‘CONCEPTS IN PARALLEL PROBLEM SOLVING
by
William Arthur I}_omfeld

M. S., Massachusetts Institute of Technology
(1979)

B. S., Massachusetts Institute of Technology
(1975)

SUBMITTED TO THE DEPARTMENT OF
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS OF THE
DEGREE OF

DOCTOR OF PHILOSOPHY IN
COMPUTER SCIENCE

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 1982

© Massachusetts Institute of Technology, 1982

7
Signature of Author s s ;
Department ofElectrical Enfginecring and Computer Science
October 26, 1981
Certified by ,
Carl Hewitt
T P 3 B Thesis Supervisor
Accepted by, / N -~ e o e & >\
e A -

Arthur C. Smith
Archivec Chairman. Deparumental Graduate Committee

MASSACHUSETTS INSTITUTL

OF TECHNOLOGY
MAY 20 1+42

LIBRARIES

v

PN

CONCEPTS IN PARALLEL PROBLEM SOLVING
by
WILLIAM ARTHUR KORNFELD

Submitted to the Department of Electrical Enginecring and Computer Science
on October 26, 1981 in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy in
Computer Science

ABSTRACT

The Ether language, a language for parallel problem solving, is used as an implementational vchicle for
two systems. Several aspects of these systems arc novel and depend on the presence of parallelism.

One of these is a system that solves cryptarithmetic puzzles. This system is capable of pursuing several
alternative hypotheses about assignments of letters to digits in parallel. The resources given to these
various activities can be changed asynchronously with their running. Strategies for resource allocation
are described. It is argued that parallel search offers greater flexibility in controlling the search process
than can classical tree search algorithms.

The second is a program synthesis system that takes as input a description of the rclationship between
inputs and output of a Lisp function in a variant of first order predicate logic. The system synthesizes a
Lisp program from this description. The system was designed to test the notion of pursuing multiple
implementation strategies in parallel with skeptic strategies. The skeptic stratcgies attempt to show that
certain proposed implementation strategies cannot possibly work. If these succeed, work on the
successfully refuted implementation strategy is halted. Sometimes one skeptic can simultancously refute
many possible implementations that would otherwise have to be scarched individually.

Several implementation details are discussed. The most significant of these is the notion of a "virtual
collections of assertions.” The discrimination net, common to implementations of pattern-directed
invocation systems, has becn completely replaced by a scheme that compiles the assertions and
data-driven procedures into much more efficient message passing code. The form of this code is
specified by the programmer for classes of assertion types and is suggested by their semantics. The
technique significantly improves the flexibility and efficiency of this class of languages. :

Ether code can be freely mixed with Lisp code while maintaining effective parallelism. Techniques of
implementation that make this possible arc discussed. The ability to freely mix Lisp code that is

interpreted in the conventional manner allows us to build programs of significant size on conventional
machines.

Thesis Supervisor: Professor Carl Hewitt

Title: Associate Professor of Electrical Engineering and Computer Science

CONTENTS

1. Introduction

2. A Theory Of Parallel Problem Solving

2.1 Falsificationist Phllosophy

2.2 What This Has To Do With Problem Solvmg

3. The Ether Language

3.1 Activities .

3.2 Sprites and Assertions

3.3 GOAIS et st st e se s

3.4 Viewpoints

3.5 More On Sprites
3.6 Historical Antecedents .

4, A Crybtarithmcu'c Problem SOIVETcevceemcrrcncrneneneereneneens

4.1 Description of The Problem ..

4.2 Relaxation ...cocceeeceeeeervcereesennens

4.3 A Simple Depth-first Solution

4.4 The Basic Parallel Solution

4.5 Controlling The Search

4.6 Comparing Tree Search and Parallel Search

5. Synthesis Of Programs from Descriptions of Their Behavior

5.1 Our Domain

5.2 How We Describe Functions to Synthesize

5.3 Overview of How The Synthesis System Works

5.4 Generation and Refutation of Termination Clauses

5.5 Proposing Simple Constructors

5.6 Pursuing The Function Definition .

5.7 Conditional Introduction
5.8 Skeptics By Progressive Testing

5.9 Related Approaches To Program Synthesis

11

11
12

15

. 15

17

24
25
26

30
31
33
37
41

55

55
57
68
74
79
83
86
93

6. How We Get Parallelism On Top OF Lisp ...

6.1 Message Passing Languages
6.2 Implementation of Activities

...........................

6.3 Lexical Environment Management

6.4 Sending Messages ..
6.5 Implementation of Processing POwerccocccevevvecennnee
6.6 Modifying The Activity Structure

6.7 Other Mechanisms

7. The Implementation of Assertions and Sprites

7.1 A Review of the Properties of .Sprites and Assertions

7.2 Virtual Collcctions Of ASSEItIONS ...e.veeveeerecnsseressssesnsanes

7.3 Objects and Object Oriented Programming

7.4 A Very Simple Virtual Collection

7.5 The Length Virtual Collectioncoeeeeseeenn.
7.6 The Member Virtual Collection

7.7 Implemention of Cryptarithmetic

7.8 Miscellaneous Virtual Collections

7.9 Comparison With Lexical Retricval Schemes.

8. Epilogue

8.1 Nondeterminism and Computationcee.e.

8.2 A Comparison With Constraint Networks

8.3 What We Need To Make Faster Ethers

8.4 Problems With Ether

9. Conclusions

10. Bibliography

. 117

117
119
122
127
129
140
146
148

. 152

159
159
164
169
173
178

180

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.
Fig. 37.
Fig. 38.
Fig. 39.

- FIGURES
Code For Depth First Solution 34
Basic Parallel Cryptarithmetic Programcceceeveneeee 38
Heuristic Allocation Strategy Code 43
Tree Scarch vs Parallel Scarch S0
General KNOWICAZE SPIILEScccvveeemerrrinenreriesssnessssmssesssesersssasssssssssssssssssssesassssensassssesessesmnsasess 70
code to initiate test 71
Goal For Equality 73
Codc For Proposing Termination Clauses ... 75
Code For Disproving Termination ClAUSEcceeeerereerseresseresserssssssessessosssssssasasessessassssossss 71
Function To Propose Possible Constructors .. 80
After Finding A Termination Clause 83
Code To Propose Possible AGCUMUIALOTSccecueceernennencsersnssrsserssssisssssasserssssasssasesns 85
Test Proposing Function for Equal First Elementccceverevennecnernecnes .. 88
Shell of Lisp Code ... 101
State of an Ether COMPULALIONccccceiereerrereseneseseresesensnnersnesssesassesessenssesassmsessssmssenssesassearas 103
Definition Of An Event Record ereressaseessneserosen 104
Decfinition of an Activity ... eeeemeatseeseesessesasstesesseressertssanansasransas ensesenssensatnsansranene 105
Code to Modify Absolute Processing Power Allocations 113
Hicrarchy of CONCEPLS ..cceeeeveecrverserseesererssessssessesssnssenssmsssssesssssessasasnsssassess 118
Length Assertion Replacement Procedure . 120
Length Sprite Replacecment Procedureocoueeverereraerueneees 121
When Replacement Procedure for Contradictions 127
Assert Replacement Procedure for Contradictions ... 128
Length Assertion Replacement Procedure Repeatedoceeiniencnenrecensesisnesnessssssssnsesaas 130
Length Asscrtion Message Handler 131
Replacement Procedure for Length SPIitescvorcrecnnenssessscesseesnsnasenesiscssssasssssssassesssnnes 133
Length Sprite Message HandIercceeirneeenrnrasersensessssssessssssassassessssasssassnesseessssssnsasses 134
Implementation of Length Sprites With Sequence Variable 137
Replacement Procedures for the Member Virtual Collection 140
Sprite Handler for Member Assertions . 141
Member ASSertion HandIErcccovoencrereneiecensessssessmsensnessessesssnsssssnsnesessessssasssssmssssnsssess 144
Letter Handler For One Of Assertions 147
Sprite Virtual Collection for Universal Quantification 150
Universal Quantification With Binding .. 151
Sprite Replacement for Stifled Assertions 152
Three Terminal Node SPIitesccoesueevnmenrcseseesessennsesess 165
Resistor Sprites 166
Scries Resistors 167
Parallel Resistors 169

Chapter I Introduction

This work is concerned with the use of parallclism in the solution of problems in artificial intelligence.
We are not concerned per se with the speed increase that can be attained by gainfully employing more
than one processor in the solution of a singlc problem -- although we hope that the ideas about parallel
languages described in this work will offer some direction to rcsearchers concerned with parallel
hardware architectufes. A point we wish to stress from the beginning is that parallel programs can be
talked about quite independently of any assumptions about the hardware these programs are run on.
The programs we describe have been implemented and exccuted on a single processor machine.

Chapter 6 is devoted to a discussion of the techniques of this implementation.

The work is divided into three main parts. The first part (chapters 2 and 3) consists of an overview of our
main ideas, both conceptual and linguistic. Chapter 2 presents a theory of problem solving based on the
work of certain philosophers of science, principally Karl Popper and Imre Lakatos. They develop an
epistemological theory to account for the growth of scientific knowledge that is very "operational” in
character. Their theories have motivated some new idcas about control structu.res for problem solving
systems. These control structures arc inherently parallel. Chapter 2 presents the theory of problem
solving in the abstract and describes its relationship to other approaches to problem solving. Later

chapters, through two example systems, make use of these control structures in solving problems.

Chapter 3 contains a brief description of the Ether parallel problem solving language. The material in
“this chapter is an elaboration of earlier work on Ether [30]. Ether has several attributes that make it a
convenient base to develop large parallel systems. There is an assert statement in Ether by which
assertions (representing facts or goals) can be made. There is also a procedural construct known as a
sprite. Sprites have patierns that are capable of matching asscrtions. If an assertion has been made, and -
a sprite activated that is capable of matching it, the sprite will frigger. When a sprite triggers a ncw
environment is formed as the result of paﬁcrn matching and the body of the sprite (arbitrary Ether code)
is cvaluated in that cnvironment. Sprites and asscrtions obcy certain propertics that make them
convenient to use in a highly parallel environment. Assértions obcy a monotonicity property. Once an
assertion has been made, it cannot be erased or overwritten. Sprites and assertions satisfy a
commutativity property. Of a sprite and assertion that are capable of triggering, the effects of cvaluating
the body of the sprite after triggering do not in any way depend on the order of creation of the sprite and
assertion. We argued extensively in [30] that these properties make it easy to construct large parallel

systems without the possibility of "timing errors™; these propertics are made use of here as well. The

earlier work on Ether [30] introduced a viewpoint mechanism that makes it possiblc to introduce
hypotheses and reason about them. Hypothetical reasoning is not possible in a monotonic system
without some construct to groupi'ng assertions, derived from a hypothesis, together. The viev-vpoint
mechanism has been carried over essentially unchanged except for some new syntax that allows the gode

to be more concise.

There are significant differences between the current Ether language and the one reported earlier in [30].
* Most of these differences have to do with the semantics and implementation of assertions and sprites.
The assertions of the original Ether language (and, indced, most assertion-oriented languages) are treated
by the pattern matcher as uninterpreted syntactic forms. In the current system the semantics of
assertions and sprites are understood by the system in a decp way. This, of course, requires designers of
Ether systems to define the semantics of the various types of assertions. We have postponed a discussion
of this until chapter 7. The language description and later examples should be understandable without
‘entering into this discussion. Indeed, the effect on our example programs of our current treatment of

assertions and sprites is to make them much simpler than they would otherwisc be.

Chapter 3 also discusses the activity mechanism, the Ether analogue to a "process.” When we have
several tasks we wish to pursue in parallel, we create several activities for this purpose. The extension
here over earlier work is the introduction of a resource control mechanism. It is possible to make
activitics run at different rates with respect to one another. The allocations of resources to the various

activitics can be made asynchronously with their running.

The second major division of this document describes two example systcnis developed in chapters 4 and
5. These systems highlight different aspects of both the theory of problem solving developed in chapter
2 and the Ether language.

Chapter 4 describes a problem solver for a kind of mathematical puzzle known by the name
cryptarithmetic. Tt is uscd to illustrate the concept of a sponsor that is introduced in our theory of
problem solving. The function of a sponsor is to "watch" the progress of scveral competing solution
methods, each searching for the answer, and modify resource allocations accordingly. The Ether
resource control mechanism is used to implement the sponsors. The chapter develops sceveral different
algorithms for resource control based on aspects of the particular problem. Scction 4.6 of that chapter
compares the parallel scarch methodology we use with more conventional tree scarch techniques. It

argucs that there is no way of reorganizing the parallel scarch program as a tree scarch that will allow us

o,

the same dcgree of control.

Chapter 5 describes a toy program synthesis system. The system synthesizes a few simple Lisp programs

from descriptions of their input/output relationships. The main motivation for developing this evample

1is to demonstrate the techniques of proposers and skeptics developed in chapter 2, the theory of problem

solving. Here we propose solutions (or pieces of solutions) to a problem and then test these using
skeptics. Those proposals that survive the tests of the skeptics arc accepted. An additional motivation
for developing this example was to have a large system involving many sprites, assertions, activities, and
viewpoints. Our techniques for implementing sprites and assertions are quite unique and required us to

construct a system of significant size to test them.

While our system is certainly a "toy" and of no practical value, we believe the ideas used in its
construction may be of some use in the construction of more practical program synthesis systems or
systems to aid program devclopment. A comparison with other program synthesis systems and

suggestions for how the methods we make usc of might be employed are the subject of section'5.9.

The third major division of this document consists of chapters 6 and 7 and describe the implementation
of Ether. At the lowest level Ether is based on the actor theory of computation. All computation

involving sprites and assertions compile into actor-style message passing code.

Chapter 6 is concerned with the "low level” techniques of this implementation -- the implementation of
message passing and its interface to the normal Lisp environment. The activity notion that we use
throughout the example systems is implemented as a mechanism for grouping events in the
message-passing implementation. We explain how messages arc scht, environments are maintained, and
resource control is implemented. The material of this chapter should be of interest to those interested in
message passing languages irrespective of the higher level code that compiles into it in our system.
Another major theme of the chapter concerns our techniques for blending message passing with ordinary
Lisp function calling in a way that preserves the parallelism that message passing provides while allowing
us to build fairly large programs on conventional machines. The resulting system, although more
cumbersome in certain ways than a pure actor language, has allowed us to construct the nontrivial

problem solving systems described in the earlier chapters. .

Chapter 7 concerns the techniques we use for the implementation of sprites and assertions. The

techniques differ markedly from other assertion-oriented languages. In most languages, the storage of

asscrtions and the triggering of sprites are accomplished by purely syntactic techniques that are not
accessible to the user of the language. Our system allows the Ether subsystem implementer to design.the
implementation of storage and fetrieval mechanisms making use of the semantics of the assertional
types. The techniques are, in effect, a way of compiling assertion-oriented code into straight message
passing code. Whenever an assertion is made or a sprite activated, what actually happens is a message is
sent to an object that acts as a clearinghouse for the necessary information. Special message handlers are
written for the individual assertional types that know how to encode the information in semantically
meaningful ways. We show how .our mechanisms maintain the properties of commutativity and
monotonicity that were made use of in the example systems. There are a number of advantages with

respect to both efficiency and expressibility of this approach. These are summarized in section 7.9.

Chapter 8 is a "wrap up” and covers a few different topics. The FEther programs we have written are
nondcterministic, that is they can produce different (valid) results on different runs. Both the reasons for
this, and some insights this gives us conceming nondeterminism are discussed in section 8.1. Section 8.2
contains some remarks on the relationship between Ether and "constraint networks.” We show that the
conceptual idea behind constraints can be more effectively implemented using Ether-like techniques
than the usual network-style implementation. Following this are two sections that remark on the

shortcomings of the current Ether language and its implementation.

About reading this document: Various sections of this document can be rcad independently. We strongly
urge the reader to look at chapter 2, the theory of problem solving. It is short and supplies a framework
for the rest of the document. The only "must rcading” for comprehending later chapters is chai)ter 3, the
discussion of the language. All the other chapters build maké use of constructs introduced in it. Either
of the two chapters containing example systems can be read indepcndently of one another. The two
chapters on implementation techniques can be read with only a brief glance at the previous two chapters -

from which the examples used derive.

On the use of code in this document: dec is an integral part of this work. Throughout the document
code fragments arc presented and cxplained. This codce is included for a reason; it is not just filler. A
careful attempt is made in the text to explain how the code works (and what point we are making by
putting it there). Only a tiny fraction of the Ether code uscd to implement the two problem solving
systems has been included. If we had included it all the size of this &ocument would casily double.
None of the Ether implementation has been included (save one very clegant function in figure 18); if

that had been included the size would triple. Whenever code is included it is therc to demonstrate some

-10 -

important feature. Almost all the code uscd in this thesis was "removed from service” so to speak. The
exceptions to this are the examples in chapter 3 and section 8.2. The only "doctoring™ of the code to
improve rcadability that was done involves the use of certain programming constructs to get lexical

binding to function properly. This is described in section 6.3.

-11-

Chapter II A Theory Of Parallel Problem Solving

The theory we are building upon in this chaptér has been reported by Hewitt and myself under the title
The Scientific Community Metaphor [32]. In that paper we construct a theory of problem solving meant
to mimic some of the hignher level aspects of the the kind of problem solving that is characteristic of
scientific research. Much of the inspiration for this theory derives from the work of the espitemologisi
Karl Popper [49, 50]. Popper was interested in how knowledge could be gained through thé methods of

scientific research.

2.1 Falsificationist Philosophy

The question of how science comes to realize knowledge has been asked by philosophers in modern
times since Descartes. There evolved two schools of thought known by the names rationalism and
empiricism. Modern rationalism, though beginning with Descartes Meditations, has intellectual roots
that go back to Euclid. The hallmark of rationalist philosophy is that there is a core of irrefutable
knowledge from which all other knowledge is deduced. Science, according to the rationalists, consists of
a process of deduction of new facts from alréady deduced facts. The work of Whitehead and Russell [69]

and the set theorists carly in this century represent a serious attempt to cast the whole of mathematics in
this mold.

Empiricism, pioneered by Hume [28], disputes the claim that there can be a core of irrcfutable
knowledge from which scientific facts can be derived. He proposed instead that knowledge is gained by
repeated observation. We see the sun rise every morning and so we come to the conclusion that the sun
“will continue to do so. He belicved that all knowledge was of a similar kind, gained by repeated

observation.

Popper rejects both of these traditions as being both logically unsound and not consistent with the
historical development of science. He coined the term justificationism to encompass both classical
rationalism and cmpiricism. He develops instead the doctrine of falsificationism. The falsificationist
doctrine asserts that what we believe, we believe not because we have a justification for it (a proof or set
of observations) but because we have tried to falsify it and failed in the attempt. Both deduction and

observation play a role in his theories, but not the same roles they play in justificationist philosophy.

-12 -

To Popper, science, or the ‘advancement of science, consists of two aspects: conjectures and refutations.T
Conjectures of scientific law are .pu[forth by scientists without any epistemological juslzﬁca'tion
whatsoever. He uses the term "bold conjectures” to emphasize this point. Once a conjecture is put forth
it then becomes subject to the refutation process. From a theory (conjecture) deductions can be made
and then the results of these compared with observation. If the consequents of the theory conflict with

observation then the theory is falsified and must be discarded.

This basic doctrine of falsificationism later became known as naive falsificationism. It was obvious to
everyone, including Popper, that theorics don’t ordinarily get discarded every time an anomaly is
discovered concerning them. Naive falsificationism was replaced by methodological falsificationism
which was extensively developed by Lakatos [36]. Methodological falsificationism augments the naive

version in two principle ways:

1. When anomalies are discovered, theories are not discarded; rather, they arc adjusted in a way that
preserves as much of the original character of the theory as possible, yet does not imply the anomaly.
Theories, then, instcad of being isolated points form clusters where new thceories are adjustments of old
ones that account for some new obscrvation. These clusters of theorics Lakatos refers to as research

programmes.

2. Research programmes do not cxist in isolation. Rather there are many existing concurrently, each
trying to account for the samc group of phcnomena. The degree to which a theory (or research

programmc) is accepted depends on how it farcs in comparison with others.

2.2 What This Has To Do With Problem Solving

Looked at as a theory of problem solving this is an inherently parallel one. Research programs proceed
in parallel and within each program attempts at falsifying and adjustment happen in parallel. The
observations of these philosophers of science imply a definite "control structure™ for problem solving.

The problem solver consists of three components:

1. Proposers suggest new theories for evaluation.

T Hence the name of Popper’s book, Conjectures and Refutations [49]. 1akatos presents a beautiful example of the process of
conjecture and refutation in the discovery of mathematical theorems and their proofs in his book Proofs and Refutations [37).

-13 -

2. Skeptics explore the implications of those theories and comparc them with observations or beliefs.
The findings of skeptics can be used by proposers to generate new theories. Skeptics were suggested for

problem solving systems by Hewitt [22] and used by me in earlier work with Ether [30].

3. Sponsors compare different approaches to the same problem and adjust resources to their activities

according to their relative merits.

- There are many Al paradigms that bear a resemblance to the one we are proposing here. The classical
control structure of "hypothesize and test" is very similar in spirit although is usually applied in domains
where the forms of the hypothesis and the test are simple and uniform. The "debugging” theories of
Goldstein [15] and Sussman [65] are perhaps the closest to ours. Their schemes both propose programs
and adjust the programs.based on bugs encountered in running them. The key addition of our approach
is the idea of running many in parallel and having the ability to "stand back" and watch their resf)ective
progress. If you have only one "research program” in existence, there is the danger that it will box itself
into a corner with a bug fix that was a mistake. Indced Sussman comments in his thesis about the
relationship between his own prograinming abilities and those of his program: "[I say to myself when I
notice my bug fixes not improving the program] “This is getting to be an ugly kludge and it is time to
rewrite it.” I then rcorganize the whole structure [of the program] .. HACKER just doesn’t have

anything like that ability."

The itheory we propose differs in certain fundanﬁental ways from some traditional approaches to problem
solving. A hallmark of traditional problem solving ideas is the notion of having two places in the search
space, where you arc now (or, cquivalently, your knowledge about where you are now) and where you
would like to be, the "goal state.” The problem solver in some sense tries to build a bridge between these
two places. The search space consists of lots of little stepping stones across which the bridge is
constructed. We don’t know enough to construct a top view of this space so the bridge-building activity
must procecd only on local knowledge. We know various ways of getting from stone, to the stones that
arc ncar cnough to it that a bridge can be directly constructed between them. It is hoped Lﬁat "heuristic
information"” is available to suggest which local paths arc likely to be most fruitful. The seminal work
from which this metaphor derives is the GPS program of Newell and Simon [47]. Explicit tables were
used to show the degree of interconncection between nodes in the scarch space. There are two important

assumptions that are made by the GPS model. They are:

1. That there is a symmetry with respect to two different ways of solving a problem. We can build

-14 -

bridges forward from that current world state or backwards from the goal state.

2. That we can trust the "atomic bridges" as being invariably correct. If we can succeed in finding a way

of connecting start to finish we can be absolutely certain of the correctness of the answer.

Robinson [53] introduced the resolution approach to thcorem proving in 1965. Because of its great
success from a theoretical perspectiveT it generated considerable interest until it was realized that
resolution could only solve the most trivial of problems due to its thoroughly syntactic nature. The later
group of pattern-directed invocation languages descended from the Planner language developed by
Hewitt [20] were largely a reaction to the lack of controllability brought about by this syntactic
orientation. Planner (as well as its implemented subset, Microplanner [64]) and subscquent languages
still preserved the dual nature of starting states and goal states. There are two kinds of theorems:
antecedent and consequent, the first of which moves from given facts to their consequents, the second
from goal states to facts that imply them. The two kinds of rcasoning are duals of one another. It was
hoped that some proper mix of the two kinds of reasoning would yield systems that converged on an

answer.

The theory of problem solving we propose does not view these two kinds of reasoning as duals. When
we have a problem to solve, we propose a solution (or rather, as we will see, classes of solutions) and then
use ou} forward reasoning capabilities to determine the implications of our proposals. When these
implications conflict with what we know to be true, we know the original proposal was incorrect. Those

proposals that remain uncontested we accept.

We have not yet said anything about how our proposers arc constructed. Our thcory of broposers
involves two basic ideas. The first is that we look at simple examples* and then see if we can find
theories that work on these simple examples. These theories, then, are tested on larger classes of
examples and adjusted (or flushed) as appropriate. The second basic idea is the notion of a prototypical
situation. Minsky’s frames [45] and Schank’s scripts [55] arc both relevant here. They are both attempts
to formalize the process of recognition, but the notions carry very naturally over to thcory formations.

They propose gencral templates with slots that necd to be filled in to make a specific theory.

T Resolution is a theorem prover for the first-order predicate calculus that is provably complete and consistent.

F When we use the term example, we do not necessarily mean examples in the ordinary sense. Within the context of the program
synthesis system developed in chapter S, for cxample, we may be interested in the behavior of a function on a list consisting of only
a single element, but we may not care to specify any characteristics of this clement. These might be called generalized examples.”

-15-

Chapter III The Ether Language

The language that is used throughout this work to implement our parallel programs is known as Ether.
The language was first described by Kornfeld [30, 31] in 1979. Since that time it has been considerably
extended and improved to the point where large, non-trivial parall¢l programs are possible. Ether is an
extension of the Lisp Machine dialect of Lisp. The interpreter for Ether is an extension of the normal
Lisp interpreter. Normal Lisp functions can be freely intermixed with Ether code. The Lisp code should
not be viewed as an "escape mechanism.” The programs we present makes use of the Lisp metaphor
(functional and operational programming), the Ether metaphor (declarative, data driven programming),
and, as we will see in chapter 7, the metaphor of object-oriented programming. The current gcnefation
Lisps suffer from certain shortcomings that make this mix somewhat difficult and inefficient. These
shortcomings are discussed in sections 8.3 and 8.4. However, these shortcomings can be overcome, and
we believe the combination of the these metaphors is quite practical and we hope will point the way
towards practical Al languages in the future. In this chapter we present the constructs of the Ether
language "as the naive user sces them.” Of course, the host language, Lisp, is not a parallel language and
has no facility for insuring that sprites (to be defined vshortly) will function as they should. A rather
extensive translation is done with the Lisp macro facility to transform the Lisp code into an
implementation which is effectively parallel. How this translation is accomplished is the subject of
chapters 6 and 7. The reader should not worry about this translation process and simply accept the

programs, for now, at face value.

3.1 Activities

Activities are the basic parallclism construct of Ether. Whenever any code is exccuted, it is executed .

- under the auspices of some activity. Activities are returned by the function new-activity. Activities

form a directed acyclic graph. Each activity (save one, the root acliviiy) has at least one activity
preceding it in the graph known as its parent activity. When the function new-activit y is called with
no argumecnts, its parent activity is the onc in which the new-activity function was cvaluated.
Alternatively, it can be handed an argument that indicates its parent(s). We tell Ether to evaluate code in
an activity by using the within-activity function. An iterator function is supplied known as
continuously-execute that keeps calling its argument again and again. So if we evaluated the

following code:

-16 -

(Tet ((a (new-activity))
(b (new-activity)))
(within-activity a
(continuously-execute (print 'foo)))
(within-activity b
(continuously-execute (print ’bar))))

We would create two distinct activities running concurrently with one another, whose sole purpose
would be to print rather boring messages on the terminal. It would look something like:

FOO
FOO
BAR
FOO
BAR
BAR
BAR

The exact sequence of prints is nondeterminate, yet the expected number of FOOs and BARs would be
about equal. If the above code were cvaluated at top level the parents of the activities bound to both a

and b would be the special activity the-root-activity.

Activities have a parameter associated with them known as their processing power. The processing power
of an activity represents the speed with which it can run. An activity with twice as much proccssiﬁg
power as another will get about twice as much processing done in a given time quantum as the other.
Processing power is a conserved quantity within the system. When an activity creates other activities it
must give them some processing power for them to run. The processing power assigned initially to
the-root-activity is arbitrarily chosen to be have the value 1. All of its subactivities that are.
runnable are assigned some fraction of this and at all times the total processing power for all activities
within the system will sum to 1. Processing power decisions are made by certain defaults when the code
does not explicitly specify otherwise. If an activity creates some number of subactivitics they will all by

default receive equal shares of processing power.

There are a number of functions that allow the user to override this default. One such function is
support-in-ratios which tells the system to divide processing power in specified proportions. For

example, if we modify the above code to:

-17-

(Tet ((a (new-activity))
(b (new-activity)))
(support-in-ratios
children (1ist a b)
ratios '(1 4))
(within-activity a
(continuously-execute (print ’foo)))
(within-activity b
(continuously-execute (pr1nt 'bar))))

we would be telling the system that we wanted activity b to get 4 times as much processing power as
activity a. Support-in-ratios takes two arguments, a list of activitics which must be children of the
current activity, and a list of equal length containing numbers.T Processing’ 'power is divided
proportionately with these numbers. What we would see on our console after exccuting this code would
be an endless sequence of FOOs and BARs with about four times as many BARs as F0Os. The
processing power assigned to the children of any activity can be modificd at any time, completely
asynchronously with the running of the activitics. After a change in processing power allocations, the

future running of the activities will be closely in accordance with these proportions.

There is one additional operation we can perform on an activity: we can stifle it. A stifled activity
simply ceases to execute. Any processing power that was assigned to it is returned to be subdivided
among its parent activity and that activity’s children. An activity can be stifled by calling the function

stif1e with the activity as an argument.

3.2 Sprites and Assertions | o

Many Ether programs depend very heavily on their ability to manipulate objects that can be given a
declarative interpretation. One primitive, assert, is used for making assertions (staterﬁents of one kind
or another). Another construct, know_fx as a sprite, has a pattern that can match classes of assertions.
When an assertion has been made, and a sprite created with a pattern that can match that assertion, the
sprite will at some point be triggered and code contained in the body of the sprite will be evaluated. The
environment in which the body of the sprite is evaluated may be augmented with variable bindings from

the pattern match. If we had assertional types foo and bar, and had executed the following:

1‘ Support-in-ratios takes keyword arguments. A convention uscd in the code in this documcnt is that keyword arguments
will be placed in an italic font.

-18-

(assert (foo 20))

(when {(foo 20)}
(assert (bar 15)))

We would expect (bar 15) to be asserted. Sprites can be made to match classes of assertions, rather
than just the single assertion above, by u'sing variables in the pattern. A variable is a symbol prefaced by
an " =" that will match anything in that position. When the body of the sprite is evaluated, the variable
becomes bound to the item-that was in the respective position of the assertion. If we had written the
following code:

(assert (foo 20))

(when {(foo =n)} ‘

(assert (bar =(- n 5))))’
we would again expect (bar 15) to be asserted. When the sprite was triggered, n is bound to 20 and
then (assert (bar (- nb))) causes (bar 15) to be asserted because (- n 5) evaluates to 15. The
Ether assert primitive currently obeys a quasi-quote convention [SI]T in which subexpressions are
normally unevaluated. Those subexpressions preceded by the symbol "»" are évaluated and this value

replaces the subexpression in the final assertion.

It is worth noting that the order in which the assertion is made and sprite created is-irrelevant to the final
outcome. The sprite will be triggered in either case and the body will be evaluated in the identical
environment in either case. This is a critical property for the proper working of the FEther language
known as commutativity. It is this property that makes it possiblc to have highly parallel programs that
function together in predictable ways. Often the producer of some information (the onc doing the
assert) and the consumer of that information (the spritc) will be in different sections of code running
asynchronously with one another. The order that they will actually be executed in is not necessarily
knowable from reading the program and may actually vary from one run of the code to the next. In
future implementations of Ether-like languages on truly parallel machines the order in which they
actually get exccuted may not even be knowable in principle.i The commutativity property cnabiles our
parallel programs to support subcomponents capable of intcracting with onc another in a productive

manner.

But sce section 8.4.4 concerning quasi-quote.
Special relativity puts certain theoretical limits on our ability to order events in time that happen at physically distinct locations.

-19 -

When a sprite is activated, it becomes associated with the activity in which it was activated. As long as
the activity has processing power the sprite will remain capable of triggering on assertions. When a

sprite is triggered, its body is evaluated in the activity that the sprite is associated with.

We will illustrate the interaction of sprites and activities with some simple examples. Suppose we
execute:

(let ((a (new-activity)))
(when {(foo 100)}
(stifle a))
(within-activity a
(when {(foo =n)}
(assert (foo »(+ n 1)))))
(assert (foo 1)))

The above crcates a new activity, and in it creates a sprite that will cause a never ending scquence of
assertions of the form (foo 1), (foo 2), (foo 3), to be made. We have also created a spri'te that
waits for (foo 100) to appear and when it does the activity generating the foo assertions will cease
functioning. The semantics of the language do not tell us precisely which will be the last assertion to get
made; the activity may generate {f olo 102) or (foo 103) or so before it is actually halted. We only

knowthmjtwﬂlﬁopsoona&er(foo 100) appears.

We will look at a few more examples.

(let ((a (new-activity))
(b (new-activity)))
(within-activity b
(when {(bar =n)}
(assert (bar (+ n 1)))))
(within-activity a
(when {(bar 100)}
(stifle b))
(when {(foo =n)}
(assert (foo »>(+ n 1)))))
(assert (foo 1)))

Here we have two activities, cach onc gencrating increasing sequences of f 06 and bar assertions.
However, in activity a we create a sprite that watches for (bar 100) to appcar. When it does, the
activity b is stifled and the output of foo assertions will be halted. Since _thc activitics a and b have the
same amount of processing power we would expect the highest foo assertion to be generated would be

in the vicinity of (foo 100).

The next example is a little trickier:

-20 -

(let ((a (new-activity))
(b (new-activity)))
(within-activity a
(when {(foo 100)}
(stifle b))
(when {(foo =n)}
(assert (foo =(+ n 1)))))
(within-activity b
(when {(bar 100)}
(stifle a))
(when {(bar =n)}
(assert (bar =(+ n 1)))))
(assert (foo 1))
(assert (bar 1)))
Here we have created two activities, one generating increasing sequences of bar assertions, and the other
increasing sequences of foo assertions. However in each activity we have a sprite waiting for a specific
assertion that is to be generated by the other. When it sees this assertion the other activity is stifled.
What will happen when we execute this code? The result is nondcterminate and there are three possible

outcomes.

1. The assertion (foo 100) will appear first causing the sprite in activity a to stifle activity b before
(bar 100) is produced. In this case activity a will continue running and result in the generation of an
endless sequence of foo assertions. '
2. The assertion (bar 100) will appear first causing activity a to be stifled and resulting in an endless
sequence of bar assertions. .

3. Both critical assertions get generated sufficiently closc in time to one another that both activities will

be stifled. (Each sprite fires and succeeds in stifling the activity containing the other sprite.)

We could, of course, stack the deck by giving the activities bound to a and b different amounts of

processing power as in the following:

-21-

(Tet ({(a (new-activity))
(b (new-activity))).
(support-in-ratios
children (1ist a b)
ratios (1 4))
(within-activity a
(when {(foo 100)}
(stifle b))
(when {(foo =n)}
(assert (foo »(+ n 1)))))
(within-activity b
(when {(bar 100)}
(stifle a))
(when {(bar =n)} ,
(assert (bar =»(+ n 1)))))
(assert (foo 1))
(assert (bar 1)))

making activity b run four times as fast. This will virtually assure that activity a will get stifled and

activity b will forever gencrate bar assertions.

The above examples are silly and use the st1if 1e primitive in ways that we would not use it in practice;
they are meant only to make clear what it means for a sprite to be in an activify. The way we will be
using the stifle primitive in subsequent chapters is when we have a proof that the sprites in a given
activity are not going to produce any information that will be of use in solving the overall problem we
will stifle that activity. There are several ways this can occur as the examples in subsequent chapters will

make clear.

In addition to the comwmutativity property associated with sprites, assertions satisfy a monoltonicity
property. Once an assertion has been gencrated it cannot be crased. [t is these two propertics that allow
us to give sprites a dcclarative interpretation. We can interpret them as implementing a forward

chaining implcmentatidn of modus ponens. For example, if we have the logical statement:
Human(x) D Mortal(x)

we could embody this knowledge in the sprite:

(when {(human =x)} .
(assert (mortal -x)))

As long as this sprite were in some activity with processing power, and (human Fred) werc asserted, we

would be assured that the assertion (mortal Fred) will eventually appear.

The way spritcs and assertions are implemented in the current Ether language differs significantly from

-7-

the implementation of similar constructs in other languages. These ncw implementation techniques have
cnormous implications both in the power of the language and the efficiency of the Ether program. This

is the subject of chapter 7.

3.3 Goals

~ Sprites, as we have just seen, give us a natural way to implement forward chaining. We also need the
ability to do backward chaining; in other words, we may desirc to know somcthing and wish to initiate
an activity for this purpose. At first glance we would think that the normal function calling ability of
Lisp would solve this problem for us. For example, if we wanted to know if two objects were equal to
one another, we could start up an activity and evaluate a function in that activity which contains Ether
code that can determine if two objects are indeed equal. We would say:

(1let ((a (new-activity)))
(within-activity a
(goal-equal objectl object2))
(when {(equal -objectl -»object2)}
-- Whatever we would like to do knowing they are equal --))
The call to goal-equal is an ordinary function call and contains the necessary Ether code to determine
whether or not two objects are equal. If the activity succeeds in its quest, an equal assertion will be

made which will be detected by the following sprite.

The above solution has the following serious flaw. Supposec several concurrent activities in the system
decide they want to know whether or not the same two objects are equal. They will each execute the
function (goal-equal objectl object2) and the exact same work will be duplicated (ncedlessly).
To avoid this, we have created a special goal facility. What the user would say, instead of the above code,
would be:

(let ((a (new-activity)))
(goal (equal objectl object2) a)
(when {(equal objectl object2)}
-- Whatever we would like to do knowing they are equal --))

A method has been written that knows how to determine if two objects are indeed equal. The skeleton

for the code looks like:T

T The curious reader can skip ahead to figure 7 where the goal handler for equal asscrtions uscd by the program synthesis
system is given.)

-23-

(defgoal equal (x y) act
--Code that can determine if two objects are equal--)

The goal mechanism has several features that make it easy to use. The first time the goal is invoked, i.e.

the first time:

(goal (equal objectl object2) activityl)

is exccuted, a new activity is automatically created (we will call it for purposes of discussion the
"goal-equal-activity"”) and the body of the defgoal is exccuted in this activity. This new
activity is a subactivity of activity1. Ifatsome later point another

(goal (equal objectl object2) activity2)

is executed, activity activity?2 is added to the list of parents of goal-equal-activity. Whatever
processing power it has is added to the processing power of goal-equal-activity. The goal may
be invoked any number of times and each time it causes processing power to be added to
goal-equal-activity which is already in progress working on the goal. The parent activities (i.e.
activityl and activity2) may change their processing power allocations for the goal and this
change is then reflected in appropriate changes to thé processing power allocation of
goal-equal-activity. If any of the parent activities are stifled, they are removed from the list of
parents. If all the parents of goal -equa'l -activity are stifled, its processing power allocation is
reduced to 0, causing it to hali work. However, some future invocation of

(goal (equal objectl object2) activity3d)

occurs, the goal-equal-activity will get processing power from activity3 allowing it to

continuc work.

Defgoal methods can often determine that their services aren’t nceded. For example, if it is either
definitely known that (equal object1 object2) or (not-equal objectl object2) thereis no
point in the activity continuing operation and it should be stifled. We would write the defgoal in the

following manner:

(defgoal equal (x'y) act

(when {(equal =x -=y)}
(stifle act))

(when {(not-equal =x »y)}
(st1fle act))

The variable act is bound to goal-equal-activity. If (stifle act) is exccuted, this activity

will be stifled. Special code is associated with these special goal activities that cnsures that if they are

-24 -

stifled from within themselves, all their inmediate parent activitics are stifled. This will allow processing

power allocated for this goal to be reclaimed automatically by the creator of the goal.

