PASSIVE LOCALIZATION OF UNDERWATER ACOUSTIC BEACONS

by
Dennis Michael Wojcik

B.S. Electrical Engineering
Marquette University (1986)

Submitted to the
Massachusetts Institute of Technology/
Woods Hole Oceanographic Institution
Joint Program in Oceanography and
Applied Ocean Science and Engineering in
Partial Fulfillment of the Requirements of the Degree of

Master of Science in Oceanographic Engineering

at the
Massachusetts Institute of Technology and the
Woods Hole Oceanographic Institution

September 1993

© Dennis Michael Wojcik 1993

The author hereby grants to the Massachusetts Institute of Technology,
the Woods Hole Oceanographic Institution, and the U.S. Government
permission to reproduce and distribute copies of this thesis in whole or in part.

Signature of Author ____________________________
Joint Program in Applied Ocean Science and Oceanographic Engineering
Massachusetts Institute of Technology/Woods Hole Oceanographic Institution

Certified by ____________________________
Dr. Albert M. Bradley
Senior Engineer, Woods Hole Oceanographic Institute

Accepted by ____________________________
Prof. Arthur B. Baggeroer
Chairman, Joint Committee for Applied Ocean Science and Engineering

Massachusetts Institute of Technology
OCT 18 1993
PASSIVE LOCALIZATION OF UNDERWATER ACOUSTIC BEACONS

by
Dennis Michael Wojcik
B.S. Electrical Engineering
Marquette University (1986)

Submitted to the Massachusetts Institute of Technology/
Woods Hole Oceanographic Institution Joint Program in
Oceanography and Applied Ocean Science and Engineering in
Partial Fulfillment of the Requirements of the Degree of
Master of Science in Oceanographic Engineering

This thesis examines the use of a single, omnidirectional hydrophone as a receiving sensor to passively localize an acoustic beacon. The localization problem is presented as a constrained, nonlinear parameter estimation problem, and Lagrange multipliers are introduced to solve for the maximum likelihood estimate of the acoustic beacon's position. An iterative algorithm is developed using range difference measurements to solve for the maximum likelihood estimate of a stationary acoustic beacon's position. This algorithm is then extended to include linear, constant velocity motion of the acoustic beacon. Finally, design specifications for a receiver to implement the maximum likelihood estimation algorithms are developed.

To test the maximum likelihood estimate algorithms, Monte Carlo simulations are conducted. Results from six representative scenarios are presented. Test results show that as the number of range differences used increases, or the distance that the observer travels between received beacon signals increases, the accuracy of the estimated position improves. Also, tests show that accuracy of the estimated beacon position is directly related to the accuracy in which the observer's position is measured. To test the receiver's design specifications, a prototype receiver is built using commonly available components. It is then shown that the prototype receiver meets or exceeds the design specifications.
Table of Contents

List of Symbols ... 5

Chapter I .. 7
 1.1 Introduction ... 7
 1.2 Organization ... 11

Chapter II .. 13
 2.1 Introduction ... 13
 2.2 Problem Geometry ... 14
 2.3 Structural Model ... 17
 2.4 Measurement Errors ... 20
 2.5 Parameter Estimation Solution - Maximum Likelihood Estimator 23
 2.6 Algorithm .. 33
 2.7 Accuracy of the Estimation .. 42
 2.8 Summary .. 43

Chapter III .. 44
 3.1 Introduction ... 44
 3.2 Problem Geometry ... 45
 3.3 Modified Structural Model .. 46
 3.4 Maximum Likelihood Estimator Solution 48
 3.5 Algorithm .. 50
 3.6 Accuracy of the Estimator ... 56
 3.7 Summary .. 58

Chapter IV .. 60
 4.1 Introduction ... 60
 4.2 Synthetic Measurement Vector Generation 61
 4.3 Stationary Acoustic Beacon ... 65
 4.3.1 Scenario 1 - Stationary Acoustic Beacon Located at
 $\theta = [0 \ 0 \ -2000]^T$.. 66
 4.3.2 Scenario 2 - Stationary Acoustic Beacon Located at
 $\theta = [0 \ 866 \ -2000]^T$... 71
 4.3.3 Scenario 3 - Stationary Acoustic Beacon Located at
 $\theta = [-1000 \ 1000 \ -2000]^T$... 77
 4.3.4 Stationary Acoustic Beacon Summary 82
 4.4 Moving Acoustic Beacon ... 83
 4.4.1 Scenario 4 - Moving Acoustic Beacon Located at:
 $\theta = [0 \ 0 \ -2000 \ 0.5 \ -0.5 \ 0.25]^T$ 84
4.4.2 Scenario 5 - Moving Acoustic Beacon Located at:
\[\theta = [0 \ 866 \ -2000 \ 0.5 \ -0.5 \ 0.25]^T \] .. 94

4.4.3 Scenario 6 - Moving Acoustic Beacon Located at:
\[\theta = [-10000 \ 1000 \ -2000 \ 0.5 \ -0.5 \ 0.25]^T \] .. 103

4.4.4 Moving Acoustic Beacon Summary .. 112

4.5 Summary ... 113

Chapter V ... 115
 5.1 Introduction ... 115
 5.2 Design Criterion .. 116
 5.3 Hydrophone Model .. 125
 5.4 Test Receiver Hardware Design 128
 5.4.1 Preamplifier .. 128
 5.4.2 Envelope Detector Circuit 135
 5.4.3 Logarithmic Compressor 136
 5.4.4 68HC11 Microcontroller 138
 5.4.5 Power Supply .. 139
 5.5 Test Receiver Performance .. 141
 5.5.1 Preamplifier Performance 141
 5.5.2 Envelope Detector .. 143
 5.5.3 Logarithmic Compressor 144
 5.6 Conclusions ... 145

Chapter VI ... 147
 6.1 Observations and Summary .. 147

Appendix 1 ... 151

Appendix 2 ... 159

Appendix 3 ... 188

References ... 223
List of Symbols

\(C \) speed of sound in sea water
\(e_\mu \) residual error vector
\(e_\mu^* \) final residual error vectors
\(\varepsilon_i \) tolerance factor used to stop iterating
\(g(w_\mu, \theta) \) structural model of the parameter estimation problem
\(G(W, \theta) \) augmented vector of the structural model
\(G_i \) augmented vector of the structural model evaluated at \((W, \theta_0)\)
\(\lambda \) Lagrange multipliers
\(\Lambda \) Lagrangian function
\(m_\mu \) measurement vector
\(M \) moment matrix of the final estimated residual vectors
\(n \) number of experiment vectors used to estimate parameter vector \(\theta \)
\(\Phi(W) \) objective function
\(\theta \) parameter vector describing the acoustic beacon's position and velocity.
\(\theta^* \) estimated parameter vector
\(t_\mu \) time of receipt of a beacon signal
\(t_{\mu'} \) measured synchronized time of receipt
\(\hat{t}_{\mu'} \) true synchronized time of receipt
\(\bar{t}_{\mu'} \) measurement errors of the synchronized time of receipt
\(t_\beta \) time that the acoustic beacon transmits a signal
\(T_0 \) time that the acoustic beacon transmits the first signal received
\(T_p \) pulse repetition interval
\(T_R \) acoustic travel time of the signal
\(T_s \) sampling rate of the receiver
\(\sigma_{tu}^2 \) variance of the synchronized time of receipt measurement error
\(\sigma_{xu}^2, \sigma_{y\mu}^2 \) variance of the measured ship's position error
\(V_\mu \) covariance matrix of the measurement errors
\(w_\mu \) measured experiment vector
\(\hat{w}_\mu \) true value of the experiment vector
\(\hat{w}'_\mu \) measurement errors of the experiment vector
\(\hat{w}'_\mu' \) estimated true experiment vector
\(\mathbf{W} \) augmented vector of \(n \) experiment vectors
\(x_\mu, y_\mu \) measure location of the receiving ship
\(\hat{x}_\mu, \hat{y}_\mu \) true location of the receiving ship
\(\bar{x}_\mu, \bar{y}_\mu \) measurement errors of the location of the receiving ship
\(x_T, y_T, z_T \) the acoustic beacon' position for the stationary case
\(x_o, y_o, z_o \) the acoustic beacon's initial position for the moving beacon case
\(x_R, y_R \) origin of the local Cartesian coordinate system
\(x_B, y_B, z_B \) acoustic beacon position used to generate synthetic measurement vectors
Chapter I

Introduction and Problem Statement

1.1 Introduction

There are many scenarios in which passive localization of an acoustic beacon is needed. Techniques like Target Motion Analysis and Bearings Only Ranging can passively estimate an acoustic beacon's position by using received bearing information. These techniques rely upon a multiple sensor receiving array to find the relative bearing between the acoustic beacon and the observer. To estimate the position of the acoustic beacon, the observer must know the direction of the received acoustic signal. This direction is known as the bearing. Several techniques are available to estimate this bearing. One method is to use a single sensor which measures the angle between the acoustic beacon and the sensor. Another method is to use a multiple sensor receiving array which measures the relative bearings between the acoustic beacon and each sensor. In this method, the bearings are used to estimate the position of the acoustic beacon. Figure 1-1 illustrates the concept of passive localization using a multiple sensor receiving array. The acoustic beacon is marked with a circle and the sensors are marked with arrows. The angle between the acoustic beacon and each sensor is measured and used to estimate the position of the acoustic beacon.

Figure 1-1
acoustic beacon, bearing lines from several different observation points are combined to form a fix. See figure 1-1.

Recent developments in passive target ranging and tracking which use arrays of only a few elements can also be used to passively localize an acoustic beacon [Allen and King 1988] [Friedlander 1987] [Moose 1987]. These methods rely upon the array to estimate the relative bearing between the acoustic beacon and the observer as well. Statistical and test analyses have shown that the performance of the localization techniques mentioned above improves with increased distance between sensor elements in the receiving array [Moose 1987]. This typically leads to the use of long receiving arrays. The use of long arrays can become a problem if the ship used to deploy the array is small, or if budget constraints limit the size of the array. For these cases, the observer can employ a technique that uses a single omnidirectional sensor to form a synthetic aperture array instead of a conventional receiving array to passively localize the acoustic beacon.

Previous techniques to localize acoustic beacons using a single omnidirectional hydrophone instead of an array use a raster scanning paper recording device to produce a mark on recording paper whenever a beacon signal is received. The scan rate of the paper recorder is matched to the pulse repetition interval of the acoustic beacon. This synchronizes the paper recorder, so that a new line is printed for each pulse repetition interval. The observer can note the relative change in travel time between successive beacon signals by comparing the locations of the corresponding marks on the recording paper. If the observer and the acoustic beacon are stationary,
the time it takes the acoustic beacon's signal to travel between the beacon and the observer is constant. For this case, the trace made by the paper recorder is a vertical line. As the observer approaches the beacon along a linear path, the range to the beacon, and consequently the time that the beacon signal takes to travel to the
observer, decreases hyperbolically. The corresponding trace made by the paper recorder is also hyperbolic. The observer can use this relation to fix the acoustic beacon's position. To obtain a line of bearing to the acoustic beacon, the observer watches for the closest point of approach (CPA) to the acoustic beacon by noting the point where the trace produced by the paper recorder changes from negative to positive slope. This corresponds to the transverse axis of the hyperbolic trace and is the point where the range changes from decreasing to increasing. At the CPA, the acoustic beacon is located on a line of bearing perpendicular to the direction of the observer's motion. To estimate the location of the acoustic beacon, the observer must obtain lines of bearing from at least two different directions of motion. See figure 1-2. This method of passively locating acoustic beacons relies heavily upon the operator's skill in visually identifying the closest point of approach from the printed output of the paper recorder. Also, the observer is forced to travel in a straight line for a significant period of time until the CPA can be determined. Other factors that limit the usefulness of the above method are that paper recorders tend to be bulky, awkward to move, and require an adequate supply of expensive recording paper.

This thesis examines the use of a single omnidirectional hydrophone in place of a conventional receiving array to efficiently localize an acoustic beacon using a nonlinear parameter estimation technique. The goal is to develop an inexpensive, easily deployed localization receiver that can interface to a personal computer for data analysis and signal processing. As a backup, this receiver must also perform the functions of the older paper recording system, using the personal computer as the
display device.

1.2 Organization

This thesis is organized into six chapters and three appendices:

- Chapter I contains an introduction to the problem of passively localizing acoustic beacons.
- Chapter II contains the development of a technique to localize a stationary acoustic beacon using a constrained Maximum Likelihood Estimator (MLE).
- Chapter III contains an extension of the solution to the stationary acoustic beacon localization problem that allows for constant velocity, linear motion of the acoustic beacon.
- Chapter IV contains results of Monte Carlo simulations of the localization algorithms developed in chapters II and III. The effects of using different effective sensor spacings and different numbers of experimental data points are explored.
- Chapter V contains design criteria for a receiver to implement the algorithms developed in chapters II and III. A test receiver is designed and built based upon these criteria, and experiments are conducted to measure the actual performance of the receiver.
- Chapter VI contains observations and concluding remarks.
- Appendix 1 contains the schematic diagrams of the receiver designed in chapter V.
- Appendix 2 lists the source code for the 68HC11 microcontroller used in the
receiver designed in chapter V.

- Appendix 3 lists the source code for the Macintosh computer used for data analysis and signal processing.
Chapter II
Stationary Acoustic Beacon

2.1 Introduction

When the acoustic beacon is stationary, we are interested in locating the acoustic beacon to within a certain error bound as efficiently as possible. To accomplish this we treat the acoustic beacon's location as an unknown parameter vector, and formulate the localization problem as a constrained multiple dimension parameter estimation problem. To solve the constrained parameter estimation problem, we first develop a structural model that relates the values of a set of available measurements to the unknown parameter vector. We then define a residual error vector as the difference between the true values and the actual values of the measurements. Assuming the measurement errors are normally distributed, independent random variables, we define the likelihood function for a particular set of measurements as the logarithm of the joint probability density function of the measurements errors, viewed as a function of the residual error vectors. Next, we form a set of equality constraints by evaluating the structural model at the true values of the measurements, and the true value of the parameter vector \(\theta \). To find the maximum likelihood estimate (MLE) of the unknown parameter vector, we introduce a vector of Lagrange multipliers, and then define a Lagrangian function as the combination of the likelihood function and the sum of the equality constraints, weighted by the Lagrange multipliers. The maximum likelihood estimate is then found by determining the stationary point of the Lagrangian function.
2.2 Problem Geometry

Consider the acoustic beacon to be at a fixed latitude, longitude, and depth. Since we are only concerned with locating the acoustic beacon in a small region of the ocean, we approximate the earth as being flat in the region around the beacon's position and use a Cartesian coordinate system to describe the location of the acoustic beacon. The use of a Cartesian coordinate system does not contribute any significant errors as long as we correct for distortions due to the projection of the acoustic beacon's global coordinates onto the local Cartesian coordinate system. We define a parameter vector θ as:

$$\theta = [x_T, y_T, z_T]^T$$

(2-1)

where x_T represents the east-west position of the acoustic beacon, y_T represents the north-south position of the acoustic beacon, and z_T represents the depth of the acoustic beacon in meters relative to the center of the local Cartesian coordinate system. To correct for the distortions caused by projecting the acoustic beacon's global coordinates onto the local Cartesian coordinate system, we introduce a correction factor that is proportional to the cosine of the latitude. We then relate θ to the acoustic beacon's global position by:

$$\theta = \begin{bmatrix} x_T \\ y_T \\ z_T \end{bmatrix} = \begin{bmatrix} \text{degrees longitude} \cdot \frac{60 \text{ Nm}}{1^\circ} \cdot \frac{1853.2 \text{ m}}{1 \text{ Nm}} \cdot \cos(\text{degrees latitude}) - x_R \\ \text{degrees latitude} \cdot \frac{60 \text{ Nm}}{1^\circ} \cdot \frac{1853.2 \text{ m}}{1 \text{ Nm}} - y_R \\ - \text{depth} \end{bmatrix}$$

(2-2)
where \(x_R \) and \(y_R \) define an arbitrary reference point on the surface of the ocean which defines the origin of the local Cartesian coordinate system. In equation (2-2) we assume that the acoustic beacon's latitude and longitude are given in degrees.

Similarly, we consider an observer on a receiving ship in the general location of the acoustic beacon. We define a measurement vector \(\mathbf{m}_\mu \) as:

\[
\mathbf{m}_\mu = [x_\mu, y_\mu, t_\mu]^T \tag{2-3}
\]

where \(x_\mu \) and \(y_\mu \) are the receiving ship's coordinates on the same local Cartesian coordinate system defined for the acoustic beacon, and \(t_\mu \) is the time that the observer's position \(x_\mu, y_\mu \) was obtained. We use the same relation described in equation (2-2) to convert the receiving ship's global coordinates to local Cartesian coordinates. The measurement vector \(\mathbf{m}_\mu \) is then given by:

\[
\mathbf{m}_\mu = \begin{bmatrix} x_\mu \\ y_\mu \\ t_\mu \end{bmatrix} = \begin{bmatrix} degrees \; longitude \cdot \frac{60 \; Nm}{1^\circ} \cdot \frac{1853.2 \; m}{1 \; Nm} \cdot \cos(degrees \; latitude) - x_R \\ degrees \; latitude \cdot \frac{60 \; Nm}{1^\circ} \cdot \frac{1853.2 \; m}{1 \; Nm} - y_R \\ t_\mu \end{bmatrix} \tag{2-4}
\]

Again, we assume that the receiving ship's latitude and longitude are given in degrees. Figure 2-1 summarizes the problem geometry.

Now let us assume that the acoustic beacon transmits a signal at a regular interval, and that at time \(t_\mu \) the observer receives one of the signals from the acoustic beacon. The time \(t_\mu \) can be related to the time that the signal took to reach the
observer by:

\[t_\mu = T_R + i \cdot T_p + T_o \] \hspace{1cm} (2-5)

Figure 2-1

Here \(T_R \) represents the acoustic travel time of the signal, \(T_o \) is the time that the acoustic beacon transmitted the first signal, \(i \) is the number of pulse repetition intervals between when the first signal was transmitted and when the current signal was transmitted, and \(T_p \) represents the pulse repetition interval. The product \(i \cdot T_p \) represents the time after \(T_o \) that the acoustic beacon transmitted the current received signal. It is
assumed that the observer knows the pulse repetition interval of the acoustic beacon. The observer can therefore remove the dependance upon $i \cdot T_p$ by counting the number of signals received (i), then subtracting $i \cdot T_p$ from equation (2-5). This synchronizes the observer's receiver with the pulse repetition interval of the acoustic beacon. We define the synchronized time of receipt as the time of receipt t_s corrected to eliminate the pulse repetition interval of the acoustic beacon as:

$$t_{s\mu} = t_{\mu} - i \cdot T_p = T_R + T_o$$

(2-6)

and subsequently redefine the measurement vector m_{μ} as:

$$m_{\mu} = [x_{\mu}, y_{\mu}, t_{s\mu}]^T$$

(2-7)

The difficulty in passively ranging an acoustic beacon arises because the observer does not know T_o, the time the acoustic beacon started to transmit. In active ranging systems, the observer can measure T_R directly by transmitting a signal at a known time T_o, and measuring the time that the corresponding reflected signal from a target is received. In passive ranging systems, the observer does not know when the beacon signal was transmitted and therefore the observer has no time reference T_o. Consequently the observer has no way to directly calculate T_R. In order to passively range a target, the observer must eliminate the dependence on the absolute time reference T_o.

2.3 Structural Model

In order to proceed, we must develop a model which relates the measurement vector m_{μ}, and the unknown parameter vector θ. We define a function $f(m_{\mu}, \theta)$
which relates the distance between the acoustic beacon's position \(\theta \) and the receiving ship's position \(x, y \) to the synchronized time of receipt \(t_{s\mu} \) as:

\[
f(m_{\mu}, \theta) = \sqrt{(x_{\mu} - x_T)^2 + (y_{\mu} - y_T)^2 + z^2_T - \tau(C, t_{s\mu})}
\]

(2-8)

where \(\tau(C, t_{s\mu}) \) is a function that relates the speed of sound in seawater to the measured time of receipt, synchronized to the pulse repetition interval of the acoustic beacon. It is assumed that the receiving ship is on the surface of the ocean, or equivalently \(z_{\mu} \) is zero. Using a homogeneous ocean model and a direct path propagation mode for simplicity, we can define \(\tau(C, t_{s\mu}) \) from equation (2-6) as:

\[
\tau(C, t_{s\mu}) = C \cdot T_R = C \cdot t_{s\mu} - C \cdot T_o
\]

(2-9)

Substituting equation (2-9) into equation (2-8) yields:

\[
f(m_{\mu}, \theta) = \sqrt{(x_{\mu} - x_T)^2 + (y_{\mu} - y_T)^2 + z^2_T - (C \cdot t_{s\mu} - C \cdot T_o)}
\]

(2-10)

It is apparent from equation (2-10) that we can not eliminate the dependence upon \(T_o \) with only one received signal from the acoustic beacon. One way around this problem is to compare the time of receipt and positions from two separate received signals. This is commonly referred to as range difference, or time difference ranging.

We define a new function \(g(m_1, m_2, \theta) \) as:

\[
g(m_1, m_2, \theta) = f(m_1, \theta) - f(m_2, \theta)
\]

(2-11)

Substituting equation (2-10) into equation (2-11) with \(m_1 \) for the first received signal and \(m_2 \) for the second received signal we have:
g(m_1, m_2, \theta) = \sqrt{(x_1 - x_T)^2 + (y_1 - y_T)^2 + z_T^2} + ...

- \sqrt{(x_2 - x_T)^2 + (y_2 - y_T)^2 + z_T^2} + ...

- C \cdot (t_{s1} - t_{s2})

(2-12)

The first two terms of the function \(g(m_1, m_2, \theta) \) represent the slant range between the acoustic beacon and the receiving ship at the two separate times that a beacon signal is received. By subtracting one range from the other, we are left with the distance that the observer moved radially, relative to the beacon, between the times \(t_{s1} \) and \(t_{s2} \). This is known as the range difference between the two points given by \(m_1 \) and \(m_2 \). The last term of the function \(g(m_1, m_2, \theta) \) represents the range difference between points \(m_1 \) and \(m_2 \) calculated from the time difference. From the last term of \(g(m_1, m_2, \theta) \) we see that the dependence upon \(T_0 \) is eliminated, and we are left with a model that relies on measuring the time of receipt, synchronized to the pulse repetition interval of the acoustic beacon, and the location of the receiving ship at the time of receipt.

To simplify notation, we define an experiment to be the augmentation of two measurement vectors \(m_1 \) and \(m_2 \), and use the notation:

\[
W = \begin{bmatrix} m_1 \\ m_2 \end{bmatrix} = \begin{bmatrix} x_1 & y_1 & t_{s1} & x_2 & y_2 & t_{s2} \end{bmatrix}^T
\]

(2-13)

We then redefine the equation (2-12) as a scalar valued function of the experiment vector \(W \) and the acoustic beacon location vector \(\theta \):

\[
g(W, \theta) = g(m_1, m_2, \theta)
\]

(2-14)
We denote the function \(g(w, \theta) \) as the structural model of the parameter estimation problem. Ideally, if the measurements have no errors and \(\tau(C, t_{\mu}) \) is the correct propagation model, \(g(w, \theta) \) equals zero at the true value of the parameter vector \(\theta \). The estimation problem is then to determine the value of the parameter vector \(\theta \) that minimizes the value of the structural model given experiment vectors which contain errors.

2.4 Measurement Errors

The structural model describes the ideal situation - perfect measurements, free from any errors. In reality both the synchronized time of receipt \(t_{\mu} \) and the positions \(x_{\mu}, y_{\mu} \) have errors associated with the measurement process. We can define the actual measurements as the sum of the true value and a random error component:

\[
\begin{align*}
\hat{x}_1 + \bar{x}_1 & \\
\hat{y}_1 + \bar{y}_1 & \\
\hat{t}_{s1} + \bar{t}_{s1} & \\
\hat{x}_2 + \bar{x}_2 & \\
\hat{y}_2 + \bar{y}_2 & \\
\hat{t}_{s2} + \bar{t}_{s2} & \\
\end{align*}
\]

\[(2-15) \]

where \(\hat{x}_{\mu}, \hat{y}_{\mu}, \hat{t}_{s\mu}, \) and \(\hat{w}_{\mu} \) represent the true values of the measurements, and \(\bar{x}_{\mu}, \bar{y}_{\mu}, \bar{t}_{s\mu}, \) and \(\bar{w}_{\mu} \) represent the random errors associated with the measurement process.

With the assumption of a homogeneous, direct path propagation mode, and since the time of receipt will be determined by looking at the output of a simple digital peak detector, the errors in measuring \(\hat{t}_{s\mu} \) arise mainly from the sampling of the received signal. Because we use a simple peak detector to measure the time of
receipt, we can only estimate the true time of receipt to within one sampling interval - if we sample the received signal every millisecond, then we can only know the time of receipt to within 1 millisecond. This quantization of the time base causes the measurement errors to have a uniform distribution centered around the true value t_{sp} with a variance given by:

$$
\sigma_{t_{sp}}^2 = \frac{T_s^2}{12}
$$

(2-16)

where T_s is the sampling interval in seconds. For the sake of computational efficiency and mathematical tractability, we would like to model the measurement errors of t_{sp} as zero mean, normally distributed random variables. If we consider that the structural model is not exact (a far more complex function $\tau(C, t_{sp})$ is needed to have an exact structural model), and that there will be errors due to factors such as dispersion and multipath interference, we can lump the modeling errors of $\tau(C, t_{sp})$ together with the quantization errors in the time t_{sp}. Although not strictly rigorous, this allows us to simplify the development of the solution to the localization problem by assuming the measurement errors of t_{sp} are zero mean, normally distributed random variables, with a variance approximated by $\sigma_{t_{sp}}^2$. Also, since the measurement of the time of receipt of one signal is not affected by the measurement of any other time of receipt, we can take the errors in measuring t_{sp} as independent between t_{s1} and t_{s2}, and also independent between experiments w_{μ}.

Errors in measuring the ship's position at the time of receipt of the beacon signal are due to the accuracy of the system used to obtain the ship's position. To
obtain the ship's location, a Global Positioning System (GPS) receiver will be used. Other navigation systems such as Loran, Omega, or even Inertial Navigation systems could be used, however the price and accuracy of the GPS system make it the natural choice. Currently, inexpensive commercial C/A code GPS receivers are available with published errors on the order of 25 meters rms in latitude and longitude. The more accurate Differential GPS and P code receivers are not readily available at this time. We will assume that the errors of the GPS positional data are normally distributed, and independent in latitude and longitude. This assumption is unlikely to cause much harm as long as the true probability distribution of the errors have smooth tails [Bard 1974].

With these arguments in mind, and for the sake of computational efficiency and mathematical tractability, we model the measurement errors as zero mean, normally distributed, independent random variables. We take the covariance matrix of the measurement errors as:

\[
V_{\mu} = \begin{bmatrix}
\sigma_x^2 & 0 & 0 & 0 & 0 & 0 \\
0 & \sigma_y^2 & 0 & 0 & 0 & 0 \\
0 & 0 & \sigma_{\mu}^2 & 0 & 0 & 0 \\
0 & 0 & 0 & \sigma_x^2 & 0 & 0 \\
0 & 0 & 0 & 0 & \sigma_y^2 & 0 \\
0 & 0 & 0 & 0 & 0 & \sigma_{\mu}^2 \\
\end{bmatrix}
\]

(2-17)

Where \(\sigma_y^2\) is the variance given by equation (2-16), \(\sigma_x^2\) is the variance of the GPS longitude error in meters, and \(\sigma_y^2\) is the variance of the GPS latitude error in meters.
2.5 Parameter Estimation Solution - Maximum Likelihood Estimator

To solve for the parameter vector θ we would normally use a weighted least square approach. However, because of the nonlinearities in the structural model $g(w, \theta)$, and because all of the measurements have errors, the weighted least squares method does not work well. To demonstrate why the normal weighted least squares method does not work well, we look at the contours of the χ^2 merit function:

$$\chi^2 = \sum_{i=1}^{n} \left(\frac{g(w_i, \theta)}{\sigma_{r_i}} \right)^2 \quad (2-18)$$

If the structural model is truly exact, and there are no measurement errors in w_i, $g(w_i, \theta)$ and χ^2 are equal to zero for the true value of θ. As the value of θ in equation (2-18) moves farther away from the true value of θ, the χ^2 function increases. Figure 2-2 shows the contours of the χ^2 function for the true values of the measurements w_i, where the acoustic beacon is located at $x_\tau = -1000$, $y_\tau = 1000$, and $z_\tau = -1000$. From Figure 2-2 we see that the contours of the χ^2 merit function that encircle the true position of the acoustic beacon are highly eccentric. This eccentricity leads to large variances in the location estimate along the major axis of the ellipse.

With errors in all of the measurements, this in turn produces errors in the parameter estimates that are unacceptable.

To overcome the difficulties in solving the parameter estimation problem with a nonlinear structural model and errors in all of the measurements, we treat the problem as a constrained minimization problem. Our goal is to estimate the true values of the measurements w_i given a set of n equality constraints which we obtain by setting the
structural model $g(w, \theta)$ equal to zero at the estimated true values of the measurements and the estimated parameter vector θ. Because of the measurement errors, we must modify the structural model to indicate the dependence upon the true values of w:

$$g(\hat{w}, \theta) = \sqrt{(\hat{x}_1 - x_T)^2 + (\hat{y}_1 - y_T)^2 + z_T^2} + \ldots$$

$$-\sqrt{(\hat{x}_2 - x_T)^2 + (\hat{y}_2 - y_T)^2 + z_T^2} + \ldots$$

Next we define a residual vector as the difference between the true value and the observed value of the measurements:
\[e_\mu (\hat{w}_\mu) = \hat{w}_\mu - w_\mu \]

(2-20)

We also define a composite experiment vector \(W \) as the augmentation of \(n \) experiment vectors \(w_\mu \):

\[W = \begin{bmatrix} w_1^T \\ w_2^T \\ \vdots \\ w_n^T \end{bmatrix}^T \]

(2-21)

With the assumption that the measurement errors are normally distributed random variables, independently distributed between experiments, and with the further assumption that the covariance matrix is the same for each experiment, the likelihood function takes the form:

\[
\log(L(W, V)) = -(n/2.) \log(\det V) - \frac{1}{2} \sum_{\mu=1}^{n} e_\mu^T V^{-1} e_\mu
\]

(2-22)

where \(n \) is the number of experiment vectors \(w_\mu \) used in the estimation problem [Bard 1974]. The maximum likelihood estimate is found by determining the value of \(\theta^* \), and the value of \(w_\mu^* \) for each of the \(n \) experiments, which minimizes \(\log(L) \) while satisfying the \(n \) equality constraints imposed by the structural model. The terms \(w_\mu^* \) and \(\theta^* \) represent the maximum likelihood estimate of the true values of \(w_\mu \) and \(\theta \).

To find the maximum likelihood estimate given the \(n \) equality constraints imposed by the structural model, we introduce an \(n \)-dimensional vector of Lagrange multipliers \(\lambda_\mu \) for each experiment. We then form the Lagrangian function:

\[
\Lambda(W, \theta, V, \lambda_1, \ldots, \lambda_n) = \log(L(W, V)) + \sum_{\mu=1}^{n} \lambda_\mu \cdot g(\hat{w}_\mu, \theta)
\]

(2-23)
The solution to the estimation problem will be found at a stationary point of the Lagrangian $\Lambda(W, \theta, V, \lambda_1, \ldots, \lambda_p)$ [Bard 1974].

To demonstrate the benefits of using this approach, we look at the contours of the Lagrangian function given by equation (2-23). Using the algorithm developed in section 2.6, figure 2-3 shows the contours of the Lagrangian function obtained by using the same experiment vectors used to generate the contours of the normal weighted least squares method.

![Figure 2-3 Contours of the Lagrangian Function Λ](image)

From figure 2-3 we see that the contours that surround the true position of the acoustic beacon are much less eccentric than the contours of the normal weighted least squares method. Therefore, we do not have the large variances associated with the major axis
of the normal weighted least squares method, and the estimate of the parameter vector \(\theta \) will be more accurate.

