3 \)), the estimates [4.1] - [4.4] and the
criterion of [1], p. 95. QED

Recall that a family of probability measures on a product of
Polish spaces is tight if and only if its images under projection onto
each factor space are. Letting \(\{ e_i \} \) denote an enumeration of \(\{ e_k \} \).
This implies, in view of the foregoing, that \(\phi_1 (\cdot) (e_i), \ldots, \phi_4 (\cdot) (e_i), \ldots, \phi_1 (\cdot) (e_2), \ldots, \phi_2 (\cdot) (e_2), \ldots, \phi_3 (\cdot) (e_2), \ldots, \phi_4 (\cdot) (e_2), \ldots \)
are tight as \((C([0, \omega]; R)))^4 \)-valued random variables. By dropping to a subsequence
of \(A \), denoted by \(A \) again, we may assume that they converge in law as \(\delta \to 0 \) along \(A \). Then for any finite subset \(\{ t_1, \ldots, t_k \} \) of \([0, \omega] \) and a
collection \(\{ g_1, \ldots, g_k \} \) of finite linear combinations of \(\{ e_i \} \), the
Consider a collection \(f_1, \ldots, f_k \) in \(Q \). Using the kind of estimates used in the proofs of Lemmas 4.1-4.3, we have

\[
E[|\hat{c}_{ij}(t_j) - g_j|^2] \leq M \left| f_j - g_j \right|^2_{L^2},
\]

for a suitable constant \(M \) depending on \(\max(t_1, \ldots, t_k) \). As \(\delta \to 0 \) in \(A \), the righthand sides of [4.6] - [4.8] converge to the corresponding quantities with \(C \) replacing \(C_0 \). Since \(g_j \) can be obtained by suitably truncating the Fourier series of \(f_j \) in \(\{e_i \} \), each of these limiting expressions and the righthand side of [4.5] can be made smaller than any prescribed \(\eta > 0 \) uniformly in \(1 \leq j \leq k \) by a suitable choice of \(\{g_j\} \). It follows that the righthand sides of [4.5] - [4.8] can be made smaller than any prescribed \(\eta > 0 \) uniformly in \(\delta \in A \) and \(1 \leq j \leq k \) by a suitable choice of \(\{g_j\} \).

Let \(\{h_k\} \) be an enumeration of finite linear combinations of \(\{\hat{e}_i\} \) with rational coefficients. By a well-known theorem of Skorohod ([5], p. 9), we can construct on some probability space random variables \(X_{ijl}^\delta, Y_{ijl}^\delta \) \(\delta \in A, 1 \leq i \leq 4, 1 \leq j \leq k, l > 1, \) such that \(\{X_{ijl}\} \) agrees in law with \(\{\hat{c}_{ij}(t_j)(h_k)\} \) for each fixed \(\delta \) and \(X_{ijl} \to Y_{ijl} \) a.s. as \(\delta \to 0 \) in \(A \). By augmenting this probability space, if necessary, we may construct on it random variables \(Z_{ijl}^\delta, (\delta, i, j) \) as above, such that the joint law of \(\{\hat{c}_{ij}(t_j)(f_j), \hat{c}_{ij}(t_j)(h), \hat{c}_{ij}(t_j)(h_k), \ldots\} \) agrees with that of \(\{Z_{ijl}^\delta, X_{ijl}^\delta, X_{ijl}^\delta, \ldots\} \) for each \(\delta, i, j \). Since \(X_{ijl} \to Y_{ijl} \) a.s. and \(E[|X_{ijl}^\delta|^2] = E[|\hat{c}_{ij}(t_j)(h_k)|^2] \) can be bounded uniformly in \(\delta \) as \(\delta \to 0 \) in \(A \) for each \(i, j, l \). On the other hand, given \(\eta > 0 \), we can pick \(\delta, \delta' > 0 \) such that setting \(g_j = h_k(\delta) \) in [4.5] - [4.8] makes all the quantities on the righthand side there less than \(\eta \). Thus

\[
\lim_{\delta, \delta' \to 0} E[|Z_{ijl}^\delta - Z_{ijl}^\delta'|^2] \leq 2n + \lim_{\delta, \delta' \to 0} E[|X_{ijl}^\delta(i) - X_{ijl}^\delta'(i)|^2] = 2n.
\]