3.4 Viewpoints

All our discussion thus far has presupposed a global collection of assertions. We will be making heavy
use of Aypothetical reasoning in our example systems. Hypothetical reasoning is not possible in a system
that requircs assertions to be monotonic without some mechanism to make them relative to the
hypotheses$ from which they were derived. Once an assertion is made it is not retractable and we are
stuck. Our solution to this is a vz'ewpointT mechanism. All assertions and all sprites are created within
some vicwpoint. A sprite will trigger on an assertion only when it has been asserted in the viewpoint of
the sprite or in a viewpoint that the sprite’s viewpoint inherits from. The function new-viewpoint
returns a new viewpoint, initially free of any assertions. Optionally new-viewpoint can be handed an
argument that specifics parent viewpoint(s). If v1 is a parent viewpoint for v2 then all assertions present
in v1 appear also in v2. We use the function within-viewpoint to spccify in the code which
viewpoint the sprites and assertions actually happen in. Within-viewpoint takes as its first
argument a viewpoint and then any number of forms to cvaluate within this viewpoint. If we had the
following code:
(Tet ((v1 (new-viewpoint))
(v2 (new-viewpoint)))
(within-viewpoint v2
(when {(foo =n)}
(assert (bar =n))))
(within-viewpoint vi
(assert (foo 5))))

The sprite would not trigger because it was activated in a different viewpoint than the onc in which .

(foo 5) was asserted. If, however, we let viewpoint v2 inherit from v1 as in the following:

TThe viewpoint mechanism we have currently use is quite simplistic. Barber [2] is developing a much more sophisticated
viewpoint mechanism than the one presented here. The virtue of our mechanism is that it is clearly implementable and is of
adequate generality for our purposes here.

-25-

(let ((v1 (new-viewpoint))
(v2 (new-viewpoint inherits-from v1)))
(within-viewpoint v2
(when {(foo =n)} -
(assert (bar n))))
(within-viewpoint v1 .
(assert (foo 5)))) -

the assertion (bar 5) would appear in the viewpoint bound to v2.

3.5 More On Sprites

All the sprites discussed so far have exactly one pattern. A spritc can have any number of patterns
enclosed between the curly brackets as in the following:

(when {(foo =n)
(bar »(+ n 1))}
-- body --)

the sprite will trigger iff a foo assertion is present and a bar assertion is present with a number 1 greater
than that contained in the foo assertion. Such sprites are semantically equivalent to a nesting of sprites,
asin:

(when {(foo =n)} -
(when {(bar »(+ n 1))}
== body --))

In fact, in the implementation, when is a macro that, when handed multiple patterns, expands into
nested sprites like the one above. We introduce the concise notation because we often wish to check for

many things at once and this page (barring margins) is only 6.5 inches wide:

There is one class of sprite pattern that implements a restricted form of universal quantification that is

worth mentioning at this point. If we have the following sprite:

(when {(V n in list-of-numbers
check {(foo n)})}
-- body --)

where 1ist-of-numbers is bound, say, to the list (1 3 5 7 9). The spritc will trigger iff tﬁe
following assertions are made:

(foo 1)
(foo 3)
(foo 5)
(foo 7)
(foo 9)

-26 -

Remember that this sprite, as all sprites, satisfies the property of commutativity. The order in which the
asscrtions are made and the sprite activated is immaterial. It also, of course, does not matter what order
the elements of Tist-of-numbers are in. The identical behavior would be gotten if the list were (3 1

9 5 7) instead. We will explain in section 7.8.1 how these sprites are implemented on top of Lisp.

We have now introduced the basic constructs and mechanisms of Ether. There is more to the story of
programming Ether than what we have mentioned here. This chapter should serve as enough of an
introduction that the examples in chapters 5 and 4 can be understood. The other aspects t0

programming in Ether will be explained in chapter 7.

3.6 Historical Antecedents

The seminal work in the ficld of pattern-directed invocation languages was Hewitt’s Planner [21]. A
subset of it implementing antecedent and consequent theorems was hnplcmcﬁtcd as Micrbplanner [64].
This spawned several cfforts at various sites. An excellent overview of this crop of languagés through
1974 is given by Bobrow [4]. QA4 [54] introduced the concept of multiple contexts, much like our
viewpoints, but did not éllow concurrent acéess to them. There is a nontrivial amount of time required
to swi'tch from one context to another. QA4 was very heavily enginecred so that ordinary Lisp propertics
(e.g. variable bindings) could be made context dependent. QLisp [70] took a subset of the ideas in QA4
and integrated them so that code could be made to run using the standard Interlisp control structure.
Conniver [44] had many similar mechanisms to QA4 and introduced the concept of possibility lists to
allow ordcring or pruning of possibilitics for backtracking. Amord [71] was the first language to

consistently make use of the properties of commutativity and monotonicity.T

The most direct antecedent of the current Ether language was the original Ether language [30]. Here
were in;roduced the notions of activitiés, viewpoints, assertions, and sprites. The notion of processing
power, although mentioned in a "future work" section, was never implemented. The most significant .
. difference between the current Ether and the original is in how asscrtions and sprites are implemented.
The implementation techniques we use have important implications for both the efficiency and

expressivity of the language. We have replaced a syntactic retrieval mechanism with onc that is primarily

T There is an unfortunate confusion of terminology here. Amord is normally thought of as being non-monotonic. This is,
however, a fecature of its sequentiality. Amord docs not allow mulliple viewpoints. It is monotonic (in our scnse) in that no
information is ever thrown away, and is also commutative in our sense.

-27 -

semantic. This idea is very important and will be discussed in chapter 7.

Amord [72] introduced the concept of using explicit Goal assertions. The original Ether language [30]
borrowed this concept and somewhat extended it. The nature of this extension was somewhat of a hack
and served to make activities work out correctly. It served this purpose, but at the expense of some
modularity. The current solution fixes this problem. The reason for wanting to have "explicit goals” is
so the reasoner can reason about them. We would like to have the ability to know what the goals are so
we can control resources of activities working on them, and also be able to create activities attempting to

refute them. We would also like to maintain the following capabilities in the goal mechanism:

1. The proposer of the goal need not npecessarily know of the name of the procedure that works on it, nor

what other activities are also intercsted in the goal.

2. 1t should be possible that all control for working on a particular goal pass through one point, i.e. that
there should be one activity assigned to all work on the goal, and one place in the code that orchestrates
work on the goal. We would like to be able to establish resource control procedures to control work on

the goal that must know about all subactivites working towards it.

3. There may be several procedures for working on the goal which do not necessarily have to be known

(at program writing time) to the handler of the goal.

The Goal mechanism presented satisfies all three of these constraints in a fairly clean manner.

-728 -

Chapter IV A Cryptarithmetic Problem Solver

The problem-solving system in this chapter was picked to highlight the use of sponsors to compare
different approaches and allocate resources accordingly. As explained in chapter 3 we have the ability to
manipulate the relative rates (that is, their processing power) at which different activities run in parallel
concurrently with their running. The idea we hope to demonstrate is that with the ability to manipulate
the processing power of activities we can "guide"” the problem solver to a solution more efficiently than
could otherwise be done. Concurrently with running alternative methods of solution, we will also run an
activity whose task is to compare the rates at which different methods are approaching the solutionT and

reallocate processing power based on these comparisons.

In addition to being a testbed for the use of heuristic information to guide a search via the manipulation
of processing power, there are three other major themes that we will investigate with the system

described in this chapter.

First we would like to use this example to make a point concerning search strategies. When most writers
use this term, they are referring to different techniques for searching a tree using an inhcrently sequential
algorithm. We will argue that parallel search is of a fundamentally different sort. We use the
cryptarithmetic example because it appears superficially to be amenable to a tree search algorithm. After
explaining the various parallel scarch strategics we will demonstrate that these algorithms can not, in any

easy way, be written as "tree scarch” algorithms. This is the subject of section 4.6.

Secondly we wish to constrast two ideas in programming languages. The program synthesis system
makes use of the data-driven programming mctaphor where the user writcs programs that consist of
sprites that "watch” for ncw information to be learned. Part of the program implementing the system in
this éhapter makes use of a different metaphor known by the name of constraints. In a constraint-based
system the world is conceptualized as a graph of nodes that are repositories for some local piece of
information about the problem. The nodes are connected in a network. When new infonﬁation is
learncd about the attributes of a node that might cffect neighboring nodes in the network, the
appropriate information is passed to them. Somc other systems that employed this style of programming

arc described by Borning [S] and Steele and Sussman [59]). As we will sce in chapter 7 the

T In order for this to be successful, there must of course be a metric by which the alternative methods can be compared. Our
solution method, as we will sce, lends itself quite naturally to such a metric.

-29-

implementation of our constraint nctwork is but a special case of the implementation of sprites. These
observations will become important when we come to compare the the issucs of expressive power and

efficiency of the two formalisms in section 8.2.

Lastly we wish to demonsirate a system that combines two common architectures for problem solving

systems: relaxation and hypothesize and test.

In a system based on relaxation, internal data structures represent (implicitly or explicitly) potentially
acceptable points in the scarch space. Computation proceeds in narrowing down these possibilities by
employing knowledge of the domain in the structure of the computation. A classic example of the use of
relaxation is the vision program of Waltz [66]. In his system there were various possible interpretations
for the parts of a visual scene. For-pairs of parts of the scene, there were only certain allowable
consistent labelings. By local propagation of information about possible labelings for the individual
parts of the scene, the system was able to relax to a single consistent labeling for the entire scene. The
notion of relaxation is closely coupled with that of constraint networks because it is an obvious
computational mechanism for implementing relaxation. One point we wish to emphasize about pure
relaxation is that at any time the internal data structures will be consistent with any solution to the
proble_:m. Thus, if more than one solution is possible, pure relaxatioﬂ will be unable to select only one of

them. Further, even if a unique solution exists, a relaxation-based system may not be able to find it.

The hypothesizc-and-test methodology allows the program to make assumptions that narrow the size of
the search space; there is no guarantee that the assumption is consistent with any solution to the
problem. The program continucs to make hypotheses until a solution is located or it has been
determined that no solution is possible with the current set of assumptions. There is no requirement that
any hypothesis be correct and so mechanisms must be available that prevent commitment to any
hypothesis until it has been demonstrated to be acceptable. The most commonly available mechanism is
known as backtracking. Backtracking allows the program to return to an environment that would exist
had that assumption not been made. The ability to creatc multiple activities givcs us much more
flexibility in designing control structurcs than backtracking allows. In fact, as we will see shortly,

"backtracking” is but a special case of a whole family of search strategies that can be created.

As long as the search space is cnumerable (a very weak assumption) hypothesize-and-test can be easily
seen to be theoretically more powerful. If there are several consistent solutions, a purc constraint

propagation system has no way to cstablish preference for onc of them. Even if only one solution is

-30-

possible a constraint propagation system will not necessarily find it; this will be demonstrated later by
example. The proponents of constraint propagation point out that hypothesize-and-test is grdssly
inefficient in situations where constraint propagation can function. The example in this paper bears out
this claim, although one recent study by Gaschnig [14] suggests there are situations in which pure

backtracking is more efficient than constraint propagation.

One can, however, imagine a composite system that has aspects of both relaxation and
hypothesize-and-test. In such a system, rclaxation can be used to prune the search space, yet allowing
hypothesize-and-test to continue the search where constraint propagation is not able to. A constraint
language that can support the creation of such systems has been constructed by Stecle [62]. Steele ailows
assumptions to be made and backtracking performed. The current work discusses another such system
in which the hypothcsize-and-test mcthodology allows more .than one assumption to be pursued
concurrently. This is made possible by the use- of viewpoints and activities. We can create new
viewpoints to hold the results of relaxation-type processing based on hypothetical assumptions. The
work doing the propagation' in these viewpoints will be contained in separate activities. The amount of
processing power we give these activities depends on how likely we are to get useful results out of the

assumption(s) represented by the viewpoint.

The research described in this chapter has a highly empirical character. We experimented with several
different strategies for the reallocation of resources. Part of our message in this chapter is that not only
are the parallel programs casy to create, but they are also casy to fune to take into account l'}t‘:uristic
information that is available. The system describéd here is a demonstration that parallclism provides
certain ﬂcxibilify in the design of algorithms that make it convenient to make usc of heuristic knowledge

in ways that would be difficult or impossible otherwise.

The content of this chapter has already been reported in an abridged form in [34].

4.1 Description of The Problem

Cryptarithmetic problems, of the sort we are studying, were made famous in the Al literature by Newell
and Simon [46]. Their interest in these problems was one of producing psychologically motivated
models. We are only interested in them as abstract puzzles that involve searching through relatively

large spaces; no "psychological validity" is expressed or implied in the descriptions our algorithms.

-31-

We are given three strings of letters, e.g. "DONALD", "GERALD", and "ROBERT" that represent integers
when substitutions of digits are made for each of the letters. There is at least one possible assignment of
digits for letters so that the numbers represented by the first two ("DONALD" and "GERALD"),.when
added, yicld the number represented by the third ("ROBERT"). Any one of these assignments ’is a
solution. In the problems we will be looking at, cach will contain exactly ten letters. A solution consists

of a bijection from these ten letters to the ten digits 0 through 9.

4.2 Relaxation

To understand how the relaxation process works for cryptarithmetic we will examine the problem

mentioned in the previous section:

What can we say just by looking at it? By cxamining the second column from the left we can conclude
that E= 0 V 9. With a little thought we discover that no other constraints can be learned about any of

the other letters or digits without more information.

In Newell and Simon'’s original formulation of the problem for their production system model [46], they
gave the system the additional constraint that D = 5. Many facts can now be derived. We list a few of

them along with the reasons for the derivation.

D =35. Given.

E=0V 9. column2.

T-=0. #1 and column6.

E=9. #2and #3.

A =4. #4andcolumnd.
Carry-in{column5) = 1. #1 and column6.
Ris odd. column5 and #6.

R>S5. columnl and #1.

R=7V09. #8and #7.

10. R=7. #9and #4.

I A B O o

We can go on like this, and in fact Solvc the whole problem this way. We are able to do this without

-

-32-

making any additional assumptions beyond #1 above. We aren’t always this lucky. The point to going
through this is to realize that each of our deductions is centered around three kinds of objects: columns,
letters, and digits. We can make certain deductions by examining what we know about the values of
letters in a column and their carries in and out. When new constraints are le.arncd about the values of
letters, these constraints can be propagated to columns containing those letters. Similarly we can make

use of the fact that no two letters can be the same digit and no two digits the same letter.

There are three different kinds of Ether objects in our cryptarithmetic problem solver. They are

columns, Tetters, and digits. There are a number of assertions we can make:

(possible-digits »letter »digit-1ist) if asserted means that the only possible digits that

letter can be are those given in the list digit-1ist.

(possible-letters »digit »letter-1ist if assertcd means that the only possible letters that

digit can be are those given in the list letter-Tist.

{(carry-1in »column =n) if asserted means the carry in of the column column is known to be n. n

must be cither O or 1.

{(carry-out »column »n) if asserted means the carry out of the column column is known to be n.

n must be either 0 or 1.

(contradiction) if asserted means some letter or some digit had no possible assignment.

Code that actually implements the constraint propagation is presented in section 7.7. Unlike the
program synthesis system the kinds of processing that we do within each viewpoint is precisely the same.
We have no need to define sprites that can be selectively activated in different viewpoints; the program
can be written dircctly in the lower level message passing sublanguage to be introduced in chapter 6. We
will have more to say about the relationships between the two styles of programming in section 7.7 and

then again in section 8.2.

We can observe some things about the ability of a purely constraint-based system to satisfactorily derive
a unique solution. First, if there is more than one possible solution it will not find any of them. Since
the letter and digit assignments of cach possible solution are certainly possible assignments, they will

appear on the possibility lists attached to each node. Even if there is only onc possible solution (or no

-33-

possible solutions) the system may not find it (or discover that no solutions exist). For example, the
"DONALD" + "GERALD" = and "ROBERT" puzzle has only one solution; the relaxation sysiem
described will quiesce before finding it. Nevertheless, the knowledge can be said to be "present” in the
network; if the nodes of the network are instantiated with an assignment of leters to digits, the network
will assert a CONTRADICTION iff the assignment is not a solution. In order to solve these problems in
general we will have to augment our relaxation-based system with the ability to make and test

assumptions in seperate viewpoints.

4.3 A Simple Depth-first Solﬁtion

The first cryptarithmetic problem sol'vcr we will present is one that does hypothesize and test by a kind
of depth-first search. The depth-first search is implemented by a backtracking control structure. We
present this first as an exposition of our basic methodology of hypothesize and test and then go on to
show how parallel solutions arc but simple variants of the more conventional depth-first approach. The
complete code for the depth-first solution is shown in figure 1. We begin the search by cvaluating the
function initiate-depth-first. This creates a ncw activity (called start-act) and a new
viewpoint (called start-vpt). It is in this viewpoint that we will learn whatever we can about the
solution by relaxation without making any assumptions. We activate the following spritc in this
viewpoint:

(when {(contradiction)}
(Print "Problem not solvable.")
(stifle start-act))

If a contradiction happens in this viewpoint (mecaning that there is some letter for which there is no
possible digit or digit for which there is no possible letter) then the problem, as given, is not solvable.
When the activity quiesces, i.e. the system has relaxed as much as it can given the initial configuration, .
the following sprite in the figure triggers:

(when {{quiescent -stanrt-act)}
(if (total-solution (quiescent-letter-constraints start-vpt))
(report-solution)
(let ((minpair (select-forking-pair
(quiescent-letter-constraints start-vpt))))
(depth-first (car minpair) (cadr minpair) start-vpt))))

The function quiescent-letter-constraints can be called with a viewpoint as an argument and
returns a list of letters and their possible values in that viewpoint. Naturally, the viewpoint must be

quicscent for this information to be well-defined. The predicate total-solution checks to see that

-34 -

Fig. 1. Code For Depth First Solution

(defunc initiate-depth-first () -
(slet ((start-vpt (new-viewpoint))
(start-act (new-activity)))
(within-activity start-act
(within-viewpoint start-vpt
(initiate-relaxation)
(when {(contradiction)}
(Print "Problem not solvable.")
(stifle start-act))))
(when {(quiescent »start-act)}
: (if (total-solution (quiescent-letter-constraints start-vpt))
(report-solution) ’
(let ((minpair (select-forking-pair (quiescent-letter-constraints start-vpt))))
(depth-first (car minpair) (cadr minpair) start-vpt))))))

(defunc depth-first (letter alternatives parent-viewpoint)
(if (null alternatives)
s If there are no viable alternatives, the there is no consistent assignment possible
(within-viewpoint parent-viewpoint (assert (contradiction)))
1 Otherwise, pick one letter and test it in a new viewpoint
(stet ((v (new-viewpoint parent parent-viewpoint))
(a (new-activity)))
(within-viewpoint v
iMake the assumpution in the newly created viewpoint.
(assert (one-of -letter (-(car alternatives))))
i Let the implication of the assumption via relaxation happen in the newly created activity.
(within-activity a
(initiate-relaxation)))
(when {(contradiction)}
1If we know the assumption to be incorrect, we should note that jézct in the parent activity
(within-viewpoint parent-viewpoint
(assert (cant-be +letter -»(car alternatives))))
;and we stifle the activity.
(stifle a)
s We then recursively call the procedure on the remaining alternatives.
(depth-first letter (cdr alternatives) parent-viewpoint)))
s If the activity has quiesced, we must first check if the problem has been solved: if so, we are done.
; Otherwise we must pick a new branch to go down in a depth -first fashion.
(when {(quiescent -a)}
(if (total-solution (qu1escent-1etter-constra1nts v))
(report-solution)
(1et ((minpair (select-forking-pair (quiescent-letter-constraints v))))
(depth-first (car minpair) (cadr minpair) v)))))))

o

-35_

its argument, the list of possible digits assignable to each letter, contains precisely one possibility for cach
letter. This qualifies as a solution and we are done. Morc often, most letters will have many possibilities.
We now wish to make assumptions about particular lettefs being particular digits. The search is
"depth-first” in the foilowing sense: After making one assumption, we will 'again allow the system to
relax; when processing in this new vicwpoint has relaxed we again see if we have a solution, and if not
make another assumption of a letter being a specific digit. Eventually, after making some number of
assumptions, we will reach a state in which cact_l letter has only one digit. At any level in this chain of
assumptions it is possible that a (CONTRADICTION) will occur. A (CONTRADICTION) is asserted in a
particular viewpoint if it is discovered that there is a letter for which there is no possible digit assignment
or a digit for which there is no possible letter assignment in that viewpoint. In this case we must
"backtrack.” In our program this will correspond to picking another possible assignment to the letter and
pursuing it in a new viewpoint. If we run out of all possible digit assignments for a letter, then the
viewpoint which decided those were then only possible assignments (i.e. the one next up in the chain)
must be inconsistent. A (CONTRADICTION) is then asserted there. Note that no special code had to be
written to get this behavior in the superior viewpoint. When the viewpoint was first created, a sprite was
activated looking for contradictions in that viewpoint. [t matters not whether the information the caused
the contradiction was derived solely from manipulations in that viewpoint (or its superiors) or from facts

learned in inferior viewpoints.

The question remains yet as to which letter to make assumptions abo.ut. At the end of the relaxation
process of initiate-depth-first we must pick one. It scems to make the most scnse to pick a
letter with the fewest number of possibilitics as this also represents the choice that cngenders the least
number of possible failures (that will cause unwanted backtracking). We cannot, of course, pick letters
that have only one possibility (since no new assumptions can be made here). We thus must pick the
letter with the smallest number greater than 1. If there are ties then one letter is picked arbitrarily. This
selection is made by the code:

(select-forking-pair (quiescent-letter-constraints start-vpt))

The function seltect-forking-pair returns a pair consisting of the lctter and the list of possible
alternative digits. Next we call the function depth-first, giving it the letter, the list of alternatives,

and the current viewpoint as arguments.

We will now read through the the code for depth-first in figure 1 to sce how the above strategy is

implecmented. The first thing we check is that there is at least onc possible alternative. This is

-36-

accomplished by: iy

(if (null alternatives)
(within-viewpoint parent-viewpoint (assert (contradict1on)))

If there are no alternatives the parent viewpoint must be inconsistent and we assert this fact. Otherwise
we create a new viewpoint (and activity) to pursue one of the possible alternatives. Within the viewpoint
we assert:

(assert (one-of =»letter (2(car alternatives))))

That picks the first element on the list of alternative digits and assumes the letter to have it as a value (in
the newly created viewpoint). Within the newly created viewpoint we also activate a sprite watchiﬂg for
(CONTRADICTION) to appear. If'one is noted, we asscrt in the parent-viewpoint that that
particular letter assignment is not possible. Note that this may cause additional relaxation-type
propagation to happen in the parent viewpoint. That this happens is signficant. It may be the case that
learning this one new fact may lead to a contradiction being derived in the parent viewpoint. If this
happens, all the work exploﬁng the remaining alternatives still under considcration by depth-first is
unnecessary. When the contradiction is flagged in parent-viewpoint, the activity exploring it will
be stifled; since the activites created by depth-first are subactivities of this activity, they will also be
stifled and control will shift higher in the tre—e:.'r Although we are calling this the "depth-first" solution it

is not a totally sequential one; relaxation is performed in parallel althouglihypotheses are picked in a

- sequential, dcpth-ﬁrét fashion.

If the current activity quiesces, i.e.A it has finished thé relaxation process and has not derived a
contradiction, we check to see if we have found a unique solution. If so, we are done. Otherwise we
must make additional assumptions and recursivcly call depth-fi rst on them. We choose the new
letter to make assumptions about, as we did before, by calling select-forking-pair, this time ‘

giving it te current viewpoint. The chosen letter, and its list of alternatives, are passed to depth-first.

T When we start cxploring other algorithms that arc more "parallel” the fact that relaxation in parent viewpoints can derive
information that will be passed to subviewpoints becomes increasingly significant.

-38 -

Fig. 2. Basic Parallel Cryptarithmetic Program

(defunc parallel-solve ()
(slet ((start-vpt (new-viewpoint))
(start-act (new-activity))
(manager-activity (new-activity name ‘'manager))
(background-activity (new-activity name ’'background)))
(support-in-ratios parent the-root-activity
activities (1ist start-act manager-activity background-activity)
Jactors ‘(8. 1. 3.))
(within-activity start-act
(within-viewpoint start-vpt
(initiate-relaxation)
(when {(contradiction)}
(Print "Problem not solvable.")))
(stifle start-act))
. (within-activity background-activity
(when {(quiescent -start-act)}
(if (total-solution (quieéscent-letter-constraints start-vpt))
(report-solution)
(let ((minpair (select-forking-pair
(quiescent-letter-constraints start-vpt))
(parallel-fork (car minpair) (cadr minpair) start-vpt)))
(within-activity manager-activity .
(continuously-execute (allocation-strategy)))))

))
))

(defunc parallel-fork (letter alternatives parent-viewpoint)
(if (nul1 alternatives)
1 If there are no viable alternatives, the there is no consistent assignment possible.
(assert (contradiction))
; Otherwise, fork on each alternative
(foreach
digit -
alternatives
(slet ((v (new-viewpoint parent parent-viewpoint))
(a (new-activity parent start-act)))
(add-current-explorers.v a)
(within-viewpoint v
(within-activity a
(initiate-relaxation))
(when {(contradiction)}
(delete-current-explorers v a)
- (within-viewpoint parent-viewpoint
(assert (cant-be -+letter -»digit)))
- (stifle a)))
(when {(quiescent -a)}
(delete-current-explorers v a)
(if (total-solution (quiescent-letter-constraints v))
(report-solution)
(let ((minpair (select-forking-pair (quiescent-letter-constraints v))))
(parallel-fork {(car minpair) (cadr minpair) v))))))))

=3

-37-

4.3.1 Review of Simple Depth-first

It is important that the rcader understand the sense in which this is a depth-first search. If we find a
problem with this viewpoint we move to the next higher one in the trec and sclect the next alternative
from the list. If the list is empty then we pop back to the previous level (by asserting a contradicﬁo’n in
the viewpoint which is watched for by a sprite at the next higher level) and continue down the list of

alternatives there. At any one time there is one viewpoint which is most detailed, i.e. it reflects the

~ largest number of assumptions. It is not a classical tree search, in which the nodes are inactive data

objects. The tree consists of viewpoints containing assumptions, each with an associated activity.

Information learned in a viewpeint lower in the tree may cause new activity higher in the tree.

4.4 The Basic Parallel Solution

In the depth-first implementation discussed in the previous section, whenever an activity quiesced
relaxation on a particular viewpoint we picked a new letter with a list of alternative digits from which to
create new viewpoints. We went through this list one digit at a time, and waited for it to fail before going
on to the next alternative. We could just as easily have started activitics pursuing cach of the alternatives
in parallel. The code shown in figure 2 does just that. The code in figure 2 is actually generic for a whole
family of algorithms.T The aspect of the code that distinguishes one member of the family from another
is the alloéation strategy used -- the scheme for deciding how much processing power to give to the
various running activitics.” The two functions in figure 2, parallel-solve and parallel-fork,
serve analogbus roles as initiate-depth-first and depth-first. Parallel-solve is
responsible for setting up the initial viewpoint and activity structure and calls parallel-fork cach
time it wants to sprout a new viewpoint and activity to pursue a new hypothesis. Parallel-fork calls
itself recursively for the same purpose. You will notice in the body of parallel-solve the following
code:
(within-activity manager-activity

(continuously-execute (allocation-strategy)))
A special activity called the manager-activity is created whose sole function is to continually run a
function called allocation-strategy. This function knows about the currently active

investigations (those happening at the lecaves of the tree of hypotheses) and continually modifies

T As we will see, there is a member of this family that is functionally equivalent to the depth-first program of section 4.3.

-39 -

processing power allocations to the respective viewpoints based on heuristic information giving us an

estimate of how likely the investigation is to aid the overall effort.

You will notice that parallel-solve creates thrce subactivities start-act,
background-activity, and manager-activity. Manager-activity has already been
explained. The parallel solution draws a distinction between the activity at the leaves of the hypothesis
tree and others. Work happening at the leaves of the tree of hypotheses (the most important with respect
to the entire search effort) occurs in separate activities, one for cach hypothesis viewpoint-activity pair.
Work on leaves higher in the tree happens all in one activity, background-activity. Non-leaf
nodes are those that have already quiecsced. The only way new work can be done in them i§ if a
cant-be assertion is placed there due to a (CONTRADICTION) occuring in a node lower in the tree.
The results from these nodes quickly propagate to the leaf nodes, so it was not dcemed necessary to be
able to carefully control the rates at which processing in these nodes happens; hence all processing in

non-leaf nodes occurs in just one activity given a constant amount of proccssing at the beginning,.

Activities pursuing work at the leaves are all children of the activity start-act. This is given a
constant amount of processing power initially, but the way this processing power is divided amongst the
active nodes is subject to change at any time. The activitics pursuing these nodecs are all children of

start-act.

Looking back at figure 2 we will check how all this is accomplished. In the definition of
parallel-solve we see first the creation of a viewpoint, start-vpt, in which the initial
configuration is relaxed as was done by depth-first. We then create the three activities and assign
them processing power. The amounts of processing power given were chosen empirically as amounts
that give reasonable results. The code that allocates resources is the following:

(support-in-ratios
parent the-root-activity
activities (1ist start-act manager-activity background-activity)
Jactors (8. 1. 3.))

The three acﬁvitics, start-act, manager-activity, and background-activity arc create as
children of the-root-activity, the highest activity in the trce. The "factors" argument to this
function contains a list of integers and processing power is allocated in porportibn to them. We see that
2/3 of the processing power goes to pursuing the leaf activities, 1/12 to the manager-activity which is in
charge of continuously monitioring these activities, and 1/4 to the background-activity.

Analogously with the depth-first example we initiate relaxation in the viewpoint start-vpt by .

-40 -

executing:

(within-activity start-act ’
(within-viewpoint start-vpt
(initiate-relaxation)))
Ifa (contradiction) is found in this viewpoint, then the problem is not solvable and this fact is
reported to the user. Also analogously with the code for depth-first, we creatc a sprite that watches
for relaxation in the initial viewpoint to quiesce:
(within-activity background-activity
(when {(quiescent -»start-act)}
(if (total-solution (quiescent-letter-constraints start-vpt))
(report-sotution)

(Tet ((minpair (select-forking-pair (quiescent-letter-constraints start-vpt))))
(parallel-fork (car minpair) (cadr minpair) start-vpt)))))

When quiescence has been reached (and the problem not yet solved) we again pick a letter and a list of
possible digits and pass them to a function. The name of this function is paraliel-fork, and as
might be cxpected, this function will not pick just one of them at a time (thus implementing a depth-first
search) but will concurrently begin searches on all. The code for parallel-fork is also contained in
figure 2. If there is at least one possible digit, we iterate through the list of alternativesT and create a new
activity-viewpoint pair for each. As our allocation strategy must know about the viewpoint-activity pairs
that arc currently active (i.e. at the Icaves of the tree) we must mark them as such; this is what is
accomplished by evaluating the function.

(add-current-explorers v a)

As we did in the case of the depth-first search, we initiate relaxation and watch for contradictions to
appear.

(within-viewpoint v

{(within-activity a
(initiate-relaxation))

(when {{(contradiction)}
(delete-current-explorers v a)
(within-viewpoint parent-viewpoint

(assert (cant-be -»letter -digit)))
(stifle a)))

In the event of a contradiction we delete the viewpoint and activity from the current cxplorers and, as
with the depth-first case, we make a cant-be assertion in the viewpoint directly above the current one:

parent-viewpoint.

T The function foreach binds the variable digit to cach of the clements of the list alternatives and evaluates its body.

-41 -

Also, analogously with the depth-first case, we wait for quiescence and make a recursive call to
parallel-fork if the problem is not yet solved.

(when {(quiescent =»a)}
(delete-current-explorers v a) :
(if (total-solution (quiescent-letter-constraints v))
(report-solution) :
(1et ((minpair (select-forking-pair
(quiescent-letter-constraints v))))
(parallel-fork (car minpair) (cadr minpair) v))))

The reader may consider a comparison of the complete code for the depth-first program in figure 1 and
and the parallel program in figure 2 at this point. The differences between them are minor. The point
we wish to make via this comparison is that programming a true parallel search (where multiple
incompatible hypothescs are being explored) is no more difficult than a more conventional sequential

search.

4.5 Controlling The Search

The next question we should ask ourselves is: "What is the heuristic character of the parallel search
program in figure 2?” The answer to that question depends on the behavior of the function

allocation-strategy.

4.5.1 Trivial Strategies

One possible behavior of the function allocation-strategy could be to allocate all the available
processing power to only one leaf processing power to only onc leaf activity, say the first on the list of
currently exploring’ activities. In this case the resultant search would be equivalent to the depth-first
search of figure 1. The system would -put all its processing power into one activity. If a contradiction
were cstablished in the associated viewpoint, the activity would be removed from the list of currently
cxploring activiticé and' the next time allocation-strategy was run the ncxt on the list of
alternatives would be chosen to be the sole rccipient of processing power. In the event that
parallel-fork is called (because the running activity quicsced) the new activities are added to the
front of the list of exploring activitics; thus one of them would then be picked to get all the processing

power.

Suppose allocation-strategy did nothing at all (i.c. it is a NOOP); what behavior results? In this

-42-

case we would fall back on the default processing power distribution algorithm (described in section
6.6.1) which gives equal amounts of processing power to each of the activitics. Each of the leaf nodes
would then have equal amounts of processing power and will run cqually fast. As new leaf vnodes are
created (because some other nodes have gone quiescent) they will be added to the list of currently
exploring nodes and processing power will be redistributed so that all receive equal amounts. The
character of this scarch would then be described as breadth-first because we allow the tree to grow

equally fast in all directions.'r

4.5.2 Manipulation of Processing Power

The reason for having a mechanism for manipulating processing power at all is so that we can make use
of heuristic information to direct the search by giving more processing power to those avenucs of

exploration we consider most promising,.

How can this be applied to the current problem? This author sees no way of looking at a partially
constrained viewpoint and deciding that it is more or less likely to lead to a solution. Such a method, if
available, could be used to direct processing power in a way that would causc the system to converge on
a solution more quickly. This does not constitute the only criterion for deciding which activities are the
most useful to pursue, however. The metric used does not consider the likelihood that this branch will
eventually lead to a correct solution, rather it considers the likclihood the branch will yield useful
information with a minimal amount of processing. Uscful information, in this context, is cither a solution
to the problem (which is particularly uscful) or a contradiction. Determining that a branch is bad quickly

is valuable for two reasons:

1. We have successfully eliminated a wrong path from our search space. The more branches we can do -

this for quickly, the quicker the overall search process will proceed.

2. When a (contradiction) has been discovered, useful information propagates up the tree of
viewpoint-activity pairs. Each time there is a (contradiction) asserted, a cant-be-type assertion

is placed in the superior viewpoint. Often this will lead to more relaxation processing higher in the tree

T This statement is not literally truc. Each node gets as much proccssing power as other nodes. Because of the nature of
particular problems, the trce may grow more rapidly in some places than in others. However, this is the parallel strategy that
comes closest in spirit to the standard definition of “breadth-first search.”

-43 -

where it is more valuable. Information learncd there is then porpagated to lower viewpoints. Sometimes
this will cause a (contradiction) in this viewpoint which will propagate information yet higher in

the tree.

A reasonable measure of how likely we are to obtain cither a solution or a contradiction from pursuing a
particular viewpoint is one which is high for those viewpoints that are alreddy highly constrained and low
for viewpoints that are relatively unconstrained. After some experimentation we came upon the
A following formula for determining relative processing power allocations for the various different

activities participating in the scarch:
((0-n)? + ... + (10-ny)?)?

where each n; is the number of possible digit assignments for the letter i in the viewpoint. If the'letters
tend to have fewer possible digit possibilities, the sum terms (10 - n;) will tend to be large. Squaring this
number, and squaring the final sum serves to accentuate the relative differences between the different

viewpoints.

In order to implement this strategy all we have to do is design a function, called
allocation-strategy, that computes this formula over all the currently exploring viewpoints
(those at the leaves of the hypothesis tree), and then assigns processing power to the corresponding
activities in proportion to the values resulting from the application of this formula. Figure 3 coﬁtains

this implementation.

. Fig. 3. Heuristic Allocation Strategy Code

(defunc allocation-strategy ()
(support-in-ratios
parent start-act
activities currently-exploring-activities
Jactors (forlist
vpt
currently-explored-viewpoints
(let ((status (quiescent-letter-constraints vpt))
(sum 1))
(foreach -
pair
status
(increment
sum _
(expt (- 10. (length (cadr pair))) 2)))
{max (expt sum 2) 1)))))

As the purpose of this function is to adjust processing power to the respective activitics, the body consists

only of a call to support-in-ratios. All the 4vicwpoints and activitics that represent leaf nodes in
the hypothesis tree are storcd in the lists currently-explored-viewpoints and
currentiy-exploring-activ 1‘- ties respectively. They are arranged'in an order such that the nth
clement of currently-exploring-activities is an activity in whiéh processing for the nth
viewpoint in currently-expliored-viewpoints occurs. It is the function of the two functions
used in the definition of parallel-fork, add-current-explorers and
delete-current-explorers in figure 2 to assure that this is so. We iterate through each of the
viewpoints, and for each one, evaluate the function quiescent-letter-constraints that returns
a list of pairs each consisting of a letter and a list of those digits that arc possible assignments for this
letter in this vieWpoint. The rest of the code of figure 3 is merely a Lisp implementation of the above

formula.

We recall that this function is evaluated in a separate activity known as the manager-activity. In the
definition of parallel-solve in figure 2 we evaluated the code:

(within-activity manager-activity
(continuously-execute (allocation-strategy)))

This will cause allocation-strategy to be called again and again asynchronously with the running
of the other activities in the system. The frequency it gets called is governed by the amount of processing
power allocated to manager-activity. Processing power is implemented in such a way that the
percentage of time actually spent executing this function will be close to the processing power allocation _
with the maximum dcviatioh from this being the time it takes to run the function once. This is the

subject of scction 6.5.

Implementing this resource allocation strategy caused a substantial gain in avcrége performance over the
simplest parallel strategy, the one in which allocation-strategy was the null function,

implementing the parallel analogue of a "breadth-first" type search.

4.5.3 Concurrency Factors

We have observed in the allocation strategy discussed thus far that even though activities are running
with different amounts of processing power that are related to our Esﬁmate of the utility of getting useful
information back from them, therc still scems to be so many activitics running that they tend to thrash
against onc another. We would like to limit the amount of concurrency so that the running activitics can

get something done. For this purpose we introduce the notion of a concurrency factor. Instcad of letting

-45 -

all runnable activities run,” we pick the n most promising activitics (using the metric above), where n is
the concurrency factor, and give only those activities processing power and in the ratios defined by the

metric. The optimal value for the concurrency factor is picked experimentally and is discussed below.

The value of the concurrency factor that yields the best result is a reflection of two aspects of the

problem:

1. Many problems will have more than one valid solution. Thus, at any one time, we may be exploring
several paths that will lead to valid_ séiutions. In the event that this is the case for a given problem, it may
still be to our advantage to explore both paths concurrently. The reason is that the difference between
the convergence rates of the different branches may be sufficiently great that running both in parallel
will ensure that we get the result of the quickest, even at the expense of wasting some time on the othqr

one. None the less, we don’t want to be exploring too many valid branches simultaneously.

'2. The second aspect is related to the quality of our hcuristic knowledge and the distribution of
computational expense for picking bad branches in the scarch. Obviously if our heuristic knowledge
were perfect, i.c. it could always point to the correct branch to explore next, the optimal concurrency
factor would be 1 -- it should simply exploré this best branch. If we are less sure we are about which is
the best, more branches should be explored. Also, if the computational cost of exploring a bad branch is
always small, a small concurrency factor would be appropriate. If, however. the cost of a bad branch can
be very large we would want to usc a larger concurrency factor., With a small concurrency factor we
increase the probability that the problem solver will become stuck for a very long time. A limiting case
of this is with a scarch space that is infinite (introducing the possibility of a bad branch that never runs
out of possibilities) and a concurrency factor of 1. If the problem solver happens to pick one of these

branches it will diverge..

"For thesc reasons we wish to limit the total number of branches being explored simultancously. The
function allocation-strategy is modified to implement this stratcgy. Each time it is run, we pick
the n most promising vicwpoint-activity pairs (using the above defined metric) and then assign them
processing power in proportion to the valucs of the mectric on the respective viewpoints. The most
reasonable value for the concurrency factor can only be picked cxperimentally. It depends on the

presence of the two factors above in the "space™ of possible problems handed to the system to solve.