To solve the maximum likelihood estimator problem given the equality constraint of the structural model we use an iterative method suggested by Deming as described by Bard [Bard 1974]. We define the parameter vector \(\theta_i^* \) as the estimate of the acoustic beacon's location at the \(i \)th iteration:

\[
\theta_i^* = [x_{Ti}^* \ y_{Ti}^* \ z_{Ti}^*]^T
\]

(2-24)

We also define the estimated true experiment vector at the \(i \)th iteration as:

\[
\hat{\nu}_{\mu_i}^* = [\hat{x}_{1i}^* \ \hat{y}_{1i}^* \ \hat{t}_{s1i}^* \ \hat{x}_{2i}^* \ \hat{y}_{2i}^* \ \hat{t}_{s2i}^*]^T
\]

(2-25)

and the corresponding composite experiment vector:

\[
\hat{W}_i^* = [\hat{\nu}_{1i}^* \hat{\nu}_{2i}^* \ldots \hat{\nu}_{ni}^*]^T
\]

(2-26)

The vector \(\hat{W}_i^* \) is the augmentation of the \(n \) estimated true experiment vectors \(\hat{\nu}_{\mu_i}^* \) at the \(i \)th iteration. We then define a composite vector valued function \(G(\hat{W}_i^*, \theta_i^*) \) where the \(j \)th component of \(G(\hat{W}_i^*, \theta_i^*) \) is the structural model evaluated at \((\hat{\nu}_{\mu_i}^*, \theta_i^*) \):

\[
G(\hat{W}_i^*, \theta_i^*) = G_i = [g(\hat{\nu}_{1i}^*, \theta_i^*) \ g(\hat{\nu}_{2i}^*, \theta_i^*) \ldots \ g(\hat{\nu}_{ni}^*, \theta_i^*)]^T
\]

(2-27)

Next we define an objective function as the weighted least squares sum of the
residuals given by equation (2-20). At the ith iteration the objective function is:

$$\Phi(\hat{W}_i) = \frac{1}{2} \sum_{\mu=1}^{n} (\hat{\omega}_{\mu}^* - \omega_{\mu})^T V_{\mu}^{-1} (\hat{\omega}_{\mu}^* - \omega_{\mu})$$ \hspace{1cm} (2-28)

This is the same form as the last term in equation (2-22). To solve for the Maximum Likelihood Estimate, the objective is to find the \hat{W}_i^* which minimizes log(L), or equivalently, $\Phi(\hat{W}_i^*)$ subject to the constraints $G(\hat{W}_i^*, \theta_i^*) = 0$. We note that now the unknown parameters that we are estimating are the acoustic beacon's location as well as the true values of all the measurements.

To develop a solution, we define the following terms:

$$q_i = \frac{\partial \Phi(\hat{W}_i^*)}{\partial \hat{W}}$$ \hspace{1cm} (2-29)

$$H_i = \frac{\partial^2 \Phi(\hat{W}_i^*)}{\partial \hat{W} \partial \hat{W}}$$ \hspace{1cm} (2-30)

$$A_i = \frac{\partial G(\hat{W}_i^*, \theta_i^*)}{\partial \hat{W}}$$ \hspace{1cm} (2-31)

$$B_i = \frac{\partial G(\hat{W}_i^*, \theta_i^*)}{\partial \theta}$$ \hspace{1cm} (2-32)

Next we expand the objective function in a Taylor series around the current estimate of \hat{W} and θ. Keeping only up to the second order terms we have:

$$\Phi_i(\delta \hat{W}) = \Phi_i + q_i^T \delta \hat{W} + \frac{1}{2} \delta \hat{W}^T H_i \delta \hat{W}$$ \hspace{1cm} (2-33)

Now we expand the structural model in a Taylor series around the current estimate of \hat{W} and θ. Keeping only the first order terms we have:
\[\tilde{G}_i(\delta \tilde{W}, \delta \theta) = G_i + A_i \delta \tilde{W} + B_i \delta \theta \quad (2-34) \]

To find the maximum likelihood estimate we now want to find the \(\delta \tilde{W} \) and \(\delta \theta \) that minimize \(\tilde{\Phi}_i \) while at the same time satisfies the structural model constraints \(G_i = 0 \). To do this we introduce the vector of Lagrange multipliers \(\lambda \) and look for the stationary point of the Lagrangian:

\[\Lambda_i(\delta \tilde{W}, \delta \theta, \lambda_i) = \tilde{\Phi}_i(\delta \tilde{W}) + \lambda^T \tilde{G}_i \quad (2-35) \]

Forming the normal equations of the Lagrangian and using equations (2-33) and (2-34) we have:

\[\frac{\partial \Lambda_i(\delta \tilde{W}, \delta \theta, \lambda_i)}{\partial (\delta \tilde{W})} = q_i + H_i \delta \tilde{W} + A^T_i \lambda_i = 0 \quad (2-36) \]

\[\frac{\partial \Lambda_i(\delta \tilde{W}, \delta \theta, \lambda_i)}{\partial \lambda_i} = G_i + A_i \delta \tilde{W} + B_i \delta \theta = 0 \quad (2-37) \]

\[\frac{\partial \Lambda_i(\delta \tilde{W}, \delta \theta, \lambda_i)}{\partial (\delta \theta)} = B^T_i \lambda_i = 0 \quad (2-38) \]

From equation (2-36):

\[\delta \tilde{W} = -H_i^{-1} \cdot (q_i + A^T_i \lambda_i) \quad (2-39) \]

Substituting equation (2-39) into equation (2-37) we have:

\[G_i - A_i H_i^{-1} q_i - A_i H_i^{-1} A^T_i \lambda_i + B_i \delta \theta = 0 \quad (2-40) \]

Solving for \(\lambda_i \):

\[\lambda_i = (A_i H_i^{-1} A^T_i)^{-1} \cdot (B_i \delta \theta - A_i H_i^{-1} q_i + G_i) \quad (2-41) \]
Now substituting equation (2-41) into equation (2-38):

\[B_i^T \cdot (A_i H_i^{-1} A_i)^{-1} \cdot (B_i \delta \theta - A_i H_i^{-1} q_i + G_i) = 0 \quad (2-42) \]

Solving for \(\delta \theta \) we are left with:

\[\delta \theta = (B_i^T \cdot (A_i H_i^{-1} A_i^T)^{-1} \cdot B_i)^{-1} \cdot B_i^T \cdot (A_i H_i^{-1} A_i^T)^{-1} \cdot (A_i H_i^{-1} q_i - G_i) \tag{2-43} \]

We can define a new term \(C_i \) as:

\[C_i = A_i H_i^{-1} A_i^T \tag{2-44} \]

and a term \(D_i \) as:

\[D_i = B_i^T C_i^{-1} B_i \tag{2-45} \]

Substituting equations (2-44) and (2-45) into equation (2-43) gives:

\[\delta \theta = D_i^T B_i^T C_i^{-1} \cdot (A_i H_i^{-1} q_i - G_i) \tag{2-46} \]

Once we have calculated \(\delta \theta \), we use equation (2-41) to calculate the Lagrangian multipliers which in turn are substituted into equation (2-39) to calculate the updates to the true measurements. Equations (2-39) and (2-46) then allow us to iteratively calculate the estimated beacon location and the estimated true values of the measurements with the recursion relations:

\[\theta^*_{i+1} = \theta^*_i + \delta \theta \tag{2-47} \]

\[\hat{W}^*_{i+1} = \hat{W}^*_i + \delta \hat{W} \]
All we need to start the calculations are initial values for θ^* and for W^*. Since the measurement errors are presumably small, we can use the actual measured values W for the initial values of W^*. However, since we have no idea of the location of the acoustic beacon, the choice of an initial value for θ^* is more difficult. In the absence of any other information, we can choose the center of the search area for the initial value of θ^*.

In developing the solution to the maximum likelihood estimate we made the assumption that the measurement errors are normally distributed and independent between experiments. To determine if this is valid we refer back to the source of the measurement errors. The measurement error t_{μ} is not normally distributed. However, if we do not make the assumption of a normally distributed error, and stay with a uniform distribution of errors, we will be unable to use the maximum likelihood method. This is because likelihood methods use gradient techniques to maximize a likelihood function which is based upon the probability distribution function of the errors. If the underlying probability distribution function is not smooth and continuous, there will not be a unique maximum, and a useful estimate can not be found. This means if we stay with the uniform distribution we will be forced to use a more computationally expensive direct search of the parameter space, or minimax method to estimate the acoustic beacon's location.

As a result of the uniformly distributed errors in t_{μ}, the solution that we obtain from the maximum likelihood estimator is suboptimal. There is also a chance that the method used to find the estimate that maximizes the likeliness function will diverge.
This happens when the estimate of the true value of \(t_n \) is further away from the actual true value of \(t_n \) then the quantization of the time base allows. To prevent the solution from diverging, we can place additional constraints upon the minimization of the objective function that confine the solution to be within a feasible region. We define the feasible region to be the region bounded by the inequality constraints:

\[
\begin{align*}
-\text{Range}_{\text{max}} & \leq x_T \leq \text{Range}_{\text{max}} \\
-\text{Range}_{\text{max}} & \leq y_T \leq \text{Range}_{\text{max}} \\
-\text{Depth}_{\text{max}} & \leq z_T \leq 0
\end{align*}
\]

(2-48)

Where \(\text{Range}_{\text{max}} \) defines the size of the search area that we are willing to scan, and \(\text{Depth}_{\text{max}} \) is the maximum depth in the area of the search. The beacon's depth is bounded above by the sea surface level. If the solution to the maximum likelihood estimator is within the feasible region, we accept the estimate. If, however, the solution to the maximum likelihood estimator is outside the feasible region we must adjust the estimator to bring the solution inside the feasible region, or in the worst case, disregard the estimate.

To maintain a feasible solution we break equation (2-47) into component parts:

\[
\begin{align*}
\hat{\theta}^{*}_{t+1} &= \hat{\theta}^{*}_t + \delta \theta = \hat{\theta}^{*}_t + \rho_\theta U_\theta \\
\hat{\hat{W}}^{*}_{t+1} &= \hat{\hat{W}}^{*}_t + \Delta \hat{W} = \hat{\hat{W}}^{*}_t + \rho_{\hat{W}} U_{\hat{W}}
\end{align*}
\]

(2-49)

where \(U_\theta \) and \(U_{\hat{W}} \) are unit magnitude vectors that describe the direction of \(\delta \theta \) and \(\delta \hat{W} \), and \(\rho_\theta \) and \(\rho_{\hat{W}} \) are the magnitudes of \(\delta \theta \) and \(\delta \hat{W} \). We assume that \(\delta \theta \) and hence \(U_\theta \) points in the proper direction to the maximum likelihood estimator. If
$\theta_i^* + \delta \theta$ is outside the feasible region defined by equation (2-48), we find the maximum value of ρ which satisfies:

\[
\begin{bmatrix}
-\text{Range}_{\text{max}} \\
-\text{Range}_{\text{max}} \\
\text{Depth}_{\text{max}}
\end{bmatrix} < \theta_i^* + \rho \max \, U_0 < \begin{bmatrix}
\text{Range}_{\text{max}} \\
0
\end{bmatrix}
\] (2-50)

Once we have found ρ_{\max} we replace ρ_0 and ρ_w in equation (2-49) which gives the new update equations:

\[
\begin{align*}
\theta_{i+1}^* &= \theta_i^* + \frac{\rho_{\max}}{\sqrt{2}} \, U_0 \\
W_{i+1}^* &= W_i^* + \frac{\rho_{\max}}{\sqrt{2}} \, U_w
\end{align*}
\] (2-51)

This essentially shortens the step that we move in updating θ^* and W^* for the iteration. Notice that we do not simply replace ρ_0 and ρ_w with ρ_{\max}. If we did this, θ_{i+1}^* would be on the edge of the feasible region. With θ_{i+1}^* on the edge of the feasible region, ρ_{\max} will be zero, and θ_{i+1}^* will equal θ_i^* for all subsequent iterations. If this happens we will be unable to achieve any further updates of θ_{i+1}^* and W_i^*. It is still possible that, after a certain number of iterations, θ_{i+1}^* lies on the edge of the feasible region. If this happens we must reject the estimate and try again using a different initial value for θ^* or more experimental data points.

2.6 Algorithm

Figure 2-4 at the end of this section describes the algorithm used to estimate the location of the acoustic beacon based on Deming's method as described by Bard.
There is no natural way of telling whether or not progress towards the solution has occurred in any given iteration when we use this method [Bard 1974]. Bard suggests calculating the quantities:

\[
Z_0 = \sum_{\mu=1}^{n} g_{\mu}(\hat{w}_{\mu}^*, \theta_i^*)^T c_{\mu}^{-1} g_{\mu}(\hat{w}_{\mu}^*, \theta_i^*)
\]

(2-52)

and:

\[
Z_1 = \sum_{\mu=1}^{n} g_{\mu}(\hat{w}_{\mu}^* + \delta \hat{w}_{\mu}, \theta_i^* + \delta \theta)^T c_{\mu}^{-1} g_{\mu}(\hat{w}_{\mu}^* + \delta \hat{w}_{\mu}, \theta_i^* + \delta \theta)
\]

(2-53)

The rational behind these quantities follows that at the true values of \(W \) and \(\theta \), \(G(W, \theta) \) must equal zero. If \(Q_i \) is a positive definite matrix, we require that:

\[
G(\hat{w}_{i+1}, \theta_i^*)^T Q_i G(\hat{w}_{i+1}, \theta_i^*) \leq G(\hat{w}_i^*, \theta_i^*)^T Q_i G(\hat{w}_i^*, \theta_i^*)
\]

(2-54)

This means that as \(\hat{w}_i^* \) and \(\theta_i^* \) approach the true values of \(W \) and \(\theta \), the quantity \(G(\hat{w}_i^*, \theta_i^*)^T Q_i G(\hat{w}_i^*, \theta_i^*) \) must decrease. The natural choice for \(Q_i \) is the inverse of the covariance matrix of \(G(\hat{w}_i^*, \theta_i^*) \) [Bard 1974]. With \(V_{\mu} \) as the covariance matrix of the measurements, the covariance matrix of \(G(\hat{w}_i^*, \theta_i^*) \) is approximately:

\[
COV \left(G(\hat{w}_i^*, \theta_i^*) \right) = \sum_{\mu=1}^{n} a_{\mu} V_{\mu} a_{\mu}^T
\]

(2-55)

Now from equation (2-30) we have:

\[
H_i = \frac{\partial^2 \Phi(\hat{w}^*)}{\partial \hat{w} \partial \hat{w}} = \begin{bmatrix}
V_1^{-1} & 0 & \ldots & 0 \\
0 & V_2^{-1} \\
\vdots & & \ddots & \vdots \\
0 & \ldots & & V_n^{-1}
\end{bmatrix}
\]

(2-56)
So we choose:

\[Q_i = COV(G (\hat{\theta}_i^*, \theta_i^*)^{-1} = \left(\sum_{\mu=1}^{n} a_{\mu_1} V_\mu a_{\mu_2} \right)^{-1} = (A_i H_i^{-1} A_i^T)^{-1} = C_i^{-1} \]

(2-57)

It then follows that: [Bard 1974]

\[G(\hat{\theta}_i^*, \theta_i^*)^T Q_i G(\hat{\theta}_i^*, \theta_i^*) = \sum_{\mu=1}^{n} g_\mu(\hat{\theta}_i^*, \theta_i^*)^T c_{\mu_i}^{-1} g_\mu(\hat{\theta}_i^*, \theta_i^*) \]

(2-58)

If \(Z_i \) is less than \(Z_0 \), we accept \(\delta \theta \) and \(\delta W \) and continue to the next iteration. If \(Z_i \) is greater then \(Z_0 \), we shorten \(\delta \theta \) and \(\delta W \) and then recalculate \(Z_i \).

To determine when to stop the algorithm we follow the termination criterion of Marquardt [Bard 1974]. We define a tolerance:

\[\epsilon_i = 10^{-4} \cdot \left(|\theta_i^*|_{\text{min}} + 10^{-3} \right) \]

(2-59)

where \(|\theta_i^*|_{\text{min}} \) is the smallest component of \(\theta_i^* \). The term \(10^{-3} \) is added in case \(|\theta_i^*|_{\text{min}} \) is close to zero. For each iteration we check to see if \(|\delta \theta|_{\text{min}} \) is less then \(\epsilon_i \). If \(|\delta \theta|_{\text{min}} \) is less then \(\epsilon_i \), we terminate the algorithm. If \(|\delta \theta|_{\text{min}} \) is not less then \(\epsilon_i \), we continue. For each iteration we calculate a new tolerance value \(\epsilon_i \). This leads to a conservative termination criterion that will stop the algorithm if the parameter values cease changing.

To start the algorithm we choose an initial guess of the location of the
acoustic beacon, θ_0^*. We then use the measured values of W for the initial values of W^*. For each experiment μ, we calculate:

$$e_\mu = \hat{w}_\mu^* - w_\mu$$ \hspace{1cm} (2-60)

$$a_\mu = \frac{\partial g_\mu}{\partial \omega}$$ \hspace{1cm} (2-61)

$$b_\mu = \frac{\partial g_\mu}{\partial \theta}$$ \hspace{1cm} (2-62)

For the case of the stationary beacon a_μ is given by:

$$a_\mu = \begin{bmatrix}
\frac{(\hat{x}_1^* - x_T^*)}{\sqrt{(\hat{x}_1^* - x_T^*)^2 + (\hat{y}_1^*- y_T^*)^2 + (z_T^*)^2}} \\
\frac{(\hat{y}_1^* - y_T^*)}{\sqrt{(\hat{x}_1^* - x_T^*)^2 + (\hat{y}_1^* - y_T^*)^2 + (z_T^*)^2}} \\
-C \\
\frac{(\hat{x}_2^* - x_T^*)}{\sqrt{(\hat{x}_2^* - x_T^*)^2 + (\hat{y}_2^* - y_T^*)^2 + (z_T^*)^2}} \\
\frac{(\hat{y}_2^* - y_T^*)}{\sqrt{(\hat{x}_2^* - x_T^*)^2 + (\hat{y}_2^* - y_T^*)^2 + (z_T^*)^2}} \\
+C
\end{bmatrix}$$ \hspace{1cm} (2-63)

and b_μ is given by:
\[
\begin{bmatrix}
\frac{(\dot{x}_2^* - x_T^*)}{\sqrt{(\dot{x}_2^* - x_T^*)^2 + (\dot{y}_2^* - y_T^*)^2 + (z_T^*)^2}} & -\frac{(\dot{x}_1^* - x_T^*)}{\sqrt{(\dot{x}_1^* - x_T^*)^2 + (\dot{y}_1^* - y_T^*)^2 + (z_T^*)^2}} \\
\frac{(\dot{y}_2^* - y_T^*)}{\sqrt{(\dot{x}_2^* - x_T^*)^2 + (\dot{y}_2^* - y_T^*)^2 + (z_T^*)^2}} & -\frac{(\dot{y}_1^* - y_T^*)}{\sqrt{(\dot{x}_1^* - x_T^*)^2 + (\dot{y}_1^* - y_T^*)^2 + (z_T^*)^2}} \\
\frac{z_T^*}{\sqrt{(\dot{x}_1^* - x_T^*)^2 + (\dot{y}_1^* - y_T^*)^2 + (z_T^*)^2}} & -\frac{z_T^*}{\sqrt{(\dot{x}_2^* - x_T^*)^2 + (\dot{y}_2^* - y_T^*)^2 + (z_T^*)^2}}
\end{bmatrix}
\]

Once we have \(a_\mu\) and \(b_\mu\), we calculate:

\[
c_\mu = a_\mu^T V_\mu a_\mu
\]

\[
Z_0 = \sum_{\mu=1}^{n} \frac{g(\hat{\omega}_\mu^* \theta^*)^2}{c_\mu}
\]

and:

\[
D = \sum_{\mu=1}^{n} \left(\frac{1}{c_\mu} \right) \cdot b_\mu b_\mu^T
\]

Using equation (2-46) we can solve for \(\delta \theta\):

\[
\delta \theta = D^{-1} \cdot \sum_{\mu=1}^{n} \left(\frac{1}{c_\mu} \right) \cdot \left(a_\mu^T e_\mu - g(\hat{\omega}_\mu^*, \theta^*) \right) \cdot b_\mu
\]

Now using equation (2-41) we calculate the Lagrangian multipliers:

\[
\lambda_\mu = \left(\frac{1}{c_\mu} \right) \cdot (b_\mu^T \delta \theta - a_\mu^T e_\mu + g(\hat{\omega}_\mu^*, \theta^*))
\]
and finally we calculate:

\[\delta \hat{w}_\mu = -e_\mu - \lambda_\mu V_\mu a_\mu \] \hspace{1cm} (2-70)

Once we have \(\delta \theta \) and \(\delta W \) we check to see if \(\theta^* + \delta \theta \) is in the feasible region. If \(\theta^* + \delta \theta \) is not in the feasible region, we adjust the step size of \(\delta \theta \) as describe earlier.

Once we have a feasible step for \(\delta \theta \), we calculate:

\[Z_1 = \sum_{\mu=1}^{n} \frac{g(\hat{w}_\mu^* + \delta \hat{w}_\mu, \theta^* + \delta \theta)^2}{c_\mu} \] \hspace{1cm} (2-71)

If \(Z_1 \) is less then \(Z_0 \), we accept the values of \(\delta \theta \) and \(\delta W \) and update \(\theta^* \) and \(W^* \) using equation (2-47). We then move to the next iteration. If \(Z_1 \) is greater then \(Z_0 \), we assume that we have overshot the maximum likelihood estimate, shorten \(\delta \theta \) and \(\delta W \) by a factor of two, then recalculate \(Z_1 \). We continue this process until \(Z_1 \) is less then \(Z_0 \), or until \(\delta \theta \) is negligible, at which point we have to stop the algorithm and begin again with a new initial value for \(\theta^* \), or more experimental data points.
Calculate D equation (2-67)

Calculate \(\delta \theta \) equation (2-68)

For each experiment vector calculate:

\[e_{\mu} \text{ equation (2-60)} \]
\[g_{\mu} \text{ equation (2-19)} \]
\[a_{\mu} \text{ equation (2-63)} \]
\[b_{\mu} \text{ equation (2-64)} \]
\[c_{\mu} \text{ equation (2-65)} \]

Collect \(n+1 \) measurement vectors \(m_{\mu} \)

Order measurement vectors into \(n \) experiment vectors

From Figure 2-4.c

To Figure 2-4.b

Figure 2-4.a
From Figure 2-4.a

Calculate Z_0 equation (2-66)

Calculate λ equation (2-69)

Calculate δw equation (2-70)

Is $\theta_j + \delta \theta$ in the feasible region?

Yes

Calculate Z_1 equation 2-(71)

Set:

$\delta \theta = \delta \theta / 2$
$\delta w = \delta w / 2$

Is:

$Z_1 < Z_0$

No

Determine ρ_{max}

Set:

$\delta \theta = \frac{\rho_{\text{max}} U_{\theta}}{\sqrt{2}}$
$\delta w = \frac{\rho_{\text{max}} U_{w}}{\sqrt{2}}$

To figure 2-4.c

Figure 2-4.b
From Figure 2-4.b

Set $\theta_{i+1} = \theta_i^* + \delta \theta$

Set $W_{i+1} = W_i^* + \delta W$

Calculate ϵ_i, equation (2-59)

Is $\theta_{\text{min}} < \epsilon_i$?

Yes

Stop

No

Move to next iteration

To Figure 2-4.a

Figure 2-4.c
2.7 Accuracy of the Estimation

One of the benefits of using Deming's method for the maximum likelihood estimate is that the covariance of the estimated parameters is approximated by the inverse of the matrix D defined by equation (2-45) [Bard 1974]. This lets us quickly determine if the estimation of the acoustic beacon's position is acceptable, or if more experimental data needs to be collected to improve the estimation. We are also able to test if the assumptions made regarding the covariance matrix of the measurement errors are valid by examining the final residual vectors. We define a moment matrix \(M \) as:

\[
M = \sum_{\mu=1}^{n} e_{\mu}^{*} e_{\mu}^{*T}
\]
(2-72)

where the \(e_{\mu}^{*} \)'s are the final residual vectors. To estimate the covariance of the residuals we take:

\[
\hat{\Sigma} = \frac{6}{n - 3} \cdot M
\]
(2-73)

where \(n \) is the number of experiment vectors used in the maximum likelihood estimation. Because of the nature of the constrained minimization problem, the first term in equation (2-73) is needed to correct for bias [Bard 1974]. We can compare the outcome of equation (2-73) to the assumed covariance matrix \(V_{\mu} \) defined by equation (2-17) to see if the estimated covariance matrix \(V_{\mu} \) is valid.
2.8 Summary

In this chapter we have developed the maximum likelihood estimate of the acoustic beacon's position, and a means in which to gauge the accuracy of the estimation. To estimate the beacon's position we defined a structural model that requires the observer to measure the time of receipt and location of receipt of two different signal from the acoustic beacon. The choice of how far apart the two signals that define an experiment vector \((w)\) must be, and the number of experiment vectors to use in the parameter estimation problem \((n)\) remain as free parameters. In chapter IV we examine the performance of the algorithm of this chapter for different choices of these two free parameters.
Chapter III
Moving Acoustic Beacon

3.1 Introduction

In chapter II we developed the maximum likelihood estimator for a stationary acoustic beacon. In this chapter we extend the solution to include a moving acoustic beacon. The task of localizing an arbitrarily moving acoustic beacon is quite difficult. Abrupt changes in the acoustic beacon's velocity are difficult to parameterize and model. Therefore, we concentrate on the case of an acoustic beacon which moves in a constant velocity, linear path. The assumption of constant velocity, linear motion is a reasonable assumption for acoustic beacons located on instruments ascending at terminal velocity from the bottom, or for acoustic beacons located on instruments moving with an ocean current that is steady in the area of interest. With the assumption of constant linear motion, we modify the structural model given by equation (2-19) to include parameters that reflect the acoustic beacon's velocity. Once the new structural model is defined, we show that the solution to the maximum likelihood estimate for the moving beacon follows directly from the solution to the maximum likelihood estimate for the stationary acoustic beacon. Next, the algorithm developed to solve the stationary acoustic beacon localization problem is extended using the new structural model so that the position and velocity parameters of the moving acoustic beacon can be determined. Finally, the accuracy of the estimator is examined.
3.2 Problem Geometry

Consider an acoustic beacon having constant velocity components given by v_x, v_y, and v_z. We define a new parameter vector:

$$\theta = \begin{bmatrix} x_o & y_o & z_o & v_x & v_y & v_z \end{bmatrix}^T$$ (3-1)

where the coordinates x_o, y_o, and z_o define the acoustic beacon's initial position on the same Cartesian coordinate system that was described in chapter II. For convenience, we assume the velocity components v_x, v_y, and v_z have the units of meters per second. The position of the acoustic beacon at an arbitrary time t_b can by found using:

$$\begin{bmatrix} x_T \\ y_T \\ z_T \end{bmatrix} = \begin{bmatrix} x_o \\ y_o \\ z_o \end{bmatrix} + (t_b - T_o) \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$$ (3-2)

where T_o is the reference time that corresponds to the acoustic beacon's initial position x_o, y_o, z_o.

As in chapter II, we define a measurement vector m_μ as:

$$m_\mu = \begin{bmatrix} x_\mu \\ y_\mu \\ t_{s_\mu} \end{bmatrix}^T$$ (3-3)

Where x_μ and y_μ are the ship's coordinates, in meters, on the same local Cartesian coordinate system defined for the acoustic beacon, and t_{s_μ} is the synchronized time of receipt that corresponds to the observer's position x_μ, y_μ.

45
3.3 Modified Structural Model

To account for the linearly moving acoustic beacon, we redefine the function $f(m, \theta)$ from chapter II as:

$$f(m, \theta) = \sqrt{\left[x_{m} - x_{o} - (t_{p} - T_{o})v_{x} \right]^2 + \left[y_{m} - y_{o} - (t_{p} - T_{o})v_{y} \right]^2 + \left[z_{o} + (t_{p} - T_{o})v_{z} \right]^2} - \tau(C, t_{z, \mu})$$

(3-4)

where t_{p} represents the time that the acoustic beacon transmitted the signal that the observer received at the synchronized time of receipt $t_{s, \mu}$. Using the same homogeneous ocean model, and direct path propagation from chapter II, we simplify equation (3-4) to:

$$f(m, \theta) = \sqrt{\left[x_{m} - x_{o} - (t_{p} - T_{o})v_{x} \right]^2 + \left[y_{m} - y_{o} - (t_{p} - T_{o})v_{y} \right]^2 + \left[z_{o} + (t_{p} - T_{o})v_{z} \right]^2} - C(t_{z, \mu} - T_{o})$$

(3-5)

Now assume that at time T_{o} the acoustic beacon transmitted the first signal that the observer receives. To find when the current signal received at the synchronized time of receipt $t_{s, \mu}$ was transmitted, we note that the acoustic beacon transmits a signal for every pulse repetition interval. With T_{o} as a reference, t_{p} can be found by:

$$t_{p} = T_{o} + i \cdot T_{p}$$

(3-6)

where T_{p} is the pulse repetition interval of the acoustic beacon and i is number of pulse repetition intervals that separate the signal transmitted at time t_{p} from the signal transmitted at reference time T_{o}. To determine i, the observer counts how many signals are received between the first received signal and the signal received at the
synchronized time of receipt t_{su}. Simplifying equation (3-5) to eliminate T_o and t_p, we substitute equation (3-6) into equation (3-5) which yields:

$$f(m_\mu, \theta) = \sqrt{(x - x_o - i \cdot T_p \cdot v_x)^2 + (y - y_o - i \cdot T_p \cdot v_y)^2 + (z + i \cdot T_p \cdot v_z)^2}$$

$$- C \cdot (t_{su} - T_o) \quad (3-7)$$

Now, just as in the case of the stationary acoustic beacon, we must eliminate the dependence on the time reference T_o from the last term in equation (3-7).

To eliminate the dependence upon the time reference T_o, we define the function $g(m_1, m_2, \theta)$ as:

$$g(m_1, m_2, \theta) = f(m_1, \theta) - f(m_2, \theta) \quad (3-8)$$

Substituting equation (3-7) into equation (3-8) with m_1 for the first received signal and m_2 for the second received signal we have:

$$g(m_1, m_2, \theta) = \sqrt{(x_1 - x_o - i \cdot T_p \cdot v_x)^2 + (y_1 - y_o - i \cdot T_p \cdot v_y)^2 + (z + i \cdot T_p \cdot v_z)^2}$$

$$- \sqrt{(x_2 - x_o - j \cdot T_p \cdot v_x)^2 + (y_2 - y_o - j \cdot T_p \cdot v_y)^2 + (z + j \cdot T_p \cdot v_z)^2}$$

$$- C \cdot (t_{s1} - t_{s2}) \quad (3-9)$$

Simplifying notation as in equation (2-13), and showing the dependence upon the true value of the measurements, we define the structural model for the case of the moving acoustic beacon as:
\[g(\hat{\theta}_\mu, \theta) = \sqrt{(\xi_1 - x_0 - i \cdot T_p \cdot v_x)^2 + (\gamma_1 - y_0 - i \cdot T_p \cdot v_y)^2 + (z_0 + j \cdot T_p \cdot v_z)^2} \]
\[- C \cdot (\hat{f}_s_1 - \hat{f}_s_2) \]

This is analogous to equation (2-19) with additional terms included to correct for the beacon's motion.

3.4 Maximum Likelihood Estimator Solution

The solution to the maximum likelihood estimation problem for the case of the moving acoustic beacon follows directly from the solution to the maximum likelihood estimation problem for the case of the stationary acoustic beacon. Since only the structural model has changed, the likelihood function \(\log (L(\hat{W}, V)) \), the Lagrangian function \(\Lambda(\hat{W}, \theta, V, \lambda_1, ..., \lambda_n) \) and the objective function \(\Phi(\hat{W}_i) \) all have the same form as the corresponding functions defined for the stationary beacon. To solve for the maximum likelihood estimator of the parameter vector \(\theta \), we simply substitute the modified structural model given by equation (3-10) for the stationary structural model given by equation (2-19), and follow the method of Deming described in chapter II.

