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ABSTRACT

The Ether language, a language for parallel problem solving, is used as an implementational vehicle for
two systems. Several aspects of these systems are novel and depend on the presence of parallelism.

One of these is a system that solves cryptarithmetic puzzles. This system is capable of pursuing several
alternative hypotheses about assignments of letters to digits in parallel. The resources given to these
various activities can be changed asynchronously with their running. Strategies for resource allocation
are described. It is argued that parallel search offers greater flexibility in controlling the search process
than can classical tree search algorithms.

The second is a program synthesis system that takes as input a description of the relationship between
inputs and output of a Lisp function in a variant of first order predicate logic. The system synthesizes a
Lisp program from this description. The system was designed to test the notion of pursuing multiple
implementation strategies in parallel with skeptic strategies. The skeptic strategies attempt to show that
certain proposed implementation strategies cannot possibly work. If these succeed, work on the
successfully refuted implementation strategy is halted. Sometimes one skeptic can simultaneously refute
many possible implementations that would otherwise have to be searched individually.

Several implementation details are discussed. The most significant of these is the notion of a "virtual
collections of assertions." The discrimination net, common to implementations of pattern-directed
invocation systems, has been completely replaced by a scheme that compiles the assertions and
data-driven procedures into much more efficient message passing code. The form of this code is
specified by the programmer for classes of assertion types and is suggested by their semantics. The
technique significantly improves the flexibility and efficiency of this class of languages.

Ether code can be freely mixed with Lisp code while maintaining effective parallelism. Techniques of
implementation that make this possible are discussed. 'The ability to freely mix Lisp code that is
interpreted in the conventional manner allows us to build programs of significant size on conventional
machines.

Thesis Supervisor: Professor Carl Hewitt

Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter I Introduction

This work is concerned with the use of parallelism in the solution of problems in artificial intelligence.

We are not concerned per se with the speed increase that can be attained by gainfully employing more

than one processor in the solution of a single problem -- although we hope that the ideas about parallel

languages described in this work will offer some direction to researchers concerned with parallel

hardware architectures. A point we wish to stress from the beginning is that parallel programs can be

talked about quite independently of any assumptions about the hardware these programs are run on.

The programs we describe have been implemented and executed on a single processor machine.

Chapter 6 is devoted to a discussion of the techniques of this implementation.

The work is divided into three main parts. The first part (chapters 2 and 3) consists of an overview of our

main ideas, both conceptual and linguistic. Chapter 2 presents a theory of problem solving based on the

work of certain philosophers of science, principally Karl Popper and Imre Lakatos. They develop an

epistemological theory to account for the growth of scientific knowledge that is very "operational" in

character. Their theories have motivated some new ideas about control structures for problem solving

systems. These control structures are inherently parallel. Chapter 2 presents the theory of problem

solving in the abstract and describes its relationship to other approaches to problem solving. Later

chapters, through two example systems, make use of these control structures in solving problems.

Chapter 3 contains a brief description of the Ether parallel problem solving language. The material in

this chapter is an elaboration of earlier work on Ether [30]. Ether has several attributes that make it a

convenient base to develop large parallel systems. There is an assert statement in Ether by which

assertions (representing facts or goals) can be made. There is also a procedural construct known as a

sprite. Sprites have patterns that are capable of matching assertions. If an assertion has been made, and

a sprite activated that is capable of matching it, the sprite will trigger. When a sprite triggers a new

environment is formed as the result of pattern matching and the body of the sprite (arbitrary Ether code)

is evaluated in that environment. Sprites and assertions obey certain properties that make them

convenient to use in a highly parallel environment. Assertions obey a monoton icily property. Once an

assertion has been made, it cannot be erased or overwritten. Sprites and assertions satisfy a

commutativity property. Of a sprite and assertion that are capable of triggering, the effects of evaluating

the body of the sprite after triggering do not in any way depend on the order of creation of the sprite and

assertion. We argued extensively in [30] that these properties make it easy to construct large parallel

systems without the possibility of "timing errors"; these properties are made use of here as well. The



earlier work on Ether [30] introduced a viewpoinl mechanism that makes it possible to introduce

hypotheses and reason about them. Hypothetical reasoning is not possible in a monotonic system

without some construct to grouping assertions, derived from a hypothesis, together. The viewpoint

mechanism has been carried over essentially unchanged except for some new syntax that allows the code

to be more concise.

There are significant differences between the current Ether language and the one reported earlier in [30].

Most of these differences have to do with the semantics and implementation of assertions and sprites.

The assertions of the original Ether language (and, indeed, most assertion-oriented languages) are treated

by the pattern matcher as uninterpreted syntactic forms. In the current system the semantics of

assertions and sprites are understood by the system in a deep way. This, of course, requires designers of

Ether systems to define the semantics of the various types of assertions. We have postponed a discussion

of this until chapter 7. The language description and later examples should be understandable without

entering into this discussion. Indeed, the effect on our example programs of our current treatment of

assertions and sprites is to make them much simpler than they would otherwise be.

Chapter 3 also discusses the activity mechanism, the Ether analogue to a "process." When we have

several tasks we wish to pursue in parallel, we create several activities for this purpose. The extension

here over earlier work is the introduction of a resource control mechanism.. It is possible to make

activities run at different rates with respect to one another. The allocations of resources to the various

activities can be made asynchronously with their running.

The second major division of this document describes two example systems developed in chapters 4 and

5. These systems highlight different aspects of both the theory of problem solving developed in chapter

2 and the Ether language.

Chapter 4 describes a problem solver for a kind of mathematical puzzle known by the name

cryptarithmelic. It is used to illustrate the concept of a sponsor that is introduced in our theory of

problem solving. The function of a sponsor is to "watch" the progress.of several competing solution

methods, each searching for the answer, and modify resource allocations accordingly. The Ether

resource control mechanism is used to implement the sponsors. The chapter develops several different

algorithms for resource control based on aspects of the particular problem. Section 4.6 of that chapter

compares the parallel search methodology we use with more conventional tree search techniques. It

argues that there is no way of reorganizing the parallel search program as a tree search that will allow us
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the same degree of control.

Chapter 5 describes a toy program synthesis system. The system synthesizes a few simple Lisp programs

from descriptions of their input/output relationships. The main motivation fr developing this eyample

-is to demonstrate the techniques of proposers and skeptics developed in chapter 2, the theory of problem

solving. Here we propose solutions (or pieces of solutions) to a problem and then test these using

skeptics. Those proposals that survive the tests of the skeptics are accepted. An additional motivation

for developing this example was to have a large system involving many sprites, assertions, activities, and

viewpoints. Our techniques for implementing sprites and assertions are quite unique and required us to

construct a system of significant size to test them.

While our system is certainly a "toy" and of no practical value, we believe the ideas used in its

construction may be of some use in the construction of more practical program synthesis systems or

systems to aid program development. A comparison with other program synthesis systems and

suggestions for how the methods we make use of might be employed are the subject of section 5.9.

The third major division of this document consists of chapters 6 and 7 and describe the implementation

of Ethller. At the lowest level Ether is based on the actor theory of computation. All computation

involving sprites and assertions compile into actor-style message passing code.

Chapter 6 is concerned with the "low level" techniques of this implementation -- the implementation of

message passing and its interface to the normal Lisp environment. The activity notion that we use

throughout the example systems is implemented as a mechanism for grouping events in the

message-passing implementation. We explain how messages are sent, environments are maintained, and

resource control is implemented. The material of this chapter should be of interest to those interested in

message passing languages irrespective of the higher level code that compiles into it in our system.

Another major theme of the chapter concerns our techniques for blending message passing with ordinary

Lisp function calling in a way that preserves the parallelism that message passing provides while allowing

us to build fairly large programs on conventional machines. The resulting system, although more

cumbersome in certain ways than a pure actor language, has allowed us to construct the nontrivial

problem solving systems described in the earlier chapters.

Chapter 7 concerns the techniques we use for the implementation of sprites and assertions. The

techniques differ markedly from other assertion-oriented languages. In most languages, the storage of
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assertions and the triggering of sprites are accomplished by purely syntactic techniques that are not

accessible to the user of the language. Our system allows the Ether subsystem implementer to design the

implementation of storage and retrieval mechanisms making use of the semantics of the assertional

types. The techniques are, in effect, a way of compiling assertion-oriented code into straight message

passing code. Whenever an assertion is made or a sprite activated, what actually happens is a message is

sent to an object that acts as a clearinghouse for the necessary information. Special message handlers are

written for the individual assertional types that know how to encode the information in semantically

meaningful ways. We show how our mechanisms maintain the properties of commutativity and

monotonicity that were made use of in the example systems. There are a number of advantages with

respect to both efficiency and expressibility of this approach. These are summarized in section 7.9.

Chapter 8 is a "wrap up" and covers a few different topics. The Ether programs we have written are

nondeterministic, that is they can produce different (valid) results on different runs. Both the reasons for

this, and some insights this gives us concerning nondeterminism are discussed in section 8.1. Section 8.2

contains some remarks on the relationship between Ether and "constraint networks." We show that the

conceptual idea behind constraints can be more effectively implemented using Ether-like techniques

than the usual network-style implementation. Following this are two sections that remark on the

shortcomings of the current Ether language and its implementation.

About reading this document: Various sections of this document can be read independently. We strongly

urge the reader to look at chapter 2, the theory of problem solving. It is short and supplies a framework

for the rest of the document. The only "must reading" for comprehending later chapters is chapter 3, the

discussion of the language. All the other chapters build make use of constructs introduced in it. Either

of the two chapters containing example systems can be read independently of one another. The two

chapters on implementation techniques can be read with only a brief glance at the previous two chapters

from which the examples used derive.

On the use of code in this document: Code is an integral part of this work. Throughout the document

code fragments are presented and explained. This code is included for a reason; it is not just filler. A

careful attempt is made in the text to explain how the code works (and what point we are making by

putting it there). Only a tiny fraction of the Ether code used to implement the two problem solving

systems has been included. If we had included it all the size of this document would easily double.

None of the Ether implementation has been included (save one very elegant function in figure 18); if

that had been included the size would triple. Whenever code is included it is there to demonstrate some
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important feature. Almost all the code used in this thesis was "removed from service" so to speak. The

exceptions to this are the examples in chapter 3 and section 8.2. The only "doctoring" of the code to

improve readability that was done involves the use of certain programming constructs to get lexical

binding to function properly. This is described in section 6.3.
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Chapter II A Theory Of Parallel Problem Solving

The theory we are building upon in this chapter has been reported by Hewitt and myself under the title

The Scientific Community Metaphor [32]. In that paper we construct a theory' of problem solving meant

to mimic some of the higher level aspects of the the kind of problem solving that is characteristic of

scientific research. Much of the inspiration for this theory derives from the work of the espitemologist

Karl Popper [49, 50]. Popper was interested in how knowledge could be gained through the methods of

scientific research.

2.1 Falsificationist Philosophy

The question of how science comes to realize knowledge has been asked by philosophers in modern

times since Descartes. There evolved two schools of thought known by the names rationalism and

empiricism. Modern rationalism, though beginning with Descartes Meditations, has intellectual roots

that go back to Euclid. The hallmark of rationalist philosophy is that there is a core of irrefutable

knowledge from which all other knowledge is deduced. Science, according to the rationalists, consists of

a process of deduction of new facts from already deduced facts. The work of Whitehead and Russell [69]

and the set theorists early in this century represent a serious attempt to cast the whole of mathematics in

this mold.

Empiricism, pioneered by Hume [28], disputes the claim that there can be a core of irrefutable

knowledge from which scientific facts can be derived. He proposed instead that knowledge is gained by

repeated observation. We see the sun rise every morning and so we come to the conclusion that the sun

will continue to do so. He believed that all knowledge was of a similar kind, gained by repeated

observation.

Popper rejects both of these traditions as being both logically unsound and not consistent with the

historical development of science. He coined the term juslificationism to encompass both classical

rationalism and empiricism. He develops instead the doctrine offalsificationism. The falsificationist

doctrine asserts that what we believe, we believe not because we have a justification for it (a proof or set

of observations) but because we have tried to falsify it and failed in the attempt. Both deduction and

observation play a role in his theories, but not the same roles they play in justificationist philosophy.



- 12-

To Popper, science, or the'advancement of science, consists of two aspects: conjectures and refutations.t

Conjectures of scientific law are put forth by scientists without any) epistemological justification

whatsoever. He uses the term "bold conjectures" to emphasize this point. Once a conjecture is put forth

it then becomes subject to the refutation process. From a theory (conjecture) deductions can be made

and then the results of these compared with observation. If the consequents of the theory conflict with

observation then the theory is falsified and must be discarded.

This basic doctrine of falsificationism later became known as naive falsificationism. It was obvious to

everyone, including Popper, that theories don't ordinarily get discarded every time an anomaly is

discovered concerning them. Naive falsificationism was replaced by methodological falsificationism

which was extensively developed by'Lakatos [36]. Methodological falsificationism augments the naive

version in two principle ways:

1. When anomalies are discovered, theories are not discarded; rather, they are adjusted in a way that

preserves as much of the original character of the theory as possible, yet does not imply the anomaly.

Theories, then, instead of being isolated points form clusters where new theories are adjustments of old

ones that account for some new observation. These clusters of theories akatos refers to as research

programmes.

2. Research programmes do not exist in isolation. Rather there are many existing concurrently, each

trying to account for the same group of phenomena. The degree to which a theory (or research

programme) is accepted depends on how it fares in comparison with others.

2.2 What This Has To Do With Problem Solving

Looked at as a theory of problem solving this is an inherently parallel one. Research programs proceed

in parallel and within each program attempts at falsifying and adjustment happen in parallel. The

observations of these philosophers of science imply a definite "control structure" for problem solving.

The problem solver consists of three components:

1. Proposers suggest new theories for evaluation.

t EIence the name of Popper's book, Conjectures and Refutations [49]. Lakatos presents a beautiful example of the process of
conjecture and refutation in the discovery of mathematical theorems and their proofs in his book Proofs and Refutations [37].
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2. Skeptics explore the implications of those theories and compare them with observations or beliefs.

The findings of skeptics can be used by proposers to generate new theories. Skeptics were suggested for

problem solving systems by Hewitt [22] and used by me in earlier work with Ether [30].

3. Sponsors compare different approaches to the same problem and adjust resources to their activities

according to their relative merits.

There are many Al paradigms that bear a resemblance to the one we are proposing here. The classical

control structure of "hypothesize and test" is very similar in spirit although is usually applied in domains

where the forms of the hypothesis and the test are simple and uniform. The "debugging" theories of

Goldstein [15] and Sussman [65] are perhaps the closest to ours. Their schemes both propose programs

and adjust the programs based on bugs encountered in running them. The key addition of our approach

is the idea of running many in parallel and having the ability to "stand back" and watch their respective

progress. If you have only one "research program" in existence, there is the danger that it will box itself

into a corner with a bug fix that was a mistake. Indeed Sussman comments in his thesis about the

relationship between his own programming abilities and those of his program: "[I say to myself when I

notice my bug fixes not improving the program] 'This is getting to be an ugly kludge and it is time to

rewrite it.' I then reorganize the whole structure [of the program] ... HACKER just doesn't have

anything like that ability."

The theory we propose differs in certain fundamental ways from some traditional approaches to problem

solving. A hallmark of traditional problem solving ideas is the notion of having two places in the search

space, where you are now (or, equivalently, your knowledge about where you are now) and where you

would like to be, the "goal state." The problem solver in some sense tries to build a bridge between these

two places. The search space consists of lots of little stepping stones across which the bridge is

constructed. We don't know enough to construct a top view of this space so the bridge-building activity

must proceed only on local knowledge. We know various ways of getting from stonex to the stones that

are near enough to it that a bridge can be directly constructed between them. It is hoped that "heuristic

information" is available to suggest which local paths are likely to be most fruitful. The seminal work

from which this metaphor derives is the GPS program of Newell and Simon [47]. Explicit tables were

used to show the degree of interconnection between nodes in the search space. There are two important

assumptions that are made by the GPS model. They are:

1. That there is a symmetry with respect to two different ways of solving a problem. We can build
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bridges forward from that current world state or backwards from the goal state.

2. That we can trust the "atomic bridges" as being invariably correct. If we can succeed in finding a way

of connecting start to finish we can be absolutely certain of the correctness of the answer.

Robinson [53] introduced the resolution approach to theorem proving in 1965. Because of its great

success from a theoretical perspectivet it generated considerable interest until it was realized that

resolution could only solve the most trivial of problems due to its thoroughly syntactic nature. The later

group of pattern-directed invocation languages descended from the Planner language developed by

Hewitt [20] were largely a reaction to the lack of controllability brought about by this syntactic

orientation. Planner (as well as its implemented subset, Microplanner [64]) and subsequent languages

still preserved the dual nature of starting states and goal states. There are two kinds of theorems:

antecedent and consequent, the first of which moves from given facts to their consequents, the second

from goal states to facts that imply them. The two kinds of reasoning are duals of one another. It was

hoped that some proper mix of the two kinds of reasoning would yield systems that converged on an

answer.

The theory of problem solving we propose does not view these two kinds of reasoning as duals. When

we have a problem to solve, we propose a solution (or rather, as we will see, classes of solutions) and then

use our forward reasoning capabilities to determine the implications of our proposals. When these

implications conflict with what we know to be true, we know the original proposal was incorrect. Those

proposals that remain uncontested we accept.

We have not yet said anything about how our proposers are constructed. Our theory of proposers

involves two basic ideas. The first is that we look at simple examples* and then see if we can find

theories that work on these simple examples. These theories, then, are tested on larger classes of

examples and adjusted (or flushed) as appropriate. The second basic idea is the notion of a prototypical

situation. Minsky's frames [45] and Schank's scripts [55] are both relevant here. They are both attempts

to formalize the process of recognition, but the notions carry very naturally over to theory formations.

They propose general templates with slots that need to be filled in to make a specific theory.

t Resolution is a theorem prover for the first-order predicate calculus that is provably complete and consistent.
t When we use the term example, we do not necessarily mean examples in the ordinary sense. Within the context of the program

synthesis system developed in chapter 5, for example, we may be interested in the behavior of a function on a list consisting of only
a single element, but we may not care to specify any characteristics of this element. These might be called generalized examples'
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Chapter III The Ether Language

The language that is used throughout this work to implement our parallel programs is known as Ether.

The language was first described by Kornfeld [30, 31] in 1979. Since that time it has been considerably

extended and improved to the point where large, non-trivial parallel programs are possible. Ether is an

extension of the Lisp Machine dialect of Lisp. The interpreter for Ether is an extension of the normal

Lisp interpreter. Normal Lisp functions can be freely intermixed with Ether code. The Lisp code should

not be viewed as an "escape mechanism." The programs we present makes use of the Lisp metaphor

(functional and operational programming), the Ether metaphor (declarative, data driven programming),

and, as we will see in chapter 7, the metaphor of object-oriented programming. The current generation

Lisps suffer from certain shortcomings that make this mix somewhat difficult and inefficient. These

shortcomings are discussed in sections 8.3 and 8.4. However, these shortcomings can be overcome, and

we believe the combination of the these metaphors is quite practical and we hope will point the way

towards practical AI languages in the future. In this chapter we present the constructs of the Ether

language "as the naive user sees them." Of course, the host language, Lisp, is not a parallel language and

has no facility for insuring that sprites (to be defined shortly) will function as they should. A rather

extensive translation is done with the Lisp macro facility to transform the Lisp code into an

implementation which is effectively parallel. How this translation is accomplished is the subject of

chapters 6 and 7. The reader should not worry about this translation process and simply accept the

programs, for now, at face value.

3.1 Activities

Activities are the basic parallelism construct of Ether. Whenever any code is executed, it is executed

under the auspices of some activity. Activities are returned by the function new-act i vi ty. Activities

form a directed acyclic graph. Each activity (save one, the root activity) has at least one activity

preceding it in the graph known as its parent activity. When the function new- act i v i ty is called with

no arguments, its parent activity is the one in which the new-activity function was evaluated.

Alternatively, it can be handed an argument that indicates its parent(s). We tell Ether to evaluate code in

an activity by using the within-activity function. An iterator function is supplied known as

continuously-execute that keeps calling its argument again and again. So if we evaluated the

following code:
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(let ((a (new-activity))
(b (new-activity)))

(within-activity a

(continuously-execute (print 'foo)))
(within-activity b

(continuously-execute (print 'bar))))

We would create two distinct activities running concurrently with one another, whose sole purpose

would be to print rather boring messages on the terminal. It would look something like:

FOO

FOO

BAR

FOO

BAR

BAR

BAR

The exact sequence of prints is nondeterminate, yet the expected number of FOOs and BARs would be

about equal. If the above code were evaluated at top level the parents of the activities bound to both a

and b would be the special activity th e- root - act i v i ty.

Activities have a parameter associated with them known as their processing power. The processing power

of an activity represents the speed with which it can run. An activity with twice as much processing

power as another will get about twice as much processing done in a given time quantum as the other.

Processing power is a conserved quantity within the system. When an activity creates other activities it

must give them some processing power for them to run. The processing power assigned initially to

the-root-activity is arbitrarily chosen to be have the value 1. All of its subactivities that are

runnable are assigned some fraction of this and at all times the total processing power for all activities

within the system will sum to 1. Processing power decisions are made by certain defaults when the code

does not explicitly specify otherwise. If an activity creates some number of subactivities they will all by

default receive equal shares of processing power.

There are a number of functions that allow the user to override this default. One such function is

support-in-ratios which tells the system to divide processing power in specified proportions. For

example, if we modify the above code to:
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(let ((a (new-activity))
(b (new-activity)))

(support-in-ratios
children (list a b)
ratios '(1 4))

(within-activity a
(continuously-execute (print 'foo)))

(within-activity b
(continuously-execute (print 'bar))))

we would be telling the system that we wanted activity b to get 4 times as much processing power as

activity a. Support - i n - rat i os takes two arguments, a list of activities which must be children of the

current activity, and a list of equal length containing numbers.t Processing' power is divided

proportionately with these numbers. What we would see on our console after executing this code would

be an endless sequence of FOOs and BARs with about four times as many BARs as FOOs. The

processing power assigned to the children of any activity can be modified at any time, completely

asynchronously with the running of the activities. After a change in processing power allocations, the

future running of the activities will be closely in accordance with these proportions.

There is one additional operation we can perform on an activity: we can stifle it. A stifled activity

simply ceases to execute. Any processing power that was assigned to it is returned to be subdivided

among its parent activity and that activity's children. An activity can be stifled by calling the function

s t i f 1 e with the activity as an argument.

3.2 Sprites and Assertions

Many Ether programs depend very heavily on their ability to manipulate objects that can be given a

declarative interpretation. One primitive, as s e r t, is used for making assertions (statements of one kind

or another). Another construct, known as a sprite, has a pattern that can match classes of assertions.

When an assertion has been made, and a sprite created with a pattern that can match that assertion, the

sprite will at some point be triggered and code contained in the body of the sprite will be evaluated. The

environment in which the body of the sprite is evaluated may be augmented with variable bindings from

the pattern match. If we had assertional types f oo and bar, and had executed the following:

t S u p p o r t - i n - r a t i o s takes keyword arguments. A convention used in the code in this document is that keyword arguments
will be placed in an italic font.
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(assert (foo 20))

(when (foo 20).}
(assert (bar 15)))

We would expect (bar 15 ) to be asserted. Sprites can be made to match classes of assertions, rather

than just the single assertion above, by using variables in the pattern. A variable is a symbol prefaced by

an " = " that will match anything in that position. When the body of the sprite is evaluated, the variable

becomes bound to the item-that was in the respective position of the assertion. If we had written the

following code:

(assert (foo 20))

(when (foo =n)}
(assert (bar (- n 5))))'

we would again expect (bar 15) to be asserted. When the sprite was triggered, n is bound to 20 and

then (assert (bar (- n 5) ) ) causes (bar 15) to be asserted because (- n 5) evaluates to 15. The

Ether assert primitive currently obeys a quasi-quote convention [5 1 ]t in which subexpressions are

normally unevaluated. Those subexpressions preceded by the symbol "" are evaluated and this value

replaces the subexpression in the final assertion.

It is worth noting that the order in which the assertion is made and sprite created is- irrelevant to the final

outcome. The sprite will be triggered in either case and the body will be evaluated in the identical

environment in either case. This is a critical property for the proper working of the Ether language

known as commutativity. It is this property that makes it possible to have highly parallel programs that

function together in predictable ways. Often the producer of some information (the one doing the

as s e r t) and the consumer of that information (the sprite) will be in different sections of code running

asynchronously with one another. The order that they will actually be executed in is not necessarily

knowable from reading the program and may actually vary from One run of the code to the next. In

future implementations of Ether-like languages on truly parallel machines the order in which they

actually get executed may not even be knowable in principle.: The commutativity property cnabiles our

parallel programs to support subcomponents capable of interacting with one another in a productive

manner.

' But see section 8.4.4 concerning quasi-quote.
: Special relativity puts certain theoretical limits on our ability to order events in time that happen at physically distinct locations.
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When a sprite is activated, it becomes associated with the activity in which it was activated. As long as

the activity has processing power the sprite will remain capable of triggering on assertions. When a

sprite is triggered, its body is evaluated in the activity that the sprite is associated with.

We will illustrate the interaction of sprites and activities with some simple examples. Suppose we

execute:

(let ((a (new-activity)))

(when {(foo 100)}
(stifle a))

(within-activity a

(when {(foo =n)}
(assert (foo -(+ n 1)))))

(assert (foo 1)))

The above creates a new activity, and in it creates a sprite that will cause a never ending sequence of

assertions of the form (foo 1), (foo 2), (foo 3), to be made. We have also created a sprite that

waits for (foo 100) to appear and when it does the activity generating the foo assertions will cease

functioning. The semantics of the language do not tell us precisely which will be the last assertion to get

made; the activity may generate (foo 102) or (foo 103) or so before it is actually halted. We only

know that it will stop soon after ( foo 100 ) appears.

We will look at a few more examples.

(let ((a (new-activity))
(b (new-activity)))

(within-activity b
(when ((bar =n)}
(assert (bar (+ n 1)))))

(within-activity a
(when ((bar 100)}

(stifle b))
(when {(foo =n)}
(assert (foo (+ n 1)))))

(assert (foo 1)))

Here we have two activities, each one generating increasing sequences of foo and bar assertions.

However, in activity a we create a sprite that watches for (bar 100) to appear. When it does, the

activity b is stifled and the output of foo assertions will be halted. Since the activities a and b have the

same amount of processing power we would expect the highest foo assertion to be generated would be

in the vicinity of (foo 100).

The next example is a little trickier:
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(let ((a (new-activity))

(b (new-activity)))

(within-activity a

(when (foo 100))
(stifle b))

(when (foo =n))
(assert (foo (+ n 1)))))

(within-activity b
(when ((bar 100))
(stifle a))

(when ((bar =n)}
(assert (bar (+ n 1))))) -

(assert (foo 1))
(assert (bar 1)))

Here we have created two activities, one generating increasing sequences of bar assertions, and the other

increasing sequences of f oo assertions. However in each activity we have a sprite waiting for a specific

assertion that is to be generated by the other. When it sees this assertion the other activity is stifled.

What will happen when we execute this code? The result is nondeterminate and there are three possible

outcomes.

1. The assertion (foo 100) will appear first causing the sprite in activity a to stifle activity b before

( bar 100 ) is produced. In this case activity a will continue running and result in the generation of an

endless sequence of foo assertions.

2. The assertion (b ar 100 ) will appear first causing activity a to be stifled and resulting in an endless

sequence of bar assertions.

3. Both critical assertions get generated sufficiently close in time to one another that both activities will

be stifled. (Each sprite fires and succeeds in stifling the activity containing the other sprite.)

We could, of course, stack the deck by giving the activities bound to a and b different amounts of

processing power as in the following:
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(let ((a (new-activity))

(b (new-activity))).

(support-in-ratios
children (1 ist a b)
ratios '(1 4))

(within-activity a
(when .((foo 100)}

(stifle b))

(when {(foo =n)}
(assert (foo (+ n 1)))))

(within-activity b
(when {(bar 100)}

(stifle a))

(when ((bar =n)}
(assert (bar (+ n 1)))))

(assert (foo 1))
(assert (bar 1)))

making activity b run four times as fast. This will virtually assure that activity a will get stifled and

activity b will forever generate bar assertions.

The above examples are silly and use the s t i f 1 e primitive in ways that we would not use it in practice;

they are meant only to make clear what it means for a sprite to be in an activity. The way we will be

using the stifle primitive in subsequent chapters is when we have a proof that the sprites in a given

activity are not going to produce any information that will be of use in solving the overall problem we

will stifle that activity. There are several ways this can occur as the examples in subsequent chapters will

make clear.

In addition to the conumnulativity property associated with sprites, assertions satisfy a monotonicity

property. Once an assertion has been generated it cannot be erased. It is these two properties that allow

us to give sprites a declarative interpretation. We can interpret them as implementing a forward

chaining implementation of modus ponens. For example, if we have the logical.statement:

Human(x) D Mortal(x)

we could embody this knowledge in the sprite:

(when (human =x)}
(assert (mortal x)))

As long as this sprite were in some activity with processing power, and ( human Fred) were asserted, we

would be assured that the assertion (mortal Fred) will eventually appear.

The way sprites and assertions are implemented in the current Ether language differs significantly from
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the implementation of similar constructs in other languages. These new implementation techniques have

enormous implications both in the power of the language and the efficiency of the Ether program. This

is the subject of chapter 7.

3.3 Goals

Sprites, as we have just seen, give us a natural way to implement forward chaining. We also need the

ability to do backward chaining; in other words, we may desire to know something and wish to initiate

an activity for this purpose. At first glance we would think that the normal function calling ability of

Lisp would solve this problem for us. For example, if we wanted to know if two objects were equal to

one another, we could start up an activity and evaluate a function in that activity which contains Ether

code that can determine if two objects are indeed equal. We would say:

(let ((a (new-activity)))
(within-activity a

(goal-equal objectl object2))
(when (equal objectl object2)}

-- Whatever we would like to do knowing they are equal -- ))

The call to goal -equal is an ordinary function call and contains the necessary Ether code to determine

whether or not two objects are equal. If the activity succeeds in its quest, an equal assertion will be

made which will be detected by the following sprite.

The above solution has the following serious flaw. Suppose several concurrent activities in the system

decide they want to know whether or' not the same two objects are equal. They will each execute the

function ( goal -equal object object2) and the exact same work will be duplicated (needlessly).

To avoid this, we have created a special goal facility. What the user would say, instead of the above code,

would be:

(let ((a (new-activity)))
(goal (equal objectl object2) a)
(when (equal objectl object2)}

-- Whatever we would like to do knowing they are equal -- ))

A method has been written that knows how to determine if two objects arc indeed equal. The skeleton

for the code looks like: t

t The curious reader can skip ahead to figure 7 where the goal handler for equal assertions used by the program synthesis
system is given.
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(defgoal equal (x y) act
--Code that can detennine if two objects are equal--)

The goal mechanism has several features that make it easy to use. The first time the goal is invoked, i.e.

the first time:

(goal (equal objectl object2) activityl)

is executed, a new activity is automatically created (we will call it for purposes of discussion the

"goal-equal-activity") and the body of the defgoal is executed in this activity. This new

activity is a subactivity of act ivi ty 1. If at some later point another

(goal (equal objecti object2) activity2)

is executed, activity activity2 is added to the list of parents of go al-equal-activity. Whatever

processing power it has is added to the processing power of goal -equal -activi ty. The goal may

be invoked any number of times and each time it causes processing power to be added to

goal - equal - act i v i ty which is already in progress working on the goal. The parent activities (i.e.

activityl and activity2) may change their processing power allocations for the goal and this

change is then reflected in appropriate changes to the processing power allocation of

goal- equal- activity. If any of the parent activities are stifled, they are removed from the list of

parents. If all the parents of goal - equal - act i v i ty are stifled, its processing power allocation is

reduced to 0, causing it to halt work. However, some future invocation of

(goal (equal objectl object2) activity3)

occurs, the goal-equal-activity will get processing power from activity3 allowing it to

continue work.

Defgoal methods can often determine that their services aren't needed. For example, if it is either

definitely known that (equal objectl object2) or (not-equal objectl object2) there is no

point in the activity continuing operation and it should be stifled. We would write the defgoal in the

following manner:

(defgoal equal (x'y) act

(when ((equal x y)}
(stifle act))

(when (not-equal Ox -y)}
(stifle act))

The variable act is bound to goal-equal-activity. If (stifle act) is executed, this activity

will be stifled. Special code is associated with these special goal activities that ensures that if they are
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stifledfrom within themselves, all their immediate parent activities are stifled. This will allow processing

power allocated for this goal to be reclaimed automatically by the creator of the goal.

3.4 Viewpoints

All our discussion thus far has presupposed a global collection of assertions. We will be making heavy

use of hypothetical reasoning in our example systems. Hypothetical reasoning is not possible in a system

that requires assertions to be monotonic without some mechanism to make them relative to the

hypotheses from which they were derived. Once an assertion is made it is not retractable and we are

stuck. Our solution to this is a viewpoinlt mechanism. All assertions and all sprites are created within

some viewpoint. A sprite will trigger on an assertion only when it has been asserted in the viewpoint of

the sprite or in a viewpoint that the sprite's viewpoint inherits from. The function new-v i ewpo i nt

returns a new viewpoint, initially free of any assertions. Optionally new- v i ewpo i n t can be handed an

argument that specifies parent viewpoint(s). If v 1 is a parent viewpoint for v 2 then all assertions present

in v appear also in v2. We use the function within-viewpoint to specify in the code which

viewpoint the sprites and assertions actually happen in. Within-viewpoint takes as its first

argument a viewpoint and then any number of forms to evaluate within this viewpoint. If we had the

following code:

(let ((vl (new-viewpoint))
(v2 (new-viewpoint)))

(within-viewpoint v2
(when {(foo =n)}

(assert (bar n))))
(within-viewpoint v1
(assert (foo 5))))

The sprite would not tiigger because it was activated in a different viewpoint than the one in which

(f oo 5 ) was asserted. If, however, we let viewpoint v2 inherit from v1 as in the following:

t The viewpoint mechanism we have currently use is quite simplistic. Barber [2] is developing a much more sophisticated
viewpoint mechanism than the one presented here. The virtue of our mechanism is that it is clearly implementable and is of
adequate generality for our purposes here.
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(let ((vl (new-viewpoint))
(v2 (new-viewpoint inherits-fronm v )))

(within-viewpoint v2

(when {(foo =n)}
(assert (bar n))))

(within-viewpoint v1
(assert (foo 5))))

the assertion (b a r 5) would appear in the viewpoint bound to v2.

3.5 More On Sprites

All the sprites discussed so far have exactly one pattern. A sprite can have any number of patterns

enclosed between the curly brackets as in the following:

(when ((foo =n)
(bar -(+ n 1)))

-- body -- )

the sprite will trigger iff a foo assertion is present and a bar assertion is present with a number 1 greater

than that contained in the foo assertion. Such sprites are semantically equivalent to a nesting of sprites,

as in:

(when ((foo =n)}
(when {(bar 4(+ n 1))}
-- body -- ))

In fact, in the implementation, when is a macro that, when handed multiple patterns, expands into

nested sprites like the one above. We introduce the concise notation because we often wish to check for

many things at once and this page (barring margins) is only 6.5 inches wide;

There is one class of sprite pattern that implements a restricted form of universal quantification that is

worth mentioning at this point. If we have the following sprite:

(when ((V n in list-of-numbers
check ((foo n)})}

-- body --)

where list-of-numbers is bound, say, to the list (1 3 5 7 9). The sprite will trigger iff the

following assertions are made:

(foo 1)

(foo 3)

(foo 5)

(foo 7)
(foo 9)
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Remember that this sprite, as all sprites, satisfies the property of commutalivity. The order in which the

assertions are made and the sprite activated is immaterial. It also, of course, does not matter what order

the elements of i s t - of - n umbe r s are in. The identical behavior would be gotten if the list were ( 3 1

9 5 7) instead. We will explain in section 7.8.1 how these sprites are implemented on top of Lisp.

We have now introduced the basic constructs and mechanisms of Ether. There is more to the story of

programming Ether than what we have mentioned here. This chapter should serve as enough of an

introduction that the examples in chapters 5 and 4 can be understood. The other aspects to

programming in Ether will be explained in chapter 7.

3.6 Historical Antecedents

The seminal work in the field of pattern-directed invocation languages was Hewitt's Planner [21]. A

subset of it implementing antecedent and consequent theorems was implemented as Microplanner [64].

This spawned several efforts at various sites. An excellent overview of this crop of languages through

1974 is given by Bobrow [4]. QA4 [54] introduced the concept of multiple contexts, much like our

viewpoints, but did not allow concurrent access to them. There is a nontrivial amount of time required

to switch from one context to another. QA4 was very heavily engineered so that ordinary Lisp properties

(e.g. variable bindings) could be made context dependent. QLisp [70] took a subset of the ideas in QA4

and integrated them so that code could be made to run using the standard Interlisp control structure.

