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Abstract
A three-dimensional region-growing algorithm has been developed to segment medical
image data. Instead of the traditional "marching cubes" approach, the algorithm
grows out in one-dimensional rays. A convolution edge-detection is performed in one
dimension along each ray to find the surface of the structure of interest. In order
to navigate around convex curves, the algorithm chooses random points along the
previous rays from which to begin again in a recursive manner. The resulting cloud
of surface points is screened for points whose distance from the center of mass are
close to that of their neighbours. After screening, the resulting reduced cloud of
surface points is ready to be tesselated into a surface.

The algorithm does not screen points if the shape is overly convoluted; nor does
it find any edge but the strongest along each ray. Its recursive structure, screening
intensity, and number of surface points are variable. These parameters are tested on
both geometric shapes and an MRI data set containing ventricles of the brain. The
algorithm clearly finds the surface of the ventricle. Further improvements to be made
in the algorithm are outlined.
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Chapter 1

Background

1.1 The Segmentation of 3-D Data Sets

The purpose of the kooshballTMl algorithm is to provide a quick and easy means of

segmenting a three-dimensional data set. Its use lies in the segmentation of medical

image data. The segmentation of an MRI or CT medical image set is performed

by taking advantage of the contrast in pixel intensity between different structures in

the image. If an accurate outline of the structure can be provided quickly and semi-

automatically, important volume data on the structure may be made easily available.

1.1.1 The Goal

The goal of this project is to provide a method in which to segment an individual

structure out of a three-dimensional data set. The system is to be semi-automated;

therefore, the user will oversee the process and give some information concerning the

general region in which the structure is located, as well as at least one point in the

interior of the structure. Once finished, this algorithm will be incorporated into the

medical imaging software system under development at the MIT Whitaker College

Biomedical Imaging and Computation Laboratory.

1Named after the KooshballTM, a common children's toy consisting of rubber strands branching
out in all directions from a central mass. The algorithm spreads out from a point in a uniform
distribution of rays resembling a KooshballTM; hence the name of the algorithm.

9



1.2 Significance to Medical Imaging

Volume determination can play a key role in the medical diagnoses made from patient

image data. Some neurological disorders can lead to the atrophy of certain anatom-

ical structures, thereby providing a means for identifying the disorder if an accurate

volume determination of these structures can be provided [4]. A quick method of

finding the volume of structures within a medical image set would save clinicians

time, as well as providing consistent and accurate data for diagnosis.

1.3 Other Strategies Currently Being Used

MRI segmentation is an extremely active area of research at this time, as can be

seen from the 65 current papers which appear in the INSPEC library database on

the subject. Currently, many systems used to segment MRI images are based on

geometric models, threshold algorithms and edge detection techniques, but work is

being done with neural networks, wavelet texture identification [1], and traditional

region growing techniques combined with other methods to improve reliability [6, 8].

1.3.1 Brain Model Algorithms

Several strategies are being investigated for automatic and semi-automatic segmen-

tation of an MRI scan of the brain. Collins, Peters, Dai and Evans [2] have worked

on a method using both raster and geometric data models to fit by deformation onto

the MRI data. These techniques take advantage of a top-down approach, in that the

algorithms have prior topological knowledge of the entire structure. However, these

techniques are not easily adaptable to different types of data, and must be combined

with either an interactive local deformation algorithm, or a low level approach to

perform edge detection procedures.
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1.3.2 Surface Tracing Algorithms

Another method of segmenting an MRI data set is to trace the surface by starting at

a point on the surface, and tracing a path along the surface with a set of voxels until

the whole surface is connected. Several methods exist for performing this task, three

of which are described in [7].

1.4 The Concept of Region Growing Algorithms

1.4.1 General Concept

A region growing algorithm is one which starts at a single point, and grows out from

that point until it reaches what it perceives to be the edge of the structure volume.