There are, however, a few differences that must be accounted for.

If the measurement errors are the same for both cases, we still expect the solution to the maximum likelihood estimator to be suboptimal. Because of the uniform distribution of the measurement errors \(\tau_{su} \), we must continue to confine the solution of the maximum likelihood estimation problem to a feasible region. With the addition of the parameters \(v_x, v_y, \) and \(v_z \) to \(\theta \), we expand the feasible region defined by
equation (2-48) to:

\[
\begin{align*}
-\text{Range}_{\text{max}} & \leq x_o \leq \text{Range}_{\text{max}} \\
-\text{Range}_{\text{max}} & \leq y_o \leq \text{Range}_{\text{max}} \\
-\text{Depth}_{\text{max}} & \leq z_o \leq 0 \\
-\nu_{x_{\text{max}}} & \leq \nu_x \leq \nu_{x_{\text{max}}} \\
-\nu_{y_{\text{max}}} & \leq \nu_y \leq \nu_{y_{\text{max}}} \\
-\nu_{z_{\text{max}}} & \leq \nu_z \leq \nu_{z_{\text{max}}}
\end{align*}
\]

(3-11)

As in chapter II, to maintain a feasible solution, we break \(\delta\theta\) into component parts:

\[
\theta_{i+1} = \theta_i + \delta\theta = \theta_i + \rho_{\theta} U_{\theta}
\]

(3-12)

where \(U_{\theta}\) is unit magnitude vector that describes the direction of \(\delta\theta\), and \(\rho_{\theta}\) is the magnitude of \(\delta\theta\). We assume that \(\delta\theta\), and therefore \(U_{\theta}\), points in the proper direction to the maximum likelihood estimator. If \(\theta_i + \delta\theta\) is outside the feasible region defined by equation (3-11), we find the maximum value of \(\rho\) that satisfies:

\[
\begin{bmatrix}
-\text{Range}_{\text{max}} \\
-\text{Range}_{\text{max}} \\
-\text{Depth}_{\text{max}} \\
-\nu_{x_{\text{max}}} \\
-\nu_{y_{\text{max}}} \\
-\nu_{z_{\text{max}}}
\end{bmatrix}
< \begin{bmatrix}
\theta_i \nonumber \\
\rho_{\text{max}} \nonumber \\
U_{\theta} \nonumber \\
\nu_{x_{\text{max}}} \\
\nu_{y_{\text{max}}} \\
\nu_{z_{\text{max}}}
\end{bmatrix}
\]

(3-13)

Once we have found \(\rho_{\text{max}}\), we define the new recursion relations:
\[
\theta_{i+1}^* = \theta_i^* + \frac{\rho_{\text{max}}}{\sqrt{2}} U_\theta
\]
(3-14)

\[
\dot{\theta}_{i+1}^* = \dot{\theta}_i^* + \frac{\rho_{\text{max}}}{\sqrt{2}} U_\phi
\]

As with the case of the stationary acoustic beacon, if, after a few iterations, \(\theta_i^*\) lies on the edge of the feasible region, \(\rho_{\text{max}}\) will be zero and \(\theta_{i+1}^*\) will equal \(\theta_i^*\) for all subsequent iterations. If this happens we reject the estimate, and try again using a different initial value for \(\theta^*\), or more experimental data points.

3.5 Algorithm

Figure 3-1 at the end of this section describes the algorithm used to solve for the acoustic beacon's position and velocity. The algorithm is essentially the same algorithm developed in chapter II with changes made to account for the modified structural model of equation (3-10). Because of the modified structural model, we must reevaluate the quantities \(a_\mu\) and \(b_\mu\). From equation (3-10), we define the quantities:

\[
d_1 = \sqrt{(\dot{x}_1^*-x_0^*-i\cdot T_p \cdot v_x^*)^2+(\dot{y}_1^*-y_0^*-i\cdot T_p \cdot v_y^*)^2+(\dot{z}_1^*+i\cdot T_p \cdot v_z^*)^2}
\]
(3-15)

\[
d_2 = \sqrt{(\dot{x}_2^*-x_0^*-j\cdot T_p \cdot v_x^*)^2+(\dot{y}_2^*-y_0^*-j\cdot T_p \cdot v_y^*)^2+(\dot{z}_2^*+j\cdot T_p \cdot v_z^*)^2}
\]
(3-16)

\(a_\mu\) and \(b_\mu\) are then given by:
\[a_\mu = \partial g(\hat{\omega}_\mu^*, \theta^*) / \partial \hat{\omega}_\mu = \begin{bmatrix} (\hat{x}_1^- - x_0^- - i \cdot T_p \cdot v_x^*) \\ d_1 \\ (\hat{y}_1^- - y_0^- - i \cdot T_p \cdot v_y^*) \\ d_1 \\ -C \\ \frac{(\hat{x}_2^- - x_0^- - j \cdot T_p \cdot v_x^*)}{d_2} \\ (\hat{y}_2^- - y_0^- - j \cdot T_p \cdot v_y^*) \\ d_2 \end{bmatrix} \]

\[b_\mu = \partial g(\hat{\omega}_\mu^*, \theta^*) / \partial \theta = \begin{bmatrix} \left(\frac{(\hat{x}_2^+ - x_0^+ - j \cdot T_p \cdot v_x^*)}{d_2} - \frac{(\hat{x}_1^+ - x_0^+ - i \cdot T_p \cdot v_x^*)}{d_1} \right) \\ \left(\frac{(\hat{y}_2^+ - y_0^+ - j \cdot T_p \cdot v_y^*)}{d_2} - \frac{(\hat{y}_1^+ - y_0^+ - i \cdot T_p \cdot v_y^*)}{d_1} \right) \\ \left(\frac{(z_0^+ + i \cdot T_p \cdot v_z^*)}{d_1} - \frac{(z_0^+ + j \cdot T_p \cdot v_z^*)}{d_2} \right) \\ \frac{j \cdot T_p (\hat{x}_2^+ - x_0^+ - j \cdot T_p \cdot v_x^*)}{d_2} - \frac{i \cdot T_p (\hat{x}_1^+ - x_0^+ - i \cdot T_p \cdot v_x^*)}{d_1} \\ \frac{j \cdot T_p (\hat{y}_2^+ - y_0^+ - j \cdot T_p \cdot v_y^*)}{d_2} - \frac{i \cdot T_p (\hat{y}_1^+ - y_0^+ - i \cdot T_p \cdot v_y^*)}{d_1} \\ \frac{(i \cdot T_p (z_0^+ + i \cdot T_p \cdot v_z^*))}{d_1} - \frac{j \cdot T_p (z_0^+ + j \cdot T_p \cdot v_z^*)}{d_2} \end{bmatrix} \]
To evaluate the structural model, and the terms a_μ and b_μ, we need to know the
values of i and j that represent the time that the received signals were transmitted.
This forces the observer to keep a count of the number of signals that are received,
with the first received signal corresponding to $i = 0$.

Once we have found the maximum likelihood estimate of the parameter vector
θ, we need to evaluate the estimated current position of the acoustic beacon. The
position defined by x_o^*, y_o^*, z_o^* is the estimated initial position of the acoustic beacon
at the time T_o. We assume that the time T_o corresponds to the case $i = 0$. To
determine the current position of the acoustic beacon, we project the solution forward
along the path described by the estimated velocity components v_x^*, v_y^*, v_z^*. The
estimated current position of the acoustic beacon is then given by:

$$\begin{bmatrix}
 x_T^* \\
 y_T^* \\
 z_T^*
\end{bmatrix}
= \begin{bmatrix}
 x_o^* \\
 y_o^* \\
 z_o^*
\end{bmatrix}
+ i \cdot T_p \begin{bmatrix}
 v_x^* \\
 v_y^* \\
 v_z^*
\end{bmatrix}
$$

(3-19)

where i is the total number of beacon signals received and T_p is the pulse repetition
interval of the acoustic beacon. The quantity $(i \cdot T_p)$ represents the time it took to
collect the measurements used to calculate the maximum likelihood estimator.
Start

Collect \(n+1 \) measurement vectors \(m_\mu \)

Order measurement vectors into \(n \) experiment vectors

For each experiment vector calculate:
- \(e_\mu \) equation (2-60)
- \(g_\mu \) equation (3-10)
- \(a_\mu \) equation (3-17)
- \(b_\mu \) equation (3-18)
- \(c_\mu \) equation (2-65)

Calculate D equation (2-67)

Calculate \(\delta \theta \) equation (2-68)

To Figure 3-1.b

Figure 3-1.a
From Figure 3-1.a

Calculate Z_0 equation (2-66)

Calculate λ_μ equation (2-69)

Calculate δw_μ equation (2-70)

Is $\theta_i + \delta \theta$ in the feasible region?

Yes

Calculate Z_1 equation (2-71)

No

Set:

$\delta \theta = \delta \theta / 2$

$\delta W = \delta W / 2$

Is:

$Z_1 < Z_0$

To figure 3-1.c

Determine ρ_{max}

Set:

$\delta \theta = \frac{\rho_{\text{max}} U_\theta}{\sqrt{2}}$

$\delta W = \frac{\rho_{\text{max}} U_W}{\sqrt{2}}$

Figure 3-1.b
Calculate the estimated current position using equation (3-19)

From Figure 3-1.b

Set $\theta_{i+1} = \theta_i + \delta \theta$

Set $w_{i+1} = w_i + \delta w$

Calculate ε_i, equation (2-59)

Is $\Theta_{\text{min}} < \varepsilon_i$?

No

Move to next iteration

Yes

Calculate the estimated current position using equation (3-19)

Stop

To Figure 3-1.a

Figure 3-1.c
3.6 Accuracy of the Estimator

To estimate the accuracy of the solution to the maximum likelihood estimator, we examine the estimated covariance matrix of the parameter vector θ. As with the stationary beacon, the estimated covariance matrix of the parameter vector θ is given by the inverse of the matrix D or:

$$ V_{\theta}^* = (B^T C^{-1} B)^{-1} = \left(\sum_{\mu=1}^{n} \left(\frac{1}{c_{\mu}} \cdot b_{\mu} b_{\mu}^T \right) \right)^{-1} \quad (3-20) $$

The variance of the velocity components v_x^*, v_y^*, and v_z^* are the last three diagonal elements of the covariance matrix V_{θ}^*.

To determine the variances of the current acoustic beacon position estimates we calculate:

$$ \sigma_{x_r}^2 = E\left[((x_o + i \cdot T_p \cdot v_x) - E[x_o + i \cdot T_p \cdot v_x])^2 \right] \quad (3-21) $$

$$ \sigma_{y_r}^2 = E\left[((y_o + i \cdot T_p \cdot v_y) - E[y_o + i \cdot T_p \cdot v_y])^2 \right] \quad (3-22) $$

$$ \sigma_{z_r}^2 = E\left[((z_o + i \cdot T_p \cdot v_z) - E[z_o + i \cdot T_p \cdot v_z])^2 \right] \quad (3-23) $$

Simplifying equations (3-21) through (3-23) yields:

$$ \sigma_{x_r}^2 = \sigma_{x_o}^2 + (i \cdot T_p)^2 \cdot \sigma_{v_x}^2 + 2 \cdot (i \cdot T_p) E[x_o \cdot v_x] - E[x_o]^2 - 2 \cdot (i \cdot T_p) E[v_x] E[x_o] - (i \cdot T_p \cdot E[v_x])^2 \quad (3-24) $$

$$ \sigma_{y_r}^2 = \sigma_{y_o}^2 + (i \cdot T_p)^2 \cdot \sigma_{v_y}^2 + 2 \cdot (i \cdot T_p) E[y_o \cdot v_y] - E[y_o]^2 - 2 \cdot (i \cdot T_p) E[v_y] E[y_o] - (i \cdot T_p \cdot E[v_y])^2 \quad (3-25) $$
\[
\sigma_{z_T}^2 = \sigma_{z_o}^2 + (i \cdot T_p)^2 \cdot \sigma_{v_z}^2 + 2 \cdot (i \cdot T_p) E[z_o v_z] \\
- E[z_o]^2 - 2 \cdot (i \cdot T_p) E[v_z] E[z_o] - (i \cdot T_p \cdot E[v_z])^2
\] (3-26)

Now if we assume that the estimate of the parameter vector \(\theta \) is unbiased, we can substitute the estimated parameter values for their means in equations (3-24) through (3-26). This gives us a method in which to calculate the estimated variance of the projected current position:

\[
\sigma_{x_T}^2 = \sigma_{x_o}^2 + (i \cdot T_p)^2 \cdot \sigma_{v_x}^2 + 2 \cdot (i \cdot T_p) E[x_o v_x] \\
- (x_o)^2 - 2 \cdot (i \cdot T_p) v_x^* x_o^* - (i \cdot T_p \cdot v_x^*)^2
\] (3-27)

\[
\sigma_{y_T}^2 = \sigma_{y_o}^2 + (i \cdot T_p)^2 \cdot \sigma_{v_y}^2 + 2 \cdot (i \cdot T_p) E[y_o v_y] \\
- (y_o)^2 - 2 \cdot (i \cdot T_p) v_y^* y_o^* - (i \cdot T_p \cdot v_y^*)^2
\] (3-28)

\[
\sigma_{z_T}^2 = \sigma_{z_o}^2 + (i \cdot T_p)^2 \cdot \sigma_{v_z}^2 + 2 \cdot (i \cdot T_p) E[z_o v_z] \\
- (z_o)^2 - 2 \cdot (i \cdot T_p) v_z^* z_o^* - (i \cdot T_p \cdot v_z^*)^2
\] (3-29)

From equations (3-27) through (3-29) we see that the variance of the estimated current position has a complex relationship to the number of experiment vectors used and the effective sensor spacing. As these quantities increase, we expect that the variances of the estimated initial positions and velocities will decrease. However, as the number of experiment vectors used and the effective sensor spacing increases, the term \(i \) will increase and the variance of the estimate of the current position of the acoustic beacon can also increase. This is because if we project the initial position of the acoustic beacon forward based on the estimated velocity parameters, any errors in the acoustic
beacon's velocity causes us to move the estimate in the wrong direction. The choice of how many experiment points to collect, or how long we spend collecting data points, will be examined in chapter IV.

As with the stationary beacon, we can test the assumptions made regarding the covariance matrix of the measurement errors. We define the moment matrix as:

$$M = \sum_{\mu=1}^{n} e^*_\mu e^*_\mu^T \quad (3-30)$$

where the e^*_μ's are the final residual vectors defined as in chapter II. To estimate the covariance of the residuals we take:

$$\tilde{V} = \frac{6}{n-6} \cdot M \quad (3-31)$$

where n is the number of experiment vectors used in the maximum likelihood estimation. The first term in equation (3-31) corrects for the bias caused by the constrained minimization problem [Bard 1974]. We can compare the results of equation (3-31) with the assumed covariance matrix of the measurement errors to judge if the assumed covariance matrix V_μ is valid.

3.7 Summary

In this chapter we have extended the results of chapter II to include linear motion of the acoustic beacon. We found that the solution to the maximum likelihood estimator for the case of the moving beacon follows the same form as the solution for the case of the stationary beacon. The quantity $(j - i)$ is one of the free parameters of the moving acoustic beacon estimation problem. We define this quantity as the
effective sensor spacing. This quantity corresponds to the spacing in time between the
two signals used to form the experiment vector w_k. The other free parameter is the
number of experiment vectors to use in the parameter estimation problem. In the next
chapter we examine the performance of the algorithm described in this chapter for
different choices of the two free parameters.
Chapter IV
Algorithm Simulations and Tests

4.1 Introduction

In chapters II and III we developed algorithms to solve for the maximum likelihood estimate of an acoustic beacon's position for both the stationary and the moving beacon. In both chapters we were left with choosing how many experiment vectors (w,) to use, and which measurement vectors (m,) to use to define the experiment vectors. We defined the effective element spacing to be the number of pulse repetition intervals (T_p) between the measurement vectors that form the experiment vector w_. In this chapter we examine the performance of the algorithms developed in chapters II and III for different numbers of experiment vectors, and for different effective element spacings. We show that the accuracy of the estimated beacon position (\theta^*) improves, while the variance of the estimated position decreases as the number of experiment vectors used to find the maximum likelihood estimate increases. We also show that the accuracy of the estimated beacon position improves, and the variance of the estimated position decreases with increased effective sensor spacing. This result is similar to the methods mentioned in chapter I.

To test the algorithms of chapters II and III, Monte Carlo simulations were conducted for several different initial positions and velocities of the acoustic beacon. Results from six of the scenarios tested are presented in the following sections. We assume that the measurement errors are as defined in section 2.4. To see how the accuracy of the measured position of receipt (x_\mu, y_\mu) affects the maximum likelihood
estimate, we use GPS errors of 3 meters rms and 25 meters rms. These errors approximate the errors of a Differential/P code GPS receiver and a C/A code GPS receiver respectively. For measurement errors in the synchronized time of receipt t_n, we assume the sampling rate of the receiver, T_n, is 1 millisecond and use equation (2-16) to define the variance.

4.2 Synthetic Measurement Vector Generation

To test the algorithms of chapters II and III, synthetic measurement vectors were generated for several different acoustic beacon positions and velocities. Table 4-1 lists the initial position and velocities for each of the scenarios presented. We assume that the receiving ship moves in a hexagonal search path with legs of 1000 meters. This is a reasonable search path in the general location of the acoustic beacon which is easy to model. The actual path of the receiving ship is not critical,

<table>
<thead>
<tr>
<th>Scenario</th>
<th>x_B (m)</th>
<th>y_B (m)</th>
<th>z_B (m)</th>
<th>v_x (m/s)</th>
<th>v_y (m/s)</th>
<th>v_z (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-2000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>866</td>
<td>-2000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-1000</td>
<td>1000</td>
<td>-2000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>-2000</td>
<td>0.5</td>
<td>-0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>866</td>
<td>-2000</td>
<td>0.5</td>
<td>-0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>6</td>
<td>-1000</td>
<td>1000</td>
<td>-2000</td>
<td>0.5</td>
<td>-0.5</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Table 4-1

as long as it is not linear. If the receiving ship's path is linear we will be unable to
accurately resolve the acoustic beacon's position in three dimensions. This is analogous to the inability of a conventional linear array to resolve the direction of arrival of a signal in two dimensions. We restrict the speed of the receiving ship to five meters per second so that flow noise does not become a problem.

Figure 4-1 shows the positions of the acoustic beacon for the scenarios defined in Table 4-1 compared to the path of the receiving ship.

![Diagram](image)

Figure 4-1

Scenarios 1 and 4 corresponds to an acoustic beacon located in the center of the search path, scenarios 2 and 5 correspond to an acoustic beacon located directly below the search path, and scenarios 3 and 6 correspond to an acoustic beacon located outside of
the search path.

To generate the synthetic measurement vectors \(m_{\mu} \), we solve for the intercept of the receiving ship and the beacon signal. Figure 4-2 shows the intercept geometry.

![Intercept Geometry](image)

Figure 4-2

The position \(x_i, y_i \) is the location of the receiving ship when the beacon signal is transmitted, and the position \(x_{\mu}, y_{\mu} \) is the location of the ship when the beacon signal is received. Using a homogeneous ocean model and a direct path propagation mode, we calculate the synchronized time of receipt by finding the positive root of:

\[
\alpha \cdot t^2 + \beta \cdot t + \gamma = 0 \tag{4-1}
\]

where:

\[
\alpha = s^2 - C^2 \\
\beta = 2 \cdot s \cdot [\cos(cse)(x_i-x_B) + \sin(cse)(y_i-y_B)] \tag{4-2} \\
\gamma = (x_i-x_B)^2 + (y_i-y_B)^2 + z_B^2
\]

\(s \) is the speed of sound in the ocean, and \(C \) is the speed of the beacon signal. [continued]
Here s is the speed of the receiving ship in meters per second, C is the speed of sound in sea water, and cse is the course of the receiving ship in degrees. It is assumed that the receiving ship does not change its course for the duration of the calculation. Once we have the synchronized time of receipt, we calculate the position of receipt x_μ, y_μ using:

$$x_\mu = x_i + t_\mu \cdot s \cdot \cos(cse)$$

$$y_\mu = y_i + t_\mu \cdot s \cdot \sin(cse)$$ \hspace{1cm} (4-3)

To find the next synchronized time of receipt and position of receipt (x_μ, y_μ) we update the acoustic beacon's position based on its velocity:

$$x_B = x_B + T_p \cdot v_x$$

$$y_B = y_B + T_p \cdot v_y$$

$$z_B = z_B + T_p \cdot v_z$$ \hspace{1cm} (4-4)

where T_p is the pulse repetition interval of the acoustic beacon. For the results presented in the following sections we assume the acoustic beacon has a pulse repetition interval of 2 seconds. Next we find the location of the receiving ship when the new beacon signal is transmitted using:

$$x_i = x_i + T_p \cdot s \cdot \cos(cse)$$

$$y_i = y_i + T_p \cdot s \cdot \sin(cse)$$ \hspace{1cm} (4-5)

We then solve for the intercept of the beacon signal and the receiving ship using equations (4-1) and (4-2). We continue in this manner until we have generated a sufficient number of measurement vectors m_μ. Once we have generated the
measurement vectors, we add normally distributed random error terms to each measurement based upon the errors discussed in section 2.4.

4.3 Stationary Acoustic Beacon

In this section we examine the performance of the algorithm given in Figure 2-4. Figures 4-3 through 4-50 contain the results of the Monte Carlo simulations conducted for scenarios 1 through 3. For each scenario, the initial value of the estimated parameter vector θ^* is taken as:

$$
\theta_0^* = [0 \ 0 \ -2500]^T \quad (4-6)
$$

The feasible region is defined by $\text{Range}_{\max} = \text{Depth}_{\max} = 5000$ meters. If the maximum likelihood estimate found using the algorithm of chapter II is outside the feasible region, the corresponding entries are left blank. To find a solution for these cases, we need to start with a different initial parameter vector θ^*, or use more experiment vectors.

To test the effect of increasing the number of experiment vectors (n), we solve for the estimated parameter vector θ^* using n ranging from 5 to 50. We fix the effective sensor spacing at 45 pulse repetition intervals by using every 45th received beacon signal in defining the experiment vectors. To test the effects of increasing the effective sensor spacing, we solve for the estimated position vector using effective sensor spacings ranging from 2 to 90 pulse repetition intervals. For this case we fix the number of experiment vectors used to 25. We conduct each experiment using GPS errors of 3 meters rms and 25 meters rms. The results of the estimation algorithm for GPS errors of 3 meters rms are shown by x's on the plots, while the results of the
estimation algorithm for GPS errors of 25 meters rms are shown by o's.

4.3.1 Scenario 1 - Stationary Acoustic Beacon Located at $\theta = [0 \ 0 \ -2000]^T$

Figures 4-3 through 4-10 show the results of the maximum likelihood estimation algorithm for different numbers of experiment vectors, and figures 4-11 through 4-18 show the results of the maximum likelihood estimation algorithm for different effective sensor spacings for scenario 1. We see that in general, as the number of experiment vectors used in the maximum likelihood estimation problem increases, the accuracy of the estimated beacon position improves, and the standard deviation of the estimated position decreases. Also, as the effective sensor spacing increases, the accuracy of the estimated beacon position improves, and the standard deviation of the estimated position decreases. For both cases, the position errors and the standard deviation of the estimates initially decrease rapidly as the receiving ship spans more of its two dimensional search path. However after the number of experiment vectors used reaches approximately 20, or after the effective sensor spacing reaches approximately 35, the errors and the standard deviations decrease at much slower rate. At this point the receiving ship has completed two legs of the search path, and spans enough of the two dimensional search path to form a decent estimate of the acoustic beacon's position.
4.3.2 **Scenario 2 - Stationary Acoustic Beacon Located at θ = [0 866 -2000]ᵀ**

Figures 4-19 through 4-26 show the results of the maximum likelihood estimation algorithm for different numbers of experiment vectors, and figures 4-27 through 4-34 show the results of the maximum likelihood estimation algorithm for different effective sensor spacings for scenario 2. Like scenario 1, as the number of experiment vectors used in the maximum likelihood estimation problem increases, the accuracy of the estimated beacon position improves, and the standard deviation of the estimated position decreases. Also like scenario 1, as the effective sensor spacing increases, the accuracy of the estimated beacon position improves, and the standard deviation of the estimated position decreases. Again we see an initial rapid decrease in the errors and standard deviations which levels off after the number of experiment vectors used reaches approximately 20, or the effective sensor spacing reaches approximately 35. As in scenario 1, these values correspond to when the receiving ship completes the second leg of the search path.

Unlike scenario 1, we see a significant improvement in the estimated position (especially when using 25 meter GPS errors) when the number of experiment vectors used is greater than 40, or the effective sensor spacing is greater than 65. At this point the receiving ship passes directly over the acoustic beacon and begins moving away from the beacon on the fourth leg of the search path. To see why we get this improvement, we can define a vertical plane as the plane orthogonal to the x-y plane that passes through the acoustic beacon's position and the starting point of the leg of the search path that the receiving ship is currently on. In general, it was found that if
the receiving ship moves such that it stays in this vertical plane, significant improvements to the estimated beacon location can be made. This is because as the receiving ship moves in the same vertical plane relative to the acoustic beacon, the localization problem is essentially a two dimensional problem, and the range differences between measurement vectors is maximized for a given ship's velocity. The same is true if the acoustic beacon and the receiving ship are in the same horizontal plane.
4.3.3 Scenario 3 - Stationary Acoustic Beacon Located at $\theta = [-1000 1000 -2000]^T$

Figures 4-35 through 4-42 show the results of the maximum likelihood estimation algorithm for different numbers of experiment vectors, and figures 4-43 through 4-50 show the results of the maximum likelihood estimation algorithm for different effective sensor spacing for scenario 3. Like the first two scenarios, as the number of experiment vectors used in the maximum likelihood estimation problem increases, the accuracy of the estimated beacon position improves, while the standard deviation of the estimated position decreases. Also, as the effective sensor spacing increases, the accuracy of the estimated beacon position improves, while the standard deviation of the estimated position decreases. Again we see an initial rapid decrease in the errors and standard deviations which levels off after the number of experiment vectors used reaches approximately 20, and the effective sensor spacing reaches approximately 35. As in the first two scenarios, these values correspond to when the receiving ship completes the second leg of the search path.

In this scenario, we see a significant improvement in the location estimate when the number of experiment vectors used is greater than 45, or when the effective element spacing is greater than 75. At this point the receiving ship passes through the closest point of approach to the acoustic beacon on the fifth leg of the search path. In general, it was found that the estimate of the acoustic beacon's location improves as the receiving ship passes through closest points of approach to the acoustic beacon along the search path.
4.3.4 Stationary Acoustic Beacon Summary

From scenarios 1 through 3 we showed that as the number of experiment vectors used in the maximum likelihood estimation problem increases, the accuracy of the estimated beacon position improves, while the standard deviation of the estimated position decreases. Also, as the effective sensor spacing increases, the accuracy of the estimated beacon position improves, while the standard deviation of the estimated position decreases. We also showed that as the receiving ship passes through a closest point of approach, the estimated position of the acoustic beacon improves. This is why the estimate of acoustic beacon's location in scenario 1 is better then the estimates obtained for the other two scenarios. In scenario 1, each leg of the search path passes through a closest point of approach. This is not true for the other two scenarios. In all of the scenarios, we see that the depth of the acoustic beacon is the least accurately estimated parameter. This is because we are attempting to locate the acoustic beacon in three dimensions, while the receiving ship only moves in two dimensions. Finally, we see that the accuracy of the estimated acoustic beacon position obtained from using GPS errors of 3 meters is approximately an order of magnitude better then the estimated acoustic beacon position obtained from using GPS errors of 25 meters.

These observations suggest that to obtain the best possible estimate of the acoustic beacon's location, we need to use a large number of experiment vectors with a large effective sensor separation, and we need to use a Differential/P code GPS receiver. The problem with this is that the time it takes to collect the measurement vectors used to form the experiment vectors increases with increasing sensor spacing.
and increasing numbers of experiment vectors. As an example, with an effective
sensor spacing of 45 pulse repetition intervals, a pulse repetition interval of 2 seconds,
and using 50 experiment vectors it takes over 76 minutes to collect the required
measurement vectors. If time is an issue, then we must use fewer experiment vectors
and shorter effective sensor spacings. From looking at the results of the simulations
presented above, for the hexagonal search path of figure 4-1 and for a pulse repetition
interval of 2 seconds, the minimum required number of experiment vectors is 20, and
the minimum effective sensor spacing is 35. With these values we span enough of the
two dimensional search path to obtain a decent estimate of the acoustic beacon's
location.

4.4 Moving Acoustic Beacon

In this section we examine the performance of the algorithm given in Figure
3-1. Figures 4-51 through 4-146 contain the results of the Monte Carlo simulations
conducted for scenarios 4 through 6. For each scenario, the initial value of the
estimated parameter vector θ' is taken as:

$$\theta_o' = [0 \ 0 \ -2500 \ 0 \ 0 \ 0]^T$$ \hspace{1cm} (4-7)

The feasible region is defined by $\text{Range}_{\text{max}} = \text{Depth}_{\text{max}} = 5000$ meters, and $v_{x\text{max}} = v_{y\text{max}} = v_{z\text{max}} = 5$ meters per second. If the maximum likelihood estimate found using
the algorithm of chapter III is outside the feasible region, the corresponding entries are
left blank. To find a solution for these cases, we need to start with a different initial
parameter vector θ, or use more experiment vectors.

To test the effect of increasing the number of experiment vectors (n), we solve
for the estimated parameter vector \(\theta^* \) using \(n \) ranging from 10 to 50. We fix the effective sensor spacing at 60 pulse repetition intervals by using every 60\(^{th}\) received beacon signal in defining the experiment vectors. To test the effect of increasing the effective sensor spacing, we solve for the estimated position vector using effective sensor spacings ranging from 2 to 90 pulse repetition intervals. For this case we fix the number of experiment vectors used to 30. We conduct each experiment using GPS errors of 3 meters rms and 25 meters rms. The results of the estimation algorithm for GPS errors of 3 meters rms are shown by x's on the plots, while the results of the estimation algorithm for GPS errors of 25 meters rms is shown by o's.

4.4.1 Scenario 4 - Moving Acoustic Beacon Located at:

\[
\theta = [0 \ 0 \ -2000 \ 0.5 \ -0.5 \ 0.25]^T
\]

Figures 4-51 through 4-66 show the results of the maximum likelihood estimation algorithm for different numbers of experiment vectors, and figures 4-67 through 4-82 show the results of the maximum likelihood estimation algorithm for different effective sensor spacings for scenario 4. Similar to the stationary acoustic beacon scenarios, we see that as the number of experiment vectors used in the maximum likelihood estimation problem increases, the accuracy of the estimated position and velocities of the acoustic beacon improves, while the standard deviation of the estimated position and velocities decrease. We also see that as the effective sensor spacing increases, the accuracy of the estimated position and velocities of the acoustic beacon improves, and the standard deviation of the estimated position decreases. As with the stationary acoustic beacon, the position and velocity errors
initially decrease rapidly, however, after the number of experiment vectors used reaches approximately 30, or the effective sensor spacing reaches approximately 45, the errors and the standard deviations decrease much slower.

Figures 4-61 through 4-66 and figures 4-77 through 4-82 show the estimation algorithm's ability to track the linearly moving acoustic beacon. We see that projected current positions follow the linearly moving acoustic beacon fairly well when using 3 meter GPS errors. We also see that the standard deviation of the projected current positions decrease as the number of experiment vectors used increases and the effective sensor spacing increases. However, we notice in a few cases the standard deviations increase slightly for increasing numbers of experiment vectors used and increasing effective sensor spacing. This is a result of projecting the current position forward in time using equation 3-19.
4.4.2 Scenario 5 - Moving Acoustic Beacon Located at:

\[\theta = [0 \ 866 \ -2000 \ 0.5 \ -0.5 \ 0.25]^T \]

Figures 4-83 through 4-98 show the results of the maximum likelihood estimation algorithm for different numbers of experiment vectors, and figures 4-99 through 4-114 show the results of the maximum likelihood estimation algorithm for different effective sensor spacings for scenario 5. Similar to the previous scenarios, we see that as the number of experiment vectors used in the maximum likelihood estimation problem increases, the accuracy of the estimated position and velocities of the acoustic beacon improves, while the standard deviation of the estimated position and velocities decrease. We also see that as the effective sensor spacing increases, the accuracy of the estimated position and velocities of the acoustic beacon improves, and the standard deviation of the estimated position decreases. As before, the position and velocity errors initially decrease rapidly, however after the number of experiment vectors used reaches approximately 30, and the effective sensor spacing reaches approximately 45, the errors and the standard deviations decrease much slower.