Conniver [44] had many similar mechanisms to QA4 and introduced the concept of possibility lists to

allow ordering or pruning of possibilities for backtracking. Amord [711 was the first language to

consistently make use of the properties of commutativity and monotonicity.t

The most direct antecedent of the current Ether language was the original Ether language [30]. Here

were introduced the notions of activities, viewpoints, assertions, and sprites. The notion of processing

power, although mentioned in a "future work" section, was never implemented. The most significant

difference between the current Ether and the original is in how assertions and sprites are implemented.

The implementation techniques we use have important implications for both the efficiency and

expressivity of the language. We have replaced a syntactic retrieval mechanism with one that is primarily

t There is an unfortunate confusion of terminology here. Amord is normally thought of as being non-monotonic. This is,
however, a feature of its sequentiality. Amord does not allow multiple viewpoints. It is monotonic (in our sense) in that no
information is ever thrown away, and is also commutative in our sense.
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semantic. This idea is very important and will be discussed in chapter 7.

Amord [72] introduced the concept of using explicit Goal assertions. The original Ether language [30]

borrowed this concept and somewhat extended it. The nature of this extension was somewhat of a hack

and served to make activities work out correctly. It served this purpose, but at the expense of some

modularity. The current solution fixes this problem. The reason for wanting to have "explicit goals" is

so the reasoner can reason about them. We would like to have the ability to know what the goals are so

we can control resources of activities working on them, and also be able to create activities attempting to

refute them. We would also like to maintain the following capabilities in the goal mechanism:

1. The proposer of the goal need not necessarily know of the name of the procedure that works on it, nor

what other activities are also interested in the goal.

2. It should be possible that all control for working on a particular goal pass through one point, i.e. that

there should be one activity assigned to all work on the goal, and one place in the code that orchestrates

work on the goal. We would like to be able to establish resource control procedures to control work on

the goal that must know about all subactivites working towards it.

3. There may be several procedures for working on the goal which do not necessarily have to be known

(at program writing time) to the handler of the goal.

The Goal mechanism presented satisfies all three of these constraints in a fairly clean manner.
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Chapter IV A Cryptarithmetic Problem Solver

The problem-solving system in this chapter was picked to highlight the use of sponsors to compare

different approaches and allocate resources accordingly. As explained in chapter 3 we have the ability to

manipulate the relative rates (that is, their processing power) at which different activities run in parallel

concurrently with their running. The idea we hope to demonstrate is that with the ability to manipulate

the processing power of activities we can "guide" the problem solver to a solution more efficiently than

could otherwise be done. Concurrently with running alternative methods of solution, we will also run an

activity whose task is to compare the rates at which different methods are approaching the solutiont and

reallocate processing power based on these comparisons.

In addition to being a testbed for the use of heuristic information to guide a search via the manipulation

of processing power, there are three other major themes that we will investigate with the system

described in this chapter.

First we would like to use this example to make a point concerning search strategies. When most writers

use this term, they are referring to different techniques for searching a tree using an inherently sequential

algorithm. We will argue that parallel search is of a fundamentally different sort. We use the

cryptarithmetic example because it appears superficially to be amenable to a tree search algorithm. After

explaining the various parallel search strategies we will demonstrate that these algorithms can not, in any

easy way, be written as "tree search" algorithms. This is the subject of section 4.6.

Secondly we wish to constrast two ideas in programming languages. The program synthesis system

makes use of the data-driven programming metaphor where the user writes programs that consist of

sprites that "watch" for new information to be learned. Part of the program implementing the system in

this chapter makes use of a different metaphor known by the name of constraints. In a constraint-based

system the world is conceptualized as a graph of nodes that are repositories for some local piece of

information about the problem. The nodes are connected in a network. When new information is

learned about the attributes of a node that might effect neighboring nodes in the network, the

appropriate information is passed to them. Some other systems that employed this style of programming

are described by Borning [5] and Steele and Sussman [59]). As we will see in chapter 7 the

t In order for this to be successful, there must of course be a metric by which the alternative methods can be compared. Our
solution method, as we will see, lends itself quite naturally to such a metric.



- 29 -

implementation of our constraint network is but a special case of the implementation of sprites. These

observations will become important when we come to compare the the issues of expressive power and

efficiency of the two formalisms in section 8.2.

Lastly we wish to demonstrate a system that combines two common architectures for problem solving

systems: relaxation and hypothesize and test.

In a system based on relaxation, internal data structures represent (implicitly or explicitly) potentially

acceptable points in the search space. Computation proceeds in narrowing down these possibilities by

employing knowledge of the domain in the structure of the computation. A classic example of the use of

relaxation is the vision program of Waltz [66]. In his system there were various possible interpretations

for the parts of a visual scene. For pairs of parts of the scene, there were only certain allowable

consistent labelings. By local propagation of information about possible labelings for the individual

parts of the scene, the system was able to relax to a single consistent labeling for the entire scene. The

notion of relaxation is closely coupled with that of constraint networks because it is an obvious

computational mechanism for implementing relaxation. One point we wish to emphasize about pure

relaxation is that at any time the internal data structures will be consistent with any solution to the

problem. Thus, if more than one solution is possible, pure relaxation will be unable to select only one of

them. Further, even if a unique solution exists, a relaxation-based system may not be able to find it.

The hypothesize-and-test methodology allows the program to make assumptions that narrow the size of

the search space; there is no guarantee that the assumption is consistent with any solution to the

problem. The program continues to make hypotheses until a solution is located or it has been

determined that no solution is possible with the current set of assumptions. There is no requirement that

any hypothesis be correct and so mechanisms must be available that prevent commitment to any

hypothesis until it has been demonstrated to be acceptable. The most commonly available mechanism is

known as backtracking. Backtracking allows the program to return to an environment that would exist

had that assumption not been made. The ability to create multiple activities gives us much more

flexibility in designing control structures than backtracking allows. In fact, as we will see shortly,

"backtracking" is but a special case of a whole family of search strategies that can be created.

As long as the search space is enumerable (a very weak assumption) hypothesize-and-test can be easily

seen to be theoretically more powerful. If there are several consistent solutions, a pure constraint

propagation system has no way to establish preference for one of them. Even if only one solution is
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possible a constraint propagation system will not necessarily find it; this will be demonstrated later by

example. The proponents of constraint propagation point out that hypothesize-and-test is grossly

inefficient in situations where constraint propagation can function. The example in this paper bears out

this claim, although one recent study by Gaschnig [14] suggests there are situations in which pure

backtracking is more efficient than constraint propagation.

One can, however, imagine a composite system that has aspects of both relaxation and

hypothesize-and-test. In such a system, relaxation can be used to prune the search space, yet allowing

hypothesizc-and-test to continue the search where constraint propagation is not able to. A constraint

language that can support the creation of such systems has been constructed by Steele [62]. Steele allows

assumptions to be made and backtracking performed. The current work discusses another such system

in which the hypoLhcsize-and-test methodology allows more than one assumption to be pursued

concurrently. This is made possible by the use of viewpoints and activities. We can create new

viewpoints to hold the results of relaxation-type processing based on hypothetical assumptions. The

work doing the propagation in these viewpoints will be contained in separate activities. The amount of

processing power we give these activities depends on how likely we are to get useful results out of the

assumption(s) represented by the viewpoint.

The research described in this chapter has a highly empirical character. We experimented with several

different strategies for the reallocation of resources. Part of our message in this chapter is that not only

are the parallel programs easy to create, but they are also easy to tune to take into account heuristic

information that is available. The system described here is a demonstration that parallelism provides

certain flexibility in the design of algorithms that make it convenient to make use of heuristic knowledge

in ways that would be difficult or impossible otherwise.

The content of this chapter has already been reported in an abridged form in [34].

4.1 Description of The Problem

Cryptarithmetic problems, of the sort we are studying, were made famous in the AI literature by Newell

and Simon [46]. Their interest in these problems was one of producing psychologically motivated

models. We are only interested in them as abstract puzzles that involve searching through relatively

large spaces; no "psychological validity" is expressed or implied in the descriptions our algorithms.
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We are given three strings of letters, e.g. "DONALD", "GERALD", and "ROBERT" that represent integers

when substitutions of digits are made for each of the letters. There is at least one possible assignment of

digits for letters so that the numbers represented by the first two ("DONALD" and "GERALD"), when

added, yield the number represented by the third ("ROBERT"). Any one of these assignments is a

solution. In the problems we will be looking at, each will contain exactly ten letters. A solution consists

of a bijection from these ten letters to the ten digits 0 through 9.

4.2 Relaxation

To understand how the relaxation process works for cryptarithmetic we will examine the problem

mentioned in the previous section:

DONALD
+GERALD

ROBERT

What can we say just by looking at it? By examining the second column from the left we can conclude

that E= 0 V 9. With a little thought we discover that no other constraints can be learned about any of

the other letters or digits without more information.

In Newell and Simon's original formulation of the problem for their production system model [46], they

gave the system the additional constraint that D = 5. Many facts can now be derived. We list a few of

them along with the reasons for the derivation.

1. D = 5. Given.

2. E= 0 V 9. column2.

3. T = 0. #1 and column6.

4. E = 9. #2and#3.

5. A = 4. #4 and column4.

6. Carry-in(column5) = . #1 and column6.

7. R is odd. column5 and #6.

8. R > 5. columnl and #1.

9. R= 7V9. #8 and #7.

10. R=7. #9 and #4.

We can go on like this, and in fact solve the whole problem this way. We are able to do this without
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making any additional assumptions beyond #1 above. We aren't always this lucky. The point to going

through this is to realize that each of our deductions is centered around three kinds of objects: columns,

letters, and digits. We can make certain deductions by examining what we know about the values of

letters in a column and their carries in and out. When new constraints are learned about the values of

letters, these constraints can be propagated to columns containing those letters. Similarly we can make

use of the fact that no two letters can be the same digit and no two digits the same letter.

There are three different kinds of Ether objects in our cryptarithmetic problem solver. They are

co 1 umns, 1 e tte rs, and d i g i ts. There are a number of assertions we can make:

(possible-digits 4letter -digit-l ist) if asserted means that the only possible digits that

le tte r can be are those given in the list di g i t-l i st.

possible-letters digit -*letter-l ist if asserted means that the only possible letters that

di gi t can be are those given in the list lette r-l i st.

( carry- i n -'column en ) if asserted means the carry in of the column column is known to be n. n

must be either 0 or 1.

(carry-out -col umn -en if asserted means the carry out of the column column is known to be n.

n must be either 0 or 1.

(cont rad c t i on) if asserted means some letter or some digit had no possible assignment.

Code that actually implements the constraint propagation is presented in section 7.7. Unlike the

program synthesis system the kinds of processing that we do within each viewpoint is precisely the same.

We have no need to define sprites that can be selectively activated in different viewpoints; the program

can be written directly in the lower level message passing sublanguage to be introduced in chapter 6. We

will have more to say about the relationships between the two styles of programming in section 7.7 and

then again in section 8.2.

We can observe some things about the ability of a purely constraint-based system to satisfactorily derive

a unique solution. First, if there is more than one possible solution it will not find any of them. Since

the letter and digit assignments of each possible solution are certainly possible assignments, they will

appear on the possibility lists attached to each node. Even if there is only one possible solution (or no
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possible solutions) the system may not find it (or discover that no solutions exist). For example, the

"DONALD" + "GERALD" = and "ROBERT" puzzle has only one solution; the relaxation system

described will quiesce before finding it. Nevertheless, the knowledge can be said to be "present" in the

network; if the nodes of the network are instantiated with an assignment of leters to digits, the network

will assert a CONTRAD I CT ION iff the assignment is not a solution. In order to solve these problems in

general we will have to augment our relaxation-based system with the ability to make and test

assumptions in seperate viewpoints.

4.3 A Simple Depth-first Solution

The first cryptarithmetic problem solver we will present is one that does hypothesize and test by a kind

of depth-first search. The depth-first search is implemented by a backtracking control structure. We

present this first as an exposition of our basic methodology of hypothesize and test and then go on to

show how parallel solutions are but simple variants of the more conventional depth-first approach. The

complete code for the depth-first solution is shown in figure 1. We begin the search by evaluating the

function i nitiata-depth-first. This creates a new activity (called s tart-act) and a new

viewpoint (called start-vpt). It is in this viewpoint that we will learn whatever we can about the

solution by relaxation without making any assumptions. We activate the following sprite in this

viewpoint:

(when {(contradiction))
(Print "Problem not solvable.")
(stifle start-act))

If a contradiction happens in this viewpoint (meaning that there is some letter for which there is no

possible digit or digit for which there is no possible letter) then the problem, as given, is not solvable.

When the activity quiesces, i.e. the system has relaxed as much as it can given the initial configuration,

the following sprite in the figure triggers:

(when ((quiescent start-act)}
(if (total-solution (quiescent-letter-constraints start-vpt))

(report-solution)
(let ((minpair (select-forking-pair

(quiescent-letter-constraints start-vpt))))
(depth-first (car minpair) (cadr minpair) start-vpt))))

The function quiescent-l etter-constrai nts can be called with a viewpoint as an argument and

returns a list of letters and their possible values in that viewpoint. Naturally, the viewpoint must be

quiescent for this information to be well-defined. The predicate total - s o 1 u t i o n checks to see that
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Fig. 1. Code For Depth First Solution

(defunc initiate-depth-first ()
(slet ((start-vpt (new-viewpoint))

(start-act (new-activity)))
(within-activity start-act

(within-viewpoint start-vp.t
(initiate-relaxation)
(when ((contradiction))

(Print "Problem not solvable.")
(stifle start-act))))

(when {(quiescent start-act)}
(if (total-solution (quiescent-letter-constraints start-vpt))

(report-solution)
(let ((minpair (select-forking-pair (quiescent-letter-constraints start-vpt))))

(depth-first (car minpair) (cadr minpair) start-vpt))))))

(defunc depth-first (letter alternatives parent-viewpoint)
(if (null alternatives)

;If there are no viable alternatives the there is no consistent assignment possible
(within-viewpoint parent-viewpoint (assert (contradiction)))
Otherwise, pick one letter and test it in a new viewpoint
(slet ((v (new-viewpoint parent parent-viewpoint))

(a (new-activity)))
(within-viewpoint v

;Make the assumpution in the newly created viewpoint
(assert (one-of letter ((car alternatives))))
;Let the implication of the assumption via relaxation happen in the newly created activity.
(within-activity a

(initiate-relaxation)))
(when (contradiction))

;If. we know the assumption to be incorrect, we should note that fact in the parent activity
(within-viewpoint parent-viewpoint

(assert (cant-be letter (car alternatives))))
;and we stifle the activity.
(stifle a)
; We then recursively call the procedure on the remaining alternatives
(depth-first letter (cdr alternatives) parent-viewpoint)))

;If the activity has quiesced we must first check if the problem has been solved; if so, we are done.
;Otherwise we must pick a new branch to go down in a depth-first fashion
(when ((quiescent a)}

(if (total-solution (quiescent-letter-constraints v))
(report-solution)
(let ((minpair (select-forking-pair (quiescent-letter-constraints v))))

(depth-first (car minpair) (cadr minpair) v)))))))
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its argument, the list of possible digits assignable to each letter, contains precisely one possibility for each

letter. This qualifies as a solution and we are done. More often, most letters will have many possibilities.

We now wish to make assumptions about particular letters being particular digits. The search is

"depth-first" in the following sense: After making one assumption, we will again allow the system to

relax; when processing in this new viewpoint has relaxed we again see if we have a solution, and if not

make another assumption of a letter being a specific digit. Eventually, after making some number of

assumptions, we will reach a state in which each letter has only one digit. At any level in this chain of

assumptions it is possible that a (CONTRADICTION) will occur. A (CONTRADICTION) is asserted in a

particular viewpoint if it is discovered that there is a letter for which there is no possible digit assignment

or a digit for which there is no possible letter assignment in that viewpoint. In this case we must

"backtrack." In our program this will correspond to picking another possible assignment to the letter and

pursuing it in a new viewpoint. If we run out of all possible digit assignments for a letter, then the

viewpoint which decided those were then only possible assignments (i.e. the one next up in the chain)

must be inconsistent. A (CONTRADICT ION ) is then asserted there. Note that no special code had to be

written to get this behavior in the superior viewpoint. When the viewpoint was first created, a sprite was

activated looking for contradictions in that viewpoint. It matters not whether the information the caused

the contradiction was derived solely from manipulations in that viewpoint (or its superiors) or from facts

learned in inferior viewpoints.

The question remains yet as to which letter to make assumptions about. At the end of the relaxation

process of initiate-depth-first we must pick one. It seems to make the most sense to pick a

letter with the fewest number of possibilities as this also represents the choice that engenders the least

number of possible failures (that will cause unwanted backtracking). We cannot, of course, pick letters

that have only one possibility (since no new assumptions can be made here). We thus must pick the

letter with the smallest number greater than 1. If there are ties then one letter is picked arbitrarily. This

selection is made by the code:

(select-forking-pair (quiescent-letter-constraints start-vpt))

The function select-forking-pair returns a pair consisting of the letter and the list of possible

alternative digits. Next we call the function depth-f i rs t, giving it the letter, the list of alternatives,

and the current viewpoint as arguments.

We will now read through the tile code for depth - f i r s t in figure 1 to see how the above strategy is

implemented. The first thing we check is that there is at least one possible alternative. This is
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accomplished by:

(if (null alternatives).

(within-viewpoint parent-viewpoint (assert (contradiction)))

If there are no alternatives the parent viewpoint must be inconsistent and we assert this fact. Otherwise

we create a new viewpoint (and activity) to pursue one of the possible alternatives. Within the viewpoint

we assert:

(assert (one-of 4letter ((car alternatives))))

That picks the first element on the list of alternative digits and assumes the letter to have it as a value (in

the newly created viewpoint). Within the newly created viewpoint we also activate a sprite watching for

(CONTRADICTION) to appear. If'one is noted, we assert in the parent-viewpoint that that

particular letter assignment is not possible. Note that this may cause additional relaxation-type

propagation to happen in the parent viewpoint. That this happens is signficant. It may be the case that

learning this one new fact may lead to a contradiction being derived in the parent viewpoint. If this

happens, all the work exploring the remaining alternatives still under consideration by depth -f i rs t is

unnecessary. When the contradiction is flagged in p aren t - v i ewpo i n t, the activity exploring it will

be stifled; since the activites created by depth -f i rs t are subactivities of this activity, they will also be

stifled and control will shift higher in the tree.t Although we are calling this the "depth-first" solution it

is not a totally sequential one; relaxation is performed in parallel although hypotheses are picked in a

sequential, depth-first fashion.

If the current activity quiesces, i.e. it has finished the relaxation process and has not derived a

contradiction, we check to see if we have found a unique solution. If so, we are done. Otherwise we

must make additional assumptions and recursively call depth- f i r st on them. We choose the new

letter to make assumptions about, as we did before, by calling s elect-forking-pa i r, this time

giving it te current viewpoint. The chosen letter, and its list of alternatives, are passed to depth-first.

t When we start exploring other algorithms that are more "parallel" the fact that relaxation in parent viewpoints can derive
information that will be passed to subviewpoints becomes increasingly significant.
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Fig. 2. Basic Parallel Cryptarithmetic Program

(defunc parallel-solve ()
(slet ((start-vpt (new-viewpoint))

(start-act (new-activity))
(manager-activity (new-activity name 'manager))
(background-activity (new-activity name 'background)))

(support-in-ratios parent the-root-activity
activities (list start-act manager-activity background-activity)
factors '(8. 1. 3..))

(within-activity start-act
(within-viewpoint start-vpt

(initiate-relaxation)
(when ((contradiction)})

(Print "Problem not solvable.")))
(stifle start-act))

(within-activity background-activity
(when {(quiescent start-act))

(if (total-solution (quiescent-letter-constraints start-vpt))
(report-solution)
(let ((minpair (select-forking-pair

(quiescent-letter-constraints start-vpt))))
(parallel-fork (car minpaic) (cadr minpair) start-vpt)))))

(within-activity manager-activity
(continuously-execute (allocation-strategy)))))

(defunc parallel-fork (letter alternatives parent-viewpoint)
(if (null alternatives)

;If there are no viable alternatives the there is no consistent assignment possible.
(assert (contradiction))
;Otherwise fork on each alternative
(foreach

digit
alternatives
(slet ((v (new-viewpoint parent parent-viewpoint))

(a (new-activity parent start-act)))
(add-current-explorers.v a)
(within-viewpoint v

(within-activity a
(initiate-relaxation))

(when {(contradiction))
(delete-current-explorers v a)
(within-viewpoint parent-viewpoint

(assert (cant-be letter digit)))
(stifle a)))

(when ((quiescent a))
(delete-current-explorers v a)
(if (total-solution (quiescent-letter-constraints v))

(report-solution)
(let ((minpair (select-forking-pair (quiescent-letter-constraints v))))

(parallel-fork (car minpair) (cadr minpair) v))))))))
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4.3.1 Review of Simple I)eptli-first

It is important that the reader understand the sense in which this is a depth-first search. If we find a

problem with this viewpoint we move to the next higher one in the tree and select the next alternative

from the list. If the list is empty then we pop back to the previous level (by asserting a contradicti6n in

the viewpoint which is watched for by a sprite at the next higher level) and continue down the list of

alternatives there. At any one time there is one viewpoint which is most detailed, i.e. it reflects the

largest number of assumptions. It is not a classical tree search, in which the nodes are inactive data

objects. The tree consists of viewpoints containing assumptions, each with an associated activity.

Information learned in a viewpoint lower in the tree may cause new activity higher in the tree.

4.4 The Basic Parallel Solution

In the depth-first implementation discussed in the previous section, whenever an activity quiesced

relaxation on a particular viewpoint we picked a new letter with a list of alternative digits from which to

create new viewpoints. We went through this list one digit at a time, and waited for it to fail before going

on to the next alternative. We could just as easily have started activities pursuing each of the alternatives

in parallel. The code shown in figure 2 does just that. The code in figure 2 is actually generic for a whole

family of algorithms.t The aspect of the code that distinguishes one member of the family from another

is the allocation strategy used -- the scheme for deciding how much processing power to give to the

various running activities.' The two functions in figure 2, parallel-solve and p arallel-fork,

serve analogous roles as initiate-depth-first and depth-first. Parallel-solve is

responsible for setting up the initial viewpoint and activity structure and calls parallel-fork each

time it wants to sprout a new viewpoint and activity to pursue a new hypothesis. Paral 1 lel -fork calls

itself recursively for the same purpose. You will notice in the body of p a r a 1l e 1 - s ol v e the following

code:

(within-activity manager-activity
(continuously-execute (allocation-strategy)))

A special activity called the man age r- act i v i ty is created whose sole function is to continually run a

function called allocation-strategy. This function knows about- the currently active

investigations (those happening at the leaves of the tree of hypotheses) and continually modifies

t As we will see, there is a member of this family that is functionally equivalent to the depth-first program of section 4.3.
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processing power allocations to the respective viewpoints based on heuristic information giving us an

estimate of how likely the investigation is to aid the overall effort.

You will notice that parallel-solve creates three subactivities start-act,

background-activity, and manager-activity. Manager-activity has already been

explained. The parallel solution draws a distinction between the activity at the leaves of the hypothesis

tree and others. Work happening at the leaves of the tree of hypotheses (the most important with respect

to the entire search effort) occurs in separate activities, one for each hypothesis viewpoint-activity pair.

Work on leaves higher in the tree happens all in one activity, background-activity. Non-leaf

nodes are those that have already quiesced. The only way new work can be done in them is if a

cant-be assertion is placed there dtie to a (CONTRADICTION) occuring in a node lower in the tree.

The results from these nodes quickly propagate to the leaf nodes, so it was not deemed necessary to be

able to carefully control the rates at which processing in these nodes happens; hence all processing in

non-leaf nodes occurs in just one activity given a constant amount of processing at the beginning.

Activities pursuing work at the leaves are all children of the activity start-act. This is given a

constant amount of processing power initially, but the way this processing power is divided amongst the

active nodes is subject to change at any time. The activities pursuing these nodes are all children of

start-act.

Looking back at figure 2 we will check how all this is accomplished. In the definition of

parallel-solve we see first the creation of a viewpoint, start-vpt, in which the initial

configuration is relaxed as was done by depth- f i r st. We then create the three activities and assign

them processing power. The amounts of processing power given were chosen empirically as amounts

that give reasonable results. The code that allocates resources is the following:

(support-in-ratios
parent the-root-activity
activities (list start-act manager-activity background-activity)
factors '(8. 1. 3.))

The three activities, start-act, manager-activity, and background-activity are create as

children of the-root-activity, the highest activity in the tree. The "factors" argument to this

function contains a list of integers and processing power is allocated in porportion to them. We see that

2/3 of the processing power goes to pursuing the leaf activities, 1/12 to the manager-activity which is in

charge of continuously monitioring these activities, and 1/4 to the background-activity.

Analogously with the depth-fi rst example we initiate relaxation in the viewpoint start-vpt by
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executing:

(within-activity start-act
(within-viewpoint start-vpt

(initiate-relaxation)))

If a (contradiction) is found in this viewpoint, then the problem is not solvable and this fact is

reported to the user. Also analogously with the code for depth - f i r s t, we create a sprite that watches

for relaxation in the initial viewpoint to quiesce:

(within-activity background-activity
(when ((quiescent start-act)}

(if (total-solution (quiescent-letter-constraints start-vpt))
(report-solution)
(let ((minpair (select-forking-pair (quiescent-letter-constraints start-vpt))))

(parallel-fork (car minpair) (cadr minpair) start-vpt)))))

When quiescence has been reached (and the problem not yet solved) we again pick a letter and a list of

possible digits and pass them to a function. The name of this function is paral lel -fork, and as

might be expected, this function will not pick just one of them at a time (thus implementing a depth-first

search) but will concurrently begin searches on all. The code for par al e 1 - fork is also contained in

figure 2. If there is at least one possible digit, we iterate through the list of alternativest and create a new

activity-viewpoint pair for each. As our allocation strategy must know about the viewpoint-activity pairs

that are currently active (i.e. at the leaves of the tree) we must mark them as such; this is what is

accomplished by evaluating the function.

(add-current-explorers v a)

As we did in the case of the depth-first search, we initiate relaxation and watch for contradictions to

appear.

(within-viewpoint v
(within-activity a
(initiate-relaxation))

(when {(contradiction))
(delete-current-explorers v a)

(within-viewpoint parent-viewpoint
(assert (cant-be letter digit)))

(stifle a)))

In the event of a contradiction we delete the viewpoint and activity from tile current explorers and, as

with the depth-first case, we make a cant-be assertion in the viewpoint directly above the current one:

parent-viewpoint.

t The function fo re ach binds the variable'd i g i t to each of the elements of the list a 1 te r n a t i ve s and evaluates its body.
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Also, analogously with the depth-first case, we wait for quiescence and make a recursive call to

paral l e 1 -f o rk if the problem is not yet solved.

(when (quiescent a)}
(delete-current-explorers v a)

(if (total-solution (quiescent-letter-constraints v))
(report-solution)
(let ((minpair (select-forking-pair

(quiescent-letter-constraints v))))
(parallel-fork (car minpair) (cadr minpair) v))))

The reader may consider a comparison of the complete code for the depth-first program in figure 1 and

and the parallel program in figure 2 at this point. The differences between them are minor. The point

we wish to make via this comparison is that programming a true parallel search (where multiple

incompatible hypotheses are being explored) is no more difficult than a more conventional sequential

search.

4.5 Controlling The Search

The next question we should ask ourselves is: "What is the heuristic character of the parallel search

program in figure 2?" The answer to that question depends on the behavior of the function

allocation-strategy.

4.5.1 Trivial Strategies

One possible behavior of the function al 1 oc at i on - s t r ate gy could be to allocate all the available

processing power to only one leaf processing power to only one leaf activity, say the first on the list of

currently exploring' activities. In this case the resultant search would be equivalent to the depth-first

search of figure 1. The system would put all its processing power into one activity. If a contradiction

were established in the associated viewpoint, the activity would be removed from the list of currently

exploring activities and the next time allocation-strategy was run the next on the list of

alternatives would be chosen to be the sole recipient of processing power. In the event that

par all e 1-fo rk is called (because the running activity quiesced) the new activities are added to the

front of the list of exploring activities; thus one of them would then be picked to get all the processing

power.

Suppose al 1 ocation-strategy did nothing at all (i.c. it is a NOOP); what behavior results? In this
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case we would fall back on the default processing power distribution algorithm (described in section

6.6.1) which gives equal amounts of processing power to each of the activities. Each of the leaf nodes

would then have equal amounts of processing power and will run equally fast. As new leaf nodes are

created (because some other nodes have gone quiescent) they will be added to the list of currently

exploring nodes and processing power will be redistributed so that all receive equal amounts. The

character of this search would then be described as breadth-first because we allow the tree to grow

equally fast in all directions.t

4.5.2 Manipulation of Processing Power

The reason for having a mechanism for manipulating processing power at all is so that we can make use

of heuristic information to direct the search by giving more processing power to those avenues of

exploration we consider most promising.

How can this be applied to the current problem? This author sees no way of looking at a partially

constrained viewpoint and deciding that it is more or less likely to lead to a solution. Such a method, if

available, could be used to direct processing power in a way that would cause the system to converge on

a solution more quickly. This does not constitute the only criterion for deciding which activities are the

most useful to pursue, however. The metric used does not consider the likelihood that this branch will

eventually lead to a correct solution, rather it considers the likelihood the branch will yield useful

information with a minimal amount of processing. Useful information, in this context, is either a solution

to the problem (which is particularly useful) or a contradiclion. Determining that a branch is bad quickly

is valuable for two reasons:

1. We have successfully eliminated a wrong path from our search space. The more branches we can do

this for quickly, the quicker the overall search process will proceed.

2. When a (contradiction) has been discovered, useful information propagates up the tree of

viewpoint-activity pairs. Each time there is a (contradiction) asserted, a cant-be-type assertion

is placed in the superior viewpoint. Often this will lead to more relaxation processing higher in the tree

t This statement is not literally true. Each node gets as much processing power as other nodes. Because of the nature of
particular problems, the tree may grow more rapidly in some places than in others. -lowever, this is the parallel strategy that
comes closest in spirit to the standard definition of "breadth-first search."
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where it is more valuable. Information learned there is then porpagated to lower viewpoints. Sometimes

this will cause a (con t rad i ct i on) in this viewpoint which will propagate information yet higher in

the tree.

A reasonable measure of how likely we are to obtain either a solution or a contradiction from pursuing a

particular viewpoint is one which is high for those viewpoints that are already highly constrained and low

for viewpoints that are relatively unconstrained. After some experimentation we came upon the

following formula for determining relative processing power allocations for the various different

activities participating in the search:

((10- n) 2 + ... + (10- n10 )2) 2

where each n i is the number of possible digit assignments for the letter i in the viewpoint. If the letters

tend to have fewer possible digit possibilities, the sum terms (10 - ni) will tend to be large. Squaring this

number, and squaring the final sum serves to accentuate the relative differences between the different

viewpoints.

In order to implement this strategy all we have to do is design a function, called

allocation-strategy, that computes this formula over all the currently exploring viewpoints

(those at the leaves of the hypothesis tree), and then assigns processing power to the corresponding

activities in proportion to the values resulting from the application of this formula. Figure 3 contains

this implementation.

Fig. 3. Heuristic Allocation Strategy Code
(defunc allocation-strategy ()

(support-in-ratios
parent start-act
activities currently-exploring-activities
factors (forlist

vpt
currently-explored-viewpoints
(let ((status (quiescent-letter-constraints vpt))

(sum 1))
(foreach

pair
status
(increment

sum
(expt (- 10. (length (cadr pair))) 2)))

(max (expt sum 2) 1)))))

As the purpose of this function is to adjust processing power to the respective activities, the body consists
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only of a call to support- i n- ratios. All the viewpoints and activities that represent leaf nodes in

the hypothesis tree are stored in the lists currently-explored-viewpoints and

currently-exploring-activi ti es respectively. They are arranged in an order such that the nth

element of currently-exploring-activities is an activity in which processing for the nth

viewpoint in currently-explored-viewpoints occurs. It is the function of the two functions

used in the definition of parallel-fork, add-current-explorers and

delete-current-explorers in figure 2 to assure that this is so. We iterate through each of the

viewpoints, and for each one, evaluate the function quiescent-letter-constraints that returns

a list of pairs each consisting of a letter and a list of those digits that are possible assignments for this

letter in this viewpoint. The rest of the code of figure 3 is merely a Lisp implementation of the above

formula.

We recall that this function is evaluated in a separate activity known as the manager-activity. In the

definition of p a r a 11 e 1 -s o l v e in figure 2 we evaluated the code:

(within-activity manager-activity
(continuously-execute (allocation-strategy)))

This will cause a 1 1 o c ati on-strate gy to be called again and again asynchronously with the running

of the other activities in the system. The frequency it gets called is governed by the amount of processing

power allocated to manager-activity. Processing power is implemented in such a way that the

percentage of time actually spent executing this function will be close to the processing power allocation

with the maximum deviation from this being the time it takes to run the function once. This is the

subject of section 6.5.

Implementing this resource allocation strategy caused a substantial gain in average performance over the

simplest parallel strategy, the one in which allocation-strategy was the null function,

implementing the parallel analogue of a "breadth-first" type search.

4.5.3 Concurrency Factors

We have observed in the allocation strategy discussed thus far that even though activities are running

with different amounts of processing power that are related to our estimate of the utility of getting useful

information back from them, there still seems to be so many activities running that they tend to thrash

against one another. We would like to limit the amount of concurrency so that the running activities can

get something done. For this purpose we introduce the notion of a concurrenlcyfaclor. Instead of letting
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all runnable activities run,' we pick the n most promising activities (using the metric above), where n is

the concurrency factor, and give only those activities processing power and in the ratios defined by the

metric. The optimal value for the concurrency factor is picked experimentally and is discussed below.

The value of the concurrency factor that yields the best result is a reflection of two aspects of the

problem:

1. Many problems will have more than one valid solution. Thus, at any one time, we may be exploring

several paths that will lead to valid solutions. In the event that this is the case for a given problem, it may

still be to our advantage to explore both paths concurrently. The reason is that the difference between

the convergence rates of the differert branches may be sufficiently great that running both in parallel

will ensure that we get the result of the quickest, even at the expense of wasting some time on the other

one. None the less, we don't want to be exploring too many valid branches simultaneously.

2. The second aspect is related to the quality of our heuristic knowledge and the distribution of

computational expense for picking bad branches in the search. Obviously if our heuristic knowledge

were perfect, i.e. it could always point to the correct branch to explore next, the optimal concurrency

factor would be 1 -- it should simply explore this best branch. If we are less sure we are about which is

the best, more branches should be explored. Also, if the computational cost of exploring a bad branch is

always small, a small concurrency factor would be appropriate. If, however, the cost of a bad branch can

be very large we would want to use a larger concurrency factor. With a small concurrency factor we

increase the probability that the problem solver will become stuck for a very long time. A limiting case

of this is with a search space that is infinite (introducing the possibility of a bad branch that never runs

out of possibilities) and a concurrency factor of 1. If the problem solver happens to pick one of these

branches it will diverge.

For these reasons we wish to limit the total number of branches being explored simultaneously. The

function al locati on-str ategy is modified to implement this strategy. Each time it is run, we pick

the n most promising viewpoint-activity pairs (using the above defined metric) and then assign them

processing power in proportion to the values of the metric on the respective viewpoints. The most

reasonable value for the concurrency factor can only be picked experimentally. It depends on the

presence of the two factors above in the "space" of possible problems handed to the system to solve.
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4.5.4 Estimating Which Assumpntions Are Most Valuable

Our strategy so far has been to use hypothesize-and-test on one letter only in each viewpoint. We sprout

one new viewpoint and activity to test the hypothesis that that letter is each one of the digits it could

possibly be in the parent viewpoint. This is not necessarily the best strategy. By hypothesizing a letter is

a certain digit we may learn a lot or a little. We have "learned a lot" if we (1) discover quickly that a

viewpoint is contradictory, or (2) cause a lot of constraint propagation activity that significantly increases

our evaluation of the new viewpoint. One thing we have observed is that the amount we learn from

assuming a letter is a particular digit does not significantly depend on which digit we use. In other words,

if we assume the letter N is 2 and discover a contradiction, then we are likely to either discover a

contradiction or signficantly constrain our solution by assuming N is any other digit on its list of

alternatives. To take advantage of this phenomenon the program remembers what happened when it

makes particular assumptions. When it creates a new viewpoint to study the result of assuming a letter is

a particular digit the result is recorded in the parent viewpoint when it has completed. There are two

possible results. If it led to a contradiction this fact is recorded. If it led to a quiescent (but consistent)

state it records the difference of the evaluation metric applied to the parent viewpoint and the

evaluation metric on the quiescent viewpoint -- our estimate of the amount of reduction that is likely to

be obtained by assuming this letter to be a digit. Our new evaluation metric attempts to take this

information into consideration. When assuming a letter L is a specific digit we use the old evaluation

metric if we do not have have never assumed L to be a particular digit from this viewpoint; otherwise, we

use the average of the evaluations for each of the resultant viewpoints. We then multiply this figure by

the factor 1 + .5 * n where n is the number of letters that we have assumed L to be and determined that

they lead to contradictions.