_46-

4.5.4 Fstimating Which Assumptions Are Most Valuable

Our éuategy so far has becn to use hypothesize-and-tcst on one letter only in each viewpoint. We sprout
onc new viewpoint and activity to test the hypothesis that that letter is each one of the digits it could
possibly be in the parent viewpoint. This is not nccessarily the best strategy. By hypothesizing a létfer is
a certain digit we may learn a lot or a little. We have "learned a lot" if we (1) discover quickly that a
viewpoint is contradictory, or (2) cause a lot of constraint propagation activity that significantly increases
~ our evaluation of the new viewpoint. One thing we have observed is that the amount we learn from
assuming a letter is a particular digit does not significantly depend on which digit we use. In other words,
if we assume the letter N is 2 and discover a contradiction, then we are likely to either discover a
contradiction or signficantly constrain our solution by assuming N is any other digit on its list of
alternatives. To take advantage of this phenomenon the program remembers what happened when it
makes particular assumptions. When it creates a new viewpoint to study the result of assuming a letter is
a particular digit the result is recorded in the parent viewpoint when it has completed. There are two
possible results. If it led to a contra@iction this fact is recorded. Ifit led to a quiescent (but consistent)
state it records the difference of the evaluation metric applied to the parent viewpoint and the
evaluation metric on the quiescent viewpoint -- our estimate of the amount of reduction that is likely to
be obtained by assuming this letter to be a digit. Our new evaluation metric attempts to take this
information into consideration. When assuming a letter L is a specific digit we use the old evaluation
metric if we do not have have never assumed L to be a particular digit from this viewpoint; othcrwise, we
use the average of the evaluations for each of the resultant viewpoints. We then multiply this figure by
the factor 1 + .5 * n where n is the number of lctters that we have assumed L to be and determined that

they lead to contradictions.

Now that we have a mechanism for taking advantage of information lecarned by making different
assumptions we would like to ensure that a variety of choices are tried at each branching point. We will
slightly modify the technique for picking the activities to be run at any given time (in accordance with
the concurrency factor). Where c is the concurrency factor, we use the foilowing algorithm to pick the ¢

activities to run at a given time:
1. The activity with the highest evaluation is scheduled.

2. If n < c activities have been selected for running, the n+ 1st activity is (a) the onc with the highest

metric if it docs not duplicate any- of the first n activities in terms of which letter it is making an

-4] -

assumption about for a given viewpoint, or (b) the highest rated non-duplicated activity unlcss the
highest rated activity has a rating at least three times highcr in which case we use the highest rated
activity. The factor three was picked experimentally and is based on the following argument. There is a
certain advantage in having a diversity of letters being tested because this gi'ves us a greater chance to
discover assumptions that will cause signiﬁcant shrinkage by constraint propagation. However, there is
also an advantage to running the activity that we have estimated will give us the best result. The factor
three is the ratio of estimates for expected gain for which we would rather run the higher estimated test

than one that will increase our diversity.

4.5.5 An Experiment

In order to test for the existence of a spced-up with concurrency we timed 10 problems using the final

parallel algorithm described above for several concurrency factors. The problems tested are:

1) DONALD + GERALD = ROBERT
2) CRIME + TRIAL = THIEF
3) POTATO + TOMATO = VEGIES

4) MIGHT + RIGHT = MONEY.
8) FUNNY + CLOWN = SHOWS
6) FEVER + CHILL = SLEEP

7) SHOVEL + TROWEL = WORKER
8) TRAVEL + NATIVE = SAVAGE
9) RIVER + WATER = SHIPS

10) LONGER + LARGER = MIDDLE

They were picked by a trial-and-error proccés of selecting possible problems and then running them to
see if they have a solution. It is not known whether they have one or more than onc solution. The
program finishes when it has found'onc solution. Thesc tests were run on the MIT Lisp machine, a
single user machine designed for efficient exccution of Lisp programs. The times represent processor
run time only and are adjusted for time lost due to paging. The manager activity, which continually
monitors the state of the search activitics and readjusts processing power accordingly, receives a
processing power allocation of .1. We tested with concurrency factors between 1 and 7. Numbers 2
through 7 cach gave somc improvement with 4 being the best. Here we report the results for

concurrency factors 1 and 4. Times reported are in seconds:

-48 -

concur- concur- ratio

rency rency

factor factor

=1 - = 4
1) 377 140 2.69
2) 85 153 .56
3) 167 192 .87
4) 79 246 .32
5) 663 227 2,92
6) 2868 348 8.24
7) 241 112 2.156
8) 78 336 .23
9) 1920 554 2.55
10) 474 212 2.24
total: 6952 2519 2.76

With a concurrency factor of 1 the algorithm becomes, functionally, the "depth-first” search described
earlier. A concurrency factor of 4 .represents the value which yields least average run time for the
problems examined. Concurrency factors larger and smaller yield higher average values. We caution the
reader not to take the numbers too seriously. We only wish to demonstrate that there is value in having a

non-unity concurrency factor.

Some interesting facts can bé learned by examining the data. Although the parallel solution beat out the
scquential solution in only 6 of the 10 cases, these six cases are the ones for which the sequential
solutions take the longest. In particular, problems 6 and 9 have show by far the longest times for the
sequential solution and the time saving of the parallel solution is considerable. Similarly, for the cases in
which the sequential solution finished quickly, the parallel solution tended to take longer. This
phenomenon is fairly easy to cxplain. The parallel solution supplies “insurance” against picking bad
branches in the scarch space. If the sequential solution happened to pick a bad branch (or several bad
branches) therc was no recourse but to follow it through. Similarly, if the sequential progi'am found a

relatively quick path to the solution, the extra cfficiency of the parallel solution was not needed.

4.6 Comparing Tree Search and Parallel Search

The material contained in this chapter was presented in abridged form at the Second Workshop and
Distributed Al, and the Scventh Internation Joint Conference on Artificial lnfclligcnce during the
summer of 1981. At both places some confusion resulted in the ensuing discussion as to the rclationship
between the parallel search methodology of this thesis, and the conventional and well-researched ree
search algorithms. The question arosc as to whether there is anything new in parallel search at all. In
this scction we will attempt to show p_arallcl scarch, although closc in spirit to tree scarch, is a richer

programming formalism and allows the programmer to design algorithms with more flexible control

-49 -

than would be possible otherwise. Figure 4 diagramaticaliy shows the relationship that we wish to
explore. Refer to part A of the diagram. Although there are numerous different tree search strategies,
they all have certain commonalities. There is always a tree consisting of nodes that represent somé slate
of the problem solving process. These nodes are szatic -- they are data structures, not procedural.in’any
sense -- and homogeneous, each being drawn from some well-defined space of possible nodes. Along
with the tree, there is an associated algorithm for picking the next node to be added to the graph. In other
~ words, the set of possible nodes to add is a datum available to the program that must pick them based on
some metric. Different tree search strategics restrict the kinds of computation of this metric that can be
done (usually for efficiency reasons). From the point of view of this discussion, we will assume the
system has the capability to recompute the metric on cach potential new node each cycle through the

algorithm.

Part B of the diagram is a schematic representation of parallel search. In parallel scarch there are a
number of activities running side by side. Each activity in that diagram is represented as two small
loopsT with a "throttle” below it. The throttle controls the amount of processing power given to the
activity. Each activity is running an arbitrary program that can be similar in kind or entirely different
from other activities. Information flows freely between activities; one activity can make use of
information learned through its labors as readily as information learned through the labors of any other
activity. In addition, activities can create new activities (and eliminate extant ones) at any time. There is
a resource control algorithm that décidcs, based on current knowledge, how to allocate processing power
to the various activities.i The resource control algorithm runs asynchronously with any of the other

activitics and can change its mind on resource allocation at any time.

While the parallel search concept certainly appears richer than the concept of tree search, there still is the
danger that we are making "much ado about nothing,” that the problem could just as easily be phrased
as a tree search. The remainder of this section is deivoted to explaining why this is not so. The argument
is one of programming practicality, not theoretical limitation. It will not be analogous to a proof that

there cxist context free grammars that are not parsable by any finite-state machine. It will be closer to an

T The reason we have used two loops instead of just one is to emphasize the fact that even within one activity there can be
concurrency.

% In the cryptarithmetic example, and in the diagram, there is only one resource control procedure operating. This is a
simplification of the most general state of affairs. There is a tree of activitics, and cach activity in this trec can use a different
strategy for allocating processing power to its children. It happened in our strategy for controlling resources that the activity tree is
essentially flat.)

-50-

Fig. 4. Tree Search vs Parallel Search

(A) Tree Search:
\I._
H gy O
Who Next?
(B) Parallel Search:

"« information

v

DS

OO
O
;||||>c_<3c_<:j

>
>
>

(>

(=}

OO
> CHO S

-
o

o
|

Resource Control

-51-

argument like "An Ether interpreter could not be implembnted on a Turing machine.” There is a
theoretical result which flatly contradicts this, yet no programmer would consider taking on such a task.
What we are arguing is that paralfel techniques of the sort we have been using is a superior bas'é from
which to build good search algorithms, just as Lisp is a better base from which to build Ether rather Ehan
a finite statc automaton, a read-write head, and an infinite tape. Before procceding with this argument it
is worth pointing out one other potential limitiatlon of tree search algorithms -- 'that they are inherently
~ sequential; there is no way that parallel hardware could cver be put to use without modifying the

concept in some way.

In order to view this problem as a tree scarch we must at least have a free with nodes that represent
different states of the problem. We were, in the solution to this problem, growing é tree of
viewpoint-activity pairs. Could this be the "tree” of our trce scarch algorithm? The answer is clearly: no.
The tree is not one of static objects, rather it consists of running programs. The programs arc constantly
advancing and only occasionally do new nodes of the tree get produced. Furthermore, resource control
is in effect at all times. While several activities are running, changes of resource allocations can be made
without rany modifications to the structure of the tree at all. In a tree search algorithm the only way that
heuristic information can be considered is in the design of the algorithm inside the "Who Next?" box --

the algorithm that adds new nodes to the tree.

If we are going to find a way of looking at this thing as a tree search algorithm, we must find more atomic
objects that serve the purposc of the nodes of the tree. They must be static data objects. There are two
choices for what these possible nodes might be: they might be momentary states of individual viewpoints
(between constraint applications) or states of thé entire collection of viewpoints. Both possibilities

present problems.

Suppose that we have picked the first of these two options -- that the nodes of the tree are "snapshots” of
individual viewpoints during relaxation. From a given node there are two kinds of "next” nodes that

could be grown off of it:
1. New assumptions (what we did when we sprouted new viecwpoint-activity pairs).
2. Application of individual constraints without making assumptions.

In order for there to be a tree search algorithm there must be a function to assign numerical values to

nodes that could be grown on the tree so that one can be picked as "best.” We will refer to this

-52-

evaluation function as " F"'. Nilsson [48] gives exarhplcs of kinds of evaluation functions: "Attempts have
been made to define the probability that a node is on the best path; distance or difference metrics
between an arbitrary node and thé goal set have been suggested; or in board games or puzzles a
configuration is often scored points on the basis of those features that it posse.sses that are thought to be
related to its promise as a step toward the goal." These are many diffcrent ideas, but they are similar at
some level of abstraction: They imply a means of evaluation of the merits of expanding a node based

only on the characteristics of that particular node.

In order that we get similar search behavior for our parallel algorithm recast as a tree search, we can
make certain assumptions about what F must look like. It is always (we have supposed) better to apply
constraints rather than make new assumptions. This is éxpresscd in the parallel algorithm by our waiting
for the activity to quiesce before making new assumptions. F must weight nodes that represent
continued constraint propagation higher than assumption making. There are, however, many constraints
that could be applicd at once. Which one do we choose to apply first. No metric comes to mind for this,
but we will suppose we have one or simply give all constraints that could be applicd in pafallel equal
weight. Suppose now one of them is applied, gencrating a new node. Something very funny happens
here (from the point of view of this being a ﬁree search); after expanding one of those nodes we will never
want to expand any of the others. This is because the same constraint can always be applied with greater
advantage to the most newly generated node, not the old node. Because of our coﬁcepts of monotonicity
- and commutativity the constraints can be applied in any order with the same result. This was our reason
for doing all of the reasoning in one viewpoint. We simply wish to learn all the facts that could be
learned by local deduction. The end result of this is the following: Scctions of the graph that represent
relaxation within a viewpoint will always appeaf as simple lincar chains -- cvery node will have an
outdegree of one. Such a "computation” does not have any of the character, nor does it gain anything,

from being looked at as a tree search.

We now consider the only possible place we would want to have branching in the tree, at places where
we make assumptions. At cach onc of these places, as we have just learned, we will have long lincar
strings of nodes descending, but at least they will be descending in parallel (giving some credibility to
_ this being a "tree”). In the original Ether algorithm we (_ieemcd it desirable to be pursuing the various
hypotheses (now corresponding to parallel, descending chains of nodes) in parallel, but at different rates
depending on the value of a metric. We now ask the question: "Is there arcasbnablc function F that will

give us this bchavior?” Remember that I is an evaluator of the desirability of cxpanding static nodes. It

-53-

will be computing values for the tips of each of these descending chains and producing a number solely
on its own merits. Because expanding a node via a constraint can only make the node seem more
desirable than it was previously, it is hard to see how the other branch will ever get to run. Any function
F that would yield the desired behavior would be unrelated to the desirability of expanding the node,
and thus totally unintuitive.

Even if such an F"could be devised, there is one very useful aspect of the original parallcl program which
would not fit this scheme in any reasonable way. Whenever a contradiction was discovered in a
viewpoint, a cant-be assertion- was placed in a supcrior viewpoint. This could lead to further
relaxation-type processing in that viewpoint, the results of which would propagate to the leaves o.f the
hypothesis tree. The nodes of a tree ih classical tree search are static. We cannot change them once they
are laid down. We cannot make a change high in the trce and have the results percolate down. To fit
this inside a tree scarch, we would have to scrap the entire line(s) of reasoning below the node that we
would have put the cant -be assertion in and build anew with this new information. This is so wasteful

of information already learned that it would be of doubtful value.

Earlier in this discussion we mentioned that there were two possibilities for what the nodes of the tree
could represent: states of individual viewpoints, and states of the entire computation. Docs this latter
possibility give us some hope? We can quickly see, by the argument given earlier, that constraint-type
changes being made to the database will result in strict changes of new databases. We can also see by the
argument in the previous paragraph, that in order for us to make usc of information back-propagated,
and without throwing away already-lcarncd results, we can only allow one node to be expandable at any
point in time -- any branching would force us to throw away information. We are able to handle the
back propagation effect of the previous paragraph, but the resultant tree is one long chain with no
branching. 1t makes no sense to talk about a “tree search” when the only possible trees that could be -
generated are simple chains. What this actually would look like would be a trace of the message-passing
behavior of the Ether implementation looked at from the lowest level, the point where there cease to be
separate concurrent activitics as described in scction 6.2. And the /' function would not look anything

like a metric of the desirability of expanding a node viewed in isolation.

I apologize for the tediousness of this long argument. It was to draw attention to what should now seem
obvious: that parallel problem solving is a more flexible metaphor for programming a scarch than
classical tree scarch. We spell it out in such detail for the bencfit of those readers whose only model for

search is classical tree search. New concepts sometimes scem strange and irrelevant without a tedious

-54 -

examination of the ways they compare to more familiar concepts. This is not to say that the metaphor of
tree search was a mistake -- only that it was a first step and we may now be taking another step in the
right direction. We have used the terms "depth-first” and "breadth-first” to describe kinds of pélrallel
algorithms and these concepts are analogous to those found in the tree search litcrature (from which Ehey
were borrowed). Parallel search with research control inight be considered a generalization of

"best-first” search, and indeed there are parallel analogues to the classical A* algorithm as we_ll.

" There are other Al systems, not usually presented as tree searches, that have characteristics similar to tree
search with respect to this discussion. Systems such as the Hearsay speech-understanding system [12],
Lenat’s system for mathematical discovery [40}], and Davis’ meta-rule formalism for rule-based systems
[9, 10] are all examples. Each incorporates a resource control mechanism, but one that must make
decisions about each individual event. Each involves some for:n of a "Who Next?" box. The ability to
abstract away from the individual event level and apply resources to activities has becn useful to us here,

and may well be useful in these other domains.

-55-

Chapter V. Synthesis Of Programs from Descriptions of Their Behavior

This chapter develops the second of the two example systems of this thesis. It is a program that generates
Lisp programs from descriptions of their behavior using sprites.T These sprites have a declarative

interpretation and can be thought of as a simple translation of a concise formula in first order logic.

The primary purpose in developing this system was to exemplify the techniques of proposers and skeptics
devcloped in chapter 2. We were not specifically interested in advancing the art of program synthesis
and the class of programs the system can generate in its current state of development is quite restricted.
The contribution of this chapter is its explication of the use of concepts of parallel problem solving, not

_the power or generality of the resulting synthesis system.

This system does, however, lend itself to some interesting comparisons with other program synthesis
systems in the literature. The bases for these comparisons are largely an artifact of the theory of problem
solving we developed in chapter 2. Many of the mechanisms we develop as part of the synthesis system
give us the ability to reason about programs and about specifications. These mechanisms might be used
as subcomponents of program development systems. Remarks about these comparisons and possibilities

are contained in section 5.9.

Our other major reason for developing the system described in this chapter was to exercise the linguistic
concepts of Ether. We wanted to develop a system containing many assertional types with a rich
semantics. The needs of the system in this chapter motivated many of the design considerations

discussed in chapters 6 and 7.

5.1 Our Domain

The domain for the example in this chapter is program synthesis, but can be more generally thought of
as "enginecering design.” That is, we have spea‘ﬁcaliohs for what we would like the final behavior of our
engincering system (in this case, a computer program) to be. The system reasons about thcse

specifications and produces a program as a result.

1' At the time of this writing all of the system has been implemented with the exception of the skeptic activities described in
section 5.8. The difficulties we had in implementing that aspect of the system are described in that section,

-56 -

The general scheme we use for program synthesis is one of starting with femplates that represent general
plans for a program. The templates have slots that must be filled in with code fragments. Our original
plan was to have a number of templates available, and have aétivities attempting to instantiate each
template explored in parallel. Programming considerations, however, limited us to considering just one
' template, called iterative accumulation, that will be explained in section 5.3. The process of conjecture
and refutation will be applicd to filling in the slots of the template. A similar approach to program
synthesis was taken by Goldstein [15] in the synthesis of programs to draw pictures from descriptions of

their appearance.

The domain of expertise for our systém consists of simple Lisp programs. In order to reason ébout
programs, we must first have a language for doing so. The language we usc is based on the formalism of
assertions and sprites introduced in chapter 3. There are three general kinds of objects that we can talk
about in our domain: sequences, atoms, and numbers. Scquences are the objects that get implemented
as Lisp lists. When we reason about lists, we will think of them as sequences (that is objects having n
positions, each filled by another object) rather than as CONS’s (which have a CAR and a CDR). The
code we gencrate will, of course, use CARs and CDRs. Atoms are objects that have no internal
structure. The only things we can know about them is that they may or may not be equal to other atoms.
Numbers are like atoms, but we can say a few more things about them (because of their total ordering).
The Ether program synthesis sublanguage is "weakly typed” in that we can create an object that is not of
any particular type. We can then, in some viewpoint, assert that object to be of some specific type and to

have propertics appropriate for that type.

There are a number of asscrtional types that can make statcments about these objects. We define them

below:

(equal »objecti ->6bject2) means Ob ject1 is known to be equal to object2. Objectl and

object2 can be any kind of object. -

(not-equal »obiecfl »object?) means objectl is known to be not cqual to object2.

Objectl and object2 can be any kind of object.
(length »object »n) meansobject is known to be a scquence of length n.

(not-length »object »n) means object is known to be a scquence with a length of something

other than n.

-57-

(member 2objectl »object2) means object2 is known to be a secquence that has at least one
element, objectl. Objectl may be of any type.

(not-member #objectl sobject2) means objert2 is known to be a sequence, and Ob ject1 is

-

known to not be a member of it.

(sequence-element »sequencel *objectl +n) means sequence1l is known to be a sequence,

- - and it is known that ob ject1 is in its nth position.

(less @numberl »number2) means both number1l and number2 are known to be numbers, and it

is known that number1 is less than number2.

(not-less *numberl »number2) means both number1 and number2 are known to be numbers,

and it is known that number1 is not less than number?2.

There are several more assertional types that are used and will be introduced as-needed.

5.2 How We Describe Functions to Synthesize

Each function to be synthesized by the system is described to the system by a set of sprites that state facts
about the relationship between the input(s) and the output of the function. Because these sprites have an
obvious declarative interpretation, the reader can think of them as having been generated by a process of
"macro-cxpanding” a much more concise description i;x‘ﬁrst-ordcr logic. The logical description that led
to the sprites is given along with the sprites that were actually input.T A macro-expander could have
been written, but for the relatively small number of examples we arc considering the cffort would not
have been worthwhile. We also give the logical description because it gives us a basis for comparison

between our system and some others (that have similar logical descriptions as input).

T We do not state, unlike certain writers (e.g. Kowalski [35]) that sprites, or any other computational mechanism, in any sense
"implement” logic. A logic is a formal system consisting of a language in which statements can be made and a proof procedure
that can deduce certain statements from others. Logic is not any particular computational mechanism. The declarative
interpretation of sprites allows the programmer to make reasonably certain that all new assertions produced by the sprite will be
provable in the logic. Nevertheless, there are statements provable in the logic that the sprites derived from sentences in the logic
will not, or cannor produce. There are meta-statements one can make about the class of provable sentences, such as the logic’s
completencss or consistency. that are not in any scnsc derivable or accessible through the sprites. It is important to keep the
distinction between a logic and a computational mechanism consistent with that logic in mind.

-58 -

It is important to understand the relationship bctWeen our means of problem spccification and problem
solution, and the remarks about the philosophy of science given in section 2.1. We are not interested in
learning facts about the "real world.". We are interested in producing an artifact (a program) that satisfies
our specifications. In scicnce we propose models for aspects of the real wbr]d and test our models
against observations in the real world. In engincering design we propose models and test our models
agéinst the specifications. If our model suggests some relationship between the input and output, these
relationships can be tested with the sprites that implement the specifications. The sprites arc also used
by the proposers. The way the proposers work is by looking at what the program doecs to simple
examples and then hypothesizes program fragments that can handle those simple examples. The

proposed code fragments are then tested against more complex examples by skeptics.

There are several functions that we have studicd as part of this research. They are described in turn.

5.2.1 Reverse

The first one we will look at is the standard nondestructive reverse function common to all Lisps. An
example is:

(reverse '(a b cvd))” + '(d ¢ b a)

The function we will describe with our sprites takes one input called input of type sequence. The

output of the function (called output) is of similar type.

A first order description of the reverse function is:
length(input) = length(output)
‘A (V x) member(x,input) <> member(x.output)

A (V n) sequence-element(input,x,n) <> sequence-clement(output,x,length(input) - n + 1)

The first conjunct states that the length of the input is the same as the 1ength of the output. The second
that somcthing is a member of the input iff it is a member of the output; in other words, that onc is a

permutation of the other. The third conjunct gives the naturc of this permutation as required by reverse.

-59-

There were six sprites that were actually input to the system, two for each conjunct.T The first conjunct
expresses that the lengths of input is the same as the length of output. The two sprites that represent
this information are:

(when {(1ength =input =n)}
(assert (length -output =n)))

(when {(length -output =n)}
(assert (length =»input -=n)))
They each wait for the length of the input/output to be known and when it is assert that it the length

of the output/input is the same value.

The next conjunct says that the elements that are members of one are exactly those clements which are
members of the other. Here, again, we represent this by creating two sprites. When one learns that there
is some element that is a member of one it asserts it is a member of the other.

(when {(member =x ->input)}
(assert (member =x =output)))

(when {(member =x =output)}
(assert (member -x =input)))

The last conjunct is expressed by the following two sprites:

(when {(sequence-element »>input =x =n)
(1ength -output =m)}
(assert (sequence-element. »output -»x =»(- mn -1))))

(when {(sequence-element -output =x =n)
(1length ~output =m)}
(assert (sequence-element =»input =»x 2(- m n -1)}))

The Lisp code produced from these specification was (effectively) the following:

(defun reverse (input) (reversel dinput nil))
(defun reversel (input accumulant)
(cond
((equal input nil) accumulant)
(t (reversel (cdr input) (cons (car input) accumulant)))))

There are a number of other functions that we have worked with that are described in turn through the

1‘ One of the features of Prolog that is often praised by its proponents is its ability to have the same code reason in two directions.
This is because functions are defined by binary relations, where one of the arguments represents the input and the other the
output. We are free to unify a ground term with cither of the two, thus causing it to compute in one direction or the other. In
Ether we do not have a syntactic unfication mechanism and must create two sprites, onc for cach direction,

-60-

remainder of this section. The reader may wish to glance af them to get a feel for the breadth of the

system, but there is no necessity to read through them thoroughly. The discussion continues with section

5.3 on page 68.

5.2.2 Intersection

~ This function finds the intersection of the elements of two lists. For example:

(intersection '(abcdefg) '(xgcdy))> (cdag)

Inputs: input1 and input2 of type sequence
Output: output of type sequence

Formal description of its behavior:

(V x) member(x,output) «> member(x,inputl) A member(x,input2)

Something is a member of the output iff it is a member of both inputs.

The sprites actually input to the program synthesis system were the following:

JAf x is a nmember of both inputl and input2, then it is a member of the output.
(when {(member =x =inputl)
(member =x -»input2)}

(assert (member =»x -=output))) :
Af x is a member of the output, then it is a member of both inputl and input2
(when {(member =x =output)}

(assert (member =x -inputl))

(assert (member =+x =input2)))

The code produced from these specifications was the following:

(defun intersection (inputl input2) (intersectionl inputl input2 _nil))
(defun intersectiont (inputl input2 accumulant)
(cond
((equal inputl nil) accumulant)
((member (car inputl) input2)
(intersectionl (cdr inputl) input2 (cons (car inputl) accumulant)))
((not-member (car inputl) dinput2)
(intersection1l (cdr inputl) input2 accumulant))))

-61 -

5.2.3 Setdifference

This function takes two lists as input-and returns a list of all elements of the first which are not elements

of the second. For example:

(setdifference '(abcde) '(bdef g)) - (ac)

Formal description of its behavior:
Inputs: inputl and input2 of type sequence
Output: output of type sequence
(V x) member(x,output) «> member(x,inputl) A —member(x,input2)
The sprites actually input to the program synthesis system were the following:

;s If x is a member of the output, then it is a member of inputl,
,and not a member of input2. :
(when {(member =x -output)}
(assert (member -x =inputl))
(assert (not-member -x =input2)))
JAf x is a member of input2, then it is not a member of the output
(when {(member =x =input2)}
(assert (not-member -=x -output)))
s If x is a member of the inputl, then it is a member of the output iff
it is not a member of input2.
(when {(member =x =inputl)}
(when {(member -x =input2)}
(assert (not-member -+x -output)))
(when {(not-member =x =input2)}
(assert (member =x =output))))

The code produced from these specifications was the following:

(defun setdifference (inputl input2) (setdifferencel inputl input2 accumulant))
.(defun setdifferencel (inputl input2 accumulant)
{cond
{((equal inputl nil) accumulant)
((member (car inputl) dinput2)
(setdifferencel (cdr inputl) input2 accumulant))
((not-member (car inputl) input2)
(setdifferencel (cdr inputl) input2 (cons (car inputl) accumuTant)))))

5.2.4 Unique-members -

This function takes one list as an argument and returns a list containing exactly the unique members of

the input. For example:

(unique-members '(a b accdab)) > (abecd)

Inputs: input of type sequence
Output: output of type sequence
Formal description of its behavior:

(V x) member(x,input) <> member(x,output)

A (V x) (V i) (V j) sequence-element(output,x,i) A sequence-element(output,x.j) D i =j

The first conjunct says that something is a member of the input iff it is a member of the output; the
second conjunct that if an element appears in one position it cannot appear in another position of the

output.

The sprites actually input to the program synthesis ‘system were the following:

JIf an object is a member of the input, then it is a member of the output
(when {(member- =x =input)}

(assert (member -x -output)))
Jf an object is a member of the output, then it is a member of the input
(when {(member =x -output)}

(assert (memberf -x =input))) .
(when {(sequence-element -output =el =i)

(sequence-element -output -=el =j)}
(assert (equal =i =2j)))

The code produced from the specifications was the following:

(defun unique-members (input) (unique-members-1 input nil))
(defun unigue-members-1 (input accumulant) /
(cond /
((equal input nil) accumulant) . /
((member (car input) accumulant) //
(unique-members-1 (cdr input) accumulant)) o
((not-member (car input) accumulant) -
(unique-members-1 (cdr input) (cons (car input) accumulant)))))

-63 -

.2.5 Delete

This is the usval non-destructive delete function found in all Lisp dialects. An example is:

(delete 'a '(babccadbab)) »(bbccdbhb)

Inpum:atom,opréaanand1nlistopr0ﬂmuwwe

. Output: output of type sequence

Formal description of its behavior:

(V x) member(x,output) «> —(x = a) A member(x,inlist)

The sprites actually input to the program synthesis system were the following:

JIf an object is in the output, then it must also be in the inlist and not equal 1o the atom
(when {(member =element -output)}
" (assert (member -element =inlist))
(assert (not-equal »element -»atom)))
JIf an element is in the inlist that is not equal to the atom, then it is also in the output
(when {(member =element =»>inlist)
(not-equal ~element -»atom)}
(assert (member -+element -output)))
JAf an element is in the inlist that is equal to the atom, then it is not in the oufput
(when {(member =element =>inlist)
(equal »element -»atom)}
(assert (not-member -element -output)))

‘The code produced from these specifications was the following:

(defun delete (atom inlist) (deletel atom inlist nil))
(defun deletel (atom inlist)
(cond
((equal inlist nil) (reverse accumulant))
"((equal atom (car inlist))
(deletel atom (cdr inlist) accumulant))
((not-equal atom (car inlist))
(deletel atom (cdr inlist) (cons (car inlist) accumulant)))))

-64 -

5.2.6 Greatest

This function takes a list as an argument and returns the greatest number on that list. An example is:

{(greatest '(3 597486)) » 9

Inputs: input of type sequence

Output: greatest of type number

Formal description of its behavior:

member(greatest,input) A (V n) member(n,input) D —(greatest < n)

The sprites actually input to the program synthesis system were the following:

Jf an element is not equal to the greatest, then it is less than it
(when {(member =element -=input)
(not-equal »element -greatest)}
(assert (not-less =greatest -»element)))
;The greatest element is in the input
(assert (member =greatest -+input))

The code produced from these specifications was the following:

(defun greatest (input) (greatestl input 0))
(defun greatestl (input accumulant)’
(cond '

((equal input nil) accumulant)
((less (car input) accumulant)
(greatestl (cdr input) accumulant))
((not-1less (car input) accumulant)
(greatestl (cdr input) (car input)))))

5.2.7 Merge

This function takes two lists of numbers as input that it assumes are themselves ordered and outputs a list

which contains all the elements of these two lists merged so that the order is preserved. An example is:

(merge '(1 4 811 13) *(2 56 156 16) » (1 2 4 56 6 8 11 13 15 16)

Inputs: input1 and input2, both of type sequence

Output: output of type sequence

Formal description of its behavior:

(V x) member(x,output) «> mcmbef(x,inputl) \2 member(i,inputZ)
A ordered(inputl)-
A ordercd(input2) -
A ordered(output)

where the order relation is defined as follows:

ordered(list) <> (V x,y,i,j) [sequence-element(list,x,i) A scquence-element(liét,yj)] D [x<y & i<]j]

The sprites aétually input to the program synthesis system were the fdllowing:

- 66 -

Jf an element is in inputl, then it is in the output
(when {(member =element -inputl)}
(assert (member -element -output)))

Jf an element is in input2, then it is in the output
(when {(member =element -»input2)}
(assert (member -element -output)))

JIf an element is in the output, but not in inputl, then it is in input2
(when {(member =element -output)
(not-member -»element »>inputl)}
(member -element =»>input))

Jf an element is in the output, but not in input2, then it is in inputl
(when {(member =element -soutput)
(not-member -»element =»input2)}
(member -element =»inputl))

:The elements of the list inputl are ordered
(when {(sequence-element 2inputl =ell =17)
(sequence-element »>inputl =el12 =j)}
(when {(less =i =»j)}
(assert (less -»ell »e12)))
(when {{less -ell -el12)}
(assert (less »i =j))))

;The elements of the list input2 are ordered
(when {(sequence-element »>input2 =ell =i)
(sequence-element =»input2 =el2 =j)}
(when {(less =i =2j)}
(assert (less -ell -e12)))
(when {(less -ell -el12)}
(assert (less =i =2j))))

;The elements of the output list are ordered,
(when {(sequence-element -output =ell =i)
(sequence-element -output =el2 =j)}
(when {(less =i »j)}
(assert (less =ell =2el12)))
(when {(less -»ell -»e12)}
(assert (less =i =2j)))).

The code produced from these specifications was the following:

(defun merge (inputl input2) (mergel inputl input2 accumulant))
(defun mergel (inputl input2 nil)
(cond

((and (equal inputl nil) (equal input2 nil)) (reverse accumulant))
((equal inputl nit) (mergel inputl (cdr input2) (cons (car input2) accumulant)))
((equal input2 nil) (mergel (cdr inputl) input2 (cons (car inputl) accumulant)))
((less (car inputl) (car input2))
(mergel (cdr inputl) input2 (cons (car inputl) accumulant)))
((not-less (car inputl) (car input2)) ’
(mergel inputl (cdr input2). (cons (car input2) accumulant)))))

-67 -

5.2.8 Union

The union function takes two lists as input and returns a list that is the union of the two. If the same
element happens to appear in both the lists it will appear only once in the output. An example is:

(union "(abcd) '(bcef)) » (abcdef)

Inputs: inputl and input2 of type sequence
Outputs: output of type sequence
Formal Description of its behavior:

(V¥ x) member(x,output) «> member (x,inputl) V member(x,input2)

A (V x,i,j) scquence-element(output,x,i) A sequence-element(output,x,j) Di =j

The first conjunct expresses the fact that something is an clement of the output iff it is a member of
either input. The second conjunct says that each element of the output is unique, that is, if the same
element appeared in both inputl and input2, there would be only one copy of it in the output. The is

how the union function differs from append.
The sprites actually input to the program synthesis system were the following:

Jf x is a member of inputl, then it is a member of the output
(when {(member =x -=inputl)}
(assert (member =x -output)))
Hf x is a member of input2, then it is a member of the oulput
(when {(member =x -=input2)}
(assert (member -»x =output)))
Jf x is a member of the output, then it is a member of at least one of inputl and input2
(when {(member =x -output)}
(when {(not-member =x -»inputl)}
(assert (member -»x -input2)))
(when {(not-member -=x ->input2)}
(assert (member -»x ~inputl))))
;There cannot be duplication of elements in the output
(when {(sequence-element =x -output =1)
(sequence-element -x -soutput =j)}
(assert (equal i j)))

The code produced from these speciﬁcations was the following:

-68 -

(defun union (inputl input2) (unionl inputl input2 nil))
(defun unionl (inputl input2 accumulant)
(cond)
((and (equal inputl nil) (equal input2 nil)) accumulant)
((equal inputl nil) :
(unionl inputl (cdr input2) (cons (car inputl) accumulant)))
((equal input2 nil)
(unionl (cdr input2) dinputl (cons (car input2) accumulant)))
{(member (car inputl) accumulant)
(unionl {cdr inputl) input2 accumulant))
((not-member (car inputl) accumulant).
(unionl (cdr inputl) input2 (cons (car inputl) accumulant)))
((member (car input2) accumulant)
(unionl (cdr input2) dinputl accumulant))
((not-member (car input2) accumulant)
(unionl (cdr input2) inputl (cons (car input2) accumulant)))))

5.3 Overview of How The Synthesis System Works

All the examples are of a certain kind that we might call "iterative accumulation.” My original goal for
this system would be that there be several such plans and that, based on characteristics of the program to
be synthesized, some would be proposed and then the various aspects of the plan filled in by the process
of conjecture and refutation. As it turned out, the programming difficulties in getting all the many levels
of Ether working were of such magnitude that it precluded more breadth in this particular area. Never
 the less, after coding the system to know about more that one program schema we could (at worst) run
them all in parallel and wait for one of them to work. Better, we could use knowledge about the
applicability of different schemata to control resource allocations and, perhaps, prove that some schema
could not possibly be made to work and reclaim all the resources given to it. Some recent work by C.

Rich [52] suggests program schemata that are similar to the one we use as an example.

5.3.1 General Form of the Solution

An iterative accumulation is a simplc loop in which we start with an accumulant that is initially the
null list or 0, depending on whether it is a list or a number. The inputs (one or two) are lists, atoms, or
numbers (but at Icast one must be a list) and we go down the list(s) and accumulate results in the
accumulant variable. Although these are iterative programs, we have presented them in a
tail-recursive form because they are easier to comprehend this way. All the generated code follows a
schema something like the following:

(defun foo (input)
(fool input accumulant-initial))

This mercly establishes a call to the tail recursive sccondary function generated. The original

-89 -

argument(s) is passed with one additional argument, the initial value of the accumulant (cither ni1 or
0). The definition of the tail recursive function is of the form:

(defun fool (input accumulant)
(done-test accumulant)
(null-input-test(s) recursive-call)
(condition recursive-call)

(not-condition recursive-call))

The done-testis a nu11 test one or both of the inputs. When it is true the accumulant (rcpresenting the
~ accumulated result) is returned. There may follow one or more null-input-tests for cases not covered by
the done-test. These represent one or the other of the inputs becoming null when the done-test is:

(and (equal inputl nil) (equal input2 nil))

Following this are pairs of clauses containing one or more tests on the input(s) and its negation. Each of
these clauses contain a recursive call. The form of the recursive call is quite restrictive. The inputs are
either passed to the recursive call as is, or the CDR is passed. The last argument in the recursive call (the

accumulant) contains an accumulating function that must be synthesized.

5.3.2 Setting Up A Working Environment

Throughout this work we will be creating viewpoints in which to test theories about partial programs.
Whenever a viewpoint is created, it automatically inherits knowledge from its parent viewpoint(s); any
fact present in the parent viewpoint will be available in this new vicwpoint. There are, however, no
sprites that automatically appear watching for assertions in the viewpoint. In order for any processing at
all to happen in the viewpoint, there must (1) be sprites activated in that viewpoint, and (2) an activity
with processing power in which the sprites have been activated. Whenever there is a new viewpoint
created there is in fact a fair quantity of active knowledge (sprites) that we would like to be présent. We
would like each of the sprites that represent our definition of the function (the ones defined above) to be
present. We would also like some sprites that represent general knowledge to bespresent. This set of
sprites is shown in figurec 5. We have defined a function called activate-knowledge that, whqn
executed in a viewpoint, establishes these sprites. Our gencral procedure throughout the system is to,

when a new viewpoint is created, executc this function.