Figures 4-93 through 4-98 and figures 4-109 through 4-114 show the estimation algorithm's ability to track the linearly moving acoustic beacon for this scenario. We see that the projected current positions follow the linearly moving acoustic beacon fairly well for both 3 meter and 25 meter GPS errors. This is because the estimated initial positions \(x_0, y_0, \) and \(z_0 \) obtained using 25 meter GPS errors were better in this scenario then for scenario 4. In general this is not the case, however the measurement errors in this scenario simply led to a better estimate of the acoustic beacon's position.
Figure 100
Standard Deviation of X_0

Figure 102
Effective Sensor Spacing

Figure 99
X_0 vs Effective Sensor Spacing

Figure 101
Y_0 vs Effective Sensor Spacing

X_0 (meters)

Y_0 (meters)
4.4.3 Scenario 6 - Moving Acoustic Beacon Located at:

\[\theta = [-10000 1000 -2000 0.5 -0.5 0.25]^T \]

Figures 4-115 through 4-130 show the results of the maximum likelihood estimation algorithm for different numbers of experiment vectors, and figures 4-131 through 4-146 show the results of the maximum likelihood estimation algorithm for different effective sensor spacings for scenario 6. Again we see that as the number of experiment vectors used in the maximum likelihood estimation problem increases, the accuracy of the estimated position and velocities of the acoustic beacon improves, and the standard deviation of the estimated position and velocities decrease. We also see that as the effective sensor spacing increases, the accuracy of the estimated position and velocities of the acoustic beacon improves, while the standard deviation of the estimated position decreases. As before, the position and velocity errors initially decrease rapidly, however after the number of experiment vectors used reaches approximately 30, or the effective sensor spacing reaches approximately 45, the errors and the standard deviations decrease much slower.

Figures 4-125 through 4-130 and figures 4-141 through 4-146 show the estimation algorithm's ability to track the linearly moving acoustic beacon for this scenario. We see that the projected current positions follow the linearly moving acoustic beacon fairly well using 3 meter GPS errors. Again, because of the errors in estimating the acoustic beacon's initial positions \(x_o, y_o, \) and \(z_o \), the projected current position obtained from using 25 meter GPS errors does not track the acoustic beacon's motion as well.
4.4.4 Moving Acoustic Beacon Summary

From scenarios 4 through 6 we showed that as the number of experiment vectors used in the maximum likelihood estimation problem increases, the accuracy of the estimated position and velocities of the acoustic beacon improves, while the standard deviation of the estimated position decreases. Also, as the effective sensor spacing increases, the accuracy of the estimated position and velocities of the acoustic beacon improves, and the standard deviation of the estimated position decreases. For all of the moving acoustic beacon scenarios, we see that the depth of the acoustic beacon is the least accurately estimated parameter. This is because we are still attempting to locate the acoustic beacon in three dimensions, while the receiving ship only moves in two dimensions. We also note that the standard deviations of the estimated beacon position are significantly larger for the moving beacon scenarios than for the stationary beacon scenarios. These larger standard deviations are due to the nature of the structural model and reflect the difficulties in locating a moving acoustic beacon using only a single omnidirectional hydrophone as a receiving source.

Similar to the stationary acoustic beacon scenarios, to obtain the best possible estimate of the acoustic beacon's location we need to use a large number of experiment vectors with a large effective sensor spacing. Again we run into problems with the time it takes to collect the required measurement vectors. For example, with an effective sensor spacing of 60 pulse repetition intervals, a pulse repetition interval of 2 seconds, and using 50 experiment vectors it takes 100 minutes to collect the required measurement vectors. As with the stationary acoustic beacon scenarios, if time is an
issue, we must reduce the number of experiment vectors used, and reduce the effective sensor spacing. As a minimum, we must use at least 30 experiment vectors and a minimum effective sensor spacing of 45 pulse repetition intervals. With these values, for the search path of figure 4-1 and for a pulse repetition interval of 2 seconds, we should be able to obtain a decent estimate of the acoustic beacon's position and velocities.

4.5 Summary

From the results of the Monte Carlo simulations we see that in general, as the number of experiment vectors used to find the estimated parameter vector θ increases, the errors of the estimated parameters and the variance of the estimated parameter vector deceases. This implied that to obtain the best estimate of the acoustic beacon's location, we should use a large number of experiment vectors, with a large effective sensor spacing. We run into problems with this approach if the time it takes to obtain an estimated position is a factor. We showed that for the search path given in section 4.2 and for an acoustic beacon with a pulse repetition interval of 2 seconds, we need to use a minimum of 20 experiment vectors and an effective sensor spacing of 35 pulse repetition intervals to obtain a decent estimate when using the stationary acoustic beacon algorithm. We also showed that with the same search path and pulse repetition interval, we need to use a minimum of 30 experiment vectors and an effective sensor spacing of 45 pulse repetition intervals. In all scenarios, the use of accurate navigational equipment to measure the position of the receiving ship is critical to obtain an accurate estimate of the acoustic beacon's location. This is shown by the
better estimates obtained from using Differential/P code GPS errors of 3 meters rms.
Chapter V

Receiver Design

5.1 Introduction

A receiver must be designed to implement the maximum likelihood estimation algorithms described in chapters II and III. This receiver should fulfill the goals of being an inexpensive, lightweight, easily transported receiver that can perform all of the functions of an older chart recorder. To determine the specifications for the receiver hardware, we look at the signal that is received, the ambient noise that is received, the thermal noise generated by the receiver's preamplifier, and the required signal output. We also examine the characteristics of the hydrophone used as a receiving sensor, and develop a practical hydrophone model so the preamplifier's input characteristics can be determined.

In designing a receiver to implement the algorithms described in chapters II and III, we make the following general assumptions. We assume that the beacon signal has a carrier frequency of 10,000 Hertz, a pulse width of 10 milliseconds, and a pulse repetition interval of 2 seconds. This is similar to several acoustic beacons currently in use. To cut costs, a Motorola 68HC11 microcontroller will be used. The 68HC11 is an 8-bit, low power microcontroller with several useful peripheral functions built in. These peripheral functions include an eight channel 8-bit analog to digital (A/D) converter, an asynchronous serial communications interface, five general input/output ports, and a 16-bit free running timer system with five output compare registers. This lets us use a single chip to synchronize the time of receipt t_r to the
pulse repetition interval, digitally sample the received signal, control the receiver's
gain, and communicate with the interfacing computer. Another factor in deciding to
use the 68HC11 microcontroller is that the 68HC11 and its programming support
equipment are commonly available. For the receiving sensor, we use the Benthos
AQ-4 hydrophone attached to 100 meters of RG-58/u coaxial cable. The Benthos
AQ-4 hydrophone has an open circuit response of -201 dB re 1 Volt per 1μPa, which
is representative of the type of omnidirectional hydrophones currently available.

5.2 Design Criterion

The signal transmitted by the acoustic beacon can be characterized as a
sequence of gated continuous wave pulses at a carrier frequency f_c. We depict the
beacon signal as:

$$s_n(t) = \sum_{i=0}^{\infty} w(t - iT_p - T_o) \cdot \cos[2\pi f_c(t - iT_p - T_o) + \phi] \quad (5-1)$$

where $w(t)$ is a windowing function that defines the pulse width, T_p is the period
which defines the pulse repetition interval, and ϕ is a phase term. As before, the
coefficient T_o represents the unknown absolute time reference.

We can represent the signal that is received by the observer as:

$$R_n(t) = \sum_{i=0}^{\infty} h_i \cdot w(t - iT_p - t_{s\mu}) \cdot \cos[2\pi f_c(t - iT_p - t_{s\mu}) + \phi + \zeta_i] + n(t) \quad (5-2)$$

where h_i represents the attenuation the signal experiences in traveling from the beacon
to the observer, and ζ_i represents a random phase distortion due the propagation of
the signal through the ocean. As discussed in chapter II, the term t_{su} represents the synchronized time of receipt and is given by:

$$t_{su} = t_{u} - i \cdot T_p = T_R + T_o$$ \hspace{1cm} (5-3)

where T_R is the acoustic travel time of the beacon signal. The term $n(t)$ represents the combination of the ambient noise that is received and the thermal noise that is generated by the receiver's preamplifier.

Since we use range differences in the maximum likelihood estimation algorithms of chapters II and III, the parameter that we need to find from the received signal is the synchronized time of receipt t_{su}. In order to find t_{su}, we digitally process the received signal. To determine the proper sampling rate, we must look at the frequency content of the received signal and the desired accuracy of the synchronized time of receipt t_{su}. If we apply the Nyquist sampling rate theorem directly to the received signal, the sampling rate would have to be greater then twice the carrier frequency f_c. For carrier frequencies around 10,000 Hertz, the required sampling rate is too fast for the 68HC11 to handle both the data collection and the signal processing. However, from looking at equation (5-2), we notice that the received windowing function $w(t)$ contains the parameter t_{su}. Therefore, if we remove the carrier frequency and just look at the envelope of the received signal given by $w(t)$, we can still determine the synchronized time of receipt by observing when the signal's envelope is received. To remove the carrier frequency f_c, we use a precision rectifying circuit with a low pass filter to form an envelope detector. This allows us sample at the reduced rate of twice the bandwidth of the signal's envelope given by $w(t)$.
To reduce the receiver's overall noise level, the bandwidth of the receiver should match the bandwidth of the envelope. If the bandwidth of the receiver increases above the bandwidth of the received signal's envelope, out of band noise from the oceanic environment and other interference sources enters the receiver, decreasing the signal to noise ratio. On the other hand, if the receiver's bandwidth is less then the bandwidth of the received signal's envelope, we do not allow the full bandwidth of the envelope to pass through the receiver, which again lowers the signal to noise ratio. The windowing function \(w(t) \) can be approximated by a simple rectangular window with a duration equal to the pulse width of the signal. The bandwidth of the windowing function and the receiver is then given by:

\[
\text{Bandwidth} = \frac{1}{\text{PulseWidth}} \quad (5-4)
\]

For a pulse width of 10 milliseconds, the windowing function's bandwidth is 100 Hertz. With a bandwidth of 100 Hertz, the sampling frequency must then be at least 200 Hertz, which equates to a sampling interval of no more then 5 milliseconds.

We must be careful not to sample at too slow a rate, otherwise the errors associated with the quantization of the time base will cause large errors in the localization algorithms. To determine an acceptable quantization step size, or equivalently, how much error can we tolerate in the time of receipt data, we need to compare the quantization errors to the errors in measuring the observer's location. The source of error in measuring the observers position is due to errors in the GPS position data. For a C/A-code GPS receiver, the published rms errors are on the order of 25
meters. Using a simple homogeneous, direct path propagation model with the speed of sound in water equal to 1500 meters per second, a signal takes 16.667 milliseconds to travel 25 meters. We call this the equivalent time error of the position error. We would like the errors associated with the quantization of the time base to be less than the equivalent time error of the position errors. Assuming no other errors in the time of receipt, the maximum error in measuring the time of arrival \(t_{\text{sr}} \) is half the sampling interval. For a C/A code GPS receiver the required sampling interval of 5 milliseconds is much less then the equivalent time error of the position error, therefore the quantization errors are relatively small compared to the errors in measuring the observer's position. However, because more accurate navigational equipment will most likely be available in the near future, and because the 68HC11 has the required speed, we will sample the received signal's envelope every 1 millisecond. With a sampling interval of 1 millisecond, as long as the rms errors of the navigational system are greater than 1.5 meters, the quantization errors will be smaller then the equivalent time errors of the position errors.

To determine the synchronized time of receipt \(t_{\text{sr}} \) from the sampled envelope, we pass the sampled envelope through a matched filter based upon \(w(t) \), and look for the time that corresponds to the maximum value of the output of the matched filter. The received time is then divided modulo the pulse repetition interval to obtain the synchronized time of receipt. The use of a matched filter has two benefits. First, the output of a matched filter for a rectangular input signal with the same pulse width of \(w(t) \) will have a unique maximum peak which we can use to calculate the time of
receipt. Secondly, a matched filter produces an output with the maximum signal to noise ratio. The digital form of a matched filter for a rectangular signal has the form of the moving average:

\[y[n] = \frac{1}{N+1} \sum_{i=0}^{N} x[n-i] \]

(5-5)

For a pulse width of 10 milliseconds and a sampling rate of 1 millisecond, \(N \) is equal to 10. Figures 5-1 and 5-2 show the output of the moving average matched filter for an input that represents the sampled envelope of the received signal with additive noise. From figure 5-2 we see that it is relatively easy to find the maximum value of the output of the matched filter. We do not have to worry about the phase delay of the matched filter because we compare the time of arrival of two signals relative to each other. Since the phase delay is the same for all received signals, it does not effect the comparison of the two arrival times.

![Sampled Envelope with Additive Noise](image)

Figure 5-1
The receiver should be able to detect the target's beacon signal in the presence of the additive noise term \(n(t) \). The two largest contributors of noise are ambient oceanic noise and thermal noise generated by the receiver's preamplifier. Ambient oceanic noise, due to factors such as wind force, ships, industrial activity, precipitation, biologics, and others, is received by the hydrophone which generates an equivalent noise voltage. Using the hydrophone's open circuit response characteristics, the receiver's bandwidth, and empirical data of noise spectrum levels summarized by Wenz [Wenz 1962], the equivalent noise voltage of the oceanic noise can be calculated using:

\[
e_n = 10^{\left(\frac{H_{oc} \cdot e_0 \cdot \log(BW)}{20}\right)}
\]

where \(H_{oc} \) is the hydrophones open circuit response in dB re 1 Volt per 1\(\mu \)Pa, \(e_0 \) is the
ambient oceanic noise in dB re 1µPa, and BW is the receiver's bandwidth in Hertz.

Table 5-1 shows the equivalent noise voltage for various Sea states (Beaufort Scale) at 10,000 Hertz using a hydrophone with an open circuit receiver response of -201 dB re 1 Volt per 1µPa, and a receiver bandwidth of 100 Hertz. Ideally the noise in a receiver should be dominated by external noise sources. This means that the receiver's thermal noise should be less then the ambient oceanic noise. Since sea states 1 and 2 are not common, the receiver's thermal noise is designed to be less then the ambient oceanic noise associated with sea state 3. This requirement limits the test receiver's thermal noise reflected at the input of the preamplifier to be less then 89 nV/√Hz.

<table>
<thead>
<tr>
<th>Sea State (Beaufort Scale)</th>
<th>Ambient Oceanic Noise (dB re 1µPa)</th>
<th>Equivalent Noise Voltage (nV/√Hz)</th>
<th>Total Equivalent Noise Voltage e_n (µV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48</td>
<td>22</td>
<td>0.22</td>
</tr>
<tr>
<td>2</td>
<td>56</td>
<td>56</td>
<td>0.56</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>89</td>
<td>0.89</td>
</tr>
<tr>
<td>5</td>
<td>68</td>
<td>224</td>
<td>2.24</td>
</tr>
<tr>
<td>8</td>
<td>73</td>
<td>398</td>
<td>3.98</td>
</tr>
<tr>
<td>limit</td>
<td>80</td>
<td>891</td>
<td>8.91</td>
</tr>
</tbody>
</table>

Table 5-1

Another desirable characteristic of the receiver is that it should have as large a dynamic resolution as possible. A large dynamic resolution allows the receiver to detect a broad level of signal amplitudes for a set gain. Since the received signal will be digitally processed, we need to look at the dynamic resolution of the A/D converter.
The dynamic resolution of an A/D converter is given by:

\[
Dynamic \ Resolution = 20 \log_{10}(2^{\text{bits}})
\]

(5-7)

For an 8-bit A/D converter, the dynamic resolution is only

\[
20 \log_{10}(2^8) = 48 \text{ dB}
\]

(5-8)

This is not quite large enough. We would like a dynamic resolution that is comparable to the dynamic resolution of the older paper recorders. This means we need a dynamic resolution of at least 60 dB. To increase the dynamic resolution, either a higher bit A/D converter could be used, or a logarithmic compressor can be used prior to digital sampling. Since we are restricted to the 8 bit A/D converter of the 68HC11, a logarithmic compressor will be used to increase the receiver's dynamic resolution.

Using a logarithmic compressor, the dynamic resolution is given by:

\[
Dynamic \ Resolution = 20 \cdot \log_{10} \left(\frac{V_{\text{sat}}}{V_{\text{min}}} \right)
\]

(5-9)

where \(V_{\text{sat}} \) is the saturation point of the logarithmic compressor and \(V_{\text{min}} \) is the minimum detectable signal at the input of the logarithmic compressor. Typically, logarithmic compressors require an input signal that is greater than 2 mV. Below 2 mV, the input current to the logarithmic compressor becomes comparable to the bias current of the matched transistors used to obtain the logarithmic dependence, and
subsequently the logarithmic dependence is no longer valid [Millman 1979]. For the receiver designed in section 5.4, V_{sat} is approximately 8 V which gives a dynamic resolution of:

$$Dynamic\ Resolution = 20 \cdot \log_{10} \left(\frac{8}{2 \cdot 10^{-3}} \right) = 72\ dB \quad (5-10)$$

To determine the required gain of the receiver, we need to look at the signal level that we are attempting to receive. We wish to be able to detect low level signals that are right at the noise floor of the receiver. This requires the receiver to have enough gain to detect a signal at the equivalent oceanic noise level of 89 nV/√Hz. Since a logarithmic compressor is used just prior to A/D conversion, the required gain is determined by the minimum detectable level in the logarithmic compressor and the oceanic noise level. Using the ambient oceanic noise and the input requirements of the logarithmic compressor from above, the maximum required gain of the receiver is given by:

$$A_{v_{\text{max}}} = \frac{2 \cdot 10^{-3}}{89 \cdot 10^{-9}} = 87\ dB \quad (5-11)$$

However, it is possible that the received signal could be quite a bit larger than the minimum signal level for a strong beacon in close proximity to the receiving ship. For example, a 30 Watt beacon 100 meters from the receiving hydrophone will produce an input signal of about 10 mV. This signal would completely saturate the receiver if the gain is fixed at $A_{v_{\text{max}}}$. To prevent the receiver from saturating, some form of feedback gain control is needed. Using one of the output ports of the 68HC11

124
as a control line, simple resistive attenuators can be switched on or off to reduce or increase the gain of the receiver based upon the maximum signal level at the A/D converter. To determine how much attenuation is needed, we look at the saturation point of the preamplifier and the maximum likely input signal. For design purposes, to keep a 10 mV signal from saturating the receiver, the receiver's minimum gain is given by:

$$A_{v_{\text{min}}} = \frac{V_{\text{sat}}}{10^{-3}} = \frac{8}{10^{-3}} = 58 \text{ dB}$$ \hspace{1cm} (5-12)

Here again V_{sat} is the logarithmic compressor's saturation level. Since the input signal level will be somewhere between the noise floor and the maximum likely input signal most of the time, we can use multiple resistive attenuator networks to set the receiver's gain to any level in between $A_{v_{\text{max}}}$ and $A_{v_{\text{min}}}$. For this design we will use four resistive attenuator networks to provide attenuation levels of -3 dB, -9 dB, -12 dB, -18 dB, -24 dB, and -30 dB.

5.3 Hydrophone Model

To determine the input characteristics of the preamplifier, the hydrophone and cable must be modeled. Figure 5-3 shows an equivalent circuit for a stiffness-controlled piezoelectric hydrophone. Here R_h is the hydrophone's resistance, C_h is the hydrophone's capacitance, e_n represents the equivalent ambient noise of the ocean, and e_{nh} represents the thermal noise of the hydrophone. For frequencies considerably below 100 kHz, the ambient noise level of the ocean is much greater then the
hydrophone's thermal noise, while the impedance of the hydrophone is dominated by
the capacitance C_h. This allows us to simplify the hydrophone model by eliminating
R_h and e_{hn} [Wilson 1985].

![Figure 5-3](image)

Figure 5-3

The cable assembly can be modeled as a two conductor transmission line. Using standard RG-58/u coaxial cable with a solid copper inner conductor and a polyethylene dielectric, we can model the cable as a series resistance R_c and a shunt capacitance C_c [Cheng 1983]. Standard RG-58/u coaxial cable has a series resistance of 33.31 Ω per 1,000 meters, and shunt capacitance of 70 pF per meter. Combining the simplified hydrophone model and the cable model, we have the circuit of figure 5-4.

![Figure 5-4](image)
Figure 5-4 can be simplified to give the equivalent Thevinin circuit model:

\[Z_s(f) = \frac{2j \pi f R_c C_h + 1}{[2j \pi f R_c C_h C_c + (C_h + C_c)]} \frac{1}{2j \pi f} \quad (5-13) \]

Figure 5-5 shows a plot of the source impedance verses frequency for the Benthos AQ-4 hydrophone with \(C_h \) specified as 2,400 pF ±25%. To prevent serious loading effects, the preamplifier's input impedance must be considerably larger than the source impedance given by equation (5-13). For design purposes, the magnitude of the source impedance at 10,000 Hertz is 1,693 \(\Omega \), therefore we choose the preamplifier's input impedance to be at a minimum of 20 times the source impedance, or 33.8 k\(\Omega \). This will keep the loss due to loading below 0.5 dB.
5.4 Test Receiver Hardware Design

Based on these design criteria, a receiver was built for testing. This section discusses the circuit design considerations and implementation of this test receiver. Figure 7 shows the general signal flow of the receiver starting with the preamplifier and moving to the 68HC11 microcontroller. An important theme of the receiver design is to avoid exotic components to minimize the cost of the receiver.

5.4.1 Preamplifier

Refer to the preamplifier schematic diagrams in Appendix 1 for the following description. The first stage of the preamplifier is a tuned N channel junction field effect transistor (JFET) common-source amplifier. To help keep low frequency ambient oceanic noise from entering the preamplifier, C_{01} and R_{01} form a high pass
filter with a cutoff frequency given by:

\[f_c = \frac{1}{2 \pi R_{01} C_{01}} \] \hspace{1cm} (5-14)

To eliminate as much low frequency oceanic noise as possible but still allow for small changes in the acoustic beacon's carrier frequency, we chose the high pass filter cut off frequency as 7000 Hertz. The preamplifier's input impedance is determined by \(R_{01} \) since the input impedance of the JFET is so large (\(>10^{14} \, \Omega \)). To prevent loading between the hydrophone source and the preamplifier we must ensure \(R_{01} \) is larger then 33.8 k\(\Omega \). To ensure that the thermal noise of the preamplifier is less then equivalent oceanic noise of sea state 3, \(R_{01} \) must be chosen such that the thermal noise of the parallel combination of \(R_{01} \) and source impedance \(Z_s(f) \) is considerably less then
89 nV/√Hz. The thermal noise of a resistor is given by:

\[\bar{e}_n = \sqrt{4kTB} \] (5-15)

where \(k \) is Boltzmann's constant, \(T \) is the absolute temperature in Kelvin, \(B \) is the bandwidth in Hertz, and \(R \) is the resistance in Ohms [Horowitz and Hill 1989]. For the Benthos AQ-4 hydrophone at a frequency of 10,000 Hertz \(Z_s(f) \) is approximately 1700 Ω. As a result, the parallel combination of \(R_{o1} \) and \(Z_s(f) \) will be close to the value of \(Z_s(f) \) for \(R_{o1} \) greater than 32 kΩ, and the associated thermal noise will be well below 89 nV/√Hz. However, it would be nice to ensure that the thermal noise of the preamplifier is much less than equivalent oceanic noise of sea state 3 for any source impedance. To ensure this, we choose \(R_{o1} \) such that its thermal noise is approximately 45 nV/√Hz. To meet the noise constraint, the loading constraint, and the cut off frequency constrain of equation (14), we choose \(R_{o1} \) as 120 kΩ and \(C_{o1} \) as 180 pF.

The gain of the first stage JFET common-source amplifier is given by:

\[A_v(f) = \frac{-Y_{fs} \cdot Z_D(f) \cdot r_d}{Z_D(f) + r_d} \] (5-16)

where \(Y_{fs} \) is the JFET's forward transconductance, \(r_d \) is the JFET's intrinsic drain resistance, and \(Z_D(f) \) is given by:

\[Z_D(f) = \frac{2j\pi f}{C_{o2}} \frac{1}{(j\pi f)^2 + \frac{2j\pi f}{R_{o2} C_{o2}} + \frac{1}{L_{o1} C_{o2}}} \] (5-17)
$Z_D(f)$ represents the complex impedance of the combination of L_{01}, R_{02}, and C_{02}. The use of the reactive load $Z_D(f)$ allows us to obtain the narrow bandwidth required by equation (5-4). The gain of the first stage will be greatest when the frequency of the input signal is at the resonant frequency of $Z_D(f)$. The resonant frequency of $Z_D(f)$ is given by:

$$f_r = \frac{1}{2 \pi \sqrt{L_{01} C_{02}}} \quad (5-18)$$

We want the preamplifier to have it's maximum gain at the acoustic beacon's carrier frequency, therefore we choose L_{01} and C_{02} such that the resonant frequency equals the acoustic beacon's carrier frequency. In the test receiver, Q_{01} is an E230 general purpose N channel JFET. The E230 has a nominal forward transconductance of 1.5×10^3 Siemens and a nominal intrinsic drain resistance of 12.5 kΩ. Using equations (5-16) and (5-17), and the values from Appendix 1, at a beacon frequency of 10,000 Hz, A_{v1} is approximately 24 dB.

In general, the output impedance of an R-L-C tuned amplifier is quite high, therefore, a JFET source follower is used as a buffer immediately following the first stage. Resistor R_{04} and capacitor C_{04} form a high pass filter similar to R_{01} and C_{01}, and serve to capacitively couple the JFET source follower to the tuned JFET amplifier. The cut off frequency of the high pass filter formed by R_{04} and C_{04} is given by equation (5-14) with R_{04} substituted for R_{01} and C_{04} substituted for C_{01}. To prevent loading between the JFET amplifier and the JFET buffer, R_{04} must be significantly larger than the output impedance of the JFET amplifier. However, we must be careful
in choosing R_{o4} so that its thermal noise, when reflected back to the input of the first stage, is less than 89 nV/√Hz. Using equation (15), this limits R_{o4} to 560 kΩ.

To enhance the performance of the JFET source follower, Q_{o3} and R_{o5} are added as a bootstrapped load. Because the base-emitter voltage of Q_{o3} is approximately constant, the combination of R_{o5} and Q_{o3} cause a constant source current to flow through JFET Q_{o2}. This makes Q_{o2}'s V_{gs} approximately constant, which in return reduces nonlinearities [Horowitz and Hill 1989]. This is beneficial because the signal level at this point in the preamplifier is still quite small.

The first stage of the preamplifier is powered by a separate 5 Volt 3-terminal 7805 voltage regulator. We do this to isolate the first stage from subsequent stages, which prevents the feedback of any noise generated by subsequent stages along the main power supply line. This provides Q_{o1} with a clean, stable supply voltage which is critical when working with very low level input signals.

The second stage of the preamplifier is another tuned amplifier, this time using a PNP bipolar transistor. Capacitor C_{o5} combined with the parallel combination of the bias resistors R_{o7} and R_{o8} form another high pass filter while also serving to capacitively couple the JFET source follower from the first stage to the second stage. The cutoff frequency of the high pass filter formed by C_{o5}, R_{o7} and R_{o8} is given by:

$$f_c = \frac{1}{2 \pi \cdot C_{o5} \cdot \frac{R_{o7} \cdot R_{o8}}{R_{o7} + R_{o8}}}$$ (5-19)
For this stage, we set the high pass filter's cut off frequency at 3000 Hertz. The gain of the second stage is given by:

$$A_{v2} = \frac{-Z_c(f)}{R_{10}}$$ \hspace{1cm} (5-20)

where

$$Z_c(f) = \frac{2j\pi f}{C_{07}} \cdot \frac{(2j\pi f)^2 + \frac{2j\pi f}{R_{11}C_{07}} + \frac{1}{L_{02}C_{07}}}{(2j\pi f)^2 + \frac{2j\pi f}{R_{11}C_{07}} + \frac{1}{L_{02}C_{07}}}$$ \hspace{1cm} (5-21)

As in the first stage we set the resonant frequency of $Z_c(f)$ given by:

$$f_r = \frac{1}{2\pi \sqrt{L_{02}C_{07}}}$$ \hspace{1cm} (5-22)

to the acoustic beacon's carrier frequency. Using equations (5-20) and (5-21) for a beacon frequency of 10,000 Hertz, A_{v2} is approximately 31 db.

Following the PNP tuned amplifier, a simple JFET source follower is used as a buffer. Capacitor C_{08} and resistor R_{12} form yet another high pass filter while also capacitively coupling the output of the PNP amplifier to the input to the JFET follower. The cut off frequency of the high pass filter formed by C_{08} and R_{12} is given by equation (14) with C_{08} substituted for C_{01} and R_{12} substituted for R_{01}, and is set to 3,000 Hertz.

Similar to the first stage, the second gain stage is powered by a separate 5 Volt, 3-terminal 7805 voltage regulator. Again we do this to prevent noise from being feedback along the power supply lines.
At the end of the second stage of the preamplifier the maximum gain at the acoustic beacon's carrier frequency is approximately 55 dB. We are under the minimum required gain of 58 dB, therefore we should not have to worry about the first two stages of the preamplifier saturating the logarithmic compressor. However, we still need an additional 32 dB of gain to reach the required maximum gain of 87 dB. Prior to the next gain stage, we include an attenuation network to prevent subsequent stages from saturating.

Following the JFET source follower \(Q_5 \), \(R_{14} \) in combination with shunt resistors \(R_{15}, R_{16}, R_{17}, \) and \(R_{18} \) form a variable attenuation network which is controlled by the 68HC11 microcontroller. To reduce the gain of the preamplifier, any combination of \(R_{15} \) through \(R_{18} \) can be switched to ground through two CD4053 analog switches. Once grounded, the shunt resistors form a voltage divider with \(R_{14} \), and subsequently attenuate the signal. Following the shunt resistors is a simple common emitter amplifier that provides the final gain necessary to obtain a maximum of 87 dB. The gain of this stage, including the effects of the attenuator network is given by:

\[
A_{v3} = -\frac{R_{21}}{R_{22}} \cdot \frac{2 \pi f R_s C_{09} \cdot \frac{R_{19} R_{20}}{R_{19} + R_{20}}}{\left[\frac{R_{14}}{R_{19} + R_{20}}\right] \cdot R_s + \frac{R_{19} R_{20}}{R_{19} + R_{20}} \cdot R_{14}} \cdot 2 \pi f C_{09} + R_s + R_{14}
\]

(5-23)

where \(R_s \) is the parallel combination of any shunt resistors \(R_{15} \) through \(R_{18} \) that are switched to ground. If none of the shunt resistors are switched to ground, \(R_s \) is very large and \(A_{v3} \) approaches:

134
In this case the gain of the preamplifier is at its maximum of approximately 89 dB. In
ductuality, the maximum gain will be slightly less then 89 dB due to small losses
caused by loading between the different stages. If all of the shunt resistors are
switched to ground, R_s is at its minimum value and the gain of the preamplifier is
approximately 56 dB. Table 5-2 summarizes which shunt resistors are switched to
ground to obtain different levels of attenuation.