Now that we have a mechanism for taking advantage of information learned by making different

assumptions we would like to ensure that a variety of choices are tried at each branching point. We will

slightly modify the technique for picking the activities to be run at any given time (in accordance with

the concurrency factor). Where c is the concurrency factor, we use the following algorithm to pick the-c

activities to run at a given time:

1. The activity with the highest evaluation is scheduled.

2. If n < c activities have been selected for running, the n + 1st activity is (a) the one with the highest

metric if it does not duplicate any. of the first n activities in terms of which letter it is making an
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assumption about for a given viewpoint, or (b) the highest rated non-duplicated activity unless the

highest rated activity has a rating at least three times higher in which case we use the highest rated

activity. The factor three was picked experimentally and is based on the following argument. There is a

certain advantage in having a diversity of letters being tested because this gives us a greater chance to

discover assumptions that will cause significant shrinkage by constraint propagation. However, there is

also an advantage to running the activity that we have estimated will give us the best result. The factor

three is the ratio of estimates for expected gain for which we would rather run the higher estimated test

than one that will increase our diversity.

4.5.5 An Experiment

In order to test for the existence of a speed-up with concurrency we timed 10 problems using the final

parallel algorithm described above for several concurrency factors. The problems tested are:

1) DONALD + GERALD = ROBERT
2) CRIME + TRIAL = THIEF
3) POTATO + TOMATO = VEGIES
4) MIGHT + RIGHT = MONEY.
5) FUNNY + CLOWN = SHOWS
6) FEVER + CHILL = SLEEP
7) SHOVEL + TROWEL = WORKER
8) TRAVEL + NATIVE = SAVAGE
9) RIVER + WATER = SHIPS
10) LONGER + LARGER = MIDDLE

They were picked by a trial-and-error process of selecting possible problems and then running them to

see if they have a solution. It is not known whether they have one or more than one solution. The

program finishes when it has found one solution. These tests were run on the MIT Lisp machine, a

single user machine designed for efficient execution of Lisp programs. The times represent processor

run time only and are adjusted for time lost due to paging. The manager activity, which continually

monitors the state of the search activities and readjusts processing power accordingly, receives a

processing power allocation of .1. We tested with concurrency factors between 1 and 7. Numbers 2

through 7 each gave some improvement with 4 being the best. Here we report the results for

concurrency factors 1 and 4. Times reported are in seconds:
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concur- concur- ratio
rency rency
factor factor
=1 =4

1) 377 140 2.69
2) 85 153 .56
3) 167 192 .87
4) 79 246 .32
5) 663 227 2.92
6) 2868 348 8.24
7) 241 112 2.15
8) 78 335 .23
9) 1920 554 2.55
10) 474 212 2.24

total: 6952 2519 2.76

With a concurrency factor of 1 the algorithm becomes, functionally, the "depth-first" search described

earlier. A concurrency factor of 4 represents the value which yields least average run time for the

problems examined. Concurrency factors larger and smaller yield higher average values. We caution the

reader not to take the numbers too seriously. We only wish to demonstrate that there is value in having a

non-unity concurrency factor.

Some interesting facts can be learned by examining the data. Although the parallel solution beat out the

sequential solution in only 6 of the 10 cases, these six cases are the ones for which the sequential

solutions take the longest. In particular, problems 6 and 9 have show by far the longest times for the

sequential solution and the time saving of the parallel solution is considerable. Similarly, for the cases in

which the sequential solution finished quickly, the parallel solution tended to take longer. This

phenomenon is fairly easy to explain. The parallel solution supplies "insurance" against picking bad

branches in the search space. If the sequential solution happened to pick a bad branch (or several bad

branches) there was no recourse but to follow it through. Similarly, if the sequential program found a

relatively quick path to the solution, the extra efficiency of the parallel solution was not needed.

4.6 Comparing Tree Search and Parallel Search

The material contained in this chapter was presented in abridged form at the Second Workshop and

Distributed AI, and the Seventh Internation Joint Conference on Artificial Intelligence during the

summer of 1981. At both places some confusion resulted in the ensuing discussion as to the relationship

between the parallel search methodology of this thesis, and the conventional and well-researched tree

search algorithms. The question arose as to whether there is anything new in parallel search at all. In

this section we will attempt to show parallel search, although close in spirit to tree search, is a richer

programming formalism and allows the programmer to design algorithms with more flexible control
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than would be possible otherwise. Figure 4 diagramatically shows the relationship that we wish to

explore. Refer to part A of the diagram. Although there are numerous different tree search strategies,

they all have certain commonalities. There is always a tree consisting of nodes that represent some state

of the problem solving process. These nodes are static -- they are data structures, not procedural in any

sense -- and homogeneous, each being drawn from some well-defined space of possible nodes. Along

with the tree, there is an associated algorithm for picking the next node to be added to the graph. In other

words, the set of possible nodes to add is a datum available to the program that must pick them based on

some metric. Different tree search strategies restrict the kinds of computation of this metric that can be

done (usually for efficiency reasons). From the point of view of this discussion, we will assume the

system has the capability to recompute the metric on each potential new node each cycle through the

algorithm.

Part B of the diagram is a schematic representation of parallel search. In parallel search there are a

number of activities running side by side. Each activity in that diagram is represented as two small

loopst with a "throttle" below it. The throttle controls the amount of processing power given to the

activity. Each activity is running an arbitrary program that can be similar in kind or entirely different

from other activities. Information flows freely between activities; one activity can make use of

information learned through its labors as readily as information learned through the labors of any other

activity. In addition, activities can create new activities (and eliminate extant ones) at any time. There is

a resource control algorithm that decides, based on current knowledge, how to allocate processing power

to the various activities.+ The resource control algorithm runs asynchronously with any of the other

activities and can change its mind on resource allocation at any time.

While the parallel search concept certainly appears richer than the concept of tree search, there still is the

danger that we are making "much ado about nothing," that the problem could just as easily be phrased

as a tree search. The remainder of this section is devoted to explaining why this is not so. The argument

is one of programming practicality, not theoretical limitation. It will not be analogous to a proof that

there exist context free grammars that are not parsable by any finite-state machine. It will be closer to an

t The reason we have used two loops instead of just one is to emphasize the fact that even within one activity there can be
concurrency.
t In the cryptarithmetic example, and in the diagram, there is only one resource control procedure operating. This is a
simplification of the most general state of affairs. There is a tree of activities, and each activity in this tree can use a different
strategy for allocating processing power to its children. It happened in our strategy for controlling resources that the activity tree is
essentially flat.
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Fig. 4. Tree Search vs Parallel Search

(A) Tree Search:

(B) Parallel Search:
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argument like "An Ether interpreter could not be implemented on a Turing machine." There is a

theoretical result which flatly contradicts this, yet no programmer would consider taking on such a task.

What we are arguing is that parallel techniques of the sort we have been using is a superior base from

which to build good search algorithms, just as Lisp is a better base from which to build Ether rather than

a finite state automaton, a read-write head, and an infinite tape. Before proceeding with this argument it

is worth pointing out one other potential limitiatlon of tree search algorithms -- that they are inherently

sequential; there is no way that parallel hardware could ever be put to use without modifying the

concept in some way.

In order to view this problem as a tree search we must at least have a tree with nodes that represent

different states of the problem. We were, in the solution to this problem, growing a tree of

viewpoint-activity pairs. Could this be the "tree" of our tree search algorithm? The answer is clearly: no.

The tree is not one of static objects, rather it consists of running programs. The programs are constantly

advancing and only occasionally do new nodes of the tree get produced. Furthermore, resource control

is in effect at all times. While several activities are running, changes of resource allocations can be made

without any modifications to the structure of the tree at all. In a tree search algorithm the only way that

heuristic information can be considered is in the design of the algorithm inside the "Who Next?" box --

the algorithm that adds new nodes to the tree.

If we are going to find a way of looking at this thing as a tree search algorithm, we must find more atomic

objects that serve the purpose of the nodes of the tree. They must be static data objects. There are two

choices for what these possible nodes might be: they might be momentary states of individual viewpoints

(between constraint applications) or states of the entire collection of viewpoints. Both possibilities

present problems.

Suppose that we have picked the first of these two options -- that the nodes of the tree are "snapshots" of

individual viewpoints during relaxation. From a given node there are two kinds of "next" nodes that

could be grown off of it:

1. New assumptions (what we did when we sprouted new viewpoint-activity pairs).

2. Application of individual constraints without making assumptions.

In order for there to be a tree search algorithm there must be a function to assign numerical values to

nodes that could be grown on the tree so that one can be picked as "best." We will refer to this
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evaluation function as "F'. Nilsson [48] gives examples of kinds of evaluation functions: "Attempts have

been made to define the probability that a node is on the best path; distance or difference metrics

between an arbitrary node and the goal set have been suggested; or in board games or puzzles a

configuration is often scored points on the basis of those features that it possesses that are thought to be

related to its promise as a step toward the goal." These are many different ideas, but they are similar at

some level of abstraction: They imply a means of evaluation of the merits of expanding a node based

only on the characteristics of that particular node.

In order that we get similar search behavior for our parallel algorithm recast as a tree search, we can

make certain assumptions about what F must look like. It is always (we have supposed) better to apply

constraints rather than make new assumptions. This is expressed in the parallel algorithm by our waiting

for the activity to quiesce before making new assumptions, F must weight nodes that represent

continued constraint propagation higher than assumption making. There are, however, many constraints

that could be applied at once. Which one do we choose to apply first. No metric comes to mind for this,

but we will suppose we have one or simply give all constraints that could be applied in parallel equal

weight. Suppose now one of them is applied, generating a new node. Something very funny happens

here (from the point of view of this being a tree search); after expanding one of those nodes we will never

want to expand any of the others. This is because the same constraint can always be applied with greater

advantage to the most newly generated node, not the old node. Because of our concepts of monotonicity

and commutativity the constraints can be applied in any order with the same result. This was our reason

for doing all of the reasoning in one viewpoint. We simply wish to learn all the facts that could be

learned by local deduction. The end result of this is the following: Sections of the graph that represent

relaxation within a viewpoint will always appear as simple linear chains -- every node will have an

outdegree of one. Such a "computation" does not have any of the character, nor does it gain anything,

from being looked at as a tree search.

We now consider the only possible place we would want to have branching in the tree, at places where

we make assumptions. At each one of these places, as we have just learned, we will have 16ng linear

strings of nodes descending, but at least they will be descending in parallel (giving some credibility to

this being a "tree"). In the original Ether algorithm we deemed it desirable to be pursuing the various

hypotheses (now corresponding to parallel, descending chains of nodes) in parallel, but at different rates

depending on the value of a metric. We now ask the question: "Is there a reasonable function F that will

give us this behavior?" Remember that F is an evaluator of the desirability of expanding static nodes. It
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will be computing values fr the tips of each of these descending chains and producing a number solely

on its own merits. Because expanding a node via a constraint can only make the node seem more

desirable than it was previously, it is hard to see how the other branch will ever get to run. Any function

F that would yield the desired behavior would be unrelated to the desirability of expanding the node,

and thus totally unintuitive.

Even if such an F could be devised, there is one very useful aspect of the original parallel program which

would not fit this scheme in any reasonable way. Whenever a contradiction was discovered in a

viewpoint, a cant-be assertion was placed in a superior viewpoint. This could lead to further

relaxation-type processing in that viewpoint, the results of which would propagate to the leaves of the

hypothesis tree. The nodes of a tree ih classical tree search are static. We cannot change them once they

are laid down. We cannot make a change high in the tree and have the results percolate down. To fit

this inside a tree search, we would have to scrap the entire line(s) of reasoning below the node that we

would have put the cant - be assertion in and build anew with this new information. This is so wasteful

of information already learned that it would be of doubtful value.

Earlier in this discussion we mentioned that there were two possibilities for what the nodes of the tree

could represent: states of individual viewpoints, and states of the entire computation. Does this latter

possibility give us some hope? We can quickly see, by the argument given earlier, that constraint-type

changes being made to the database will result in strict changes of new databases. We can also see by the

argument in the previous paragraph, that in order for us to make use of information back-propagated,

and without throwing away already-learned results, we can only allow one node to be expandable at any

point in time -- any branching would force us to throw away information. We are able to handle the

back propagation effect of the previous paragraph, but the resultant tree is one long chain with no

branching. It makes no sense to talk about a "tree search" when the only possible trees that could be

generated are simple chains. What this actually would look like would be a trace of the message-passing

behavior of the Ether implementation looked at from the lowest level, the point where there cease to be

separate concurrent activities as described in section 6.2. And the F function would not look anything

like a metric of the desirability of expanding a node viewed in isolation.

I apologize for the tediousness of this long argument. It was to draw attention to what should now seem

obvious: that parallel problem solving is a more flexible metaphor for programming a search than

classical tree search. We spell it out in such detail for the benefit of those readers whose only model for

search is classical tree search. New concepts sometimes seem strange and irrelevant without a tedious
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examination of the ways they compare to more familiar concepts. This is not to say that the metaphor of

tree search was a mistake -- only that it was a first step and we may now be taking another step in the

right direction. We have used the terms "depth-first" and "breadth-first" to describe kinds of parallel

algorithms and these concepts are analogous to those found in the tree search literature (from which they

were borrowed). Parallel search with research control might be considered a generalization of

"best-first" search, and indeed there are parallel analogues to the classical A* algorithm as well.

There are other Al systems, not usually presented as tree searches, that have characteristics similar to tree

search with respect to this discussion. Systems such as the Hearsay speech-understanding system [12],

Lenat's system for mathematical discovery [40], and Davis' meta-rule formalism for rule-based systems

[9, 10] are all examples. Each incorporates a resource control mechanism, but one that must make

decisions about each individual event. Each involves some for:n of a "Who Next?" box. The ability to

abstract away from the individual event level and apply resources to activities has been useful to us here,

and may well be useful in these other domains.
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Chapter V Synthesis Of Programs from Descriptions of Their Behavior

This chapter develops the second of the two example systems of this thesis. It is a program that generates

Lisp programs from descriptions of their behavior using sprites.t These sprites have a declarative

interpretation and can be thought of as a simple translation of a concise formula in first order logic.

The primary purpose in developing this system was to exemplify the techniques of proposers and skeptics

developed in chapter 2. We were not specifically interested in advancing the art of program synthesis

and the class of programs the system can generate in its current state of development is quite restricted.

The contribution of this chapter is its explication of the use of concepts of parallel problem solving, not

the power or generality of the resulting synthesis system.

This system does, however, lend itself to some interesting comparisons with other program synthesis

systems in the literature. The bases for these comparisons are largely an artifact of the theory of problem

solving we developed in chapter 2. Many of the mechanisms we develop as part of the synthesis system

give us the ability to reason about programs and about specifications. Thesemechanisms might be used

as subcomponents of program development systems. Remarks about these comparisons and possibilities

are contained in section 5.9.

Our other major reason for developing the system described in this chapter was to exercise the linguistic

concepts of Ether. We wanted to develop a system containing many assertional types with a rich

semantics. The needs of the system in this chapter motivated many of the design considerations

discussed in chapters 6 and 7.

5.1 Our Domain

The domain for the example in this chapter is program synthesis, but can be more generally thought of

as "engineering design." That is, we have specifications for what we would like the final behavior of our

engineering system (in this case, a computer program) to be. The system reasons about these

specifications and produces a program as a result.

t At the time of this writing all of the system has been implemented with the exception of the skeptic activities described in
section 5.8. The difficulties we had in implementing that aspect of the system are described in that section.
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The general scheme we use for program synthesis is one of starting with templates that represent general

plans for a program. The templates have slots that must be filled in with code fragments. Our original

plan was to have a number of templates available, and have activities attempting to instantiate each

template explored in parallel. Programming considerations, however, limited us to considering just one

template, called iterative accumlulation, that will be explained in section 5.3. The process of conjecture

and refutation will be applied to filling in the slots of the template. A similar approach to program

synthesis was taken by Goldstein [15] in the synthesis of programs to draw pictures from descriptions of

their appearance.

The domain of expertise for our system consists of simple Lisp programs. In order to reason about

programs, we must first have a language for doing so. The language we use is based on the formalism of

assertions and sprites introduced in chapter 3. There are three general kinds of objects that we can talk

about in our domain: sequences, atoms, and numbers. Sequences are the objects that get implemented

as Lisp lists. When we reason about lists, we will think of them as sequences (that is objects having n

positions, each filled by another object) rather than as CONS's (which have a CAR and a CDR). The

code we generate will, of course, use CARs and CDRs. Atoms are objects that have no internal

structure. The only things we can know about them is that they may or may not be equal to other atoms.

Numbers are like atoms, but we can say a few more things about them (because of their total ordering).

The Ether program synthesis sublanguage is "weakly typed" in that we can create an object that is not of

any particular type. We can then, in some viewpoint, assert that object to be of some specific type and to

have properties appropriate for that type.

There are a number of assertional types that can make statements about these objects. We define them

below:

(equal -objectl 4object2) means Objectl is known to be equal to object2. Objectl and

ob j e c t2 can be any kind of object.

(not-equal objectl object2) means objectl is known to be not equal to object2.

Objectl and object2 can be any kind of object.

(length4object4n) means objectis known to be asequence of length n.

(not-length 4object -n ) means object is known to be a sequence with a length of something

other than n.
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(member 4objectl 4object2) means object2 is known to be a sequence that has at least one

element, objectl. Objectl may be of any type.

(not-member -objectl 4object2) means objert2 isknowntobeasequence, andObjectl is

known to not be a member of it.

(sequence-element -sequencel sobjectl 4n) means sequencel isknowntobeasequence,

and it is known that object is in its nth position.

(l ess -numberl -number2 ) means both number1 and number2 are known to be numbers, and it

is known that numberl is less than number2.

(not-l ess +numberl -number2 ) means both numberl and number2 are known to be numbers,

and it is known that numbe rl is not less than number2.

There are several more assertional types that are used and will be introduced as-needed.

5.2 How We Describe Functions to Synthesize

Each function to be synthesized by the system is described to the system by a set of sprites that state facts

about the relationship between the input(s) and the output of the function. Because these sprites have an

obvious declarative interpretation, the reader can think ofthem as having been generated by a process of

"macro-expanding" a much more concise description in first-order logic. The logical description that led

to the sprites is given along with the sprites that were actually input.t A macro-expander could have

been written, but for the relatively small number of examples we are considering the effort would not

have been worthwhile. We also give the logical description because it gives us a basis for comparison

between our system and some others (that have similar logical descriptions as input).

t We do not state, unlike certain writers (e.g. Kowalski [35]) that sprites, or any other computational mechanism, in any sense
"implement" logic. A logic is a formal system consisting of a language in which statements can be made and a proof procedure
that can deduce certain statenlents from others. Logic is not any particular computational mechanism. The declarative
interpretation of sprites allows the programmer to make reasonably certain that all new assertions produced by the sprite will be
provable in the logic. Nevertheless, there are statements provable in the logic that the sprites derived from sentences in the logic
will not, or cannot produce. There are meta-statements one can make about the class of provable sentences, such as the logic's

completeness or consistency, that are not in any sense derivable or accessible through the sprites. It is important to keep the
distinction between a logic and a computationlal mechanism consistent with that logic in mind.
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It is important to understand the relationship between our means of problem specification and problem

solution, and the remarks about the philosophy of science given in section 2.1. We are not interested in

learning facts about the "real world." We are interested in producing an artifact (a program) that satisfies

our specifications. In science we propose models for aspects of the real world and test our models

against observations in the real world. In engineering design we propose models and test our models

against the specifications. If our model suggests some relationship between the input and output, these

relationships can be tested with the sprites that implement the specifications. The sprites are also used

by the proposers. The way the proposers work is by looking at what the program does to simple

examples and then hypothesizes program fragments that can handle those simple examples. The

proposed code fragments are then tested against more complex examples by skeptics.

There are several functions that we have studied as part of this research. They are described in turn.

5.2.1 Reverse

The first one we will look at is the standard nondestructive reverse function common to all Lisps. An

example is:

(reverse '(a b c d)) - '(d c b a)

The function we will describe with our sprites takes one input called i n put of type sequence. The

output of the function (called ou t p u t) is of similar type.

A first order description of the reverse function is:

length(input) = length(output)

A (V x) member(x,input) member(x.output)

A (V n) sequence-element(inputt,x,n) + sequence-clement(output,x,length(input) - n + 1)

The first conjunct states that the length of the input is the same as the length of the output. The second

that something is a member of the input iff it is a member of the output; in other words, that one is a

permutation of the other. The third conjunct gives the nature of this permutation as required by reverse.
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There were six sprites that'were actually input to the system, two for each conjunct.t The first conjunct

expresses that the lengths of i n put is the same as the length of ou tp ut. The two sprites that represent

this information are:

(when (length -input =n)}
(assert (length -*output -n)))

(when (length output =n)}
(ass'ert (length input .n)))

They each wait for the length of the i n put/output to be known and when it is assert that it the length

of the output/i nput is the same value.

The next conjunct says that the elements that are members of one are exactly those elements which are

members of the other. Here, again, we represent this by creating two sprites. When one learns that there

is some element that is a member of one it asserts it is a member of the other.

(when ((member =x input)}
(assert (member x output)))

(when ((member =x output)}
(assert (member x input)))

The last conjunct is expressed by the following two sprites:

(when ((sequence-element input =x =n)
(length output =m)}

(assert (sequence-element -output -x (- m n -1))))

(when (sequence-element -output =x =n)
(length -output =m)}

(assert (sequence-element -input x -(- m n -1))))

The Lisp code produced from these specification was (effectively) the following:

(defun reverse (input) (reversel input nil))
(defun reversel (input accumulant)
(cond

((equal input nil) accumulant)
(t (reversel (cdr input) (cons (car input) accumulant)))))

There are a number of other functions that we have worked with that are described in turn through the

t One of the features of Prolog that is often praised by its proponents is its ability to have the same code reason in two directions.
This is because functions are defined by binary relations, where one of the arguments represents the input and the other the
output. We are free to unify a ground term with either of the two, thus causing it to compute in one direction or the other. In
Ether we do not have a syntactic unfication mechanism and must create two sprites, one for each direction.
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remainder of this section. The reader may wish to glance at them to get a feel for the breadth of the

system, but there is no necessity to read through them thoroughly. The discussion continues with section

5.3 on page 68.

5.2.2 Intersection

This function finds the intersection of the elements of two lists. For example:

(intersection '(a b c d e f g) '(x g c d y)) e (c d g)

Inputs: i n p u t 1 and i n p u t 2 of type sequence

Output: output of type sequence

Formal description of its behavior:

(V x) member(x,output) *- member(x,inputl) A member(x,input2)

Something is a member of the output iff it is a member of both inputs.

The sprites actually input to the program synthesis system were the following:

:If x is a member of
(when (member =x

(member x
(assert (member

:If x is a member of
(when ((member =x
(assert (member
(assert (member

both inputl and input2,
i nputl)
4input2)}
4x output)))

the output, then it is a
4output))
4 x inputl))

4x input2)))

then it is a member of the output.

member of both inputl and input2

The code produced from these specifications was the following:

(defun intersection (inputl input2) (intersectioni inputl input2 nil))
(defun intersectioni (inputl input2 accumulant)

(cond
((equal inputi nil) accumulant)
((member (car inputl) input2)
(intersection1 (cdr inputl) input2 (cons (car inputi) accumulant)))

((not-member (car inputl) input2)
(intersectioni (cdr inputl) input2 accumulant))))



-61 -

5.2.3 Setdiffcrence

This function takes two lists as input and returns a list of all elements of the first which are not elements

of the second. For example:

(setdifference '(a b c d e) '(b d e f g))

Formal description of its behavior:

Inputs: i n p u t and i nput2 of type sequence

Output: o u t p u t of type sequence

(V x) member(x,output) *- member(x,inputl) A -mcmber(x,input2)

The sprites actually input to the program synthesis system were the following:

;If x is a memnber of the output, then it is a member of inputl,
;and not a member of input2.
(when ((member =x output))

(assert (member x inputl))
(assert (not-member x 4input2)))

:If x is a member of iput2 then it is not a member of the out
(when ((member =x input2)}

(assert (not-member Ax output)))
;If x is a member of the inputl, then it is a member of the ou
;it is not a member of input2.
(when ((member =x inputl)}

(when {(member Ax 4input2)}
(assert (not-member Ax output)))

(when {(not-member x input2)}
(assert (member Ax output))))

tput

tput iff

The code produced from these specifications was the following:

(defun setdifference (inputl input2) (setdifferencel inputl input2 accumulant))
.(defun setdifferencel (inputl input2 accumulant)

(cond
((equal inputi nil) accumulant)
((member (car inputl) input2)
(setdifferencel (cdr inputl) input2 accumulant))

((not-member (car inputl) input2)
(setdifferencel (cdr input.) input2 (cons (car. inputl) accumulant)))))

- (a c)
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5.2.4 Unique-members

This function takes one list as an argument and returns a list containing exactly the unique members of

the input. For example:

(unique-members '(a b a c c d a b)) - (a b c d)

Inputs: i n p u t of type sequence

Output: o u t p u t of type sequence

Formal description of its behavior:

(V x) member(x,input) * member(x,output)

A (V x) (V i) (V j) sequencc-element(output,x,i) A sequence-element(output,xj) D i = j

The first conjunct says that something is a member of the input iff it is a member of the output; the

second conjunct that if an element appears in one position it cannot appear in another position of the

output.

The sprites actually input to the program synthesis system were the following:

;If an object is a member of the input, then it is a member of the output
(when ((member --=x input).}

(assert (member x output)))
;If an object is a member of the output, then it is a member of the input
(when (member =x output)}

(assert (member x input)))
(when (sequence-element output =el =i)

(sequence-element -output el =j)}
(assert (equal i j.)))

The code produced from the specifications was the following:

(defun unique-members (input) (unique-members-i input nil))
(defun unique-members-1 (input accumulant) /

(cond
((equal input nil) accumulant) /
((member (car input) accumulant)
(unique-members-i (cdr input) accumulant))

((not-member (car input) accumulant)
(unique-members-1 (cdr input) (cons (car input) accumulant)))))
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5.2.5 Delete

This is the usual non-destructive delete function found in all Lisp dialects. An example is:

(delete 'a '(b a b c c a d b a b)) - (b b c c d b b)

Inputs: atom, of type atom, and i n 1 i st of type sequence

Output: o u t p u t of type sequence

Formal description of its behavior:

(V x) member(x,output) +* (x = a) A member(x,inlist)

The sprites actually input to the program synthesis system were the following:

;If an object is in the output, then it must also be i the enlist and not equal
(when ((member =element output)}

(assert (member element inlist))
(assert (not-equal element atom)))

:If an element is i the inlist that is not equal to the atom, then it is also in
(when ((member =element inlist)

(not-equal element atom)}
(assert (member element output)))

:lf an element is in the inlist that is equal to the atom, then it is not in the
(when ((member =element inlist)

(equal element atom)}
(assert (not-member element output)))

The code produced from these specifications was the following:

(defun delete (atom inlist) (deletel atom inlist nil))
(defun deletel (atom inlist)

(cond
((equal inlist nil) (reverse accumulant))

'((equal atom (car inlist))
(deletel atom (cdr inlist) accumulant))

((not-equal atom (car inlist))
(deletel atom (cdr inlist) (cons (car inlist) accumulant)))))

to the atom

the output

output
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5.2.6 Greatest

This function takes a list as an argument and returns the greatest number on that list. An example is:

(greatest '(3 5 9 7 6)) e 9

Inputs: i n p u t of type sequence

Output: g r e a t e s t of type number

Formal description of its behavior:

member(greatest,input) A (V n)member(n,input) D -(greatest < n)

The sprites actually input to the program synthesis system were the following:

:If an element is not equal to the greatest, then it is less than it.
(when (member =element input)

,(not-equal element greatest)}
(assert (not-less greatest element)))

;The greatest element is in the input
(assert (member -greatest input))

The code produced from these specifications was the following:

(defun greatest (input) (greatestl input 0))
(defun greatestl (input accumulant)

(cond
((equal input nil) accumulant)
((less (car input) accumulant)
(greatestl (cdr input) accumulant))

((not-less (car input) accumulant)
(greatestl (cdr input) (car input)))))

5.2.7 Merge

This function takes two lists of numbers as input that it assumes are themselves ordered and outputs a list

which contains all the elements of these two lists merged so that the order is preserved. An example is:
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(merge '(1 4 8 11 13) '(2 5 6 15 16) (1 2 4 5 6 8 11 13 15 16)

Inputs: i n p u t 1 and i n p u t 2, both of type sequence

Output: ou tp u t of type sequence

Formal description of its behavior:

(V x) member(x,output) -- mcmber(x,inputl) V member(x,input2)

A ordered(inputl)

A ordered(input2)

A ordered(output)

where the order relation is defined as follows:

ordered(list) -> (V x,y,ij) [sequence-element(list,x,i) A sequence-element(list,y;j)] D [x < y *

The sprites actually input to the program synthesis system were the following:

i <j]
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:If an element is in inputl, then it is in the output
(when ((member =element inputl)}
(assert (member element -output)))

;If an element is in input2, then it is in the output
(when ((member =element input2)}
(assert (member element output)))

:If an element is in the output, but not in inputl, then it is in input2
(when ((member =element output)

(not-member element inputl)}
(member element input2))

;If an element is in the output, but not in input2, then it is in inputl
(when (member =element output)

(not-member element input2)}
(member element inputl))

:The elements of the list inputl are ordered
(when ((sequence-element inputl =ell =i)

(sequence-element inputl =el2 =j)}
(when ((less i j)}

(assert (less ell e12)))
(when (less ell e12)}

(assert (less i 4j))))

:The elements of the list input2 are ordered
(when ((sequence-element input2 =ell =i)

(sequence-element input2 =e12 =j)}
(when ((less i j))

(assert (less ell e12)))
(when {((less ell 4e12)}

(assert (less i j))))

:The elements of the output list are ordered
(when (sequence-element output =ell =i)

(sequence-element output =el2 =j))
(when ((less i j)}

(assert (less ell 4el2)))
(when ((less el1 e12)}

(assert (less i j))))

The code produced from these specifications was the following:

(defun merge (inputl input2) (mergel inputl input2 accumulant))
(defun mergel (inputl input2 nil)
(cond

((and (equal inputl nil) (equal input2 nil)) (reverse accumulant))
((equal inputl nil) (mergel inputl (cdr input2) (cons (car input2) accumulant)))
((equal input2 nil) (mergel (cdr inputl) inpu't2 (cons (car inputl) accumulant)))
((less (car inputl) (car input2))
(mergel (cdr inputl) input2 (cons (car inputl) accumulant)))

((not-less (car inputl) (car input2))
(mergel inputl (cdr input2). (cons (car input2) accumulant)))))
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5.2.8 Union

The union function takes two lists as input and returns a list that is the union of the two. If the same

element happens to appear in both the lists it will appear only once in the output. An example is:

(union '(a b c d) '(b c e f)) - (a b c d e f)

Inputs: i nputl and i nput2 of type sequence

Outputs: ou tp u t of type sequence

Formal Description of its behavior:

(V x) member(x,output) <-+ member (x,inputl) V member(x,input2)

A (V x,ij) sequence-element(output,x,i) A sequence-element(output,xj) D i = j

The first conjunct expresses the fact that something is an clement of the output iff it is a member of

either input. The second conjunct says that each element of the output is unique, that is, if the same

element appeared in both inputl and input2, there would be only one copy of it in the output. The is

how the un ion function differs from append.

The sprites actually input to the program synthesis system were the following:

:If x is a member of inpull, then it is a member of the output
(when (member =x inputl)}

(assert (member x output)))
:If x is a member of iput2, then it is a member of the output
(when ((member =x input2)}

(assert (member Ox output)))
;If x is a member of the output, then it is a member of at least one of inputl and input2
(when ((member =x output))

(when ((not-member x inputl)}
(assert (member x input2)))

(when (not-member x -input2)}
(assert (member x inputl))))

:There cannot be duplication of elements in the output
(when ((sequence-element =x output =i)

(sequence-element x output =j)}
(assert (equal i j)))

The code produced from these specifications was the following:
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(defun union (inputi input2) (unioni inputl-input2 nil))
(defun unionl (inputl input2 accumulant)

(cond
((and (equal inputl nil) (equal input2 nil)) accumulant)
((equal inputl nil)
(unionl inputl (cdr input2) (cons (car inputl) accumulant)))

((equal input2 nil)
(unionl (cdr input2) inputi (cons (car input2) accumulant)))

((member (car inputl) accumulant)
(unionl (cdr inputl) input2 accumulant))

((not-member (car inputl) accumulant).
(unionl (cdr input1) input2 (cons (car inputl) accumulant)))

((member (car input2) accumulant)
(unionl (cdr input2) inputi accumulant))

((not-member (car input2) accumulant)
(unionl (cdr input2) inputl (cons (car input2) accumulant)))))

5.3 Overview of How The Synthesis System Works

All the examples are of a certain kind that we might call "iterative accumulation." My original goal for

this system would be that there be several such plans and that, based on characteristics of the program to

be synthesized, some would be proposed and then the various aspects of the plan filled in by the process

of conjecture and refutation. As it turned out, the programming difficulties in getting all the many levels

of Ether working were of such magnitude that it precluded more breadth in this particular area. Never

the less, after coding the system to know about more that one program schema we could (at worst) run

them all in parallel and wait for one of them to work. Better, we could use knowledge about the

applicability of different schemata to control resource allocations and, perhaps, prove that some schema

could not possibly be made to work and reclaim all the resources given to it. Some recent work by C.

Rich [52] suggests program schemata that are similar to the one we use as an example.

5.3.1 General Form of the Solution

An iterative accumulation is a simple oop in which we start with an accumul ant that is initially the

null list or 0, depending on whether it is a list or a number. The inputs (one or two) are lists, atoms, or

numbers (but at least one must be a list) and we go down the list(s) and accumulate results in the

accumulant variable. Although these are iterative programs, we have presented them in a

tail-recursive form because they are easier to comprehend this way. All the generated code follows a

schema something like the following:

(defun foo (input)
(fool input accumulant-inilial))

This merely establishes a call to the tail recursive secondary function generated. The original
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argument(s) is passed with one additional argument, the initial value of the ac cumu 1 ant (either ni 1 or

0). The definition of the tail recursive function is of the form:

(defun fool (input accumulant)
(done-test accumulant)
(null-input-lest(s) recursive-call)
(condition recursive-call)
(not-condition recursive-call))

The done-test is a n u 11 test one or both of the inputs. When it is true the accumulant (representing the

accumulated result) is returned. There may follow one or more null-input-lests for cases not covered by

the done-test. These represent one or the other of the inputs becoming null when the done-test is:

(and (equal.inputl nil) (equal input2 nil))

Following this are pairs of clauses containing one or more tests on the input(s) and its negation. Each of

these clauses contain a recursive call. The form of the recursive call is quite restrictive. The inputs are

either passed to the recursive call as is, or the CDR is passed. The last argument in the recursive call (the

acc umu 1 ant) contains an accumulating function that must be synthesized.

5.3.2 Setting Un A Working Environment

Throughout this work we will be creating viewpoints in which to test theories about partial programs.

Whenever a viewpoint is created, it automatically inherits knowledge from its parent viewpoint(s); any

fact present in the parent viewpoint will be available in this new viewpoint. There are, however, no

sprites that automatically appear watching for assertions in the viewpoint. In order for any processing at

all to happen in the viewpoint, there must (1) be sprites activated in that viewpoint, and (2) an activity

with processing power in which the sprites have been activated. Whenever there is a new viewpoint

created there is in fact a fair quantity of active knowledge (sprites) that we would like to be present We

would like each of the sprites that represent our definition of the function (the ones defined above) to be

present. We would also like some sprites that represent general knowledge to bc-present. This set of

sprites is shown in figure 5. We have defined a function called act ivate-knowl edge. that, when

executed in a viewpoint, establishes these sprites. Our general procedure throughout the system is to,

when a new viewpoint is created, execute this function.