Thus \(Z_{ijl}^\delta \) converge in mean square for each \(i, j \) as \(\delta \to 0 \) in \(A \). It follows that the joint laws of \(\{\hat{c}_{ij}(t_j)(f_j), 1 \leq i \leq 4, 1 \leq j \leq k\} \) converge. Theorem 5.3, [7], now implies that \(\{\hat{c}_{ij}^\delta(\cdot), \ldots, \hat{c}_{ij}^\delta(\cdot)\} \) converge as \(C([0,\infty); \mathbb{R}^n) \)-valued random variables. Let \(\{\phi_1(\cdot), \phi_2(\cdot), \phi_3(\cdot), \phi_4(\cdot)\} \) denote its limit in law (abbreviated as "l.i.l." henceforth). By taking the l.i.l. in [3.2] along an appropriate subsequence,
Theorem 4.1 $\phi_1(\cdot)$ is the $(\phi^*)_2$ process.

Proof We prove the theorem by identifying each term of [4.9]. Let $f \in \mathcal{Q}$.

By Jensen's inequality and stationarity, $E[\int \phi_\delta(s)(C^\delta f)ds]$

$$\leq t E[|\phi_\delta(0)(C^\delta f-C^\delta f)|^2] < t E[|C^\delta f-C^\delta f|^2].$$

The right-hand side tends to zero as $\delta \to 0$ by arguments similar to those employed in the proof of Lemma 4.1. Thus

$$\lim_{\delta \to 0} \left(\phi_\delta(\cdot), \int_0^t \phi_\delta(s)(C^\delta f)ds\right) = \lim_{\delta \to 0} \left(\phi_\delta(\cdot), \int_0^t \phi_\delta(s)(C^\delta f)ds\right)$$

$$= (\phi_1(\cdot), \int_0^t \phi_1(s)(C^\delta f)ds).$$

It follows that

$$\phi_2(t)(\cdot) = \frac{1}{2} \int_0^t \phi_1(s)(C^\delta f)ds a.s.$$

Similarly

$$\lim_{\delta \to 0} \left(\phi_\delta(\cdot), \int_0^t \phi_\delta(s)(C^\delta f)ds\right) = \lim_{\delta \to 0} \left(\phi_\delta(\cdot), \int_0^t \phi_\delta(s)(C^\delta f)ds\right)$$

$$= (\phi_1(\cdot), \int_0^t \phi_1(s)(C^\delta f)ds).$$

Let $\alpha > \delta$ in A. Then

$$\lim_{\delta \to 0} \left(\phi_\delta(\cdot), \int_0^t \phi_\delta(s)(C^\delta f)ds\right) = \lim_{\delta \to 0} \left(\phi_\delta(\cdot), \int_0^t \phi_\delta(s)(C^\delta f)ds\right)$$

$$= (\phi_1(\cdot), \int_0^t \phi_1(s)(C^\delta f)ds).$$

where $\phi_\alpha(\cdot)$ is defined by

$$\phi_\alpha(t)(h) = \sum_{k} \phi_1(t)(e_k) < e_k, h>, h \in \mathcal{Q}.$$
The above limit equals
\[(\phi_1(\cdot), \int_0^t \phi_1^3(s) (C^{-1} f) \, ds), \]
Thus
\[\phi_3(t)(f) = -\frac{1}{2} \int_0^t \phi_1^3(s) (C^{-1} f) \, ds a.s. \]

Finally, it is easy to check that \(\phi_\delta(\cdot) \) will be a Wiener process with covariance \(C^{1-\delta} \). Thus \(\phi_1(\cdot) \) satisfies [3.2] with initial law \(\mu \). By the uniqueness in law of this equation (proved in [2], Section IV), we conclude that \(\phi_1(\cdot) \) is the \((\phi_\delta)^2 \) process.

QED

Corollary 4.2 \(\phi_\delta(\cdot) \) converge in law to \(\phi(\cdot) \) as \(\delta \to 0 \) in A, as defined originally.

Proof A careful look at the foregoing shows that any subsequence of \(A \) will have a further subsequence along which the above convergence holds.

QED

ACKNOWLEDGEMENTS

This work was done while both of us were at the Scuola Normale Superiore, Pisa. Vivek S. Borkar would like to thank C.I.R.M., Italy, for travel support, and the Scuola Normale Superiore for financial support, which made this visit possible.

REFERENCES

[7] I. Mitoma. "Tightness of probabilities in \(C([0,1], \xi) \), \(D([0,1], \xi) \) "; Annals of Prob., 11 (1983), 989-999.