<table>
<thead>
<tr>
<th>Attenuation Level</th>
<th>Shunt Resistors Switched to Ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 dB</td>
<td>none</td>
</tr>
<tr>
<td>-3 dB</td>
<td>R_{15}</td>
</tr>
<tr>
<td>-9 dB</td>
<td>R_{16}</td>
</tr>
<tr>
<td>-12 dB</td>
<td>R_{15} and R_{16}</td>
</tr>
<tr>
<td>-18 dB</td>
<td>R_{17}</td>
</tr>
<tr>
<td>-24 dB</td>
<td>R_{18}</td>
</tr>
<tr>
<td>-30 dB</td>
<td>R_{15}, R_{16}, R_{17}, and R_{18}</td>
</tr>
</tbody>
</table>

Table 5-2

5.4.2 Envelope Detector Circuit

Refer to the Envelope Detector schematic diagram in Appendix 1 for the
following description. After the preamplifier, the received signal passes through a
unity gain buffer. This isolates the preamplifier from the envelope detector, and also
provides the low source impedance that the precision rectifier circuit needs to function
properly. U_{07}, Q_{07}, Q_{08}, and the low pass filter combination of C_{25} and R_{31} are the
heart of the envelope detector. Diode D_{o1} protects U_{o7} during large input swings above the reference voltage V_{REF}. Resistors R_{29} and R_{30} add bias stability to transistors Q_{07} and Q_{08}.

As the input signal at the inverting terminal of U_{o7} goes below the reference voltage at the noninverting terminal of U_{o7}, Q_{07} is brought into the active region, thereby drawing Q_{08} into the active region which charges capacitor C_{25}. As the difference between the reference voltage and the input signal becomes greater, Q_{07} and Q_{08} are brought further into the active region which in turn increases the time that capacitor C_{25} charges. When the signal at the inverting terminal of U_{o7} is above the reference voltage at the noninverting terminal of U_{o7}, transistor Q_{07}, and subsequently Q_{08} are cut off. The charge in capacitor C_{25} is then discharged through resistor R_{31}. As long as the time constant formed by the combination of C_{25} and R_{31} is much greater than the period of the input signal's carrier frequency, the output taken at C_{25} will be the envelope of the input signal. To ensure operation with very low level inputs, U_{o8} is chosen to have a large gain bandwidth product and a fast slew rate.

5.4.3 Logarithmic Compressor

Refer to the Logarithmic Compressor schematic diagram in Appendix 1 for the following description. Prior to logarithmic compression, we pass the received envelope through a noninverting amplifier with a gain of 9 dB to restore the signal level that was lost in the envelope detector. To obtain an output that is proportional the logarithm of the input, we rely on the logarithmic relation between transistor Q_{09}'s voltage and current. By using Q_{09} in U_{o9}'s feedback loop, the output of the logarithmic
compressor is given by:

\[V_o = -\left(1 + \frac{R_{41}}{R_{42}}\right) \cdot V_T \cdot \ln \left(\frac{V_I \cdot R_{40}}{R_{35} \cdot V^+}\right) \quad (5-25) \]

where \(V_T \) is given by:

\[V_T = \frac{\text{temperature}}{11600} \quad (5-26) \]

Here the temperature is in Kelvin. For room temperature, \(V_T \) is approximately 0.0259.

From equation (5-25) we note that for small input signals, the output \(V_o \) is large, and for large input signals, the output \(V_o \) is small. To set the zero crossing point of the logarithmic compressor, we choose \(R_{40} \) such that:

\[R_{40} = \frac{R_{35} \cdot V^+}{V_{sat}} \quad (5-27) \]

With \(R_{35} \) equal to 10 k\(\Omega \), \(V^+ \) equal to 10 Volts, and \(V_{sat} \) equal to 8 Volts, \(R_{40} \) is approximately 12.5 k\(\Omega \). \(V_{sat} \) represents the largest possible input to the logarithmic compressor. To set the maximum output level of the logarithmic compressor, we chose \(R_{42} \) and \(R_{43} \) such that the minimum input signal of 2 mV produces an output of 5 volts. This allows us to digitally sample the output of the logarithmic compressor directly, without worrying about damaging the 68HC11's A/D converter. The use of the matched transistor \(Q_{9} \) helps stabilize the temperature dependence of \(V_T \), and is essential to eliminate the dependence upon the reverse saturation current \(I_o \) which doubles for every 10° C rise in temperature [Millman 1979].

By taking the saturation level of the receivers as approximately 8 volts, the
dynamic resolution of the receiver is approximately:

\[
\text{Dynamic Resolution} = 20 \cdot \log_{10}\left(\frac{8}{2 \cdot 10^{-3}}\right) = 72 \text{ dB}
\]

To obtain the full dynamic resolution at the input to the A/D converter, the output of operational amplifier \(U_{10} \) must be capable of going between zero and five volts. We would like to restrict the output of \(U_{10} \) to be strictly less than 5.5 Volts to prevent damage to the 68HC11's A/D converter in case of a failure in the logarithmic compressor. To accomplish this, we step down the main positive supply voltage to 5.6 volts using a zener diode reference. The maximum output of the CA3130 operational amplifier used for \(U_{10} \) is about 0.5 volts below the positive supply voltage, therefore the output of \(U_{10} \) is restricted between 0 and 5.1 volts.

5.4.4 68HC11 Microcontroller

Refer to the 68HC11 Microcontroller schematic diagram in Appendix 1 for the following description. The 68HC11 is run in expanded mode at a clock speed of 8 MHz. Input/Output ports B and C are used to interface to the external 27HC64 EPROM and the 62HC64 RAM chips. A 74HC373 multiplexer and a 74HC00 NAND gate are used to form the proper address line controls and to transfer data to the external memory chips. Port PE0 is used for the input to the A/D converter. The logarithmically compressed signal passes through a low pass filter to remove any high frequency noise, and then is sequentially sampled by the A/D converter. Ports PD0 and PD1 are used for serial data output. A SCL/U 20 mA SAIL-to-low-power-logic converter is used to convert the 68HC11's serial data to the SAIL communication
protocol. The use of the SAIL communications protocol is beneficial because of its simplicity, and its ability to communicate with multiple nodes. The rest of port D's output lines are tied to the positive supply through 100 kΩ pull up resistors to prevent the output lines from floating. Ports PA3, PA4, PA5, and PA7 are used to control the two CD4053 2 channel analog switches which control the attenuator network described earlier. The rest of port A's input/output lines, except PA0, are tied to ground through 100 kΩ resistors to prevent the outputs from floating. PA0 is left as an external input for further development, and is tied to the positive supply through a 100 kΩ pull up resistor.

Appendix 2 contains a listing of the program that the 68HC11 executes.

5.4.5 Power Supply

In the test receiver, a +10 volt power supply is used to power the preamplifier, the envelope detector, and the logarithmic compressor. A secondary +5 volt power supply is used to power the 68HC11 microcontroller. The use of a separate power supply for the microcontroller prevents high frequency noise generated by the digital components from entering the preamplifier. For the -5 V that is required by the logarithmic compressor, a third supply is used. This provides a better regulated negative supply then using a DC to DC voltage converter such as the ICL 7660 to generate the required -5 V. Finally, a +12 volt, 300 mA supply is provided to power an external GPS receiver. All four power supplies are built on a common circuit board and share a common ground bus. Refer to the Power Supply schematic diagram in Appendix 1 for the following circuit description.
The test receiver uses a standard power cord to connect to external power with a one half amp slow-blow fuse to protect the receiver in case of a short circuit. A Magnetek Triad F-93X transformer is used to step down the input voltage. Diodes D₀₁ through D₀₄ act as a standard full wave bridge rectifier. Voltage regulator U₀₁ is a simple three terminal +12 volt regulator used to provide power to the external GPS receiver. Capacitor C₀₁ filters the rectified supply voltage to provide an unregulated DC voltage to U₀₁. Capacitors C₀₂ and C₀₃ are bypass capacitors used to reduce noise on U₀₁'s input and output leads. Because of the high current requirements of the voltage regulator, U₀₁ is mounted to the chassis bottom for heat sinking.

Voltage regulator U₀₂ is an adjustable four terminal voltage regulator used to provide the +10 volts required by the preamplifier, absolute value circuit, and the logarithmic compressor. Resistor R₀₁ and capacitor C₀₄ form a low pass filter which helps reduce high frequency feedback from the GPS receiver power supply (U₀₁). R₀₁ also acts as an attenuator, reducing the unregulated DC input voltage to regulator U₀₂. By doing this, the power that U₀₂ has to sink is reduced, increasing U₀₂'s efficiency. Resistors R₀₂, R₀₃, and R₀₄ form the feedback network used by U₀₂ to set the output voltage. By using an adjustable voltage regulator, the positive supply voltage can be set more precisely, which is needed to maintain sensitive bias points in the logarithmic compressor. Capacitors C₀₅ and C₀₆ are bypass capacitors similar to C₀₂ and C₀₃.

Voltage regulator U₀₃ is a simple three terminal regulator used to supply the +5 volts required by the 68HC11 and support systems. Resistor R₀₅ and capacitor C₀₇ form another low pass filter which helps isolate the preamplifier from the 68HC11.
microcontroller. As with R_{01}, R_{05} reduces the unregulated DC voltage at the input of U_{03}, reducing the power that U_{03} must sink. Capacitors C_{08} and C_{09} are bypass capacitors similar to C_{02} and C_{03}. The combination of resistor R_{06} and LED D_{05} are used as a power indicator, with D_{05} mounted on the front panel of the chassis next to the power switch.

Finally, voltage regulator U_{04} is a four terminal, adjustable negative voltage regulator that is used to provide the -5 volts required for the logarithmic compressor. Resistor R_{07} and capacitor C_{10} form a low pass filter which converts the rectified input voltage to unregulated DC. Resistors R_{08}, R_{09}, and R_{10} form the feedback network used by U_{04} to set the output voltage at -5 volts. As before, C_{11} and C_{12} are bypass capacitors that help reduce noise the voltage regulator's input and output lines.

5.5 Test Receiver Performance

To test the validity of the receiver designed in section 5.4, experiments were conducted to measure the actual performance of the preamplifier, envelope detector, and logarithmic compressor.

5.5.1 Preamplifier Performance

To test the performance of the preamplifier, experiments were conducted to measure the preamplifier's actual gain, bandwidth, and thermal noise. To measure the gain and bandwidth of the preamplifier, the output of the preamplifier was measured for sinusoidal inputs at different frequencies. The results, along with the predicted values are plotted in figure 5-8. From figure 5-8 we see that the actual gain of the preamplifier at the acoustic beacon's carrier frequency is 86 dB. This is close enough
to the design goal to be acceptable. The loss in gain compared to the predicted gain is due to the effects of loading between the various stages and to deviations from the nominal values of Y_{rf} and r_d. We also note that the actual bandwidth is 120 Hz which is slightly larger than the predicted bandwidth. This increase is due to deviations of R_{o2} and R_{11} from their nominal values and is not significant.

To determine the actual thermal noise of the preamplifier, we short the preamplifier's input and measure the root mean square output using a digital multimeter. Assuming the preamplifier's noise is normally distributed, we correct the
output measurement to reflect a normal distribution by multiplying by 1.13 [Horowitz and Hill 1989]. The preamplifier's thermal noise is then found by using:

\[e_n = \frac{1.13 \cdot e_s}{A_v \sqrt{BW}} \]

(5-29)

where \(e_s \) is the measured output voltage, \(A_v \) is the total gain of the preamplifier, and \(BW \) is the bandwidth of the preamplifier. Using this approach, \(e_s \) was measured as 6.8 millivolts. The preamplifier's thermal noise is then:

\[e_n \approx \frac{1.13 \cdot 6.8 \cdot 10^{-3}}{19275 \sqrt{120}} = 31 \text{ nV/Hz} \]

(5-30)

To check this value we can observe the output of the preamplifier (with the input grounded) on an oscilloscope. To measure the preamplifier's noise, we take the peak value observed on the oscilloscope. Next we calculate the preamplifier's thermal noise using:

\[e_n = \frac{V_{\text{peak}}}{6} \]

(5-31)

This gives a rough approximation of the thermal noise of the preamplifier. \(V_{\text{peak}} \) was measured as 35 mV. Using equation (5-31), the thermal noise of the preamplifier is roughly 28 nV/Hz. This value is of the same order of magnitude as found in equation (5-30), so we can assume the noise figure given in equation (5-30) is correct.

5.5.2 Envelope Detector

To test the performance of the envelope detector we look at the output for
different amplitudes of a sinusoidal input. Figure 5-9 shows the measured output of the envelope detector for different amplitudes of a 10,000 Hertz sinusoid input.

![Graph](image)

Figure 5-9

Ideally, the envelope detector should have an output that is linearly dependent on the amplitude of the input sinusoid. This allows the envelope detector to accurately track the true envelope of the beacon signal. From figure 5-9 we see that the measured output is nearly linear, therefore we expect the envelope detector to work properly.

5.5.3 Logarithmic Compressor

To test the performance of the logarithmic compressor, we look at the output for different DC voltage inputs. Figure 5-10 shows the measured output values and the predicted values.
From figure 10 we see that the logarithmic compressor does not follow an exact logarithmic relation. However, since the output of the logarithmic compressor monotonically decreases throughout the full range of input values, the compressor is sufficiently logarithmic to achieve the dynamic resolution of equation (5-28). Since we achieve the desired dynamic resolution, the performance of the logarithmic compressor is acceptable.

5.6 Conclusions

In this chapter a receiver to implement the maximum likelihood estimation algorithms developed in chapter II and III was designed and tested. Appendix 1
contains the schematic diagrams of the receiver built for testing. From the tests conducted, we see that the test receiver meets the design criteria developed in section 5.2. To complete the receiver, an Apple Macintosh personal computer is used for the final signal processing and for data display. Appendix 3 contains a listing of the source code used by the Macintosh for signal processing and for displaying the collected data.
Chapter VI

Conclusion

6.1 Observations and Summary

In this thesis, a method to passively localize stationary and linearly moving acoustic beacons was developed. Because of the nonlinearities of the structural model \(g(w, \theta) \), and the errors in the measurements \(x_\mu, y_\mu, \) and \(t_\mu \), the localization problem was formulated as a constrained maximum likelihood estimation problem. To solve for the maximum likelihood estimate, a vector of Lagrange multipliers was introduced and a Lagrangian function \(\Lambda \) formed. The maximum likelihood estimate was then found at the stationary point of the Lagrangian function. Figures 2-4 and 3-1 summarize the algorithms used to solve for the maximum likelihood estimate of the acoustic beacon's position. Both algorithms require that the user specify the maximum range and depth of the search area, and an initial guess of the acoustic beacon's location. For the case of the moving beacon, the user must also specify the maximum allowed velocity of the acoustic beacon.

Monte Carlo simulations were conducted for several different positions and velocities of the acoustic beacon. It was assumed that the receiving ship followed a hexagonal search path with legs of 1000 meters. In practice, the actual search path is not critical as long as it is not linear. In chapter IV results from six scenarios were presented. Overall, the algorithms developed in chapters II and III performed well for these scenarios. For a stationary acoustic beacon, good estimates of the acoustic beacon's location were obtain using GPS errors of 3 meters and 25 meters rms. For
the moving acoustic beacon, a good estimate of the acoustic beacon’s location was obtained when using GPS errors of 3 meters rms. However, the accuracy of the algorithm used to estimate the moving acoustic beacon’s location degrades for GPS errors of 25 meters rms unless a large number of experiment vectors are used, or a large effective sensor spacing is used.

From the results of the Monte Carlo simulations, it was shown that, in general, as the number of experiment vectors (wₙ) used in the maximum likelihood estimation problem increased, or the effective sensor spacing increased, the accuracy of the estimated beacon location improved. It was also shown that the accuracy of the estimated beacon location improved if the receiving ship passed through a closest point of approach to the acoustic beacon. In all cases, the accuracy of the estimated beacon position was significantly better when using 3 meter GPS errors. This shows that to obtain a better estimate of the acoustic beacon’s location, the position of the receiving ship must be measured accurately.

For all scenarios, the variance of the estimated beacon position and velocity decreased as the number of experiment vectors used increased, or the effective sensor spacing increased. It was found that the variance of the moving beacon’s estimated position was much greater then the variance of the stationary beacon’s estimated position. This is due the manner in which the acoustic beacon’s initial position and velocity are combined in the modified structural model. In the modified structural model given by equation 3-10, the individual velocity components are added to the initial beacon coordinates x₀, y₀, and z₀ to find the location of the acoustic beacon.
when it transmits a signal. As a result, the algorithm estimates the value of the sum of
the initial position coordinates and the velocities better than the individual components.
Consequently, the algorithm can not discern between small perturbations in the
estimated position coordinates and the estimated velocities.

From these results, to obtain the best possible estimate of the acoustic beacon's
position a large number of experiment vectors with a large effective sensor spacing
must be used. However, the time required to collect the measurement vectors
increases with both the number of experiment vectors and the effective sensor spacing.
If the time it takes to obtain an estimate of the acoustic beacon's position is an issue,
fewer experiment vectors and smaller effective sensor spacings can be used. For the
hexagonal search path shown in figure 4-1, and a pulse repetition interval of 2
seconds, a minimum of 20 experiment vectors with an effective sensor spacing of 35
pulse repetition intervals are required to obtain a decent estimate of the acoustic
beacon's position for a stationary beacon. For the moving beacon, assuming the same
search path, a minimum of 30 experiment vectors with an effective sensor spacing of
45 pulse repetition intervals are required.

In chapter V design specifications for a receiver to implement the algorithms
given in chapters II and III were developed. The synchronous time of receipt was
measured by determining the time of arrival of the acoustic beacon's envelope. To
determine the arrival time of the acoustic beacon's envelop, the beacon's carrier
frequency was first removed using a precision rectifier with a low pass filter to form
an envelope detector. The output of the envelope detector was then logarithmically
compressed to increase the dynamic resolution of the receiver. Next, the output of the logarithmic compressor was digitally sampled using a 68HC11 microcontroller. Following A/D conversion, the sampled envelope was passed through a digital matched filter. For a rectangular windowing function, this produces a unique maximum output which was used to determine the time of arrival. Following the design specifications, a receiver was built from commonly available components. Experiments conducted on receiver showed that the test receiver met the design specifications of section 5.2.
Appendix 1

This appendix contains the schematic diagrams for the receiver designed in chapter V.
Appendix 2

This appendix contains the source code used by the 68HC11. The code is based on a full function SAIL driver written by Dr. Albert Bradley and operates under serial communication interrupt control. The sampling rate of the A/D converter is set by using a Timer Output Compare function. After the microcontroller finishes an initialization period, it sits in a wait state until a serial communications interrupt or a timer output compare interrupt occurs. Once the interrupt is received, the microcontroller executes the requested task, and then returns to the wait state.

; #PTR Driver
;
; THE MINIMUM POWER DRAIN IS-
; 2.5 MA IF IN WAIT LOOP, 4.9152 MHZ
; 6-7 MA IF WORKING, NO LOADS
;
; Mon, Sep 17, 1990, 19:21 MINOR CLEANUPS
; IT CONTAINS-
; - ?M AND !M ARE OPTIONAL, DEPENDING ON THE 'BIG' FLAG
; - FULL BAUD SWITCH CAPABILITY
; - FULL USE OF EVEN PARITY
; - FULL TTY HANDLES
;
; PROC "68HC11"
; THIS IS THE CONTROL FOR THE CONDITIONAL ASSEMBLY OF THE !M AND ?M SECTIONS
; =1 WILL INCLUDE THEM
; =0 WILL EXCLUDE THEM (SAVES $118 BYTES OF CODE)
LOAD: EQU 1
VIEW: EQU 1
;
;
; DEFAULT PARAMETERS
DBAUD: EQU $30 ; START UP AT 9600 BAUD WITH 8.0 MHZ XTAL
SAMPLE: EQU $07D1 ; 1.0mSEC SAMPLING RATE (ADJUSTED FOR ERRORS)
RADBUFF: EQU $3000 ; LOCATION OF RUNNING A/D BUFFER
ADBFULL: EQU $300B ; A/D BUFFER FULL AT 11 VALUES (0-10)
MAXBUF1: EQU $3100 ; LOCATION OF BUFFER 1
MAXBUF2: EQU $3200 ; LOCATION OF BUFFER 2

159
ATTNINC: EQU $E8 ; INCREASE ATTN AT 4.75 VOLTS
ATTNDEC: EQU $40 ; INCREASE THE PREAMP GAIN AT THIS LEVEL
MAX1FL: EQU $310F ; CHECK VALUE TO INITIALIZE MAX BUFFER
MAX2FL: EQU $320F ; CHECK VALUE TO INITIALIZE MAX BUFFER

; ATTENUATOR LEVELS
DB00: EQU $01 ; 0 DB ATTEN
DB03: EQU $09 ; 3 DB ATTEN
DB09: EQU $11 ; 9 DB ATTEN
DB12: EQU $19 ; 12 DB ATTEN
DB18: EQU $21 ; 18 DB ATTEN
DB24: EQU $81 ; 24 DB ATTEN
DB30: EQU $B9 ; 30 DB ATTEN

DMAXNUM: EQU $02 ; DEFAULT NUMBER OF MAX POINTS TAKEN
DPERIOD: EQU $07D0 ; DEFAULT TO 2 SECOND PERIOD
DWIND: EQU $0014 ; DEFAULT INDEX WINDOW

;*
;
RP: EQU $0000 ; REGISTER PAGE ON BASE PAGE
PORTA: EQU RP+$00 ; [OC1,OC2,OC3,OC4!OC5,IC1,IC2,IC3]
PORTC: EQU RP+$03 ;
PORTB: EQU RP+$04 ;
DDRC: EQU RP+$07 ;
PORTD: EQU RP+$08 ; [X.X.SS.SCK!MOSI.MISO.TXD.RXD]
DRRD: EQU RP+$09 ;

; BAT.BAUD.
CFORC: EQU RP+$0B ; TIMER COMPARE FORCE REGISTER
OC1M: EQU RP+$0C ; OUT COMP 1 MASK REG
OC1D: EQU RP+$0D ; OUT COMP 1 DATA REG
TCNT: EQU RP+$0E ; TIMER REGISTER (HIGH BYTE)
DTIC1: EQU RP+$10 ; TIMER INPUT CAPTURE 1 (HI BYT E)
DTIC2: EQU RP+$12 ; TIMER INPUT CAPTURE 2 (HI BYT E)
DTIC3: EQU RP+$14 ; TIMER INPUT CAPTURE 3 (HI BYT E)
DTOC1: EQU RP+$16 ; TIMER OUTPUT COMPARE 1 (HI BYT E)
DTOC2: EQU RP+$18 ; TIMER OUTPUT COMPARE 2 (HI BYT E)
DTOC3: EQU RP+$1A ; TIMER OUTPUT COMPARE 3 (HI BYT E)
DTOC4: EQU RP+$1C ; TIMER OUTPUT COMPARE 4 (HI BYT E)
DTOC5: EQU RP+$1E ; TIMER OUTPUT COMPARE 5 (HI BYT E)
TCTL1: EQU RP+$20 ; TIMER CONTROL REG 1
TCTL2: EQU RP+$21 ; TIMER CONTROL REG 2
TMSK1: EQU RP+$22 ; TIMER INTERRUPT MASK REG 1
TFLG1: EQU RP+$23 ; TIMER INTERRUPT FLAG REG 1
TMSK2: EQU RP+$24 ; TIMER INTERRUPT MASK REG 2
TFLG2: EQU RP+$25 ; TIMER INTERRUPT FLAG REG 2
PACTL: EQU RP+$26 ; PULSE ACCUMULATOR CONTROL REG
PACNT: EQU RP+$27 ; PULSE ACCUMULATOR COUNT REG
SPCR: EQU RP+$28 ; SPI CONTROL REGISTER
SPSR: EQU RP+$29 ; SPI STATUS REGISTER

160
SPDR: EQU RP+$2A ;SPI DATA REGISTER
BAUD: EQU RP+$2B
SCCR1: EQU RP+$2C
SCCR2: EQU RP+$2D
SCSR: EQU RP+$2E
SCDR: EQU RP+$2F
ADCTL: EQU RP+$30
ADR 1: EQU RP+$31
ADR2: EQU RP+$32 ;
ADR3: EQU RP+$33 ;
ADR4: EQU RP+$34 ;
OPTION: EQU RP+$39
HPRIO: EQU RP+$3C
INIT: EQU RP+$3D ;[RAM3.2.1.0!REG3.2.1.0]
;
__
; SAIL interface RAM workspace
RJUMP: EQU $40 ;JUMP INST GOES HERE..
RVECT: EQU $41 ; HI
; $42 ; LO
XJUMP: EQU $43 ;XMIT JUMP INST
XVECT: EQU $44 ; HI
; $45 ; LO
JUMP2: EQU $46 ; 2ND JUMP INST
VECT2: EQU $47 ; HI
; $48 ; LO
SCRTCH1: EQU $49 ;SCRATCH LOC 1
SCRTCH2: EQU $4A ;SCRATCH LOC 2
SCRTCH3: EQU $4B ;SCRATCH LOC 3
SCRTCH4: EQU $4C ;SCRATCH LOC 4
SCRTCH5: EQU $4D ;SCRATCH LOC 5
;
XTTY: EQU $4E ;TTY POINTER HI
; $4F LOW
;
__
; PTR Data interface RAM workspace
PERINDX: EQU $50 ;PERIOD TIMER INDEX HI
; $51 LOW
PERIOD: EQU $52 ;LENGTH OF PERIOD HI
; $53 LOW
MAXBUFF: EQU $54 ;MAXIMUMS BUFFER LOCATION HI
; $55 LOW
MAXFULL: EQU $56 ;MAX BUFFER FULL LOCATION HI
; $57 LOW
ADBFPTR: EQU $58 ;RUNNING A/D BUFFER LOCATION HI
; $59 LOW
TXBUFF: EQU $5A ;MAXIMUMS BUFFER TO TX HI
; $5B LOW
TXBFULL: EQU $5C ;TX BUFFER FULL LOCATION HI

161
ORG $E800 ;ASSUME 27C64 EPROM

; SAIL Address stored here...
ADDR:F CB "#PTR" ;SAIL ADDRESS
F CB $00 ;TERMINATOR

; START:
SEI
CLR $103D ;MOVE REGISTERS TO BASE PAGE (00-> INIT)
LDS #$00FF ;SET STACK POINTER
LDAA #DBAUD ;SET DEFAULT BAUD
STAA BAUD
CLR SCCR1 ;8 DATA BITS, WAKE ON IDLE?
LDAA #$2C ;ONLY REC INTERRUPTS YET
STAA SCCR2

; PTR TIMER INTERRUPT INITIALIZATION
LDAA #$40 ;TOGGLE OC2 ON EACH COMPARE
STAA TCTL1
CLR TMSK2 ;SET PRESCALE TO /1
LDAA #$90 ;TURN ON THE A/D CONVERTER
STAA OPTION
LDAA #$20 ;USE PEO FOR A/D INPUT, SINGLE CHANNEL,
STAA ADCTL ;CONTINUOUS SAMPLING
LDAA #$88 ;SET PORT A PINS 7 AS OUTPUT
STAA PACTL
CLR MAXFLG ;INITIALIZE TO FIRST MAXIMUMS BUFFER
CLR TX1FLG ;INITIALIZE TO NOT TX'D
CLR TX2FLG ;INITIALIZE TO NOT TX'D
CLR AGCFLG ;INITIALIZE TO AGC ON
CLR BIG ;INITIALIZE THE LARGEST VALUE TO ZERO.
CLR TXMHI ;CLEAR THE OUTGOING BUFFERS
CLR TXMLO
CLR TXIHI
CLR TXILO
LDA #DB00 ;SET 0 DB OF ATTENUATION
STA PORTA
LDD #RADBUFF ;SET A/D DATA BUFFER LOCATION IN BASE PAGE
STD ADBF PTR
LDX #MAXBUF1 ;SET FIRST MAX BUFFER LOCATION IN BASE PAGE
STX MAXBUFF
STX TXBUFF
LDAB #DMAXNUM
ADDB #DMAXNUM
STAB MAXNUM ;SET THE NUM MAX CHECK VALUE
ABX
STX MAXFULL ;SET BUFFER FULL TO 2xDMAXNUM
STX TXFULL
LDD #DPERIOD ;SET THE PERIOD SIZE
STD PERIOD
LDX #$0000
STX PERINDX ;INITIALIZE PERIOD TIMER TO ZERO
LDAA #$00
LDX ADBF PTR
CLRAD: STA $00,X ;CLEAR THE RUNNING A/D BUFFER
INX
CPX #ADBFULL
BLO CLRAD
LDX #MAXBUF1 ;CLEAR THE FIRST MAXIMUM BUFFER
CLMX1: STA $00,X
INX
CPX #MAX1FL
BLS CLMX1
LDX #MAXBUF2 ;CLEAR THE SECOND MAXIMUM BUFFER
CLMX2: STA $00,X
INX
CPX #MAX2FL
BLS CLMX2
LDD #DWIN D ;SET DEFAULT INDEX WINDOW
STD WINDOW

;**
CLR SCRTCH1 ;USE AS SAIL MODE FLAG & ADDR POINTER
LDAA #$7E ;MUST WRITE JMP INSTS.
STA RJUMP ;INTO SAIL WORK AREA
STA XJUMP
STA JUMP2
LDD #SETUNAD ;SET VECTORS TO INITIAL VALUES
STD RVECT
STD XVECT
CLI ;AND FINALLY ALLOW INTERRUPTS

;**
; MAIN PROGRAM BODY
LOOP: WAI ;WAIT TILL INTERRUPTED..
 BRA LOOP

; TIMER INTERRUPT HANDLER

OC2: LDD DTOC2 ;GET LAST VALUE IN TOC2
 ADDD #SAMPLE ;AND ADD ONE PERIOD TO IT
 STD DTOC2 ;STORE BACK IN TOC2

 LDAA #$FF ;NORMALIZE THE A/D VALUE
 SUBA ADR1
 CMPA BIG ;IS A/D VALUE GREATER THEN BIG?
 BLO TII ;IF IT IS STORE IN BIG ELSE MOVE ON
 STAA BIG

TII: LDX ADBFPTR ;GET THE CURRENT A/D POSITION
 STAA $00,X ;STORE THE VALUE
 INX ;UPDATE THE POINTER
 CPX #ADBFULL ;CHECK IF AT LAST A/D STORAGE LOCATION
 BLO TII ;IF NOT INC ADBPTR AND MOVE ON
 LDX #RADBUFF ;IF YES REINITIALIZE ADBPTR AND MOVE ON

TI2: STX ADBFPTR ;SAVE THE A/D STORAGE POINTER

 LDX #RADBUFF ;GET THE A/D BUFFER LOCATION
 LDY #0000 ;INITIALIZE THE SUMATION VALUE

SUMMING: LDAB $00,X ;GET THE A/D VALUE TO ADD
 ABY ;SUM+=SUM+A/D
 INX ;CONTINUE UNTIL ALL VALUES IN THE A/D
 CPX #ADBFULL ;BUFFER ARE SUMMED
 BLO SUMMING

 LDX MAXBUFF ;GET THE BUFFER TO WRITE TO
 LDD PERINDX ;SETUP FOR TESTING MAX VALUES
 STD TEMPIND
 CPD WINDOW ;SEE IF THE MAX IS CLOSE TO THE START OF
 ;THE PERIOD
 BHI TII_1_1 ;IF NOT MOVE ON, OTHERWISE
 CPY $00,X ;CHECK FOR A NEW MAXIMUM
 BLO TII_2 ;IF NOT GOTO CHECK FOR SECONDARY MAX'S
 STY $00,X ;IF YES JUST REPLACE CURRENT MAX
 LDD TEMPIND
 STD $10,X
 BRA TIENDJ
; TII_1_1:
 ADDD WINDOW ;SEE IF THE MAX IS CLOSE TO THE END OF PERIOD
 CPD PERIOD
 BLO TII_1_2 ;IF NOT MOVE ON, OTHERWISE
 CPY $00,X ;CHECK FOR A NEW MAXIMUM
 BLO TII_2 ;IF NOT GOTO CHECK FOR SECONDARY MAX'S
 STY $00,X ;IF YES JUST REPLACE CURRENT MAX
 LDD TEMPIND
 STD $10,X
 BRA TIENDJ

; TII_1_2:
 LDD PERINDX
 SUBD WINDOW
 STD WINCHK
 CPY $00,X ;CHECK FOR A NEW MAXIMUM
 BLO TII_2 ;IF NOT CHECK FOR SECONDARY MAX'S
 CPD $10,X ;CHECK IF WITHIN WINDOW
 BHI TII_1 ;IF NO REPLACE ALL MAX'S
 STY $00,X ;IF YES JUST REPLACE CURRENT MAX
 LDD TEMPIND
 STD $10,X
 TIENDJ:
 BRA TIEND