In addition, there are several prototype viewpoints that are routinely established because they will be

used so often for testing. The philosophy of our approach is that we wish to test simple theories on

simple examples. These examples are derived from the prototype viewpoints. When an argument to a
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Fig. 5. General Knowledge Sprites

; lWhen two objects are known to be equal, many things can be deduced
(when ((equal =objectl =object2)}

(if* (not (eq objectl object2)) ;No need to do this if they are physically the same objects
(when (length objectl =n)}

(assert (length object2 n)))
(when ((length object2 =n)}

(assert (length objectl n)))
(when (member =item -objectl)}

(assert (member item object2)))
(when {(member =item object2)}

(assert (member -item objectl)))
(when {(not-member =item objectl))

(assert (not-member -item object2)))
(when {(not-member =item -object2)}

(assert (not-member item objectl)))
(when ((sequence-element objectl =x =n)}

(assert (sequence-element -object2 x n)))
(when ((sequence-element object2 =x =n)}

(assert (sequence-element -objectl -x n)))
;Two sequences cannot be both equal and not-equal
(when ((not-equal objectl object2)}

(assert (contradiction)))
(when ((greater objectl =obj))

(assert (greater object2 obj)))
(when ((greater object2 =obj))

(assert (greater objectl obj)).)
(when (less -objectl =obj)}

(assert (less object2 obj)))
(when ((less object2 =obj))

(assert (less objectl obj)))
(when ((value objectl =n))

(assert (value object2 n)))
(when (value object2 =n))

(assert (value objectl n)))))
If a sequence is of length 1, then everything that is a member of it must be equal
(when ((length =sequence 1)

(member =objectl -sequence)
(member =object2 sequence)}

(assert (equal objectl object2)))
;If a sequence is known to be of length 0, then it is equivalent to the special sequence NIL
(when ((length =sequence 0))

(assert (equal sequence nill)))

function is a sequence, some of the examples we will want to look at include ones where the sequence

has no elements, i.e. it is equal to n i 1 . Other possible configurations we will want to look at include

ones where the sequence contains a list of one elements or two elements. Since these are prototype

viewpoints we won't indicate in them anything about the nature of the objects known to be members of

these sequences. For a prototype containing a list of two elements we won't, for example, know whether

the elements are themselves atoms or sequences, or whether they are equal to one another, or anything

else about them. In further "experiments" executed by the program synthesis system, we will create new

t We use "n ill 1" to represent the object normally found in Lisp systems, n i . Our reason for doing this is that n il 1 is not just
a symbol, it is a variable bound to a complex object the nature of which will be discussed in chapter 7. It is not possible in Lisp to
bind the symbol nil.
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viewpoints that inherit all the information from these prototype viewpoints and may assert additional

facts. For our purposes, we create the following viewpoints:

1. If the function being synthesized has only one argument, or has only one argument that is a sequence,

we create three prototype viewpoints, in which the sequences are asserted to contain zero, one, and two

elements. If there is another argument (one that is not known to be a sequence), we will not assert

anything about it.

2. If the function being synthesized has two arguments that are both sequences there are a total of nine

different prototype viewpoints that are established. These represent the cross product of zero, one, and

two elements being tried out on each..,

The tests are known by the names: null-test, singleton-test, and doublet-test. Figure 6

shows the function that actually initializes these prototype viewpoints.

Fig. 6. code to initiate test
(defunc initiate-test (test-name object)

(selectq test-name
(null-test
(assert (equal object nill)))
(singleton-test

;Create a new object that will become the single object of the sequence
(let ((el (new-object instance-prefix 'singleton-element)))

(assert (length -object 1))
(assert (sequence-element *object el 1))))

(doublet-test
(let ((ell (new-object instance-prefix 'first-doublet-element))

(e12 (new-object instance-prefix 'second-doublet-element)))
(assert (length object 2))
(assert (sequence-element object -*ell 1))
(assert (sequence-elementobject e12 2))))))

We see that in the case of the nul 1 - test it merely asserts that the object is equal to n i 1 1. For the

s i n g 1 e ton- tes t case we create a new-object by executing the function:

(new-object instance-prefix 'singleton-element)

that will return a new Ether object with absolutely no attributes. It could be a sequence, number, or

elephant for that matter, if Ether had sprites that could reason about animals.t We then assert that the

t We do give new-object one argument, called the instance-prefix, which is for debugging purposes only. If in the middle of
debugging we have occasion to print the object it will print as something like s i ngl eton-element6 so that we will have some
idea where it came from.
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length of object (which is bound to one of the inputs, already known to be a sequence) is 1. We finally

assert that the newly created object is in the first position of object. In the case of a doub 1 et-test

we create two new objects and assert that the length of the input, object, is 2. We finally assert that

these two new objects are in the first and second positions of object respectively. This is all there is to

it.

We arrange for other 'parts of the system to have access to these prototype viewpoints through the

relation viewpoint-for-test. For example, if we wished to access the prototype viewpoint that

used the null-test for the first argument, and the singleton-test for the second argument, we

would activate the following sprite:

(when ((viewpoint-for-test (null-test singleton-test) =vpt))
... vpt is now bound to this viewpoint in the body of the sprite...)

What we will typically do is create a new viewpoint that inherits from this prototype and make additional

assertions in there, as in:

(when ((viewpoint-for-test (null-test singleton-test) =vpt)}
'(let ((v (new-viewpoint inherits-from vpt)))

(within-viewpoint v

Here we make additional assertions in this viewpoint for our experiment.)))

We will see our first application of this in section 5.4.

We will frequently have occasion to decide if one object is equal to another. A d e f goal has been

designed for this purpose. Most of the "expertise" of the goal handler is with sequences. It is shown in

figure 7. It is instructive to read through this code. The first two sprites,

(when ((equal objectl object2))
(stifle act))

(when ((not-equal objectl object2)}
(stifle act))

check for the answer already being known. If it is the case that they are both known to be equal or not

equal then there is no point continuing with this computation and the activity is stifled. This way any

activities that have invoked this goal will reclaim the processing power assigned to it. The next three

sprites are actually dedicated to disproving the equality of the two objects. If it can be shown that the lists

are of different lengths the two objects are known not to be equal.
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Fig. 7. Goal For Equality
(defgoal equal (objectl object2) act

;If the objects are known to be equal, the activity is no longer needed
(when {(equal objectl object2)}

(stifle act))
;If the objects are know not to be equal the activity is no longer needed
(when {(not-equal *objectl object2)}

(stifle act))
;If te objects are sequences of different lengths; they are not equal
(when (length objectl =n)

(length object2 =m)
(not-equal n m))

(assert (not-equal objecti object2)))
;If something is a member of one and not the other, they are not equal
(when (not-member =el objectl)

(member el object2)}
(assert (not-equal objectl object2)))

(when (not-member =el object2)
(member el objectl))

(assert (not-equal objectl -object2)))
;If there is an element of one that is not equal to the element in the co?
;of the other, then they are not equal
(when {(length objectl =n))
(foreach m (list-of-integers from 1 to n)

(when {(sequence-element objectl =ell m)
(sequence-element object2 =el2 m)
(not-equal bell el2)}

(assert (not-equal objectl object2)))))
;If they are sequences and their elements agree in evey position, they are
(when (length -+objectl =n)

(V m in -(list-of-integers from to n)
check' ((sequence-element -*objectl =el m)

(sequence-element object2 el m)}))
(assert (equal objectl object2))))

rresponding position

equal
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(when {(length objectl =n)
(length object2 =)
(not-equal n m)}

(assert (not-equal objectl object2)))

If it can be shown that one has a member that is known not to be a member of the other than they cannot

be equal.

(when ((not-member =el objectl)
(member el object2)}

(assert (not-equal objectl object2)))

(when (not-member =el object2)
(member el objectl)}

(assert (not-equal objectl object2)))

The last two sprites in figure 7 check each element of the respective sequences for their equality or

non-equality. If it can be shown that there are two elements, e 1 and e 12 in corresponding positions

that are known not to be equal, then objec t and object2 are not equal.

(when ((length objectl =n))
(foreach m (list-of-integers from 1 to n)

(when (sequence-element objectl =ell m)
(sequence-element object2 =el2 m)
(not-equal ell e12))

(assert (not-equal objectl object2)))))

If, on the other hand, it can be shown that every element of one of the sequences is equal to the

corresponding clement in the other sequence, then we can conclude the two sequences are equal.

(when ((length objectl =n)
(V m in 4(list-of-integers from 1 to n)

check ((sequence-element objectl =el m)
(sequence-element object2 el m)}))

(assert (equal -objectl object2)))

5.4 Generation and Refutation of Termination Clauses

You will remember from the description of the iterative accumulation-type function that each begins

with a cond clause that specifies the end of the iteration, that is the point where the accumul ant is

returned. Each of the conditions of the clause consists of a test to check if one or both of the input

sequences is equal to n ill. Our first step in synthesizing a function is to decide what done condition to

use. This will be our first demonstration of the interaction of proposers and skeptics in the synthesis of a

piece of the function. For some of the functions: reverse, unique-members, delete, and

greatest, that either have only one input, or only one input that is a sequence, there is only one choice



-75 -

for the termination clause. For the others, however, where inputs are known as i n put 1 and i n put2

there is a choice of three possibilities:

(cond
((and (equal inputi nil) (equal input2 nil)) accumulant)

(cond
((equal inputl nil) accumulant)

(cond
((equal input2 nil-) accumulant)

We will find that, for each of the functions, skeptics will be able to invalidate one or more of the choices

without having to consider any further specification of the program. This is a very important point and

we use bold face to draw your attention to it. What are actually doing is discarding whole classes of

possible functions with one single skeptic. In a more conventional problem solving system, without

concurrent skeptics, many hundreds of programs might have to be generated to completion, each with

the same bug.

The code that proposes these termination clauses is shown in figure 8.

FilS. Code For Proposing Termination Clauses
(defunc propose-termination-clauses ()

(cond
((and (= (length list-of-inputs) 2)

(eq (<- (car list-of-inputs) 'typed-object) 'sequence))
(let ((first (car list-of-inputs))

(second (cadr list-of-inputs)))
(assert (termination-clause ((equal -first nill) accumulant)))
(assert (termination-clause ((equal -second nill) -accumulant)))
(when (disproven-termination-clause ((equal first nill) accumulant))

(disproven-termination-clause ((equal second nill) accumulant))}
(assert (termination-clause

((and (equal first nill) (equal second nill)) accumulant))))))
((= (length list-of-inputs) 2)
(let ((sequence (cadr list-of-inputs)))

(assert (termination-clause ((equal sequence nill) accumulant)))))
(t (let ((sequence (car list-of-inputs)))

(assert (termination-clause ((equal sequence nill) accumulant)))))))

The function checks to see if there is only one input that is a sequence, and if so, asserts the one possible

termination clause. If there are two inputs that are sequences it asserts for each one:
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(assert (termination-clause ((equal inputl nill) accumulant)))
(assert (termination-clause ((equal input2 nill) accumulant)))

At some point, because of the running of the skeptic, it may be determined that one or both of them are

disproven- termination-clause's. If both of them are disproven, tle sprite:

(when (disproven-termination-clause ((equal first nill) accumulant))
(disproven-termination-clause ((equal 4second -nill) accumulant)))

(assert (termination-clause
((and (equal first nil) (equal -second nill)) accumulant))))

will fire and the following assertion will be made: t

(assert
(termination-clause

((and (equal inputl nill) (equal +input2 nill) accumulant))))

When a termination clause has been proposed two new activities are created, one whose function is to

build a function based on it, and the other whose function is to show that it is not a possible termination

clause. These are the skeptics and we will treat them first.

We must first address the question of how it is possible to demonstrate that a particular termination

clause could not possibly be correct. Let us assume we wish to refute a termination clause of the form:

((equal inputl nill) accumulant)

Let us assume that the iteration has just begun. Since we have not yet been through even one loop of the

iteration, the accumul ant must be equal to n i 1 1 . Since we have just begun the iteration, if we can

find input examples for which inputl is nill, but the accumulant (which is equal to the output

since this is the last clause of the iteration) is something other than n i 1 1 we will have disproven its

validity as a termination clause. Code for doing this is shown in figure 9. As we can see, it selects a

viewpoint (bound to vp t) in which the input being tested for is n i 1 (i.e. it is the n u 1 1 -test) and the

other input contains one element (the si ngleton-test). We assert that the output is null. If we

discover-any contradictions in this viewpoint we will assert that the termination clause has been

disproven. Now let us see how this will work in practice. There are four examples that take two

' I am not certain whether this is logically correct, that is, if the final termination clause requires the conjunction, whether the two
individual conjuncts can always be proven invalid. It is certainly true for the examples presented here and others I have looked at.
This problem could be avoided by giving the activity pursuing functions based on the conjunctive termination condition a small
amount of processing power to begin with and increase it if and when the non-conjunctive termination conditions have been
proven invalid.

: The type of the accumulant is always the same as the type of the output. In all but one of the examples, greatest the output
is a sequence.
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Fig. 9. Code For Disproving Termination Clause
(defunc test-null-termination-clause (input clause)
(let ((test-configuration (if (eq input (car list-of-inputs))

'(null-test singleton-test)
'(singleton-test null-test))))

(within-viewpoint control-viewpoint
(when {(viewpoint-for-test test-configuration =vpt)}

(let ((scratch-vpt (new-viewpoint inherits-form vpt)))
(within-viewpoint scratch-vpt

(activate-knowledge
(assert (equal output -nill))
(when {(contradiction)}

(within-viewpoint control-viewpoint
(assert (disproven-termination-clause -clause))))))))))

sequences as arguments. We will examine each in turn.

5.4.1 Set-Difference

The correct termination condition for the s et-difference function is (equal i nput ni ). We

will show how the other possibility is.disproven. The code in figure 9 is invoked to check the possibility

of (equal input2 nil). This will cause the creation of a viewpoint in which the following

assertions will appear:

;These are inherited from the prototype viewpoint
(assert (equal input2 nill))
(assert (length inputl 1))
(assert (sequence-element inputl singleton-elementl 1.))

.- ; The following additional assertion is made:
(assert (equal output nill))

If we now look at the sprites that define setdifference we find the following:

(when ((member =x inputl)}
(when ((member x input2)}

(assert (not-member fx +output)))
(when ((not-member x +input2)}

(assert (member ox output))))

This sprite will trigger with x bound to s i ngleton-elementl. The body of the sprite will then be

evaluated with in this environment. In paricular the following sprite will be activated:

(when ((not-member ox input2)}
(assert (member x output)))

Since input2 is known to have no elements, this sprite will immediately fire, and

(member singleton-elementl output) will be asserted. A (CONTRADICTION) will then be

asserted because it is known that output has no elements. Then the sprite watching for contradictions
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in this viewpoint shown in figure 9 will trigger causing the assertion:

(disproven-termination-clause ((equal *input2 nill) accumulant))

to be generated. As we will see later, this assertion will cause the activity pursuing functions based on

this termination clause to cease functioning, and the processing power redirected to the correct

termination clause.

5.4.2 Union and Merge

Both of the functions Union and Merge have as their termination clause:

((and (equal inputl nil) (equal input2 nil)) accumulant)

For both of them, the individual 'termination clauses ((null inputl) accumulant) and

((null input2) accumulant) are disproven in a similar way, and we will treat them together.

Suppose we have the task of disproving ( ( null i nput2) accumulant). As happened above, we

create a new viewpoint in which we find the following assertions:

(equal input2 nill)
(length inputl 1)

(sequence-element inputl singleton-elementl 1)
(equal output enill)

In both the definitions for me r g e and u n i on we find the following sprite:

(when (member =x inputl)}
(assert (member x output)))

This sprite will trigger with x bound to s i n g l eto n-e 1 emen t causing the following to be asserted:

(assert (member singleton-elementl output))

A (CONTRADICTION) will be asserted. The clause under consideration will be marked a

"disproven-termination-clause" ashappenedabove.

Both of these functions are symmetric with respect to the arguments i n put 1 and i n put 2.

Demonstration that the termination clause ((null inputl) accumulant) will not work is

handled similarly. When we have asserted both:

(disproven-termination-clause ((equal inputl nill) accumulant))
(disproven-termination-clause ((equal -input2 nill) accumulant))

work attempting to create functions based on either of those termination clauses will cease. Additionally

the sprite in figure 8 will trigger and we will assert:
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(termination-clause (and (equal inputl nill) (equal input2 nill)))

This will initiate work attempting to thresh this out into a function as we will soon see.

5.4.3 Intersection

We listed the termination condition for this function to be (equal input1 nil). In fact,

i n t e r s e c t i on is completely symmetric with respect to its arguments; thus either termination clause

will work, and neither can be disproven. What happens when we actually push this function through the

system, is that both functions with respect to this symmetry are pursued in parallel. This function points

out one defect in our system -- by translating the logical description of our program behavior into sprites

we have lost the level of description at which it is possible to deduce that they are in fact symmetrical,

and this knowledge used to s t i f 1 e one of the two branches as being unnecessary. What this costs us in

speed is only a factor of 2 here, but in a much more realistic program synthesis system these factors of 2

have a way of leading to an exponential decrease in efficiency with increasing complexity of the

specifications.

5.5 Proposing Simple Constructors

Before we can continue with our discussion of the proposition, testing, and elaboration of iterative

programs we must first discuss how it is possible for the synthesis system to propose simple

constructions. For example, if we know that one of the inputs to a function, i n p u t 1 is bound to the list

'(a b c d) and we know the output of the function, output, is the list '(b c d), an obvious

proposal for a simple function to produce the output is the function (cdr input). How is this

proposed? That is the subject of this section.

There is a function called propose-possible-constructors of one argument. When called, it

activates a number of sprites that each look for different ways of constructing the function. We will

examine the workings of these sprites one by one with examples. There is one predicate (assertion) that

we must explain first, the avail able predicate. When we reason about how to construct an object,

there are certain objects that are available to us for doing the construction. The inputs to our function, as

well as certain constants, can be used by us to construct new objects, but certain objects, say the output,

cannot be used. There are objects we wish to be able to reason about but are not objects we can use for

construction; only ones that can be used have been asserted to be av a i 1 ab 1 e.
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The complete function is shown in figure 10; we will explain each of the sprites in its body in turn.

Fig. 10. Function To Propose Possible Constructors

(defunc propose-possible-constructors (object)
; This function takes one argument, OBJECT, and asserts possible primitive functions that could construct it.

If the object you are trying to construct is equal to an available object then that object is a constructor for it.
(find-equal-objects object)
(when ((equal object =x)

(available x)}
(assert (possible-constructor object x)))

;If you are trying to construct the first clement of a known list, a constructor for it is the CAR of that list.
(when (sequence-element =list object 1)

(available -*list)}
(assert (possible-constructor object (car 4list))))

;If the object you are trying to construct has a CAR of something that is constructible, and its CDR is
;equal to some available sequence, then you can construct it by cons'ing the first onto the second
(when ((sequence-element object =car 1)}

(propose-possible-constructors car)
(when {(possible-constructor car =make-car)

(length object =n)
(length =cdr (- n 1))
(available cdr)
(V m in (list-of-inte'gers from 1 to (- n 1))

check ((sequence-element -object =el (+ m 1))
(sequence-element -cdr el m)})}

(assert (possible-constructor object (cons make-car cdr)))))

;If the object you are trying to construct is equal to all but the first element of another, then CDR is a
;possible constructor.
(when ((length object n)

(length =list (+ n 1))
(available list)
(V m in (list-of-integers from i to n)

check {(sequence-element object =el m)
(sequence-element list el (+ m 1)))))

(assert (possible-constructor *object (cdr list)))))

5.5.1 Objects Equal To The One Your Are Trying To Construct

If we wish to return an object of a certain form, the simplest thing to do is find objects we already know

about that have that form! This is what the first section of propose-possible-constructors

tries to do. The code looks as follows:

(find-equal-objects object)
(when ((equal object =x)

(available 4x)}
(assert (possible-constructor object x)))

We first call the function f i n d - equal - o b j ec t s (described in section 5.5.5). This will activate sprites

trying to.find objects that arc in fact. equal (in the Lisp sense) to the one we are trying to synthesize, but
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not yet known or asserted to be equal. Whenever an object is found that is known to be equal to the

argument, and that object is known to be available, we can assert that a possible constructor is that object

by itself.

5.5.2 Synthesizing Car

If the object we are trying to construct is is the first element of some list, and that list is available, a

possible constructor for the object is the car of the list. The code to accomplish this is:

(when {(sequence-element =list *object 1)
(available list)}

(assert (possible-constructor object (car *list))))

The first clause of the sprite looks for any item currently known about that has the target object in its first

position. This item is then bound to the variable list. If list is available, (car list) is a

possible constructor.

5.5.3 Synthesizing Cons

Suppose you want to construct a list. A way of doing this is to see if there is a way of constructing the

first element of the list. If there is, see if there is a list which is equal to the CDR of the list you are trying

to construct. If such a list exists, a possible constructor for the object we are trying to construct is the

CONS of these two. This is shown below:

(when {(sequence-element *object =car 1)}
(propose-possible-constructors car)
(when {(possible-constructor car =make-car)

(length object =n)
(length =cdr (- n 1))
(available cdr)
(V m in (list-of-integers from 1 to (- n 1))

check {(sequence-element object =el (+ m 1))
(sequence-element cdr el m)})}

(assert (possible-constructor object (cons make-car cdr)))))

The code first extracts the first element of the target function which is bound to car. It then tries to

propose possible constructors for this object. If a possible constructor is located it becomes bound to the

symbol make-car. We then look for all lists that have a length of 1 less than the length of the object

we want to construct and are available. If such a list is found, it is bound to the variable cd r. The final

clause essentially checks each element of the object we want to create and sees if that element occurs in a

corresponding position of cdr. If this is true for every position of the list then we can use CONS to
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construct the target object.,

5.5.4 Snthesizing Cdr

If there is an available object that is equal to the target object with something tacked onto the front, then

we can construct the target object by taking the CDR of this other object. The following code checks for.

this:

(when (length object =n)'
(length =list 4(+. n 1))

(available list)
(V m in 4(list-of-integers from 1 to n)

check ((sequence-element object =el m)
(sequence-element list el (+ m 1))})}

(assert (possible-constructor object (cdr list))))

The code checks for any lists known to be of length 1 greater than the target object. If it finds one (and it

is available), we check to see if every element (bound to el) that is in the mth position of the target

object is in the m + 1st position of the list. If this is true for all objects, we can assert that taking CDR of

the list is a possible constructor for it.

We have hardly exghausted the possibilities for primitive constructor functions and don't pretend to

have a complete theory of such constructions. Nevertheless, the function for finding possible

constructions is sufficient for all the examples we have looked at and has a good deal more generality.

5.5.5 How To Find Eaual Objeccts

If we want to find objects equal to the a given object in the current viewpoint we call the following

function:

(defunc find-equal-objects (object)
(when ((value object =n)

(value =object2 n)}
(assert (equal object object2)))

(when ((length object =n)
(length =object2 n)
(not-eq object object2)
(V m in (list-of-integers from 1 to n)

check {(sequence-element object =el m)
(sequence-element object2 el m)})}

(assert (equal 4object object2))))

Executing it has the effect of activating two sprites. The first sprite checks to see if the value of the object
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is known. The v a 1 u e of an object is only defined if the object is known to be a number and it is known

which number it is. We then look for other objects known to have this same value. If any are found, we

assert the two objects to be e q u a 1.

The second sprite triggers if an object is known to be a list of a known length. We check for other

objects of the same length and make sure they are not the same exact object. (This is what the not- eq

predicate does. We do this only for efficiency reasons; if they are the same exact object then they are

already known to be equal.) We then let m range over all the integers from 1 to the length of the list. If

something (bound to e 1) is in the same position in both lists, the two lists are asserted to.be equal.

5.6 Pursuing The Function Definition

What actually happens when we first propose a termination clause is that the code in figure 11 is

executed.

Fig. 11. After Finding A Termination Clause
(let ((activity-for-terminator (new-activity prefix 'term-clause-activity)))

;If we ever show this termination clause is invalid, stifle the activity.
(within-viewpoint control-viewpoint

(when {(disproven-termination-clause clause)}
(stifle activity-for-terminator)))

(within-activity activity-for-terminator
;tHere we create two sub-activities. one to pursue the termination clause and one to attempt to refute it.
(let ((proponent-act (new-activity prefix 'terminator-proponent))

(opponent-act (new-activity prefix 'terminator-opponent)))
(support-in-ratios

parent activity-for-terminator
activities (list opponent-act proponent-act)
factors '(2 1))

(within-activity proponent-act
(propose-possible-recursions clause))

(within-activity opponent-act
(test-plausibility-for-termination-clause clause)))))

As we can see, the code creates a new activity called acti vi ty-for-termi nator which will pursue

both the further development of the clause and its refutation. A sprite is then activated,

(when ((disproven-termination-clause clause)}
(stifle activity-for-terminator))

If we ever learn, via the techniques of section 5.4, that the termination clause cannot possibly work, the

activity is stifled and its processing power is returned to its superior activity (which in this case is

the-root-activity) for redistribution to other, more promising activities. After creating this
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activity, we create two new subactivities called the opponent-act and proponent-act. The first of

these pursues the work described in section 5.4 attempting to disprove the validity of the clause. The

second carries out the task of trying to flesh out the termination clause into a function. This is described

now.

We now ask ourselves the following question: "What characterizes the simplest possible extension of the

skeletal function we now have that might lead to a complete function?" This skeletal function is:

(defun functionl (input nil)
(cond

((equal input nil) accumulant)

The answer is simple: assume we have but one alternative clause, and then construct a plausible

accumulating function. That is, we first look for functions of the form:

(defun functionl (input nil)
(cond

((equal input nil) accumulant)
(t (function1 (cdr input) accumulating-function))))

There is actually only one function that fits this format, reverse. We will show how reverse is

synthesized, and then show how the other functions synthesized are further elaborations of this basic

approach.

The best places to look for simple proposals for accumulating functions are traces of the function when

run on simple examples. The example in which we have an empty input is a bit too simple (we already

have a clause for that one). The next place to look is where we have a function that has one input. Our

sprites that define the Reverse function tell us what form the output must take when the input is a

singleton. They tell us that the output must be a list consisting of the same element. Thus, in the

prototype viewpoint for the s i n gl e ton - t e s t, we will have derived this fact. Because we are iterating

down the list i n p u t, the s i n g 1 e t o n - t e s t reflects the stage of the iteration immediately preceding the

final ,null test of the first clause of the function. This being the case, the accumulating function that we

wish to propose should be able to construct the output out of the available objects in the viewpoint.

Code for deriving possible accumulating functions is shown in figure 12. The function creates a new

viewpoint that inherits from the s i ngl eton-t es t viewpoint. Because there is only one iteration

required to take us from where we begin, to the final output, we assert that the accumul ant is null

(and also that it is available). We then try to construct objects that are equal to output and propose ways

of constructing those objects out of ones that are available. If a constructor is found, we assert that it is
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Fig. 12. Code To Propose Possible Accumulators
(defunc propose-accumulators ().

(within-viewpoint control-viewpoint
(when {(viewpoint-for-test (singleton-test) =v)}

(let ((scratchLvpt (new-viewpoint parent v prefix 'find-accum)))
(within-viewpoint scratch-vpt

(activate-knowledge)
(assert (equal -accumulant nill))
(assert (available accumulant))
(when {(equal output =is-output)}

(propose-possible-constructors is-output)
(when {(possible-constructor 4is-output =make-output)}

(assert (accumulating-function *make-output)))))))))

an accumulating-function. In the case of the Reverse function, there are three possible

accumulating functions that are produced. They are:

input
(cons (car input) nil)

(cons (car input) accumulant)

Now that we have proposed accumulating functions, we now (actually) have three proposition for

complete functions. They are:

(defun Reversel (input accumulant)
(cond

((equal input nil)
(t input)))

accumulant)

(defun Reversel (input accumulant)
(cond

((equal input nil) accumulant)
(t (cons (car input) nil))))

(defun Reversel (input accumulant)
(cond

((equal input nil) accumulant)
(t (cons (car input) accumulant))))

The last of these is the correct function definition.. The first two are not. How they can be eliminated is

the subject of section 5.8.
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5.7 Conditional Introduction

The simple program schema used above will not work for anything but the reverse function. All the

others have paired conditions. These paired conditions must be proposed in some manner. The

technique we use is quite similar to the technique of conditional introduction used by Manna and

Waldinger [41]. There is one assertional type we have not yet mentioned that is important in the

introduction of conditionals. Whenever we ask a question about the equality of two objects, i.e.

whenever we activate a sprite of the form:

(when ((equal objectl object2))

and it is not then known whether the objects are equal or not, we assert the following: t

(possibly-equal objectl object2)

There is one other relation that is treated in this manner, 1 e ss. Whenever we create a sprite of the

form:

(when ((less objectl object2)}

and the relation between the two objects is not definitely known, we will assert:

(possibly-less 4objectl object2)

The sprites that will ask the questions about the equality or relative order of two objects that lead to the

conditionals in the code are, of course, the ones in the specifications for the functions to be synthesized.

For example, one of the sprites used in the specifications for the i ntersecti on function was:

(when ((member =x -inputl)
(member x input2)}

(assert (member Ax output)))

Now suppose that we invoked this sprite in one of our prototypical viewpoints as defined in section 5.3.2.

t here are several ancillary remarks we can make with respect to p o ss i b 1 y - e q u a 1 assertions:
1. As will be made clear in chapter 7, the "internal" behavior of sprites and assertions is something that is programmable by the
user. This feature is useful in the construction of the program synthesis system, but does not mean that equality sprites in all
Ether-base systems must exhibit this behavior.
2. Also, as will be explained in that chapter, the cost of a p o s s i b 1ly- e q u a 1 assertion is almost nothing.
3. It may seem at first glance that the presence of p o s s i b ly -e q u a 1 assertions violates our principle of monotonicity. That is, if
something is possibly equal then if we later learn that it is definitely equal or not equal we will have done something inconsistent.
We will see by the way these assertions are used that a proper interpretation for a possibly-equal assertion is that "a sprite
wants to know whether these two objects are equal." The truth of that statement does not diminish when it is learned that the two
objects are either equal or not equal.
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We will invoke it in the viewpoint in which each of i n p u t 1 and i n p u t 2 contains a single element. In

this viewpoint we have not said anything more about the relationship between these two member

elements (which we call el 1 and e 1 2 for purposes of discussion). The sprite above will fire with x

bound to e 1 1, when we then reach the sprite pattern:

(member x input2)

it will try to determine whether or not el 1 is equal to el 2 (the object it knows is a member of

i n p u t 2).t This information is not, of course, .known and a poss i bly -equ a 1 assertion mentioning

the two elements will be made. This will cause the system, as we will see, to introduce the conditional in

the definition of the i ntersection function:

(defun intersectionl (inputl input2 accumulant)
(cond

((member (car inputi) input2)

((not-member (car inputl) input2)

The code that initiates all conditional introduction is shown below:

(foreach
input
list-of-inputs
(when ((sequence-element -input =first 1))

(when ((possibly-equal first =object)
(available object))

(propose-car-equal-tests input object test-viewpoint))
(when ((possibly-less -first =object)

(available object)}
(propose-less-tests input object test-viewpoint))))

This code is executed in one of the prototypical viewpoints in which the input(s), if they are both

sequences, contain only one element. If one of the inputs is a number or an atom we use the prototypical

viewpoint in which nothing is known about the properties of that particular element. The actions of the

functions cons i der-car-equal-tests and consider- less-tests will be discussed in section

5.7.1. Section 5.7.2 considers the proposing of accumulating functions after the conditionals have been

picked.

t That the possible triggering of a member sprite causes the activation of an equal sprite is quite important. This is an aspect of
our "semantically meaningful" implementation of sprites and assertions that is the subject of chapter 7.
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5.7.1 Proposing The Conditionals

The code for propose-car-equal -tests is shown in figure 13.

Fig. 13. Test Proposing Function for Equal First Element
(defunc consider-car-equal-tests (input object test-viewpoint)

(within-viewpoint test-viewpoint
(propose-possible-constructors object)
(when {(sequence-elernent *input =first-element 1.)

(possible-constructor object =make-object))
(assert (possible-conditional (member -make-object input)))
(assert (possible-conditional (equal (car -input) make-object)))
(when (equal first-element 4object)}

(assert (disproven-conditional (member -make-object 4input)))
(assert (disproven-conditional (equal (car input) make-object))))

(when ((equal first-element *object)}
(assert (disproven-conditional (member -make-object -input)))
(assert (disproven-conditional (equal (car *input) make-object))))

(let ((vpt (new-viewpoint prefix 'suggested-opponent-vpt))
(ell (new-object instance-prefix 'opponent-vpt-object))
(el2 (new-object instance-prefix 'opponent-vpt-object)))

(within-viewpoint vpt
(assert (sequence-element *input -ell 1))
(assert (sequence-element -input -el2 2))
(assert (not-equal ell *object))
(assert (equal e12 object)))

(assert (suggested-opponent-for-conditional
(equal (car input) make-object) -vpt))))))

Remembering that the proposing of these conditionals happens within a viewpoint where each input (if a

sequence) contains a single element. If we generate a p o s s i b 1 y - e q u a 1 assertion that refers to the first

element of the input sequence, thlere are two possible kinds of tests that would make valid conditionals.

The first kind of test is of the form:

(equal (car input) object)

The second possible test is of the form:

(member object input)

The code in figure 13 will propose both of these. First we have to find possible constructors for the

object that the first clement of the input is known to equal. This is done by:

(propose-possible-constructors object)

For each possible constructor of the ob j ect we make two assertions that there is a possible conditional:

(assert (possible-conditional (member make-object input)))
(assert (possible-conditional (equal (car input) make-object)))

These assertions will trigger sprites that will create activities for the purpose of proposing the

accumulation functions for each conditional branch as described in section 5.7.2. If, however, we
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eventually learn that the two objects that were asserted to be possibly-equal in fact are either

equal or not-equal, the proposed conditionals are not possible (because one of the branches will

never be followed). In this case we assert that the conditional is a d i sproven- cond i t i onal. There

are sprites watching for these assertions that stifle the respective activities pursuing the conditionals.

Once conditionals are picked, as will be explained in section 5.7.2, we have complete the proposing of a

possible function by picking the appropriate accumulating function. The proposed function is then

subject to the refutation process. There is some aid we can give this refutation process by suggesting

viewpoints that represent test cases likely to cause problems if the conditional picked was incorrect. The

remainder of the code in figure 5.7.1 does precisely that. Suppose the e q u a 1 test had been picked, what

would be a good test case for possible completions? An alternative way to ask this question is: "What

would be cases for which the memb e r test will work but the equal test will not?" The simplest example

of this is a case in which the first element is known to be not equal to th object in the test and the second

element is known to be equal. As shown in figure 5.7.1, we create a new viewpoint (bound to vp t) and

two objects (bound to e 1 1 and e 1 2). We then place in that viewpoint the following assertions:

(assert (sequence-element input ell 1))
(assert (sequence-element input el2 2))

(assert (not-equal ell object))
(assert (equal e12 object))

We then assert that this viewpoint is a useful one for refuting proposals in which the equal conditional

was used by executing:

(assert (suggested-opponent-for-conditional
(equal (car input) make-object) vpt)))))

This can then be used in the final refutation process to test proposed functions.

5.7.2 Pronosing the Accumulating Functions Within Conditionals

The picking of accumulating functions is done similarly to the way it was done in section 5.6. The

example used in that section, reverse, did not contain any conditionals (other than the termination

condition). If there are conditionals (as all other functions have) we must generate accumulating

functions for each branch of the conditional. In the viewpoint in which we propose the accumulating

functions we must assume the condition of the branch to be true and in that viewpoint propose the

accumulating functions. We propose. the accumulators by looking at the prototypical viewpoint that

contains one element for each of the inputs.
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We will use as an example the i n te r sect i on function whose definition was given in section 5.4.3.

The correct test for this function is:

(cond ...
((member (car inputl) input2) accumulaling-finctionl)
((not-member (car inputl) input2) accumnulating-function2))

Let us consider how the accumulating functions for each of the branches is proposed.

The code that does the proposition creates a subviewpoint of the prototypical viewpoint in which we

assume the first of the conditions is true. In this viewpoint we activate the following sprite:

(when ((s'equence-element iterated-input =el 1)}
(assert (member el *member-list)))

where iteraterd-input is bound to inputl and member-i st is bound to input2. This will

cause the first element of i nput 1 (call it "e 1 1") to be known as a member of i nput 2. Since i nput2

is known to have a length of 1 (and we will call its single element "e 1 2"), it will deduce that e 1 and

e 1 2 are equal. The following sprite in the specifications of i n t e r sect i on then gets triggered:

(when {(member =x inputl)
(member x *input2)}

(assert (member x output)))-

Indicating that this element (that is in both i nputl and i nput2) is also in ou tput. In this viewpoint

we are now able to propose the accumulating function using the techniques of section 5.6.