In addition, there are several profofype viewpoints that are routinely established because they will be
used so often for testing. The philosophy of our approach is that we wish to test simple theories on

simplc examples. These cxamples arc derived from the prototype viewpoints. When an argument to a

-70 -

Fig. 5. General Knowledge Sprites

i When two objects are known to be equal, many things can be deduced.
(when {(equal =objectl =object2)}
{(if* (not (eq objectl object2)) ;No need to do this if they are physically the same objects
(when {(length -cbjectl =n)}
{(assert (length -object2 -n)))
(when {(length -»object2 =n)}
(assert (length -»objectl =n)))
(when {(member =item -~objectl)}
(assert (member -item -object2)))
(when {(member =item -object2)}
(assert (member -item -objectl)))
(when {(not-member =item -»objectl)}
(assert (not-member -item -~object2)))
(when {(not-member =item -object2)}
(assert (not-member -2item -~objectl)))
{(when {(sequence-element ~objectl =x =n)}
(assert (sequence-element -object2 -x -n)))
(when {(sequence-element -object2 =x =n)}
(assert (sequence-element -objectl -»x -n)))
: Two sequences cannot be both equal and not-equal
(when {(not-equal -objectl -object2)}
(assert (contradiction)))
(when {(greater -»objectl =obj)}
(assert (greater -object2 -o0bj)))
(when {(greater -object2 =obj)}
(assert (greater -objectl -obj)))
(when {(less -objectl =0bj)}
(assert (less -»object2 -»obj)))
(when {(less ~object2 =obj)}
(assert (less =objectl ~obj)))
(when {(value -objectl =n)}
(assert (value -»object2 -n)))
(when {(value -object2 =n)}
(assert (value -»objectl -n)))))
;If a sequence is of length I, then everything that is a member of it must be equal
(when {(length =sequence 1)
(member =objectl -sequence)
(member =object2 -sequence)}
(assert (equal -»objectl -object2)))
1 If a sequence is known to be of length 0, then it is equivalent to the special sequence NIL
(when {(length =sequence 0)}
(assert (equal -»sequence -nill)))

B

function is a sequence, some of the examples we will want to look at include ones where the sequence
has no clements, i.c. it is equal to ni11 .T Other possible configurations we will want to look at include
ones where the sequence contains a list of one elements or two elements. Since these are prototype
viewpoints we won’t indicate in them anything about the nature of the objects known to be members of
these sequences. For a p‘mtotypc containing a list of two clements we won't, for example, know whether
the elements arc themselves atoms or sequences, or whether they are equal to onc another, or anything

else about them. In further "experiments” executed by the program synthesis system, we will create new

T We use "ni11" to represent the object normally found in Lisp systems, ni1. Our reason for doing this is that ni11 is not just
a Symbol, it is a variable bound to a complex object the nature of which will be discussed in chapter 7. 1t is not possible in Lisp to
bind the symbol nil.

viewpoints that inherit all'the information from these prototype viewpoints and may assert additional

facts. For our purposes, we create the following viewpoints:

1. If the function being synthesized has only one argument, or has only one argument that is a scquence,
we create three prototype viewpoints, in which the sequences are asserted to contain zero, one, and two
elements. If there is another argument (one that is not known to be a sequence), we will not assert

anything about it.

2. If the function being synthesized has two arguments that are both sequences there are a total of nine
different prototype viewpoints that are established. These represent the cross product of zero, one, and

two elements being tried out on each.,

The tests are known by the names: null-test, singleton-test, and doublet-test. Figure 6

shows the function that actually initializes these prototype viewpoints.

Fig. 6. code to initiate test

(defunc initiate-test (test-name object)
(selectq test-name
(null-test
(assert (equal -object -+nill)))
(singleton-test
;Create a new object that will become the single object of the sequence
(1et ((el (new-object instance-prefix ‘sing1eton-element)))
(assert (length -sobject 1))
(assert (sequence-element -object *91 1))))
(doublet-test
(let ((el11 (new-object instance-prefix *first-doublet-element))
(e12 (new-object instance-prefix 'second-doublet-element)))
(assert (length -2object 2))
(assert (sequence-element -»object -ell 1))
(assert (sequence-element--object -el2 2))))))

We sée that in the case of the nuT1-test it merely asserts that the object is equal to ni11. For the
singleton-test case we create a new-object by exccuting the function:

(new-object instance-prefix 'singleton-element)
that will return a ncw Ether object with absolutely no attributes. It could be a sequence, number, or

elephant for that matter, if Ether had sprites that could reason about a'nimals.T We then assert that the

T We do give new-ob ject one argument, called the instance-prefix, which is for debugging purposes only. If in the middle of
debugging we have occasion to print the object it will print as somcthing like singleton-element6 so that we will have some
idea where it came from.

-72 -

length of ob ject (which is bound to onc of the inputs, already known to be a sequence) is 1. We finally
assert that the newly created object is in the first position of object. In the case ofa doublet-test
we create two new objects and assert that the length of the inpixt, object, is 2. We finally asseﬁ that
these two new objects are in the first and second positions of ob ject respectively. This is all there js to

it.

We arrange for other parts of the system to have access to these prototype viewpoints through the
 relation vi ewpoint-for-test. For example, if we wished to access the prototype viewpoint that
used the null1-test for the first argument, and the singleton-test for the second argument, we

would activate the following sprite:

(when {(viewpoint-for-tést (null-test singleton-test) =vpt)}
. vpt is now bound 1o this viewpoint in the body of the sprite. ...) ,

What we will typically do is create a new viewpoint that inherits from this prototype and make additional

assertions in there, as in:

(when {(viewpoint-for-test (null-test singleton-test) =vpt)}
‘(Tet ((v (new-viewpoint inherits-from vpt)))
(within-viewpoint v
Here we make additional assertions in this viewpoint for our experiment.)))

We will see our first application of this in scction 5.4. -

We will frequently have occasion to decide if one object is cqual to another. A defgoal has been
designed for this purpose. Most of the "expertise” of the goal handler is with sequences. It is shown in
“figure 7. It is instructive to read through this code. The first two sprites,

(when {(equal »objectl -»object2)}
(stifle act))

(when {(not equal *obJectl sobject2)}
(stifle act))

check for the answer already being known. If it is the case that they are both known to be cqual or not
cqual then there is no point continuing with this computation and the activity is stifled. This way any
activities that have invoked this goal will reclaim the processing power assigned to it. The next three
sprites are actually dedicated to disproving the cquality of the two objects. If it can be shown that the lists

are of diffcrent lengths the two objects are known not to be cqual.

-73 -

Fig. 7. Goal For Equality

(defgoal equal (objectl object2) act
i If the objects are known to be equal, the activity is no longer needed
(when {(equal ~objectl -»object2)}
(stifle act))
1 If the objects are know not to be cqual, the activity is no longer needed.
(when {(not-equal -objectl -object2)}
(stifle act))
1If the objects are sequences of different lengths, they are not equal
(when {(length -objectl =n)
(1ength »object2 =m)
(not-equal -n -m)}
(assert (not-equal -objectl -object2)))
i If something is a member of one and not the other, they are not equal.
(when {(not-member =el -objectl)
(member -el -object2)}
(assert (not-equal -objectl -object2)))
(when {(not-member =el -object2)
{member -~el -objectl)}
(assert (not-equal -»objectl -object2)))
1If there is an element of one that is not equal to the element in the corresponding position
sof the other, then they are not equal
(when {(7ength -objectl =n)}
(foreach m (1ist-of-integers from 1 10 n)
(when {(sequence-element -objectl =ell -m)
(sequence-element -object2 =el2 -m)
(not-equal -ell -el12)} .
(assert (not-equal -objectl -=object2)))))
1 If they are sequences and their elements agree in every position, they are equal
(when {(7ength -objectl =n)
(Y min -(1ist-of-integers from 1 10 n)
check {(sequence-element -objectl =el -m)
(sequence-element -object2 -el -m)})}
(assert (equal -objectl -+object2))))

-74 -

(when {(length =»objectl =n)
(1ength =object2 =m)
(not-equal -»n -m)}
(assert (not-equal -objectl -»object2)))
Ifit can be shown that one has a member that is known not to be a member of the other than they cannot
be equal.

when {(not-member =el -objectl
J
(member -el =»object2)}
(assert (not-equal -objectl -object2)))

(when {(not-member =el »objeth)
(member -el -sobjectl)}
(assert (not-equal -objectl -»object2)))
The last two sprites in figure 7 check each element of the respective scquences for their equality or
non-equality. If it can be shown that there are two elements, e11 and e12 in cbrrcsponding positions

that are known not to be equal, then object1 and b ject2 are not equal.

(when {(length =»objectl =n)}
(foreach m (list-of-integers from 1 10 n)
(when {(sequence-element -2objectl =ell -m)
- (sequence-element »object2 =el12 -m)
(not-equal -ell -el12)}
(assert ‘(not-equal -»objectl =»object2)))))

If, on the other hand, it can be shown that every element of one of the sequences is equal to the
corresponding clement in the other sequence, then we can conclude the two scquences are equal.

(when {(1ength =*objectl =n)
{(Ymin -+(list-of-integers from 1 o n)
check {(sequence-element =objectl =el -m)
(sequence-element »object2 =el *m)})}
(assert (equa1 »objectl +ob3ect2)))

5.4 Generation and Refutation of Termination Clauses

You will remember from the description of the iterative accumulation-type function that each begins
with a cond clause that specifics the end of the iteration, that is the point where the accumulant is
returned. Each of the conditions of the clause consists of a test to check if one or both of the input
sequences is equal to ni11. Our first step in synthesizing a function is to decide what donc condition to
use. This will be our first demonstration of the interaction of proposers and skeptics in the synthesis of a
piece of the function. For some of the functions: reverse, unique-members, delete, and

greatest, that cither have only one input, or only one input that is a scquence, there is only one choice

-75-

for the termination clause. For the others, however, where inputs are known as inputl and input2
there is a choice of three possibilities:

(cond _
((and (equal inputl nil) (equal input2 nil)) accumulant)

(cond
((equal inputl nil) accumulant)

) '

(cond
((equal input2 nil) accumulant)

)

We will find that, for each of the functions, skeptics will be able to invalidate one or more of the choices
without having to consider any further specification of the program. This is a very important point and
we use bold face to draw your attention to it. What are actually doing is discarding whole classes of
possible functions with one single skeptic. In a more conventional problem solving system, without
concurrent skepticﬁ, many hundreds of programs might have to be generated to completion, cach with

the same bug. o -

The code that proposes these termination clauses is shown in figure 8.

¥

Fi. ¥8. Code For Proposing Termination Clauses

(defunc propose-termination-clauses ()
(cond
((and (= (length list-of-inputs) 2)
(eq (<- (car list-of-inputs) ‘'typed-object) ®'sequence))
(let ((first (car list-of-inputs)) o
(second (cadr list-of-inputs)))
(assert (termination-clause ((equal -»first -»nil1l1) -accumulant)))
(assert (termination-clause ((equal -second -»nill) -»accumulant)))
(when {(disproven-termination-clause ((equal -»first -»nil11) -»accumulant))
(disproven-termination-clause ((equal -second -nill) -accumulant))}
(assert (termination-clause
((and (equal »first -»nill) (equal -second -»nill)) -—+accumulant))))))
((= (Yength 1ist-of-inputs) 2) '
(1et ((sequence (cadr list-of-inputs)))
(assert (termination-clause ((equal -»sequence -nill) -accumulant)))))
(t (let ((sequence (car list-of-inputs)))
(assert (termination-clause ((equal -sequence -»nill) -»accumulant)))))))

The function checks to sce if there is only one input that is a sequence, and if so, asscrts the one possible

termination clause. If there are two inputs that are scquenccs it asserts for cach one:

-76 -

(assert (termination-clause ((equal =inputl -»nill) -saccumulant)))
(assert (termination-clause ((equal =input2 -»nill1) -accumulant))) .

At some point, because of the running of the skeptic, it may be determined that onc or both of them are

disproven-termination-clause’s. If both of them arc disproven, the sprite:

(when {(disproven-termination-clause ((equal =first -»nill) -accumulant))
(disproven-termination-clause ((equal -second -nill) -»accumulant))}
(assert (termination-clause
((and (equal =first »niil1) (equal -second +nil1l1)) -accumulant))))

will fire and the following assertion will be made:T

(assert
(termination-clause |
((and (equal =inputl »nil11) (equal =>input2 »nill) -accumulant))))
When a termination clause has been proposed two new activities are created, one whose function is to
~build a function based on it, and the other whose function is to show that it is not a possible termination

clause. These are the skeptics and we will treat them first.

We must first address the question of how it is possible to demonstrate that a particular tcrmination
clause could not possibly be correct. Let us assume we wish to refute a termination clause of the form:

((equal inputl nill) accumulént)

Let us assume that the iteration has just begun. Since we have not yct been through even onc loop of the
iteration, the accumulant must be equal to nil 1.:? Since we have just begun the itcration, if we can
find input examples for which inputl is -nﬂ]. but the accumuTant (which is equal to the output
since this is the last clause of the iteration) is something other than ni11 we will have disproven its
validity as a termination clause. Code for doing this is shown in figure 9. As we can see, it selects a
viewpoint (bound to vri t) in which the input being tested foris ni11 (i.c. it is the nu11-test) and the -
other input contains one clement (the singleton-test). We assert that the output is null. If we
discover .any contradictions in this viewpoint we will assert that the termination clause has been

disproven.. Now lct us sec how this will work in practice. Therc are four cxamples that take two

T I am not certain whether this is logically correct, that is, if the final termination clause requires the conjunction, whether the two
- individual conjuncts can always be proven invalid. It is certainly true for the examples presented here and others I have looked at.
This problem could be avoided by giving the activity pursuing functions based on the conjunctive termination condition a small
amount of processing power to begin with and increase it if and when the non-conjunctive termination conditions have been
proven invalid.
¥ The type of the accumulant is always the same as the type of the output. In all but onc of the cxamples, greatest the output
is a sequence.

-77 -

Fig. 9. Code For Disproving Termination Clause

(defunc test-null-termination-clause (input clause)
(let ((test-configuration (if (eq input (car list-of-inputs))
. "(null-test singleton-test)
*(singleton-test null-test))))
(within-viewpoint control-viewpoint
{when {(viewpoint-for-test -»test-configuration =vpt)} .
(let ((scratch-vpt (new-viewpoint inherits-form vpt))) -
(within-viewpoint scratch-vpt
(activate-knowledge
(assert (equal ~output -+nill))
(when {(contradiction)}
(within-viewpoint control-viewpoint
(assert (disproven-termination-clause -»clause))))))))))

sequences as arguments. We will examine each in turn.

5.4.1 Sct-Difference

The correct termination condition for the set-difference function is«(equal 1inputl nil). We
will show how the other possibility is disproven. The code in figure 9 is invoked to check the possibility
of (equal input2 nil). This will cause the creation of a viewpoint in which the following
assertions will appear:

;s These are inherited from the prototype viewpoint
(assert (equal =»input2 =»nill))
(assert (length =»inputl 1))
{(assert (sequence-element ->inputl -»singleton-elementl 1))

" s The following additional assertion is made:
(assert (equal -—output -»nill))
If we now look at the sprites that define setdifference we find the following:

 (when {(member =x =inputl)}
(when {(member -x =input2)}
(assert (not-member -=x -=output)))
(when {(not-member -x =input2)}
(assert (member =x -=output))))

This sprite will trigger with x bound to singleton-element1. The body of the spritc will then be
evaluated with in this environment. In paricular the following sprite will be activated:

(when {(not-member -»x -*input2)}
(assert (member =x =output)))

Since input2 is known to have no elements, this sprite will immediately fire, and
(member singleton-elementl output) will be asserted. A (CONTRADICTION) will then be

asscrted because it is known that output has no elements. Then the sprite watching for contradictions

-78 -

in this viewpoint shown in figure 9 will trigger causing the assertion:

(disproven-termination-clause ((equal »input2 =»nill) -accumulant))

to be generated. As we will see later, this assertion will cause the activity pursuing functions based on
this termination clause to cease functioning, and the processing power redirected to the correct

termination clause.

5.4.2 Union and Merge

Both of the functions Union and Merge have as their termination clause:

((and (equal inputl nil) (equal input2 nil)) accumulant)

For both of them, the individual "termination clauses ((null inputl) accumulant) and
((null 1input2) accumulant) are disproven in a similar way, and we will treat them togethér.
Suppose we have the task of disproving ((null input2) accumulant). As happencd above, we
create a new viewpoint in which we find the following assertions: '

(equal »input2 -nill)
(tength ~»inputl 1) ,
(sequence-element »inputl »singleton-elementl 1)
(equal =output -»nill)

In both the definitions for me rge and union we find the following sprite:

(when {(member =x =inputl)}
(assert (member -x -=output)))

This sprite will trigger with x bound to singleton-element causing the following to be asserted:

(assert (member -»*singleton-elementl -output))

A (CONTRADICTION) will be asserted. The clause under consideration will be marked a

"disproven-termination-clause" ashappened above.

Both of thesc functions are symmetric with respect to the arguments inputl and input2.
Demonstration that the termination clause ((null inputl) accumulant) will not work is
handled similarly. When we have asserted both:

(disproven-termination-clause ((equal =inputl »nill) -»accumulant))
(disproven-termination-clause ((equal =input2 -»nill) =accumulant))

work attempting to create functions based on either of those termination clauses will cease. Additionally

the sprite in figurc 8 will trigger and we will assert:

(termination-clause (and (equal =inputl »nill) (equal =input2 =nill)))

This will initiate work attempting to thresh this out into a function as we will soon see.

5.4.3 Intersection

We listed the termination condition for this function to be (equal inputl nil). In fact,
intersection is completely symmetric with respect to its arguments; thus either termination clause
will work, and neither can be disproven. What happens when we actually push this function through the
system, is that both functions with‘respect to this symmetry are pursued in parallel. This function points
out one defect in -our system -- by trapslating the logical description of our program behavior into sprites
we have lost the level of description at which it is possible to deduce that they arc in fact symmetrical,
and this knowledge used to st if1e one of the two branches as bcing unnecessary. What this costs us il"l
speed is only a factor of 2 here, but in a much more realistic program synthesis system these factors of 2
have a way of leading to an exponential decrcase in efficiency with increasing complexity of the

specifications.

5.5 Proposing Simple Constructors

Before we can continue with our discussion of the proposition, testing, and elaboration of iterativé
programs we must first discuss how it is possible for the synthesis system to propose simple
constructions. For example, if we know that one of the inputs to a function, input1 is bound to the list
'(a b c d) and we know the output of the function, output, is the list ' (b ¢ d), an obvious
proposal for a simple function to produce the output is the function (cdr input). How is this

proposed? That is the subject of this section.

There is a function called propose-possible-constructors of onc argument. When called, it
activates a number of sprites that each look for different ways of constructing the function. We will
éxamine the workings of these sprites one by onc with examples. There is one predicate (assertion) that
we must explain first, the available predicate. When we reason about how to construct an object,
there are certain objects that are available to us for doing the construction. The inputs to our function, as
well as certain constants, can be uscd by us to construct new objccts, but certain objects, say the output,
cannot be used. There are objects we wish to be able to reason about but are not objects we can use for

construction; only oncs that can be used have been asserted to be available.

-80-

The complete function is shown in figure 10; we will explain each of the sprites in its body in turn.

Fig. 10. Function To Propose Possible Constructors

(defunc propose-possible-constructors (object)
Thzs JSunction takes one argument, OBJECT, and asserts possible primitive functions that could construct i,
If the object you are Irying to construct is equal to an available object then that object is a constructor for it.
(find-equal-objects object)
(when {(equal -»object =x)
(available -x)}
(assert (possible-constructor ~+object -x)))

s If you are tying to construct the first clement of a known list, a constructor for it is the CAR of that list.

(when {(sequence-element =1ist -object 1)
(available -1ist)}
(assert (possible-constructor -object (car -+1ist))))

If the object you are trying to construct has a CAR of something that is constructible, and its CDR is
,equal to some available sequence, then you can construct it by cons’ing the first onto the second
{when {(sequence-element -object =car 1)}

(propose-possible-constructors car)
(when {(possible-constructor -»car =make-car)
(1ength 2object =n)
(length =cdr (- n 1))
(available -cdr)
(VY min »(list-of-integers from 1 to (- n 1))
check {(sequence-element -~object =el -»(+ m 1))
(sequence-element »cdr -el -m)})}
(assert (possible-constructor -+object (cons -make-car -cdr)))))
1 If the object you are trying to construct is equal to all but the first element of another, then CDR is a
; possible constructor.
(when {(length +object =n)
(length =1ist »(+ n 1))
(available -+1ist)
(Vmin »(1ist-of-integers from 1 to n)
check {(sequence-element -object =el -m)
(sequence-element -»1ist el »(+ m 1))})}
(assert (possible-constructor -object (cdr »1ist)))))

5.5.1 Objects Equal To The One Your Are Trying To Construct

If we wish to return an object of a certain form, the simplest thing to do is find objects we already know
about that have that form! This is what the first section of propose-possible-constructors
trics to do. The code looks as follows:

(find-equal-objects object)
(when {(equal =object =x)
(available -x)}
(assert (possible-constructor sobject -x)))

We first call the function find-equal-ob jects (described in section 5.5.5). This will activate sprites

trying to find objects that are in fact equal (in the Lisp scnsc) to the one we are trying to synthcsizé, but

-81-

not yet known or asserfed to be equal. Whenever an object is found that is known to be equal to the
argument, and that object is known to be available, we can asscrt that a possible constructor is that object

by itself.

5.5.2 Synthesizing Car

If the object we are trying to construct is is the first element of some list, and that list is available, a
possible constructor for the object is the car of the list. The code to accomplish this is:

(when {(sequence-element =1ist -object 1)
(available »11ist)}
(assert (possible-constructor -»object (car =1ist))))

The first clause of the sprite looks for any item currently known about that has the target object in its first
position. This item is then bound to the variable Tist. If 1ist is available, (car Tist) isa

possible constructor.

5.5.3 Synthesizing Cons

Suppose you want to construct a list. A way of doing this is to see if there is a way of constructing the
first element of the list. If there is, see if there is a list which is equal to the CDR of the list you are trying
to construct. If such a list exists, a possible constructor for the object we are trying to construct is the
CONS of these two. This is shown below:

(when {(sequence-element -»object =car 1)}
(propose-possible-constructors car)
(when {(possible-constructor -»car =make-car)
(1ength -»object =n)
(length =cdr »(- n 1))
(available -cdr)
(V min »(1ist-of-integers from 1 to (- n 1))
check {(sequence-element -»object =el =»(+ m 1))
(sequence-element -cdr =el -m)})}
(assert (possible-constructor -»object (cons -make-car »cdr)))))

The code first extracts the first element of the target function which is bound to car. ‘It then trics to
propose possible constructors for this object. If a possible constructor is located it becomes bound to the
symbol make-car. We then look for all lists that have a length of 1 less than the length of the object
we want to construct and are available. If such a list is found, it is bound to the variable cdr. The final
clause essentially checks each clcmcﬁt of the object we want to create and sces if that element occurs in a

corresponding position of cdr. If this is true for every position of the list then we can use CONS to

- 82 -
construct the target object.”

5.5.4 Synthesizing Cdr

If there is an available object that is equal to the target object with somcthing tacked onto the front, then
we can construct the target object by taking the CDR of this other object. The following code checks for.
this:

(when {(length -object =n)
(Tength =1ist »(+ n 1))
(available =1ist) -
(WVmin =+(list-of-integers from 1 to n)
check {(sequence-element -object =el -m)
(sequence-element »1ist »el =>(+ m 1))})}
(assert (possible-constructor -»object (cdr =»1ist))))

The code checks for any lists known to be of length 1 greater than the target object. If it finds one (and it

3
)

ié available), we check to see if every element (bound to e1) that is in the mth position of the target
object is in the m+ st position of the list. If this is true for all objects, we can assert that taking CDR of

the list is a possible constructor for it.

We have hardly exghausted the possibilities for primitive constructor functions and don’t pretend to
have a complete theory of such constructions. Nevertheless, the function for finding possible

constructions is sufficient for all the examples we have looked at and has a good deal more generality.

5.5.5 How To Find Equal Objects

If we want to find objects equal to the a given object in the current viewpoint we call the following
function: '

(defunc find-equal-objects (object) :
(when {(value =»object =n) ' -
(value =object2 =n)}
(assert (equal =object »obJeth)))
(when {(length -object =n)
(1ength =object2 =n)
(not-eq »object -2object2)
(Y m in »(1ist-of-integers from 1 1o n)
check {(sequence-element -object =el -m)
(sequence-element -»object2 -el -m)})}
(assert (equal -=object -2object2))))

Exccuting it has the effect of activating two sprites. The first sprite checks to see if the value of the object

-83-

is known. The value of an object is only defined if the object is known to be a number and it is known
which number it is. We then look for other objects known to have this same value. If any are found, we

assert the two objects to be equal .

The second sprite triggers if an object is known to be a list of a known length. We check for other
objects of the same length and make sure they are not the same exact object. (This is what the not-eq
predicate does. We do this only for efficiency reasons; if they are the same exact object then they are
' already known to be equal.) We then let m range over all the integers from 1 to the length of the list. If

something (bound to e1) is in the same position in both lists, the two lists are asserted to-be equal.

5.6 Pursuing The Function Definition

What actually happens when we first propose a termination clause is that the code in figure 11 is

executed.

Fig. 11. After Finding A Termination Clause

(let ((activity-for-terminator (new-activity prefix *term-clause-activity)))
JIf we ever show this termination clause is invalid, stifle the activity.
(within-viewpoint control-viewpoint
(when {{(disproven-termination-clause -clause)}
(stifle activity-for-terminator)))
(within-activity activity-for-terminator)
i Here we create two sub-activities. one to pursue the termination clause and one to attempt to refute it
(1et ((proponent-act (new-activity prefix 'terminator-proponent))
(opponent-act (new-activity prefix 'terminator-opponent)))
(support-in-ratios .

parent activity-for-términator
activities (1ist opponent-act proponent-act)
Jactors (2 1))

(within-activity proponent-act
(propose-possible-recursions clause))

(within-activity opponent-act
(test-plausibility-for-termination-clause clause)))))

As we can sce, the code creates a new activity called activity-for-terminator which will pursue
both the further development of the clause and its refutation. A sprite is then activated,

(when {(disproven-termination-clause -»clause)}
(stifle activity-for-terminator))

If we ever learn, via the techniques of section 5.4, that the termination clause cannot possibly work, the
activity is stifled and its processing power is returned to its superior activity (which in this case is

the-root-activity) for redistribution to othcr, morc promising activitics. After creating this

-84 -

activity, we create two ncw subactivitics called the opponent-act and proponent-act. The first of
these pursues the work described in section 5.4 attempting to disprove the validity of the clause. The
second carries out the task of trying to flesh out the termination clause into a function. This is described

now.

We now ask ourselves the following question: "What characterizes the simplest possible cxtension of the
skeletal function we now have that might lead to a complete function?” This skelctal function is:

(defun functionl (dinput nil)
(cond
((equal input nil) accumulant)

o))

The answer is simple: assume we have but one alternative clause, and then construct a plausible
accumulating function. That is, we first look for functions of the form:

(defun functionl (input nil)
(cond
((equal 1input nil) accumulant)
(t (functionl (cdr input) accumulating-function))))

There is actually only one function that fits this format, reverse. We will show how reverse is
synthesized, and then show how the other functions synthesized are further elaborations of this basic

approach.

The best places to look for simple proposals for accumulating functions are traces of the function when
run on simple examples. The example in which we have an empty input is a bit too simple (we already
havé a clause for that onc). The next place to look is where we have a function that has one input. Qur
sprites that define the Reverse function tell us what form the output must take when the input is a
singleton. They tell us that the output must be a list consisting of the same element. Thus, in the
prototype viewpoint for the singleton-test, we vs}ill have derived this fact. Because we are iterating
down the list input, the singleton-test reflects the stage of the iteration immediately preceding the
Sfinal null test of the first clause of the function. This being the case, the accumulating function that we
wish to propose should be able to construct the output out of the available objects in- the viewpoint.
Code for deriving possible accumulating functions is shown in figure 12. The function creates a new
viewpoint that inherits from the singleton-test viewpoint. Because there is only one iteration
required to take us from where we begin, to the final output, we assert that the accumulant is null
(and also that it is available). We then try to construct objects that are cqual to output and propose ways

of constructing thosc objects out of oncs that are available. If a constructor is found, we assert that it is

-85 -

Fig. 12. Code To Proposc Possible Accumulators

(defunc propose-accumulators ().
(within-viewpoint control-viewpoint
(when {{viewpoint-for-test (singleton-test) =v)}
(let ((scratch4vpt (new-viewpoint parent v prefix 'find-accum)))
(within-viewpoint scratch-vpt
(activate-knowledge)
(assert (egual -~accumulant -»nill))
(assert (available -~accumulant))
(when {(equal -output =is-output)}
(propose-possible-constructors is-output)
(when {(possiblie-constructor -is-output =make-output}}
(assert (accumulating-function -make-output)))})))))

an accumulating-function. In the case of the Reverse function, there are three possible
accumulating functions that are produced. They are:

input
(cons (car dnput) nil)
(cons (car input) accumulant)

Now that we have proposed accumulating functions, we now (actually) have three proposition for
complete functions. They are:

(defun Reversel (input accumulant)
{cond
((equal input nil) accumulant)
(t input)))

(defun Reversel (input accumulant)
(cond
((equal input nil) accumulant)
(t (cons (car input) nil))))

(defun Reversel (input accumulant)
(cond :
((equal dinput nil) accumulant)
(t (cons (car input) accumulant))))

The last of these is the correct function definition., The first two are not. How they can be climinated is

the subject of section 5.8.

-86 -

5.7 Conditional Introduction

The simple program schema used above will not work for anything but the reverse function. All the
others have paired conditions. These paired conditions must be proposed in some manner. The
technique we use is quite similar to the technique of conditional introduction used by Manna and
Waldinger [41]. There is one assertional type we have not yct mentioned that is important in the
introduction of conditionals. Whenever we ask a question about the equality of two objects, i.e.
whenever we activate a sprite of the form:

(when {(equal -objectl -object2)}
ce)

and it is not then known whether the objects are equal or not, we assert the following:?

(possibly-equal -~objectl »object2)

There is one other relation that is treated in this manner, 1ess. Whenever we create a sprite of the
form:

(when {(less -objectl -2object2)}

e

and the relation between the two objects is not definitely known, we will assert:

(possibly-less -»objectl -object2)

The sprites that will ask the questions about the equality or relative order of two objects that lead to the
conditionals in the code are, of course, the ones in the specifications for the functions to be synthesized.
For example, onc of the sprites used in the specifications for the intersection function was:

(when {(member =x -=inputl)
(member =x =input2)}
(assert (member -=x -output)))

Now suppose that we invoked this sprite in one of our prototypical viewpoints as defined in section 5.3.2.

T There are several ancillary remarks we can make with respect to possibly-equa?l asscrtions:

1. As will be made clear in chapter 7, the “internal” behavior of sprites and assertions is something that is programmable by the
user. This feature is useful in the construction of the program synthesis system, but does not mean that equality sprites in all
Ether-base systems must exhibit this behavior.

2. Also, as will be explained in that chapter, the cost of 2a possibly-equal assertion is almost nothing.

3. It may seem at first glance that the presence of possibly-equal assertions violates our principle of monotonicity. That is, if
something is possibly equal then if we later learn that it is definitely equal or not equal we will have done something inconsistent.
We will see by the way these assertions are uscd that a proper interpretation for a possibly-equal assertion is that "a sprite
wants to know whether these two objects are equal.” The truth of that statement docs not diminish when it is learncd that the two
objects are cither equal or not equal. ’

-87 -

We will invoke it in the viewpoint in which cach of input1 and input2 contains a single clement. In
this viewpoint we have not said anything more about the rciationship between these two member
elements (which we call e11 and e12 for purposes of discussion). The sprite above will fire with x
bound to e 11, when we then reach the sprite pattern: '

(member =x =>input2)

it wili try to determine whether or not e11 is equal to €12 (the objcct it knows is a member of
inputZ).T This information is not, of course, known and a possibly-equal assertion mentioning
the two elements will be made. This will causc the system, as we will se¢, to introduce the conditional in
the definition of the intersection function:

(defun intersectionl (inputl input2 accumulant)
(cond

((member (car inputl) input2)

((not-member (car inputl) input2)

++)))

The code that initiates all conditional introduction is shown below:

(foreach
input
Tist-of-inputs
(when {(sequence-element -+input =first 1)}
(when {(possibly-equal -»first =object)
(available -object)}
(propose-car-equal-tests input object test-viewpoint))
(when {(possibly-less =first =object)
(available -object)}
(propose-less-tests input object test-viewpoint))))

This code is exccuted in one of the prototypical viewpoints in which the input(s), if they are both
sequences, contain only one element. If onc of the inputs is'a number or an atom we use the prototypical
viewpoint in which nothing is known about the propertics of that particular clement. The actions of the
functions consider-car-equal-tests and consider-Tess-tests will be discussed in section
5.7.1. Scction 5.7.2 considers the proposing of accumulating functions after the conditionals have been

picked.

‘[‘ That the possible triggering of a member sprite causes the activation of an equa?l sprite is quite important. This is an aspect of
our "semantically meaningful” implementation of sprites and assertions that is the subject of chapter 7.

-88 -

5.7.1_Proposing The Conditionals

The code for propose-car-equal-tests is shown in figure 13.

Fig. 13. Test Proposing Function for Equal First Element

(defunc consider-car-equal-tests (input object test-viewpoint)
{(within-viewpoint test-viewpoint
(propose-possible-constructors object)
(when {(sequence-element -input =first-element 1.)
(possible-constructor -object =make-object)}
(assert (possible-conditional (member -make-object -input)))
(assert (possible-conditional (equal (car =input) -make-object)))
(when {(equal =first-element -object)}
(assert (disproven-conditional (member -make-object -=input)))
(assert (disproven-conditional (equal (car -input) -make-object))))
(when {(equatl -»first-element -»object)}
(assert (disproven-conditional (member -make-object =input)))
(assert (disproven-conditional (equal (car -»input) -make-object))))
(let ((vpt (new-viewpoint prefix 'suggested-opponent-vpt))
(ell (new-object instance-prefix 'opponent-vpt-object))
(e12 (new-object instance-prefix 'opponent-vpt-object)))
(within-viewpoint vpt
(assert (sequence-element -»input -ell 1))
(assert (sequence-element -input -el2 2))
(assert (not-equal -ell -object))
(assert (equal -el2 -»object)))
(assert (suggested-opponent-for-conditional
(equal (car =input) -make-object) ~»vpt))))))

Remembering that the proposing of these conditionals happens within a viewpoint where each input (if a
scquence) contains a single element. If we gencratc a possibly-equal assertion that refers to the first
clement of the input sequence, there are two possibie kinds of tests that would make valid conditionals.
The first kind of test is of the form: A

(equal (car input) object)

The second possible test is of the form:

(member object input)

The code in figure 13 will propose both of these. First we have to find possible constructors for the
objcct that the first clement of the input is known to equal. This is done by:

(propose-possible-constructors object)

For each possible constructor of the ob ject we make two assertions that there is a possible conditional:

(assert (possible-conditional (member -make-object -»input)))
(assert (possible-conditional (equal (car =input) -make-object)))

These assertions will trigger sprites that will create activitics for the purposc of proposing the

accumulation functions for cach conditional branch as described in scction 5.7.2. If, however, we

-89 -

eventually learn that the two objects that were asserted to be possibly-equal in fact are either
equal or not-equal, the proposed conditionals are not possible (because one of the branches will
never be followed). In this case we assert that the conditional is a di sproven-conditional. There

are sprites watching for these asscrtions that stifle the respective activities pursuing the conditionals.

Once conditionals are picked, as will be explained in section 5.7.2, we have complete the proposing of a
possible function by picking the appropriate accumulating function. The proposed function is then
' subject to the refutation process. There is some aid we can give this refutation process by suggesting
viewpoints that represent test cases likely to cause problems ifthe conditional picked was incorrect. The
remainder of the code in figure 5.7.1 does precisely that. Suppose the equa? test had been picked, what
would be a good test case for possible completions? An alternative way to ask this question is: "What
would be cases for which the member test will work but the cqual test will not?" The simplest example
of this is a case in which the first element is known to be not equal to th object in the test and the second
element is known to be equal. As shown in figure 5.7.1, we create a new viewpoint (bound to vpt) and
two objects (bound to e11 and e12). We then place in that viewpoint the following assertions:

(assert (sequence-element -»>input 2ell 1))
(assert (sequence-element =>input -el2 2))
(assert (not-equal -»ell -»object))
(assert (equal -»el2 -object))

We then assert that this viewpoint is a useful one for refuting proposals in which the equal conditional
was used by executing:

(assert (suggested-opponent-for-conditional
(equal (car =»input) -make-object) -=vpt)))))

This can then be used in the final refutation process to test proposed functions.

5.7.2 Proposing the Accumulating Functions Within Conditionals

-~

The picking of accumulating functions is done similarly to the way it was done in scction 5.6. The
cxample used in that scction, reverse, did not contain any conditionals (other than the termination
condition). If there are conditionals (as all other functions have) we must generate accumulating
functions for each branch of the conditional. In the viewpoint in which we propose the accumulating
functions we must assume the condition of the branch to be true and in that viewpoint propose the
accumulating functions. We proposc. the accumulators by looking at the prototypical vicwpoint that

contains one clement for cach of the inputs.

.

S

-90 -

We will use as an cxample the intersection function whose dcfinition was given in section 5.4.3.
The correct test for this function is:

(cond
((member (car inputl) input2) accumulating-functionl)
((not-member (car inputl) input2) accumulating-function2))

Let us consider how the accumulating functions for each of the branches is proposed.

The code that does the proposition creates a subviewpoint of the prototypical viewpoint in which we

‘assume the first of the conditions is true. In this viewpoint we activate the following sprite:

(when {(séquence-e1ement »iterated-input =el 1)}
(assert (member -el -member-1ist)))

where iterated-input is bound to inputl and member-1ist is bound to input2. This will
cause the first clement of input1 (call it "e11") to be known as a member of input2. Since input2
is known to have a length of 1 (and we will call its single element "e12"), it will deduce that e11 and
el12 are equal. The following sprite in the speéiﬁcations of intersection then gets triggered:

(when {(member =x =inputl)
(member -»x -»input2)}
(assert (member -=x -=output)))

Indicating that this element (that is in both input1 and input?2)is also in output. In this viewpoint

we are now able to propose the accumulating function using the techniques of section 5.6.

We will now consider the other branch of the conditional. In the appropriate viewpoint we activate a
sprite that fepresents the condition:

(not-member (car 1inputl) input2)

The sprite is:

(when {(sequence-element -»iterated-input =el 1)}
(assert (not-member -el -member-1ist)))

with iterated-input bound to inputl and member-1ist bound to input2. This will cause the
two items that are known to be members of the two lists to become known to be not cqual to one
another. The other sprite that was used in the specifications of intersection was:

(when {(member =x -output)}
(assert (member =x =inputl))
(assert (member -x ~input2)))

Nothing more can be deduced of importance in this viewpoint. The output is in fact null, but we have

not yet shown how this can be deduced. Since it is often the case that the output in these simple

-9] -

viewpoints is null, we have a special mechanism that usually allows us to deduce this fact if true. We
execute the following code: .

(let ((null-test-viewpoint
(new-viewpoint parent test-viewpoint prefix 'null-test-viewpoint))
(obj (new-object instance-prefix 'output-member-skolem)))
(within-viewpoint null-test-viewpoint
(assert (member -obj -output))
(when {(contradiction)} '
(within-viewpoint test-viewpoint
(assert (equal =output -»nill))))))
What we do is create a new viewpoint, called null1~test-viewpoint, that is a subviewpoint of the
viewpoint in which we assumed that the given clement was not a member of the list (bound to
test-viewpoint). Within this viewpoint we make one additional assumption. We assume the list has
at least one element. We create an object (bound to ob j) of which we say absolutely nothing except that
it is a member of the output. If we are able to deduce a contradiction in this viewpoint then we know
that the output is null.T This is then asserted in the test-\iiewpoint. Now we will see how the
contradiction is deduced. When we assert that the output has a member, we trigger the sprite:

(when {(member =x -=output)}
(assert (member =x -inputl))
(assert (member -=x -=input2)))

That asserts this same object in a member of both input1 and input2. Both of these sequénces are
known to be of length 1 and have elements (which we call e11 and e12). We will thus deduce that ob j
is equal to e11 and that it is equal to e12. By transitivity we will deduce that e11 is equal to é) 2. We
have, however, previously deduce that e11 and e12 are not equal to one another. Therefore there is a
contradiction and we lcarn that output isequal to ni11 in test-viewpoint. In this viewpoint we

now have enough information to propose accumulating functions as was shown in scction 5.6.

~We will go through one more example of this process of proposing accumulating funcﬁons for
conditional branches, the de1ete function. The two conditional branches of the de1ete function are:

(cond
((equal atom (car inlist))

((not-equal atom (car inlist))

TThis is the same logical principle that is used in resolution thcorem proving. However, our understanding of the semantics
involved allows us to do the deduction much more effectively.

-92 -

Since one of the inputs is an atom, and onc a sequence, the prototype viewpoint we usc for proposing

lets the sequence (i.e. in11st) contain a single element (call it e 1) of which we have asserted nothing.