; TII_1:
 LDD $00,X ;SHIFT ALL OLD MAX'S ONE LOCATION AND
 STY $00,X ;SAVE THE NEW MAX VALUE
 STD TEMPMAX
 LDY $10,X
 LDD TEMPIND
 STD $10,X
 STY TEMPIND
 LDY TEMPMAX
 INX ;INCREMENT TO THE NEXT MAX
 INX
 CPX MAXFULL ;SEE IF DONE
 BLO TII_1
 BRA TIEND

; TII_2:
 LDD $10,X ;CHECK FOR SECONDARY MAX'S
 ADDD WINDOW ;SET UP INDEX WINDOW
 STD INDXCHK
 INX ;MOVE TO THE NEXT MAX
 INX
 CPX MAXFULL ;SEE IF DONE
 BHS TIEND
 CPY $00,X ;LOOK FOR NEW SECONDARY
 BLO TII_2
 LDD TEMPIND
 CPD INDXCHK ;IF WITHIN THE WINDOW OF THE LARGER MAX
 BLO TIEND ;IGNORE THE VALUE
 LDD PERIOD
 SUBD PERINDX

165
LDD PERINDX
STY $00,X
STD $10,X
BRA TIEND

TII_3:
LDD $00,X
STY $00,X
STD TEMPMAX
LDY $10,X
LDD TEMPIND
STD $10,X
STY TEMPIND
LDY TEMPMAX
INX
INX
CPX MAXFULL
BLO TII_3

TIEND:
LDX PERINDX
INX
CPX PERIOD
BLO TI11

INC MAXFLG
BRCLR MAXFLG,$01,TI7 ;ARE WE IN MAXIMUMS BUFFER 1 OR 2?
CLR TX1FLG ;CLEAR BUFFER 1 TX'D FLAG
LDY #MAXBUF2
BRA T18
T17:
CLR TX2FLG ;CLEAR BUFFER 2 TX'D FLAG
LDY #MAXBUF1
T18:
STY MAXBUFF ;UPDATE THE BUFFER TO USE
LDAB MAXNUM
ABY
STY MAXFULL ;UPDATE THE FULL BUFFER VALUE

BRSET AGCFLG,$01,TI10 ;IF MANUAL GAIN SET DON'T CHECK AGC
LDAA BIG ;TEST IF GAIN NEEDS TO BE DECREASED
CMPA #ATTNINC ;IF NOT MOVE ON
BLO T19
JSR ATTN ;GO TO ATTN FOR MORE ATTENUATION
BRA T110
T19:
CMPA #ATTNDEC ;TEST IF GAIN NEEDS TO BE INCREASED
BHI T110 ;IF NOT MOVE ON
JSR INC ;GO TO INC FOR LESS ATTENUATION

166
LDX #$0000 ; CLEAR THE PERIOD COUNTER
STX PERINDX
LDAA #$40 ; RESET TIMER FLAGS
STAA TFLG1
RTI

;SCI INTERRUPT HANDLER (SAIL DRIVER)
; Sat, May 12, 1990, 20:34 COMPACT BY 20 BYTES BY USING RSET:
; Sun, May 13, 1990, 12:36 COMPACT BY USING CONDITIONAL ASSEMBLY
; Sun, May 13, 1990, 12:37 AND BY USING TTY FOR PROMPT
; Mon, Sep 17, 1990, 19:20 ADD IN4 TO TTY
SCI: BRCLR SCSR,$0E,CKCHAR ; TEST FOR VALID CHAR
;& LDA A SCSR ; TEST OR.NF.FE
; ANDA #$0E
; BEQ CKCHAR ; IF GOOD, GO ON..
LDAA SCDR ; READ BAD CHAR TO CLEAR?
ECHO: NOP ; RECEIVE AN ECHO CHARACTER (& IGNORE!)
SCIXIT: RTI ; & EXIT
;
CKCHAR: BRSET SCSR,$20,READD
;& LDA A SCSR ; TEST DA
; ANDA #$20
; BNE READD
JMP CHECKX ; IF NOT, XMIT
;
READD: LDA A SCDR ; READ DATA TO A..
TAB ; AND COPY TO B
; LDX #PARITY ; POINT PARITY TABLE
; ABX ; POINT INTO PARITY TABLE
; LDA B 0,X ; GET PARITY WORD
; BNE SCIXIT ; REJECT IF NOT EVEN PARITY
; ANDA #$7F ; ELSE REMOVE PARITY FOR SUBSEQUENT TESTS
TAB ; (ALSO COPY TO B)
CMPA #"#" ; IS IT "#"?
BEQ GOTNUM
JMP RJUMP ; ELSE GO THRU VECTOR
;
ATXIT: JMP SCIXIT ; NO FURTHER USE FOR THIS CHAR, EXIT
;
; SAIL ADDRESS RECOGNIZE SECTION
GOTNUM: LDA B #01 ; GOT # CODE
STAB SCRTCH1 ; SET SAIL FLAG TO 01
BCLR SCCR2,$D2 ; TURN OFF XMIT INTERRUPTS
;& LDA A SCCR2
; ANDA #$2C ; TURN OFF XMIT INTERRUPTS
; STAA SCCR2
LDD #READAD ; POINT READ ADDRESS

167
RSET: STD RVECT ;;MAY ENTER HERE FROM MANY OTHER PLACES
 JMP SCIXIT ;;AND EXIT

READAD: LDAB SCRTCH1 ;GET SMODE COUNT
 CMPB #$01 ;IS THIS THE FIRST CHAR?
 BNE TRYADD ;IF FIRST, IS IT '0'?
 CMPA #0' ;IF SO, MAY BE BAUD SWITCH
 BEQ TSTBAUD ;CONTINUE ON BELOW...
 ;ELSE POINT X TO ADDR
 LDX #ADDR ;ADD TO X
 ABX
 CMPA 0,X ;COMPARE NEW CHAR TO A
 BEQ NEXTAD ;IF MATCH, LOOK FOR NEXT IN LIST

TRYADD: LDX #ADDR ;ELSE POINT X TO ADDR
 ABX
 CMPA 0,X ;COMPARE NEW CHAR TO A
 BEQ NEXTAD ;IF MATCH, LOOK FOR NEXT IN LIST

SETUNAD: LDD #UNADDR ;ELSE SET UNADDRESS STATE
 STD RVECT

UNADDR: CLR SCRTCH1 ;CLEAR SAIL MODE TO 00
 BCLR SCCR2,$D2 ;TURN OFF XMIT INTERRUPTS
 &
 LDAA SCCR2
 ANDA #$2C
 STA SCCR2
 LDD #XPASS
 STD XVECT
 JMP SCIXIT

XSET: STD XVECT
 JMP SCIXIT

NEXTAD: INX ;POINT NEXT ADD CHAR
 INC SCRTCH1 ;(& INC COUNTER)
 TST
 BEQ GOTADDR ;TEST IT,
 JMP SCIXIT ;TERMINATOR?

GOTADDR: LDD #CONCHAR ;REC CONTROL CHAR NEXT..
 JMP RSET

TEST FOR BAUD CHANGE COMMAND
TSTBAUD: LDD #BAUD2
 JMP RSET

BAUD2: CMPA #0' ;GOT SECOND 0?
 BEQ BAUD3
 JMP SETUNAD

BAUD3: LDX #SCRTCH1 ;POINT TO 5 CHAR BUFFER
 STX VECT2
 LDD #BAUD4
 JMP RSET

BAUD4: LDX VECT2 ;GET POINTER
 CMPA #' ' ;IS IT SPACE?
BNE BAUD5
LDAA #0' ;CHANGE SPACES TO 0'S

BAUD5:
STAA 0,X ;STORE CHAR
INX ;ADVANCE POINTER
CPX #SCRTCH1+5 ;PAST END OF 5 CHAR BUFFER?
BEQ BAUD6
STX VECT2 ;IF NOT DONE, SAVE POINTER
JMP SCIXIT ;AND GET MORE

BAUD6:
LDX SCRTCH1+3 ;GET LAST TWO CHARS
CPX #$3030 ;ARE LAST TWO CHAR'S BOTH 0?
BNE WAITBRK ;IF NOT VALID, SET UP TO WAIT FOR BREAK

; IF LAST TWO CHAR'S ARE 00, CHECK BUFFER AGAINST DATA TABLES FOR A MATCH
LDD #BAUDTBL ;SET UP TABLE POINTER
STD VECT2 ;AND STORE IN JUMP2 VECTOR

; TRY EACH TABLE SEPARATELY, 00 AS 1ST CHAR SIGNALS END OF TABLE
BTRY:
LDX VECT2 ;GET TABLE POINTER
LDAA 0,X ; AND TABLE ELEMENT
BEQ WAITBRK ; IF=00, WAS NO MATCH, WAIT FOR BREAK

; COMPARE BUFFER WITH ONE TABLE ENTRY
LDX #SCRTCH1 ;INIT BUFFER POINTER TO TOP
STX XVECT ; & SAVE IN XMIT JUMP VECTOR

; COMPARE EACH CHARACTER
COMPARE:
LDX XVECT ;GET BUFFER POINTER
LDAA 0,X ; TO GET BUFFER CHAR TO A
INX ; INX BUF POINT WHILE WE'RE HERE
STX XVECT ; & SAVE..
LDX VECT2 ;NOW GET TABLE POINTER
CMPA 0,X ; & USE TO COMPARE CHAR'S
BNE NOMATCH

CMATCH:
INX ;IF MATCH, MOVE AHEAD TABLE POINTER
LDAA 0,X ;LOOK AT NEXT TABLE ELEMENT
BEQ MATCH ; IF IT'S 00, FULL MATCH!
STX VECT2 ; ELSE SAVE TABLE POINTER
BRA COMPARE ; AND TRY NEXT CHAR

NOMATCH:
INX ;INC TABLE POINTER
LDAA 0,X ;AND LOOK FOR 00
BNE NOMATCH ;LOOP TILL IT'S FOUND
INX ;INC OVER NULL
INX ; & BAUD SET BYTE
STX VECT2 ;AND REPLACE TO HOLDING LOCATION
BRA BTRY ;GO BACK TO CHECK NEXT TABLE

WAITBRK:
LDAA #$0C ;TURN OFF SCI INTERRUPTS
STAA SCCR2 ; (REQUIRES TOF INTERRUPT TO RESTART)
JMP SETUNAD ;AND SET VECTORS FOR NEW ADDRESS..
Baud rate switch table:

<table>
<thead>
<tr>
<th>BAUD</th>
<th>FCB</th>
<th>Baud Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>096</td>
<td>'096', $00, $30</td>
<td>9600 BAUD</td>
</tr>
<tr>
<td>048</td>
<td>'048', $00, $31</td>
<td>4800 BAUD</td>
</tr>
<tr>
<td>024</td>
<td>'024', $00, $32</td>
<td>2400 BAUD</td>
</tr>
<tr>
<td>012</td>
<td>'012', $00, $33</td>
<td>1200 BAUD</td>
</tr>
<tr>
<td>006</td>
<td>'006', $00, $34</td>
<td>600 BAUD</td>
</tr>
<tr>
<td>003</td>
<td>'003', $00, $35</td>
<td>300 BAUD</td>
</tr>
<tr>
<td></td>
<td>FCB $00</td>
<td>DONE</td>
</tr>
</tbody>
</table>

Assembly code:

```assembly
; MATCH: INX ; PASS 00 TERMINATOR
LDAA 0,X ; GET BAUD BYTE
STAA BAUD ; AND RE-WRITE
JMP SETUNAD ; AND PREPARE FOR NEW ADDRESSING...

; ?M COMMAND - DATA INPUT SECTION
if VIEW

QUERYM: LDD #SAVEADD ; NOW INPUT ADDRESS
        JMP IN4

; SAVEADD: LDD SCRTCH1 ; GET ADDRESS,
        STD SCRTCH3 ; & SAVE IN ADDRESS POINTER
        LDD #STARTL
        JMP IN4 ; THEN GET LENGTH

; STARTL: LDD SCRTCH1 ; IF LENGTH NE 0000
        BNE STARTL2 ; CARRY ON..
        JMP PROMPT ; ELSE QUIT

; STARTL2: LDD #ECHO ; PREPARE TO IGNORE ECHO CHARMS
        STD RVECT
        BSET SCCR2,$E0 ; START XMIT INTERRUPTS
;&
        LDAA SCCR2
        ORAA #$E0 ; START XMIT INTERRUPTS
        STAA SCCR2
        JMP OUTLINE ; & SEND A LINE..

; THE ?M DUMP IS STORED IN THE XMIT SERVICE SECTION BELOW
else
endif

; !M SECTION
IF LOAD ; CONDITIONAL ASSEMBLY OF LOAD M SECTION

BANGM: LDD #KEEPADD ; INPUT STARTING ADDRESS
        JMP IN4

; KEEPADD: LDD #HIHEX ; WAIT FOR HIGH HEX CHAR
```
JMP RSET

HIHEX: JSR ASCHEX ;ATTEMPT CONVERT TO HEX
BCS TERMIN ;CHECK TERMINATOR IF NOT..
ASLA
ASLA
ASLA
ASLA
STAA SCRTCH5
LDD #LOWHEX
JMP RSET

LOWHEX: JSR ASCHEX ;CONVERT LOW
BCC STASH
JMP PROMPT ;PROMPT IF BAD SECOND CHAR
STASH: LDX SCRTCH1 ;GET POINTER
ORA SCRTCH5 ;COMBINE NIBBLES
STAA 0,X ;STORE IT..
INX ;INC &
STX SCRTCH1 ;RESTORE POINTER
LDD #HIHEX
JMP RSET

TERMIN: ANDA #$7F ;MASK OFF FLAG BIT
CMPA #$0D ;IS IT CR?
BNE TERMIN2
JMP PROMPT

TERMIN2: CMPA ";" ;IS IT SPACE?
BNE TERMIN3
LDD #HIHEX
JMP RSET

TERMIN3: CMPA ";;" ;OR ";" ?
BNE TERMIN4
LDD #BANGM
BRA PASSLF

TERMIN4: CMPA ";;" ;OR ";" ?
BNE TERMIN5
LDD #SETHIHX

PASSLF: STD VECT2
LDD #PASSLF2
JMP RSET

PASSLF2: CMPA #$0A ;GOT LF YET?
BNE PXIT
JMP JUMP2 ;IF YES, EXIT THRU JMP2
PXIT: JMP SCIXIT ;ELSE WAIT FOR MORE CHARs..

SETHIHX: LDD #HIHEX ;IF ";" THEN PREP FOR MORE HEX
JMP RSET

; TERMIN5: JMP PROMPT ;TO PROMPT IF NOT VALID CHAR
endif

; IN4 HEX DIGITS
; INPUTS HEX DIGITS TILL TERMINATED BY A SPACE OR
; BY A CR. (OR BY UNADDRESS). RESULT LEFT AT SCRTCH1,2
; EXITS THRU JUMP2 WHEN DONE (TARGET IN D ON ENTRY)

IN4:
 STD VECT2 ;STORE EXIT VECTOR
 CLR SCRTCH1 ;CLEAR INPUT BUFFER
 CLR SCRTCH2
 LDD #IN4HEX ;POINT CHAR RECEIVER
 JMP RSET

IN4HEX:
 JSR ASCHEX ;CONVERT TO HEX
 BCS CKEND ;IF NOT HEX, CHECK FOR END
 PSHA ;SAVE...
 LDAA SCRTCH1 ;HI TO A
 LDAB SCRTCH2
 ASLD ;SHIFT OVER FOUR
 ASLD
 ASLD
 STAA SCRTCH1 ;RETURN HIGH
 STAB SCRTCH2 ;AND B
 PULA ;RETRIEVE NEW NIBBLE
 ORAA SCRTCH2 ;ADD NEW NIBBLE
 STAA SCRTCH2 ;& UPDATE
 JMP SCIXIT

CKEND:
 ANDA #$7F ;CLEAN OFF MS FLAG BIT
 CMPA '#'; ;IS IT SPACE?
 BEQ INEXIT ;IS IT CR?
 CMPA #$0D
 BEQ INEXIT
 JMP SCIXIT ;ELSE, GET ANOTHER CHAR

INEXIT:
 JMP JUMP2 ;IF DONE, CARRY ON THRU VECTOR...

; INPUT ONE HEX BYTE AND CONTINUE THRU JUMP2
INBYTE:
 ASLA ;MOVE OVER
 ASLA
 ASLA
 ASLA
 STAA SCRTCH5 ;SAVE
 LDD #INBYTE2 ;POINT TO NEXT SEGMENT
 JMP RSET

172
INBYTE2: JSR ASCHEX ;CONVERT LOW NIBBLE
 BCC SAVEDAT
 JMP SETUNAD ;UNADDRESS IF ERROR

SAVEDAT: ORAA SCRTCH5 ;COMBINE
 JMP JUMP2 ;AND CARRY ON THRU VECTOR2

; NOW CHECK THE TRANSMIT SITUATION
CHECKX: BRCLR SCSR,$80,XERROR
 & LDA SCSR ;MAKE SURE XMIT BIT WAS SET
 A ANDA #$80
 1 BEQ XERROR
 R JMP XJUMP ;GO THRU XMIT VECTOR

; THESE SEGMENTS ARE ENTERED THRU XJUMP AND XVECTOR..
XERROR: NOP ;TRIG LOC FOR DIAGNOSTICS

; XJUMP TARGETS..
XPASS: BCLR & LDA SCCR2
 & ANDA #$2F
 1 STAA SCCR2
 R JMP SCRXIT

; if VIEW a conditional segment
; OUTPUT A LINE OF DATA (FROM ?M DUMP)
OUTLINE: LDD #OUTLF ;& SET UP TO XMIT
 STD XVECT
 LDA #$0D ;SEND CR
 JMP SETOUT

; OUTLF: LDD #OUTADDR
 STD XVECT
 LDA #$0A ;SEND LF
 JMP SETOUT

; OUTADDR: LDD #LOWADDR ;PREP OUTBYTE XIT
 STD VECT2
 LDA SCRTCH3 ;GET HIGH ADDRESS
 JMP OUTBYTE

; LOWADD2: LDD #LOWADD2 ;EXIT FROM 2ND OUTBYTE..
 JMP XSET

; LOWADD2: LDD #ADDRSP
 STD VECT2
 LDA SCRTCH4 ;NOW LOW ADDRESS
 JMP OUTBYTE

;
ADDRSP: LDD #SENDSP ;EXIT FROM 2ND OUTBYTE...
 JMP XSET
;
SENDSP: LDD #OUTDATA
 STD XVECT
 LDAA #$20 ;SEND SPACE
 JMP SETOUT
;
OUTDATA: LDX SCRTCH3 ;GET ADDR POINTER
 LDAA 0,X ;TO GET DATA BYTE
 PSHA ;SAVE
 LDD #DECLLEN
 STD VECT2 ;PREP XIT VECTOR
 PULA ;RETRIEVE DATA BYTE
 JMP OUTBYTE ;& SEND IT
;
DECLLEN: LDD #DECLLEN2 ;EXIT FROM OUTBYTE2...
 JMP XSET
;
DECLLEN2: LDX SCRTCH1 ;GET LENGTH
 DEX ;DECREMENT
 STX SCRTCH1 ;& RETURN
 BNE SAYMORE ; MORE DATA?
 JMP PROMPT ;PROMPT IF DONE
;
SAYMORE: LDX SCRTCH3 ;GET ADDR
 INX ;INCREMENT
 STX SCRTCH3 ;REPLACE
 XGDX ;X REG TO ACCD
 LSRD ;LSB TO C
 BCS OUTDATA ;NEXT BYTE NOW IF ODD
 ANDB #$07 ;CHECK FOR XXX0 (LINE END)
 BNE SENDSP ;IF ONLY EVEN, SEND SP
;
 LDAA ";" ;IF NEW LINE, SEND CONTINUATION
 JSR GENPAR
 STAA SCDR
 LDD #OUTBYT2 ;& PREP FOR NEW LINE..
 JMP XSET
endif

;--
; OUTPUTS A BYTE IN A AS TWO HEX CHARS, EXITS VIA VECT2..
OUTBYTE: STAA SCRTCH5 ;STASH FOR LATER
 LSRA
 LSRA
 LSRA
 JSR HEXASC ;CONVERT
 PSHA ;AND SAVE..
 LDD #OUTBYT2

174
XVECT
;RECOVER CHARACTER
JMP SETOUT
;
OUTBYT2:
LDAA SCRTCH5
ANDA #$00
JSR HEXASC
JMP OUTJMP
; CONVERT, SEND & JUMP THRU VECT2
;
; SEND A PROMPT FROM THE MONITOR, THEN WAIT FOR CHARS
PROMPT:
LDX #PLIST
JMP TTY0
PLIST:
FCB $0D,$0A,'$E8,$09,SCRTCH1,$AA
FDB PJUMP
PJUMP:
LDAA SCRTCH1
JMP CONCHAR
;
; INITIATE AN OUTPUT SEQUENCE
SETOUT:
JSR GENPAR
STAA SCDR ;SEND FIRST CHAR
BSET SCCR2,$00
;
LDAA SCCR2
;
ORAA #$00 ;TURN ON INTERRUPTS IF REQ'D
;
STAA SCCR2
LDD #$00 ;& PREPARE TO ECHO
JMP RSET
;
; SENDS ETX & CARRIES ON THRU VECT2
XETX:
LDAA #$03 ;SEND ETX
OUTJMP:
JSR GENPAR ;MAY ENTER HERE...
STAA SCDR ;DRAGON AGAIN?
JMP JUMP2 ;NOW THRU JUMP2
;
; SUBROUTINES USED BY PTR DRIVER......
;
ATTN:
LDAA PORTA ;GET THE VALUE IN PORT A
CMPA #DB00 ;IS 0 DB SET?
BNE ATTN1 ;IF NO GO ON
LDAA #DB03 ;IF YES SET 3 DB
STAA PORTA
BRA ATTNF ;EXIT
ATTN1:
CMPA #DB03 ;IS 3 DB SET?
BNE ATTN2 ;IF NO GO ON
LDAA #DB09 ;IF YES SET 9 DB
STAA PORTA
BRA ATTNF ;EXIT
ATTN2:
CMPA #DB12 ;IS 12 DB SET?
BNE ATTN3 ;IF NO GO ON

LDAA #DB18 ;IF YES SET 18 DB
STAA PORTA
BRA ATTNF ;EXIT

ATTN3:
CMPA #DB18 ;IS 18 DB SET?
BNE ATTN4 ;IF NO GO ON
LDAA #DB24 ;IF YES SET 24 DB
STAA PORTA
BRA ATTNF ;EXIT

ATTN4:
CMPA #DB24 ;IS 24 DB SET?
BNE ATTN5 ;IF NO GO ON
LDAA #DB30 ;IF YES SET 30 DB
STAA PORTA
BRA ATTNF ;EXIT

ATTN5:
CMPA #DB30 ;IS 30 DB SET?
BNE ATTN6 ;IF NO GO ON
BRA ATTNF ;IF YES CANT CHANGE ANYMORE

ATTN6:
LDAA #DB00 ;IF NON OF THE ABOVE ARE SET, SET 0 DB
STAA PORTA

ATTNF
RTS

INC:
LDAA PORTA ;GET THE VALUE IN PORT A
CMPA #DB30 ;IS 30 DB SET?
BNE INC1 ;IF NO GO ON
LDAA #DB24 ;IF YES SET 24 DB
STAA PORTA
BRA INCF ;EXIT

INC1:
CMPA #DB24 ;IS 24 DB SET?
BNE INC2 ;IF NO GO ON
LDAA #DB18 ;IF YES SET 18 DB
STAA PORTA
BRA INCF ;EXIT

INC2:
CMPA #DB18 ;IS 18 DB SET?
BNE INC3 ;IF NO GO ON
LDAA #DB12 ;IF YES SET 12 DB
STAA PORTA
BRA INCF ;EXIT

INC3:
CMPA #DB12 ;IS 12 DB SET?
BNE INC4 ;IF NO GO ON
LDAA #DB09 ;IF YES SET 9 DB
STAA PORTA
BRA INCF

INC4:
CMPA #DB09 ;IS 9 DB SET?
BNE INC5 ;IF NO GO ON
LDAA #DB03 ;IF YES SET 3 DB
STAA PORTA
BRA INCF

INC5:
LDAA #DB00 ;IF NON OF THE ABOVE ARE SET, SET 0 DB
STAA PORTA

INCF
RTS

;**
; SUBROUTINES USED BY SAIL DRIVER......

; Converts low nibble in A to ASCII char in A
HEXASC: ANDA #$OF
 ADDA #$F6
 BCC HNUMBER
 ADDA #$07 ; CONVERT
 HNUMBER: ADDA #$3A ; TO ASCII
 RTS

; ------------------------------

; Converts ASCII char in A to nibble in A if it is HEX & clears C
; Otherwise, returns original char with C bit set.
ASCHEX: PSHA ; SAVE CHAR
 SUBA #$30
 BCS NOTHEX
 SUBA #$0A
 BGE TSTALPH
 ADDA #$0A ; REPAIR NUMB
 BRA AXIT
 TSTALPH: SUBA #$07 ; 41->00 ?
 BLT NOTHEX
 SUBA #$06
 BGE NOTHEX
 ADDA #$10 ; REPAIR ALPH
 AXIT: INS ; POP OFF SAVED CHAR
 CLC ; AND CLEAR CARRY BIT
 RTS
 NOTHEX: PULA ; GET CHAR
 SEC ; SET CARRY
 RTS

; ------------------------------

; GENERATE PARITY- Char is passed in and out thru A
GENPAR: PSHB ; SAVE SOME STUFF..
 PSHX
 TAB ; COPY CHAR TO B
 LDX #PARITY ; POINT TO PARITY TABLE TOP
 ABX ; ADD OFFSET TO POINT X TO CHAR
 ORAA 0,X ; ADD PARITY BIT
 PULX ;..RESTORE
 PULB
 RTS

; PARITY TABLE
PARITY: FCB $00,$80,$80,$00,$80,$00,$00,$80 ; A
 FCB $80,$00,$00,$80,$80,$00,$80,$00 ; B
 FCB $80,$00,$00,$80,$00,$80,$80,$00 ; B
 FCB $00,$80,$80,$00,$00,$00,$00,$80 ; A
 XX20 FCB $80,$00,$00,$80,$00,$80,$80,$00 ; B
<table>
<thead>
<tr>
<th>Address</th>
<th>ASCII Code</th>
<th>Hex Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00,80,80,80,80,00,80,00,80,80,00</td>
<td>A</td>
<td>$00,$80,$80,$00,$80,$00,$80,$00</td>
<td>CHARACTBL:</td>
</tr>
</tbody>
</table>
HELP FILE DUMP

SAYHELP: LDX #HELPFIL
 BRA TTY0

; A TTY ROUTINE FOR SAIL68 **DO NOT DELETE! USED BY PROMPT ETC!!**
; -USES $FD BYTES
; -TO ENTER FOR XMIT, LDX #table AND THEN JMP TTY0
; -TO ENTER IN REC MODE LDX #table AND JMP TTYR0
; -MUST USE EE TO SWITCH FROM SENDING TO REC CHARs
; -CAN GO BACK TO SENDING W/O PROBLEM
; -ARG TABLE CODES..

ASCII -TYPE IT AND GO ON WITH XMIT INTERRUPTS ON
00 -BACK TO THE PROMPT
AA aaaa -JMP TO aaaa WITH XMIT INTERRUPTS STILL ON (USE FDB!)
80 aa -SEND CHAR AT LOC aa
81 aa -SEND HEX PAIR AT LOC aa
EE -SEND ETX & WAIT FOR A CHAR (MUST BE FOLLOWED BY 9X)
90 aa -REC A CHAR AND SAVE IT AT aa
91 aa -REC A HEX PAIR AND SAVE IT AT aa (ABORT TO PROMPT <>HEX)
94 aa -CLEAR SCRTCH1,2 & WAIT FOR A HEX STRING, PUT AT aa,aa+1
 (ENTRY TERMINATED BY SP OR CR)

TTY: LDX XTTY ;LOAD X FROM STORAGE LOCATION
TTY0: LDD #TTY ;SET REENTER VECTOR
 STD XVECT
 LDAA 00,X ;GET ARGUMENT
 BNE TRYAA
 JMP PROMPT ;IF =00, GO DIRECTLY TO PROMPT..

TRYAA: CMPA #$AA
 BNE TRYASC
 INX
 LDX 0,X ;VECTOR TO X
 JMP 0,X ;AND JUMP TO M(X)

TRYASC: TSTA
 BMI TRY80 ;IF MSB IS 1, NOT ASCII..
 JSR LBISX ;ELSE GET THE ASCII IMM CHAR
 TBA
 JMP SETOUT ;GO SEND IT NOW

TRY80: CMPA #$80 ;REQ IND CHAR?
 BNE TRY81
 INX
 JSR LBISX ;GET THE ADDRESS (ASSUME BASE PAGE)
 JSR CRADDR ;CREATE ADDRESS
 LDAA 0,X ;GET THE IND DATA
 JMP SETOUT

TRY81: CMPA #$81 ;REQ IND HEX PAIR?
 BNE TRYEE

179
INX
JSR LBISX ;GET THE ADDRESS (ASSUME BASE PAGE)
JSR CRADDR ;CREATE ADDRESS
LDD #TTY2 ;THEN SET UP VECT2 EXIT PATH
STD VECT2
LDA A 0,X ;GET THE IND DATA NOW
JMP OUTBYTE
;
TTY2: LDD #TTY ;EXIT PATH FOR VECT2 STUFF..
JMP XSET ;(ALLOWS OUTBYTE TO RETURN TO TTY)
;
TRYEE: CMPA #$EE ;SEND ETX & GO TO RECEIVE MODE?
BEQ GOTEET ;IF NOT VALID OUT GROUP CONTROL CHAR, JUST
PROMPT
;
GOTEET: INX ;SWITCH TO INPUT MODE
STX XTTY ;SAVE THE CONTROL TABLE POINTER
LDA A #$03 ;SEND ETX
JSR GENPAR
STAA SCDR
BCLR SCCR2,$C0 ;STOP FURTHER XMIT INTERRUPTS
LDD #TTY3 ; AND PREPARE TO RECEIVE THE ETX ECHO
JMP RSET
;
TTY3: CMPA #$03 ;GOT ETX YET?
BEQ TTY4 ; KEEP WAITING TILL IT ECHOS
JMP SCIXIT
;
TTY4: LDD #TTYR ;WHEN GOT ETX, PREP TO REC DATA CHAR
JMP RSET ; SET RVECT TO TTYR AND EXIT
;
TTYR: LDX XTTY ;WHILE WE FIGURE OUT WHAT TO DO WITH IT
JSR LBISX ;GET THE CONTROL CHAR..
TRY90: CMPB #$90 ;SAVE WHOLE CHAR
BNE TRY91
SAVCHR: JSR LBISX ;IF 90, SAVE WHOLE CHAR AT IMM ADDRESS
JSR CRADDR ;CREATE ADDRESS
STAA 0,X ;SAVE THE DATA BYTE IN M(X)
BRA CKNEXT ;CHECK NEXT CONTROL BYTE FOR TYPE (READ OR
WRITE)
;
TRY91: CMPB #$91 ;ENTER A HEX PAIR?
BNE TRY94
JSR ASCHEX
BCS TRERR ;ABORT IF NOT HEX CHAR
TTYHEX:

JECTION TO LOAD B, INC & STR X

SUBROUTINE TO LOAD B, INC & STR X

USED BY TTY ABOVE
STX XTTY
RTS

; CRADDR:
LDX #$0000 ;SUBROUTINE TO CREATE AN ADDRESS
ABX
RTS

; AFTER VALID ADDRESS, RECEIVE CONTROL CHAR..
CONCHAR:
ANDA #$7F ;CLEAN OFF FLAG BIT
CMPA ’’ ;IS IT ’’
BEQ SETBG
CMPA ’?’ ;OR IS IT ’?’
BEQ SETQG
CMPA ’O’ ;IS IT ’O’, START DATA COLLECTION?
BEQ TIMEJ
CMPA ’P’ ;IS IT ’P’, PAUSE DATA COLLECTION?
BEQ TIMOUTJ
CMPA ’.’ ;IS IT ’.’, DATA SCAN REQUEST?
BEQ DSCANL
CMPA ’A’ ;IS IT ’A’, SET GAIN CONTROL?
BEQ ATTCMD
CMPA ’’ ;SPACE TO ENTER MONITOR?
BEQ GOMON
CMPA #$0D ;CHAR RETURN TO ENTER MONITOR?
BEQ GOMON
CMPA ’H’ ;HELP?
BEQ SAYHEL
CMPA ’R’ ;RESTART?
BEQ RSTARTJ
CMPA ’V’ ;ATTEN VALUE REQUEST
BEQ AVOUTJ
JMP AVOUTJ ;UNADDRESS IF NOT VALID..