We will now consider the other branch of the conditional. In the appropriate viewpoint we activate a

sprite that tepresents the condition:

(not-member (car inputl) input2)

The sprite is:

(when {(sequence-element *iterated-input =el 1)}
(assert (not-member el *member-list)))

with i ter ated-i nput bound to i nput 1 and member- 1 ist bound to i nput 2. This will cause the

two items that are known to be members of the two lists to become known to be not equal to one

another. The other sprite that was used in the specifications of i n t e r sect i on was:

(when ((member =x output)}
(assert (member x *inputl))
(assert (member x input2)))

Nothing more can be deduced of importance in this viewpoint. The output is in fact null, but we have

not yet shown how this can be deduced. Since it is often the case that the output in these simple



-91 -

viewpoints is null, we have a special mechanism that usually allows us to deduce this fact if true. We

execute the following code:

(let ((null-test-viewpoint
(new-viewpoint parent test-viewpoint prefix 'null-test-viewpoint))
(obj (new-object instance-prefix 'output-member-skolem)))

(within-viewpoint null-test-viewpoint
(assert (member obj output))
(when ((contradiction))
(within-viewpoint test-viewpoint
(assert (equal output nill))))))

What we do is create a new viewpoint, called null-test-viewpoint, that is a subviewpoint of the

viewpoint in which we assumed that the given element was not a member of the list (bound to

test-v i ewpo i n t). Within this viewpoint we make one additional assumption. We assume the list has

at least one element. We create an object (bound to ob j) of which we say absolutely nothing except that

it is a member of the output. If we are able to deduce a contradiction in this viewpoint then we know

that the output is null.t This is then asserted in the test-viewpoint. Now we will see how the

contradiction is deduced. When we assert that the output has a member, we trigger the sprite:

(when ((member =x output)}
(assert (member x inputl))
(assert (member x input2)))

That asserts this same object in a member of both i n put I and i n put 2. Both of these sequences are

known to be of length 1 and have elements (which we call e 1 1 and e 12). We will thus deduce that ob j

is equal to e 1 1 and that it is equal to e 1 2. By transitivity we will deduce that e 1 1 is equal to e 1 2. We

have, however, previously deduce that e 1 1 and e 1 2 are not equal to one another. Therefore there is a

contradiction and we learn that output is equal to ni 1 1 in test-viewpoi nt. In this viewpoint we

now have enough information to propose accumulating functions as was shown in section 5.6.

We will go through one more example of this process of proposing accumulating functions for

conditional branches, the de e t e function. The two conditional branches of the d e 1 e t e function are:

(cond

((equal atom (car inlist))

((not-equal atom (car inlist))

t This is the same logical principle that is used in resolution theorem proving. I-owever, our understanding of the semantics
involved allows us to do the deduction much more effectively.
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Since one of the inputs is an atom, and one a sequence, the prototype viewpoint we use for proposing

lets the sequence (i.e. i n 1 i s t) contain a single element (call it e 1) of which we have asserted nothing.

We create a subviewpoint of this prototypical viewpoint that represents the possibility of the clause:

(equal atom (car inlist))

being true. This is done by the sprite:

(when (sequence-element iterated-input =el 1)}
(assert (equal el equal-element)))

where iterated-input is bound to i nlist and equal-element is bound to atom. The sprites

that define the delete function are shown on page page 63. If i nl i st contains a single element (as is

the case here) and atom is equal.to this element, then we should be able to deduce that the output is the

null sequence. The way this is done, analogously with the previous example, is we create a subviewpoint

of the current viewpoint in which we assume that the output has an element and watch for

contradictions. As before, we will execute within this special viewpoint:

(assert (member obj output))

This will trigger one of the sprites used in the specifications for d e 1 e t e,

(when (member =element -output)}
(assert (member element inlist))
(assert (not-equal element atom)))

Because i n 1 i st is known to have only one element in this viewpoint, which is equal to atom, the two

assertions that get made will cause a contradiction and it will be asserted in the higher viewpoint that

output is equal to ni 1 1.

Now we consider the other branch of the conditional:

(not-equal atom (car inlist))

In the viewpoint in which we propose accumulating functions, we execute the following sprite:

(when (sequence-element iterated-input =el 1)}
(assert (not-equal el equal-element)))

with iterated-input bound to inlist and equal-element bound to atom. The following

sprite in the specification of d e 1 e t e will then trigger,

(when ((member =element inlist)
(not-equal element atom)}

(assert (member element output)))

establishing the necessary result for the proposition of accumulating functions.
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5.8 Skeptics By Progressive Testing

By the time we have passed through the successive stages of the system thus far described:

1. Proposing and refuting tennrmination conditions

2. Conditional introduction

3. Proposing accumulating functions

We have arrived at proposals for complete functions. There may be a number of proposals that survive

previous refutation procedures. On the test cases they range from 3 (for r e v e r s e) to a few hundred for

u n i o n. The process of discriminating between them is conceptually quite simple. We merely run them

on test cases and throw out the ones that do not yield the expected results. In retrospect, the way I would

have designed the system would have been to require the user to supply the system with a set of criterial

test cases. If the program ran on each of these test cases successfully we will consider it- a success.

Programmers are quite good at picking sets of examples to use. Most of the "proposals" that make it this

far are still sufficiently silly that they can be refuted quite easily.

I had instead elected to construct a system that tested the functions using progressively more complicated

protopical test cases. The idea would be to effectively execute the function on these prototypes. We

would go through progressive loops of the function, each one of which would generate a new viewpoint

that represented the state of the variables between loops. If the value of the output disagreed with that

computed by the specifications, the function would be refuted and no more testing would be done on it.

We would start first with the simplest viewpoints (those whose sequences had 0 or 1 elements in them)

and then progress to more complicated viewpoints. Whenever a possibly-equal or

po s s i b 1 y-1 e s s assertion was encountered (due to a conditional in the code itself) a bifurcation of

viewpoints would have to occur; one path would consider the case as if the conditional were true, and

one would consider it as if the conditional were false. The technical problems in coding this were so

complext that I was not able to complete coding it. I also feel, in retrospect, that efficiency

considerations would have made this needlessly costly. This is particularly true because of the

bifurcation that must occur each time we run into a conditional. Those proposed programs that are not

t And greatly complicated by a bug in the Lisp machine compiler that caused my programs to die abruptly.
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eliminated on the very simplest cases will be tested at considerable computational expense. The only

help to this process are the suggested test cases generated in section .5.7.1. For certain classes of the

proposed functions they would give test cases that would quickly eliminate incorrect ones. Perhaps this

methodology can be generalized to a theory of test case generation based on the specifications. I think

future work on systems like these will probably, when testing whole functions, be better off using a select

set of concrete examples.

5.9 Related Approaches To Program Synthesis

Program synthesis is a generic terms for techniques that simplify the intellectual tasks of creating a

program by having the computer perform some of these tasks. A program synthesis system requires the

programmer to specify the behavior of the desired program in some way. The form of the specification

ranges from natural language to more formally definable specification languages. The common feature

of all of these specification languages is that certain information that would have to be specified in any

conventional language need not be given; the program synthesis system will be able to figure it out. This

distinguishes program synthesis from other techniques for making computers easier to program such as

debugging tools, integrated programming environments, structured programming, and modular

languages. The computer, programming regimen, or programming language might make it easier to

perform the intellectual tasks needed to design a program, yet cannot be considered to replace them.

Program synthesis projects vary widely in the classes of decisions that they wish to automate. This

literature is voluminous and will not be reviewed here. There are, however, two classes of such systems

that relate in interesting ways to the one developed in this work. These might be called the deductive and

inductive approaches.t

The deductive approach starts with a specification in a formal language, usually first-order predicate

calculus or a simple variant. From this specification it produces a program. Each starts with some sort of

axiomatization for the target language, or inference engine based on logic, and constructs a program

concurrently with a proof that the program produced satisfies the specifications. An early attempt at this

was Green's QA3 system [16] that used resolution with unification to construct the program from an

t I find an interesting parallel between the two classical epistemological theories discussed in section 2.1 and the two approaches
to program synthesis that I have called inductive and deductive. The inductive approach bears a resemblance to empiricism and the
deductive approach to rationalism.
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axiomatization of Lisp. Manna and Waldinger [41, 42] have a system that also generates simple Lisp

programs from specifications. Their system understands allows specification in terms of sets and can

deduce car-cdr type recursion from the set specifications. They have the ability to introduce other

simple conditionals and auxiliary functions in some of their examples. Hansson and Tarnlund [18]

introduce a system that axiomatizes more interesting data structures than simple sets and ends up with

some interesting Prolog programs as a consequence. Like our own, none of these systems can work on

more than a handful of examples.

Our approach begins with a similar specification, but, unlike the deductive approach, does not end up

with a proof that the program is correct. At first sight this might seem to be a limitation of our approach.

It could also, however, be an advantage. By not requiring the system to generate a proof in addition to

the program we have lessened it burden and possibly increased its scope of applicability. None of these

approaches has developed sufficient breadth that this issue can be decided. One argument in favor of

our approach is that is certainly corresponds to the way people program. They have ideas, propose

programs, and then test the programs on examples. Programmers will accept the program as being

correct when they have tested it on sufficiently many examples that they are confident. Programmers

rarely, in practice, "prove" their programs to be correct. This is our interpretation of falsificationist

philosophy applied to the problem of engineering design (i.e. programming) which we believe is

fundamentally correct.

There is a sense in which the techniques developed in this chapter can be gainfully used to augment the

methodologies employed by the above systems. The problem solving structure of each of the above

systems is naive. The descriptions concentrate mainly on the deductions involved in generating the target

program and not on how they were picked. Each system generates numerous intermediate goals, many

of which are invalid. There are some cases where the use of skeptics run in parallel with the pursuit of

the goals could quickly eliminate what would otherwise be a costly branch in the (sequential) search.

The inductive approach does not begin with logical specifications, but with a set of example

computations. Examples of these approaches include Hardy [19], Shaw anrid Swartout [57], and Summers

[63]. Each of these takes a set of Lisp input-output pairs and produces a Lisp program as the result.

Each of these systems is also capable of generating only a handful of programs. The programs, however,

seem more contrived than either ours or ones produced by the deductive systems. Our programs (as well

as the ones developed by the deductive school) are ones we would expect programmers to want to

generate. The ones used by the inductive school aren't. An example from Hardy synthesizes a program
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from the following I/O pairs:

(A B C D E F) ==> (A B B C D D E F F)

The examples from the other works cited are of a similar sort. The reason these systems are weaker is,

we believe, that they do not have any higher level specification of the desired behavior that they can

reason about. The intuition that they are building on, that examples are important in the synthesis of

programs, is a good one. In our system examples (or "generalized examples") play a role in both

proposers and skeptics. However, the ability to-reason about specifications gives us considerable power

that systems just working from concrete examples cannot make use of.

While systems that can do unaided program synthesis are perhaps premature, a reasonable compromise

might be a progranmmer's apprentice. The idea was first discussed by Hewitt and Smith [251. An

extensive implementation of such a system has been pursued by Rich [52], Waters [67], and Shrobe [58].

Many of the ideas presented here, both the concept of proposers and skeptics can potentially be of use in

such a system, although I think people probably will probably make much better proposers in the near

term. If the user specifies the intent of the code being generated. These intentions can be turned into

sprites. When programs or partial programs are proposed, the specifications for these can also be

expressed using sprites. The apprentice, in background mode, can then reason about the intentions and

programs and discover bugs that can then be reported to the user.
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Chapter VI How We-Get Parallelism On Top Of Lisp

Previous chapters have dealt with programs in the Ether language without any concern for how these

programs were implemented. This chapter goes into great detail on techniques of implementation.

Ether is implemented on top of Iisp Machine Lisp, an upward compatible extension of MacLisp that

differs from MacLisp (or the original Lisp 1.5, for that matter) little in essential detail. The nature of

Ether is really quite different from Lisp in many of these details. It is thus of interest to study how the

one language is grafted onto the other. I use the term "grafted onto" rather than "implemented in"

because straight Lisp code is very, definitely present in the "Ether code" examples we have seen. This

has certain advantages as long as the merge can done smoothly, i.e. without violating Ether semantics.

The principle advantage of doing this is that we can make use of the much more efficient and already

implemented Lisp p:imitives. The Ether primitives when and as se rt are actual Lisp functions that get

evaluated by the interpreter when they are run across.t There are two places in which the underlying

Lisp implementation clearly violates Ether semantics and extra care is necessary; they are:

1. Lisp, is a fundamentally sequential language. There is a very definite order with which things get

done. It makes no sense to talk about creating several activities and executing pieces of Lisp code in

them. In fact, if this were done, one activity would be executed in its entirety before the others got a

chance.t

2. Lisp is a dynamically scoped language. Ether requires lexical scoping. If a variable is bound in a

certain environment and a sprite is created in that environment (and contains the variable), we would

like the variable to have the same binding when the sprite is executed. We have to go to considerable

pains in the implementation to ensure the appropriate variables get bound to their values in the Lisp

environment when the body of the sprite is executed.

We will address these two problems after explaining more of the details of the implementation. In fact,

we will discover that with minor caveats about how Lisp code should be mixed with "straight" Ether

code, the two problems seem to vanish. We can think about the code as being truly parallel and lexically

t More correctly, they are macros that expand into different code that gets executed. The nature of these macros is the subject of
chapter 7.
t Iere we are ignoring the Lisp machine process construct. It actually does have the capability to execute several Lisp programs
in parallel. Itowever, the time to switch from one process to another is non-negligible. he technique works fine when there are
only a couple of processes runnable at any one time. It does not perform efficiently when dealing with more than a few processes.
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binding almost all the time without running into bugs.

The discussion of the implementation is divided into two chapters that reflect different conceptual levels

of the implementation. The lowest level, the subject of this chapter, discusses how parallelism is actually

obtained through the message-passing sublanguage of Ether. This is where we explain how parallelism,

lexical binding, activities, processing power, etc. are implemented. There are features here of interest not

only to those concerned with problem solving languages, but also those interested in more

general-purpose parallel language architectures.

Following this in chapter 7 we explain how assertions, sprites, and viewpoints are implemented in this

parallel message-passing sublanguage. There are several novel features here not found in previous

pattern-directed invocation languages. One aspect of these languages we have done away with is the

database, or place in the implementation where all assertions and active sprites are stored. In fact, the

information is stored in a very distributed manner and storage and retrieval is based on the semantic

content rather than the syntactic form. This has many advantages which we will discuss.

6.1 Message Passing Languages

Message-passing languages come in two varieties. The more well-known of the two is typified by

Smalltalk [29]; MIT readers may be more familiar with the Flavor system on the Lisp machine which has

similar characteristics from the point of view of this discussion. The way programming is viewed in these

languages is an inversion of the normal view. Normally we think of programs as recipes for control in

which the language primitives manipulate data stored inside the machine. In message-passing languages

we don't think of programs as manipulating data, rather the program is built out of objects that contain

both data and procedures to manipulate the data. Rather than writing a monolithic program that acts on

data, we send an object a message where the "data" is a parameter of the object and the message is a

request to perform the operation. The reason this make a difference is because different objects can

have different methods for responding to the same message and thus the same piece of program text can

result in different (though appropriate) behavior when acting on a different set of objects. For example,

if we wished to add 3 to some other number, we would send that number a [+ 3] message. How it

performs this operation depends on the kind of number it is. If it was a conventional number the

obvious would happen. We could also create, say, a complex number type that responded to this
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message in a different way. Many languages have a complex datatypet though we can imagine less

standard kinds of "numbers" that we may wish to implement that a conventional language would be

unlikely to provide. We might, for example, want to implement a number that serves the function of an

infinitesimal (call it "C") in non-standard analysis. We would define the "+" operation to, when asked

to add with an integer (say "3") will return a new object (call it "3+E"). The object 3+C has

procedures with it that specify what to do when it receives messages of various kinds. For example, its

message handler for messages of the form "[> n]", meaning "are you greater than n" might look like:

if (n < 3) then true else false

giving the correct response. Message passing has turned out to be a useful paradigm for implementing

modular programs.

Although Smalltalk and similar languages provide tools that improve program modularity, the types of

control stnictures that are possible are essentially no different than those available in Lisp.t The idea of

message passing, however, leads us to a very different model of computation, one that is inherently

parallel. This is known as the actor model of computation.

Once we understand the program as objects passing messages, and nothing more, we can get many more

interesting control structures with no additional conceptual complexity. The key realization is that there

is no longer a process state that enforces a sequence on program execution. Objects are sent messages;

different objects being sent different messages concurrently process them concurrently. Hewitt [26]

develops this concept by showing how standard control structures (those, say, involving recursion and a

therefore a stack) can be redescribed as actor computations in which the stack has been replaced by

actors that represent continualions [39]. Coroutines are just as easily had; two actors can be programmed

to send each other messages back and forth. Parallelism falls naturally out of the actor model. What is

referred to as parallel forking in other languages is will result in the actor model if one actor, after

receiving a message, sends out more than one message. The notion of process is no longer well-defined;

at any one time any number of messages can be in transit.

The principle actor language is known as Actl [23, 24]. Actl was developed primarily as a research tool

t Although few languages give you the tools to construct a complex datatype if it is not already provided by the system. This is
the point.

: The language Simula [8], from which many ideas of Smalltalk derived, made use of a coroutine facility that cannot be done
using a conventional stack-oriented control structure.
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to explore the actor model, and in particular, techniques for dealing with mutable objects in a highly

parallel programming environment. Acti takes a radical approach. to the problem of building a

programming language based on actors -- all computation, down to a very microscopic level, is done by

message passing. On a Lisp machine, not specifically designed for actors, there is an inherent overhead

for running programs where all computation is done via message passing. In the current Ether we have

taken a more pragmatic approach; message passing is used to a level of granularity necessary to ensure

true parallel computation, but function calling of the conventional sort is made frequent use of. Another

actor-based language, known as Atolia [7], allows actors to do computation internally by means other

than message passing.

In order for there to be effective parallelism in Ether, which is implemented on top of Lisp, we have to

ensure that no Lisp function has control of the interpreter for too long a time. As we will see in section

7.4, every time we create a spritet or make an assertion we cause a break in the normal Lisp evaluation.

The command that causes the actual work of the sprite or the assertion (which as we will also see in

section 7.4 is the sending of a message) is saved for later execution. There is one other construct in the

Ether language that causes a break in the normal Lisp evaluation. This is the wi thi n-activity

command. When the Lisp evaluator comes across the following in an Ether program:

(within-activity act
-- body --)

the Lisp commands contained in -- body -- are not evaluated right away but are queued for evaluation

under the auspicies of the activity act. A perusal of the code samples present in the text should

convince the reader that Lisp evaluation cannot go very far without running into a when, assert, or

within-activity construct. As an example we have taken the definition of parallel-fork for

the cryptarithmetic problem solver shown in figure 2 and replaced all occurences of those three

constructs with asterisks. This appears in figure 14. The forms that actually appears in the positions of

the asterisks are simply commands to queue the appropriate code for later evaluation; the queuing

operation requires very little computation. The code consists of a conditional with a simple predicate.

The function foreach iterates over the list alternatives and for each one binds a few variables,

executes add-current-explorers which merely adds an entry to a list, and queues three forms for

later computation. This whole evaluation locks out the processor for so little time that effective

t Remember, as noted in section 3.5, that a sprite with several patterns is really a shorthand representation for several nested
sprites.
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Fig. 14. Shell of Lisp Code
(defunc parallel-fork (letter alternatives parent-viewpoint)

(if (null alternatives)
;If there are no viable alternatives, the there is no consistent assignment possible.

;Otherwise, fork on each alternative
(foreach

digit
alternatives
(let ((v (new-viewpoint parent parent-viewpoint))

(a (new-activity parent start-act)))
(add-current-explorers v a)
(within-viewpoint v

parallelism is maintained. The same.is true of the other code samples presented throughout this text.

parallelism is maintained. The same.is trle of the other code samples presented throughout this text.

6.2 Implementation of Activities

Some mechanism should be found to control the parallelism in actor languages if we are to write

effectively controllable search programs. As we will soon see, the activity notion we have been making

use of throughout this document is actually a mechanism for controlling the parallelism of message

passing languages. The notion is perfectly general and can be integrated with any actor-based

programming language.

One other mechanism has been explored in the literature for controlling the parallelism in actor

programs, the future construct of Baker [1]. Futures are a very elegant mechanism for controlling

programs without side-effects, but have serious deficiencies when programs with side-effects are

considered.t Ether, although it is monotonic when viewed as a program that deals with sprites and

assertions, compiles into a message-passing implementation that is very highly non-applicative. The

activity mechanism was developed as a way a of controlling parallel programs that involve mutable

objects. The decision that an activity is no longer essential to the whole computation involves an

understanding of the semantics of the computation. The knowledge required to demonstrate a

computation is no longer useful to the overall problem solving effort must be derived by the individual

t'The deficiency involves the mechanism by which it is decided that an activity is no longer necessary and can be stopped. In an
applicative language, if no continuation is currently waiting for the result of a computation, we are assured that the computation is
no longer necessary and the activity halted. In non-applicative programs information can be passed between objects by other
means than returning a value to the caller. Thus having no waiting continuations does not mean the activity will not pass
information via a side-effect. If there is no waiting continuation for the result of an future, the "activity" it creates is stifled.
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problem solver. Thus primitives to control the computation must be available to the problem solver.

These are the processing power manipulation and s t i f 1 e primitives we have been making use of.

To understand how the parallelism of Ether is implemented we must examine it momentarily with a very

powerful magnifying glass. Ether is, of course, implemented on a single processor machine and if we

look deep enough there is a well-defined state of the computation at any point in time. A schematic of

what this state looks like is shown in figure 15. The whole computation is comprised of a number of

events, each one of which is executed uninterruptably by the Lisp interpreter. The Ether interpreter is

really a very simple function known as the sanctum sanctorum.t This function consists of a simple loop.

On each iteration of the loop an event record is removed from the queue attached to the activity marked

current activity. The event record contains code which is then executed. As we explained above, the

time required to execute this code is short (in almost all cases not more than a few milliseconds). If any

whe n's, asse rt's, or wi th i n-act i v i ty's were present in the original code, commands would be in

the code actually executed as part of the event that would put new events on the queue of some activity.

In the case of wh en's and as se r t's the new event would be queued on this same activity's queue; in the

case of a w i th i n - act i v i ty, the activity on which the event would be queued is the activity that was

given as first argument to wi thin-activity. Each time we execute an event we keep a tally of the

total amount of time used to execute it. When a preset time limit is exceeded, the pointer marked

current activity is advanced to the next activity in the ring and events are executed from its queue until its

limit is exceeded. The choice of these limits is determined by the processing power assigned to the

activity; how this number is computed is the subject of section 6.5. The execution of this loop -- through

the ring of activities and queued events on each activity -- continues until no activity in the ring has any

events on its queue; the interpreter then goes into a wvai state awaiting further commands from the user.

The reader should not be confused by the fact that the ring of activities is flat. Each activity, save the

root activity, has at least one parent activity and many have children activities; the activity graph has

been flattened at this deepest level of the interpreter for reasons of efficiency. During the execution of

an event, commands (such as stifle or new-activity) may be executed that will cause the

structure of the ring of activities to be modified. Care has been taken in the implementation to prevent

anomolous states of the ring of activities from occurring; we will explain the operation of these in section

t "Holy of -Iolies." This was the innermost chamber of the ancient temple in Jerusalem, accessible only to the IIigh Priest and
his assistants.

-



- 103-

Fig. 15. State of an Ether Computation

Current-Activity'I
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6.6.

6.2.1 What An Event Record Looks Like

The definition of an event record is shown in figure 16.

Fig. 16. Definition Of An Event Record
(defstruct (event-record :named)

next-event-record
activation-body
activation-closed-variables
activation-closed-values)

Each event record is a structure containing four components. The first component implements the

queue of events; it contains a pointer to the next event in the queue. If this slot is nil, then we have

reached the end of the queue; the activity has quiesced. The code that is actually executed as part of the

event is contained in the slot activation-body. It is a piece of Lisp code that is evaluated. This code

is evaluated in an environment defined by the last two slots, a list of variables and a list of equal length of

values to which these variables are bound. The variables are lambda-bound to these values and the body

evaluated in this environment. The . triplet activation-body,

activation-closed-variables, and activation-closed-values really form a closure.

They are represented in this more atomic form largely because the current implementation evolved from

an earlier PDP-10 Maclisp implementation that did not have an explicit closure primitive.

6.2.2 What An Activity Looks Like

The definition of an activity is shown in figure 17. Slots marked with an asterisk, those relating to point

sprites, will be explained in section 7.8.2 after the concept of a point sprite has been introduced. The slot

acti v i ty-symbol contains the print name of the activity. If the object ever has to. be printed (as

often happens when debugging) it will print as the name in this slot. The print name is told to it via the

arguments name or prefixt to the function new-activi ty. The activity ring depicted in figure 15 is

t We use the name argument when it is expected that the call to new-act i v i ty will only get evaluated once. The argument
prefix is used when it is possible the code will be evaluated more than once. In this case a unique digit is appended onto the
symbol passed as an argument. The ability to give activities names that relate to their purpose is invaluable in debugging.
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Fig. 17. Definition of an Activity
(defstruct (activity :named)

activity-symbol
next-activity-in-ring
parents
children
stifled

* stifled-point-sprites
quiescent

* quiescent-point-sprites
front-of-queue
end-of-queue
total-time-used
total-time-should-have-used
relative-processing-power-self
subactivities-processing-power
absolute-processing-power-total)

implemented by the slot next-act i v i ty-i n-r i n g; each activity points to the next one in the ring.

The slots parents and c h i d r en implement the subaczivity relation. The parents are all those

activities higher than it in the activity tree; the children are those lower in the tree. If the activity has

been stifled then the slot s t i f 1 e d will contain T; if the activity has ever quiescedt the slot q u i e scen t

will contain T. The queue of pending events is implemented with the two slots f ro n t- of -que u e and

end-of-queue. Events to be executed are pulled off front-of -queue. When a new event is to be

added to the queue for the activity, the next-event-record slot of the event pointed to by

end-of-queue is set to the new event record and the end-of-queue slot is then changed to the new

event record.

The last five slots, total-time-used, total-time-should-have-used,

relative-processing-power-self, subactivities-processing-power, and

absolute-processing-power-total have to do with the way processing power is notated and

implemented. This is the subject of the section 6.5.

t What this means in low level terms is that the activity has processed at least one event, but currently has no events to process.
This ensures that there will be no race conditions. For the kinds of activities for which it makes sense to talk about quiescence, the
only activity that can add a new event to the queue is the activity itself.
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6.3 Lexical Environment Management

As mentioned in the introduction to this chapter, Lisp is a dynamically scoped language while Ether is

not. We have already discussed in section 6.2.1 that each event record carries along with it an

environment that gets instantiated before the code contained in the event record is executed. Thlis,

however, begs the question of just how the appropriate variable-value pairs got placed in the

environment. That is the subject of this section.

Part of the answer to this question is that the implementation maintains two dynamically-scoped special

variables that at all times represent the current lexical environment. These variables are called

current-closed-variables and current-closed-values. They are, at all times, of equal

length and elements in corresponding positions represent bindings of variables to values in the lexical

environment. The presence of these variables is completely invisible to code written by the user. Of

course, at all times the bindings represented by the current values of these two variables are in force in

Lisp's dynamic environment. The code that queues activation records picks these two lists out of the

dynamic environment and puts pointers to them in the appropriate slots of the event record. When the

event record is executed, the two variables are bound to the values in these slots and the variable-value

bindings are instantiated in the normal Lisp environment.

A slightly modified form of the Lisp binding mechanism 1 e t is used in Ether. In the code that was

actually run, a function by a different name: s l et is used. The function s 1 et, in addition to binding

the variables in its argument in the normal Lisp environment, also adds the bindings to

current-closed-variables and current-closed-values. The let function isn't the only

function that creates Lisp bindings. We have not written "Ether versions" of the others, such as defun,

lambda, and do. If we used one of these binding mechanisms without taking some extra care we would

be in a lot of trouble. Suppose, for example, we define the function f oo as follows:

(defun foo (x a)
(within-activity a

(print x)))

Foo can is passed two arguments, the first can be anything, and the second must be an activity. What we

would expect to happen is that the first argument that was passed to foo will be printed (assuming the

second argument is an activity with processing power). This is not what would actually happen,

however. The reason is that the call to within-activity causes its body (which is the form

( p r i n t x )) to be placed in a new event record that is placed on the queue associated with the activity
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bound to a. The code that does the queuing places the currently known lexical environment

(represented by those two variables) in the event record. However, the variable x was not bound by

s 1 et or any other Ether function and thus will not be part of the known lexical environment. The end

result of this is that when (p r i n t x)) is evaluated, the variable x will either be unbound or have the

wrong binding. The actual code we would have to write to get the proper behavior out of this is:

(defun foo (x a)
(slet ((x x))

(within-activity a
(print x))))

We have to bind x to itself, a seemingly useless operation. This aspect of Ether will be further

commented on in section 8.4.3. In the presentation of the code in the examples throughout this work we

have replaced s 1 e t with et and eliminated all bindings of variables to themselves. This is the only

place where the code has been "doctored" for presentation.

Sprites also introduce new bindings into the' lexical environment. Just how this happens will be

discussed in chapter 7.

6.4 Sending Messages

In fact, most events during the normal running of an Ether program consist of messages being sent to

objects, rather than just the small chunk of code plus environment exemplified in the previous section.

Almost all wh e n and as s e r t constructs get turned into message transmissions. The exact natures of the

objects and tie messages they can receive will be explained in chapter 7, however the basic mechanism

will be explained in this section. The object-oriented sublanguage of Ether is built on top of the flavor

system of the Lisp machine. We do not, actually, make use of any of the distinctive features of flavors,

those that distinguish it from Smalltalk [29] or Simula [8]; they were merely available. The Ether send

primitive takes three arguments as depicted:

(send object message-type rest-of-message activity)

The first argument, object, must by a conventional flavor-type object capable of receiving messages. The

second argument, message-type, is a symbol. For each kind of message type, and each class to which the

object can belong, there must be a particular method to handle the message. These message handlers

can take arguments and these arguments are package in the third argument to send, rest-of-message.

The last argument is the activity through which the event representing the message being processed by

the object is is associated.
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The send primitive causes a new event record to be added to the end of the queue of the activity

argument. The body of this event record consists of the necessary Lisp commands to have the message

with arguments processed by message handler associated with the object.

6.5 Implementation of Processing Power

In our example systems we have presented programs that make use of processing power. In this section

we will review how the writer of an Ether program sees processing power and then discuss how it is

actually implemented. We will only discuss the handling of processing power for fixed collections of

activities. In section 6.6 we describe the implementation of commands (e.g. s t i f 1 e) that modify the

activity graph. The modification of processing power in these situations is a bit more complicated and

requires the following as a prerequisite to its understanding.

Our design decisions concerning the implementation of processing power are based on one important

premise: Changes in processing power allocations to activities are a very infrequent event in comparison

with the processing of events on activities' queues.

The implementation of processing power presented in this section has many desirable characteristics.

Among them:

1. The amount of overhead for ensuring that the processing power allocations are abided by is very small

during normal execution. It amounts to one multiply plus one add every time the current activity is

advanced, and a clock read, one add, and one comparison every time an event is executed.

2. The implementation ensures that over any period of time the ratio of actual clock time two activities

get will be in proportion to their processing power allocations with an error that is at most the time of

one event plus a small constant.t

3. Property 2 remains true even for activities with arbitrarily small amounts of processing power.

4. Property 2 remains true even for activities that have quiesced for a while (i.e. had nothing on their

queues) but then received new event records.

t The constant is equal to the time it takes to do one complete cycle of the ring of activities. It is specifiable by the implementer.
The current value used is 5 seconds.
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5. The time required to readjust processing power allocations for an activity is proportional to the size of

its own subactivity tree. This characteristic is desirable because modifications of resource allocations

high up in the tree should happen much less frequently than farther down in the tree.

6.5.1 Relative And Absolute Processing Power

There are actually two different kinds of processing power that the system knows about. One of them,

relative processing power, is the kind the user actually manipulates. The other, absolute processing power,

is computed by the system for its own internal use. Initially, before any computation occurs, there is

only one activity present, the-root-activity. When new activities are created within this activity,

they become children of the root activity and a decision is made as to how much of the processing power

assigned to the- root-act i v i ty is transferred to the new activities. Similarly, if new activities are

created within the auspicies of any other activity, processing power must be transferred to them for any

computation to happen within them.

Relative processing power expresses the way each activity divides the processing power assigned to it

amongst itself and its children. At all times the total of the relative processing power kept for itself, and

the amounts given to its children activities add up to 1. For example, if activity Al had two children

activities A2 and A3 and had relative processing power allocations of:

self-power: .33333, A2 power: .33333, A3 power: .33333

then each of the activities, Al, A2, and A3 would run at precisely the same rate. If the allocations were

instead:

self-power: .2, A2power: .4, A3power: .4

each of the children activities, A2 and A3, would run at the same rate which would be twice the rate of

the parent activity. If the allocations were instead:

self-power: 0, A2 power: .75, A3 power: .25

the parent activity would not get to execute at all, and the subactivity A2 would run three times as fast as

the subactivity A3. It is not uncommon for a parent activity to have a self-power of 0. This

configuration is desirable when Al represents some particular goal for which there might be two
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subgoals. After establishing its subgoals there may be nothing more for it to do, so its processing power

can all be given to its subactivities (which represent different approaches to accomplishing the goal).

A convenient function is supplied to allow the user to specify changes in 'relative processing power

allocations. The function is called sup po r t- i n - rat i os. It takes five arguments, three required and

two optional. A call to the function that would result in the final example mentioned above would be:

(support-in-ratios
parent A1
children (list A2 A3)
ratios '(3 1))

would result in A2 being assigned three times as much processing power as A3, leaving A2 and A3 with

relative processing powers of .75 and .25 respectively. An additional argument, self-factor can be

specified that expresses the factor that should be maintained for use by the parent activity; self-factor

defaults to 0. To obtain the previous example (in which Al, A2, and A3 had relative processing power

allocations of .2, .4, and .4 respectively) we could have executed:

(support-in-ratios
parent Al
children (list A2 A3)
ratios '(2 2)
self-factor 1)

One other optional argument can be supplied: default-factor. This expresses the amount of processing

power reserved for those activities not explicitly mentioned on the children list. The default for this

argument is also 0.

Relative processing power indicates the proportions by which each activity divides processing power

among itself and its subactivities. It does not indicate how much processing power an activity gets

relative to the entire system, a very important number when we wish to compute a time quantum for

scheduling each activity. This is the meaning of absolute processing power. Absolute processing power is

computed from the relative processing power allocations. It is a fraction that represents the proportion

of the total system execution time that it receives. The absolute processing power allocation received by

an activity can be computed by multiplying all the relative processing power allocations along the chain

starting with the root activity. At any one time the total of the absolute processing power allocations for

all activities in the system add to 1. This is ensured by the implementation and cannot in any way be

violated by the user program.
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6.5.2 The Scheduling ,,!Acrithm

There is a constant called the cycle time, maintained internally by the system, that represents the total

amount of time it takes for the scheduler to cycle through the ring of activities once. The behavior of a

program is insensitive to the value of this constant within a large range. The cycle time should be small

with respect to the total runtime of the program; this will ensure effective parallelism. If the cycle time is

very small, it will occur additional overhead in the scheduling algorithm. The cycle time for all runs

discussed in this work was 5 seconds.

The relevant fields that define the processing power allocations of an activity are to be found in figure 17.

The field rel ative-process i ng-power-se 1 f contains the fraction of relative processing power

that the activity maintains for its own use. The field s u bact i v i ties-processing-power is a list

of fractions whose length is equal to the list of children of the activity. The sum of all of these fractions

is, of course, 1. The field absolute-processi ng-power-total represents the fraction of total

system processing power allocated to this activity and its children. Thus, to compute the quantity of

absolute processing power reserved for the activity's own use we multiply this number by the fraction

relative-processing-power-self.

Whenever relative processing power allocations are changed, the absolute processing power allocations

are at the same time modified to reflect this change. Thus, at all times they are consistent.

The scheduling algorithm is the following:

1. The curreni-activity pointer is advanced to the next activity in the ring.

2. The value in the field total-time-should-have-used (a number representing time in

microseconds) is replaced by the following:

total-time-should-have-used + (cycle-time * relative-processing-power-self)

3.If total-time-should-have-used < total-time-used, gotostepl.

4. If there are no events on the event queue, go to step 1.

5. Else, execute an event from the event queue, keeping track of the amount of time it took to

execute. Add this time to the slot total-time-used. Go to step 3.

The actual algorithm is actually a bit more complicated than the above (but not much). It also ensures



- I12-

that when the entire system quiesces (has nothing to do) this fact will be detected and the system will

enter a "wait state", awaiting further activity from the user.

The above algorithm has several features worth noting:

1. The amount of overhead per event execution is quite small. In a microcoded implementation, the

total overhead for event execution would be similar to the overhead to do a function call.

2. If an activity has a very small amount of absolute processing power, sufficiently little that it cannot

support even one event for each cycle through the activity ring, the amount of time in the slot

total-time-shoul d-have-used will slowly accumulate. It may take several cycles for this value

to exceed the value in total -time-used. Thus such activities may only execute an event an average

of once every n cycles where n can be of any size. Yet the overall effect is to keep the amounts of time

used by all activities in acordance with the processing power allocations to within the grain size of the

events.

3. If an activity has no events to execute, the time allocated to it will slowly accumulate so that when it

finally does have something to do, it will "make up for lost time." Again the over all effect is to keep time

usage by activities in accordance with the processing power allocations.