We create a subviewpoint of this prototypical viewpoint that represents the possibility of the clause:

-

(equal atom (car inlist))

being truc. This is done by the sprite:

(when {(sequence-element 41terated-input =el 1)}
(assert (equal =»el -»equal-element)))

where iterated-input is bound to in1ist and equal-element is bound to atom. The sprites
that define the delete function arc shown on page page 63. If in11st contains a single element (as is
the case here) and atom is equal to this element, then we should be able to deduce that the output is the
null sequence. The way this is done, analogously with the previous example, is we create a subviewpoint
of the current viewpoint in which we assume that the output has an element and watch for
umummmm&AﬂmmmAWWMemwmwMMnmmwmmwmmmmt‘ |

(assert (member -aobj -output))

This will trigger one of the sprites used in the specifications for delete,

(when {(member =element -output)}
(assert (member -element ->inlist))
(assert (not-equal -element -atom)))

Because in1ist is known to have only one elecment in this viewpoint, which is equal to atom, the two
assertions that get made will cause a contradiction and it will be asserted in the higher viewpoint that

outputiscqualtonill.

Now we consider the other branch of the conditional:

(not-equal atom (car inlist))

In the viewpoint in which we propose accumulating functions, we execute the following sprite:

(when {(sequence-element »iterated-input =el 1)}
(assert (not-equal ~»el -2equal-element)))

with iterated-input bound to inlist and equal-element bound to atom. The following
sprite in the specification of de 1ete will then trigger,

(when {(member =element =>inlist)
(not-equal ~element -»atom)}
(assert (member =element -output)))

establishing the necessary result for the proposition of accumulating functions.

-93 -

5.8 Skeptics By Progressive Testing

By the time we have passed through the successive stages of the system thus far described:
1. Proposing and refuting termination conditions

2. Conditional introduction

3. Proposing accumulating functions

We have arrived at proposals for complete functions. There may be a number of proposals that survive
previous refutation procedures. On the test cases they range from 3 (for reverse) to a few hundred for
union. The process of discriminating-between them is conceptually quite simple. We merely run them
on test cases and throw out the ones that do not yicld the expected results. In retrospect, the way I would
have designed the system would have been to require the user to supply the system with a set of criterial
test cases. If the program ran on each of these test cases successfully we will consider it a success.
Programmers are quite good at picking sets of examples to use. Most of the "proposals” that make it this

far are still sufficiently silly that they can be refuted quite easily.

I had instead elected to construct a system that tested the functions using progressively more complicated
prototypical test cases. The idea would be to effectively execute the function on these prototypes. We
would go through progressive loops of the function, each onc of which would gencrate a new viewpoint
that represented the state of the variables between loops. If the value of the output disagreed with that
computed by the specifications, the function would be refuted and no more testing would be done on it.
We would start first with the simplest viewpoints (those whose sequences had 0 or 1 elements in them)
and then progress to more complicated vicwpoints. Whenever a possibly-equal or
possibly-less assertion was encountered (due to a conditional in the code itself) a bifurcation of
viewpoints would have to occur; one path would consider the case as if the conditional were true, and
onc would consider it as if the conditional were false. The technical problems in coding this were so
complch that I was not able to complete coding it. I also feel, in retrospect, ‘that cfficiency
considerations would have made this ncedlessly costly. This is particularly true because of the

bifurcation that must occur each time we run into a conditional. Those proposed programs that are not

T And greatly complicated by a bug in the Lisp machine compiler lhai causced my programs to die abruptly.

eliminated on the very simplest cases will be tested at considerable computational expense. The only
help to this process are the suggested test cases generated in section 5.7.1. For certain classes of the
proposed functions they would give test cases that would quickly eliminate incorrect ones. Perhaps this
methodology can be generalized to a theory of test case gencration based on the specifications. I think
future work on systems like these will probably, when testing whole functions, be better off using a select

set of concretc examples.

5.9 Related Approaches To Program Synthesis

Program synthesis is a gencric terms for techniques that simplify the intellectual tasks of creating a
program by having the computer pcr.fonn some of these tasks. A program syn.thesis system requires the
programmer to specify the behavior of the desired program in some way. The form of the specification
ranges from natural language to more formally definable specification languages. The common feature
of all of these specification languages is that certain information that would have to be specified in any
conventional language nced not be given; the program synthesis system will be able to figure it out. This
distinguishes program synthesis from other techniques for making computers easier to program such as
debugging tools, integrated programming environments, structured programming, and modular
languages. The computer, programming regimen, or programming language might make it easier to

perform the intellectual tasks necded to design a program, yet cannot be considered to replace them.

Program synthesis projccts vary widely in the classes of decisions that they wish to automate. This
literature is voluminous and will not be reviewed here. There are, however, two classes of such systems
that relate in interesting ways to the one developed in this work. These might be called the deductive and

inductive approachcs.'ir :

The deductive approach starts with a specification in a formal language, usually first-order predicate
calculus or a simplc variant. From this specification it produces a program. Each starts with some sort of
axiomatization for the target language, or inference engine based on logic, and constructs a program
concurrently with a proof that the program produced satisfics the specifications. An carly attempt at this

was Green’s QA3 system [16] that used resolution with unification to construct the program from an

T I find an interesting parallcl between the two classical epistemological theories discussed in section 2.1 and the two approaches
to program synthesis that 1 have catled inductive and deductive. The inductive approach bears a resemblance to empiricism and the
deductive approach to rationalism.

-05 -

axiomatization of Lisp. Manna and Waldinger [41, 42] have a system that also generates simple Lisp
programs from specifications. Their system understands allows specification in terms of sets and can
deduce car-cdr type recursion from the set specifications. They have the ability to introduce. other
simple conditionals and auxiliary functions in some of their examples. Hansson and Tarnlund'[IS]
introduce a systcm that axiomatizes more interesting data structures than simple scts and ends up with
some interesting Prolog programs as a consequence. Like our own, none of these systems can work on

more than a handful of examples.

Our approach begins with a similar specification, but, unlike the deductive approach, does not end up
with a proof that the program is correct. At first sight this might seem to be a limitation of our approach.
It could also, however, be an advantage. By not requiring the system to generate a proof in addition to
the program we have lessened it burden and possibly increased its scope of applicability. None of these
approaches has developed sufficient breadth that this issue can be decided. One argument in favor of
our approach is that is certainly corresponds to the way people program. They have ideas, propose
programs, and then test the programs on examples. Programmers will accept the program as being
correct when they have tested it on sufficiently many examples that they are confident. Programmers
rarely, in practice, "prove” their programs to be correct. This is our interpretation of falsificationist
philosophy applicd to the problem of enginecering design (i.e. programming) which we believe is

fundamentally correct.

There is a sense in which the techniques developed in this chapter can be gainfully used to augment the
methodologies employed by the above systems. The problem solving structure of cach of the above
systems is naive. The descriptions concentrate mainly on the deductions involved in generating the target
program and not on how they were picked. Each system generates numerous intermediate goals, many
of which are invalid. There are some cases where the use of skeptics run in parallel with the pursuit of

the goals could quickly eliminate what would otherwise be a costly branch in the (sequential) search.

The inductive approach does not begin with logical spccifications, but with a sct of example
computations. Examples of these approaches include Hardy [19], Shaw arid Swartout [57], and Summers
[63]. Each of these takes a set of Lisp input-output pairs and produces a Lisp program as the result.
Each of these systems is also capable of generating only a handful of programs. The programs, however,
seem more contrived than either ours or ones produced by the deductive systems. Our programs (as well
as the ones developed by the deductive school) are ones we would expect programmers to want to

generate. The ones used by the inductive school aren’t. An example from Hardy synthesizes a program

-96 -

from the following I/0 pairs:
(ABCDEF)==>(ABBCDDEFHF)

The examples from the other works cited are of a similar sort. The reason these systems are weaker is,
we believe, that they do not have any higher level specification of the desired behavior that they can
reason about. The intuition that they are building on, that examples are important in the synthesis of
programs, is a good one. In our system examples (or “gencralized examples") play a role in both
proposers and skeptics. However, the ability to.reason about specifications gives us considerable power

that systems just working from concrete examples cannot make use of.

While systems that can do unaided program synthesis are perhaps premature, a reasonable compromise
might be a progrdmmer’s apprentice. The idea was first discussed by Hewitt and Smith [25]. An
extensive implementation of such a syétcm has been pursued by Rich [52], Waters [67], and Shrobe [58].
Many of the ideas presented here, both the concept of proposers and skeptics can potentially be of use in
such a system, although I think people probably will probably make much better proposers in the near
term. If the user specifies the intent of the code being gencrated. These intentions can be turned into
sprites. When programs or partial programs are proposed, the specifications for these can also be
expressed using spritcs. The apprentice, in background mode, can then rcason about the intentions and

programs and discover bugs that can then be reported to the user.

-97 -

Chapter VI How We Get Parallelism On Top Of Lisp

Previous chapters have dealt with programs in the Ether language without any concern for how these
programs were implemented. This chapter goes into great detail on techniques of implementation.
Ether is implemented on top of Lisp Machine Lisp, an upward compatible extension of MacLisp that
differs from MacLisp (or the original Lisp 15 for that matter) little in essential detail. The nature of
Ether is really quite different from Lisp in many of these details. It is thus of interest to study how the
one language is grafted onto the other. I use the term "grafted onto" rather than "implemented in"
because straight Lisp code is very- definitely present in the "Ether code™ examples we have scen. This
has certain advantages as long as the merge can done smoothly, i.e. without violating Ether semahtics.
The principle advantage of doing this is that we can make usc of the much more efficient and already
implemented Lisp p:imitives. The Ether primitives when and assert arc actual Lisp functions that get
evaluated‘by the interpreter when they are run across.T There are two places in which the underlying

Lisp implementation clearly violates Ether semantics and extra care is necessary; they are:

1. Lisp, is a fundamentally sequential language. There is a very definite order with which things get
done. It makes no sense to talk about creating several activitics and executing pieces of Lisp code in
them. In fact, if this were done, one activity would be exccuted in its entirety before the others got a

chance.i

2. Lispis a dynam'ically scoped language. Ether requires lexical scoping. If a variable is bound in a
certain environment and a sprite is created in that environment (and contains the variable), we would
like the variable to have the same binding when the sprite is executed. We have to go to considerable
pains in the implementation to ensure the appropriate variables get bound to their values in the Lisp

environment when the body of the sprite is executed.

We will address these two problems after explaining more of the details of the implementation. In fact,
we will discover that with minor caveats about how Lisp code should be mixed with "straight” Ether

code, the two problems scem to vanish. We can think about the code as being truly parallel and lexically

T More correctly, they are macros that expand into different code that gets executed. The nature of these macros is the subject of
chapter 7.)

¥ Here we are ignoring the Lisp machine process construct. It actually does have the capability to exccute several Lisp programs
in paralicl. However, the time to switch from onc process to another is non-ncgligible. The technique works fine when there are
only a couple of processes runnable at any one time. It does not perform efficiently when dealing with more than a {ew processes.

- 08 -

binding almost all the time without running into bugs.

The discussion of the implementation is divided into two chapters that reflect different concebtual' levels
of the implementation. The lowest level, the subject of this chapter, discusses how parallelism is a;tually
obtained through the message-passing sublanguage of Ether. This is where we explain how parallelism,
lexical binding, activitics, processing power, etc. are implemented. There are features here of interest not
only to those concerncd with problem solving. languages, but also those interested in more

' gencral-purpose parallel language architectures.

Following this in chapter 7 we explain how assertions, sprites, and vicwpoints are implemented in this
parallel message-passing sublanguage. There are several novel features here not found in previous
pattern-directed invocation langdages. One aspect of these languages we have done away with is the
database, or place in the implementation where all asscrtions and active sprites are stored. In fa'ct, the
information is stored in a very distributcd manner and storage and retrieval is based on the semantic

content rather than the syntactic form. This has many advantages which we will discuss.

6.1 Message Passing Languages

Message-passing languages come in two varicties. The more well-known of the two is typified by
Smalltalk [29]; MIT rcaders may be more familiar with the Flavor system on the Lisp machine which has
similar characteristics from the point of view of this discussion. The way programming is viewed in these
languages is an inversion of the normal view. Normally we think of programs as recipes for control in
which the language primitives manipulatce data stored inside the machine. In message-passing languages
we don’t think of programs as manipulating data, rather the program is built out of objects that contain
both data and procedures to manipulate the data. Rather than writing a monolithic program that acts on
data, we send an object a message where the "data" is a parameter of the object and the message is a
request to perform the operation. The reason this make a difference is because different objects can
have different methods for responding to the same message and éhus the same picce of program text can
result in different (though appropriate) behavior when acting on a diffCl'Cl_lt sct of objects. For example,
if we wished to add 3 to some other number, we would send that number a [+ 3] message. How it
performs this operation depends on the kind of number it is. If it was a conventional number the

obvious would happen. We could also create, say, a complex number type that responded to this

-99 -

message in a different way. Many languages have a complex datatypeT though we can imagine less
standard kinds of "numbers" that we may wish to implement that a conventional language would be
unlikely to provide. We might, for example, want to implement a number tht serves the function of an
infinitesimal (call it "€") in non-standard analysis. We would define thc "+ " operation to, when asked
to add € with an integer (say "3") will return a new objcct (call it "3+€"). The object 3+ € has
procedures with it that specify what to do when it reccives messages of various kinds. For example, its
message handler for messages of the form "[> n]", meaning "are you greater than n" might look like:

if (n £ 3) then true else false

giving the correct response. Message passing has turned out to be a useful paradigm for implementing

modular programs.

Although Smalltalk and similar languages provide tools that improve program modularity, the types of
control structures that are possible are essentially no different than those available in Lisp.:*: The idea of
message passing, however, lcads us to a very different model of computation, one that is inherently

parallel. This is known as the actor model of computation. -

Once we undcrstand the program as objects ﬁassing messages, and nothing more, we can get many more
interesting control structures with no additional conceptual complexity. The key realization is that there
is no longer a process state that enforces a sequence on program exccution. Objects are sent messages;
different objects being sent different messages concurrently process them concurrently. Hewitt {26]
develops this concept by showing how standard control structures (those, say, involving recursion and a
thercfore a stack) can be redescribed as actor computations in which the stack has been replaced by
actors that represent continuations [39]. Coroutines are just as easily had; two actors can be programmed
to send each other messages back and forth. Parallelism falls naturally out of the actor model. What is
referred to as parallel forking in other languages is will result in the actor model if one actor, after
receiving a message, sends out more than one message. The notion of process is no longer well-defined;

at any one time any number of messages can be in transit.

The principle actor language is known as Actl [23, 24]. Actl was developed primarily as a research tool

T Although few languages give you the tools to construct a complex datatype if it is not alrcady provided by the system. This is
the point. '

¥ The language Simula [8). from which many idcas of Smalltalk derived. made use of a coroutine facility that cannot be done
using a conventional stack-oriented control structure.

-100- N

to explore the actor model, and in particular, techniques for dealing with mutable objects in a highly
parallel programming cnvironment. Actl takes a radical approach. to the problem of building a
programming language based on actors -- all computation, down to a very microscopic level, is done by
message passing. On a Lisp machine, not specifically designed for actors, there is an inherent overhead
for running programs where all computation is done via message passing. In the current Ether we have
taken a more pragmatic approach; message passing is used to a level of granularity nccessary to ensure
true parallel computation, but function calling of the conventional sort is made frequent use of. Anothef
actor-based language, known as Atolia [7], allows actors to do computation internally by means other

than message passing.

In order for there to be effective pardllelism in Ether, which is implemented on top of Lisp, we have to
ensure that no Lisp function has control of the interpreter for too long a time. As we will see in section
7.4, every time we create a spriteT or make an assertion we cause a break in the normal Lisp evaluation.
The command that causes the actual work of the sprite or the assertion (which as we will also see in
section 7.4 is the sending of a message) is saved for later execution. There is one other construct in the
Ether language that causes a break in the normal Lisp cvaluation. This is the within-activity
command. When the Lisp evaluator comes across the following in an Ether program:
(within-activity act

-- body --)
the Lisp commands contained in -~ body -- arc not evaluated right away but arc gueued for evaluation
under the auspicies of the activity act. A perusal of the code samples present in the text should
convince the reader that Lisp cvaluation cannot go very far without running into a when, assert, or
within-activity construct. As an example we have taken the definition of parallel-fork for
the cryptarithmetic problem solver shown in figure 2 and replaced all occurences of those three _
constructs with asterisks. This appears in figure 14. The forms that actually appears in the positions of
the asterisks arc simply commands to quecue the appropriate codcafor later evaluation; the queuing
operation requires very little computation. The code consists of a conditional with a simple predicate.
The function foreach iterates over the list alternatives and for cach one binds a few variables,
exccutes add-current-explorers which merely adds an entry to a list, and queucs three forms for

later computation. This whole cvaluation locks out the processor for so little time that effective

T Remember, as noted in section 3.5, that a sprite with scveral patterns is really a shorthand representation for several nested
sprites.

S

i

- -101-

Fig. 14. Shell of Lisp Code

(defunc parallel-fork (letter alternatives parent-viewpoint)
(if (null alternatives)
1 If there are no viable alternatives, the there is no consistent assignment possible.
LERE £]
s Otherwise, fork on each alternative
(foreach
digit -
alternatives
(let ((v (new-viewpoint parent parent-viewpoint))
(a (new-activity parent start-act)))
(add-current-explorers v a)
(within-viewpoint v
LR X T
L2 R R 2]

#*tt*))))

parailelism is maintained. The same is true of the other code samples presented throughout this text.

6.2 Implementation of Activities

Some mechanism should be found to control the parallelism in actor langdages if we are to write
effectively controllable scarch programs. As we will soon see, the activity notion we have been making
use of throughout this document is actually a mechanism for controlling the parallelism of message
passing languages. The notion is perfectly general and can be integrated with any actor-based

programming language.

One other mechanism has been explored in the literature for controlling the parallelism in actor
programs; the future construct of Baker [1]. Futurcs' are a very clegant mechanism for controlling
programs withoizl side-effects, but have scrious deficiencies when programs with side-cffects are
considered.T Ether, although it is monotonic when viewed as a program that deals with sprites and
assertions, compiles into a message-passing implementation that is very highly non-applicative. The
activity mechanism was developed as a way a of controlling parallel programs that involve mutable
objects. The decision that an activity is no longer essential to the whole computation involves an
understanding of the scmantics of the computation. The knowledge required to demonstrate a

computation is no longer uscful to the overall problem solving effort must be derived by the individual

T'Thc deficiency involves the mechanism by which it is decided that an activity is no longer necessary and can be stopped. In an
applicative language, if no continuation is currently waiting for the result of a computation, we are assured that the computation is
no longer necessary and the activity halted. In non-applicative programs information can be passed between objects by other
means than rcturning a value to the caller. Thus having no wﬁiting continuations docs not mean the activity will not pass
information via a side-cffect. If there is no waiting continuation for the result of an future, the "activity” it creates is stifled.

-102 -

problem solver. Thus primitives to control the computation must be available to the problem solver.

These are the processing power manipulation and st if 1e primitives we have been making use of.

To understand how the parallclism of Ether is implemented we must examine it momentarily with a very
powerful magnifying glass. Ether is, of course, implemented on a single processor machine and if we
look deep enough there is a well-defined state of the computation at any point in time, A schematic of
what this state looks like is shown in figure 15. The whole computation is comprised of a number of
events, each one of which is executed uninterruptably by the Lisp interpreter. The Ether interpreter is
really a very simple function known as the sanctum sanclorum.T This function consists of a simple loop.
On each iteration of the loop an event record is removed from the queue attached to the activity marked
current activity. The event record contains code which is then exccuted. As we explained above, the
time required to exccute this code is short (in almost all cases not more than a few milliseconds). If any
when’s, assert’s,orwithin-activity’s were present in the original code, commands would be in
the code actually executed as part of the event that would put new events on the queue of some activity.
In the case of when’s and assert’s the new event would be queued on this same activity’s qu.eue; in the
case of awithin-activity, the activity on which the event would be queued is the activity that was
given as first argument to withi n-activf ty. Each time we exccute an event we keep a fally of the
total amount of time used to exccute it. When a preset time limit is excecded, the pointer marked
current activity is advanced to the next activity in the ring and cvents are executed from its queue until its
limit is exceeded. The choice of these limits is determined by the processing power assigned to the
activity; how this number is computed is the subject of section 6.5. The execution of this loop -- through
the ring of activities and qucucd events on cach activity -- continues until no activity in the ring has any

events on its queue; the interpreter then goes into a wait state awaiting further commands from the user.

The reader should not be confused by the fact that the ring of activities is flat. Each activity, save the
root activity, has at least one parent activity and many have children activities; the activity graph has
been flattened at this deepest level of the interpreter for reasons of efficiency. During the exccution of
an cvent, commands (shch as stifle or new-activity) may be executed that will causc the
structure of the ring of activitics to be modified. Carc has been taken in the implementation to prevent

anomolous states of the ring of activitics from occurring; we will explain the operation of these in section

T "Holy of Holies." This was the inncrmost chamber of the ancient temple in Jerusalem, accessible only to the High Priest and
his assistants.

- -103-

Fig. 15. State of an Ether Computation

Current-Activity

Activity1

event !
event l ..
—_ Activity2

event

<<L<L<L

event

event
event
event
o0 o

event

Iif)

> .

2}

<

g

sﬁ
\

|

event

L

event

event Activity3

event event

event

event

event event

event

GGG
GG

event

- 104 -

6.6.

6.2.1 What An Event Record Looks Like

The definition of an event record is shown in figure 16.

Fig. 16. Definition Of An Event Record -

(defstruct (event-record :named)
next-event-record
activation-body
activation-closed-variables
activation-closed-values)

Each event record is a structure containing four components. The first component implements the
queue of cvents; it contains a pointer to the next event in the queue. If this slot is nil, then we have
reached the end of the queue; the activity has quiesced. The code that is actually executed as part of the
event is contained in the slot activation-body. Itisa .piece of Lisp code that is evaluated. This code
is evaluated in an environment defined by the last two slots, a list of variables and a list of equal length of
values to which these variables are bound. The variables are lambda-bound to these values and the body
evaluated in this environment. The . triplet activation-body,
activation-closed-variables, and activation-closed-values really form a closure.
They are represented in this more atomic form largely because the current implementation evolved from

an carlier PDP-10 MacL.isp implementation that did not have an explicit closure primitive.

6.2.2_ What An Activity Looks Like

The dcfinition of an activity is shown in figure 17. Slots marked with an asterisk, those relating to point
sprites, will be explained in section 7.8.2 after the concept of a point sprite has been introduced. The slot
activity-symbol contains the print name of the activity. If the object cver has to be printed (as
often happens when dcbugging) it will print as the name in this slot. The print name is told to it via the

arguments name or preﬁxT to the function new-acti vity. The activity ring depicted in figure 15 is

T We use the name argument when it is expected that the call to new-activity will only get evaluated once. The argument
prefix is used when it is possible the code will be evaluated more than once. In this case a unique digit is appended onto the
symbol passcd as an argument. The ability to give activities names that relate to their purpose is invaluable in debugging.

- 105 -

Fig. 17. Definition of an Activity

(defstruct (activity :named)
activity-symbol
next-activity-in-ring
parents
children
stifled

* stifled-point-sprites
quiescent

* quiescent-point-sprites
front-of-queue
end-of-queue
total-time-used
total-time-should-have-used
relative-processing-power-self
subactivities-processing-power
absolute-processing-power~total)

implemented by the slot next-activity-in-ring; each activity points to the next onc in the ring.
The slots parents and children implement the subactivity relation. The parents are all thosé
activities higher than it in the activity trce; the children are those lower in the tree. If the activity has
been stifled then the slot st if1ed will contain T; if the activity has ever quiescedT the slot quiescent
will contain T. The queue of pending events is implemented with the two slots fron t-of-queue and
end-of-queue. Events to be executed are pulled off front-of—queug. When a new cvent is to be
added to the queue for the activity, the next-event-record slot of the event pointed to by

end-of-queue is sct to the new event record and the end-of-queue slot is then changed to the new

event record.
The last five slots, total-time-used, total-time-should-have-used,
relative-processing-power-self, subactivities-processing-power, and

absolute-processing-power-total have to do- with the way processing power is notated and

implemented. This is the subject of the section 6.5.

T What this means in low level terms is that the activity has processed at least one event, but currently has no events to process.
This ensures that there will be no race conditions. For the kinds of activitics for which it makes sense to talk about quicscence, the
only activity that can add a new event to the queue is the activity itself.

- 106 -

6.3 Lexical Environment Management

As mentioned in the-introduction to this chapter, Lisp is a dynamically scoped language while Ether is
not. We have already discussed in scction 6.2.1 that each event record carries along with it an
environment that gets instantiated before the code contained in the event record is executed. This,
however, begs the question of just how the appropriate variable-value pairs got placed in the

environment. That is the subject of this section.

Part of the answer to this question is that the implementation maintains two dynamically-scoped special
variables that at all times represent the current lexical environment. These variables are called
current-closed-variables and current-closed-values. They are, at all times, of equal
length and elements in correspohding positions represent bindings of variables to values in the lexical
environment. The presence of these variables is completely invisible to code written by the user. Of
course, at all times the bindings represented by the current values of these two variables are in force in
Lisp’s dynamic environment. The code that queucs activation records picks these two lists out of the
dynamic environment and puts poinicrs to them in the appropriate slots of the event record. When the
event record is executed, the two variables are bound to the values in these slots and the variable-value

bindings are instantiated in the normal Lisp environment.

A slightly modified form of the Lisp binding mechanism let is used in Ether. In the code that was
actually run, a function by a different name: slet is used. The function s1et, in addition to binding
the variables in its argument in the normal Lisp environment, also adds the bindings to
current-closed-variables and current-closed-values. The let function isn't the only
function that creates Lisp bindings. We have not written "Ether versions™ of the others, such as defun,
lambda, and do. If we used onc of these binding mechanisms without taking some extra care we would
be in a lot of trouble. Suppose, for example, we define the function £ oor as follows:

(defun foo (x a)

(within-activity a
(print x)))

Foo can is passed two arguments, the first can be anything, and the second must be an activity. What we
would expect to happen is that the first argument that was passed to foo will be printed (assuming the
second argument is an activity with processing power). This is not what would actually happen,

however. The reason is that the call to within-activity causcs its body (which is the form

(print x))to be placed in a new cvent record that is placed on the queuc associated with the activity

-,

- -107-

bound to a. The code that docs the qucuing places the currently known lexical environment
(represented by those two variables) in the event record. Howcver, the variable x was nof bound by
s1et or any other Ether function and thus will not be part of the known lexical environment. The end
result of this is that when (print x)) is evaluated, the variable x will eithér be unbound or have the
wrong binding. The actual code we would have to write to get the proper behavior out of this is:

(defun foo (x a)
(slet ((x x))
(within-activity a
(print x))))
We have to bind x to itself, a seemingly useless operation. This aspect of Ether will be further
commented on in section 8.4.3. In the presentation of the code in the examples throughout this work we

have replaced slet with Tet and eliminated all bindings of variables to themselves. This is the only

place where the code has been "doctored™ for presentation.

Sprites also introduce new bindings into the lexical environment. Just how this happens will be

discussed in chapter 7.

6.4 Sending Messages

In fact, most events during the normal running of an Ether program consist of messages being sent to
objects, rather than just the small chunk of code plus environment exémpliﬁed in the previous section.

Almost all when and assert constructs get turned into message transmissions. The exact natures.of the

objects and the messages they can receive will be explained in chapter 7, however the basic mechanism .
will be explained in this scction. The object-oriented sublanguage of Ether is built on top of the flavor
system of the Lisp machinc. We do not, actually, make use of any of the distinctive features of flavors,

those that distinguish it from Smalltalk [29] or Simula [8]; they were merely available. The Ether send

primitive takes three arguments as depicted:

(send object message-type rest-of-message activity)

The first argument, object, must by a conventional flavor-type object capable of rcccivingb mcssages. The
second argument, message-type, is a symbol. For each kind of message type, and cach class to which the
object can belong, there must be a particular method to handle the message. These message handlers

can take arguments and these arguments are package in the third argument to send, rest-of-message.

‘The last argument is the activity through which the event representing the message being processed by

the object is is associated.

-108 -

The send primitive causes a new event record to be added to the end of the queue of the activity
argument. The body of this event record consists of the necessary Lisp commands to have the rnesshge

with arguments processcd by message handler associated with 'the‘object.

6.5 Implementation of Processing Power

In our example systems we have presented programs that make use of processing power. In this section
we will review how the writer of an Ether program sces processing power and then discuss how it is
actually implemented. We will only discuss the handling of processing power for fixed collections of
activities. In section 6.6 we describe the implementation of commands (e.g. stif1e) that modify the
activity graph. The modification of i)rocessing power in these situations is a bit more complicated and

requires the following as a prerequisite to its understanding.

Our design decisions concerning the implementation of processing power are based on one important
premise: Changes in processing power allocations to activities are a very infrequent event in comparison

with the processing of evenls on activities” queues.

The implementation of processing power presented in this section has many desirable characteristics.

Among them:’

1. The amount of overhead for ensuring that the processing power allocations are abided by is very small
during normal execution. It amounts to onc multiply plus one add every time the current activity is

advanced, and a clock read, onc add, and one comparison every time an event is exccuted.

2. The implementation -ensures that over any period of time the ratio of actual clock time two activities
get will be in proportion to their processing power allocations with an error that is at most the time of

one event plus a small constant.T
3. Property 2 remains true even for activitics with arbitrarily small amounts of processing power.

4. Property 2 remains true even for activities that have quiesced for a while (i.e. had nothing on their

queues) but then received new event records.

F The constant is equal to the time it takes to do one complete cycle of the ring of activities. It is specifiable by the implementer.
The current value used is § seconds.

=109

5. The time required to readjust processing power allocations for an activity is proportional to the size of
its own subactivity tree. This characteristic is desirable because modifications of resource allocations

high up in the tree should happen much less frequently than farther down in the tree.

6.5.1 Relative And Ahsolute Processing Power

~ There are actually two different kinds of processing power that the system knows about. One of them,
. relative processing power, is the kind the user actually manipulates. The other, absolute processing power,
is computed by the system for its own internal use. Initially, before any computation occurs, there is
only one activity prescnt,' the-root-activity. When new activitics are created within this activity,
they become children of the root activity and a decision is made as to how much of the processing power
assigned to the-root-activity is transferred to the new activities. Similarly, if new activities are
created within the auspicies of any other activity, processing power must be transferred to them for any

computation to happen within them.

Relative processing power expresses the way cach activity divides the processing power assigned to it
amongst itself and its children. At all times the total of the relative processing power kept for itself, and
the amounts given to its children activities add up to 1. For example, if activity Al had two children

activities A2 and A3 and had relative processing power allocations of:
self-power: .33333, A2 power: 33333, A3 power: 33333

then each of the activities, Al, A2, and A3 would run at precisely the sam'c rate. If the allocations were

instead:
self-power: 2, A2 power: 4, A3 power: 4

each of the children activities, A2 and A3, would run at the same rate which would be twice the rate of

the parent activity. If the allocations were instead:
self-power: 0, A2 power: .15, A3 power: 25

the parent activity would not get to exccute at all, and the subactivity A2 would run three times as fast as
the subactivity A3. It is not uncommon for a parent activity to have a sclf-power of 0. This

configuration is desirable when Al represents some particular goal for which there might be two

-110-

subgoals. After cstablishing its subgoals there may be nothing more for it to do, so its processing power

can all be given to its subactivitics (which represent different approaches to accomplishing the goal).

A convenient function is supplied to allow the user to specify changes in relative processing power
allocations. The function is called support-in-ratios. It takes five arguments, three required and
two optional. A call to the function that would result in the final example mentioned above would be:

(support-in-ratios
parent A1l
children (1ist A2 A3)
ratios '(3 1))

would result in A2 being assigned three times as much processing power as A3, leaving A2 and A3 with
relative processing powers of .75 and .25 respectively. An additional argument, selffactor can be
specified that expresses the factor that should be maintained for use by the parent activity: selffactor
defaults to 0. To obtain the previous example (in which Al, A2, and A3 had relative processing power
allocations of .2, .4, and .4 respectively) we could have executed:

(support-in-ratios

parent Al

children (1ist A2 A3)

ratios '(2 2)

self-factor 1)
One other optional argument can be supplied: default-factor. This expresses the amount of processing
power reserved for those activities not explicitly mentioned on the children list. The default for this

argument is also 0.

Relative processing power indicates the proportions by which cach activity divides processing power
among itself and its subactivities. It does not indicate how much proccssing power an activity gets
relative to the entire system, a very important number when we wish to compute a time quantum for
scheduling each activity. This is the meaning of absolute processing power. Absolute processing power is
computed from the relative processing power allocations. It is a fraction that represents the proportion
of the total system cxecution time that it reccives. The absolute processing powér allocation reccived by
an activity can be computed by multiplying all the relative processing power allocations dlong the chain
starting with the root activity. At any one time the total of the absolute processing power allocations for
all activities in the system add to 1. This is ensured by the implementation and cannot in any way be

violated by the user program.

-111- :

6.5.2 The Scheduling Algorithm

There is a constant called the cycle time, maintained internally by thc>system, that represents the total
amount of time it takes for the scheduler to cycle through the ring of activitics once. The behavior of a
program is insensitive to the value of this constant within a large range. The cycle time should be small
with respect to the total runtime of the program; this will ensure effective parallelism. If the cycle time is
very small, it will occur additional overhead in the scheduling algorithm. The cycle time for all runs

discussed in this work was 5 seconds. 4

The relevant fields that define the broccssing power allocations of an activity are to be found in figure 17.
The field relative-processing-power-self contains the fraction of relative processing power
that the activity maintains for its own use. The field subactivities-processing-power is a list
of fractions whose length is equal to the list of children of the activity. The sum of all of these fractioné
is, of course, 1. The ficld absolute-processing-power-total rcpresents the fraction of total
system processing power allocated to this activity and its children. Thus, to compute the quantity of
absolute processing power reserved for the activity’s own use we multiply this humbcr by the fraction

relative-processing-power-self.

Whenever relative processing power allocations arc changed, the absolute processing power allocations

arc at the same time modified to reflect this change. Thus, at all times they are consistent.
The scheduling algorithm is the following:
1. The curreni-activity pointer is advanced to the next activity in the ring.

2. The value in the ficld total-time-should-have-used (a number representing time in -
microseconds) is replaced by the following:

total-time-should-have-used + (cycle-time * relative-processing-power-self)

3.If total-time-should-have-used < total-time-used, gotostep l.
4. If there arc no cvents on the cvent queue, go to step 1.

5. Else, exccute an event from the cvent queue, keeping track of the amount of time it took to

execute. Add this time to the slot total-time-used. Go to step 3.

The actual algorithm is actually a bit more complicated than the above (but not much). It also ensures

-112-

that when the entire system quiesces (has nothing to do) this fact will be detected and the system will

enter a "wait state”, awaiting further activity from the user.

The above algorithm has several features worth noting:

1. The amount of overhead per event execution is quite small. In a microcoded implementation, the

total overhead for event exccution would be similar to the overhead to do a function call.

2. If an activity has a very small amount of absolute processing power, sufficiently little that it cannot
support even one event for each cycle through the activity ring, the amount of time in the slot
total-time-should-have-used will slowly accumulate. It may take several cycles for this value
to exceed the value in total-time-used. Thus such activities may only execute an event an average
of once every n cycles where n can be of any size. Yet the overall effect is to keep the amounts of time
used by all activities in acordance with the processing power allocation; to within the grain size of the

events.

3. If an activity has no events to execute, the time allocated to it will slowly accumulate so that when it
finally does have something to do, it will "make up for lost time.” Again the over all effect is to keep time

usage by activities in accordance with the processing power allocations.

6.5.3 Changing Processing Power Allocations

Whenever support-in-ratios is called, the slots subactivities-processing-power and
relative-processing-power-self arc adjusted so that they are in correct proportions to the
factors given as arguments and are normalized so that they add up to 1. After these relative processing
power allocations are changed, the absolute processing power allocations for cach of the children
activities must be modiﬁcd.T An extremely simple recursive function accomplishes this for us. The
function is shown in figure 18. The fuhction takes two arguments, aﬁ activity whosc processing power is
to be adjusted, and an amount that it is to be adjusted by. The amount is a difference, so it is positive if
the amount is to be increased and negative if the amount is to be decreased. The function first adjusts its

own absolute processing power by executing:

T The relative processing power allocations of no other activities have to be modified. It is a purely local change.

-113-

Fig. 18. Code to Modify Ahsolute Processing Power Allocations

(defunc adjust-absolute-processing-power (activity amount)

: Recursively makes the processing power adjustment mentioned. Positive means it gets more power
(struct+ (absolute-processing-power-total activity) amount)
(let ((total-ppr-children

(sumlist (subactivities-processing-power act1v1ty))))
(foreach

(subactivity relative-ppr)

(children activity)

(subactivities-processing-power activity)
(adjust-absolute-processing-power

subactivity

(* amount (// relative-ppr total-ppr-children))))))

(struct+ (absolute-processing-power-total activity) amount)

It then computes the proportion of the absolute processing power change that is to be distributed to
subactivities (bound to the variable total-ppr-children) and recursively distributes this change to
the subactivities. When this procedure completes execution, the total absolute processing power of all

activities will sum to 1.

6.6 Modifying The Activity Structure

There are two primitives that actually modify the structure of the ring of activities. These functions, and

their implementation, are described in this section.

6.6.1 Creating New Activities

New activities are created by exccuting the function new-activity. Here we explaiﬁ precisely what
happens when this function is executed. The function creates a new activity structure (as depicted in
figure 17) with the parents slot being filled by an explicit parent argument to the function or, by
default, whichever activity happens to be currently executing. The children slot of the current activity
is augmented by the addition of this newly created activity. In the current implemgntation, processing
power allocations arc modificd at that time so that all children have equal amount of processing power.
The creation of an activity is typically followed by a form that rearranges processing power in accordance

with its needs.Jr After the activity is created processing power allocations for all affected activities are

T Future versions of Ether should have more intelligent ways of redistributing processing power within new-activit y based
on certain sterotypical patterns of doing so.

-114-

recomputed. :

The new activity is inserted in the ring of activitics behind the activity that is currently executing. This is
necessary to avoid an unfair scheduling situation that would otherwise be possible. No matter how little
processing power an activity has been given, it will be able to exccute at least one event. Suppose there
were a program that (duc to, say, an infinite chain of goals) it were to create another activity during its
first event. If this activity were to do the same thing ad infinitum, the system would never get on to
execute the next activity in the ring. By placing newly created activities behind the current activity in the

ring, this deadlock situation is avoided.

6.6.2 Stifling Activities

When an activity is stifled, all subactivities of it are recursively stifled. (The one exception to this
statement involves subactivities introduced by the goal mechanism described in section 6.7‘.1). The
stifled field of the activity object in figure 17 is set to T and the activity is spliced out of the ring of
activities, i.e. the next-activity-in-ring field of the previous activity in the ring is set to the
next-activity-in-ring of the activity being stifled. Thus events in the activity will no longer be
available for execution. When an activity is stifled, relative processing power allocations of the
remaining unsﬁﬂed children activites are increased so that they remain in the same relative proportions

and sum to 1. Absolute processing power allocations arc then modified as described in section 6.5.3.

6.7 Other Mechanisms

There are two other mechanisms that relate to the exccution of activities, the implementation of which

needs to be explained.

6.7.1 The Goal Mechanism

The specially supported goal mechanism was introduced in section 3.3 and rcasons why it is convenient

are given in section 3.6. Here we discuss the specifics of the implementation.

The system maintains a table of all goals that have been established indexed first under the type of goal
(e.g. equal) and then under the arguments given to it. In this table is the internal activity that is

associated with the goal. When the user executces the code:

- 115-

(goal (foo args) act)

the system checks to see if an entry in the table alrcady exists for the specific set of arguments args. If so,
it adds the activity bound to act to the list of parent activities of the internal activity, then the
appropriate code to readjust absolute processing power allocations is called. Thus, any processing power
that was given to act will be transferred to the intefnal activity under which all work on the goal

happens.
If there is not currently an entry in the table for this particular goal, the following is done:
1. An activity (to become the internal activity) is created. With act as its parent activity.