; GOMON:
JMP PROMPT ;LINK INTO MONITOR
SAYHEL:
JMP SAYHELP ;LINK TO SAYHELP
DSCANL:
JMP DSCAN ;LINK TO DATA SCAN
TIMEJ:
JMP TIME ;LINK TO TIME
TIMOUTJ:
JMP TIMOUT ;LINK TO TIMOUT
RSTARTJ:
JMP START ;LINK TO START
AVOUTJ:
JMP AVOUT ;LINK TO ATTEN VAL OUTPUT

;:::

SETBG:
LDD #BGROUP ;PREPARE FOR THE CHAR AFTER !
JMP RSET

SETQG:
LDD #QGROUP ;PREPARE FOR THE CHAR AFTER ?
JMP RSET

ATTCMD:
LDD #ATTNGRP ;PREPARE FOR THE CHAR AFTER A
JMP RSET

;:::

BGROUP:
NOP
CMPA ’T’
BEQ LTESTJ
if LOAD
CMPA #M'
BEQ BANGML
endif
JMP PROMPT
; if LOAD
BANGML: JMP BANGM ;LINK TO IM
else
endif

LTESTJ: JMP LTEST
;---------
QGROUP: NOP
if VIEW
CMPA #M'
BEQ QUERYML
else
endif
JMP PROMPT
;
if VIEW
QUERYML: JMP QUERYM ;LINK TO ?M
else
endif
;---------
ATTNGRP: NOP
CMPA #'0' ;MANUAL SET 0 DB ATTEN
BEQ SET0DBJ
CMPA #'1' ;MANUAL SET 3 DB ATTEN
BEQ SET1DBJ
CMPA #'2' ;MANUAL SET 9 DB ATTEN
BEQ SET2DBJ
CMPA #'3' ;MANUAL SET 12 DB ATTEN
BEQ SET3DBJ
CMPA #'4' ;MANUAL SET 18 DB ATTEN
BEQ SET4DBJ
CMPA #'5' ;MANUAL SET 24 DB ATTEN
BEQ SET5DBJ
CMPA #'6' ;MANUAL SET 30 DB ATTEN
BEQ SET6DBJ
CMPA #'A' ;SET AGC ON
BEQ AGCONJ
JMP PROMPT
SET0DBJ: JMP SET0DB ;LINK TO SET0DB
SET1DBJ: JMP SET03DB ;LINK TO SET3DB
SET2DBJ: JMP SET09DB ;LINK TO SET09DB
SET3DBJ: JMP SET12DB ;LINK TO SET12DB
SET4DBJ: JMP SET18DB ;LINK TO SET18DB
SET5DBJ: JMP SET24DB ;LINK TO SET24DB

183
SET6DBJ: JMP SET30DB ;LINK TO SET30DB
AGCONJ: JMP AGCON ;LINK TO AGCON

;---
;PAUSE REQUEST STOPS THE DATA DUMP
TIMOUT: CLR TMSK1 ;DISABLE TOC2 INTERRUPT
 LDAA #$FF ;RESET TOC FLAGS
 STAA TFLG1
 JMP PROMPT ;RETURN

;---
;START REQUEST TURN ON TIMER INTERRUPT
TIME: LDD TCNT ;LOAD THE CURRENT TIMER VALUE
 ADDD #SAMPLE ;SET AN INITIAL DELAY OF 1.0mSEC
 STD DTOC2
 LDAA #$40 ;TURN ON OC2 INTERRUPT
 STAA TMSK1
 JMP PROMPT ;RETURN

;---
;DATA SCAN
DSCAN: LDX #DSCAN0
 JMP TTY0
DSCAN0: DB $AA
 DW DSCAN1
DSCAN1: BRCLR TX1FLG,$01,DSCANI ;HAS BUFFER 1 BEEN SENT YET?
 BRCLR TX2FLG,$01,DSCAN2 ;HAS BUFFER 2 BEEN SENT YET?
NOTYET: LDX #NOTRDY ;WAIT UNTIL A BUFFER IS READY
 JMP TTY0
NOTRDY: FCB $00,$00
; DSCAN2: BSET TX1FLG,$01 ;SET BUFFER 1 TX'D FLAG
 LDX #MAXBUF1
 BRA DSCAN4
DSCAN3: BSET TX2FLG,$01 ;SET BUFFER 2 TX'D FLAG
 LDX #MAXBUF2
DSCAN4: STX TXBUFF ;SAVE THE BUFFER TO TX IN TXBUFF
 LDAB MAXNUM
 ABX
 STX TXBUFFULL ;GENERATE THE BUFFER DONE VALUE
; LDY TXBUFF
 STY TXINT
DSCAN5: LDAA $00,Y ;GET THE DATA POINT HI BYTE
 STAA TXMHI ;STORE IN BASE PAGE
 LDAA $01,Y ;GET THE DATA POINT LOW BYTE
 STAA TXMLO ;STORE IN BASE PAGE
 LDAA $10,Y ;GET THE INDEX HI BYTE
 STAA TXHI
 LDAA $11,Y ;GET THE INDEX LOW BYTE
 STAA TXILO
; LDX #BITSNDI ;PREP FOR TX
BITSND1: DB $81, TXMH, $AA ; TX VIA TTY
DW DTX1

DTX1: LDX #BITSND2 ; PREP FOR TX
JMP TTY0 ; TX DATA POINT

BITSND2: DB $81, TXML, $AA ; TX VIA TTY

DW DTX2

DTX2: LDX #BITSND3 ; PREP FOR TX
JMP TTY0 ; TX DATA POINT

BITSND3: DB $81, TXIH, $AA ; TX VIA TTY

DW DTX3

DTX3: LDX #BITSND4 ; PREP FOR TX
JMP TTY0 ; TX DATA POINT

BITSND4: DB $81, TXIL, $AA ; TX VIA TTY

DW DSCAN6 ;

DSCAN6: LDY TXINT
INY
INY
STY TXINT
CPY TXBUFF ; HAS THE ENTIRE BUFFER BEEN SENT?
BLO DSCAN5

LDAA #$00
LDX TXBUFF ; CLEAR THE BUFFER THAT WAS TX'D

DSCAN7: STAA $00, X
INX
CPX TXBUFF
BLO DSCAN7

LDX #DSCAN8 ; END TX
JMP TTY0

DSCAN8: DB $00, $00

;----------
LTEST: LDX #RTEST
JMP TTYR0

; RTEST: DB $94, $80, " GOT 4! SEND 4 MORE", $EE, $94, $84, " DONE", $00, $00
;
; ---
; 0 DB MANUAL GAIN REQUEST
SET0DB: BSET AGCFLG, $01 ; TURN OFF AGC
LDAA #DB00 ; SET 0 DB ATTENUATION
STAA PORTA
JMP PROMPT ; RETURN

;---
; 3 DB MANUAL GAIN REQUEST
SET03DB: BSET AGCFLG, $01 ; TURN OFF AGC
LDAA #DB03 ; SET 3 DB ATTENUATION
STAA PORTA
JMP PROMPT ; RETURN

185
; 9 DB MANUAL GAIN REQUEST
SET09DB: BSET AGCFLG,$01 ;TURN OFF AGC
 LDAA #DB09 ;SET 9 DB ATTENUATION
 STAA PORTA
 JMP PROMPT ;RETURN

; 12 DB MANUAL GAIN REQUEST
SET12DB: BSET AGCFLG,$01 ;TURN OFF AGC
 LDAA #DB12 ;SET 12 DB ATTENUATION
 STAA PORTA
 JMP PROMPT ;RETURN

; 18 DB MANUAL GAIN REQUEST
SET18DB: BSET AGCFLG,$01 ;TURN OFF AGC
 LDAA #DB18 ;SET 18 DB ATTENUATION
 STAA PORTA
 JMP PROMPT ;RETURN

; 24 DB MANUAL GAIN REQUEST
SET24DB: BSET AGCFLG,$01 ;TURN OFF AGC
 LDAA #DB24 ;SET 24 DB ATTENUATION
 STAA PORTA
 JMP PROMPT ;RETURN

; 30 DB MANUAL GAIN REQUEST
SET30DB: BSET AGCFLG,$01 ;TURN OFF AGC
 LDAA #DB30 ;SET 30 DB ATTENUATION
 STAA PORTA
 JMP PROMPT ;RETURN

; AGC ON REQUEST
AGCON: CLR AGCFLG ;SET AGC ON FLAG TO 0 (TURN AGC ON)
 JMP PROMPT ;RETURN

; AVOUT
AVOUT: LDX #AVODAT
 JMP TTY0

; AVODAT
AVODAT: DB $81,(PORTA,$00,$00

; HELP FILE
HELPFIL: FCB 'elp SAIL DRIVER Mon, Jun 7, 1993, 11:53',$0D,$0A
FCB 'Monitor Commands (enter via _ or ? or !)',$0D,$0A
FCB ' _ (space) enter monitor*',$0D,$0A
FCB ' ?Maaaa llIcr *$,0D,$0A
FCB ' !Maaaa dd...cr *$,0D,$0A
FCB 'Attenuator Commands (enter via A)',$0D,$0A
FCB ' A0 sets 0 dB manual attenuation',$0D,$0A
FCB ' A1 sets 3 dB manual attenuation',$0D,$0A
FCB ' A2 sets 9 dB manual attenuation',$0D,$0A
FCB ' A3 sets 12 dB manual attenuation',$0D,$0A
FCB ' A4 sets 18 dB manual attenuation',$0D,$0A
FCB ' A5 sets 24 dB manual attenuation',$0D,$0A
FCB ' A6 sets 30 dB manual attenuation',$0D,$0A
FCB ' AA turns AGC on',$0D,$0A
FCB ' O starts receiver collecting samples',$0D,$0A
FCB ' P pauses receiver',$0D,$0A
FCB ' R resets the system',$0D,$0A
FCB ' with all RCA UT4 conventions',$0D,$0A
FCB ' * returns prompt',$00

;**

ORG $FFD6
VSCI: FDB SCI
VSPI: FDB START
VPAIE: FDB START
VPAO: FDB START
VTOF: FDB START
VTOC5: FDB START
VTOC4: FDB START
VTOC3: FDB START
VTOC2: FDB OC2
VTOC1: FDB START
VTIC3: FDB START
VTIC2: FDB START
VTIC1: FDB START
VRTI: FDB START
VIRQ: FDB START
VXIRQ: FDB START
VSWI: FDB START
VILLOP: FDB START
VCOP: FDB START
VCLM: FDB START
VRST: FDB START
END
Appendix 3

This appendix contains the C source code used by the Macintosh computer for the algorithm of figure 2-4. The user interface follows the guidelines specified by Apple, and the Event Manager is used to initiate all functions. After the hardware is initialized, the program waits in the EventLoop until an event is received. If no events are received in the loop cycle time, the program requests data from the 68HC11 and the GPS receiver. If the data is available, it is stored to form experiment vectors. Once enough experiment vectors are collected, the maximum likelihood estimate is calculated. The program returns to the EventLoop.

/**
TRACKER.C

Dennis Michael Wojcik
15 July 1993

This program is version 1.0 of the Precision Tracking Receiver. It is tailored for the scenario of a stationary acoustic beacon and a moving observer. The program assumes that the observer has a GPS receiver for positioning data that can produce a fix at least every 2 seconds. If a different navigation system is used to provide ship locations, it is up to the user to provide the proper position format:

?L HHMMSS,DDM.M hh,N,DDDMM.hh,E,x,x,DOP,xxx,M,xxxxx,M

 /***/

/****** INCLUDES **********

#include <math.h> // needed for math calls
#include <AppleEvents.h> // needed to handle AppleEvents
#include <GestaltEqu.h> // needed to read system 7 AppleEvents
#include <Values.h> // contains needed Mac constants
#include <serial.h> // has needed serial comms constants
#include <Packages.h> // needed to call time functions
#include <string.h> // needed to call string functions
#include <float.h> // contains needed constants
#include <stdlib.h> // for standard calls such as strtoul etc
#include <stdio.h> // useful for debugging

/****** INCLUDES **********/
/*************************** DEFINES ***/
#define kBaseResID 128 // define general resource infor
#define kMoveToFront (WindowPtr)-1L
#define kUseDefaultProc (void *)-1L
#define kSleep 1L
#define kLeaveWhereItIs false

#define mApple kBaseResID // Apple menu resource ID
#define iAbout 1

#define mFile kBaseResID+1 // File menu resource ID
#define iQuit 1

#define mAttenuator kBaseResID+3 // Attenuator menu resource ID
#define iAuto 1
#define i0dB 2
#define i3dB 3
#define i9dB 4
#define i12dB 5
#define i18dB 6
#define i24dB 7
#define i30dB 8

#define mBaud kBaseResID+4 // Baud Rate menu resource ID
#define i300 1
#define i600 2
#define i1200 3
#define i2400 4
#define i4800 5
#define i9600 6

#define mSignal kBaseResID+5 // Signal menu resource ID
#define iPeriod 1
#define iNumMax 2
#define iWindow 3
#define iMessageText 4
#define kPeriodDialog kBaseResID
#define kNumMaxDialog kBaseResID+1
#define kWindowDialog kBaseResID+2

#define kLeftMargin 4 // define screen margins
#define kFontSize 10
#define kRowHeight (kFontSize+2)
#define kDataScanHeight 1
#define kHorizontalOffset 0
#define kGestaltMask 1L
#define kHorizontalPix 30
#define kVerticalPix 40
#define kMinWindowHeight 50
#define kMinWindowWidth 80
#define kMinTextPosition 0

189
#define kMaxTextPosition 32767
#define kScrollbarAdjust (16-1) // define update constants
#define kNormalUpdates true
#define bufferSize 1024 // misc. default values
#define k16Bit 4
#define k8Bit 2
#define kHexBase 16
#define kpi 3.141592654

#define kNumExp 6 // default experiment parameters
#define kParameters 3
#define kNumMeas 6
#define kStep 15
#define kC 1500
#define kMaxR 5000.0
#define kMaxD -5000.0
#define kMinD -1.0
#define kxvar 9.0
#define kyvar 9.0
#define ktvar 8.3333e-2

/**
******** MACROS ******************
#define TopLeft(r) (*(Point *) &(r).top)
#define BottomRight(r) (*(Point *) &(r).bottom)
/**
/********** GLOBALS ************
int gASerRefln, gASerRefOut;
Boolean gDone, gHasPopupControl, gDataScan;
Rect gTrackerRect;
int gverticalPixels;
int gRowStart, gDataRowStart, gserConfig;
unsigned long gPeriod=2000UL;
long gNumMax=2L, gWindow=20L;
char gDataBuffer[bufferSize];
char gGPSBuffer[bufferSize]=
 "L 145642,0000.00,N,00000.00,E,O0,000,000,M,0000,M";
short gLastAttn=1, gLastBaud=6;
Str255 gItemText;
unsigned long ghorizontalPixels;
WindowPtr gWetPaperWind, gTerminalWind, gRangeWind;
long gPulseCounter=0L;
long gCheckVal=1L;
unsigned long gtime1, gtime2;
double gXref, gYref, gX1, gX2, gY1, gY2;
Boolean gstarter=true;
Boolean greflag=true;
Boolean gDataWrap=false, trackerStart=false;
double gYFact;
unsigned long gt_mu1, gt_mu2;
double gV[kNumMeas]={kxvar,kyvar,ktvar,kxvar,kyvar,ktvar};
double gtheta[3]={ 0.0, 0.0, -2000.0}, gPosition[kParameters];
double *gw;

double gxold=0.0, gyold=0.0;
int gnumIts=0;
int gmu=0;
long gi=0L, gnumExp=0L;
double gj=1.0;
char gYrefString[8];
char gXrefString[9];

/****************************** FUNCTION PROTOTYPES******************************/
void ToolBoxInit(void);
void WindowInit(void);
void MenuBarInit(void);
void SerialInit(void);
void EventLoop(void);
void DoEvent(EventRecord *eventPtr);
unsigned long HandleDataIn(int numDataPoints);
void HandleMouseDown(EventRecord *eventPtr);
void HandleMouseUp(EventRecord *eventPtr);
void HandleMenuChoice(long menuChoice);
void HandleAppleChoice(short item);
void HandleFileChoice(short item);
void HandleAttenuator(short item);
void HandleBaud(short item);
void HandleSignal(short item);
unsigned long HandleDialog(int dialogRes);
void ConcatString(Str255 str1, Str255 str2);
void HandleKeyIn(char theChar);
int TalkSail(char theChar);
void DisplayString(int numDataPoints);
void ScrollDisplay(void);
void HandleNull(void);
unsigned int HexCharToInt(char Bite, int exponent);
int DecIntToHexChar(int decimal);
void DoUpdate(EventRecord *eventPtr);
int Power(int base, int exponent);
int DecIntToHexChar(int decimal);
void ScrollDataScan(void);
unsigned long DecTimeToSec(unsigned long timeVal);
double LatToY(double latVal);
double LongToX(double longVal, double cosfact);
void tracker(long numExp);
pascal OSErr SetDialogDefaultItem(DialogPtr theDialog, short newItem)
pascal OSerr SetDialogCancelItem(DialogPtr theDialog, short newItem)
 ={0x303C, 0x0305, 0xAA68};
pascal OSerr SetDialogTracksCursor(DialogPtr theDialog, Boolean tracks)
 ={0x303C, 0x0306, 0xAA68};

/***/
/* -------------------------- Main---------------------------------------*/
void main(void)
{
 WindowPtr window;
 OSErr RAMOpenErr, resetErrIn, resetErrOut, bufSizeErr;
 int SerConfig;
 Ptr serBPtr;
 char serInBuffer[bufferSize];
 long numCharIn, numCharOut, maxtime;
 char addressBuf[20];

 ToolboxInitO; // initialize the toolboxes
 WindowInitO; // set up the windows
 MenuBarInitO; // draw the menu bar
 SerialInitO; // open the serial drivers

 window=FrontWindowO; // ensure we're in the window
 RAMOpenErr=RAMSDOpen(sPortA); // open the RAM Serial Drivers
 if (RAMOpenErr != noErr) // if we can't open RAM Driver beep
 {
 SysBeep(10);
 ScrollDisplayO;
 DrawString("Problem opening the RAM Serial Drivers.");
 }
 gserConfig=baud9600+data8+stop1+noParity; // Set the protocol for 9600
 // 8 data, 1 stop, no parity
 resetErrIn=SerReset(gASerRefln,gserConfig);
 resetErrOut=SerReset(gASerRefOut,gserConfig);
 if ((resetErrIn != noErr) || (resetErrOut != noErr))
 {
 SysBeep(10); // if we can't set the protocol
 ScrollDisplayO; // beep
 DrawString("Problem setting the serial protocol.");
 }

 serBPtr=serInBuffer; // Set the serial buffer size
 bufSizeErr=SerSetBuf(gASerRefln,serBPtr,bufferSize);
 if (bufSizeErr != noErr)
 {
 SysBeep(10); // if we can't set the buffer
 ScrollDisplayO; // size, beep
 DrawString("Problem resizing the serial input buffer.");
 }

 ScrollDisplayO;
}
numCharOut=5L; // see if we can talk to the GPS receiver
FSWrite(gASerRefOut, &numCharOut, "#GPS ");
SerGetBuf(gASerRefln,&numCharIn);
maxtime=TickCount()+20L;
while(numCharIn < 9L)
{
 SerGetBuf(gASerRefln,&numCharIn);
 if(TickCount() > maxtime)
 {
 SysBeep(10);
 DrawString("\p Can't talk to the GPS reciever, unable to run!!");
 ScrollDisplay();
 break;
 }
}
FSRead(gASerRefln,&numCharIn,&addressBuf);

numCharOut=5L; // see if we can talk to the PTR receiver
FSWrite(gASerRefOut, &numCharOut, "#PTR ");
SerGetBuf(gASerRefln,&numCharIn);
maxtime=TickCount()+29L;
while(numCharIn < 9L)
{
 SerGetBuf(gASerRefln,&numCharIn);
 if(TickCount() > maxtime)
 {
 SysBeep(10);
 DrawString("\p Can't talk to the PTR reciever, unable to run!!");
 ScrollDisplay();
 maxtime=TickCount()+120L;
 while(TickCount() < maxtime)
 {
 TickCount();
 abort();
 }
 }
}
FSRead(gASerRefln,&numCharIn,&addressBuf);

TalkSail('O'); // start the PTR's data collection

DrawString("\p: "); // display a cursor

gw = calloc(3L*kStep*(kNumExp+1),sizeof(double)); // get memory for data
if (gw == NULL)
{
 DrawString("\pCan't allocate memory for data collection!!!");
 abort();
}

EventLoop(); // main execution loop

RAMSDClose(sPortA); // must close the RAM Drivers before shutdown
I. /* ------------------------- ToolBoxInit -----------------------------------*/
void ToolBoxlnit(void)
{
 // initialize all of the ToolBox
 InitGraf(&thePort); // Routines
 InitFontsO;
 InitWindowsO;
 InitMenusO;
 TEInitO;
 InitDialogs(nil);
 InitCursorO;
}
/*--------------------------------------*/
/*------------------------------- WindowInit------------------------------------*/
void Windownit(void)
{
 // initialize the display windows
 WindowPtr window;
 short fontNum;
 Boolean update = true;

 window = GetNewWindow(kBaseResID, nil, kMoveToFront);

 if (window == nil)
 {
 SysBeep(10); // Couldn't load the WIND resource
 ExitToShellO;
 }
 SetPort(window); // set the window to be active

 GetFNum("pTimes", &fontNum); // use Times font
 if (fontNum != 0) TexyFont(fontNum);
 TextSize(kFontSize); // use the default font size

 gverticalPixels=screenBits.bounds.bottom-screenBits.bounds.top-45;
 ghorizontalPixels=screenBits.bounds.right-screenBits.bounds.left-0;
 gDataRowStart=gverticalPixels-2*kFontSize;

 SizeWindow(window, ghorizontalPixels, gverticalPixels, update);
 ShowWindow(window); // activate the window
 gWetPaperWind=FrontWindowO;
 gTerminalWind = GetNewWindow(kBaseResID+1, nil, kMoveToFront);

 if (gTerminalWind == nil)


```c
}{
    SysBeep(10);  // Couldn't load the WIND resource
    ExitToShell();
}

SetPort(gTerminalWind);  // set the window to be active

GetFNum("\pTimes", &fontNum);  // use Times font
if (fontNum != 0) TextFont(fontNum);
TextSize(kFontSize);  // use the default font size

gRowStart=gTerminalWind->portRect.bottom-2*kFontSize;

ShowWindow(gTerminalWind);

/*------------------------MenuBarInit------------------------------------*/

void MenuBarInit(void)
{
    Handle menuBar;
    MenuHandle menu;

    menuBar = GetNewMBar( kBaseResID );
    SetMenuBar( menuBar );

    menu = GetMHandle( mApple );
    AddResMenu( menu, 'DRVR');

    DrawMenuBar();
}

/*-------------------------SerialInit ------------------------------------*/

void SerialInit(void)
{
    WindowPtr window;
    OS информация
    int serConfig;  // define the port configuration
    char driverStringIn[]="\p.AIn";  // define the input driver name
    char driverStringOut[]="\p.Aout";  // define the output driver name

    window=FrontWindow0;

    openErr=OpenDriver(driverStringIn, &gASerRefIn);  // Open the port A ROM input serial driver
    if (openErr != 0)
    {
        SysBeep(10);
        ScrollDisplay0;
        DrawString("\pCan't open the ROM Serial input driver");
        return;
    }
    else
    {
        // do something
    }
}
```

195
openErr=OpenDriver(driverStringout,&gASerRefOut); // Open the port A ROM output
//serial driver
if (openErr != 0)
{
 SysBeep(10);
 ScrollDisplay();
 DrawString("Can't open the ROM Serial output driver");
 return;
}

gserConfig=baud9600+data8+stop10+noParity; // Set the protocol for
// 9600, 7D, 1S, no parity
resetErr=SerReset(gASerRefIn,gserConfig); // Set the input driver to the new protocol
if (resetErr != 0)
{
 SysBeep(10);
 ScrollDisplay();
 DrawString("Can't set the ROM Serial input protocol");
 return;
}
resetErr=SerReset(gASerRefOut,gserConfig); // Set the output driver to the new protocol
if (resetErr != 0)
{
 SysBeep(10);
 ScrollDisplay();
 DrawString("Can't set the ROM Serial output driver");
 return;
}