6.5.3 Changing Processing Power Allocations

Whenever support-in-ratios is called, the slots subactivities-processing-power and

relative-processing-power-self are adjusted so that they are in correct proportions to the

factors given as arguments and are normalized so that they add up to 1. After these relative processing

power allocations are changed, the absolute processing power allocations for each of the children

activities must be modified.t An extremely simple recursive function accomplishes this for us. The

function is shown in figure 18. The function takes two arguments, an activity whose processing power is

to be adjusted, and an amount that it is to be adjusted by. The amount is-a difference, so it is positive if

the amount is to be increased and negative if the amount is to be decreased. The function first adjusts its

own absolute processing power by executing:

t The relative processing power allocations of no other activities have to be modified. It is a purely local change.
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Fig. 18. Code to Modify Absolute Processing Power Allocations
(defunc adjust-absolute-processing-power (activity amount)

;Recursively makes the processing power adjustment mentioned. Positive means it gets more power.
(struct+ (absolute-processing-power-total activity) amount)
(let ((total-ppr-children

(sumlist (subactivities-processing-power activity))))
(foreach

(subactivity relative-ppr)
(children activity)
(subactivities-processing-power activity)

(adjust-absolute-processing-power
subactivity
(* amount (// relative-ppr total-ppr-children))))))

(struct+ (absolute-processing-power-total activity) amount)

It then computes the proportion of the absolute processing power change that is to be distributed to

subactivities (bound to the variable to't a 1 - p p r - c h i 1 d r e n) and recursively distributes this change to

the subactivities. When this procedure completes execution, the total absolute processing power of all

activities will sum to 1.

6.6 Modifying The Activity Structure

There are two primitives that actually modify the structure of the ring of activities. These functions, and

their implementation, are described in this section.

6.6.1 Creating New Activities

New activities are created by executing the function new- acti v i ty. Here we explain precisely what

happens when this function is executed. The function creates a new activity structure (as depicted in

figure 17) with the parents slot being filled by an explicit parent argument to the function or, by

default, whichever activity happens to be currently executing. The c h i 1 d r e n slot of the current activity

is augmented by the addition of this newly created activity. In the current implementation, processing

power allocations are modified at that time so that all children have equal amount of processing power.

The creation of an activity is typically followed by a form that rearranges processing power in accordance

with its needs.t After the activity is created processing power allocations for all affected activities are

t Future versions of Ether should have more intelligent ways of redistributing processing power within new- act i v i ty based
on certain sterotypical patterns of doing so.
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recomputed.

The new activity is inserted in the ring of activities behind the activity that is currently executing. This is

necessary to avoid an unfair scheduling situation that would otherwise be possible. No matter how little

processing power an activity has been given, it will be able to execute at least one event. Suppose there

were a program that (due to, say, an infinite chain of goals) it were to create another activity during its

first event. If this activity were to do the same thing ad infinitumn, the system would never get on to

execute the next activity in the ring. By placing newly created activities behind the current activity in the

ring, this deadlock situation is avoided.

6.6.2 Stifling Activities

When an activity is stifled, all subactivities of it are recursively stifled. (The one exception to this

statement involves subactivities introduced by the goal mechanism described in section 6.7.1). The

s t i f 1 e d field of the activity object in figure 17 is set to T and the activity is spliced out of the ring of

activities, i.e. the next - act i v i ty- i n - r i n g field of the previous activity in the ring is set to the

n e x t - act i v i ty - i n - r i n g of the activity being stifled. Thus events in the activity will no longer be

available for execution. When an activity is stifled, relative processing power allocations of the

remaining unstifled children activites are increased so that they remain in the same relative proportions

and sum to 1. Absolute processing power allocations are then modified as described in section 6.5.3.

6.7 Other Mechanisms

There are two other mechanisms that relate to the execution of activities, the implementation of which

needs to be explained.

6.7.1 The Goal Mechanism

The specially supported goal mechanism was introduced in section 3.3 and reasons why it is convenient

are given in section 3.6. Here we discuss the specifics of the implementation.

The system maintains a table of all goals that have been established indexed first under the type of goal

(e.g. equal) and then under the arguments given to it. In this table is the internal activity that is

associated with the goal. When the user executes the code:
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(goal (foo args) act)

the system checks to see if an entry in the table already exists for the specific set of arguments args. If so,

it adds the activity bound to act to the list of parent activities of the internal activity, then the

appropriate code to readjust absolute processing power allocations is called. Thus, any processing power

that was given to act will be transferred to the internal activity under which all work on the goal

happens.

If there is not currently an entry in the table for this particular goal, the following is done:

1. An activity (to become the internal activity) is created. With act as its parent activity.

2. The def goal method for foo methods is then processed. If the method were defined as follows:

(defgoal foo (argl ... argn) act2
-- body -- )

Then act2 is bound to the newly created internal activity, the variables argl ... argn are bound to

the arguments of the call to goal,' and the body of the method is queued for processing under the

internal activity.

3. An entry is created in the table for the call for the goal listing the internal activity created.

Thus only one activity (the internally created activity) will ever be working on the goal. At any time the

activities that were used in the establishment of the goal can have their processing power changed and

this change will get reflected in the internal activity. At all times this activity has processing power equal

to the sum of the calling activities. The s t i f 1 e primitive treats these internal activities differently in

two respects:

1. When one of the user-created activities is stifled, the activity is removed from the list of parents of the

internal activity. If every user-created activity associated with the goal is stifled, the internal activity is

not stifled. The processing power assigned to it is automatically lowered to zero because it has no

parents, yet it stays potentially executable. Thus, if some other part' of the system later becomes

interested in the particular goal, it can execute the goal command with a new activity that has

processing power. The activity would then continue where it had left off.

2. If the internal activity is stifled, every one of its parent activities is automatically stifled. The internal

activity can only be stifled from within the defgoal. The only reason that it might be stifled is if
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either it is demonstrated that the goal is unattainable or that it has already be attained. In this case the

activities are no longer necessary. By stifling them, the processing power that had been allocated to

them is automatically redistributed among the unstifled activities.

6.7.2 Continuously-Execute

In at least one place, we have made use of the primitive continuously-execute. In the

cryptarithmetic problem solver we created a manager activity that ran continuously in the background,

monitoring relative progress of activities, and modifying processing power appropriately. We executed

the form:

(continuously-execute (allocation-strategy))

This is implemented by placing on the queue of the respective activity essentially the following code:

(progn
(allocation-strategy)
(continuously-execute (allocation-strategy)))

Thus the function allocation-strategy will get run, and afterwards the same form will be placed

on-the end of the queue, enabling the function to get run again and again. For the reasons discussed in

section 6.5, regardless of how long the function all 1 oc at i on - s t r ate gy takes to run each time, the

percentage of resources allocated to the activity it is in will asymptoctically approach its processing power

allocation and have a maximum error equal to the length of time the function takes to run plus a small

implementation-specified constant.
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Chapter VII The Implementation of Assertions and Sprites

We have made much use of code involving assertions and sprites in the examples but have not yet

discussed what really happens when we execute the assert or the when construct. This chapter

discusses these issues in depth. The implementation technique we have found is quite novel; it differs in

substantive ways from other languages that contain constructs analogous to sprites and assertions. These

differences have important implications for both the efficiency, power, and distributabilityt of these

languages. As we will see, the implementation "inverts" many of the concepts that we have been using.

The user of sprites and assertions "thinks" of the hierarchy of constructs in the language as the graph in

figure 19a suggests. We normally think of creating an activity and activating sprites in it. We think of

assertions as being placed in viewpoints and sprites as watching for assertions in viewpoints.

Furthermore, assertions and sprite patterns contain objects. The implementer of sprites and assertions,

as we will see, views the hierarchy of concepts in a manner suggested by figure 19b.

7.1 A Review of the Properties of Sprites and Assertions

Here we briefly review the properties that sprites and assertions must exhibit and then go on to describe

the implementation.

Monotonicity Once an assertion has been made it cannot be erased. Any sprite that is capable of

matching the assertion that is created at any future time (as long as it is in an activity with processing

power) will be triggered.

Commutativity When there is a sprite created, and an assertion that matches the sprite, the order of

creation of the assertion and the sprite is immaterial.

Viewpoints Every assertion is done in the context of some viewpoint. The assertion is accessible to

sprites in that viewpoint and in all viewpoints that inherit from that viewpoint. In the current system, all

the parents of a viewpoint must be declared at the time of its creation; although, as we will see, trivial

additions will make it possible to add new parent viewpoints at a later time.

t That is, the ability to get the code to run on multiple processors. Most implementations of such languages make use of a
database that can act as a bottleneck.
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Fig. 19. Hierarchy of Concepts

(A) How the user of sprites and assertions sees the world:

Activities

Sprites
Sp rites

Viewpoints

Assertions

/'
Objects

(B) How the implementer of sprites and assertions sees the world:

Objects

Viewpoints

Sp rites Assertions

Activities

'11�



- 119 -

Activities All sprites are created within some activity and the work required to actually effect the

execution of the sprite must be turned into events executed by that activity.

7.2 Virtual Collections of Assertions

Previous languages of this form, ones with assertional capabilities and data-driven procedures (reviewed

in section 3.6) treat the assertions and sprite patterns as uninterpreted lexicalforms. The semantic content

of the assertions is not in any way understood by the mechanisms that store and retrieve the information.

We will shortly argue that by understanding something about the meaning of the assertions, ways of

encoding them can be found that are much more satisfactory from several points of view. The concepts

involved were first proposed in an earlier paper by myself [33].

There are various clever encoding schemes that make it possible to check for the presence of an assertion

(or sprite pattern) in the database in time which is less than linear with the size of the database. All

languages of this form have some sort of discrimination net that allows the retrieval mechanism to

dispatch off of pieces of the assertion or sprite pattern and use a kind of "divide and conquer" approach

to avoid searching most of the database most of the time. The most intricate scheme described in the

literature is the one used by QA4 and is well documented in [54].

The bulk of this chapter describes the implementation of assertions and sprites for the program synthesis

system. The description for the cryptarithmectic system, though similar, is much simpler and will be

deferred to section 7.7.

7.2.1 The Basic Idea

The skeletal idea of virtual collections of assertions is quite simple. The primitives assert and when

are not functions defined to interact with any kind of database. Instead, they are macrost that expand

into code that is guaranteed (by the designer of this code) to have the effect of the assertions or sprites.

For different classes of assertions, e.g. equal assertions or member assertions, we will replace the

assert or when with very different pieces of code. Thus, the assertions do not actually exist as lexical

items, nevertheless users of the when and assert constructs can write code as if they do exist. In this

t Macro is a generic term for code that replaces other code.
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sense, the replacement code represents a virtual collection of assertions. Depending on the domain of the

problem solver being designed, there are any number of ways a virtual collection of assertions can be

implemented. Both the program synthesis and cryptarithmetic programs use very similar techniques that

will be the subject of most of this chapter. Section 7.9.7 describes a very different kind of virtual

collection of assertions to give some additional breadth to the concept.

7.2.2 How The Renlacements Are Made

There is really another level of pattern-directed invocation that runs in Ether, but runs at compile. time

rather than evaluation time. When the compiler runs across an assert statement it checks a list of

possible assertion replacement procedures that are indexed by the class of assertion they are to replace to

see if one matches. If it finds one that matches, the body of the replacement procedure is evaluated and

it will return code that replaces the asse r t statement. An example assertion replacement procedure is

shown in figure 20.

Fig. 20. Length Assertion Replacement Procedure

(def-assert-vca (length =obj =number)
'(establish'-object-point-assert

object ,obj
message-type 'assert-length
property ,number))

The assertion replacement procedure itself has a pattern, in this case ( en gth =obj =number). This

pattern says that the replacement procedure is capable of replacing any assertion that has the symbol

1e ng th in the first positions, and any other two objects in the second and third positions. If an as se rt

statement matches these characteristics, then this procedure will be invoked with the variables ob j and

number bound to the second and third parts of the assertion respectively. The procedure will return

code that is to be evaluated to get the virtual effect of the as se r t.

As an example, suppose we had some code that contained the command:

(assert (length x n))

At compile time, the replacement procedure shown in figure 20 would be invoked and would replace the

assert expression with the expression:
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(establish-object-point-assert
object x
message-type 'assert-length
property n)

The reader is not expected to understand what this expression means at this point, only that. it has

replaced the Ether code the user wrote. It actually is a macro that yet expands into something else.

There is a completely analogous mechanism that replaces sprites with the code that implements them. A

sprite replacement procedure for 1 e n g t h assertions is shown in figure 21.

Fig. 21. Length Sprite Replacement Procedure

(def-when-vca (length =obj =number)
(if (ether-variable obj)

'(establish-object-point-sprite-every-instance
object-type 'object
message-type 'when-length
property ,number
body , body*
variable ,obj
activity current-activity)

'(establish-object-point-sprite
object ,obj
message-type 'when-length
property ,number
body ,*body*
activity current-activity)))

Whenever the compiler comes across a sprite that has a pattern with the symbol 1 en g t h in the first

position and any two other objects in the other positions, this sprite replacement procedure is invoked.

The replacement procedure is invoked with obj and number bound to the second and third items in

the sprite pattern. There is an additional variable, *body*, that is bound to the body of the sprite; this

is the code that should be executed if the sprite is triggered. You will notice that the particular sprite

replacement procedure has a conditional that checks a predicate on obj, the second object in the

pattern. The predicate, e the r - v a r i a ble, returns T if its argument is an Ether pattern variable (i.e.

one prefixed by "=").

For example, if we were to compile a sprite of the form:

(when ((length list n))
(function-to-execute))

the e the r - va r i a b 1 e test would fail and we would return the expanded code from the else part of the

i f. The expanded code would look like:



- 122-

(establish-object-point-sprite
object list
message-type 'when-length
property en
body (function-to-execute)
activity current-activity)

If, on the other hand, the sprite to be compiled looked like:

(when ((length =list *n))
(function-to-execute))

the other branch of the i f would have been taken and the replacing code would become:

(establish-object-point-sprite-every-instance
object-type 'object
message-type 'when-length
property 4n
body (function-to-execute)
variable '=list
activity current-activity)

In the current version of the system all as s e r t and wh e n statements are replaced at compile time in the

manner just described. Actually, the functions they expand into:

establish-object-point-sprite
establish-object-point-sprite-every-instance

establish-object-point-assert

are themselves macros that expand into something else.

7.3 Objects and Obiect Oriented Programming

The code that implements the effects of sprites and assertions depends very heavily on the metaphor of

object oriented programming. A brief discussion of the concept was contained in section 6.1. The objects

that are parts of our assertions in Ether programs, such as i nputl and accumul ant for the program

synthesis system and co l umn 1 for the cryptarithmetic system are objects in the object-oriented sense --

they can accept and respond to messages. We will see that the code produced by the assertion and sprite

replacement procedures mentioned in the previous section actually turn into commands to send

messages to these objects. Each one of these message transmissions makes use of the message sending

primitive discussed in section 6.4, and thus each message transmission is queued for processing via the

activity mechanism.
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7.3.1 Defining an Ether Object

In dealing with problem solving systems written in Ether, we must define the classes of assertions with

which they can deal. As we will see, there is a close relationship between the classes of assertions that can

be made and matched by sprites and the class of messages that the objects of our system can accept. To

keep the amount of code to a minimum, we have established conventions for how the various message

names and instance variables of the objects are named. Much of the code that defines the objects and

message handlers is generated automatically by the system. The Ether message passing code is built on

top of the flavor system of the Lisp machine [68], although it does not make use of the flavor concept in

any particular way.t This was merely the most expedient way of getting objects that can take messages

on the Lisp machine.

Ether objects are defined by executing the function defobject. Defobject takes three arguments:

1. The type of the object.

2. A list of those properties that may be viewpoint dependent.

3. A list of those properties that are viewpoint independent -- they are the same in all viewpoints.

For the program synthesis system, we have only one kind of object, which we call (appropriately enough)

an object. For the cryptarithmetic system we will discover that there are three different kinds of objects.

Although we can refer to several different kinds of objects in the Lisp sense (lists, numbers, and atoms)

we can have Ether objects that we may not know in some particular viewpoint to be any of these. For

example, we can have an element that we know is the first element of some list but we know absolutely

nothing else about it. We could assert in one viewpoint that it is a number and in another viewpoint that

it is a sequence. For this reason we have only one Ether object type, and can tell individual objects that

they are of a specific programming object type. The definition of a object for the program synthesis

system looks as follows:

t Although, there is perhaps some advantage to doing so. In Ether, we have not gotten any advantage out of ways to structure
classes of objects since the original concept was developed by Simula. This will be discussed in section 8.4.6.
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(defobject object
(type equal not-equal coreferential not-coreferential length

member not-member sequence-element less greater)
(typed-object constant-object))

There are two viewpoint-independent properties, typed-object and constant-object. For

certain objects, we know at object creation time what type they are. In our descriptions of the inputs and

outputs of the functions we are synthesizing we may know they are of type sequence, atom, or number.

In these cases, after we create the object, we send it a typed-ob j e c t message telling it that it is this

particular type.

Similarly, for certain objects, we may know not only that it is of a particular type, but also the exact

object that it is. There are certain distinguished objects the system knows about. The object we have

been calling n ill is one such object. It is the sequence with no elements. For this object, the

constant-object field is set to the symbol null-sequence. There is one other class of constant

objects that the system knows about, those which are known to be specific numbers. For example the

object representing the integer 2 in our system has a typed-object field of number and a

constant-object field of 2.

7.3.2 What -Iappens When You Define an Object

For each Ether object you create, the system does a number of things. For the purpose of the following

discussion, assume we have just executed the code:

(defobject thing (propl prop2) (invariant-propl invariant-prop2))

The following things happen:

1. A new class is defined called thing with instance variables invariant-propl, and

invariant-prop2, and viewpointed-object-table. he objects we actually manipulate with

our assertions and sprites are objects belonging to this class.

2. A function is defined called new-thing that returns an object of type thing. It takes various

optional arguments as shown in the examples in chapters 5 and 4.

3. The class thing is defined to take the following messages: assert-prop1, assert-prop2,

when-propl, and when-prop2. When an assertion is made about a property of an object, as for

example, we had executed the code:
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(assert (length obj n))

a message transmission of the assert-length happens to the object bound to obj. Why this

happens will become clear as we go on. When a sprite is create that asks about one of the properties of

an object, a when - type message is sent, sometimes to one object, and sometimes to many objects.

4. Message handlers are created for all as se rt- and when- type messages for the class th i n g. These

message handlers actually "redirect" the information or request for information to the place(s) it/they

are actually handled.

5. A new class is defined called thing-with-viewpoint that has instance variables:

propl-property, prop2-property, this-object, pending-sprites. The instance

variables propl-property and pr-op2-property store information about properties propl and

prop2. For example, if the object were a sequence, the length-property would be bound to an

indication of the length of the object, if it is known. Each object of type th i n g -wi th -v i ewpo i n t is

related to a particular object of type thing. In fact, for each object of type thing, and for each

viewpoint for which we know something (i.e. have as se r ted at least one thing) about this object, we

have a specific object of type t h i n g -w i t h - v i ewp o i n t that contains those facts we know about this

object with respect to this viewpoint. Objects of type thing have an instance variable called

v i ewpoi nted -object- tab 1 e that indexes these viewpoint-specific objects with their corresponding

viewpoints.

6. The class th i n g -wi th -v i ewpo i n t is defined to, like the class th i ng, take messages of the form

assert-propl, assert-prop2, when-propl, and when-prop2. The message handlers for

object t h i n g are written by the designer of the problem solver; they represent special purpose ways of

storing and retrieving the information that are based on the semantics of the assertional types. There is

another class of message handlers the user must write. They are of the form merge-propl and

merge-prop2. These are instructions to the system on how to do viewpoint inheritance. When one

viewpoint has more than a single parent viewpoint, a method must be supplied that tells the system how

to find the corresponding property for the child viewpoint that is consistent with all parents and contains

no constraints that are not inherited from some parent.

7. A variable called t h i n g - p e n d i n g - s p r i t e s which contains, in effect, code that implements sprites

that ask questions about objects that may not exist yet.
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7.3.3 The Concept of A Point Sprite

When we write an Ether program containing sprites, we think of the sprites as sitting on the sidelines

"watching" for assertions to trigger on. These sprites are part of some activity and the rate at which they

can run (or the "eagerness" with which they can jump at assertions) is controlled by the activity. Of

course, computers of the sort we are used to can't directly interpret code that works this way. In some

manner we have to massage the sprite into a procedure that will get invoked in some orderly way when

the information it is "watching for" becomes available. In most other assertion-oriented languages the

sprite patterns and associated procedures are incorporated into a lexical discrimination net. In Ether

there is no uniform mechanism; the procedures that implement sprites are accessed in any of a number

of places, depending on the kind of information' the sprite is looking for. There is, however, a uniform

method of representing the procedure that implements the sprite; it is known as a point sprite. A point

sprite is a structure, that has five slots:

Point-sprite-key represents the parameter of the point sprite. For example, if the pattern of the sprite

that led to this point sprite was:

((length obj n))

the point sprite would be placed in a location where it would get checked whenever we have asserted

anything about the length of the object bound to ob j. The key of this point sprite would be the number

object bound to n. If it matched the known length, the point sprite would then execute.

Point-sprite-body contains the code that was contained in the body of the original sprite.

Point-sprite-closed-variables and point-sprite-closed-values together represent the lexical environment in

which the original sprite was defined. When the body of the point sprite is executed, it is executed in

this environment.

Point-sprite-activity is the activity in which the original sprite was activated. If and when the body of this

point sprite is ever executed, it will be done in this activity.

Since executing a point sprite is a very common thing to do, a convenient function is provided for doing

it. If we execute the code:

(point-sprite-eval point-sprite)

An event record is created as described in section 6.2.1 with the body and environment set appropriately.
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The event record is placed at the end of the queue for the activity mentioned in the point sprite.

Occasionally a point sprite wants to augment the environment in which the body is evaluated. Optional

keyword arguments can be supplied to po i n t - s p r i t e - eva l to do this. For example:

(point-sprite-eval point-sprite
variable ' x
value element)

Would evaluate the point sprite (bound to po i n t-sp r i te in the environment of the point sprite

augmented with a binding of the variable x to the value of el eme nt.

7.4 A Very Simple Virtual Collection

Perhaps the simplest virtual collection in both example systems is the one that handles

(CONTRADICTION) assertions. Every viewpoint is a structure that has a field called

viewpoint-contradiction-marker that has the value T if the viewpoint is known to be

contradictory. The when replacement procedure for this class of assertions is shown in figure 22.

Fig. 22. When Replacement Procedure for Contradictions

(def-when-vca (contradiction)
'(let ((point-sprite

(make-point-sprite
point-sprite-closed-vars current-closed-variables
point-sprite-closed-vals current-closed-values
point-sprite-body , *body* '
point-sprite-actility current-activity)))

(if (viewpoint-contradiction-marker- *viewpoint*)
(point-sprite-eval point-sprite)
(structpush point-sprite (viewpoint-contradiction-point-sprites *viewpoint*)))))

Since there are no arguments to these contradiction assertions, the code that does the replacement is

quite simple. The first thing the sprite replacement procedure does is create a point sprite with the

environment set to the lexical environment at the point of call (i.e. the environment defined by the

variables current-closed-variables and current-closed-values). The body of the point

sprite is simply the body of the original sprite, and the activity is the activity currently running.

After creating the point sprite, the code checks to see if the viewpoint is already known to be

contradictory. If so, the point sprite is evaluated. This implements the intended.cffcct of the sprite; if

the viewpoint is contradictory we would like the body evaluated. Remember that evaluating the body of
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a point sprite is not simply a call to the Lisp evaluator. As explained in section 7.3.3 it involves a queuing

of the code to be evaluated onto the event queue of the activity mentioned in the point sprite.

If the viewpoint is not (currently) known to be contradictory we must save 'the point sprite in ase at

some future time it is learned to be contradictory. This is accomplished by executing the code:

(structpush point-sprite (viewpoint-contradiction-point-sprites *viewpoint*))

which causes the point sprite to-be added to a list of point sprites interested in knowing if this particular

viewpoint has become contradictory.

The companion procedure, the assertion replacement procedure for contradictions, is shown in figure 23.

Fig. 23. Assert Replacement Procedure for Contradictions

(def-assert-vca (contradiction)
'(if (not (eq (viewpoint-contradiction-marker *viewpoint*) t))

(progn
;Otherwise, set the contradiction marker to T.
(setf (viewpoint-contradiction-marker *viewpoint*) t)
;Evaluate the accumulated point sprites
(foreach

point-sprite
(viewpoint-contradiction-point-sprites viewpoint*)
(point-sprite-eval point-sprite)))))

The replacement code first checks to see if the viewpoint-contradiction-marker for the

viewpoint is T, an indication that the viewpoint is already known to be contradictory. In this case, there

is nothing to be done. If the viewpoint was not already known to be contradictory, we set the

viewpoint-contradiction-marker to indicate that it is. We then iterate through each of the

accumulated point sprites and po i nt-sp r i te-eval them.

The reader should carefully study the implementation of (CONTRADICTION) assertions to satisfy

himself that they correctly model the effect of sprites and assertions that satisfy the properties of

monotonicity, and commutativity. In particular, note:

1. If a (CONTRADICTION) is asserted, and a sprite activated looking for this assertion, the body will be

evaluated regardless of the actual order of the assertion and sprite activation.

2. If a (CONTRADICTION) is asserted, the bodies of every sprite watching for this to happen will be

executed exactly once, and will be executed in the activity the sprite was originally activated in.
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Although this example is'very simple, and does not involve significant use of objects and message

passing, it does indicate the basic principles used in ensuring monotonicity and commutativity are

maintained. The implementation of assert checks a list of point sprites at a predetermined location

for ones that should fire. The implementation of when both checks to see if the sprite should fire now,

and adds a point sprite to the appropriate list of point sprites in case information learned later will enable

the sprite.

7.5 The Length Virtual Collection

In this section we will discuss the implementation of a more interesting virtual collection, one involving

ether objects and message passing, as discussed in section 7.3.1. As implementers of the sprites and

assertional replacement procedures, we have made a decision about the best repository for information

about the lengths of objects. Lengt h is a relation of two arguments, a sequence and a number. If both

of these arguments are objects that can store information about themselves we have two choices for how

to store this information:

1. A sequence can. have a property known as its 1 e n g t h in which its length is stored.

2. A number can have a property known as s e q u e n e s - o f- t h i s - e n g t h where a list of all such

sequences are stored.

For a number of reasons (1) is better than (2). One obvious reason is that a sequence can have only one

length, but there may be many sequences of length, say, 1. An absurd possibility if (2) is chosen as the

representation can be found by considering a number objects for which no constraints are known about

its actual value. Then any sequence known to the system could end up on its

sequences-of-this-length property. There are other reasons why (1) is preferable, but they

must await a further description of the mechanism.

7.5.1 The Handling of L,ength Assertions

The assertion replacement procedure for 1 e n g t h assertions was shown in figure 20 and is repeated in

figure 24 for convenience. We will go step-by-step through what actually happens when this code gets

expanded (at compile time) and then what happens when the code is evaluated. Assume that the

assertion we are replacing looks like:
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Fig. 24. Length Assertion Replacement Procedure Repeated

(def-assert-vca (length =obj =number)
'(establish-object-point-assert

object ,obj
message-type 'assert-length
property ,number))

(assert (length a-sequence a-number))

This code is replaced by the following:

(establish-object-point-assert
object a-sequence
message-type 'assert-length
properly a-number)

Establish-object-point-assert is also amacro and it expands into

(send a-sequence
'assert-length
(make-assert-message

assert-message-basic a-number
assert-message-viewpoint *v i ewpoint *)

current-activity)

This code serves as the final replacement for the original assertion.

When this code is executed, it causes an event record to be added to the end of the queue for the then

current activity. When the event is finally executed, a message will be sent to the object a-sequence

of type ass e r t-l en g t h and with a contents that consists of two components: the basic part of the

message (the property of the object that is being asserted) and the viewpoint the assertion is made in

(which is bound to the variable * v i ewpo i nt*).

As described in section 7.3.2, the message handler for this message by the object is constructed by the

code that created the Ether object. What this message handler does is redirect the message to another

object. As was discussed on page 125, there is a class called obj ect-wi th-v i ewpoi n t, and there is

one instance of this class defined for each object and for each viewpoint for which we know something

about that object with respect to the viewpoint. In other words, there is an object that represents what is

known about the Elher object bound to a- s eque n ce in the viewpoint bound to * v i ewpo i n t *.

When this particular assertion is made the object to which the message is redirected may or may not yet

exist. If it does exist, it will be in the viewpointed-object-table associated with the object

a-seque nce indexed by the viewpoint. If it does not exist it must be created on the spot and sent the
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message; we will defer the 'discussion of how it is created until later. Assume for now it is in the table.

In our d e fo b j e c t description of the Ether object for the program synthesis system we gave e n g t h as

one of the viewpoint-dependent properties. Therefore the viewpoint-specific object will have an

instance variable called l e n g t h - p r op e r ty that will contain all indication of our belief about the

objects length. It will, in fact, contain n i 1 if nothing so far has been said about its length, and an Ether

object of type number that represents the information we know about the object's length.

The message handler for the as se rt-leo ngth message for these viewpointed objects is shown in figure

25.t The first thing the handler does is try to merge the newly asserted length with the already known

length. We won't go into the details of numbers, or merging them right now, but the function

number-merge will return a number object that represents all the constraints contained in both

Fig. 25. Length Assertion Message Handler

(defmethod (viewpointed-object assert-length) (n)
(let ((new-length (number-merge length-property n)))

(if (not (number-equal new-length length-property))
(if (null new-length)

;If the newly asserted length is not consistent with believed length, the viewpoint is contradictory.
(assert (contradiction))
;Otherwise we have learned new information It is recorded and applicable point sprites are executed
(progn

;Assign the new length property
(setq length-property new-length)
;Remove point sprites from stifled activities.
(clean-up-point-sprites-list length-point-sprites-list)
;Check each point sprite to see if it should get executed
(foreach

point-sprite
length-point-sprites-list
(let ((key (point-sprite-key point-sprite)))

(-if (and (ether-variable key) (ether-numberp length-property))
;If the key is an ether variable, bind the variable and eval the point sprite body.
(point-sprite-eval point-sprite

variable (ether-variable key)
value length-property))

;Otherwise it is a non-variable. Check for matchedness
(if (number-merge length-property key)

;If they do merge, eval the body.
(point-sprite-eval point-sprite)))))

;If this viewpoint handler has subviewpoint handlers, service them
(foreach

subviewpoint-handler
subviewpoint-handlers
(let ((*viewpoint* (<- subviewpoint-handler 'viewpoint)))

(<- subviewpoint-handler 'assert-length length-property))))))))

t Defmethod is a standard construct on the Lisp machine for defining message handlers. There is a handler defined for each
class (known on the Lisp machine by the name "flavor") in this case v i ewpo i n te d-ob j ec t, and each message type, in this case
assert-1 ength. The message handler takes an argument list. 'Ihis one was supplied with a singleton argument list: (n).
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number objects. For example, if one argument was a number known to be greater than 1 and the other

was a number known to be less than 4, number-merge would return a number object that would know

it was a number between 1 and (i.e. either 2 or 3). This new number object then gets bound to

new-l ength. We evaluate the function

(number-equal new-length length-property)

to determine whether we have learned any new information about the length of the object. If we have

nol learned any new information, then there is nothing else to be done and we complete the processing

of this message. If we have learned new information, we continue. By convention, the function

number-merge returns nil if the the objects do not merge, i.e. there is no integer that satisfies the

combined constraints of both its arguments. We check to see if new-length is null. If so, the

viewpoint we are in is inconsistent and we must assert this. We do this by evaluating the code:

(assert (contradiction))

It is possible to include assertions (and as we will see soon, sprites) in the Lisp code that defines a virtual

collection of assertions. If the viewpoint is inconsistent, there are no other things to do. Otherwise, we

have a number of things to do. We execute:

(setq length-property new-length)

to store the new knowledge we have obtained about the object's length. There is an instance variable of

this object called length-point-sprites-list that contains point sprites created by sprites

previously activated that are interested in the length of this particular object. These point sprites could

be in any of a number of activities. It is possible that some of these activities are stifled, in which case we

no longer want to service them. Point sprites in stifled activities should be'removed fiom the list. We do

this by executing:

(clean-up-point-sprites-list length-point-sprites-list)

We then iterate through the list of point sprites on the list length-point-spri tes- 1 ist and

execute all point sprites that are appropriate to execute. We will save the details of this until we have a

chance to explain how these point sprites are created. The final piece of code we execute is:

(foreach
subviewpoint-handler
subviewpoint-handlers
(let ((*viewpoint* (<- subviewpoint-handler 'viewpoint)))

(<- subviewpoint-handler 'assert-length length-property))).

Each object of this type has an instance variable called s u b v i ewpo i n t- h an d 1 e r s that contains a list

of all objects that represent facts known about this particular Ether object in viewpoints that inherit from
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the viewpoint we are currently servicing. Since these viewpoints inherit all information, we must notify

them of the newly learned length property. This is accomplished by a Lisp machine-type message

send: t

(<- subviewpoint-handler 'assert-length length-property)

It is worth noting that this one piece of code is all we have to write to allow the viewpoint inheritance

mechanism to operate correctly. (There is, of course, alot of code invoked by De fo b j e c t but this is of

no concern to designers of Ether subsystems.)

7.5.2 The Handling of Length Sprite Patterns

The replacement procedure for length sprites is shown in figure 26.

Fig. 26. Replacement Procedure for Length Sprites

(def-when-vca (length =obj =number)
(if (ether-variable obj)

'(establish-object-point-sprite-every-instance
object-type 'object
message-type 'when-length
property ,number
body , body*
variable ,obj
activity current-activity)

'(establish-object-point-sprite
object ,obj
message-tOpe 'when-length
property ,number
body , *body*
activity current-activity)))

Somewhat different things happen depending on whether the arguments in the length pattern are

variables or not. As can be seen from examining figure 26, there is a conditional that that picks between

two possible replacements. The condition is true if the first argument position (i.e. the sequence, bound

to obj) is a variable or not. We consider first the case of it not being a variable because it is the most

analogous to the cases we've examined so far. Suppose the sprite we are replacing looks like:

(when {(length a-sequence n)}
(contents-of-body))

t This message send does not go through the Ether activity mechanism and is executed as an "uninterruptible" event. See 8.4.1
for a discussion of this and related issues involving viewpoint inheritance.
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The replacement code becomes:

(establish-object-point-sprite
object a-sequence
message-type 'when-length
property n
body (contents-of-body)

activity current-activity)

The above code is also a macro and it expands into:

(send a-sequence
'when-length
(make-p.oint-sprite-message

point-sprile-message-basic n

point-sprite-message-viewpoint *v i ewpoint*
point-sprite-message-body '(contents-of-body)
point-sprite-message-closed- vars current-close d-variab es
point-sprite-message-closed- vals current-closed-values
point-sprite-message-activily current-activity)
current-activity)

When this code is executed, a- sequence and n are bound to specific objects. Analogously with the

as se rt replacement, this code sends a- se quen ce a message of type wh en - length. The contents of

the message includes the basic part, the number, n, for which we would like the sprite to trigger if the

length is determined to be that number, and the viewpoint. Also included are the body of the sprite that

is to be evaluated along with its current environment and the activity of activation. This message is sent

to the object a-sequence, and analogously with assert- type messages it is redirected to the object

that represents what is known about a- se q ue n ce in the viewpoint bound to * v i ewpo i n t*

The message handler for when-1 en gth messages for viewpointed objects is shown in figure 27. The

Fig. 27. Length Sprite Message Handler

(defmethod (viewpointed-object when-length) (key body closed-vars closed-vals activity)
(let ((point-sprite

(make-point-sprite
point-sprite-key key
point-sprite-body body
point-sprite-closed-vars c 1 osed-vars
point-sprite-closed-vals cl osed-vals
point-sprite-activity activity)))

(push point-sprite length-point-sprites-list)
(cond

((and (ether-variable key) (ether-numberp length-property))
;If the key is an ether variable, bind the variable and eval the point sprite body.

(point-sprite-eval point-sprite
variable (ether-variable key)
value length-property))

((number-equal key length-property)
;Otherwise the key is a number. If it's equal to the believed length, eval the body.
(point-sprite-eval point-sprite)))))
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method that redirects the message unpackages the various arguments to the message handler in figure 27.

The first thing the handler does is create a point sprite. The poilt-sprite-key field of the point sprite is set

to n -- the length we wish to trigger on. The point sprite is added to 1 ength-poi nt- spr i tes -1 i st

in case future asserts might cause it to trigger. We then check to see if the information is already

known that might make the sprite trigger; we enter the cond expression. The predicate of the first

clause of the co n d first checks to see if the key is an ether-variable (prefixed by the symbol " = "). It isn't,

so we fall through to the second clause. This clause checks to see whether the key (in this case n is an

equivalent number object to the currently believed length. If they are, the "sprite" has been triggered

and we execute the point sprite. As before, this execution causes a new event record to be added to the

end of the activity of the point sprite with instructions to evaluate the body.

Now consider what happens if the second argument position ofr the pattern is an Ether variable, as, in the

sprite:

(when ((length a-sequence =x)}
(contents-of-body))

Glancing back at figure 26, we see the code expands into an essentially similar form; the only difference

being the key is now =x instead of n. This code, in turn, expands into the following send.