2. The defgoal method for foo methods is theﬁ processed. If the method were defined as follows:

(defgoal foo (argl ... argn) act2
-- body --)
Then act2 is bound to the newly created internal activity, the variables argl ... argn are bound to

the arguments of the call to goal, and the body of the method is queued for processing under the

internal activity.
3. An entry is created in the table for the call for the goal listing the internal activity created.

Thus only one activity (the internally created activiiy) will ever be working on the goal. At any time the
activities that were used in the cstablishment of the goal can have their processing power changed and
this change will get reflected in the internal activity. At all times this activity has processing power equal
to the sum of the calling activitics. The stifle primitive treats these internal activitics differently in

two respects:

1. When one of the user-created activities is stifled, the-activity is removed from the list of parents of the
internal activity. If every user-created activity associated with the goal is stifled, the internal activity is
not stifled. The processing power assigned to it is automatically lowered to zero because it has no
parents, yet it stays potcntially executable. Thus, if some other part of the system later becomes
interested in the particular goal, it can execute the goal command with a new activity that has

processing power. The activity would then continue where it had left off.

2. If the internal activity is stifled, every one of its parent activities is automatically stifled. The internal

activity can only be stifled from within the defgoal. The only recason that it might be stifled is if

-116 -

either it is demonstrated that the goal is unattainable or that it has alrcady be attained. In this case the
activitics are no longer necessary. By stifling them, the processing power that had been allocated to

them is automatically redistributed among the unstifled activities.

6.7.2 Continuously-Exccute

In at least one place, we have made use qf the primitive continuously-execute. In the
cryptarithmetic problem solver we created a manager activity that ran continuously in the background,
monitoring relative progress of activities, and modifying processing power appropriately. We executed
the form:

(continuously-execute (allocation-strategy))

This is implemented by placing on the queue of the respective activity essentially the following code:
(progn

(allocation-strategy)
(continuously-execute (allocation-strategy)))

Thus the function allocation-strategy will get run, and afterwards the same form will be placed
on-the end of the queue, cnabling the ﬁlnction to get run again and again. For the reasons discussed in
section 6.5, regardless of how long the function allocation-strategy takes to run ecach time, the
percentage of resources allocated to the activity it is in will asymptoctically approach its processing power
allocation and have a maximum crror equal to the length of time the function takes to run plus a small

implementation-specified constant.

XN

e

-117 -

Chapter VII The Implementation of Assertions and Sprites

We have made much use of code involving assertions and sprites in the examples but have not yet
discussed what really happens when we executc the assert or the when construct. This chapter
discusses these issues in depth. The implementation technique we have found is quite novel; it differs in
substantive ways from other languages that contain constructs analogous to sprites and assertions. These
differences have important implications for both the efficiency, power, and distributabilityT of these
languages. As we will see, the implementation "inverts” many of the concepts that we have been using.
The user of sprites and assertions “thinks" of the hierarchy of constructs in the language as the graph in
figure 19a suggests. We normally think of creating an activity and activating sprites in it. We thiﬁk of
assertions as being placed in viewpoints and sprites as watching for assertions in viewpoints.
Furthermore, asscrtions and sprite patterns contain objccts. The implementer of sprites and assertions,

as we will see, views the hierarchy of concepts in a manner suggested by figure 19b.

7.1 A Review of the Properties of Sprites and Assertions

Here we briefly review the propcrties that sprites and assertions must e¢xhibit and then go on to describe

the implementation.

Monotonicity Once an assertion has been made it cannot be crased. Any sprite that is capable of
matching the assertion that is created at any future time (as long as it is in an activity with processing

power) will be triggered.

Commutativity When there is a sprite created, and an assertion that matches the sprite, the order of

creation of the assertion and the spritc is immaterial.

Yiewpoints Every assertion is donc in the context of some viewpoint. The assertion is accessible to
sprites in that viewpoint and in all viewpoints that inherit from that viewpoint. In the current system, all
the parents of a viewpoint must be declared at the time of its creation; although, as we will sce, trivial

additions will make it possible to add new parent vicwpoints at a later time.

TThat is, the ability to get the code to run on multiple processors. Most implementations of such languages make use of a
database that can act as a bottleneck.

- -118-

Fig. 19. Hiecrarchy of Concepts

(A) How the user of sprites and assertions sees the world:

Activities Viewpoints
Sprites Assertions
Objects

(B) How the implementer of sprites and assertions sees the world:

"Objects

l

Viewpoints
Sprites Assertions

Activities

-119 -

Activities All sprites are created within some activity and the work required to actually effect the

execution of the sprite must be turned into events executed by that activity. .

7.2 Virtual Collections of Assertions

Previous languages of this form, ones with assertional capabilities and data-driven procedures (reviewed
in section 3.6) treat the assertions and sprite patterns as uninterpreted lexical forms. The semantic content
of the assertions is not in any way understood by the mechanisms that store and retrieve the information.
We will shortly argue that by understanding somcthing about the meaning of the assertions, ways of
encoding them can be found that are much more satisfactory from several points of view. The concepts

involved were first proposed in an earlier paper by myself [33].

There are various clever encoding schemes that make it possible to check for the presence of an assertion
(or sprite pattern) in the database in time which is less than linear with the size of the database. All
languages of this form have some sort of discrimination net that allows the retrieval mechanism to
dispatch off of pieces of the assertion or sprite pattern and use a kind of "divide and conquer™ approach
to avoid searching most of the database mdst of the time. The most intricate scheme described in the

literature is the one used by QA4 and is well documented in [54].

The bulk of this chapter describes the implementation of assertions and sprites for the program synthesis
system. The description for the cryptarithmetic system, though similar, is much simpler and will be

deferred to scction 7.7.

1.2.1 The Basic Idea

The skeletal idea of virtual collections of assertions is quite simple. The primitives assert and when
are not functions defined to interact with any kind of database. Instead, they arc macrosT that expand
into codc that is guarantécd (by the designer of this codc) to have the effect of the asscrtions or sprites.
For different classes of assertions, e.g. equal asscrtions or member assertions, we will replace the
assert or when with very different pieces of code. Thus, the assertions do not actually exist as Iexical

items, nevertheless users of the when and assert constructs can write code as if they do cxist. In this

¥ Macro s a generic term for code that replaces other code.

" -120- - N

sense, the replacement code represents a virtual collection of assertions. Depending on the domain of the
problem_ solver being designed, there are any number of ways a virtual collection of assertions can be
implcmente;l. Both the program synthesis and cryptarithmetic programs use very similar techniques that
will be the subject of most .of this chapter. Section 7.9.7 describes a very different kind of virtual

collection of assertions to give some additional breadth to the concept.

7.2.2 _How The Replacements Are Made

There is really another level of pattern-directed invocation that runs in Ether, but runs at compile time
rather than evaluation time. When the compiler runs across an assert statement it checks a list of
possible assertion replacement proced;lres that are indexed by the class of assertion they are to replace to
see if one matches. Ifit finds one that matches, the body of the replacement procedure is evaluated and
it will return code that replaces the assert statement. An example assertion replacement procedure is

shown in figure 20.

Fig. 20. Length Assertion Replacement Procedure -

(def-assert-vca (length =obj =number)
*(establish-object-point-assert

object ,o0bj
message-type 'assert-length
Dproperty ,number))

The assertion replacement procedure itself has a pattern, in this case (1ength =obj =number). This
pattern says that the replacement procedure is capable of replacing any assertion that has the symbol
length in the first positions, and any other two objects in the sccond and third positions. If an assert -
statement matches these characterisﬁcs, then this procedure will be invoked with the variables ob j and
number bound to the second and third parts of the assertion respectively. The procedure will return

code that is to be evaluated to get the virtual effect of the assert.

As an example, suppose we had some code that contained the command:

(assert (length =»x =n))

At compile time, the replacement procedure shown in figure 20 would be invoked and would replace the -

assert expression with the expression:

S -121-

(establish-object-point-assert

object X
message-type 'assert-length
property n) -

The reader is not expected to understand what this expression means at this point, only that. it has

replaced the Ether code the user wrote. It actually is a macro that yet expands into something else.

There is a completely analogous mechanism that replaces sprites with the code that implements them. A

 sprite replacement procedure for 1e ngth assertions is shown in figure 21.

Fig. 21. Length Sprite Replacement Procedure

(def-when-vca (length =obj =number)
(if (ether-variable obj)
‘(establish-object-point-sprite-every-instance
object-type ‘object
message-type 'when-length

property , humber

body ,*body*

variable ,0bj

activity current-activity)
'(establish-object-point-sprite

object ,obj

message-type 'when-length

property ,number

body ,*body*

activity current-activity)))

Whenever the compiler comes across a sprite that has a pattern with the symbol Tength in the first
‘ position and any two other objects in the other positions, this sprite rcpla‘ccmcnt procedure is invoked.
The replacement procedure is invoked with obj and number bound to the seccond and third items in
the sprite pattern. There is an additional variable, *body*, that is bound to the body of the sprite; this
is the code that should be executed if the sprite is triggered. You will notice that the particular sprite
replacement procedure has a conditional that checks a predicate on obj, the second object in the
pattern. The predicate, ether-variabie, returns T if its argument is an Ether pattern variable (i.e.

one prefixed by "=").

For example, if we were to compile a sprite of the form:

(when {(length =1ist =n)}
(function-to-execute))

thc ether-variable test would fail and we would return the expanded code from the clse part of the

if. The expanded code would look like:

-122 -

(establish-object-point-sprite

object 1ist

message-type 'when-length

property -n)

body (function-to-execute)
activity current-activity)

If, on the other hand, the sprite to be compiled looked like:
(when {(length =1ist =n)}
(function-to-execute)) -
the other branch of the if would have been taken and the replacing code would become:

(establish-object-point-sprite-every-instance
object-type 'object
message-type 'when-length

property -n

body (function-to-execute)
variable "=1ist

activity current-activity)

In the current version of the system all assert and when statements are replaced at compile time in the
manner just described. Actually, the functions they expand into:

establish-object-point-sprite
establish-object-point-sprite-every-instance
establish-object-point-assert

are themselves macros that expand into something else.

7.3 Objects and Object Oriented Programming

The code that implements the effects of sprites and assertions depends very heavily on the metaphor of
object oriented programming. A brief discussion of the coneept was contained in section 6.1. The objects
that are parts of our assertions in Ether programs, such as input1 and accumulant for the program
synthesis system and column1 for the cryptarithmetic system arc objects in the object-oriented sense --
they can accept and respond to messages. We will sec that the code produced by the assertion and sprite
replacement procedures mentioned in the previous section actually turn into commands to send
messages to these objects. Each one of these mcessage transmissions makes use of the message sending
primitive discussed in section 6.4, and thus each message transmission is queued for processing via the

activity mechanism.

-123-

7.3.1 Defining an Ether Ohject

In dealing with problem solving systems written in Ether, we must dcﬁnc the classes of assertions with
which they can deal. As we will see, there is a close relationship between the classes of assertions that can
be made and matched by sprites and the class of messages that the objects of our system can accept. To
keep the amount of code to a minimum, we have established conventions for how the various message
names and instance variables of the objects are named. Much of the code that defines the objects and
message handlers is gencrated automatically by the system. The Ether message passing code is built on
top of the flavor system of the Lisp fnachine [68], although it does not make use of the flavor concept in
any particular way.'iL This was merely the most expedient way of gétting objects that can take meséages

on the Lisp machine.

Ether objects are defined by executing the function defobject. Defob ject takes three arguments: '
1. The type of the object.

2. A list of those properties that may be viewpoint dependent.

3. A list of those properties that are viewpoint independent -- they are the same in all viewpoints, .

For the program synthesis system, we have only one kind of object, which we call (appropriatcly enough)
an object. For the cryptarithmetic systern we will discover that there are three different kinds of objects.
Although we can refer to several differcent kinds of objects in the Lisp sense (lists, numbers, and atoms)
we can have Ether objects that we may not know in some particular viewpoint to be any of these. For
examplc, we can have an clement that we know is the first element of some list but we know absolutely
nothing élsc about it. We could assert in one viewpoint that it is a number and in another viewpoint that -
it is a sequence. For this reason we have only one Ether object type, and can tell individual objects that
they are of a specific programming object type. The definition of a object for the program synthesis

system looks as follows:

‘{' Although, there is perhaps some advantage to doing so. In Ether, we have not gotten any advantage out of ways to structure
classes of objects since the original concept was developed by Simula. This will be discussed in section 8.4.6.

(defobject object
(type equal not-equal coreferential not-coreferential length
member not-member sequence-element less greater)
(typed-object constant-object))

There are two viewpoint-independent properties, typed-object and constant-object. For
certain objects, we know at object creation time what type they are. In our descriptions of the inputs and
outputs of the functions we are synthesizing we may know they are of type sequence, atom, or number.
~ In these cases, after we create the object, we send it a typed-ob ject message telling it that it is this

particular type.

Similarly, for certain objects, we may know not only that it is of a particular type, but also the exact
object that it is. There are certain distinguished objects the system knows about. The object we have
been calling ni17 is one such object. It is the sequence with no elements. For this object, the
constant-object ficld is set to the symbol null-sequence. There is one other class of constant
objects that the system knows about, those which are known to be specific numbers. For example the
object representing the integer 2 in our system has a typed-object ficld of number and a

constant-object field of 2.

7.3.2 What Happens When You Define an Object

For each Ether object you create, the system does a number of things. For the purpose of the following
discussion, assume we have just exccuted the code:
(defobject thing (propl prop2) (invariant-propl dnvariant-prop2))

The following things happen:

1. A new class is defined called thing with instance variables invariant-propl, and
invariant-prop2, and viewpointed-object-table. The objects we actually manipulate with

our asscrtions and spritcs are objects belonging to this class.

2. A function is defined called new-thing that rcturns an object of type thing. It takes various

optional arguments as shown in the examples in chapters 5 and 4.

3. The class thing is defined to take the following messages: assert-propl, assert-prop2,
when-propl, and when-prop2. When an assertion is madc about a property of an object, as for

example, we had exccuted the code: -

£

-125 -

(assert (length -»obj =n))

a message transmission of the assert-Tength happens to the object bound to obj. Why this
happens will become clear as we go on. When a sprite is create that asks about one of the properties of

an object, a when - type message is sent, sometimes to one object, and sometimes to many objects.

4. Message handlers are created for all assert- and when- type messages for the class thing. These
message handlers actually "redirect” the information or request for information to the place(s) it/they

are actually handled.

5. A new class is defined called thing-with-viewpoint that has instance variables:
propl-property, prop2-property, this-object, pending-sprites. The instance
variables propl-property and prop2-property store information about propertics prop! and
prop2. For example, if the object were a sequence, the 1ength-property would be bound to an
indication of the length of the object, if it is known. Each object of type thing-with-viewpoint is
related to a particular object of type thing. In fact, for each object of type thing, and for each
viewpoint for which we know something (i.e. have as ser;ted at least one thing) about this object, we
have a specific object of type thing-with-viewpoint that contains those facts we know about this
object with respect to this viewpoint. Objects of type thing have an instance variable called
viewpointed-object-table that indexes these viewpoint-specific objects with their corresponding

viewpoints.

6. The class thing-with-viewpoint is defined to, like the class thing, take messages of the form
assert-propl, assert-prop2, when-propl, and when-prop2. The message handlers for
object thing are written by the designer of the problem solver; they represent special purpose ways of
storing and retrieving the information that are based on the semantics of the assertional types. There is
another class of message handlers the user must write. They are of the form merge-prop1 and
merge-prop2. These are instructions to the system on how to do viewpoint inheritance. When one
viewpoint has more than a single parent viewpoint, a method must be supplicd that tells ;hc system how
to find the corresponding property for the child viewpoint that is consistent with all parents and contains

no constraints that arc not inherited from some parent.

7. A variable called thing-pending-sprites which contains, in effect, code that implements sprites

that ask questions about objects that may not exist yet.

ity

- 126 -

7.3.3_The Concept of A Peint Sprite

When we write an Ether program containing sprites, we think of the sprites as sitting on the sidelines

A "watching” for assertions to trigger on. These sprites are part of some activity and the rate at which they

can run (or the "ecagerness” with which they can jump at assertions) is controlled by the activity. Of
course, computers of the sort we are used to can’t directly interpret code that works this way. In some
manner we have to massage the sprite into a procedure that will get invoked in some orderly way when
the information it is "watching for" becomes available. In most other assertion-oricnted languages the
sprite patterns and associated procédures are incorporated into a lexical discrimination net. In Ether
there is no uniform mechanism; the‘ procedures that implement sprites are accessed in any of a number
of places, depending on the kind of information the sprite is looking for. There is, however, a uniform
method of representing the procedure that implements the sprite; it is known as a point sprite. A point

sprite is a structure, that has five slots:

Point-sprite-key represents the parameter of the point sprite. For example, if the pattern of the sprite
that led to this point sprite was: -

{(length =obj -=n)}

the point sprite would be placed in a location where it would get checked whenever we have asserted
anything about the length of the object bound to ob j. The key of this point sprite would be the number

object bound to n. Ifit matched the known length, the point sprite would then execute.
Point-sprite-body contains the code that was contained in the body of the original sprite.

Point-sprite-closed-variables and point-sprite-closed-values together represent the lexical environment in
which the original sprite was defined. When the body of the point sprite is executed, it is cxccuted in -

this environment.

-~

Point-sprite-activity is the activity in which the original sprite was activated. If and when the body of this

point sprite is ever executed, it will be donc in this activity.

Since executing a point sprite is a very common thing to do, a convenient function is provided for doing
it. If we exccute the code:

(point-sprite-eval point-sprite)

An event record is created as described in section 6.2.1 with the body and environment set appropriately.

s

=127

The event record is placed at the end of the queue for the activity mentioned in the point sprite.

Occasionally a point sprite wants te augment the environment in which the body is evaluated. Optional
keyword arguments can be supplied to point-sprite-eval to do this. For example:
(point-sprite-eval point-sprite

variable ' x
value element)

Would evaluate the point sprite (bound to point-sprite in the environment of the point sprite

augmented with a binding of the variable x to the value of element.

7.4 A Very Simple Virtual Collection

Perhaps the simplest virtual collection in both example systems is the one that handles
(CONTRADICTION) assertions. Every viewpoint is a structure that has a field called
viewpoint-contradiction-marker that has the value T if the viewpoint is known to be

contradictory. The when replacement procedure for this class of assertions is shown in figure 22.

Fig. 22. When Replacement Procedure for Contradictions

(def-when-vca (contradiction)
‘{let ((point-sprite
(make-point-sprite
point-sprite-closed-vars current-closed-variables
point-sprite-closed-vals current-closed-values
point-sprite-body L *body*) v
point-sprite-activity current-activity)))
(if (viewpoint-contradiction-marker *viewpoint*)
(point-sprite-eval point-sprite)
(structpush point-sprite (viewpoint-contradiction-point-sprites *viewpoint*)))))

Since there are no arguments to these contradiction assertions, the code that does the replacement is
quite simple. The first thing the sprite replacement procedure docs is create a point sprite with the
environment sct to the lexical environment at the point of call (i.c. the cnvironment defined by the
variables current-closed-variables and current-c1osed—vaiues). The body of the point

sprite is simply the body of the original sprite, and the activity is the activity currently running.

After creating the point sprite, the code checks to see if the viewpoint is already known to be
contradictory. If so, the point sprite is evaluated. This implements the intended-cffect of the sprite; if

the viewpoint is contradictory we would like the body evaluated. Remember that evaluating the body of

-128 -

a point sprite is not simply a call to the Lisp evaluator. As explained in section 7.3.3 it involves a queuing

of the code to be evaluated onto the event queue of the activity mentioned in the point sprite.

If the viewpoint is not {currently) known to be contradictory we must save the point sprite in case at
some future time it is learncd to be contradictory. This is accomplished by executing the code:
(structpush point-spr{ta (viewpoint-contradiction-point-sprites *viewpoint®*))

which causes the point sprite to be added to a list of point sprites interested in knowing if this particular

viewpoint has become contradictory.

The companion procedure, the assertion replacement procedure for contradictions, is shown in figure 23.

Fig. 23. Assert Replacement Procedure for Contradictions

(def-assert-vca (contradiction)
*(if (not (eq (viewpoint-contradiction-marker *viewpoint*) t))
(progn .

s Otherwise, set the contradiction marker to T.

(setf (viewpoint-contradiction-marker *viewpoint*) t)

s Evaluate the accumulated point sprites.

(foreach
point-sprite
{(viewpoint-contradiction-point-sprites *viewpoint*)
(point-sprite-eval point-sprite)))))

The replacement code first checks to see if the V'iewpoint-con-tr‘adiction—marker for the
viewpoint is T, an indication that the vicwpoint is already known to be contradictory. In this case, there
is nothing to be donc. If the viewpoint was not alrcady known to be contradictory, we set the
viewpoint-contradiction-marker to indicate that it is. We then iterate through each of the

accumulated point sprites and point-sprite-eval them.

The reader should carefully study the implementétion of (CONTRADICTION) assertions to satisfy
himself that they correctly model the effect of sprites and assertions that satisfy the properties of

monotonicity, and éommiltativity. In particular, note:

1.Ifa (CONTRADICTION) is asserted, and a sprite activated looking for this assertion, the body will be

evaluated regardless of the actual order of the assertion and sprite activation.

2. If a (CONTRADICTION) is asserted, the bodies of every sprite watching for this to happen will be

executed exactly once, and will be executed in the activity the spritc was originally activated in.

s

TS

-129- '

Although this example is*very simple, and docs not involve significant use of objects and message
passing, it does indicate the basic principles used in ensuring monotonicity_ and commutativityAare
maintained. The implementation of assert checks a list of point sprites at a predetermined location
for ones that should fire. The implementation of when both checks to see if the sprite should fire now,
and adds a point sprite to the appropriate list of point sprites in casc information learned later will cnable

the sprite.

7.5 The Length Virtual Collection

In this section we will discuss the implementation of a more interesting virtual collection, one involving
ether objects and message passing, els discussed in section 7.3.1. As implementers of the sprites and
assertional replacement procedures, we have made a decision about the best repository for information
about the lengths of objects. Length is a relation of two arguments, a sequence and a number. [f both
of these arguments are objects that can store information about themselves we have two choices for how

to store this information:
1. A sequence can have a property known as its Tength in which its length is stored.

2. A number can have a property known as sequences-of-this-Tength where a list of all such

sequences are stored.

For a number of reasons (1) is better than (2). One obvious reason is that a sequence can have only one
length, but there may be many scquences of length, say, 1. An absurd possibility if (2) is chosen as the
representation can be found by considering a number objects for which no constraints are known about
its actual value. Then any sequence known to the system could end up on its
sequences-of-this-length property. There are other reasons why (1) is preferable, but they

must await a further description of the mechanism.

7.5.1 The Handling of L.ength Assertions

The assertion replacement procedure for Tength assertions was shown in figure 20 and is repcated in
figure 24 for convenience. We will go step-by-step through what actually happens when this code gets
expanded (at compile time) and then what happens when the code is evaluated. Assume that the

asscrtion we are replacing looks like:

C-130-

Fig. 24. Length Assertion Replacement Procedure Repeated |

(def-assert-vca (length =obj =number)
‘(establish-object-point-assert

object ,obj
message-type ‘assert-length
property .number))

(assert (length »a-sequence -»a-number))

' This code is replaced by the following:

(establish-object-point-assert

object a-sequence
message-lype 'assert-length
properly a-number)

Establish-object-point-assert isalso a macro and it expands into ,

(send a-sequence
'assert-length
(make-assert-message
assert-message-basic a-number
assert-message-viewpoint~ *viewpoint*)
current-activity)

This code serves as the final replacement for the original assertion.

When this code is executed, it causes an event record to be added to the end of the queue for the then
current activity. When the event is finally exccuted, a message will be sent to the object a-sequence
of typc assert-length and with a contents that consists of two components: the basic part of the
message (the property of the object that is being asserted) and the viewpoint the assertion is made in

(which is bound to the variable *viewpoint*).

As described in section 7.3.2, the message handler for this message by the objcct is constructed by the
code that created the Ether object. What this message handler does is redirect the message to another
object. As was discussed on page 125, there is a class called ob ject-with-viewpoint, and there is
onc instance of this class defined for cach object and for each viewpoint for which we know something
about that object with respect to the viewpoint. In other words, there is an objcect that represents what is

known about the Ether object bound to a-sequence in the viewpoint bound to *viewpoint®,

When this particular assertion is made the object to which the message is redirected may or may not yet
exist. If it does exist, it will be in the viewpointed-object-table associated with the object

a-sequence indexed by the viewpoint. If it does not cxist it must be created on the spot and sent the

-131-

message; we will defer the discussion of how it is created until later. Assume for now it is in the table.

Inour defobject dcscription of the Ether object for the program synthesis system we gave Tength as
one of the viewpoint-dependent properties. Therefore the viewpoint-specific object will have an
instance variable called Tength-property that will contain au indication of our belicf about the
objects length. It will, in fact, contain ni1 if nothing so far has been said about its length, and an Ether

object of type number that represents the information we know about the object’s length.

The message handler for the asser t-Ten gth message for these viewpointed objects is shown in figure
25..r The first thing the handler docs is try to merge the newly asserted length with the already known

length. We won’t go into the details of numbers, or merging them right now, but the function

number-merge will return a number object that represents all the constraints contained in both

Fig. 25. Length Assecrtion Message Handler

(defmethod (viewpointed-object assert-length) (n)
(let ({new-length (number-merge length-property n)))
(if (not (number-equal new-length length-property))
(if (null new-length)
1 If the newly asserted length is not consistent with believed length, the viewpoint is contradictory.
(assert (contradiction))
s Otherwise we have learned new information. It is recorded and applicable point sprites are executed
(progn
; Assign the new length property
(setqg length-property new-length)
; Remove point sprites from stifled activities.
(clean-up-point-sprites-list length-point-sprites-Tlist)
; Check each point sprite to see if it should get executed.
(foreach
point-sprite
length-point-sprites-list
(let ((key (point-sprite-key point-sprite)))
(if (and (ether-variable key) (ether-numberp length-property))
s If the key is an ether variable, bind the variable and eval the point sprite body.
(point-sprite-eval point-sprite
variable (ether-variable key)
value. length-property))
; Otherwise it is a non-variable. Check for matchedness.
(if (number-merge length-property key)
sIf they ao merge, eval the body.
(point-sprite-eval point-sprite)))))
s If this viewpoint handler has subviewpoint handlers, service them.
(foreach
subviewpoint-handler
subviewpoint-handlers
(let ((*viewpoint* (<- subviewpoint-handler ‘'viewpoint)))
(<- subviewpoint-handler ‘'assert-length length-property))))))))

T Defmethod is a standard construct on the Lisp machine for defining message handlers. There is a handler defined for each
class (known on the Lisp machine by the name "flavor™) in this case viewpointed-object, and cach message type, in this case
assert-length. The message handler takes an argument list. ‘This one was supplicd with a singleton argument list: (n).

S -132-

number objects. For example, if one argument was a number known to be greater than 1 and the other
was a number known to be less than 4, number-merge would return a number object that would know
it was a number between 1 and 4 (i.e. either 2 .or 3). This new number object then gets boﬁnd to
new-length. We evaluate the function

(number-equal new-length length-property)

to determine whether we have lcarned any new information about the length of the object. If we have
not learned any new information, then there is nothing else to be done and we complete the processing
of this message. If we have lecarned new information, we continue. By convention, the function
number-merge returns nil if the the objccts do not merge, i.c. there is no integer that satisfies the
combined constraints of both its arguments. We check to sce if new-length is null. If so, the
viewpoint we are in is inconsistent and we must assert this. We do this by evaluating the code:

(assert (contradiction))

It is possible to include assertions (and as we will sce soon, sprites) in the Lisp code that defines a virtual
collection of assertions. If the viewpoint is inconsistent, there are no other things to do. Otherwise, we
have a number of things to do. We exccute:

(setq length-property new-length)

to store the new knowledge we have obtained about the object’s length. There is an instance variable of
this object called 1length-point-sprites-1ist that contains point sprites created by sprites
previously activated that are interested in the length of this particular object. These point sprites could
be in any of a number of activities. It is possible that some of these activitics are stifled, in which case we
no longer want to service them. Point sprites in stifled activities should be removed from the list. We do
this by executing;:

{(clean-up-point-sprites-Tist length-point-sprites-1list)

We then iterate through the list of point sprites on the list Tength-point-sprites-1ist and
execute all point sprites that are appropriate to execute. We will save the details of this until we have a
chance to cxplain how these point sprites arc created. The final picce of code we execute is:

(foreach
subviewpoint-handler
subviewpoint-handlers
(let ((*viewpoint* (<- subviewpoint-handler ’'viewpoint)))
(<- subviewpoint-handler 'assert-length length-property)))

Each object of this type has an instance variable called subviewpoint-handlers that contains a list

of all objects that represent facts known about this particular Ether object in viewpoints that inherit from

-133-

the viewpoint we are currently servicing. Since these viewpoints inherit all information, we must notify
them of the newly lcarned length property. This is accomplished by a Lisp machine-type message
send:T

(<- subviewpoint-handler ’assert-length length-property)

It is worth noting that this one picce of code is all we have to write to allow the viewpoint inheritance
mechanism to operate correctly. (There is, of course, alot of code invoked by Defob ject but this is of

no concern to designers of Ether subsystems.) -

7.5.2 _The Handling of Length Sprite Patterns

The replacement procedure for length sprites is shown in figure 26.

Fig. 26. Replacement Procedure for Length Sprites

(def-when-vca (length =obj =number)
(if (ether-variable obj)
‘(establish-object-point-sprite-every-instance
object-type ‘object :
message-type 'when-length

property ,number

body ,*body*

variable ,0bj

activity current-activity)
'(establish-object-point-sprite

object ,0bj

message-type ‘when-length

property ,aumber

body ,*body*

activity current-activity)))

Somewhat different things happen depending on whether the arguments in the Tength pattern are
variables or not. As can be scen from cxamining figure 26, there is a conditional that that picks between
two possible replacemenss. The condition is true if the first argument position {i.e. the scquence, bound
to ob j) is a variable or not. We consider first the case of it not being a variable becausce it is the most
analogous to the cascs we've examined so far. Suppose the sprite we are replacing looks like:

(when {(length »a-sequence -=n)}
(contents-of-body))

T This message send does not go through the Ether activity mechanism and is exccuted as an "uninterruptible” cvent. Sce 8.4.1
for a discussion of this and related issues involving viewpoint inheritance.

-134- :

The replacement code becomes:

(establish-object-point-sprite

object a-sequence
message-type ‘'when-length

properly n

body (contents-of-body)
activity current-activity)

The above code is also a macro and it expands into:

(send a-sequence
'when-length)
(make-point-sprite-message

point-sprite-message-basic n
point-sprite-message-viewpoint *viewpoint®
point-sprite-message-body '(contents-of-body)

point-sprite-message-closed-vars current-closed-variables
point-sprite-message-closed-vals current-closed-values
point-sprile-message-activily current-activity)
current-activity) :

When this code is executed, a-sequence and n are bound to specific objects. Analogously with the
assert replacement, this cbde sends a-sequence amessage of typc when-length. "The contents of
the message includes the basic part, the number, n, for which we would like the sprite to trigger if the
length is determined to be that number, and the viewpoint. Also included are the body of the sprite that
is to be evalua_ted along with its current environment and the activity of activation. This messagé is sent
to the object a-sequence, and analogously with assert- type messages it is redirected to the object
that represents what is known about a-sequence in the viewpoint bound to *viewpoint®.-

W

The message handler for when-Tength messages for viewpointed objects is shown in figure 27. The

Fig. 27. Length Sprite Message Handler

(defmethod (viewpointed-object when-length) (key body closed-vars closed-vals activity)
(let ((point-sprite
’ (make-point-sprite
point-sprite-key key
point-sprite-body body
point-sprite-closed-vars closed-vars
point-sprite-closed-vals closed-vals
point-sprite-activity activity)))
(push point-sprite length-point-sprites-1ist)
(cond
((and (ether-variable key) (ether-numberp length-property))
sIf the key is an ether variable, bind the variable and eval the point sprite body.
(point-sprite-eval point-sprite
variable (ether-variable key)
valuee length-property))
((number-equal key length-property)
s Otherwise the key is a number. If it’s equal to the believed length, eval the body.
(point-sprite-eval point-sprite))))))

-135-

method that redirects the message unpackages the various arg.uments to the message handler in figure 27.
The first thing the handler does is create a point sprite. The point-sprite-key field of the point sprite is set
to n -- the length we wish to triggef' on. The point sprite is added to 1ength-point-spri tes-:l ist
in case future asserts might cause it to trigger. We then check to sce if the information is alre’:ady
known that might make the sprite trigger; we enter the cond expression. The predicate of the first
clause of the cond first checks to sec if the key is an ether-variable (prefixed by the symbol ".= ™). Ttisn’t,
~ so we fall through to the second claﬁse. This clause checks to sce whether the key (in this case n is an
equivalent number object to the currently believed length. If they are, the "sprite” has been triggered
and we execute the point sprite. As before, this execution causes a new event record to be added to the

end of the activity of the point sprite with instructions to evaluate the body.

Now consider what happens if the second argument position of the pattern is an Ether variable, as in the
sprite:
(when {(length =»a-sequence =x)}

(contents-of-body))
Glancing back at figure 26, we see th;: code expands into an essentially similar form; the only difference
being the key is now =x instead of n. This code, in turn, expands into the following send.

(send a-sequence
'when-length
(make-point-sprite-message

point-sprite-message-basic '=x
point-sprite-message-viewpoin! *viewpoint*
point-sprite-message-body '(contents-of-body)

point-sprite-message-closed-vars current-closed-variables
point-sprite-message-closed-vals current-closed-values
point-sprite-message-activity current-activity)
current-activity)

The message when finally processed will get sent to the same message handler in figure 27. Since the key
is an Ether variable this time, we pass the first test in the predicate of the first clause of the cond. The
second clause checks to see if the Te ngth-property is a specific number; if so the sprite should fire.
This time, however, we must assure the variable x gets bound to the belicved length of the sequence
which is, in this casc, the Tength-property. So we exccute:

(point-sprite-eval point-sprite
variable (ether-variable key)
value length-property))

This will cause the body of the point sprite to get executed through the activity mechanism with the

environment augmented by the binding of the variable x to the length of a-sequence. Looking back

- 136 -

at the original sprite,
(when {(length -a-sequence =x)}
(contents-of-body))
we see that this is precisely the behavior desired. If we know what the lengih of a-sequence is, we

bind x to that and evaluate the body.

Now that we’ve covered the nature of point sprites and their execution for Tength assertions, we should
fook back at figure 25 which contains the handler for assert-Tength messages to see how point
sprites already in existence are processed. The code that iterates through all known point sprites is:

(foreach
point-sprite
length-point-sprites-Tist
(Tet ((key (point-sprite-key point-sprite)))
(if (and (ether-variable key) (ether-numberp length-property))
{point-sprite-eval point-sprite
variable (ether-variable key)
value length-praoperty))
(if (number-merge length-property key)
(point-sprite-eval point-sprite))))
We check cach point sprite on the Tength-point-sprites-Tist and extract its key. If the key is
an Ether variable, and the 1ength-property is a number, we augment the environment of the point
sprite by binding the key to the length-property and evaluating it. If the key is not an Ether
variable, we check to see if the key and the 1ength-property merge. If so, we evaluate the point
sprite. Note that the function ether-variable serves a dual function. It is a predicate that is true iff
its aregument is an Ether variable; it is also a function that extracts the actual variable name. Thus,

(ether-variable '=x) evaluatesto x.

We now consider what happens if the 1ength asscrfion contains an Ether variable in the first argument
position. That is, conéider the compilation of a sprite of the form: | |
(when {(length =x -n)}

(contents-of-body))
This sprite will be triggered by any sequence whose length is n. Since we have chosen to represent
information about lengths of sequences by storing the information with the sequence rather than the
number, this would scem to pose a dilemma. In some way, we must cause a point spritc to appear on

every sequence. The sprite replacement procedure shown in figure 26 leaves us with the following code:

-137-

(establish-object-point-sprite-every-instance
object-type 'object
message-type 'when-length

property n

body '(contents-of-body)
variable 'X

activity current-activity)

whose function is to get the appropriate point sprite on the Tength-point-sprites-1ist of every
sequence, both those that are already known to exist and those that might be created at any future time.

The above code expands into the slightly more complicated expression shown in figure 28.

Fig. 28. Implementation of Length Sprites With Sequence Variable

(progn)
i For every object that has so far been created, activate this point sprite.
(foreach
object :
object-all-instance-1ist-name
(send object
‘when-length
(make-point-sprite-message

point-sprite-message-basic n
point-sprite-message-viewpoint *viewpoint®*
point-sprite-message-body ‘(contents-of-body)

point-sprite-message-closed-vars (cons 'x current-closed-variables)
point-sprite-message-closcd-vals (cons object current-closed-valpes)
point-sprite-message-activity current-activity)
current-activity))
1 Place a copy of the sprite message on the pending list for objects created later.
(push
(1ist 'when-length ;
{(make-point-sprite-message -

point-sprite-message-basic n
point-sprite-message-viewpoint *viewpoint®*
point-sprite-message-body '(contents-of-body)

point-sprite-message-closed-vars (cons 'x closed-vars)

point-sprite-message-closed-vals closed-vals

point-sprite-message-activity activity))
object-pending-sprites-iist))

When the function new-ob ject is run, it does two things that make it possible for the code in figure 28

to function correctly.

(1) It adds the new object to the list object-all1-instance-11ist-name so that sprites of this form

created in the future will be able to get ahold of the object.

(2) Tt goes down a list called object-pending-sprites-1ist which contains point sprites that
implement sprites that were activated before the object was created. Each of these point sprites contains

an cther variable for its kcy and so it ultimatcly must appcar on thec 1ength-point-sprites-1ist

- -138-

for every object.

By referring to figure 28 we can see how this code interacts with the definition of new-object to get
the. desired effect. The first half iterates through each object in the‘ list
object-all-instance-1ist-name and sends the when-Tength message to cach. Notice that
the environment (arguments point-sprite-message-closed-vars and point-sprite-message-closed-vals) have
been augmented with a binding of the Ether variable (the variable x) to the particular object. If the
' point sprite gets executed within any particular object, the variable x will get bound to that object. Since
the original sprite pattern was:

{(length =x =n)}

this is the desired behavior.

The code in the second half of figure 28 is responsible for adding the point sprite to the
object-pending-sprites-1ist. Itactually adds an indication of the message that must be sent to
the newly created objects. This coqsists of a list of the message type (i.c. when-1ength) and the
parameters of the message. This contains sufficient information to allow the objects, when receiving the
message, to construct the point sprite. Notice that the argument point-sprite-message-closed-vars is
augmented with the variable x but the companion argument point-sprite-message-closed-vals has nothing
added to it. If and when a new object is created, this object is added to the list of closed values for the

point sprite before thc message is sent.

The reader should now review the virtual collection implementation of Tength assertions to check that
the properties of commutativity and monotonicity arc maintained. No matter what order sprites and
matching assertions are created, the sprites will get evaluated cxactly once and with the proper

environment.

7.5.3 The Creation of Viewpointed Objects

Thus far we have been assuming that when a message is sent to an Ether ol;ject it will get redirected to an
already existing object that represents what is known about the particular object in the viewpoint
mentioned in the message. Clearly these viewpoint-specific objects must get created at some point. As
mentioned on page 125 there is a viewpointed-object-table that contains these viewpointed

objects indexed by the viewpoint. When a message is sent to an Ether object, and there is alrcady a

-139-

viewpointed objcct corresponding to it in the table, the message is redirected to that object. Otherwise a
new object is crcated and inserted in the table. If the new viewpoint is one that inherits from no other
viewpoints, the new object is simply created and inserted in the viewpointed-object-table, the
original message is redirected to it, and we are done. The more interesting c5se is where the viewpoint
referred to in the original message is one that has one or more parent viewpoints. Somchow we must
ensure that all the knowledge possessed by each of the parent viewpoints about this object is reflected in

the knowledge stored in the newly created object.