 void EventLoop(void)
{
 EventRecord event;
 gDone = false;
 while (gDone == f1se) // loop here until done with program
 {
 if (WaitNextEvent(everyEvent, &event, kSleep, nil))
 DoEvent(&event);
 else
 HandleNull(); // collect data here
 }
}
/**---------------------- DoEvent--------------------------------------**/

```c
void DoEvent(EventRecord *eventPtr)
{
    Boolean becomingActive;
    char theChar;

    switch (eventPtr->what)
    {
    case mouseDown:
        HandleMouseDown(eventPtr);
        break;
    case mouseUp:
        HandleMouseUp(eventPtr);
        break;
    case keyDown:
        theChar = eventPtr->message & charCodeMask;
        if((eventPtr->modifiers & cmdKey) != 0)
            HandleMenuChoice(MenuKey( theChar));
        else
            HandleKeyIn( theChar );
        break;
    case updateEvt:
        DoUpdate( eventPtr);
        break;
    /* case activateEvt:
        becomingActive = ((eventPtr->modifiers &
                            activeFlag) ==
                            activeFlag);
        DoActivate((WindowPtr)eventPtr->message, 
                    becomingActive);
        break;*/
    }
}

/*---------------------- HandleNull-------------------- */

void HandleNull(void)
{
    int numGPSPoints;
    int numDataPoints;
    int GPSbuff;
    long numCharOut, numCharIn, numCharInOld;
    char addressBuf[bufferSize];
    char *tok;
    char *timeOfRx;
    char *latitude;
    char *longitude;
    char *HDOP;
    char *delim=" ",
    char *end;
}
int i;
unsigned long int timeVal;
double latVal, longVal, HDOPVal;
double cosfact;
unsigned long t_mu;
long maxtime;
Str255 numstr;
char *lattest="1234.89";
double lattestd, dl;
long lattestdec, lattestr;
double timemod;

if (gDataScan == true)
{

/*---> use this part when the GPS receiver is available

numCharOut=5L;
FSWrite(gASerRefOut, &numCharOut, "#GPS ");
SerGetBuf(gASerRefIn, &numCharIn);
maxtime=TickCount()+20L;
while(numCharIn < 9L)
{
    SerGetBuf(gASerRefIn, &numCharIn);
    if(TickCount() > maxtime) break;
}
FSRead(gASerRefIn, &numCharIn, &addressBuf);

numCharOut=2L;
FSWrite(gASerRefOut, &numCharOut, "?L");
SerGetBuf(gASerRefIn, &numCharIn);
maxtime=TickCount()+20L;
while(numCharIn < 55L)
{
    SerGetBuf(gASerRefIn, &numCharIn);
    if(TickCount() > maxtime) break;
}
FSRead(gASerRefIn, &numCharIn, &gGPSBuffer);
*/

numCharOut=5L;
FSWrite(gASerRefOut, &numCharOut, "#PTR ");
SerGetBuf(gASerRefIn, &numCharIn);
maxtime=TickCount()+20L;
while(numCharIn < 9L)
{
    SerGetBuf(gASerRefIn, &numCharIn);
    if(TickCount() > maxtime) break;
}
FSRead(gASerRefIn, &numCharIn, &addressBuf);

numDataPoints=TalkSail('-');
if(numDataPoints > 5) {
  gPulseCounter++;
  tok=strtok(gGPSBuffer,delim);
  timeOfRx=strtok(NULL,delim);
  latitude=strtok(NULL,delim);
  tok=strtok(NULL,delim);
  longitude=strtok(NULL,delim);
  tok=strtok(NULL,delim);
  tok=strtok(NULL,delim);
  tok=strtok(NULL,delim);
  tok=strtok(NULL,delim);
  HDOP=strtok(NULL,delim);

  timeVal=strtoul(timeOfRx,&end,10);
  latVal=strtod(latitude,&end);
  longVal=strtod(longitude,&end);
  HDOPVal=strtod(HDOP,&end);

  if (HDOPVal < 10.0) {
    if (gstarter == true) {
      t_mu=HandleDataIn(numDataPoints);
      gtime2=DecTimeToSec(timeVal);
      gX2=0.0;
      gY2=0.0;
      if (greflag == true) {
        gYref=LatToY(latVal);
        gYFact=cos((gYref/(1853.2*60.0))*kpi/180.0);
        gXref=LongToX(longVal,gYFact);
        greflag=false;
      }
      gstarter=false;
    } else {
      t_mu=HandleDataIn(numDataPoints);
    }
  } /*---> use this if GPS available to see if fixes are 2 sec apart
  
  if(DecTimeToSec(timeVal) != gtime2-2UL) {
    gstarter=true;
  } else {
    gtime1=gtime2;
    gtime2=DecTimeToSec(timeVal);
  }
}
gx1 = gx2;
gx2 = LongToX(longVal, gYFact) - gXref;
gy1 = gy2;
gy2 = LatToY(latVal) - gYref;

// --> make up data to test program

gw[gi] = gxold + cos(0.00515 * gj) * 5.14778;
gw[gi + 1] = gyold + sin(0.00515 * gj) * 5.14778;

gxold = gw[gi];
gyold = gw[gi + 1];
gj = gj + 1.0;
d1 = sqrt((gxold - 1000) * (gxold - 1000) + (gyold - 2000) * (gyold - 2000) + 3000 * 3000);
timemod = d1 / 1.5;
while (timemod > 2000.0)
    timemod = timemod - 2000.0;
gw[gi + 2] = timemod;

// --> end of simulated data

/* --> use this if GPS available

    gw[gi] = (1.0 - t_mu / ((gtime2 - gtime1) * 1000.0) * gx1 
             + gx2;
gw[gi + 1] = (1.0 - t_mu / ((gtime2 - gtime1) * 1000.0) * gy1 
             + gy2;
gw[gi + 2] = t_mu;

    */

    gi = gi + 3L;
    if (gi >= 3L * (kStep * kNumExp + 1L))
        trackerStart = true;
    if (gi >= 3L * kStep * (kNumExp + 1L))
    {
        gi = 0L;
gDataWrap = true;
    }

    if ((trackerStart == true) || (gDataWrap == true))
    {
        tracker(gnumExp);
    }

    }
}
gstarter=true;
}
}
}
*/

パーテルここTimeToSec----------------------------------------*/
unsigned long DecTimeToSec(unsigned long timeVal)
{
    unsigned long hr, min, sec, timeSec;

    hr=timeVal/10000UL;
    min=(timeVal-hr*10000UL)/100UL;
    sec=timeVal-hr*10000UL-min*100UL;

    timeSec=hr*3600UL+min*60UL+sec;

    return(timeSec);
}
*/------------------------LongToX----------------------------------------*/
double LongToX( double lonVal, double cosfactor)  
{
    long double deg, min, X;

    deg=floor(lonVal/100.0);
    min=(lonVal-deg*100.0);
    X=(deg*60.0+min)*1853.2*cosfactor;

    return(X);
}
*/------------------------LatToY----------------------------------------*/
double LatToY(double latVal)  
{
    long double deg, min, Y;

    deg=floor(latVal/100.0);
    min=(latVal-deg*100.0);
    Y=(deg*60.0+min)*1853.2;

    return(Y);
/*----------------------- HandleMouseDown---------------------------------*/

void HandleMouseDown(EventRecord *eventPtr)
{
    WindowPtr whichWindow;
    GrafPtr oldPort;
    short thePart;
    long menuChoice;

    thePart = FindWindow(eventPtr->where, &whichWindow);

    switch(thePart)
    {
    case inMenuBar:
        menuChoice = MenuSelect(eventPtr->where);
        HandleMenuChoice(menuChoice);
        break;
    case inSysWindow:
        SystemClick(eventPtr, whichWindow);
        break;
    case inContent:
        SetPort(whichWindow);
        GlobalToLocal(&eventPtr->where);
        break;
    case inDrag:
        DragWindow(whichWindow, eventPtr->where,
                   &screenBits.bounds);
        break;
    case inGoAway:
        gDone = true;
        break;
    } /*----------------------- HandleMouseDown---------------------------------*/

void HandleMouseUp(EventRecord *eventPtr)
{
    // Put some function in here
} /*----------------------- HandleMouseUp---------------------------------*/

void HandleMenuChoice(long menuChoice)
{
    short menu;

/*-------------------- HandleMenuChoice ----------------------------------- */
short item;

if (menuChoice != 0)
{
    menu=HiWord(menuChoice);
    item=LoWord(menuChoice);

    switch(menu)
    {
        case mApple:
            HandleAppleChoice(item);
            break;
        case mFile:
            HandleFileChoice(item);
            break;
        case mAttenuator:
            HandleAttenuator(item);
            break;
        case mBaud:
            HandleBaud(item);
            break;
        case mSignal:
            HandleSignal(item);
            break;

    }

    HiliteMenu(0);
}

/**************************************************************************/

/**************************************************************************/HandleAppleChoice-------------------------------*/

void HandleAppleChoice( short item )
{
    MenuHandle appleMenu;
    Str255 accName;
    short accNumber;

    switch(item)
    {
        case iAbout:
            NoteAlert(kBaseResID,nil);
            break;
        default:
            appleMenu = GetMHandle(mApple);
            GetItem(appleMenu, item, accName);
            accNumber=OpenDeskAcc(accName);
            break;
    }

/**************************************************************************/
/* -------------------------- HandleFileChoice-----------------------------*/
void HandleFileChoice(short item)
{
    switch(item)
    {
    case iQuit:
        gDone = true;
        break;
    }
/*--------------------------------- */

/* -------------------------- HandleAttenuator-----------------------------*/
void HandleAttenuator(short item)
{
    MenuHandle menuHandle;
    long numCharOut, numCharIn;
    char attenBuff[10], addressBuf[10];

    numCharOut=5L;
    FSWrite(gASerRefOut, &numCharOut, "#PTR ");
    SerGetBuf(gASerRefln,&numCharIn);
    while(numCharIn < 9L)
    {
        SerGetBuf(gASerRefln,&numCharln);
    }
    FSRead(gASerRefln,&numCharln,&addressBuf);
    
    numCharOut=2L;
    numCharIn=6L;
    menuHandle=GetMHandle(mAttenuator);
    
    CheckItem(menuHandle,gLastAttn,false);
    CheckItem(menuHandle,item,true);
    gLastAttn=item;

    switch(item)
    {
    case iAuto:
        FSWrite(gASerRefOut, &numCharOut, "AA");
        break;
    case i0dB:
        FSWrite(gASerRefOut, &numCharOut, "A0");
        break;
    case i3dB:
        FSWrite(gASerRefOut, &numCharOut, "A1");
        break;
    case i9dB:
        FSWrite(gASerRefOut, &numCharOut, "A2");
        break;
    }
case i12dB:
    FSWrite(gASerRefOut, &numCharOut, "A3");
    break;

case i18dB:
    FSWrite(gASerRefOut, &numCharOut, "A4");
    break;

case i24dB:
    FSWrite(gASerRefOut, &numCharOut, "A5");
    break;

case i30dB:
    FSWrite(gASerRefOut, &numCharOut, "A6");
    break;

    FSRead(gASerRefIn, &numCharIn, attnBuff);

} /*----------------------------------------------------------*/

/*-----------------------------------------------------------
void HandleBaud(short item)
{
    MenuHandle menuHandle;
    long numCharOut, numCharOutr, numCharIn;
    int serConfig;
    OSErr resetErrIn, resetErrOut;
    char inBuff[8];
    SerStaRec serialStatusOut;

    numCharOut=8L;
    menuHandle=GetMHandle(mBaud);

    CheckItem(menuHandle,gLastBaud,false);
    CheckItem(menuHandle,item,true);
    gLastBaud=item;

    switch(item)
    {
    case i300:
        FSWrite(gASerRefOut, &numCharOut, "#0000300");
        gserConfig=baud300+data8+stop10+noParity;
        break;

    case i600:
        FSWrite(gASerRefOut, &numCharOut, "#0000600");
        gserConfig=baud600+data8+stop10+noParity;
        break;

    case i1200:
        FSWrite(gASerRefOut, &numCharOut, "#0001200");
        gserConfig=baud1200+data8+stop10+noParity;
        break;

    case i2400:
        FSWrite(gASerRefOut, &numCharOut, "#0002400");
        gserConfig=baud2400+data8+stop10+noParity;

    205
break;

case i4800:
    FSWrite(gASerRefOut, &numCharOut, "#0004800");
    gserConfig=baud4800+data8+stop10+noParity;
    break;

case i9600:
    FSWrite(gASerRefOut, &numCharOut, "#0009600");
    gserConfig=baud9600+data8+stop10+noParity;
    break;

SerStatus(gASerRefOut,&serialStatusOut);
while ((serialStatusOut.rdPend != 0) || (serialStatusOut.wrPend !=0)) {
    SerStatus(gASerRefOut,&serialStatusOut);
}

FSRead(gASerRefIn, &numCharOut, &inBuff);

resetErrOut=SerReset(gASerRefOut,gserConfig);                     // Set the protocol
resetErrIn=SerReset(gASerRefIn,gserConfig);
if ((resetErrIn != noErr) || (resetErrOut != noErr))
{
    SysBeep(10);
    ScrollDisplay();
    DrawString("Problem setting the serial protocol.");
}
/*-------------------------------*/
FSRead(gASerRefIn,&numCharIn,&addressBuf);

switch(item)
{
    case iPeriod:
        gPeriod=HandleDialog(kPeriodDialog);
        period=gPeriod;
        for (i=0;i < k16Bit; i++)
        {
            radix=Power(kHexBase,k16Bit-1-i);
            hexDec=period/radix;
            hexChar=DecIntToHexChar(hexDec);
            periodData[1+i+periodData[0]]=hexChar;
            period=period-hexDec*radix;
        }
        periodData[periodData[0]+k16Bit+1]=cr[0];
        periodData[0]=periodData[0]+k16Bit+1;

        for (i=0;i<periodData[0];i++)
        {
            outbuff[i]=periodData[i+1];
        }
        numCharOut=periodData[0];
        break;
    case iNumMax:
        gNumMax=HandleDialog(kNumMaxDialog);
        numMax=gNumMax*2;
        for (i=0;i < k8Bit; i++)
        {
            radix=Power(kHexBase,k8Bit-1-i);
            hexDec=numMax/radix;
            hexChar=DecIntToHexChar(hexDec);
            numMaxData[1+i+numMaxData[0]]=hexChar;
            numMax=numMax-hexDec*radix;
        }
        numMaxData[numMaxData[0]+k8Bit+1]=cr[0];
        numMaxData[0]=numMaxData[0]+k8Bit+1;

        for (i=0;i<numMaxData[0];i++)
        {
            outbuff[i]=numMaxData[i+1];
        }
        numCharOut=numMaxData[0];
        break;
    case iWindow:
        gWindow=HandleDialog(kWindowDialog);
        window=gWindow;
        for (i=0;i < k16Bit; i++)
        {
            radix=Power(kHexBase,k16Bit-1-i);
            hexDec=window/radix;
            hexDec=window/radix;
            // ...
            break;
}
hexChar=DecIntToHexChar(hexDec);
windowData[1+i+numMaxData[0]]=hexChar;
window=window-hexDec*radix;
}
windowData[windowData[0]+k16Bit+1]=cr[0];
windowData[0]=windowData[0]+k16Bit+1;

for (i=0;i<windowData[0];i++)
{
    outbuff[i]=windowData[i+1];
}
numCharOut=windowData[0];
break;
}
FSWrite(gASerRefOut,&numCharOut,&outbuff);
while(1 == 1)
{
    SerGetBuf(gASerRefln,&numCharIn);
    FSRead(gASerRefln, &numCharIn, &inbuff);
    if (inbuff[numCharIn-1] == 03) break;
}
 */
/*-----------------------------------DecIntToHexChar----------------------------------*/
int DecIntToHexChar(int decimal)
{
    int hexChar;
    if ((decimal >= 0) & (decimal < 10))
        hexChar=48+decimal;
    if ((decimal >= 10) & (decimal < 16))
        hexChar=55+decimal;
    return(hexChar);
} /*-----------------------------------ConcatString-----------------------------------*/
void ConcatString(Str255 str1, Str255 str2)
{
    short i;
    for(i=str1[0];i<str2[0]+str1[0];i++)
    {
        str1[i+1]=str2[i-str1[0]+1];
    }
/**---------------------------------HandleDialog---------------------------------*/
unsigned long HandleDialog(int dialogRes)
{
    WindowPtr window;
    DialogPtr dialog;
    Boolean dialogDone;
    Handle textItemHandle;
    Handle okItemHandle;
    short itemType, itemHit;
    Rect itemRect;
    long itemNum;
    unsigned long itemNumU;
    window=FrontWindowO;
    dialog=GetNewDialog(dialogRes,nil,kMoveToFront);
    ShowWindow(dialog);
    SetPort(dialog);
    /* SetDialogDefaultItem(dialog, ok);
    SetDialogCancelItem(dialog, cancel);
    SetDialogTracksCursor(dialog, true); */
    GetDItem(dialog, iMessageText, &itemType, &textItemHandle, &itemRect);
    GetDItem(dialog, ok, &itemType, &okItemHandle, &itemRect);
    SelIText(dialog, iMessageText, kMinTextPosition, kMaxTextPosition);
    dialogDone=false;
    while( !dialogDone)
    {
        GetlText(textItemHandle, &gltemText);
        ModalDialog(nil, &itemHit);
        switch(itemHit)
        {
            case ok:
            case cancel:
                dialogDone=true;
                break;
        }
    }
    DisposeDialog(dialog);
```c
SelectWindow(window);
SetPort(window);

StringToNum(gItemText, &itemNum);
itemNumU=itemNum;
return(itemNumU);

/*------------------------ HandleKeyIn------------------------*/

/*------------------------ HandleKeyIn------------------------*/
void HandleKeyIn(char theChar)
{
 int bufferLength, i;
 RgnHandle gtempRgn;
 long numCharOut, numCharIn;
 char addressBuf[10];

gtempRgn = NewRgnO;

switch(theChar)
{
 case 'W':
 gDataScan=false;
 SelectWindow(gTerminalWind);
 SetPort(gTerminalWind);
 DrawString("\pW");
 ScrollDisplay();
 DrawString("\p:");
 break;

 case 'K':
 gDataScan=false;
 SelectWindow(gTerminalWind);
 SetPort(gTerminalWind);
 numCharOut=5L;
 FSWrite(gASerRefOut, &numCharOut, "#PTR ");
 SerGetBuf(gASerRefIn,&numCharIn);
 while(numCharIn < 9L)
 {
 SerGetBuf(gASerRefIn,&numCharIn);
 }
 FSRead(gASerRefIn,&numCharIn,&addressBuf);
 bufferLength=TalkSail('P');
 DisplayString(bufferLength);
 gi=0L;
 break;

 case '!':
 gDataScan=true;
 SelectWindow(gWetPaperWind);
 SetPort(gWetPaperWind);
```
for (i=0; i < 10; i++)
{
    ScrollDataScan();
}
numCharOut=5L;
FSWrite(gASerRefOut, &numCharOut, "#PTR ");
SerGetBuf(gASerRefIn, &numCharIn);
while(numCharIn < 9L)
{
    SerGetBuf(gASerRefIn, &numCharIn);
}
FSRead(gASerRefIn, &numCharIn, &addressBuf);
bufferLength=TalkSail('O');
bufferLength=TalkSail(theChar);
break;
default:
    SelectWindow(gTerminalWind);
    SetPort(gTerminalWind);
    bufferLength=TalkSail(theChar);
    DisplayString(bufferLength);
    break;
}
/*---------------------------------------------------------------*/

/*---------------------------HandleDataIn----------------------------*/
unsigned long HandleDataIn(int numDataPoints)
{
    int i, j;
    char max[8][4], time[8][4];
    unsigned timeInt[8], maxInt[8];
    unsigned long timeLong;
    Str255 timeOfMaxString;
    unsigned long drawTime, dtemp, horizontalPosit;
    float fraction;
    Str255 numpixel, horstring,

    for (j=0; j<gNumMax; j++)
    {
        for (i=0; i<4; i++)
        {
            max[j][i]=gDataBuffer[8*j+4-i];
            time[j][i]=gDataBuffer[8*j+8-i];
        }
        timeInt[j]=0;
        maxInt[j]=0;
        for(i=0; i<4; i++)
        {

timeInt[i]=timeInt[i]+HexCharToInt(time[j][i],i);  
maxInt[i]=maxInt[i]+HexCharToInt(max[j][i],i);  
}

for (i=0;i < gNumMax; i++)
{
  drawTime=(timeInt[i] *(ghorizontalPixels-8UL))/gPeriod;
  SetPort(gWetPaperWind);
  horizontalPosit=drawTime+kLeftMargin;
  PenNormal(0);
  MoveTo(horizontalPosit,gDataRowStart);
  Line(0,0);
}

ScrollDataScanO;

timeLong=timeInt[0];
return(timeLong);

/*-------------------- HexCharToInt---------------------------------------*/
unsigned HexCharToInt(char Bite,int exponent)
{
  unsigned value;

  if ((Bite > 47) & (Bite < 58))
    value=(Bite-48)*Power(kHexBase,exponent);
  if ((Bite > 64) & (Bite < 71))
    value=(Bite-55)*Power(kHexBase,exponent);

  return(value);
}

/*-------------------TalkSail----------------*/
int TalkSail(char theChar)
{
  long  numCharOut, numCharIn, startTime,maxTime;
  OSErr  serOutErr, serInErr;
  char   inBuff[bufferSize],DataBuffer[bufferSize],inChar;
  int    i, start;
  SerStaRec   serialStatusIn, serialStatusOut;
  Str255   startString;

  numCharOut=1L;

  numCharOut=1L;
serOutErr=FSWrite(gASerRefOut, &numCharOut, &theChar);
    if (serOutErr != noErr)
    {
        SysBeep(10);
        DrawString("Problem sending the character out.");
        ScrollDisplay();
        DrawString(":");
    }

SerStatus(gASerRefOut,&serialStatusOut);
while ((serialStatusOut.rdPend != 0) || (serialStatusOut.wrPend !=0))
{
    SerStatus(gASerRefOut,&serialStatusOut);
}

SerStatus(gASerRefIn,&serialStatusIn);
while(serialStatusIn.rdPend != 0)
    SerStatus(gASerRefIn,&serialStatusIn);

start=0;
startTime=TickCount();
maxTime=startTime+20L;
while(1 == 1)
{
    SerGetBuf(gASerRefIn,&numCharIn);
    serInErr=FSRead(gASerRefIn, &numCharIn, &inBuff);
    if (serInErr != noErr)
    {
        SysBeep(10);
        DrawString("Problem receiving characters.");
        ScrollDisplay();
        DrawString(":");
    }

    memmove(&gDataBuffer[start],&inBuff,numCharIn);
    start=start+LoWord(numCharIn);
    if(inBuff[numCharIn-1L] == 03) break;
    if((start < 2) & (TickCount() > maxTime)) break;
}
return(start);

/*------------------------------------------*/

/*--------------------- DisplayString -------------------------------------*/

void DisplayString(int numDataPoints)
{
    int i;

    for (i=0;i < numDataPoints ;i++)
    {
switch(gDataBuffer[i])
{
    case 03:
        break;
    case 13:
    {
        if (gDataBuffer[i+1] == 10)
        {
            ScrollDisplay();
            i=i+1;
        }
        break;
    }
    case 10:
    {
        if (gDataBuffer[i+1] == 13)
        {
            ScrollDisplay();
            i=i+1;
        }
        break;
    }
    default:
    {
        DrawChar(gDataBuffer[i]);
    }
}
/*------------------------------------------------------------------------------------*/

/*-------------------------ScrollDisplay-----------------------------------------------*/
void ScrollDisplay(void)
{
    RgnHandle    tempRgn;
    WindowPtr     window;

    window = FrontWindow();
    tempRgn = NewRgn();

    ScrollRect(&window->portRect, kHorizontalOffset,
                -kRowHeight, tempRgn);
    DisposeRgn(tempRgn);

    MoveTo(kLeftMargin, gRowStart);
}
/*------------------------------------------------------------------------------------*/

/*-------------------------ScrollDataScan-----------------------------------------------*/
void ScrollDataScan(void)
{
    RgnHandle    tempRgn;

    214
WindowPtr window;

window = FrontWindow();

tempRgn = NewRgn();

ScrollRect(&window->portRect, kHorizontalOffset, -kDataScanHeight, tempRgn);
DisposeRgn(tempRgn);

MoveTo(kLeftMargin, gDataRowStart);

void DoUpdate(EventRecord *eventPtr)
{
    WindowPtr window;

    window = (WindowPtr)eventPtr->message;

    BeginUpdate(window);
    // put some update info in here
    EndUpdate(window);
}

int Power(int base, int exponent)
{
    int i, p;

    p=1;
    for (i=1;i <= exponent;++i)
        p=p*base;
    return(p);
}

void tracker(long numExp)
{
    int i, j;
    int nextIteration, noUpdate=0, numIterations=0;
    long u, index1, index2;
    double f, Cs=1.5;
    double theta[kParameters]={0.0,1000.0,-2500};
    double xvar, yvar, tvar, V[kNumMeas];
    double term;
    double stopval=1.0, epsilon=0.1, epsilonc;
double D[kParameters][kParameters];
double Dinv[kParameters][kParameters];
double dtheta[kParameters] = {0.0, 0.0, 0.0};
double dthetaSum[kParameters] = {0.0, 0.0, 0.0};
double Z0 = 0.0, Z1;
double d1_x, d1_y, d_z, d1;
double d2_x, d2_y, d2;
double g[kNumExp+1], g1[kNumExp+1];
double dthetaVec;
double x1, x2, y1, y2;
double lamda1, lamda2;
double feas1, feas2, feas3, rhomax;
Boolean nextIter=true;
double *e, *a, *b, *c, *lamda;
double *wtrue;
double *dwtrue;
double *wmeas;
Str255 numstr, thetaString;
long thestring;
double maxR=5000.0, maxD=-5000.0, minD=-1.0;

wtrue = calloc(3L*(kStep*kNumExp+l),sizeof(double));
if(wtrue == NULL)
{
    DrawString("pCan't allocate memory for data collection!!!");
    abort();
}

wmeas = calloc(3L*(kStep*kNumExp+l),sizeof(double));
if(wmeas == NULL)
{
    DrawString("pCan't allocate memory for data collection!!!");
    abort();
}

dwtrue = calloc(3L*(kStep*kNumExp+l),sizeof(double));
if(dwtrue == NULL)
{
    DrawString("pCan't allocate memory for data collection!!!");
    abort();
}

e = calloc(kNumExp*kNumMeas,sizeof(double));
if (e == NULL)
{
    DrawString("pCan't allocate memory for data collection!!!");
    abort();
}

a = calloc(kNumExp*kNumMeas,sizeof(double));
if (a == NULL)
{
    DrawString("pCan't allocate memory for data collection!!!");
}
abort();

b = calloc(kNumExp*kParameters,sizeof(double));
if (b == NULL)
{
    DrawString("Can't allocate memory for data collection!!");
    abort();
}

c = calloc(kNumExp,sizeof(double));
if (c == NULL)
{
    DrawString("Can't allocate memory for data collection!!");
    abort();
}

lamda = calloc(kNumExp,sizeof(double));
if (lamda == NULL)
{
    DrawString("Can't allocate memory for data collection!!");
    abort();
}

f= 1.0/sqrt(2.0);

for(u=0;u<kNumExp;u++)
{
    index1 = 3*(u*kStep+numExp);
    if(index1 >= 3*kStep*(kNumExp+1))
        index1 = index1 - 3*kStep*(kNumExp+1);

    index2 = 3*((u+kNumExp/2)*kStep+numExp);
    if(index2 >= 3*kStep*(kNumExp+1))
        index2 = index2 - 3*kStep*(kNumExp+1);

    for(i=0;i<3;i++)
    {
        wtrue[kNumMeas*u+i] = gw[index1+i];
        wtrue[kNumMeas*u+i+3] = gw[index2+i];
        wmeas[kNumMeas*u+i] = gw[index1+i];
        wmeas[kNumMeas*u+i+3] = gw[index2+i];
    }
}

while(stopval > epsilon)
{
    numIterations++;
    for(i=0;i<kParameters;i++)
    {
        dthetaSum[i] = 0.0;
        for (j=0;j<3;j++)
            D[i][j] = 0.0;
    }
    Z0 = 0.0;
for(u=0;u<kNumExp;u++)
{
    for(i=0;i<kNumMeas;i++)
    {
        e[6*u+i]=wtrue[6*u+i]-wmeas[6*u+i];
    }
}
d1_x=(wtrue[6*u]-theta[0])*(wtrue[6*u]-theta[0]);
d1_y=(wtrue[6*u+1]-theta[1])*(wtrue[6*u+1]-theta[1]);
d_z=theta[2]*theta[2];
d1=sqrt(d1_x+d1_y+d_z);
d2_x=(wtrue[6*u+3]-theta[0])*(wtrue[6*u+3]-theta[0]);
d2_y=(wtrue[6*u+4]-theta[1])*(wtrue[6*u+4]-theta[1]);
d2=sqrt(d2_x+d2_y+d_z);
g[u]=d1*d2-Cs*wtrue[6*u+2]+Cs*wtrue[6*u+5];
a[6*u+0]= (wtrue[6*u+0]-theta[0])/d1;
a[6*u+1]= (wtrue[6*u+1]-theta[1])/d1;
a[6*u+2]= -Cs;
a[6*u+3]= -(wtrue[6*u+3]-theta[0])/d2;
a[6*u+4]= -(wtrue[6*u+4]-theta[1])/d2;
a[6*u+5]= Cs;
b[3*u+0]= (wtrue[6*u+3]-theta[0])/d2-(wtrue[6*u+0]-theta[0])/d1;
b[3*u+1]= (wtrue[6*u+4]-theta[1])/d2-(wtrue[6*u+1]-theta[1])/d1;
b[3*u+2]= theta[2]/d1-theta[2]/d2;
for(i=0;i<3;i++)
    if(b[3*u+i] == 0.0)
        b[3*u+i]=le-6;
c[u]=0.0;
for(j=0;j<6;j++)
    term=a[6*u+j]*gV[j]*a[6*u+j];
c[u]=c[u]+term;
for(i=0;i<3;i++)
{
    for(j=0;j<3;j++)
    {
        D[i][j]=D[i][j]+(1/c[u])*(b[3*u+i]*b[3*u+j]);
    }
}
dthetaVec=0.0;
for(i=0;i<6;i++)
{
    dthetaVec=dthetaVec+a[6*u+i]*e[6*u+i];
}
}
for(i=0;i<3;i++)
{
    dthetaSum[i]=dthetaSum[i]+(dthetaVec-g[u])*b[3*u+i]/c[u];
}

Z0=Z0+g[u]*g[u]/c[u];
}

x1=D[1][1]-D[0][1]*D[1][0]/D[0][0];
x2=D[1][2]-D[0][2]*D[1][0]/D[0][0];
y1=D[2][1]-D[0][1]*D[2][0]/D[0][0];
y2=D[2][2]-D[0][2]*D[2][0]/D[0][0];

Dinv[2][2]=x1/(x1*y2-x2*y1);
Dinv[1][2]=-x2/(x1*y2-x2*y1);
Dinv[0][2]=-(D[0][1]*Dinv[1][2]+D[0][2]*Dinv[2][2])/D[0][0];

Dinv[2][1]=-y1/(x1*y2-x2*y1);
Dinv[1][1]=(1.0+x2*y1/(x1*y2-x2*y1))/x1;
Dinv[0][1]=-(D[0][1]*Dinv[1][1]+D[0][2]*Dinv[2][1])/D[0][0];

Dinv[2][0]=(x1/(x1*y2-x2*y1))*
(-D[2][0]/D[0][0]+(D[1][0]*y1)/(D[0][0]*x1));
Dinv[1][0]=-(D[1][0]/D[0][0]+x2*Dinv[2][0])/x1;
Dinv[0][0]=(1.0-D[0][1]*Dinv[1][0]+D[0][2]*Dinv[2][0])/D[0][0];

for(i=0;i<kParameters;i++)
{
    dtheta[i]=0.0;
    for(j=0;j<kParameters;j++)
    {
        dtheta[i]=dtheta[i]+Dinv[i][j]*dthetaSum[j];
    }
}

for(u=0;u<kNumExp;u++)
{
    lamda1=0.0;
    for(i=0;i<3;i++)
    {
        lamda1=lamda1+b[3*u+i]*dtheta[i];
    }
    lamda2=0.0;
    for(i=0;i<6;i++)
    {
        lamda2=lamda2+a[6*u+i]*e[6*u+i];
    }
    lamda[u]=(lamda1-lamda2+g[u])/c[u];

    for(i=0;i<6;i++)
    {
        term=gV[i]*a[6*u+i];
    }

    //

    219
\[ \text{dwtrue}[6\ast u+i]=-e[6\ast u+i]\cdot \text{lamda}[u]\cdot gV[i]\cdot a[6\ast u+i]; \]

\[
\text{if}(d\theta[0] \geq 0.0) \\
\text{feas}_1=\frac{(\text{kMaxR}-\theta[0])}{d\theta[0]}; \\
\text{if}(d\theta[0] < 0.0) \\
\text{feas}_1=\frac{(\text{kMaxR}+\theta[0])}{(-d\theta[0])}; \\
\text{if}(d\theta[1] \geq 0.0) \\
\text{feas}_2=\frac{(\text{kMaxR}-\theta[1])}{d\theta[1]}; \\
\text{if}(d\theta[1] < 0.0) \\
\text{feas}_2=\frac{(\text{kMaxR}+\theta[1])}{(-d\theta[1])}; \\
\text{if}(d\theta[2] \geq 0.0) \\
\text{feas}_3=\frac{(\text{kMinD}-\theta[2])}{d\theta[2]}; \\
\text{if}(d\theta[2] < 0.0) \\
\text{feas}_3=\frac{(\text{kMaxD}-\theta[2])}{d\theta[2]}; \\
\text{rhomax}=1.0; \\
\text{if}(\text{feas}_1 < \text{rhomax}) \\
\text{rhomax} = \text{feas}_1; \\
\text{if}(\text{feas}_2 < \text{rhomax}) \\
\text{rhomax} = \text{feas}_2; \\
\text{if}(\text{feas}_3 < \text{rhomax}) \\
\text{rhomax} = \text{feas}_3; \\
\epsilon_{\text{theta}[0]}=(\text{gtheta}[0]+0.001)/1e6; \\
\text{if}(\epsilon_{\text{theta}[0]} < 0) \\
\epsilon_{\text{theta}[0]}=-\epsilon_{\text{theta}[0]}; \\
\epsilon_{\text{theta}[1]}=(\text{gtheta}[1]+0.001)/1e6; \\
\text{if}(\epsilon_{\text{theta}[1]} < 0) \\
\epsilon_{\text{theta}[1]}=-\epsilon_{\text{theta}[1]}; \\
\epsilon_{\text{theta}[2]}=(\text{gtheta}[2]+0.001)/1e6; \\
\text{if}(\epsilon_{\text{theta}[2]} < 0) \\
\epsilon_{\text{theta}[2]}=-\epsilon_{\text{theta}[2]}; \\
\text{nextIteration}=0; \\
\text{while}(\text{nextIteration} == 0) \\
\quad \{ \\
\quad \text{Z1}=0.0; \\
\quad \text{for}(u=0; u<\text{kNumExp}; u++) \\
\quad \quad \{ \\
\quad \quad \text{d1}_x=\left(\text{dwtrue}[6\ast u]+\text{rhomax}\ast f\ast \text{dwtrue}[6\ast u]\right) \\
\quad \quad \quad -\left(\text{gtheta}[0]+\text{rhomax}\ast f\ast d\theta[0]\right)\ast \\
\quad \quad \quad \left(\text{dwtrue}[6\ast u]+\text{rhomax}\ast f\ast \text{dwtrue}[6\ast u]\right) \\
\quad \quad \quad -\left(\text{gtheta}[0]+\text{rhomax}\ast f\ast d\theta[0]\right); \\
\quad \quad \text{d1}_y=\left(\text{dwtrue}[6\ast u+1]+\text{rhomax}\ast f\ast \text{dwtrue}[6\ast u+1]\right) \\
\quad \quad \quad -\left(\text{gtheta}[1]+\text{rhomax}\ast f\ast d\theta[1]\right); \\
\quad \quad \} \\
\quad \} \\
\}

-(gtheta[1]+rhomax*f*dtheta[1]))*  
((wtrue[6*u+1]+rhomax*f*dwtrue[6*u+1])  
-(gtheta[1]+rhomax*f*dtheta[1]));  
d1=sqrt(d1_x+d1_y+d_z);  
  
d2_x=((wtrue[6*u+3]+rhomax*f*dwtrue[6*u+3])  
-(gtheta[0]+rhomax*f*dtheta[0]))*  
((wtrue[6*u+3]+rhomax*f*dwtrue[6*u+3])  
-(gtheta[0]+rhomax*f*dtheta[0]));  
d2_y=((wtrue[6*u+4]+rhomax*f*dwtrue[6*u+4])  
-(gtheta[1]+rhomax*f*dtheta[1]))*  
((wtrue[6*u+4]+rhomax*f*dwtrue[6*u+4])  
-(gtheta[1]+rhomax*f*dtheta[1]));  
d2=sqrt(d2_x+d2_y+d_z);  
  
g[u]=d1-d2  
-Cs*(wtrue[6*u+2]+rhomax*f*dwtrue[6*u+2])  
+Cs*(wtrue[6*u+5]+rhomax*f*dwtrue[6*u+5]);  
  
Z1=Z1+g1[u]*g1[u]/c[u];  
}  
if(noUpdate > 5) Z1=0.0;  
if(Z1 < Z0)  
{  
  noUpdate=0;  
  nextIteration=1;  
  for(i=0;i<3;i++)  
  {  
    theta[i]=theta[i]+rhomax*f*dtheta[i];  
    gPosition[i]=gPosition[i]+theta[i];  
  }  
  for(u=0;u<kNumExp;u++)  
  {  
    for(i=0;i<6;i++)  
    {  
      wtrue[6*u+i]=wtrue[6*u+i]  
        +rhomax*f*dwtrue[6*u+i];  
    }  
  }  
  else  
  {  
    rhomax=rhomax/2.0;  
    noUpdate++;  
  }  
}  
MoveTo(50,150);  
thestring=theta[0];  
NumToString(thestring,&numstr);  
DrawString(numstr);  
DrawString("p : ");  
thestring=theta[1];  
NumToString(thestring,&numstr);
DrawString(numstr);
DrawString("\p : ");
thestring=theta[2];
NumToString(thestring,&numstr);
DrawString(numstr);
for(i=0;i<10;i++) ScrollDataScanO;

if(numIterations > 50)
    stopval=0.0;
else
    {
        if(dtheta[0] < 0)
            stopval=-dtheta[0];
        else
            stopval=dtheta[0];
    }

if(numExp < (kNumExp+1)*kStep-1)
    gnumExp=gnumExp+1L;
else
    gnumExp=0L;

free(wtrue);
free(wmeas);
free(dwtrue);
free(e);
free(a);
free(b);
free(c);
free(lamda);
References