(send a-sequence
'when-length
(make-point-sprite-message

point-sprite-message-basic ' = x
point-sprite-message-viewpoint *v iewpoint*
poin -sprite-message-body ' ( co n tents -of-body)
point-sprile-mnessage-closed-vars current-closed-variables
point -sprile- essage-closed-vals current-closed-values
point-sprile-n essage-activily c u rrent-activity)
current-activity)

The message when finally processed will get sent to the same message handler in figure 27. Since the key

is an Ether variable this time, we pass the first test in the predicate of the first clause of the con d. The

second clause checks to see if the 1 en g t h - p roper ty is a specific number; if so the sprite should fire.

This time, however, we must assure the variable x gets bound to the believed length of the sequence

which is, in this case, the length-property. So we execute:

(point-sp.rite-eval point-sprite
variable (ether-variable key)
value length-property))

This will cause the body of the point sprite to get executed through the activity mechanism with the

environment augmented by the binding of the variable x to the length of a- s eq ue n ce. Looking back
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at the original sprite,

(when {(length a-sequence =x)}
(contents-of-body))

we see that this is precisely the behavior desired. If we know what the length of a-sequence is, we

bind x to that and evaluate the body.

Now that we've covered the nature of point sprites and their execution for 1 e n g t h assertions, we should

look back at figure 25 which contains the handler for assert-length messages to see how point

sprites already in existence are processed. The code that iterates through all known point sprites is:

(foreach
point-sprite
length-point-sprites-l ist
(let ((key (point-sprite-key point-sprite)))

(if (and (ether-variable key) (ether-numberp length-property))
(point-sprite-eval point-sprite

variable (ether-variable key)
value length-property))

(if (number-merge length-property key)
(point-sprite-eval point-sprite))))

We check each point sprite on the length-poi nt-sprites-l1 i s t and extract its key. If the key is

an Ether variable, and the l ength-property is a number, we augment the environment of the point

sprite by binding the key to the length-property and evaluating it. If the key is not an Ether

variable, we check to see if the key and the length-property merge. If so, we evaluate the point

sprite. Note that the function e t h e r - v a r i a b l e serves a dual function. It is a predicate that is true iff

its aregument is an Ether variable; it is also a function that extracts the actual variable name. Thus,

(ether-var iable '=x) evaluates to x.

We now consider what happens if the 1 e n g t h assertion contains an Ether variable in the first argument

position. That is, consider the compilation of a sprite of the form:

(when ({(length =x n)}
(contents-of-body))

This sprite will be triggered by any sequence whose length is n. Since we have chosen to represent

information about lengths of sequences by storing the information with the sequence rather than the

number, this would seem to pose a dilemma. In some way, we must cause a point sprite to appear on

every sequence. The sprite replacement procedure shown in figure 26 leaves us with the following code:
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(establish-object-point-sprite-every-instance
object-type 'object
message-type
properly
body
variable
activity

'when-length
n

'(contents-of-body)

current-activity)

whose function is to get the appropriate point sprite on the 1 e n g t h - p o i n t- s p r ite s - 1 i s t of every

sequence, both those that are already known to exist and those that might be created at anyfitture lime.

The above code expands into the slightly more complicated expression shown in figure 28.

Fig. 28. Implementation of Length Sprites With Sequence Variable

(progn
;For every object that has so far been created activate this point sprite.
(foreach

object
object-all-instance-list-name
(send object

'when-length
(make-point-sprite-message

point-sprite-message-basic n
point-sprite-message-viewpoint *v i ewpoint*
point-sprite-message-body ' ( contents-of-body)
point-sprite-message-closed-vars (cons 'x current-closed-v
point-sprite-message-closed-vals (cons object current-clos
point-sprite-message-activity current-activity)

current-activity))
;Place a cop. of tile sprite message on the pending list for objects created later.
(push

(list 'when-length
(make-point-sprite-message

point-sprite-message-basic
point-sprite- message- viewpoint
point-sprite-message-body
point-sprite message-closed- vars
point-sprite- message-closed- vals
point-sprite-message-activity

object-pending-sprites-list))

ariables)
ed-valpes)

n
*viewpoint*
'(contents-of-body)
(cons 'x closed-vars)
closed-vals
activity))

When the function new-object is run, it does two things that make it possible for the code in figure 28

to function correctly.

(1) It adds the new object to the list obj ect-al - i nstance-1 i st-name so that sprites of this form

created in the future will be able to get ahold of the object.

(2) It goes down a list called object-pending-sprites-list which contains point sprites that

implement sprites that were activated before the object was created. Each of these point sprites contains

an ether variable for its key and so it ultimately must appear on the ength-poi nt-spr i tes-l i st
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for every object.

By referring to figure 28 we can see how this code interacts with the definition of new-object to get

the desired effect. The first half iterates through each object in the list

object-al 1 -instance-l ist-name and sends the when-length message to each. Notice that

the environment (arguments point-sprite-message-closed-vars and pointl-sprilemessage-closed-vals) have

been augmented with a binding of the Ether variable (the variable x) to the particular object. If the

point sprite gets executed within any particular object, the variable x will get bound to that object. Since

the original sprite pattern was:

((length =x n)}

this is the desired behavior.

The code in the second half of figure 28 is responsible for adding the point sprite to the

object-pend i ng-sp r i t e s - i s t. It actually adds an indication of the message that must be sent to

the newly created objects. This consists of a list of the message type (i.e. when-length) and the

parameters of the message. This contains sufficient information to allow the objects, when receiving the

message, to construct the point sprite. Notice that the argument poinl-sprile-message-closed-vars is

augmented with the variable x but the companion argument point-sprile-message-closed- vals has nothing

added to it. If and when a new object is created, this object is added to the list of closed values for the

point sprite before the message is sent.

The reader should now review the virtual collection implementation of 1 e n g t h assertions to check that

the properties of commutativity and monotonicity are maintained. No matter what order sprites and

matching assertions are created, the sprites will get evaluated exactly once and with the proper

environment.

7.5.3 The Creation of Viewpointed Objects

Thus far we have been assuming that when a message is sent to an Ether object it will get redirected to an

already existing object that represents what is known about the particular object in the viewpoint

mentioned in the message. Clearly these viewpoint-specific objects must get created at some point. As

mentioned on page 125 there is a viewpointed-object-table that contains these viewpointed

objects indexed by the viewpoint. When a message is sent to an Ether object, and there is already a
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viewpointed object corresponding to it in the table, the message is redirected to that object. Otherwise a

new object is created and inserted in the table. If the new viewpoint is one that inherits from no other

viewpoints, the new object is simply created and inserted in the v i ewpo i n te d -ob j e ct-t ab 1 e, the

original message is redirected to it, and we are done. The more interesting case is where the viewpoint

referred to in the original message is one that has one or more parent viewpoints. Somehow we must

ensure that all the knowledge possessed by each of the parent viewpoints about this object is reflected in

the knowledge stored in the newly created object.

We have a simple, uniform method by which this inheritance is accomplished. For each

viewpoint-specific characteristic we have supplied message handlers for assert and when- type

messages. To enable automatic inheritance we must supply one additional message handler for me r g e-

type messages. The handler for merge- e ngth messages is:

(defmethod (viewpointed-object merge-length) (length)
(<- self 'assert-length length))

After the new viewpointed object is created, the system sends one me rg e - message for each property

and for each parent viewpoint. The argument to the merge message is the property of the particular

object in the parent viewpoint, in this case 1 ength-property. It is the function of the merge message

handler to decide how the information is to be merged. In the case of length, the

length-property represents the believed length and so by sending the new object an

assert-1 ength message with the believed length we have accomplished our purpose. If there are

several parent viewpoints, one assert-length message is sent and the new object will merge the

various length-property's to obtain the length-property for the newly created viewpointed

object representing the inheriting viewpoint. If they fail to merge, then a (CONTRADICTION) is

asserted as desired. After all the properties are merged from the parent viewpoint(s), the original

message that mentioned this new viewpoint (and led to the creation of this new object) is delivered. In

the event that there are parent viewpoints for the new viewpoint for which no object exists in the

v i ewpo i n ted-obj ect- tab l e, the procedure is applied recursively to create these objects.

Our method for handling viewpoint inheritance has some worthwhile characteristics from the point of

view of efficiency. At the time of viewpoint creation only a very small amount of work actually has to be

done. New viewpoint-specific objects for Ether objects are only created when something new has been

said about that particular Ether object in the particular viewpoint. See section 8.4.1 for some further

discussion of efficiency issues related to viewpoint inheritance.
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7.6 The Member Virtual Collection

We won't go through each virtual collection definition in very much detail, but it is worth going through

at least one more to give some feel for the different ways it is possible to handle different classes of

assertions. The replacement procedures for both memb e r assertions and sprites is shown in figure 29.

Fig. 29. Replacement Procedures for the Member Virtual Collection

(def-assert-vca (member =element =list)
'(establish-object-point-.assert

object ,list
message-type 'assert-member
property ,element))

(def-when-vca (member =element =list)
(if (ether-variable list)

'(establish-object-point-sprite-every-instance
object-type 'object
message-type 'when-member
property ,element
body , body*
variable ,list
activity current-activity)

'(establish-object-point-sprite
object ,list
message-type 'when-member
property ,element
body , *body*
activity current-activity)))

The form of the replacement procedures is quite analogous to the ones for 1 e n g t h assertions shown in

figures 24 amd 26.

In the implementation of membe r assertions we again have two choices as to which of the two objects

should be the repository for the information. Either: (1) Each sequence can known which objects are

members of it, or (2) each object can know which sequences contain it. We have chosen the first of

these. Our reasoning is that few lists will have many objects that are members of them, but there will be

a number of objects that will be members of many lists.

As was the case with the 1 en gth virtual collection the replacement procedures shown in figure 29, the

replacing procedures establish-object-point-assert, and

establish-object-point-sprite each expand into assert- and when- type message

transmissions respectively. The form establish-object-point-sprite-every-instance

also expands into the appropriate message transmissions with the necessary code to ensure that future
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objects will get delivered the message. The expanded code is so analogous that we will not repeat the

explanation here. Viewpoints, message redirection, and viewpointed object creation happen identically

with the case of 1 en g t h type assertions. The only places we find differences are in the handlers for the

three messages assert-length, when-length, and merge-length. We will describe the

workings of each of these handlers.

The Defobject definition of Ether objects for the program synthesis system causes the class of

viewpoint-specific objects to have an instance variable called member-property. The way

member-p rope rty is used to "remember" what things are members of what is up to the designers of

the member virtual collection. We have chosen to let member-property be a list where the elements

of the list are those things known to be members within the specific viewpoint.

The handler for when-membe r assertions is shown in figure 30.

Fig. 30. Sprite Handler for Member Assertions

(defmethodc (viewpointed-object when-member) (key body closed-vars closed-vals activity)
(slet ((point-sprite

(make-point-sprite
point-sprite-key key
point-sprite-body body
point-sprite-closed-vars cl osed-vars
point-sprite-closed-vals closed-vals
point-3prite-activity activity)))

(push point-sprite member-point-sprites-list)
(cond

((ether-variable key)
;If the key 'is an ether variable, for evei element that is currently believed to be in this list,
;bind the variable and eval the point sprite body with the variable bound to that element.
.(foreach

element
member-property
(point-sprite-eval point-sprite

variable (ether-variable key)
value element)))

(member-property
(foreach

element
member-property
(when {(equal -element key))

(point-sprite-eval point-sprite)))))))

As with the handler for when-length messages, the contents of the message includes the key, the

object for which we desire to know memberness (or an Ether variable), and a body to evaluate along

with its environment and activity. As before we create a point sprite and add it to the list

member-poi nt-spr i tes - 1 i st.' We then check to see if the key is an ether variable. If it is an Ether
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variable, then we would like to evaluate the body of the sprite (now the point-sprite-body of the

poi nt-spri te) for each object which we know to be a member of the list in an environment in which

the variable is bound to that object. Thus we let the variable e 1 eme n t range over each of the objects

known to be members of the list and execute po i n t- s p r i t e- e v a for each:

(foreach
element
member-property
(point-sprite-eval point-sprite

variable (ether-variable key)-
value element)).

which has the effect of binding the ether variable to each element known to be a member and executing

the body of the point sprite (through the activity mechanism, of course, to preserve concurrency).

For example, if we had at some point asserted:

(assert (member an-object a-list))

the instance variable member-property of a-list would contain an-object as a member. If we

were then to activate a sprite of the form:

(when ((member =x a-list)}

(random-function x))

the variable x would be bound to an-object by the above code and the form

(random-function x) evaluated in that environment.

In the event the key is an object instead of an Ether variable, (and assuming the member property has at

least one element) we execute the following code:

(foreach
element
member-property
(when (equal element key)}

(point-sprite-eval point-sprite)))

We iterate through each of the objects that are known to be members, and for each one we create a new

sprite that will trigger if we learn that the object known to be a member of the list is equal to the object

we asked about. If the equality sprite triggers then we evaluate the point sprite.

There are many points worth mentioning here:

(1) It is possible to use sprites inside a virtual collection handler.
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(2) The sprite checking forequality will be activated inside the same activity as the original activity of the

sprite checking for memberness. Thus, resource control modifications applying to the memberness

sprite apply as well to the sprites created to implement it.

(3) The ability to include sprites inside the definition of a virtual collection leads to greater

commutativity properties while keeping the code simple. For example, if we had made the assertion:

(assert (member an-element *a-list))

and activated a sprite

(when ((member another-element a-list))
(random-function a-list))

and then at some arbitrary point in the future executed:

(assert (equal an-element another-element))

The sprite would fire executing the code:

(random-function a-list)

with a- 1 i s t bound to an - e 1 eme n t in the appropriate activity. The behavior of the system is totally

invariant over the time ordering of the two assertions and the sprite activation.

The handler for assert-member messages is shown in figure 31. The single argument to the handler,

e 1 eme n t, is the object which is asserted to be a member of this list. The first thing we do is check to see

if we already know it to be a member of the list. If it is the new-members-1 i st is the same as the old

member-property; if not the new element is cons'd onto the member-property.

If the predicate:

(not (eq new-members-list member-property))

evaluates to N I L, the information contained in this assertion is already known and there is nothing to be

done. Otherwise we continue executing the rest of the code in the handler. The first thing we do is run:

(setq member-property new-members-list)

that establishes the fact that the new e 1 eme n t is a member of the list so that any sprite generated in the

future can access this information. The next item of code deserves some discussion:

(when ((not-member element this-object)}

(assert (contradiction)))

It is of course the case that an element cannot be both a member of a list and not a member of the list at

the same time. Thus if we ever learn it is not a member, we assert a ( con t r ad i c t i on ). Here, again,
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Fig. 31. Member Assertion Handler

(defmethod (viewpointed-object assert-member) (element)
;The member-propert is a list of all elements currently believed to be a member of the list.
(let ((new-members-list (if (memq element member-property)

member-property
(cons element member-property))))

(if (not (eq new-members-list member-property))
(progn

(setq member-property new-members-list)
;It can't be both a member and not a member
(when {(not-member element this-object)}

(assert (contradiction)))
;Delete a point sprites belonging to stifled activities
(clean-up-point-sprites-list member-point-sprites-list)
(foreach
point-sprite
member-point-sprites-list
(let ((key (point-sprite-key point-sprite)))

(if (ether-variable key)
;If the key, is an ether variable, bind the variable and eval the point sprite.
(point-sprite-eval point-sprite

variable (ether-variable key)
value element)

;Otherwise it is a non-variable. Check for matchedness
(when {(equal key element))

;If they do merge. eval the body.
(point-sprite-eval point-sprite)))))

;If this viewpoint handler has subviewpoint handlers, service them
(foreach

subviewpoint-handler
subviewpoint-handlers
(let ((*viewpoint* (<- subviewpoint-handler 'viewpoint)))

(<- subviewpoint-handler 'assert-member element)))))))

we make use of a sprite inside a virtual collection handler. This sprite ensures that (among other things)

commutativity with respect to equal assertions about the costituents of the membe r and not-member

type assertions will be abided by. For the second position of the n ot-memb e r assertion we use instance

variable t h i s - o b j e c t which is bound to the Ethler object that is currently being processed.t

The same behavior could have been achieved by activating a sprite in every viewpoint of the form:

(when ((member =x =list)
(not-member x *list)}

(assert (CONTRADICTION)))

The results would be entirely equivalent except for a minor efficiency advantage with the code inside the

virtual collection. This represents a form of "hand compiling."

t A convention in message passing languages is that the variable se 1 f is bound to the object in which we are processing. In
Ether, however, we must distinguish between two kinds of objects. he variable self is indeed bound to the object in which we
are processing, however that is the viewpoint-specific object which is not the kind that is placed inside assertions and sprite patterns.
Instead, we must use the non-viewpoint-specific object. This is what t h i s - o b j ec t is bound to.



- 145 -

Referring back to figure 31, the next form encountered is the invocation of the function

clean-up-point-sprites-l ist which serves to remove point sprites belonging to stifled

activities. We then iterate over all point sprites in the member-poi nt-spr i tes-1 i st. If the key is

an Ether variable we bind the variable to e 1 eme n t, the newly learned member, and execute the body by

evaluating:

(point-sprite-eval point-sprite
variable (ether-variable key)
value element)

If the key is an object, we create the following sprite:

(when ((equal key *element)}
(ppint-sprite-eval point-sprite))

If we ever learn the key of the point sprite is equal to the member of the list, we execute the body of the

sprite.

The only remaining code necessary to complete the definition of the member virtual collection of

assertions is the handler for merge-member assertions. It is this very simple piece of code:

(defmethod (viewpointed-object merge-member) (member-list)
(foreach member member-list (<- self 'assert-member member)))

When a new viewpointed object is created this code is executed once for each parent viewpoint with the

argument, member-1 ist, bound to the member-property list of the parent. The code simply

iterates through all known members of the list in the parent viewpoint and sends itself (the newly created

object) and as s e r t -membe r message for each of these objects.

The reader is again encouraged to review the definitions of the handlers for messages in the member

virtual collection to verify that the properties of monotonicity and commutativity are maintained.

There are a number of other assertional types associated with the the Ether object used for the program

synthesis system. It would become laborious to go through the implementation of each one. They are all

defined in ways similar to the ones we have discussed in this chapter thus far.
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7.7 Implemention of Cryptarithmetic

Most of the discussion thus far in this chapter has been about the implementation of sprites and

assertions for the program synthesis system. We discussed some of the types of assertions that were used

in the construction of the cryptarithmetic system in section 4.2. We never mentioned the creation of any

sprites to implement the constraint propagation. By now it can be explained to the reader just how the

constraint propagation was done. In the previous examples of virtual collections, whenever we always

wanted to take some action when something was asserted, there was no need to create a sprite to watch

for that assertion; we could simply include the code inside the handler for the assert-type message.

The constraint propagation aspect of the cryptarithmetic system is in some sense "hard-wired." The

action we take when some informatidn is asserted is always the same regardless of the viewpoint we are

in. Thus we are able to encode all of the actions we wish to take when something is asserted in the code

for the assertion handler itself.

For the program synthesis system we had one kind of Ether object. For the cryptarithmetic system, there

are three.t The definition of the col umn object is:

(defobject column (constraints)
(column-description left-neighbor right-neighbor))

There are several viewpoint invariant parameters. Each column knows its column-description

which is a list of the letters that make up the column. It also knows of two columns, its

left-neighbor and right-neighbor. It must know about these columns to propagate

information about carries in and out. It has one viewpoint-sensitive property, constraints.

Whenever something new is asserted that reflects upon this column, a cons trai nts message is sent

that contains the object being constrained (either one of the three letters or one of the two carries) and a

list of the possible digits these can be.

The definition of the d i g i t object is: 

(defobject digit (cant-be one-of) (digit))

Each digit object has only one viewpoint invariant parameter, the digit that it represents. It can accept

two kinds of messages. An as s e r t-one- of message can be sent with a list of possible letters. The

t This, again, is an indication of the greater flexibility of the program synthesis system. IHere we were able to create an object that
could be a list in one viewpoint and, say, a number in another viewpoint. If this flexibility were not needed then we could have
defined several different kinds of objects.
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cant - be property is included for convenience.

The last of the three objects is the 1-e t t e r:

(defobject letter (cant-be one-of) (containing-columns letter))

Like the di gi t object it also has to know the thing it represents. Letter is bound to the symbol which

is its letter. Each letter also knows the columns it occurs in. This is bound to the viewpoint-invariant

instance variable, containing-columns. The cant-be and one-of fields are completely

analogous to the corresponding fields contained in the d i g i t object.

The techniques for implementing the cryptarithmetic objects are really very similar to those used for the

program synthesis system. We will go through just one example. The replacement procedure for

one-o f type assertions is:

(def-assert-vca (one-of =thing =alternatives)
(establish-object-point-assert

object thing
message-type 'assert-one-of
property alternatives))

Its form is exactly like the replacement procedures for most of the other assertions we have looked at.

Notice that the same procedure will work whether or not the the object type (bound to "th i ng") is a

lette r or a d i g it. We will just show one of the message handlers. The handler of asse r t-one-of

messages for ietters is shown in figure 32. We will briefy read through the code. We first check to see

if there are any new results in the message. If the argument, choi ces, is a superset of the set of possible

Fig. 32. Letter Handler For One Of Assertions

(defmethod (letter-with-viewpoint assert-one-of) (choices)
(if* (setdifference one-of-property choices)

(let ((new-one-of-property (intersect one-of-property choices)))
(if (null new-one-of-property) (assert (contradiction)))
(foreach
column
containing-columns
(assert (constraints column (this-object new-one-of-property))))

(foreach
digit
(setdifference one-of-property new-one-of-property) -
(assert (cant-be *this-object digit)))

(if (= (length new-one-of-property) 1)
(assert (one-of (car new-one-of-property) (this-object))))

(setq one-of-property new-one-of-property)
(foreach

subviewpoint-handler
subviewpoint-handlers
(slet ((*.viewpoint* (<- subviewpoint-handler 'viewpoint)))

(<- subviewpoint-handler 'assert-one-of one-of-property))))))
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letters we already knew about (bound to one-of-property) there is nothing to do. This test is

performed by the predicate:

(setdifference one-of-property choices)

If the test comes out true, we compute the new-one-of -property to be the intersection of the two

lists. If new-one - of - p rop e r ty is empty, the viewpoint is inconsistent, and we assert this:

(if (null new-one-of-property) (assert (contradiction)))

We then iterate through each of the columns in the viewpoint-independent property

conta i n i ng-co 1 umn s, and for each one we express the new constraints on the column:

(assert (constraints column (this-object new-one-of-property)))

We then iterate through all digits which we used to believe were possible assignments to this digit (but

no longer do) and for each one assert that it cant-be.

(foreach
digit
(setdifference one-of-property new-one-of-property)
(assert (cant-be this-object digit)))

If the new-one-of-property is of length 1 (meaning that we know a unique digit that it must be in

this viewpoint), we assert that the only possible assignment to this digit must be the very letter. We say

this with:

(assert (one-of (car new-one-of-property) (this-object)))

The remainder of the handler in figure 32 establishes the new value of the one-of-property and

handles subviewpoint inheritance in the manner we are already accustomed.

7.8 Miscellaneous Virtual Collections

There are a few assertional types that require somewhat different implementational techniques than the

ones we have discussed thus far. We briefly describe them here.

7.8.1 Implementation of Restricted Universal Ouantification

In a few places we have used sprite patterns that looked something like:
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(when (V m in (list-of-integers from 1 to (- n 1))

check {(sequence-element object =el (+ m 1))

(sequence-element cdr el m)})}

The most general form is:

(when {(V var in set
check { -- any arbitrary list of sprite patterns -- })}

--body--)

We call this restricted quantificationt for two reasons. The objects that the variable var are allowed to

range over must be finite in number and fully known at the time the sprite is activated; these objects are

contained in the conventional Lisp list set. The sprite will trigger iff the sprite patterns following the

check keyword trigger for every binding of the variable var to each of the elements in the list set.

Sprites incorporating this pattern do satisfy the property of commutativity; regardless of the order in

which the sprite is activated, and assertions satisfying the triggers are made, the sprite will trigger. How

this particular virtual collection of assertions is implemented so that this property is maintained is the

subject of this section. Note that there is no assertional form corresponding to the sprite pattern type for

restricted universal quantification so it does not make sense to talk about a "monotonicity" property.

The virtual collection works as follows. The collection of patterns in the "check" field must be true for

every binding of var to elements of the list set. In particular it must be true of the first element of

set. What we wish to do is activate a sprite whose pattern is the "check" pattern with var bound to the

first clement of set. If this sprite ever triggers, we would like to activate the same sprite, but with var

bound to the second element, and so on. If we succeed in triggering with var bound to each of these

elements, then the whole sprite pattern (for which this is a replacement) is true, and we evaluate the

body. Code to do this in Lisp machine Lisp is shown in figure 33.

While this is, perhaps, a bit complex to understand, an example will make it much clearer. Suppose we

had the following sprite to replace:

(when ((V x in list
check (less x number)})}

(--body-to-evaluate--))

t Kowalski, in a talk given at the MIT AI Lab in Spring 1981, mentioned a similar augmentation made to his version of Prolog.
I-Ie argued (as we do) that the declarative form is much easier to read and understand than the iterative code that implements it



- 150-

Fig. 33. Sprite Virtual Collection for Universal Quantification

(def-when-vca (V =identifier in =list check =sprite-clause)
(let* ((funcname (symbol-append "FOREACH-HANDLER-" (gensym))))

(make-auxiliary-functions
'(defun ,funcname (element-list)

(if (null element-list)
(progn ,@*body*)
(let* ((,identifier (car element-list))

(rest-elements (cdr element-list)))
(when ,sprite-clause

(,funcname rest-elements))))))
'(,funcname ,list)))

We use the function make-auxi 1i ary-funct ions to create a new function with a unique symbol as

its name. This new function embeds the sprite that we activate for each binding of the variable bound by

the quantification. For the case above, the created function will look like:

(defun foreach-handler-1234 (element-list)
(if (null element-list)

(progn (--body-to-evaluate--))
(let* ((x (car element-list))

(rest-elements (cdr element-list)))
(when {(less x'-number)}
(foreach-handler-1234 rest-elements)))))

This function is compiled when the original sprite is compiled; that is the purpose of

make-auxiliary-functions. The code that actually replaces the sprite looks like:

(foreach-handler-1234 list)

When foreach-handl er-1234 is called with argument 1 i st, it first checks to see if the argument is

null. If it is, then the sprite pattern is vacuously true, and we evaluate the body. Otherwise we bind the

quantified variable (in this case x) to the first element of the input and the variable rest-el ements to

the remainder of the list. We then activate a sprite containing the internal sprite pattern as its pattern. If

this sprite triggers, we recursively call foreach-handl er-1234 on the rest of the list (bound to the

variable rest-el ements). We will reach a call with a rest-el ements of nil 1 iff the check pattern

is true for all bindings of x in the argument list. This is the intended action.

There is a somewhat more general version of restricted universal quantification available. Suppose we

had a list of random objects and wanted obtain a list of their lengths. We could created the following

sprite:
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(when ((V obj in list
check {(length obj =n)}
binding list-lengths.
from-values -n)}

(random-function list-lengths))

As before, we check the collection of sprite patterns in the check field for each element of the in field

bound to the variable obj. Additionally we can place an arbitrary expression to evaluate in the

from-values field. For each element of the list in the in field, we evaluate the from-values field and add

the value to the variable in the binding field.

If the sprite above triggers, meaning that we knew the lengths of all sequences that were in 1 i st, the

variable 1 i s t - 1 e n g t h s will be bound to a list of all of the lengths of these when we evaluate:

(random-function list-lengths)

The implementation of this extended form of universal quantification is essentially similar to the basic

form of figure 33. It is presented without commentary in figure 34.

Fig. 34. Universal Quantification With Binding

(def-when-vca ( =identifier in =list check =sprite-clause binding =accum from-values =return)
(let* ((funcname (symbol-append "FOREACH-HANDLER-" (gensym))))

(make-auxiliary-functions
'(defun ,funcname (element-list returns)

(if (null element-list)
(let ((,accum (reverse returns))) ,@*body*)
(let* ((,identifier (car element-list))

(rest-elements (cdr element-list)))
(when ,sprite-clause

(,funcname rest-elements (cons ,return returns)))))))
'(,funcname ,list nil)))

7.8.2 Interacting With Activites Using Sprites

In our examples, there were sprite patterns that triggered on conditions that activities could be in. We

can, for example, create a sprite that triggers whenever a given activity, its argument, becomes stifled. By

referring to the definition of an activity in figure 6.2.2, every activity has a slot

stifled-point-sprites. As we will see, whenever a sprite is activated waiting for an activity to

become stifled, a point sprite is placed on the list bound to s t i fl ed - po i nt- spr i tes. The sprite

replacement procedure for stifled assertions is shown in figure 35. The code that replaces the sprite

first creates a point sprite. There is no point-sprite-key field because s tifle d-type assertions take no
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Fig. 35. Sprite Replacement for Stifled Assertions

(def-when-vca (stifled =activity)
'(slet ((point-sprite

(make-point-sprite
point-sprite-body ', *body*
point-sprite-closed-vars current-cl osed-variabl es
point-sprite-closed-vals current-closed-values
point-sprite-activio, current-activity)))

(if (stifled ',activity)
;If the activity is already known to be stifled eval the point sprite
(point-sprite-eval point-sprite)
:Otherwisc, add it to the stifled-point-sprites list.
(structpush point-sprite (stifled-point-sprites ',activity)))))

parameters other than the activity that the point sprite ultimately gets hung off of. If the activity is

already known to be stifled, the point sprite is evaluated. Otherwise it is placed on the

st i f ed-po i nt- a pr i tes list to be saved in case the activity is stifled at some future time.

The st i f 1 e function contains the following section of code:

(foreach
point-sprite
(stifled-point-sprites activity)
(point-sprite-eval point-sprite))

that causes already saved point sprites to be run in the event that the activity becomes stifled.

7.9 Comparison With Lexical Retrieval Schemes

This chapter has been about techniques for implementing a data-driven programming language. The

basic concept of this sort of language goes back at least to Selfridge [56] who proposed programming by

having demons watching blackboards and occasionally waking up and writing their own messages on the

board. This concept has been developed in a number of directions. Ether belongs to a group of problem

solving languages, often referred to as 'Planner-like languages" reviewed in section 3.6. Another system

that builds on this idea is the Hearsay architecture [12] in which the things written on the blackboard,

rather than being derived facts and goals, are hypotheses about possible interpretations of fragments of

speech.

In Ether, as we have already mentioned, assertions and sprites (our name for "demons") must satisfy the

properties of monotonicity and commutativity. While this is not true of all Planner-like languages, it is

arguably better because it allows one to give a declarative interpretation to sprites and assertions. The

chief insight expressed in this chapter is that the blackboard can be virtual. We view the important
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properties of this style of programming that it be possible for use to give a declarative interpretation to

the code. How this property of the code achieved in the implementation is of no consequence to

programmers writing code. To this author's knowledge, all previous implementations of languages of

this kind represent the blackboard of assertions and patterns of active demons using purely syntactic

techniques. The examples in this chapter makes use of the semantic interpretation of the assertional

forms to allow convenient coding and access. We will argue that implementing an assertional language

using virtual collections of assertions, where the assert commands and sprites have been replaced by

storage and retrieval mechanisms suggested by the semantics has a number of advantages. Because

assertions must now mean something there is additional burden on the programmer to design virtual

collections that are appropriate for the problem domain. Implementation is a two-tiered task. First

classes of assertions and sprites must be built up and then the higher-level declaratively-interpretable

code can be written using them. We believe that the extra work is justified and has the potential to raise

this class of languages from the toy language status to languages of practical use.

Although all the virtual collections we have presented compiled into object-oriented style code, this is

not a necessity. Other implementation styles might be more appropriate for other problems. Section

7.9.7 briefly describes another kind of virtual collection using unrelated implementation techniques.

The remainder of section 7.9 discusses various aspects of the implementation of assertional-style

languages using virtual collections of assertions,

7.9.1 Finding The Optimal Route

No matter how one represents the content of the assertions, the process of accessing the information will

occasionally be expensive. When the assertions are stored in a discrimination net, the programmer does

not have the ability to decide the order in which the elements of the assertion are checked. Picking a

wrong order can lead to an enormous computational waste. You will recall from the description of the

implementation of member assertions in section 7.6 that we chose to represent memberness by storing

on certain objects those things which are known to be members of them rather than storing on objects

those objects representing lists that it is known they are on. This choice is important from an efficiency

point of view. We are much more likely to as questions like "What elements are members of a given

list?" than "What lists have this item as a member?" in the course of reasoning about programs. In other

words we would be more likely to create sprites of the form:
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(when ((member =x -list)}

than sprites of the form:

(when ((member element =y))

The second sprite will, as was described in section 7.6, expand into code that will send when-member

messages to every object that has been or will ever be created. The first one will only send a message to

one object. Clearly we have optimized the implementation of member assertions for our particular

application.

Discrimination nets have similar properties with respect to variables in certain positions being much

more expensive than variables in other positions. Without having control over the means of storing the

assertions the much less efficient access path could have been picked as easily as the more efficient one.

7.9.2 Substituting Lower Level Reasoning for Higher

Having knowledge of the semantics of the assertions can sometimes allow results to "fall out" where

otherwise extra computation would have to be done. For example, suppose we know that the number X

is greater than 3; in other words we have executed:

(assert (> X 3))

Also assume a sprite has been created of the form:

(when {(> X 2))
-- body--)

If retrieval is done lexically the sprite will not trigger because the atom 2 does not match the atom 3.

In the current implementation, greater-than assertions turn into sends to one of the objects that it is

greater than the other. In the case that one is a constant object (e.g. 3) the message is sent to the other

one. The object 3 is then put on the list of the greater-property of the object X. When the sprite is

activated, it again recognizes that 2 is a constant and sends a when-greater message to X. The

method that handles when-greater messages knows that 3 is greater than 2 and thus causes the body

to be executed.

There are, no doubt, numerous places where some kind of reasoning can be done much more effectively

using low-level implementation techniques and then interfaced to the high-level reasoner through a
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virtual collection of assertions. Section 7.9.7 presents a rather extreme example of this.

7.9.3 Reduction of Data

There are cases where many assertions can be reduced to one with a savings in both storage and

computation by sprites wishing to access that information. Using the example of the previous section we

can imagine that the following assertions have been made:

(assert (> X 1))
(assert (> X 2))
(assert (> X 3))

If we stored these assertions lexically, and then created sprite:

(when {(> X =n)}

the sprite would be triggered three times, with n bound to 1, 2, and 3 on the three invocations. We

know, however, that the knowledge stored in those three assertions can be summarized in remembering

simply that X is greater than 3. If we stored only this, the sprite would only get triggered once with only

the strongest possible binding for n rather than several superfluous ones.

7.9.4 More Complicated Oueries

As we are not tied to items being lexically present in a database we can ask questions about things that

were never explicitly asserted, but easily computed on the fly. We need only ensure commutativity and

monotonicity. We had one example of such a sprite pattern, the restricted universal quantification

discussed in section 7.8.1. This simple observation turns certain questions that have worried researchers

in the field into non-problems. Much effort has been wasted worrying about whether certain kinds of

reasoning should be done in antecedent or consequent mode. If we did not have the idea that the

universally quantified form did not have to be lexically present in the database for a sprite referencing it

to trigger, we would wonder whether we should always generated such things antecedently (i.e. generate

them whenever they are true), an obviously silly idea, or invoke some sort of consequent reasoning

which is inefficient and linguistically awkward. In the context of the Amord language, deKleer et. al.

[72] worry about this very question with conjunctive statements. Bledsoe, in his excellent survey article

on the use of a semantic approach in theorem proving [3], mentions a number of techniques that could

be easily incorporated into a theorem prover using the virtual collections idea and lead to similar



- 156-

improvements of both efficiency and understandability of code.

7.9.5 Sprites Can Be Used Inside VCAs

The ability to to place sprites inside virtual collection handlers is of enormous significance in our ability

to design efficient, understandable problem solvers. In the implementation of member assertions we

were able to bury the sprite for checking for equality inside the message handler. Thus any techniques

whatsoever that we have for managing equality can be buried inside a.virtual collection for equality and

the member virtual collection will function as we would like it to. We have used a very simple

technique, but more sophisticated ones (e.g. Bundy [6]) could as easily have been incorporated. To

understand the advantages of this, both in terms of simplicity of code and efficiency, it is instructive to

consider what we would have to do to get proper behavior with respect to member and equal assertions

using a lexical retrieval mechanism. The simplicity with which it is achieved using our mechanism was

discussed on page 143. We wish to ensure that if the following two assertions were made:

(assert (member an-element a-list))
(assert (equal an-element another-element))

and we activated the sprite:

(when {(member another-element a-list)}

the sprite would trigger, regardless of the relative orderings of the two asserts and the sprite activation.