We have a simple, uniform method by which this inheritance is accomplished. For each
viewpoint-specific characteristic we have supplicd message handlers for assert and when- type
messages. To enable automatic inheritance we must supply one additional message handler for merge-
type messages. The handler for merge-Tength messages is:

(defmethod (viewpointed-object merge-length) (length)
(<- self ’assert-length length))

After the new viewpointed object is created, the system sends one merge- message for each property
and for each parent viewpoint. The argument to the merge message is the property of the particular
object in the parent viewpoint, in this case 1éngth -property. Itis the function of the merge message
handler to decide how the information is to be merged. In the case of length, the
1engtAh-property represents the believed length and so by sending the new object an
assert-length message with the belicved length we have accomplished our purpose. If there are
several parent viewpoints, one assert-length mcssage is sent and the new object will merge the
various length-property’s to obtain the length-property for the newly created viewpointed
objéct representing the inheriting viewpoint. If they fail to merge, then a (CONTRADICTION) is
asserted as desired. After all the properties are merged from the parent viewpoint(s), the original
message that mentioned this new viewpoint (and led to the creation of this new object) is delivered. In
the event that there are parcent viewpoints for the new viewpoint for which no object exists in the

viewpointed-object-table, the procedure is applicd recursively to create these objects.

Our method for handling viewpoint inheritance has some worthwhile characteristics from the point of
view of efficiency. At the time of viewpoint crcation only a very small amount of work actually has to be
done. New viewpoint-specific objects for Ether objects afc only created when something new has been
said about that‘particular Ether object in the particular viewpoint. Sec scction 8.4.1 for some further

discussion of cfficiency issucs related to viewpoint inheritance.

- 140 -

7.6 The Member Virtual Collection

We won’t go throughA each virtual collection definition in very much detail, but it is worth going through
at least one more to give some feel for the different ways it is possible to handle different classes of

assertions. The replacement procedures for both membe r assertions and sprites is shown in figure 29.

Fig. 29. Replacement Procedures for the Member Virtual Collection

(def-assert-vca (member =’e1emen1:'=11'sf.)
‘(establish-object-point-assert

object ,Tist .
message-type 'assert-member
property ,element))

(def-when-vca (member =element =1ist)
(if (ether-variable list)
‘(establish-object-point-sprite-every-instance
object-type ‘object
message-type 'when-member

property ,element

body ,*body*

variable - ,Tist

activity current-activity)
‘(establish-object-point-sprite

object ,list

message-type 'when-member

property ,element

body ,*body*

activity current-activity)))

The form of the replacement procedures is quite analogous to the ones for Tength assertions shown in

figures 24 amd 26.

v

In the implemcntatidn of member assertions we again have two choices as to which of the two objects
should be the repository for the information. Either: (1) Each sequence can known which objects are
members of it, or (2) each obj.ect can know which sequences contain it. We have chosen the first of
these. Our reasoning is that few lists will have many objects that are members of them, but there will be

a number of objccts that will be members of many lists.

As was the case with the Tength virtual collection the replacement procedures shown in figure 29, the
replacing procedures establish-object-point-assert, and
establish-object-point-sprite cach expand into assert- and when- type message
transmissions respectively. The form estab11'sh-object-point—sprite—every-ins_tance

also cxpands into the appropriatc message transmissions with the nccessary code to ensure that future

C-141-

objects will get delivered the message. The expanded code is so analogous that we will not repeat the
explanation here. Viewpoints, message redirection, and viewpointed object creation happen identically
with the case of Tength typc assertions. The only places we find differences are in the handlers fbr the
three messages assert-length, when-length, and merge-length. We will describe ’the

workings of cach of these hand!ers.

The Defobject definition of Ether objects for the program synthesis system causes the class of
viewpoint-specific objects to have an instance variable called member-property. The way
member-property is used to "remember” what things arc members of what is up to the designers of
the member virtual collection. We have chosen to let member-property be a list where the elements

of the list are those things known to be members within the specific viewpoint.

The handler for when-member assertions is shown in figure 30.

Fig. 30. Sprite Handler for Member Assertions

(defmethodc (viewpointed-object when-member) (key body closed-vars closed-vals activity)
(slet ((point-sprite
(make-point-sprite
point-sprite-key key
point-sprite-body body
point-sprite-closed-vars closed-vars
point-sprite-closed-vals closed-vals
point-sprite-activity activity)))
(push point-sprite member-point-sprites-1ist)
(cond
((ether-variable key)
s If the key is an cther variable, for every element that is currenily believed to be in this list,
s bind the variable and eval the point sprite body with the variable bound 16 that element.
(foreach
element
member-property :
(point-sprite-eval point-sprite
variable (ether-variable key)
value element)))
(member-property
(foreach
element
member-property
(when {(equal -»element -key)}
(point-sprite-eval point-sprite)))))))

As with the handler for when-Tength messages, the contents of the message includes the key, the
object for which we desire to know memberness (or an Ether variable), and a body to cvaluate along
with its environment and activity. As before we create a point spritc and add it to the list

member-point-sprites-T1ist. We then check to sce if the key is an cther variable. Ifit is an Ether

-142 -

variable, then we would like to evaluate the bédy of the spritc (now the point-sprite-body of the
point-sprite) for cach object which we know to be a member of the list in an environment in which
the variable is bound to that object.' Thus we let the variable e 1ement range over each of the objects
known to be members of the list and execute point-sprite-eval for eacﬁ:

(foreach
element
member-property
(point-sprite-eval point-sprite
variable (ether-variable key)-
value element))

which has the effect of binding the ether variable to each element known to be a member and executing

the body of the point sprite (through the activity mechanism, of course, to preserve concurrency).

For example, if we had at some point asserted:

(assert (member -+an-object -»a-list)) |

the instance variable member-property of a-1ist would contain an-ob ject as a member. If we
were then to activate a sprite of the form:
(when {(member =x -»a-1ist)}
(random-function x))
the variable x would be bound to an-object by the above code and the form

(random-function x) evaluated in that environment.

In the event the key is an object instead of an Ether variable, (and assuming the member property has at
least one element) we execute the following code:

(foreach
element
member-property
(when {(equal -»element -key)}
(point-sprite-eval point-sprite)))
We iterate through each of the objects that are known to be members, and for cach one we create a new
sprite that will trigger if we Icarn that the object known to be a member of the list is cqual to the object

we asked about. If the equality sprite triggers then we cvaluate the point sprite.
* There are many points worth mentioning here:

(1) It is possible to use sprites inside a virtual collection handler.

-143 -

(2) The sprite checking for-cquality will be activated inside the same activity as the original activity of the
sprite checking for memberness. Thus, resource control modifications applying to the memberness

sprite apply as well to the sprites created to implement it.

(3) The ability to include sprites inside the definition of a virtual collection leads to greater
commutativity propertics while keeping the code simple. For example, if we had made the assertion:

(assert (member -»an-element -»a-l1ist))

and activated a sprite

(when {(member -=another-element -»a-1ist)}
(random-function a-1list))

and then at some arbitrary point in the future executed:

{(assert (equal -an-element -»another—e1ement-))

The sprite would fire executing the code:

(random-function a-1ist)

with a-1ist bound to an-element in the appropriate activity. The behavior of the system is totally

invariant over the time ordering of the two assertions and the sprite activation.

The handler for assert-member messages is shown in figure 31. The single argument to the handler,
element, is the object which is asserted to be a member of this list. The first thing we do is check to see
if we already know it to be a member of the list. If it is the new-members-1ist is the same as the old

member-property; if not the new clement is cons’d onto the member-property.

If the predicate:

(not (eq new-members-1ist member-property))

evaluates to NIL, the information contained in this asscrtion is already known and there is nothing to be
done. Otherwise we continue executing the rest of the code in the handler. The first thing we do is run:

(setq member-property new-members-1ist)

that establishes the fact that the new element is a member of the list so that any sprite generated in the
future can access this information. The next item of code deserves some discussion:

(when {(not-member -+element =»this-object)}
(assert (contradiction)))

It is of course the case that an element cannot be both a member of a list and not a member of the list at

the same time. Thus if we ever learn it is nof a member, we assert a (contradiction). Here, again,

|- 144-

Fig. 31. Member Assertion Handler

(defmethod (viewpointed-object assert-member) (element)
s The member-property is a list of all. elements currently believed to be a member of the list.
(let ((new-members-1ist (if (memg element member-property)
member-property
(cons element member-property)))) .
(if (not (eq new-members-1list member-property)) -
(progn
(setq member-property new-members-1list)
sIt can't be both a member and not a member
(when {(not-member -element -this-object)}
(assert (contradiction)))
s Delete a point sprites belonging 1o stifled activities.
(clean-up-point-sprites-1ist member-point-sprites-1ist)
(foreach
point-sprite
member-point-sprites-list
(let ((key (point-sprite-key point-sprite)))
(if (ether-variable key) :
sIf the key is an ether variable, bind the variable and eval the point sprite.
(point-sprite-eval point-sprite
variable (ether-variable key)
value element) '
: Otherwise it is a non-variable. Check for matchedness.
(when {(equal -key -element)}
JIf they do merge. eval the body.
(point-sprite-eval point-sprite)))))
i If this viewpoint handler has subviewpoint handlers, service them.
(foreach .
subviewpoint-handler
subviewpoint-handlers
(1et ((*viewpoint* (<- subviewpoint-handler ‘'viewpoint)))
(<- subviewpoint-handler ‘'assert-member element)))))))

we make usc of a sprite inside a virtual collection handler. This sprite ensures that (among other things)
commutativity with respect to equal assertions about the costituents of the member and not-member
type assertions will be abided by. For the sccond position of the not-member assertion we use instance

variable this-object which is bound to the Ether object that is currently being processed.T

The same behavior could have been achieved by activating a sprite in every vicwpoint of the form:

(when {(member =x =1ist)
(not-member -=x -»1ist)}
(assert (CONTRADICTION)))

The results would be entirely cquivalent except for a minor cfficiency advantage with the code inside the

virtual collection. This represents a form of ""hand compiling.”

T A convention in message passing languages is that the variable se1f is bound to the object in which we are processing. In
Ether, however, we must distinguish between two kinds of objects. The variable se1f is indeed bound to the object in which we
are processing, however that is the viewpoint-specific object which is not the kind that is placed inside assertions and sprite patterns.
Instead, we must use the non-viewpoint-specific object. This is what this-object is bound to.

£

- 145 -

Referring back to figure 31, the next form encountered is the invocation of the function
clean-up-point-sprites-1ist which serves to rcmove point sprites belonging to stifled -
activities. We then iterate over all pbint sprites in the member-point-sprites-1ist. If the key is
an Ether variable we bind the variable to e 1ement, the newly learned mcmbe}, and exccute the body by
evaluating:

(point-sprite-eval point-sprite
variable (ether-variable key)
value element)

If the key is an object, we create the following sprite:
(when {(equal -key -element)}
(point-sprite-eval point-sprite))
If we ever learn the key of the point sprite is equal to the member of the list, we exccute the body of the

sprite.

The only remaining code necessary to compléte the definition of the member virtual collection of
assertions is the handler for merge-member assertions. It is this very simple piece of code:

defmethod (viewpointed-object merge-member member-1list
J 9
(foreach member member-1ist (<- self 'assert-member member)))

When a new viewpointed object is created this code is executed once for each parent viewpoint with the
argument, member-11ist, bound to the member-property list of the parent. The code simply
itcrates through all known members of the list in the parent viewpoint and sends itself (the newly created

object) and assert-member message for each of these objects.

The reader is again encouraged to review the definitions of the handlers for messages in the member

virtual collection to verify that the propertics of monotonicity and commutativity are maintained.

There are a number of other asscrtional types associated with the the Ether object used for the program
synthesis system. It would become laborious to go through the implementation of each one. They are all

defined in ways similar to the ones we have discussed in this chapter thus far.

- 146 -

7.7 Implemention of Cryptarithmetic

Most of the discussion thus far in' this chapter has been about the implementation of sprites and
assertions for the program synthcsis systém. We discussed some of the types of assertions that were used
in the construction of the cryptarithmetic system in section 4.2. We never mentioned the creation of any
sprites to implement the constraint propagation. By now it can be explained to the reader just how the
constraint propagation was done. In the previous examples of virtual collections, whenever we always
wanted to take some action when something was asserted, there was no need to create a sprite to watch
for that assertion; we could simply include the code inside the handler for the assert-type message.
The constraint propagation aspect of the cryptarithmetic system is in some sense "hard-wired." The
action-we take when some information is asserted is always the same regardless of the viewpoint we are
in. Thus we are able to encode all of the actions we wish to take when something is asserted in the code

for the assertion handier itself,

For the program synthesis system we had one kind of Ether object. For the cryptarithmetic system, there
are three.? The definition of the column object is:

(defobject column (constraints)
(column-description left-neighbor right-neighbor))

There are several viewpoint invariant parameters. Each column knows its column-description
which is a list of the letters that make up the column. It also knows of two columns, itsb
left-neighbor and right-neighbor. It must know about these columns to propagate
information about carrics in and out. It has one viewpoint-sensitive property, constraints.
Whenever something new is asserted that reflects upon this column, a constraints message is sent
that contains the object being constrained (either one of the three letters or onc of the two carries) and a

list of the possible digits these can be.

The definition of the digit objectis: ~
(defobject digit (cant-be one-of) (digit))

Each digit object has only one viewpoint invariant parameter, the digit that it represents. It can accept

two kinds of messages. An assert-one-of message can be sent with a list of possible letters. The

T This, again, is an indication of the greater flexibility of the program synthesis system. Here we were able to create an object that
could be a list in one viewpoint and, say, a number in another viewpoint. If this flexibility were not needed then we could have
defined several different kinds of objects.

C-147-

cant-be property is included for convenicence.

The last of the three objects is the Tetter:

(defobject Tetter (cant-be one-of) (containing-columns letter))

Like the dig1it object it also has to know the thing it represents. Letter is bound to the symbol which
is its letter. Each letter also knows the columns it occurs in. This is bound to the vicwpoint-invariant
7 instance variable, containing-columns. The cant-be and one-of fields are completely

analogous to the corresponding ficlds contained in the d1git object.

The techniques for implementing the cryptarithmetic objects are really very similar to those used for the
program synthesis system. We will go through just one example. The replacement procedure for
one-of type assertions is:

(def-assert-vca (one-of =thing =alternatives)
(establish-object-point-assert

object thing
message-type ‘'assert-one-of
property alternatives))

Its form is exactly like the replacement procedures for most of the other assertions we have looked at.
Notice that the same procedure will work whether or not the the object type (bound to "thing”) is a
letteroradigit. We will just show one of the message handlers. The handler of assert-one-of
messages for Tetters is shown in figure 32. We will briefy read through the code. We first check to see

if there are any new results in the message. If the argument, choices, is a superset of the set of possible

Fig. 32. Letter Handler For One Of Assertions

(defmethod (letter-with-viewpoint assert-ane-of) (choices)
(if* (setdifference one-of-property choices)
(let ((new-one-of-property (intersect one-of-property choices)))
(if (null new-one-of-property) (assert (contradiction})))
(foreach
column
containing-columns
(assert (constraints -column (2this-cbject -new-one-of-property))))
(foreach
digit
(setdifference one-of-property new-one-of-property) -
(assert (cant-be -this-object -digit)))
(if (= (length new-one-of-property) 1)
(assert (one-of »(car new-one-of-property) (-this-object))))
(setq one-of-property new-one-of-property)
(foreach
subviewpoint-handler
subviewpoint-handlers
(slet ((*viewpoint* (<- subviewpoint-handler ‘viewpoint)))
(<~ subviewpoint-handler 'assert-one-of one-of-property))))))

-148 -

letters we alrcady knew about (bound to one-df -property) there is nothing to do. This test is
performed by the predicate:

(setdifférence one-of-property choices)

If the test comes out true, we compute the new-one-of -property to be the intersection of the two
lists. If new-one~of-property is empty, the viewpoint is inconsistent, and we assert this:

(if (null new-one-of-property) (assert (contradiction)))

We then iterate through each of the “columns in the viewpoint-independent property
containing-columns, and for each one we express the new constraints on the column:

(assert (constraints =»column (2this-object -»new-one-of-property)))

We then iterate through all digits which we used to believe were possible assignments to this digit (but
no longer do) and for each one assert that it cant-be.
(foreach |

digit .

(setdifference one-of-property new-one-of-property)’

(assert (cant-be »this-object -»digit)))

If the new-one-of-property is of length 1 (meaning that we know a unique digit that it must be in
this viewpoint), we assert that the only possible assignment to this digit must be the very letter. We say
this with: ’

(assert (one-of -»(car new-one-of-property) (-»this-object)))
The rcmainder- of the handler in figure 32 establishes the new value of the one-of-property and

handles subviewpoint inhcritance in the manner we are already accustomed.

7.8 Miscellaneous Virtual Collections

There are a few assertional types that require somewhat different implementational techniques than the

ones we have discussed thus far. We briefly describe them here.

7.8.1 Implementation of Restricted Universal Quantification

In a few places we have uscd sprite patterns that looked something like:

- 149 - . °

(when {(¥ m in +(1ist-of-integers from 1 to (- n 1))
check {(sequence-element -2object =el »(+ m 1))
(sequence-element -»cdr =el -=m)})} '

)

The most general form is:

(when {(V var in 2set :
check { -- any arbitrary 1ist of sprite patterns -- })}
--body~-~)

We call this restricted quantiﬁcationT for two reasons. The objects that the variable var are allow_ed to
range over must be finite in number and fully known at the time the sprite is activated; these objects are
contained in the conventional Lisp list set. The sprite will trigger iff the sprite patterns following the
check keyword trigger for every binding of the variable var to each of the elements in the list set.
Sprites incorporating this pattern do satisfy the property of commutativity; regardless of the order in
which the sprite is activated, and assertions satisfying the triggers are made, the sprite will trigger. How
this particular virtual collecﬁon of assertions is implemented so that this property is maintained is the
subject of this section. Note that there is no assertional form corresponding to the sprite pattern type for

restricted universal quantification so it does not make sense to talk about a "monotonicity"” property.

The virtual collection works as follows. The collection of patterns in the "check” field must be true for
every binding of var to elements of the list set. In particular it must be true of the first element of
set. What we wish to do is activate a sprite whosc pattern is the "check” pattern with var bound to the
first clement of set. If this sprite ever triggers, we would like to activate the same sprite, but with var
bound to the sécond clement, and so on. If we succeed in triggering with var bound to each of these
elements, then the whole sprite pattern (f(_)r which this is a replaécment) is true, and we evaluate the

body. Code to do this in Lisp machine Lisp is shown in figure 33.

While this is, perhaps, a bit complex to understand, an example will make it much clearer. Suppose we
had the following sprite to replace:

(when {(V x in Tist
check {(less -x =number)})}
(--body-to-evaluate--))

T Kowalski, in a talk given at the MIT Al Lab in Spring 1981, mentioned a similar augmentation made to his version of Prolog.
He argued (as we do) that the declarative form is much easier to read and understand than the iterative code that implements it.

- -150-

Fig. 33. Sprite Virtual Collection for Universal Quantiﬁcatioh

(def-when-vca (V =identifier in =1ist check =sprite-clause)
(let* ((funcname (symbol-append "FOREACH-HANDLER-" (gensym))))
(make-auxiliary-functions
‘(defun ,funcname (element-list)
(if (null element-list) .
(progn ,@*body®*) -
(let* ((,identifier (car element-1ist))
(rest-elements (cdr element-1ist)))
(when ,sprite-clause
(.funcname rest-elements))))))
‘(,funcname ,1ist)))

We use the function make-auxiliary-functions to create a new function with a unique symbol as
its name. This new function embeds the sprite that we activate for each binding of the variable bound by
the quantification. For the case above, the created function will look like:

(defun foreach-handler-1234 (element-1ist)
(if (null element-Tist)
(progn (--body-to-evaluate--))
(let* ((x (car element-1ist))
(rest-elements (cdr element-list)))
(when {(less =x -=number)}
(foreach-handler-1234 rest-elements)))))

This function is compiled when the original sprite is compiled; that is the purpose of
make-auxiliary-functions. Thecode that actually replaces the sprite looks like:

(foreach-handler-1234 1ist)

When foreach-handler-1234 .is called with argument 11ist, it first checks to see if the argument is
null. If it is, then the sI;rite pattern is vacuously true, and we evaluate thc.body. Otherwise we biﬁd the
quantified variable (in (his casc x) to the first element of the input and the variable rest-elements to
the remainder of the list. We then activate a sprite containing the internal sprite pattern as its pattern. If
this sprite triggers, we recursivély call foreach-handler-1234 on the rest of the list (bound to the
variable rest-elements). We will reach a call with a rest-elements of ni1 iff the check pattern

is true for all bindings of x in the argument list. This is the intended action.

There is a somewhat more general version of restricted universal quantification available. Suppose we
had a list of random objects and wanted obtain a list of their lengths. We could created the following

sprite:

-151-

(when {(V obj in Tlist
check {(length -obj =n)}
binding 1ist-lengths.
Sfrom-values -n)}
(random-function list-lengths))

As before, we check the collection of sprite patterns in the check ficld for each element of the in field
bound to the variable obj. Additionally we can place an arbitrary expression to evaluate in the
from-values ficld. For cach clement of the list in the in field, we cvaluate the from-values ficld and add

the value to the variable in the binding field.

If the sprite above triggers, meaning that we knew the lengths of all sequences that were in 1ist, the
variable 1ist-1engths will be bound to a list of all of the lengths of thesec when we evaluate:

(random-function 1ist-lengths)

The implementation of this extended form of universal quantification is essentially similar to the basic

form of figure 33. It is presented without commentary in figure 34,

Fig. 34. Universal Quantification With Binding

(def-when-vca (V =identifier in =1ist check =sprite-clause binding =accum from-values =return)
(1et* ((funcname (symbol-append "FOREACH-HANDLER-" (gensym))))
(make-auxiliary-functions
‘(defun ,funcname (element-1ist returns)
(if (null element-l1ist)
" (et ((.accum (reverse returns))) ,@*body*)
(let* ((,identifier (car element-1ist))
(rest-elements (cdr element-list)))
(when ,sprite-clause
(,funcname rest-elements (cons ,return returns)))))))
"(,funcname ,11ist nil)))

7.8.2 Interacting With Activites Using Sprites

In our examples, there were sprite patterns that triggered on conditions that activities could be in. We
can, for cxample, create a sprite that triggers whenever a given activity, its argument, becomes stifled. By
referring to the definition of an activity in figure 6.2.2, every activity has a slot
stifled-point-sprites. As we will see, whenevér a sprite is activated waiting for an activity to
become stifled, a point sprite is placed on the list bound to stifled-point-sprites. The sprite
replacement procedure for stif1ed assertions is shown in figure 35. The code that replaces the sprite

first creates a point sprite. There is no point-sprite-key ficld because st if 1ed-type asscrtions take no

-152-

Fig. 35. Sprite Replacement for Stifled Assertions

(def-when-vca (stifled =activity)
‘(slet ((point-sprite ’
(make-point-sprite .
point-sprite-body ', *body*
point-sprite-closed-vars current-closed-variables
point-sprite-closed-vals current-closed-values
point-sprite-activity current-activity)))
(if (stifled ’,activity)
- 31f the activity is already known to be stifled, eval the point sprite

(point-sprite-eval point-sprite)

:Otherwise, add it to the stifled-point-sprites list.

(structpush point-sprite (stifled-point-sprites *,activity)))))

paramecters other than the activity that the point sprite ultimately gets hung off of. If the activity is
already known to be stifled, the point sprite is evaluated. Otherwise it is placed on the

stifled-point-sprites list to be saved in case the activity is stifled at some future time.

The stif1e function contains the following section of code:

(foreach
point-sprite
(stifled-point-sprites activity)
(point-sprite-eval point-sprite))

that causes already saved point sprités to be run in the event that the activity becomes stifled.

7.9 Comparison With Lexical Retrieval Schemes

This chapter has been about techniques for implementing a data-driven programming language. The
basic concept of‘ this sort of language goes back at least to Selfridge [56] who propoécd programming by
having demons watching blackboards and occasionally waking up and writing their own messages on the
board. This concept has been developed in a number of directions. Ether belongs to a group of problem
solving languages, often referred to as "Planner-like languages” reviewed in section 3.6. Another system
that builds on this idea is the Hearsay architecture [12] in which the things written on the blackboard,
rather than being derived facts and goals, are hypotheses about possible interpretations of fragments of

speech.

In Ether, as we have already mentioned, assertions and sprites (our name for "demons") must satisfy the
propertics of monotonicity and commutativity. While this is not true of all Planner-like languages, it is
arguably better because it allows one to give a declarative interpretation to sprites and assertions. The

chief insight expressed in this chapter is that the blackboard can be virtual. We view the important

pun

-153-

propertics of this style of programming that it be possible fo‘r use to give a declarative interpretation to
the code. How this property of the code achieved in the implementation is of no conscquence to
programmers writing code. To this author’s knowledge, all previous implementations of languages of
this kind represent the blackboard of assertions and patterns of active demons using purely syntqctic
techniques. The examples in this chapter makes use of the semantic interpretation of the assertional
forms to allow convenient coding and access. We will argue that implementing an assertiox_xal language
using virtual collections of assertions, where the assert commands and sprites have been replaced by
storage and retricval mechanisms suggested by the semantics has a number of advantages. Because
assertions must now mean something there is additional burden on the programmer to design virtual
collections that are appropriate for the problem domain. Implementation is a two-tiered task. First
classes of assertions and sprites must be built up and then the higher-level declaratively-interpretable
code can be written using them. We believe that the extra work is justified and has the potential to raise

this class of languages from the toy language status to languages of practical use.

Although all the virtual collcctions we have presented compiled into object-oriented style code, this is
not a necessity. Other implementation styles might be more appropriate for other problems. Section

7.9.7 briefly describes another kind of virtual collection using unrelated implementation technigues.

The remainder of scction 7.9 discusses various aspects of the implementation of assertional-style

languages using virtual collections of assertions,

7.9.1 Finding The Optimal Route

No matter how one represents the content of the assertions, the process of accessing the information will
occasionally be expensive. When the assertions are stored in a discrimination net, the programmer does
not have the ability to decide the order in which the elements of the assertion are checked. Picking a
wrong order can lead to an enormous computational waste. You will recall from the description of the
implementation of member assertions in scction 7.6 that we chose to represent memberness by storing
on certain objects those things which are known to be members of thcm-rathcr than storing on objects
those objects representing lists that it is known they are on. This choice is important from an efficiency
point of view. We are much more likely to as questions like "What elements are members of a given
list?" than "What lists have this item as a member?" in the course of reasoning about programs. In other

words we would be more likely to create sprites of the form:

-154 -

(when {(member =x =1ist)}

than sprites of the form:

(when {(membeﬁ +element =y)}

The second sprite will, as was described in section 7.6, expand into code that will send when-member
messages to every object that has been or will ever be created. The first one will only send a message to
onc object. Clearly we have optimized the implementation of member assertions for our particulaf

application.

Discrimination nets have similar properties with respect to variables in certain positions being much
more expensive than variables in other positions. Without having control over the means of storing the

assertions the much less efficient access path could have been picked as easily as the more efficient one.

7.9.2 Substituting Lower Level Reasoning for Higher _

Having knowledge of the semantics of the ‘assertions can sometimes allow results to "fall out” where
otherwisc extra computation would have to be done. For example, suppose we know that the number X
is greater than 3; in other words we have executed:

(assert (> =X 3))

Also assume a sprite has been created of the form:

(when {(> =X 2)}
--body--)

If retrieval is done lexically the sprite will not trigger because the atom 2 does not match the atom 3.

In the current implementation, greater-than assertions turn into sends to one of the objects that it is
greater than the other. In the case that one is a constant object (e.g. 3) the message is sent to the other
one. The object 3 is then put on the list of the éreate r-property of the object X. When the sprite is
activated, it again recognizes that 2 is a constant and scnds a when-greater mess.age to X. The
method that handles when-greater messages knows that 3 is greater than 2 and thus causes the body

to be executed.

There are, no doubt, numerous places where some kind of reasoning can be done much more effectively

using low-level implementation techniques and then interfaced to the high-level rcasoner through a

-155 - : '
virtual collection of assertions. Scction 7.9.7 presents a rather extreme example of this.

7.9.3 Reduction of Data

There are cases where many assertions can be reduced to one with a savings in both storage and
computation by sprites wishing to access that information. Using the example of the previous section we
can imagine that the following assertions have been made:

(assert (> =X 1))
(assert (> =X 2))
(assert (> =X 3))

If we stored these assertions lexically,.and then created sprite:
(when {(> =X =n)} |

ced)
the sprite would be triggered three times, with n bound to 1, 2, and 3 on the three invocations. We
know, however, that the knowledge stored in those three assertions can be summarized in remembering
simply that X is greater than 3. If we stored only this, the sprite would only get iriggered once with only

the strongest possible binding for n rather than several superfluous ones.

7.9.4 More Complicated Queries

As we are not tied to items bcing léxically present in a database we can ask questions about things that
were never explicitly asserted, but easily computed on the fly. We need only ensure commutativity and
monotonicity. We had onc example of such a sprite pattern, the restricted universal quantification
discussed in section 7.8.1. This simple observation turns certain questions that have worried researchers
in the field into non-problems. Much effort has been wasted worrying about whether certain kinds of -
reasoning should be done in antecedent or consequent mode. If we did not have the idea that the
universally quantified form did not have to be lexically present in the database for a sprite referencing it
to trigger, we would wonder whether we should always gencrated such things antecedently (i.c. generate
them whenever they are true), an obviously silly idea, or invoke some sort of consequent reasoning
which is inefficient and linguistically awkward. In the context of the Amord language, deKleer et. al.
[72] worry about this very question with conjunctive statements. Bledsoe, in his excellent survey article
on the use of a semantic approach in theorem proving [3], mentions a number of techniques that could

be easily incorporated into a theorem prover using the virtual collections idca and lcad to similar

© - 156-
improvements of both efficiency and understandability of code.

7.9.5 Sprites Can Be Used Inside VCAs

-

The ability to to place sprites inside virtual collection handlers is of enormous significance in our ability
to design cfficient, understandable problem solvers. In the implementation of member gssertions we
~ were able to bury the sprite for cheéking for equality inside the message handler. Thus any techniques
whatsoever that we have for managing cquality can be buried inside a.virtual collection for equality and
the member virtual collection will function as we would like it to. We have used a very simple
”technique, but more sophisticated ones (e.g. Bundy [6]) could as casily have becn incorporated. To
understand the advantages of this, both in terms of simplicity of code and efficiency, it is instructive to
consider what we would have to do to get proper behavior with respect to member and equal assertions
using a lexical retricval mechanism. The simplicity with which it is achieved using our mechanism was
discusscd on page 143. We wish to ensure that if the following two assertions were made:

(assert {member -an-element -»a-1ist))
(assert (equal -»an-element -+another-element))

and we activated the sprite:

(when {(member -+another-element -»a-list)}

the sprite would trigger, regardless of the relative orderings of the two asserts and the sprite activation.

One way we could get the appropriate behavior is by creating antecedent sprites:

(when {(member =obj =1ist)}
(when {(equal =+obj =other-obj)}
(assert (member =other-obj =1ist))))

This would generate lots of unwanted assertions that would create what is often called a "combinatorial
explosion.” The other possibility is to complicate the member request by including the equal request
inside of it. Thus, if we wanted to know if an-element was a member of a-11ist, we would have to
create the sprite: |

(when {(member =obj -a-1ist)
(equal »obj =an-element)}
+)

which is unmodular and doesn’t give us the ability to have special ways to encode equality. Note also,

that without more system-supplicd syntactic mechanisms, the above code won’t actually work because

EXN

-157 -

(equal ~»obj -»an-element)

is actually not the same request as

(equal =»an-element -obj)

This is why languages like QA4 [54] have invented notions like bags (collections without order) so the
equal pattern need not be duplicated. By giving the user the ability to semantically encode information

such syntactic mechanisms are not needed.

7.9.6 Distributability and Parallelism

There has been some recent interest in the design of multiprocessor architectures to exccute message
passing languages [17, 27]. Tmplementations built on lexical retrieval schemes require there be a single,
monolithic database in which to store the assertions. The compilation of Ether sprites using virtual
collections of assertions results in an inherently distributed implementation that could be executed on

such an architecture if they become feasible. See also section 8.3.3 that discusses this issue further.

7.9.7 An Alternative Virtual Collection

All of the examples actually implemented that made use of the notion of virtual collections of assertions
madc use of a compilation into object-oriented style of programming. While this is a powerful
technique, other means of storage are possible. We discuss one (unimplemented) virtual collection that
would be useful for implementing an Ether algorithm described in [30]. It is not essential to go through
the details of the problem or the algorithm. The assertions and spritc patterns being replaced are of the

form of predicates on arbitrary subsets of a finite set whose elements are known in advance.

In many problems the number of elements in the set can be as high as 10 or 15, allowing the size of the
space of possible assertions that could be made to grow quite large. One of the predicates has the
property that if it is true of a set, it is also true of all superscts of that set. The other predicate has a dual
characther -- if it is true of some sct, is is also true of all subsets of that set. A rather higﬁ density of the
sets will ultimately get marked by one of the two predicates. (They are mutually exclusive.) In
comparison, the number of sprites that will be created is low and always asks about specific subsets. This

information is useful to us in the design of the virtual collections.

Because the space of possible assertions is the powerset of a set that may be fairly large, and a high

- 158 -

density of them will actually be asscrted, it might make sense to represent the asserted subscts in a bit
table. A trivial algorithm addresses the correct bit: the index into the bit table is a bit string whose lcrigth
is the total number of clements in the set. For a given set, the index is computed by using a 1 in the
designated position for each clement that is in the set, and 0 otherwise. When one of these predicates on
a sct is asserted, the algorithm is run to sct the appropriate bit in the table. Depending on which of the
two predicates we are considering, we choose onc of two simple algorithms that enumerate the bit table

addresses for cither the supersets or subscts of the initially asserted set.

Similarly, there can be two tables of bits where each bit indicates that a sprite has been activated looking
for the particular subset. The number of sprites activated at any one time will be relatively few, so the
actual point sprites can be stored int a simple list or other data structure without great concern for

optimization.

With this "low level” programming out of the way, code that uses sprites and assertions can be written
with ease. It is worthwhile considering how intractable it would be to write such a program using sprites
and assertions where the implementer is not able to design a virtual collection 6f assertions. First, the
assertions would be implemented by lexically storage. The amount of storage (per assertion) is rclatively
high -- no matter how the assertions are represented there is a minimum of n pointers required, where n
is the number of elements in the subset. Schemes such as discrimination nets and hash tables that are
designed to speed up queries incvitably require more storage than this minimum. Since the density of
sets for which assertions will be made is q>uite high (probably greater than .5 on the average), the

difference in storage requirements is of overwhelming significance.

Another implementation requirement if a standard lexical retrieval scheme is used is that the marking of
supersets or subsets of marked scts must be marked by sprites rather than by more efficient low level -
operations. Here again, the efficiency loss is so significant that it might well spell the difference between

practical and impractical programs.

-159-

Chapter VIII Epilogue

In this chapter we collect together several topics that relate to the material of the previous chapters but

do not properly fit inside them.

8.1 Nondeterminism and Computation

A very surprising thing happened while running the programs used in the cryptarithmetic problem
solver described in chapter 4. Many of the problems tested admitted more than one solution. During
different runs of the problem solver on a single problem, different (valid) solutions would occasionally
result. This was a surprise because Lisp programs do not normally do such things, that is return different
results during different runs. There are exceptions to this, pregrams that are designed explicitly to give
different results each time. Such programs contain random number generators, or perhaps sample a
value outside of the Lisp environment to be used as a datum by the program (e.g. the real-time clock).
The parallel Ether program is nondeterministic and this realization has important implications for our

conception of what it means for a system, particularly an "intelligent system,” to be nondeterministic.

This discussion is in part a critique of two views prevalent in the literature. According to one view,
intelligent mechanisms must contain random choice points if they arc to produce the nondeterministic
behavior that people seem to exhibit. Proponents of the other view argue that intelligent behavior must
‘be deterministic because putting random choice into a computer program cannot possibly make the
program "more intelligent.” While both points of view have some justification, we will argue that the
apparent disagreement arises from a limited understanding of the sources of nondeterminism. We use
our Ether programs as a demonstration that intelligent mechanisms may very well exhibit
nondeterminism without the random choice points that the proponents of the second view (quite ﬂghﬂy)
find objectionable. We first develop these two positions by a dialogue between two imaginary

individuals,
Mark: Good morning, Barbara. | .

Barbara: Good morning. Say, you promised you’d explain to me your new musical improvisation

program. Now might be a good time.

Mark: Why, yes, I'd like to. Have you ever noticed that if you take picces of music written in a single

- 160 -

style that the various attributes of the picces, say their pitches and durations, have a characteristic
distribution? In the simplest version of my program, I can ecmulate any composcr by processing a corpus
of his works and deriving statistical distributions for the pitches and durations. I can then use these

tables to "play” in that style by randomly determining a sequence of these notes that conforms to this

distribution.

Barbara: Well, certainly that isn’t music. A random sequence of notes must surely sound like garbage! 1
would liken it to "monkeys sitting on piano stools.” The ingenuity of a composer is exhibited in the
careful and thoughtful arranging of the notes, not in some overall distribution of the pitches and

durations.

Mark: You're jumping the gun. Indeed it does sound like garbage; but remember, this is just the

beginning of my theory. There’s more to it.
Barbara: Please continue.

Mark: Actually, what I just explained to you is my "zeroeth-order theory.” The "first-order theory”
involves creating statistical distributions for éll pairs of notes. The synthesis algorithm, when it wants to
pick the attributes for note n, uses note n-1 to define the distribution for the selection. The
second-order theory looks at a corpus of data collected about occurences of triples and selects the

distribution for note n from notes n-1 and n-2. The higher-order theories are similarly constructed.

Barbara: Well, it sounds like you've been spending long nights typing tables of numbers into the
machine. I think your time would have been much better spent thinking about the structure of music
and how that can be incorporated into an algorithm. [don’t understand how randomly picking notes

could make something sound remotely like a picce of music worth listening to.

Mark: I'm not just "randomly picking notes." The selections are made according to a carefully

calculated statistical distribution.

Barbara: Even still, it doesn’t reflect the careful selection of notes based on a high-level understanding of

music that my program uses. [Barbara goes on to describe her object-oriented composition program.]

Mark: Ah, but there is a sense in which your program can’t be modeling what a composer does. It will

always generate the same piece! Human beings are clearly nondeterministic. The same composer will

-161-

ncver generate the samge pivce twice.

Barbara: No! The o'nly rcason the composer docs not generate the same piece twice is because he
remembers generating the first one. It would be boring to generate the same thing twice. Anyway,

there is a simple demonstration, or "proof™ if you like, that intelligence is deterministic.
Mark: A proof! This is getting interesting.

Barbara: It’s really just common sense. Suppose we have a program that randomly chooses things at
some point. 1f we can find a piece of knowledge that suggests one choice is better than the others we can
use that knowledge to make the choicc deterministically instead. The intelligence exhibited by the
program has to incrcase. If we have ;10 such piece of knowledge then we will do‘something like always

pick the first one on the list. Surely this can’t make it less intelligent.

Mark: Well, that sounds all well and good; but I still claim that you aren’t adequately accounting for the
nondeterministic behavior people obviously exhibit. I think I can demonstrate this to you. Do you play

chess?
Barbara: Yes I do, but I'm not that good at it.

Mark: That’s fine. [He takes out his chess set and sets up the pieces. He lets Barbara be white.] I'd like
to play you a game to demonstrate a point. [Unknown to Barbara, Mark is a chess expert. He chooses,

however, to lose the game to Barbara to make his point. The game took about 20 moves.]
Barbara: Checkmate! 1 believe you were trying to make some point or other?

Mark: To make my point I will have to play you another game. I want you to play the same game you '
just played, and I will do likewise. Certainly, for a deterministic machine such as yourself, that should be
no problem! [They play the game again. Barbara concentrates intensely. On the fourth move Barbara

makes a different move than she did the previous game.] You goofed, Barbara!

Barbara: No, I couldn’t have. You just threatened my king’s pawn and I must have protected it then as [

did now.

Mark: Well, you did protect it, but not by P-Q3, you moved this knight up instead.

- -162-

Barbara: I'm not sure I belicve that.

Mark: Well, it just so happened 1 remembered the game. [He resets the pawn, makes the knight move,
and the finishes the game with a running dialog explaining what he thought were Barbara’s reasons for

making the moves she did.]

Barbara: Well, I admit that ending looks familiar. Well, you’re right that I played a different game the

- second time. But I still claim its not because I'm a nondecterministic machine! 1 must have learned

something or gotten some new idea that made me think the pawn move was better than the knight

move, and this caused my "chess program™ to do something different.

Mark: That isn’t likely. It takes ycars of research for anyone to learn anything at all about the first few
moves of the chess game. Besides, you . were frying to play the same game as the time before. Face it,
somewhere in your "chess program” there is a random choice point that picked one move the first time,

and a different move the sccond time.

Both of the characters in our little dialog have a point. Mark’s is based on the simple observation that
people don’t do the same thing every time. Barbara’s argument is based on the intuitively satisfactory
premise that a dcterministic choice being used instead of a nondeterministic choice can’t lower the
apparent intelligence of an algorithm. (We ignore here certain special uses for random choice such as

Monte Carlo simulations and in the theory of games.)

Before continuing with a more abstract discussion of sources of nondeterminism, it is important to
understand just why Ether programs are nondeterministic. The running program contains numerous
running activities. The collection of activities is very fluid; new activities are created and others are
étopped all the time. At the lowest levels of the implementation is a scheduler for evenfs and activities
described in section 6.2. The main loop of the scheduler selects each current activity in turn and runs
computations from its event queue until a predetermined amount of time chosen in proportion to the
amount of processing power the activity has. It then continues to the next activity. Nondeterminism
creeps in because the number of events that can be processed in a giver; time quantum by an activity

varies. There are a number of reasons why this can happen which we will enumerate:

1. The Lisp machine normally services interrupts from various sources. It is connected to a network and
occasional messages arc reccived by the Lisp machine to be processed. The receipt of these messages

happens unpredictably. Another source of interrupts that can occur is the pointing device (known as a

-163 -

"mousc”). Ifit should be moved (or cven just jiggled) it will generate an interrupt that must be handled.
The handling of these interrupts, when they occur while an activity is "current,” will decrease the

number of events that the activity will be able to process.

2. Another source of this variation is the memory configuration of the machine. The Lisp Machine, like
most modern computers, has a virtual memory configuration. Programmers think about their machine
as if it hadAa very large quantity of homogencous memory. In reality, there arc several different kinds of
memory. On the Lisp machine there are essentially two kinds: a relatively small amount of
random-access semiconductor memory and a large disk. While the machine is running information can
only accessed if it is residing in the random-access memory ("RAM™). If the information does not
happen to be in RAM it must be read in from the disk, a very timc-consu;ning operation. If alot of disk
operations happen to be done during time the time quanta given an activity by the scheduler, very little
actual work will bc done. How much time is wasted handling page faults isb something that is very hard
to model or make repcatable. Tﬁis rcasoﬁ also' interacts with rcason (1) above; Handling of interrupts -
can cause paging and cause a rearrangement of the page sct and of Lisp objects on those pagés that will

affect future paging behavior.

3. Yet a third source of variation is due to the programmer’s desirc to probe the program in ways that are
useful for debugging it. For purposes of debugging it may be necessary to have the program do certain
additional operations at certain points. I have implemented a number of different tracing modes in
Ether that cause certain information to be printed on the console or different statistics to be gathered.

Sometimes changing the precise features we are tracing will cause different answers to result.-{'

The effect of all of this is that different activities may progress at different rates with respect to one
another on different runs. One can think of activities in the cryptrarithmetic progrzim as "competing”
for processing power by attempting to constrain quickly. Two activities may be both heading to valid
solutions and if one, because of the reasons mentioned above, is able to get a slight edge, the
manager-activity will noticc this fact and assign it morc processing power. This will greatly

increase the likclihood of it reaching a solution before its competitor.

- How can we relate these observations to the paradox suggested by the dialog? The two characters in our

dialog believed that they were taking incommensurable positions. They believed that if the program did

T This has on occasion greatly frustrated the debugging effort.

- 164 -

not contain random choice points then it must be deterministic. Our example illustrates that
nondeterminism is possible without the programmer having to place any random choice points into the
program. One might arguc that the random choice points are really there, that if we were to model the
interpreter for our program at a finc enough level of detail we would find these random choice points.
While this objection is true in principle, in practice such a modecl would contain so much irrelevant detail
(e.g. where Lisp objects are in real memory, what pages are in core, the current confguration of the
memory map, etc.) that it would not be, even remotely, a tractable model we could use for understanding
the program as a problem solver. Thus nondeterminism becomes not a property of the interpreter itself,
but of our model of it. Clinger [7] develops this argument ecxtcnsively in his semantics for
(nondeterministic) actor computations. In our problem solving systems we have nondeterminism not
because we were too lazy to make an 'intclligcnt choice when presented with sever_al options, but because
there are so many details that we would be forced to think about which are irrelevant to our purpose in

writing the program.

8.2 A Comparison With Constraint Networks

The ideas expressed in chapter 7 concerning the implementation of assertions and sprites using virtual
collections of éissertions emerged from a series of discussions with Luc Steels and Ken Forbus after the
publication of my first work on Ether [30]. They had both become proponents of the constraint network
metaphor for problem solving used by Waltz [66] and more recently pursucd by Borning [5] and
Sussman and Stecle [59]. Thad not yet lcarned that declarative (spritc) code could be written that did not
involve lexical retrieval schemes. Steels and Forbus argued that it made more sense to associate facts
"known about objects with the objects themselves and that all computation should involve local .
interactions between objects. This was necessary so that system performance would not degrade as more
knowledge is gained (as happens with lexically-stored assertions). I accepted their criticism as valid, but
countered with what I felt to be the greater expressibility and computational generality of sprites.
Virtual collections of assertions evolved as a way of kecping the advantages of sprites while exploiting the

locality of interaction inherent in the notion of constraint networks.

In this section we make clear the relationship between the two programming metaphors. We emphasize

two points:

1. A constraint network can be constructed out of sprites with the following limitation: All sprites are

- -165 -

activated before any are run. In other words you cannot have sprites that create other sprites. We believe

this puts a significant limitation on the expressivencss of the language.

1. Using sprites (with virtual collections of assertions), code that is expressively equivalent to constraint
networks will compile into code that is functionally equivalent. In other words, there is no efficiency

penalty for programming with sprites.

- We will make these points by building part of a constraint system out of sprites for a domain of interest
to workers with constraint networks -- simple linear electronic circuits; in fact, to make our point, we can
restrict our discussion to just networks consisting of nodes and resistors. The system has not been

implemented, but an implementation would seem to present little difficulty.

The first quéstion we will ask ourselves is: "What is a node?” A node is a set of device terminals'at the
same clectrical potential and that satisfy Kirchoff’s Current Law. The terminals all connect to the node,
the voltages at cach of the terminals are equal, and the sum of all currents coming into a node must be
zero. Using the metaphor of constraints this becomes functfonally an object which knows about N other
objects (the device terminals). If the currents of any N-1 of them are known, then the current of the Nth

one can be asserted.

A node with 3 wires coming out of it would be defined by sprites something like those in figure 36.

Fig. 36. Three Terminal Node Sprites

(when {(current-out-of T1 =I1)
(current-out-of T2 =I2)}
(assert (current-into T3 (+ I1 I2))))

{when {(current-out-of T1 =I1)
(current-out-of T3 =I3)}
(assert (current-into T2 (+ I1 I3))))

{(when {(current-out-of T2 =I12)
(current-out-of T3 =13)}
(assert (current-into T1 (+ I2 I3))))

(when {(potential-at T1 =E)} -
(assert (potential-at T2 E)) -
(assert (potential-at T3 E))) :

(when {(potential-at T2 =E)}
(assert (potential-at T1 E))
(assert (potential-at T3 E)))

(when {(potential-at T3 =E)}
(assert (potential-at T1 E))
(assert (potential-at T2 E)))

- 166 -

These represent the relevant "electrical facts™ and are similar in form to rules that would be defined in a

constraint nctwork.

A resistor is a two-terminal device with three parameters, the potentials at the two terminals and the
current flowing through the device. If two of these parameters are known the third can be computed. It
is also the case (as for all two-terminal devices) that the current going into one terminal is cqual to the
current going out the other terminal. Sprites that express the rclevant electrical facts about resistors are

shown in ﬁgure 37.

Fig. 37. Resistor Sprites

(when {(current-into T1 =I)}
(assert (current-out-of T2 I)))

(when {(current-into T1 =I)}
(assert (current-out-of T2 I)))

(when {(current-into T1 =
(potential-at 71 =
(assert (potential-at T2 (- V (// I R)))))
(when {(current-into T2 =I)
(potential-at T2 =V)}
(assert (potential-at T1 (- V (/#/ I R)))))

(when {(potential-at T1 =V1)
(potential-at T2 =v2)}
(assert (current-into T1 (// (- V1 V2) R))))

The sprites that define each of the kinds of devices can be collected into procedures named
create-node or create-resistor so they only have to be written down once and then
instantiated any number of times for each of the components of the circuit. What we end up with looks

very much like the constraint network formalisms of Borning, and Sussman and Steele.

An example will show how sprites such as the ones shown in figures 36 and 37 could be used to solve a
simple circuit problem. Suppose we had a circuit such as the one in figure 38 and were interested in

knowing the potential at node P;. How would this be determined?

The current going into upper terminal of resistor Ry is 2, this will trigger off a sprite from figure 37 of the
form

(when {(current-into T1 =I)}
(assert (current-out-of T2 I)))

-167 - : K

Fig. 38. Scries Resistors -

That will transfer knowledge of this current to node P,. P, is a two-node (like the three-node in figure
36 but simpler) which will contain a sprite indicating the current into the node from one terminal is
cqual to the current out of the node on the other terminal. Another sprite like the one mentioned above
will transfer knowledge of this current to the terminal of resistor R, adjacent to the node marked P3. At
this terminal wé now know the current (2) and the potential (0, because it is connected to ground). This
will trigger a sprite of the form

(when {(current-into T2 =I)
(potential-at T2 =V)}
(assert (potential-at T1 (- V (// I R)))))

to mark node P2 with a potential of 2. The analogous sprite for resistor Rl will then trigger propagating
a potential of 4 to node P;. This was the original question we were interested in knowing and a sprite

would wait for the answer to appear and then stifle the activity containing all these sprites.

We now will address the second of our two claims above, that of efficiency. Since we will be
implementing the sprites and assertions using virtual collections of assertions, a reasonable strategy will
be to make terminals the ether objects. You will notice that cach of the assertion types mention a

terminal and none of them are cther variables, making this a very good choice. What, then, does a sprite

© -168-

of the following form:

(when {(current-into T2 =I)
(potential-at T2 =V)}
(assert (potential-at T1 (- V (// I R)))))

compile into? The first sprite pattern will compile into a command to place a point sprite on the.object
representing terminal T2. The point sprite watches for information to be lcarned about the
current-into the terminal.T If this triggers a new point sprite will be created and attached to the
' same node to watch for a potential being learned. Upon learning this information we evaluate the code

that results from compiling:.

(assert (potential-at T1 (- V (// I R))))

This is a simple message transmission to terminal T1 that its voltage is a given value. At each point in
this execution, computation involves only local computation at specific nodes. No scarch through a
database is required anywhere. The only computational overhead requi}cd that might not be found in
the most cfficiently implemented constraint network is that necessary to create the point sprites and
implement message passing. This is a very insignificant amount of work. We conclude that sprites

compile into code essentially equivalent to a "hard-wired"” constraint network implementation.

To demonstrate the potential power of using sprites we examine another circuit in figure 39 that (to
eléctrical cngingers) is only a little more complicated than the one in figure 38. Here we know two facts.
We know the current going into node Py, and the voltage at node P,. By examining the sprites that
implement the three-node (of which node Py is an example) we discover that nothing can be determined
about the currents entering the terminals of the resistors. By examining the sprites in figure 37 it will
become apparent that nothing new can be learned. For any of these sprites to fire, we require knowledge
knowledge of two of the three device parameters (potential at each of the tw.o terminals, and the current
through the resistor). We only have knowledge of one of these facts (the potential of the grounded node)

for both. Our system quiesces without solving the problem.

An engineer would solve this problem by realizing that the conﬁguration_of resistors in figure 39 is one

T We made use of 2 classes of assertions that referred to the currents through a node. They were current-into and current-out-of.

The two assertional types were used for notational and conceptual convenience. In the virtual collection of assertions
implementation, only onc of them would. be stored and questions/assertions about the other would be translated into
questions/assertions about the negation of the first. Here, again, the use of virtual collections of assertions allows us to write
simple declarative code without any efficiency penalty.

-169 -

Fig. 39. Parallel Resistors

for which he has special knowledge. They are known as parallel resistors and he has a special rule that
defines the v-i characteristics of this configuration. The rule states that the configuration acts like a

single resistor with a resistance equal to:
Ry*Ry/ Ry +Ry)

To make use of this knowledge, we must be able to create a sprite that watches for parallel configurations

and then creates new sprites that express this new knowledge.

8.3 What We Need To Make Faster Ethers

We believe that the Ether language shows promise as a practical tool for program development for
artificial intclligence, even as a language to be run on a single processor implementation. Much of the
discussion in chapter 6 is to convince the reader that the overhead for having a parallel language is

- relatively small. Never the less, there are places where improvements in performance can be gotten.

-170- . °

8.3.1 The Activity Structure

There is nothing inherently inefficient about the notions of activitics and events. The kernel of the
implementation that cycles through activities and through events on the qucues of each activity is small
and quite stable. With some specially written microcode the overhead of running cvents need only be a

couple of times the overhead of doing a Lisp function call.

Ether takes a less radical view towards message passing than Actl. In Actl all computation is done by
message passing down to a very fine kveI.T Whenever a message is sent that is a "request”, i.e.
corresponds to a function call whére the return value is of importance to the caller, ACT1 must CONS
an explicit continuation actor to handle the reply. This is the function normally supplied by the Lisp
stack without requiring any CONSing to be done. In Ether, there are many function calls that happen
when executing each event. Each one of these function calls is implemented as normal Lisp. Thus wé
_ don’t concur an cfficiency loss. This is not to say that we do not lose something in linguistic power by
not having explicit continuations. Sece section 8.4.3. However the current Ether may be a reasonable

compromise with Lisp systems that are likely to be available in the near future.

8.3.2 Eliminating Shallow Binding

Each of the events in the events queue is a closure, a piece of code to evaluate in an environmcnt.-
Currently closures in the Lisp machine are implemented by shallow binding all variables in the closure.
This procedure means that, upon cntry into the closure, the entire vector of variables must have the
values currently in their value cells save, and the new values for these variables placed in the value cells.
Upon exiting the closﬁ(c the saved values must be restored. In the Lisp machine this procedure takes
approximately 40 microseconds per variable.i In practice the environments that accompany the events .
can be quite large (30 or more is not uncommon). The procedure contained in any given closure rarely
refers to more than a couple of the variables in the environment, and frequently is quite short. This

means that a large fraction of time is spent in overhead related to the environment.

+ This is also true of Smalltalk [29]. Yet Smalltalk does not admit parallelism, obviating the need for CONSing continuations or
maintaining a queue of events, :
¥ Personal communication. Timing tests performed by Gerald Barber.

C-171-

8.3.3 Improving the Performance with Multiprocessors

Most of this work has concerned itself little with the’ questions of concepts of parallel languages
irrespective of the nature of the hardware the program is to be run on. This is an unsettling concept to
many pecople who prefer to view parallel computation as an extension of sequential compuﬁﬁon.
Following this paradigm, the programmer writes several sequential programs that communicate with
each other in some manner. A common means of intercommunication is by means of critical regions in
~ which variables shared by all processes. Programs that make use of shared variables are harder to

understand than the sequential programming mcthodologics they are based on.

The metaphor for parallelism Ether is based on is the actor model of computation. Under the actor
model, all computation is the result of actors passing messages. When an actor receives a message, the
actor may respond by sending one, none, or scveral messages. Concurrency is the result of an actor
sending more than one message when it receives a message. Under the actor model, concurrency is the
default and sequentiality the special case where cach actor sends at most one message when it receives a

message.

Qur arguments for parallelism are based primarily on ease of control of scarch procésscs. That there is
concurrency that is potentially exploitable on multiprocessor systems is a valuable result, though one not
essential to this thesis. The presence of true concurrency in the programs follows from the use of virtual
collections of assertions as described in chapter47. Rather than having a global database of assertions that
would present a bottleﬁcck to parallel programs that have to constantly access assertions in it, we have a
system of objects with local state that communicate by sending messages. The potential hardware
concurrency is enormous. Hewitt and others [27] are currently investigating techniques for running
parallel actor programs on systems of homogeneous processors. Progrcsé made in that area is directly

applicable to Ether.

There are some concepts contained in Ether that are new to message passing systems. These involve the
notion of an activity which is a mcchanism for collecting events into convenient groupings so that
resource control becomes possible. We envision a multiprocessor implementation of Ether to look much
like many single processor implementations that communicate with one another. In other words, each
processor would have its own ring of activities and associated event qucues. Therc are, however, two
concepts that we have been making use of the implementability of which come into question on

multiprocessor machines. We will briefly discuss these two concepts.

-172 -

1. Quiescence. An activity is quiescent whenever it has nothing to do. In the single processor
implementation, quiescence is determined to have occurred when the event qucuc of an activity is
empty. In a‘parallcl irnplementation; quiescence becomes a much more difficult property to detect. An
activity is quicscent if there is no message which is part of that activity in any .queue.T This might scem
to be a hard occurence to detect, and it is. An algorithm due to Lamport [38] can be adapted to solve this

problem, though the overhead would be considerable. There are two possible outs from this dilemma:

(a) There are only certain activities for which we would like to retain the ability to determine whether or
not they are quiescent. If, for any given activity, we restricted the number of processors that were
allowed to handle messages within it, we would then be able to reasonably (and reliably) detect
quiescence. The degree to which we would be willing to do this would depend on the inherent
concurrency within cach of these activities and how many of them we would like to be running at the

same time.

(b) The detection of quicscence should only be used for heuristic purposes. That is, the correctness of a
deduction should not depend on whether or not an activity has quiesced. It is reasonable, then, to have a
mechanism that can detect quiescence with reasonable probability. If it turned out to be wrong,

processing power allocations cbuld be rearranged as they were before.

2. Processing power. In the single processor implementation there was a simple scheme for computing
the time quantum for cach activity from the amount of processing power assigned to the activity. This
algofithm does not directly carry over to a distributed implementation because each processor is unlikely
to have work under cvery existing zictivity to do at all times. Thus activities which tend to be more
"spread out” among the processors will get more than their share of processing power, to the detriment
of activities localized on a small number of processors. Algorithms can Be desighed to compensate for
this, however. We envision each activity having a "manager.” The manager keeps track of the total
amount of computation (throughout the whole network) that the activity has done. Reports can be sent
periodically by individual processors to the manager with this information. This total is then compared
with the amount of processing the activity should have gotten during this period (casily cémputable asin

the sequential case). If the two are the same, the manager does nothing. If the activity has gotten more

‘{‘ Depending on the specifics of the design of the multiprocessor system, we may have to additionally ensure that no messages are
caught in transit. The Lamport algorithm can be adapted for this case too as long as the time a message can be in transit is
bounded.

-173- . A

processing done than it should have, the manager sends messages to the processors instructing them to
lower the amount of processing power the activity should be considered to have. If the activity has
gotten less processing done than it should have, a messagé informing processors of an increase in

processing power is sent.

8.4 Problems With Ether

There are several problems with the.current Ether language that have limited its usefulness. We review

the more obvious of these.

8.4.1 Inadequacies With Viewpoints

Viewpoints are a mechanism for creating different and not necessarily compatible models inside the
machine. Other names uscd in the literature for a similar concept are context and situation. We avoided
the term context becauser it carries with it the notion of a "current” coﬁtext. With viewpoints there is no
concept of a current one. Context mechanisms do not admit significant péral]elism because thelje is
usually a non-trivial amount of work required to switch contexts. The term situation was introduced by
McCarthy [43] in the context of a logic, the "situational calculus.” McCarthy’s definition of a situation
was limited to differentiating states of the world at differcnt times. Our use of viewpoints has been
r.hroughdut this work for creating hypothetical models, although we do not exclude other uses. We
would like to be able to use viewpoints for modeling changes of state (as with situations), personal points

of view, belief systems, etc. Barber [2] investigates more varied viewpoint mechanisms.

The current notion of inheritance between viewpoints is severely limited. When a viewpoint inherits
from another, it either inherits all the facts or none. We would like more flexibility than this. One of the
first Al systems to make use of viewpoint-like mechanisms was the STRIPS [13] system. In STRIPS one
viewpoint was related to another by addlists and deletelists. One viewpoint could be converted to
another by adding a set of assertions and deleting some others. The STRIPS mechanism is quite limited.
New facts learned by reasoning about facts that are to be deleted, will not themselves be deleted. T.hus
the STRIPS mechanism is inadequate for our purposes. A much improved mechanism has been
explored by Doyle [11] and others. The good idea in his work is that justifications should be maintained
for each of the facts in the database. If a fact is deleted, those derived facts that require it as a basis are

deleted. Doyle couched this mechanism as a fruth maintenance system. Facts that are no longer believed

T -174-

become invisible; thus only one "viewpoint” is accesible at a time - an inhcrently sequential approach.
We believe justifications can be used to link facts between several viewpoints. A new viewpoint can be
defined that inherits all facts from another except those that depend on a specific fact. We can mai(e use
of the logical flexibility of justifications without giving up the ability to process many viewpqints

simultaneously.

The current Ether handles viewpoint inheritance by creating a viewpointed object for each object and
* viewpoint where some information is known about the object with respect to that viewpoint. When a
new viewpointed object is created, all information is copied from the parent viewpoint(s). This copying
can sometimes be expensive (although itr is conceptually simple to implement). A more cfficient
mechanism can be envisioned that transforms questions about the presence of a fact in a given viewpoint

into queries of inheriting viewpoints. Such mechanisms shoulc be investigated.

8.4.2 Lack of Full Continuations

Since Ether is not implcmentéd using full actors (with continuations) there is a certain awkwardness with
mixing function-type code with sprite-type code that could be avoided otherwise. For example, suppose
(in the program synthesis system) we wished to rto determine the length of a list L. We would say in the
current system: '
(iéi ((act (new-activity)))

(goal (length L) act)

(when {(length =L =num)}
eee))

We could not however define a procedure 1ist-1ength that returns the length of the list. This is
because the mechanism that locates the list’s length (the sprite) does not obey the normal Lisp stack
discipline. The code that is the replacement for when returns immediately after creating the sprite,
losing the path through which the information is to be returned. Assuming we could pass continuations,
the code for 1 1’st-1ength would look like: 4

(defun 1ist-Tength (L)
(let ((act (new-activity)))
{(goal (length L) act)
(when {(length »L =num)}
(<- list-length-continuation num))))

We would then be able to use this function as we would use any other,

-175-

We were able to get around this problem by "open coding™ all such proccdures (as shown above).
Nevertheless, the ability to have procedures with full continuation-passing allowed would be an

€normous convenience.

8.4.3 Lack of True I.cxical Scoping

Ether, though lexically scoped, is built on top of Lisp which is not. This has caused us some difficulty as
we discussed in section 6.3. Implementing Ether in a full actor language, or a Lisp that is lexically scoped
such as Scheme [60] would eliminate this difficulty. Steele [61] has devcloped a compiler for Scheme

that would make such an implementation quite efficient. .

8.4.4 Quasi-quote Syntax

The normal convention in writing Lisp code'is_ that items appearing in the argument positions of
evaluated forms are normally evaluated. If we want the literal item as the argument (rather than its
value) we precede it by a quote mark. In Ether we have picked the opposite convention. Items that are
unmarked are quoted while those that are marked (by the symbol "»") are evaluated. This convention
was of some use to us in the design of the program synthesis system. For example, we were able to use
expressions of the form:

(assert (termination-clause ((equal -»sequence =»nill) =accumulant)))

However, in most cases, every assertion consisted of a single relation symbol followed by several forms,
each of which was cvaluated. Thus in most cases the syntax was overly tedious. I would recommend that
futurc implementations of Ether or similar languages stick more closely to the Lisp conventions in this
regard. As experience increases with languages of this sort, there will tend to be even less uninterpreted

syntactic forms than exist already.

The rcasons for using the quasi-quote notation are largely historic. The current implementation of Ether
evolved from an older implementation that did not have the concept of virtual collections of assertions.
Instead, when assertions were made, the literal piece of list structure was encoded into the database.
Thus the objects comprising the assertions did not have any procedural structure and could be served by

literal (quoted) symbols.

In the current Ether, all objects have internal structure and thus must be created and then passed via

-176 - :

variable evaluation. Thus-all positions inside rclations (assertions and sprite patterns) are variables to

evaluate. The Lisp convention is far more convenient (as it is with normal Lisp code).

8.4.5 Lack of Unevaluated Functions Inside Relations

The syntax we have been using for assertions and sprites is restricted in a way that logic is not. Logic
allows the mixture of functions with relations while we allow only relations. This can be seen in a certain
awkwardness in our syntax. If we wanted a sprite to trigger on the condition that the first element of a
list X is a member of the list Y, we would say in our notation:

(when {(sequence-element =X =el 1)
: (member =el 2Y)} -
$)

A much more concise way to say this would be:

(when {(member (car X) Y)}

Here car is a function that extracts the first element of the list. It would be an enormous convenience to
us to be able to have the sprite involving the car function in some manner expand into something the
system can understand directly. A general theory of how to handle functions in Ether would. be very

powerful.

Resolution thecorem proving (and Prolog) allow the use of functions inside relations. On the surface,
then, we appcar to have an impoverished formalism. Resolution, though, treats functional symbols
syntactically and the kind of power you would hope to get out is lacking. Our system understands the
semantics down to a deep level. So, for example, if we knew that X had a length of 1 and that a certain
element was a member of it that was also a member of Y, our Ether sprite would be able to trigger. A -
resolution-based system would probably not be able to perform such a deduction. It would look for a

literal (car X) to unify with and not find it.

8.4.6_Use of Class Structuring Mechanisms

The object-oriented formalism we used to represent both of our systems involves no class hierarchy. For
example, in the program synthesis system, we had one kind of programming object that could be
"configured” to look like a sequence, atom, or number. This one object must contain enough instance

variables to rcpresent all possible relational types about all of these. When we create objects we

C-177-

frequently know at object creation time which kind of objcct'it is. Thus, in addition to having a gencral
object type, we could have subclasses of this that were specifically for sequences, atoms, or numbers. If
we k_ncw alrcady the kind of object'it was, the information could perhaps be represented more efﬁc;iently
by special message handlers for these subclasses. We could further subclassify our objects. For exan}ple,
we could write special message handlers just for the ni11 object. The response this object would have
to when-member or when-sequence-element messages would be to simply disrcgarq them! The
- nil11 object cannot possibly have rﬁembers and'so the sprites could never be triggered and there is no .
need to create a point sprite. Such a class hierarchy would considerably improve the efficiency (and,

perhaps readability) of the virtual collection code.

-178 -

Chapter IX Conclusions
This work makes several contributions towards the art of problem solver construction. We list them.

1. We have demonstrated an approach towards engineering design, the design of a system that satisfies
specifications. While the specifications were logical in character the process of doing the actual design
was quite distinct from any theorem proving. Instead, the specifications were used in two ways. They
were used as integral parts of proposers that suggest solutions or classes of solutions to the problem. The
specifications are run on simple examples to suggest solutions. The specifications are also used to falsify
solutions or whole classes of solutions that have been proposed. Parts of the program synthesis system

are admittedly ad hoc but the over all design is suggestive. Many of the ideas could be used to improve

. the efficiency and possibly the generality of proof-based synthesis techniques or a programmer’s

apprentice.

2. We have demonstrated the first resource control mechanism for a problem solving system that is truly
parallel. Previous mechanisms (e.g. tree search strategies, agendas) decide resource management on an
event level; the mechanism decides which is the best single thing to do next. We have tested several
resource control strategies using parallel resource control and demonstrated that there is no easy

mapping for them onto sequential strategies.

3. The examplc systems have made extensive use of activities, viewpoints, sprites, and assertions. There.

seem to be no conceptual difficulties with using these constructs in large programs.

4. We have developed an assertion-oriented language where the user has the opportunity to define the
behavior of the assertions and sprites to take advantage of the semantics. We have seen that this leads to
both greater cfficiency and flexibility of the language. The advantage of this style of implementing over
the more conventional lexical retrieval schemes (e.g. discrimination nets) seems clear. Furthermore our
implementation points to a unification of the concepts of assertion-oriented and object-oriented
programming. The examples we have used compile asscrtion-oriented code into object-oriented code.

The resulting synthesis is very elegant. We have shown that the concept of "constraints” can be

- generalized within this framework.

5. We have developed a Lisp implementation of this language that is quite practical. The advantages of
péral]clism as a conceptual tool do not require us to wait for new hardware architectures before they can

be used. Our code mixes "standard Lisp" with "Ether.” The mix is surprisingly smooth and has caused

-179 -

us little difficulty. With minor caveats we can trcat our Ether code as being parallel with binding
happening correctly. We hope that the language idcas we have developed will be of some guidancé to

designers of parallel hardware.,

-180-

Chapter X Bibliography

[1] Baker, Henry G., Actor Systems for Real-Time Computation, MIT Laboratory for Computer Science
TR-197, March 1978.

[2] Barber, Gerald, Office Semantics, MIT PhD thesis, 1982,
[3] Bledsoe, W., Non-Resolution Theorem Proving, Artificial Intelligence, 9(1), 1977.

[4] Bobrow, Daniel G., Bertram Raphaecl, New Programming Languages for Artificial Intelligence
Research, Computing Surveys, Vol. 6, No. 3, September 1974.

[5] Borning, Alan, Thinglab -- A Constraint-Oriented Simulation Laboratory, XEROX PARC report
SSL-79-3, July 1979. :

[6] Bundy, Alan, Similarity Classes, University of Edinburgh, Department of Artificial Intclligence
Working Paper 25, January 1978.

[71 Clinger, William, Foundations of Actor Semantics, MIT Atrtificial Intelligence Laboratory TR-633,
May 1981.

[8] Dahl, Ole-Johan, Kristen Nygaard, Simula -- An ALGOL-Based Simulation Language,
Communications of the ACM, September 1966.

[9] Davis, Randall, Applications of Meta Level Knowledge to the Construction Maintenance and Use of
Large Knowledge Bases, Stanford Artificial Intelligence memo AIM-283, July 1976.

[10] Davis, Randall, Meta-Rules: Reasoning About Control, MIT Artificial Intelligence Laboratory memo
576, March 1980.

[11] Doyle, Jon, Truth Maintenance Systems for Problem Solving, MIT Artificial Intelligence Laboratory
TR-419, January 1978.

[12] Erman, L. D., F. Hayes-Roth, V. R. Lesser, D. R. Reddy, The Hearsay-1I Speech-Understanding
system: Integrating Knowledge to Resolve Uncertainty, Computing Surveys, June 1980.

[13] Fikes, Richard E., Nils J. Nilsson, STRIPS: A New Approach to the Application of Theorem Proving
to Problem Solving, Artificial Intelligence, Vol. 2, no. 3, 1971.

[14] Gaschnig, John, Performance Measurement and Analysis of Ceriain Search Algorithms,
Carnegie-Mcllon report CMU-CS-79-124, May 1979.

- [15] Goldstein, Ira P., Understanding Simple Picture Programs, MIT Artificial Intelligence Laboratory
TR-294, September 1974. '

[16] Green, Cordell, Theorem-proving by Resolution as a Basis for Question-answering Systems, Machine
Inteltigence 4, 1969. :

-181-

[17] Halstead, Robert H., Muliiple-Processor Implementations of Message-Passing Systems, MIT
Laboratory for Computcr Science 'TR-198, January 1978.

[18] Hansson, Ake, Sten-Ake Tamlund, A Natural Programming Calculus, Fifth International Joint
Confcrence on Artificial Intelligence, 1977. .

[19] Hardy, S., Synthesis of Lisp Functions From Examples, Fourth International Joint Conference on
Artificial Intelligence, 1975.

[20} Hewitt, Carl, PLANNER: A Language for Manipulating Models and Proving Theorems in a Robot,
First International Joint Conference on Artificial Intelligence, 1969.

[21] Hewitt, Carl, Description and Theoretical Analysis (using schemata) of PLANNER, Artificial
Intelligence Lanoratory TR-256, April 1972.

[22] Hewitt, Carl, How to Use What You Know, Fourth International Jomt Conference on Artificial
Intelligence, 1975. ’

[23] Hewitt, Carl, Giuscppe Attardi, Henry Licberman, Specifying and Proving Properties of Guardians
for Distributed System, in Semantics for Concurrent Computations G. Kahn, ed., Lecture Notes in

Computer Science no. 70, Springer-Verlag, 1976.

[24] Hewitt, Carl, Giuseppe Attardi, Henry Lieberman, Security and Modularity in Message Passing,
First International Conference on Distributed Computing Systems, Hunstville, Alabama, October 1979.

[25] Hewitt, Carl, Brian Smith, Towards a Programming Apprentice, IEEE Transactions on Software
Engineering, March 1975.

[26] Hewitt, Carl, Viewing Control Structures as Patterns of Passing Messages, Artificial Intelligence
Journal, vol. 8; no. 1, June 1980.

[27] Hewitt, Carl, Design of the APIARY for Actor Systems, Proceedings of the 1980 Lisp Conference,
Stanford, CA, August 1980.

[28] Hume, David, An Inquiry Concerning Human Understanding, 1748.

[29] Ingalls, Daniel, The Smalltalk-76 Programming System: Design and Implementation, Fifth Annual
ACM Symposium on Principles of Programming Languages, Tucson Arizona, January 1978. '

[30] Kornfcld, William, Using Parallel Processing for Problem Solving, MIT Artificial Intelllgence
Laboratory memo 561, December 1979.

[31] Kornfeld, William, ETHER -- A Parallel Problem Solving System, Sixth International Joint
Conference on Artificial Intelligence, August 1979.

[32] Kornfeld, William, Carl Hewitt, The Scientific Community Metaphor, IEEE Systems Man &
Cybernetics, vol. SMC-11 no. 1, January 1980.

ey

S -182-
[33] Kornfeld, William, A Synthesis of Language Ideas for Al Control Structures, MIT Artificial

Intelligence Laboratory Working Paper 201, August 1980.

[34] Kornfeld, William A., The Use-of Parallelism to Implement a Heuristic Search, Seventh International
Joint Conference on Artificial Intelligence, August 1981.

[35] Kowalski, Robert, Logic for Problem Solving, North-Holland Press, 1979.

[36] Lakatos, Imre, Falsification and the Methodology of Scientific Research Programmes, in (Musgrave

~and Lakatos cds.) Criticism and the Growth of Knowledge, Cambridge University Press, 1970.

[37] Lakatos, Imre, Proofs and Refut'ations', Cambridge University Press, 1976.

[38] Lamport, Leslie, Time, Clocks and the Ordering of Events in a Distributed System, Massachusetts
Computer Associates, Inc. memo, March 1976,

[39] Landin. Peter J. A Correspondence between Algoi 60 and Church’s Lambda-Notation,
Communications of the ACM, February 1965.

[40] Lenat, D., An AI Approach to Discovery in Mathematics as Heuristic Search, Stanford AI Lab Memo
AIM-286, 1976.

[41] Manna, Zohar, Richard Waldinger, Synthesis: Dreams -> Programs, SRI International Technical
Note 156, November 1977.

[42] Manna, Zohar, Richard Waldinger, 4 Deductive Approach to Program Synthesis, ACM Transactions
on Programming Languages and Systems, Vol. 2, no. 1, January 1980.

[43] McCarthy, J., Programs With Common Sense, in Minsky, ed. Semantic Information Processing,
M.LT. Press, 1968.

[44] McDermott, Dréw, Gerald Sussman, The CONNIVER Reference Manual, Artificial Intelligence
Laboratory memo 259a, January 1974.

[45] Minsky, Marvin, A Framework for Representing Knowledge, MIT Artificial Intelligence Laboratory
memo 306, June 1974. '

[46] Newell, Alan, Herbert A. Simon, Human Problem Solving, Prentice Hall, 1972.

[47] Newell, Allen, Herbert Simon, GPS, A Program that Simpulates Human Thought, in Computers and
Thought Feigenbaum and Feldman, eds., 1963.

[48] Nilsson, Nils J., Principles of Artificial Intelligence, Tioga Publishing Company, 1980.
[49] Popper, Karl R., Conjectures and Refutations, Basic Books, 1962.
[50] Popper, Karl R., The Logic of Scientific Discovery, Harper and Row, 1968.

[51] Quine, W. V. O., Mathematical Logic, Harvard University Press, 1965.

-183 -

[52] Rich, Charles, Inspection Methods in Progranﬁning. Massachusetts Institute of Technology Artificial
Intelligence Laboratory TR-604, December 1980.

[53] Robinson, J. A., 4 Machine-oriented Logzc Based on the Resolution Prmczple Journal of the
Association for Computing Machinery vol. 12 no. 1, 1965.

[54] Rulifson, J., Jan A. Derksen, Richard J. Waldinger, QA4: A Procedural Calculus for Intuitive
Reasoning, Stanford Research Institute Artificial Intelligence Center Technical Note 73.

[55] Schank, R.,-R. Abelson, Scripts, Plans, Goals and Understanding, Lawrence Erlbaum Associates,
1977. ’

v

[56] Selfridge, O. G., Pandemonium: A Paradigm for Learning, in Blake, Uttley, eds. Proceedings of the
Symposium on Mechanisation of Thought Processes, 1959.

[57] Shaw, D., W. Swartout, C. Green, Inferring LISP Programs from Ex&mplés, Fourth International
Joint Conference on Artificial Intclligence, August 1975.

[58] Shrobe, Howard E., Dependency Directed Reasoning For Complex Program Understanding, MIT
Artificial Intelligence Laboratory TR-503, April-1979.

[59] Steele, Guy L., Gerald Sussman, Constraints, MIT Atrtificial Intelhgence Laboratory memo 502,
November 1978.

[60] Steele, Guy L., Gerald Sussman, The Revised Report on Sceme, a dialect of Lisp, MIT Artificial
Intelligence Laboratory memo 452, January 1978.

[61] Stecle, Guy L., RABBIT: A Compiler for Scheme (A Study in Compiler Optimization, MIT Artificial
Intelligence Laboratory TR-474, May 1978.

[62] Steele, Guy L., The Definition and Implementation of a Computer Programming Language Based on
Constraints, MIT Artificial Intclligence Laboratory TR-595, August 1980.

[63] Summers, Phillip D., A Methodology for LISP Program Construction from Examples, Journal of the
ACM, vol. 24, no. 1, January 1977.

[64] Sussman, Gerald, T. Winograd, E. Charniak, Micro-Planner Reference Manual, MIT Atrtificial
Intelligence Laboratory memo 203, 1970.

[65] Sussman, Gerald, -4 Computational Model of Skill Acquisition, MIT Art1ﬁc1al Intelligence
Laboratory TR-297, August 1973.

[66] Waltz, David, Generating Semantic Descriptions from Drawings of Scenes with Shadows, PhD thesis
- Massachusetts Institute Of Technology, 1972.

[67] Waters, Richard, Automatic Analysis of the Logical Structure of Programs, MIT Artificial
Intelligence Laboratory TR-492, December 1978.

-184-

[68] Wecinreb, Daniel, David Moon, Lisp Machme Manual (third edition), MIT Artificial lntelhgence
Laboratory chort, March 1981.

[69] Whitchead, Alfred N., Bcrtrand Russell, Prmctpza Mathematica, Cambridge University Press, 1927.

[70] Wilber, Michacl B., A QLISP Reference Manual, Stanford Research Institute Artificial I.ntclligence
Center Technical Note 118.

[71] de Kleer, J., J. Doyle, C. Rich, G. Stecle, G. Sussman, AMORD A Deductive Procedure System, MIT
Artificial Intelligence Laboratory Memo 435, January 1978.

[72] de Kleer, 1., J. Doyle, G. Stcele G. Sussman, Explicit Control of Reasoning, MIT Al memo 427,
June 1977.