One way we could get the appropriate behavior is by creating antecedent sprites:

(when (member =obj =list)}
(when {(equal obj other-obj))

(assert (member other-obj -list))))

This would generate lots of unwanted assertions that would create what is often called a "combinatorial

explosion." The other possibility is to complicate the member request by including the equal request

inside of it. Thus, if we wanted to know if an -el eme n t was a member of a- 1 i s t, we would have to

create the sprite:

(when (member =obj a-list)
(equal obj an-element))

which is unmodular and doesn't give us the ability to have special ways to encode equality. Note also,

that without more system-supplied syntactic mechanisms, the above code won't actually work because
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(equal obj an-element)

is actually not the same request as

(equal an-element obj)

This is why languages like QA4 [54] have invented notions like bags (collections without order) so the

eq u a 1 pattern need not be duplicated. By giving the user the ability to semantically encode information

such syntactic mechanisms are not needed.

7.9.6 l)istributability and Parallelism

There has been some recent interest in the design of multiprocessor architectures to execute message

passing languages [17, 27]. Implementations built on lexical retrieval schemes require there be a single,

monolithic database in which to store the assertions. The compilation of Ether sprites using virtual

collections of assertions results in an inherently distributed implementation that could be executed on

such an architecture if they become feasible. See also section 8.3.3 that discusses this issue further.

7.9.7 An Alternative Virtual Collection

All of the examples actually implemented that made use of the notion of virtual collections of assertions

made use of a compilation into object-oriented style of programming. While this is a powerful

technique, other means of storage are possible. We discuss one (unimplemented) virtual collection that

would be useful for implementing an Ether algorithm described in [30]. It is not essential to go through

the details of the problem or the algorithm. The assertions and sprite patterns being replaced are of the

form of predicates on arbitrary subsets of a finite set whose elements are known in advance.

In many problems the number of elements in the set can be as high as 10 or 15, allowing the size of the

space of possible assertions that could be made to grow quite large. One of the predicates has the

property that if it is true of a set, it is also true of all supersets of that set. The other predicate has a dual

characther -- if it is tue of some set, is is also true of all subsets of that set. A rather high density of the

sets will ultimately get marked by one of the two predicates. (They are mutually exclusive.) In

comparison, the number of sprites that will be created is low and always asks about speciJic subsets. This

information is useful to us in the design of the virtual collections.

Because the space of possible assertions is the powerset of a set that may be fairly large, and a high
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density of them will actually be asserted, it might make sense to represent the asserted subsets in a bit

table. A trivial algorithm addresses the correct bit: the index into the bit.table is a bit string whose length

is the total number of elements in the set. For a given set, the index is computed by using a 1 in the

designated position for each element that is in the set, and 0 otherwise. When one of these predicates on

a set is asserted, the algorithm is run to set the appropriate bit in the table. Depending on which of the

two predicates we are considering, we choose one of two simple algorithms that enumerate the bit table

addresses for either the supersets or subsets of the initially asserted set.

Similarly, there can be two tables of bits where each bit indicates that a sprite has been activated looking

for the particular subset. The number of sprites activated at any one time will be relatively few, so the

actual point sprites can be stored il a simple list or other data structure without great concern for

optimization.

With this "low level" programming out of the way, code that uses sprites and assertions can be written

with ease. It is worthwhile considering how intractable it would be to write such a program using sprites

and assertions where the implementer is not able to design a virtual collection of assertions. First, the

assertions would be implemented by lexically storage. The amount of storage (per assertion) is relatively

high -- no matter how the assertions are represented there is a minimum of n pointers required, where n

is the number of elements in the subset. Schemes such as discrimination nets and hash tables that are

designed to speed up queries inevitably require more storage than this minimum. Since the density of

sets for which assertions will be made is quite high (probably greater than .5 on the average), the

difference in storage requirements is of overwhelming significance.

Another implementation requirement if a standard lexical retrieval scheme is used is that the marking of

supersets or subsets of marked sets must be marked by sprites rather than by more efficient low level

operations. Here again, the efficiency loss is so significant that it might well spell the difference between

practical and impractical programs.
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Chapter VIII Epilogue

In this chapter we collect together-several topics that relate to the material of the previous chapters but

do not properly fit inside them.

8.1 Nondeterminism and Computation

A very surprising thing happened while running the programs used in the cryptarithmetic problem

solver described in chapter 4. Many of the problems tested admitted more than one solution. During

different runs of the problem solver on a single problem, different (valid) solutions would occasionally

result. This was a surprise because Lisp programs do not normally do such things, that is return different

results during different runs. There are exceptions to this, programs that are designed explicitly to give

different results each time. Such programs contain random number generators, or perhaps sample a

value outside of the Lisp environment to be used as a datum by the program (e.g. the real-time clock).

The parallel Ether program is nondeten7ninistic and this realization has important implications for our

conception of what it means for a system, particularly an "intelligent system," to be nondeterministic.

This discussion is in part a critique of two views prevalent in the literature. According to one view,

intelligent mechanisms must contain random choice points if they are to produce the nondeterministic

behavior that people seem to exhibit. Proponents of the other view argue that intelligent behavior must

be deterministic because putting random choice into a computer program cannot possibly make the

program "more intelligent." While both points of view have some justification, we will argue that the

apparent disagreement arises from a limited understanding of the sources of nondeterminism. We use

our Ether programs as a demonstration that intelligent mechanisms may very well exhibit

nondeterminism without the random choice points that the proponents of the second view (quite rightly)

find objectionable. We first develop these two positions by a dialogue between two imaginary

individuals.

Mark: Good morning, Barbara.

Barbara: Good morning. Say, you promised you'd explain to me your new musical improvisation

program. Now might be a good time.

Mark: Why, yes, I'd like to. Have you ever noticed that if you take pieces of music written in a single
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style that the various attributes of the pieces, say their pitches and durations, have a characteristic

distribution? In the simplest version of my program, I can emulate any composer by processing a corpus

of his works and deriving statistical distributions for the pitches and durations. I can then use these

tables to "play" in that style by randomly determining a sequence of these notes that conforms to this

distribution.

Barbara: Well, certainly that isn't music. A random sequence of notes must surely sound like garbage! I

would liken it to "monkeys sitting on piano stools." The ingenuity of a composer is exhibited in the

careful and thoughtful arranging of the notes, not in some overall distribution of the pitches and

durations.

Mark: You're jumping the gun. Indeed it does sound like garbage; but remember, this is just the

beginning of my theory. There's more to it.

Barbara: Please continue.

Mark: Actually, what I just explained to you is my "zeroeth-order theory." The "first-order theory"

involves creating statistical distributions for all pairs of notes. The synthesis algorithm, when it wants to

pick the attributes for note n, uses note n-1 to define the distribution for the selection. The

second-order theory looks at a corpus of data collected about occurences of triples and selects the

distribution for note n from notes n-1 and n-2. The higher-order theories are similarly constructed.

Barbara: Well, it sounds like you've been spending long nights typing tables of numbers into the

machine. I think your time would have been much better spent thinking about the structure of music

and how that can be incorporated into an algorithm. I don't understand how randomly picking notes

could make something sound remotely like a piece of music worth listening to.

Mark: I'm not just "randomly picking notes." The selections are made according to a carefully

calculated statistical distribution.

Barbara: Even still, it doesn't reflect the careful selection of notes based on a high-level understanding of

music that my program uses. [Barbara goes on to describe her object-oriented composition program.]

Mark: Ah, but there is a sense in which your program can't be modeling what a composer does. It will

always generate the same piece! Human beings are clearly nondeterministic. The same composer will
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never generate the same piece twice.

Barbara: No! The only reason the composer does not generate the same piece twice is because he

remembers generating the first one. It would be boring to generate the same thing twice. Anyway,

there is a simple demonstration, or "proof' if you like, that intelligence is deterministic.

Mark: A proof! This is getting interesting.

Barbara: It's really just common sense. Suppose we have a program that randomly chooses things at

some point. If we can find a piece of knowledge that suggests one choice is better than the others we can

use that knowledge to make the choice deterministically instead. The intelligence exhibited by the

program has to increase. If we have no such piece of knowledge then we will do something like always

pick the first one on the list. Surely this can't make it less intelligent.

Mark: Well, that sounds all well and good; but I still claim that you aren't adequately accounting for the

nondeterministic behavior people obviously exhibit. I think I can demonstrate this to you. Do you play

chess?

Barbara: Yes I do, but I'm not that good at it.

Mark: That's fine. [He takes out his chess set and sets up the pieces. He lets Barbara be white.] I'd like

to play you a game to demonstrate a point. [Unknown to Barbara, Mark is a chess expert. He chooses,

however, to lose the game to Barbara to make his point. The game took about 20 moves.]

Barbara: Checkmate! I believe you were trying to make some point or other?

Mark: To make my point I will have to play you another game. I want you to play the same game you

just played, and I will do likewise. Certainly, for a deterministic machine such as yourself, that should be

no problem! [They play the game again. Barbara concentrates intensely. On the fourth move Barbara

makes a different move than she did the previous game.] You goofed, Barbara!

Barbara: No, I couldn't have. You just threatened my king's pawn and I must have protected it then as I

did now.

Mark: Well, you did protect it, but not by P-Q3, you moved this knight up instead.
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Barbara: I'm not sure I believe that.

Mark: Well, it just so happened I remembered the game. [He resets the pawn, makes the knight move,

and the finishes the game with a running dialog explaining what he thought were Barbara's reasons for

making the moves she did.]

Barbara: Well, I admit that ending looks familiar. Well, you're right that I played a different game the

second time. But I still claim its not because I'm a nondeterministic machine! I must have learned

something or gotten some new idea that made me think the pawn move was better than the knight

move, and this caused my "chess program" to do something different.

Mark: That isn't likely. It takes years of research for anyone to learn anything at all about the first few

moves of the chess game. Besides, you were trying to play the same game as the time before. Face it,

somewhere in your "chess program" there is a random choice point that picked one move the first time,

and a different move the second time.

Both of the characters in our little dialog have a point. Mark's is based on the simple observation that

people don't do the same thing every time. Barbara's argument -is based on the intuitively satisfactory

premise that a deterministic choice being used instead of a nondeterministic choice can't lower the

apparent intelligence of an algorithm. (We ignore here certain special uses for random choice such as

Monte Carlo simulations and in the theory of games.)

Before continuing with a more abstract discussion of sources of nondeterminism, it is important to

understand just why Ether programs are nondetcrministic. The running program contains numerous

running activities. The collection of activities is very fluid; new activities are created and others are

stopped all the time. At the lowest levels of the implementation is a scheduler for events and activities

described in section 6.2. The main loop of the scheduler selects each current activity in turn and runs

computations from its event queue until a predetermined amount of time chosen in proportion to the

amount of processing power the activity has. It then continues to the next activity. Nondeterminism

creeps in because the number of events that can be processed in a given time quantum by an activity

varies. There are a number of reasons why this can happen which we will enumerate:

1. The Lisp machine normally services interrupts from various sources. It is connected to a network and

occasional messages are received by the Lisp machine to be processed. The receipt of these messages

happens unpredictably. Another source of interrupts that can occur is the pointing device (known as a
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"mouse"). If it should be moved (or even just jiggled) it will generate an interrupt that must be handled.

The handling of these interrupts, when they occur while an activity is "current," will decrease the

number of events that the activity will be able to process.

2. Another source of this variation is the memory configuration of the machine. The Lisp Machine, like

most modern computers, has a virtual memory configuration. Programmers think about their machine

as if it had a very large quantity of homogeneous memory. In reality, there are several different kinds of

memory. On the Lisp machine there are essentially two kinds: a relatively small amount of

random-access semiconductor memory and a large disk. While the machine is running information can

only accessed if it is residing in the random-access memory ("RAM"). If the information does not

happen to be in RAM it must be read in from the disk, a very time-consuming operation. If alot of disk

operations happen to be done during time the time quanta given an activity by the scheduler, very little

actual work will be done. How much time is wasted handling page faults is something that is very hard

to model or make repeatable. This reason also- interacts with reason (1) above; Handling of interrupts

can cause paging and cause a rearrangement of the page set and of Lisp objects on those pages that will

affect future paging behavior.

3. Yet a third source of variation is due to the programmer's desire to probe the program in ways that are

useful for debugging it. For purposes of debugging it may be necessary to have the program do certain

additional operations at certain points. I have implemented a number of different tracing modes in

Ether that cause certain information to be printed on the console or different statistics to be gathered.

Sometimes changing the precise features we are tracing will cause different answers to result. t

The effect of all of this is that different activities may progress at different rates with respect to one

another on different runs. One can think of activities in the cryptrarithmetic program as "competing"

for processing power by attempting to constrain quickly. Two activities may be both heading to valid

solutions and if one, because of the reasons mentioned above, is able to get a slight edge, the

manager-activity will notice this fact and assign it more processing power. This will greatly

increase the likelihood of it reaching a solution before its competitor.

How can we relate these observations to the paradox suggested by the dialog? The two characters in our

dialog believed that they were taking incommensurable positions. They believed that if the program did

t This has on occasion greatly frustrated the debugging effort.
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not contain random choice points then it must be deterministic. Our example illustrates that

nondeterminism is possible without the programmer having to place any random choice points into the

program. One might argue that the random choice points are really there, that if we were to model the

interpreter for our program at a fine enough level of detail we would find these random choice points.

While this objection is true in principle, in practice such a model would contain so much irrelevant detail

(e.g. where Lisp objects are in real memory, what pages are in core, the current confguration of the

memory map, etc.) that it would not be, even remotely, a tractable model we could use for understanding

the program as a problem solver. Thus nondeterminism becomes not a property of the interpreter itself,

but of our model of it. Clinger [7] develops this argument extensively in his semantics for

(nondeterministic) actor computations. In our problem solving systems we have nondeterminism not

because we were too lazy to make an intelligent choice when presented with several options, but because

there are so many details that we would be forced to think about which are irrelevant to our purpose in

writing the program.

8.2 A Comparison With Constraint Networks

The ideas expressed in chapter 7 concerning the implementation of assertions and sprites using virtual

collections of assertions emerged from a series of discussions with Luc Steels and Ken Forbus after the

publication of my first work on Ether [30]. They had both become proponents of the constraint network

metaphor for problem solving used by Waltz [66] and more recently pursued by Borning [5] and

Sussman and Steele [59]. I had not yet learned that declarative (sprite) code could be written that did not

involve lexical retrieval schemes. Steels and Forbus argued that it made more sense to associate facts

known about objects with the objects themselves and that all computation should involve local

interactions between objects. This was necessary so that system performance would not degrade as more

knowledge is gained (as happens with lexically-stored assertions). I accepted their criticism as valid, but

countered with what I felt to be the greater expressibility and computational generality of sprites.

Virtual collections of assertions evolved as a way of keeping the advantages of sprites while exploiting the

locality of interaction inherent in the notion of constraint networks.

In this section we make clear the relationship between the two programming metaphors. We emphasize

two points:

1. A constraint network can be constructed out of sprites with the following limitation: All sprites are
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activated before any are run. In other words you cannot have sprites that create other sprites. We believe

this puts a significant limitation on the expressiveness of the language.

1. Using sprites (with virtual collections of assertions), code that is expressively equivalent to constraint

networks will compile into code that is functionally equivalent. In other words, there is no efficiency

penalty for programming with sprites.

We will make these points by building part of a constraint system out of sprites for a domain of interest

to workers with constraint networks -- simple linear electronic circuits; in fact, to make our point, we can

restrict our discussion to just networks consisting of nodes and resistors. ?he system has not been

implemented, but an implementation would seem to present little difficulty.

The first question we will ask ourselves is: "What is a node?" A node is a set of device terminals' at the

same electrical potential and that satisfy Kirchoffs Current Law. The terminals all connect to the node,

the voltages at each of the terminals are equal, and the sum of all currents coming into a node must be

zero. Using the metaphor of constraints this becomes functionally an object which knows about N other

objects (the device terminals). If the currents of any N-1 of them are known, then the current of the Nth

one can be asserted.

A node with 3 wires coming out of it would be defined by sprites something like those in figure 36.

Fig. 36. Three Terminal Node Sprites

(when ((current-out-of T1 =I1)
(current-out-of T2 =I2))

(assert (current-into T3 (+ I1 12))))

{when {(current-out-of T =I1)
(current-out-of T3 =I3))

(assert (current-into T2 (+ I I3))))

(when ((current-out-of T2 =12)
(current-out-of T3 =13))

(assert (current-into T1 (+ I2 13))))

(when (potential-at T1 =E))
(assert (potential-at T2 E))
(assert (potential-at T3 E)))

(when {(potential-at T2 =E)}
(assert (potential-at T1 E))
(assert (potential-at T3 E)))

(when {(potential-at T3 =E))
(assert (potential-at T1 E))
(assert (potential-at T2 E)))
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These represent tile relevant "electrical facts" and are similar in form to rules that would be defined in a

constraint network.

A resistor is a two-terminal device with three parameters, the potentials at the two terminals and the

current flowing through the device. If two of these parameters are known the third can be computed. It

is also the case (as for all two-terminal devices) that the current going into one terminal is equal to the

current going out the other terminal. Sprites that express the relevant electrical facts about resistors are

shown in figure 37.

Fig. 37. Resistor Sprites

(when (current-into T =I))
(assert (current-out-of T2 I)))

(when ((current-into T =I)}
(assert (current-out-of T2 I)))

(when {(current-into T1 =I)
(potential-at Ti =V))

(assert (potential-at T2 (- V (// I R)))))

(when (current-into T2. =I)
(potential-at T2 =V))

(assert (potential-at T1 (- V (I/ I R)))))

(when (potential-at T =V1)
(potential-at T2 =V2))

(assert (current-into T1 (// (- Vi V2) R))))

The sprites that define each of the kinds of devices can be collected into procedures named

create-node or create-resistor so they only have to be written down once and then

instantiated any number of times for each of the components of the circuit. What we end up with looks

very much like the constraint network formalisms of Borning, and Sussman and Steele.

An example will show how sprites such as the ones shown in figures 36 and 37 could be used to solve a

simple circuit problem. Suppose we had a circuit such as the one in figure 38 and were interested in

knowing the potential at node P1. How would this be determined?

The current going into upper terminal of resistor R1 is 2, this will trigger off a sprite from figure 37 of the

form

(when (current-into T1 =I)}
(assert (current-out-of T2 I)))
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Fig. 38. Series Resistors

i=2

R 1 = 1

R = 1
2

That will transfer knowledge of this current to node P2. P 2 is a two-node (like the three-node in figure

36 but simpler) which will contain a sprite indicating the current into the node from one terminal is

equal to the current out of the node on the other terminal. Another sprite like the one mentioned above

will transfer knowledge of this current to the terminal of resistor R2 adjacent to the node marked P3. At

this terminal we now know the current (2) and the potential (0, because it is connected to ground). This

will trigger a sprite of the form

(when {(current-into T2 =I)
(potential-at T2 =V)}

(assert (potential-at T1 (- V (// I R)))))

to mark node P2 with a potential of 2. The analogous sprite for resistor R1 will then trigger propagating

a potential of 4 to node P1. This was the original question we were interested in knowing and a sprite

would wait for the answer to appear and then stifle the activity containing all these sprites.

We now will address the second of our two claims above, that of efficiency. Since we will be

implementing the sprites and assertions using virtual collections of assertions, a reasonable strategy will

be to make terminals the ether objects. You will notice that each of the assertion types mention a

terminal and none of them are ether variables, making this a very good choice. What, then, does a sprite
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of the following form:

(when ((current-into T2 -I)
(potential-at T2 V)}

(assert (potential-at T1 (- V (// I R)))))

compile into? The first sprite pattern will compile into a command to place a point sprite on the object

representing terminal T2. The point sprite watches for information to be learned about the

cu r rent-i n to the tenninal. t If this triggers a new point sprite will be created and attached to the

same node to watch for a potential being learned. Upon learning this information we evaluate the code

that results from compiling:

(assert (potential-at T (- V (// I R))))

This is a simple message transmission to terminal TI that its voltage is a given value. At each point in

this execution, computation involves only local computation at specific nodes. No search through a

database is required anywhere. The only computational overhead required that might not be found in

the most efficiently implemented constraint network is that necessary to create the point sprites and

implement message passing. This is a very insignificant amount of work. We conclude that sprites

compile into code essentially equivalent to a "hard-wired" constraint network implementation.

To demonstrate the potential power of using sprites we examine another circuit in figure 39 that (to

electrical engineers) is only a little more complicated than the one in figure 38. Here we know two facts.

We know the current going into node P1 , and the voltage at node P2. By examining the sprites that

implement the three-node (of which node P1 is an example) we discover that nothing can be determined

about the currents entering the terminals of the resistors. By examining the sprites in figure 37 it will

become apparent that nothing new can be learned. For any of these sprites to fire, we require knowledge

knowledge of two of the three device parameters (potential at each of the two terminals, and the current

through the resistor). We only have knowledge of one of these facts (the potential of the grounded node)

for both. Our system quiesces without solving the problem.

An engineer would solve this problem by realizing that the configuration of resistors in figure 39 is one

t We made use of 2 classes of assertions that referred to the currents through a node. They were current-into and current-out-of.
The two assertional types were used for notational and conceptual convenience. In the virtual collection of assertions
implementation, only one of them would. be stored and questions/assertions about the other would be translated into
questions/assertions about the negation of the first. IHere, again, the use of virtual collections of assertions allows us to write
simple declarative code without any efficiency penalty.
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Fig. 39. Parallel Resistors

I

R 1 = 1

i=2

R=1
2

for which he has special knowledge. They are known as parallel resistors and he has a special rule that

defines the v-i characteristics of this configuration. The rule states that the configuration acts like a

single resistor with a resistance equal to:

(R1 * R2) / (R1 + R2)

To make use of this knowledge, we must be able to create a sprite that watches for parallel configurations

and then creates new sprites that express this new knowledge.

8.3 What We Need To Make Faster Ethers

We believe that the Ether language shows promise as a practical tool for program development for

artificial intelligence, even as a language to be run on a single processor implementation. Much of the

discussion in chapter 6 is to convince the reader that the overhead for having a parallel language is

relatively small. Never the less, there are places where improvements in performance can be gotten.
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8.3.1 The Activity Structure

There is nothing inlierently inefficient about the notions of activities and events. The kernel of the

implementation that cycles through activities and through events on the queues of each activity is small

and quite stable. With some specially written microcode the overhead of running events need only be a

couple of times the overhead of doing a Lisp function call.

Ether takes a less radical view towards message passing than Actl. In Actl all computation is done by

message passing down to a very fine clvel.t Whenever a message is sent that is a "request", i.e.

corresponds to a function call where the return value is of importance to the caller, ACTI must CONS

an explicit continuation actor to handle the reply. This is the function normally supplied by the Lisp

stack without requiring any CONSing to be done. In Ether, there are many function calls that happen

when executing each event. Each one of these function calls is implemented as normal Lisp. Thus we

don't concur an efficiency loss. This is not to say that we do not lose something in linguistic power by

not having explicit continuations. See section 8.4.3. However the current Ether may be a reasonable

compromise with Lisp systems that are likely to be available in the near future.

8.3.2 Eliminating Shallow Binding

Each of the events in the events queue is a closure, a piece of code to evaluate in an environment.

Currently closures in the Lisp machine are implemented by shallow binding all variables in the closure.

This procedure means that, upon entry into the closure, the entire vector of variables must have the

values currently in their value cells save, and the new values for these variables placed in the value cells.

Upon exiting the closure the saved values must be restored. In the Lisp machine this procedure takes

approximately 40 microseconds per variable.t In practice the environments that accompany the events

can be quite large (30 or more is not uncommon). The procedure contained in any given closure rarely

refers to more than a couple of the variables in the environment, and frequently is quite short. This

means that a large fraction of time is spent in overhead related to the environment.

t This is also true of Smalltalk [29]. Yet Smalltalk does not admit parallelism, obviating the need for CONSing continuations or
maintaining a queue of events.

:: Personal communication. Timing tests performed by Gerald Barber.
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8.3.3 Improving the Performance with Multiprocessors

Most of this work has concerned itself little with the' questions of concepts of parallel languages

irrespective of the nature of the hardware the program is to be run on. This is an unsettling concept to

many people who prefer to view parallel computation as an extension of sequential computation.

Following this paradigm, the programmer writes several sequential programs that communicate with

each other in some manner. A common means of intercommunication is by means of critical regions in

which variables shared by all processes. Programs that make use of shared variables are harder to

understand than the sequential programming methodologies they are based on.

The metaphor for parallelism Ether is based on is the actor model of computation. Under the actor

model, all computation is the result of actors passing messages When an actor receives a message, the

actor may respond by sending one, none, or several messages. Concurrency is the result of a actor

sending more than one message when it receives a message. Under the actor model, concurrency is the

default and sequentiality the special case where each actor sends at most one message when it receives a

message.

Our arguments for parallelism are based primarily on ease of control of search processes. That there is

concurrency that is potentially exploitable on multiprocessor systems is a valuable result, though one not

essential to this thesis. The presence of true concurrency in the programs follows from the use of virtual

collections of assertions as described in chapter 7. Rather than having a global database of assertions that

would present a bottleneck to parallel programs that have to constantly access assertions in it, we have a

system of objects with local state that communicate by sending messages. The potential hardware

concurrency is enormous. Hewitt and others [27] are currently investigating techniques for running

parallel actor programs on systems of homogeneous processors. Progress made in that area is directly

applicable to Ether.

There are some concepts contained in Ether that are new to message passing systems. These involve the

notion of an activity which is a mechanism for collecting events into convenient groupings so that

resource control becomes possible. We envision a multiprocessor implementation of Ether to look much

like many single processor implementations that communicate with one another. In other words, each

processor would have its own ring of activities and associated event queues. There are, however, two

concepts that we have been making use of the implementability of which come into question on

multiprocessor machines. We will briefly discuss these two concepts.
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1. Quiescence. An activity is quiescent whenever it has nothing to do. In the single processor

implementation, quiescence is determined to have occurred when the event queue of an activity is

empty. In a parallel implementation, quiescence becomes a much more difficult property to detect. An

activity is quiescent if there is no message which is part of that activity in any queue.t This might seem

to be a hard occurence to detect, and it is. An algorithm due to Lamport [38] can be adapted to solve this

problem, though the overhead would be considerable. There are two possible outs from this dilemma:

(a) There are only certain activities for which we would like to retain the ability to determine whether or

not they are quiescent. If, for any given activity, we restricted the number of processors that were

allowed to handle messages within it, we would then be able to reasonably (and reliably) detect

quiescence. The degree to which we would be willing to do this would depend on the inherent

concurrency within each of these activities and how many of them we would like to be running at the

same time.

(b) The detection of quiescence should only be used for heuristic purposes. That is, the correctness of a

deduction should not depend on whether or not an activity has quiesced. It is reasonable, then, to have a

mechanism that can detect quiescence with reasonable probability. If it turned out to be wrong,

processing power allocations could be rearranged as they were before.

2. Processing power. In the single processor implementation there was a simple scheme for computing

the time quantum for each activity from the amount of processing power assigned to the activity. This

algorithm does not directly carry over to a distributed implementation because each processor is unlikely

to have work under every existing activity to do at all times. Thus activities which tend to be more

"spread out" among the processors will get more than their share of processing power, to the detriment

of activities localized on a small number of processors. Algorithms can be designed to compensate for

this, however. We envision each activity having a "manager." The manager keeps track of the total

amount of computation (throughout the whole network) that the activity has done. Reports can be sent

periodically by individual processors to the manager with this information. This total is then compared

with the amount of processing the activity should have gotten during this period (easily computable as in

the sequential case). If the two are the same, the manager does nothing. If the activity has gotten more

t Depending on the specifics of the design of the multiprocessor system, we may have to additionally ensure that no messages are
caught in transit. The Lamport algorithm can be adapted for this case too as long as the time a message can be in transit is
bounded.
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processing done than it should have, the manager sends messages to the processors instructing them to

lower the amount of processing power the activity should be considered to have. If the activity has

gotten less processing done than it should have, a message informing processors of an increase in

processing power is sent.

8.4 Problems With Ether

There are several problems with the.current Ether language that have limited its usefulness. We review

the more obvious of these.

8.4.1 Inadequacies With Viewpoints

Viewpoints are a mechanism for creating different and not necessarily compatible models inside the

machine. Other names used in the literature for a similar concept are context and situation. We avoided

the term context because it carries with it the notion of a "current" context. With viewpoints there is no

concept of a current one. Context mechanisms do not admit significant parallelism because there is

usually a non-trivial amount of work required to switch contexts. The term situation was introduced by

McCarthy [431 in the context of a logic, the "situational calculus." McCarthy's definition of a situation

was limited to differentiating states of the world at different times. Our use of viewpoints has been

throughout this work for creating hypothetical models, although we do not exclude other uses. We

would like to be able to use viewpoints for modeling changes of state (as with situations), personal points

of view, belief systems, etc. Barber [2] investigates more varied viewpoint mechanisms.

The current notion of inheritance between viewpoints is severely limited. When a viewpoint inherits

from another, it either inherits all the facts or none. We would like more flexibility than this. One of the

first Al systems to make use of viewpoint-like mechanisms was the STRIPS [13] system. In STRIPS one

viewpoint was related to another by addlists and deletelists. One viewpoint could be converted to

another by adding a set of assertions and deleting some others. The STRIPS mechanism is quite limited.

New facts learned by reasoning about facts that are to be deleted, will not themselves be deleted. Thus

the STRIPS mechanism is inadequate for our purposes. A much improved mechanism has been

explored by Doyle [11] and others. The good idea in his work is that justifications should be maintained

for each of the facts in the database. If a fact is deleted, those derived facts that require it as a basis are

deleted. Doyle couched this mechanism as a truth maintenance system. Facts that are no longer believed
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become invisible; thus only one "viewpoint" is accesible at a time -- an inherently sequential approach.

We believe justifications can be used to link facts between several viewpoints. A new viewpoint can be

defined that inherits all facts from another except those that depend on a specific fact. We can make use

of the logical flexibility of justifications without giving up the ability to process many viewpoints

simultaneously.

The current Ether handles viewpoint inheritance by creating a viewpointed object for each object and

viewpoint where some information is known about the object with respect to that viewpoint. When a

new viewpointed object is created, all information is copied from the parent viewpoint(s). This copying

can sometimes be expensive (although it is conceptually simple to implement). A more efficient

mechanism can be envisioned that ransfonns questions about the presence of a fact in a given viewpoint

into queries of inheriting viewpoints. Such mechanisms should be investigated.

8.4.2 Lack of Full Continuations

Since Ether is not implemented using full actors (with continuations) there is a certain awkwardness with

mixing function-type code with sprite-type code that could be avoided otherwise. For example, suppose

(in the program synthesis system) we wished to to determine the length of a list L. We would say in the

current system:

(let ((act (new-activity)))
(goal (length L) act)
(when ((length L =num)}

... ))

We could not however define a procedure I i s t- en g t h that returns the length of the list. This is

because the mechanism that locates the list's length (the sprite) does not obey the normal Lisp stack

discipline. The code that is the replacement for when returns immediately after creating the sprite,

losing the path through which the information is to be returned. Assuming we could pass continuations,

the code for 1 i s t-length would look like:

(defun list-length (L)
(let ((act (new-activity)))
(goal (length L) act)
(when (length L =num)}

(<- list-length-continuation num))))

We would then be able to use this function as we would use any other.
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We were able to get around this problem by "open coding" all such procedures (as shown above).

Nevertheless, the ability to have procedures with full continuation-passing allowed would be an

enormous convenience.

8.4.3 lack ofTl'rue Lexical Scoping

Ether, though lexically scoped, is built on top of Lisp which is not. This has caused us some difficulty as

we discussed in section 6.3. Implementing Ether in a full actor language, or a Lisp that is lexically scoped

such as Scheme 160] would eliminate this difficulty. Steele [61] has developed a compiler for Scheme

that would make such an implementation quite efficient.

8.4.4 Quasi-quote Syntax

The normal convention in writing Lisp code is that items appearing in the argument positions of

evaluated forms are normally evaluated. If we want the literal item as the argument (rather than its

value) we precede it by a quote mark. In Ether we have picked the opposite convention. Items that are

unmarked are quoted while those that are marked (by the symbol "-") are evaluated. This convention

was of some use to us in the design of the program synthesis system. For example, we were able to use

expressions of the form:

(assert (termination-clause ((equal sequence nill) accumulant)))

However, in most cases, every assertion consisted of a single relation symbol followed by several forms,

each of which was evaluated. Thus in most cases the syntax was overly tedious. I would recommend that

future implementations of Ether or similar languages stick more closely to the Lisp conventions in this

regard. As experience increases with languages of this sort, there will tend to be even less uninterpreted

syntactic forms than exist already.

The reasons for using tile quasi-quote notation are largely historic. The current implementation of Ether

evolved from an older implementation that did not have the concept of virtual collections of assertions.

Instead, when assertions were made, the literal piece of list structure was encoded into the database.

Thus the objects comprising the assertions did not have any procedural structure and could be served by

literal (quoted) symbols.

In the current Ether, all objects have internal structure and thus must be created and then passed via
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variable evaluation. Thus'all positions inside relations (assertions and sprite patterns) are variables to

evaluate. The Lisp convention is far more convenient (as it is with normal Lisp code).

8.4.5 Lack of Unevaltiiated Functions Inside Relations

The syntax we have been using for assertions and sprites is restricted in a way that logic is not. Logic

allows the mixture of functions with relations while we allow only relations. This can be seen in a certain

awkwardness in our syntax. If we wanted a sprite to trigger on the condition that the first element of a

list X is a member of the list Y, we would say in our notation:

(when (sequence-element OX =el 1)

(member el Y)}

A much more concise way to say this would be:

(when {((member (car' X) Y)}

Here c ar is a function that extracts the first element of the list. It would be an enormous convenience to

us to be able to have the sprite involving the car function in some manner expand into something the

system can understand directly. A general theory of how to handle functions in Ether would. be very

powerful.

Resolution theorem proving (and Prolog) allow the use of functions inside relations. On the surface,

then, we appear to have an impoverished formalism. Resolution, though, treats functional symbols

syntactically and the kind of power you would hope to get out is lacking. Our system understands the

semantics down to a deep level. So, for example, if we knew that X had a length of 1 and that a certain

element was a member of it that was also a member of Y, our Ether sprite would be able to trigger. A

resolution-based system would probably not be able to perform such a deduction. It would look for a

literal ( c a r X ) to unify with and not find it.

8.4.6 Use of Class Structuring Mechanisms

The object-oriented formalism we used to represent both of our systems involves no class hierarchy. For

example, in the program synthesis system, we had one kind of programming object that could be

"configured" to look like a sequence, atom, or number. This one object must contain enough instance

variables to represent all possible relational types about all of these. When we create objects we
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frequently know at object creation time which kind of object it is. Thus, in addition to having a general

object type, we could have subclasses of this that were specifically for sequences, atoms, or numbers. If

we knew already the kind of object it was, the information could perhaps be represented more efficiently

by special message handlers for these subclasses. We could further subclassify our objects. For example,

we could write special message handlers just for the n i 1 1 object. The response this object would have

to when-member or when-sequence-element messages would be to simply disregard them! The

n ill object cannot possibly have members and so the sprites could never be triggered and there is no

need to create a point sprite. Such a class hierarchy would considerably improve the efficiency (and,

perhaps readability) of the virtual collection code.
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Chapter IX Conclusions

This work makes several contributions towards the art of problem solver construction. We list them.

1. We have demonstrated an approach towards engineering design, the design of a system that satisfies

specifications. While the specifications were logical in character the process of doing the actual design

was quite distinct from any theorem proving. Instead, the specifications were used in two ways. They

were used as integral parts of proposers that suggest solutions or classes of solutions to the problem. The

specifications are run on simple examples to suggest solutions. The specifications are also used tofalsify

solutions or whole classes of solutions that have been proposed. Parts of the program synthesis system

are admittedly ad hoc but the over all design is suggestive. Many of the ideas could be used to improve

the efficiency and possibly the generality of proof-based synthesis techniques or a programmer's

apprentice.

2. We have demonstrated the first resource control mechanism for a problem solving system that is truly

parallel. Previous mechanisms (e.g. tree search strategies, agendas) decide resource management on an

event level; the mechanism decides which is the best single thing to do next. We have tested several

resource control strategies using parallel resource control and demonstrated that there is no easy

mapping for them onto sequential strategies.

3. The example systems have made extensive use of activities, viewpoints, sprites, and assertions. There

seem to be no conceptual difficulties with using these constructs in large programs.

4. We have developed an assertion-oriented language where the user has the opportunity to define the

behavior of the assertions and sprites to take advantage of the semantics. We have seen that this leads to

both greater efficiency and flexibility of the language. The advantage of this style of implementing over

the more conventional lexical retrieval schemes (e.g. discrimination nets) seems clear. Furthermore our

implementation points to a unification of the concepts of assertion-oriented and object-oriented

programming. The examples we have used compile assertion-oriented code into object-oriented code.

The resulting synthesis is very elegant. We have shown that the concept of "constraints" can be

generalized within this framework.

5. We have developed a Lisp implementation of this language that is quite practical. The advantages of

parallelism as a conceptual tool do not require us to wait for new hardware architectures before they can

be used. Our code mixes "standard Lisp" with "Ether." The mix is surprisingly smooth and has caused
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us little difficulty. With minor caveats we can treat our Ether code as being parallel with binding

happening correctly. We hope that the language ideas we have developed will be of some guidance to

designers of parallel hardware.
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