The algorithm "grows" by slowly including more and more voxels (or "volume cubes")

around the central point until it reaches an edge which surrounds it on all sides. In

this way, a solid volume is created in the interior of the structure.

1.5 Speed and Accuracy of Region Growing Al-

gorithms

1.5.1 Speed

Traditional region growing algorithms are slowed down by the fact that they must

cover every single voxel in the interior of the structure. When applied to larger

structures, this can take an ever-increasing amount of time and memory.

1.5.2 Traditional Problems with the Region Growing Ap-

proach

At the same time, region growing algorithms also suffer from "leakage", which is the

phenomenon resulting from a gap in the outer surface of the object. Upon reaching

this gap, the region growing algorithm has a tendency to continue on its outward path
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and "leak out" of the structure volume. In order to be effective, a region growing

algorithm must address this problem in some manner.

Hence, the motivation for this work has been to develop segmentation strategies

that overcome the limitations in speed and accuracy of existing methods.

1.6 Thesis Overview

Chapter 1 has briefly presented the motivations and background for the development

of ray-projecting segmentation methods. In Chapter 2, the kooshball algorithm is

described in general terms, while in Chapter 3 the details are provided for the me-

chanics of generating a single ray and locating candidate edge points along that ray.

Chapter 4 explains the recursive branching methrc,' of the algorithm, while Chap-

ter 5 discusses the important technique of removing erroneous edge points from the

generated cloud of surface points.

Chapter 6 lists the parameters in the kooshball algorithm that are under the

control of the user. Chapter 7 provides the results of testing the developed algorithm

on both geometric data and actual medical MRI data. Finally, chapter 8 describes

future work and the ultimate applications and implementations of this work.
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Chapter 2

Brief Description of the Kooshball

Algorithm

2.1 Algorithmic Strategy

2.1.1 Finding a Group of Edge Points: The Simple Ap-

proach

As mentioned before, the conventional region-growing algorithm begins at a point in

the interior of a volume, and adds voxels to this point, forming a clump of voxels

which continues to grow until it reaches what it perceives to be the surface of the

structure. The kooshball algorithm follows the same concept, except that it does

not add voxels to form a solid mass around the initial point. Instead, the algorithm

extends a number of rays directly outward from the initial point in every direction

until all the rays reach the edge of the image volume. The initial point with rays

generating from it in all directions resembles a KooshballTM; hence the name of the

algorithm (see footnote in Chapter 1).

The algorithm performs a very simple edge detection in one dimension along each

of the rays. In this manner, each ray contributes one surface point to the final array

of surface points. Summarizing the initial concept of the kooshball algorithm: a point

is chosen in the interior of the object, rays are projected out from it in all directions,
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and a surface point is found on each ray using an edge detection technique.

2.1.2 Charting around Convex Curves: The Recursive Al-

gorithm

A problem occurs when the object is convex, because parts of the inside surface

cannot be seen from the initial point. Some rays projected from the starting position

may pierce the surface of the object and then travel back into the object at a later

point, giving two or more surface points to consider. Only the nearest surface point

is considered that of the target structure. The rest remain invisible to the kooshball

algorithm.

In order to detect the "invisible" portion of a convex shape, the algorithm must

be re-started at a point in that portion of the object. One way in which this could be

achieved is to have the user provide more than one seed point from which to project

rays. A second method for mapping out the unseen portion of the structure would be

to have the algorithm restart itself in different places which are known to be within

the interior of the object. Our kooshball algorithm takes this second approach.

Point3 are randomly chosen along different rays, between the initial point and the

identified surface point on the ray. At each of these secondary points, a new kooshball

of rays projecting in all directions from the point is formed. From these projected

rays, more points are chosen, and more "kooshes" (rays projected uniformly in all

directions) are born. The algorithm continues this process in a recursive manner

until a sufficient number of surface points are found. Borrowing from the language

of recursion, each koosh resulting from a point on the ray of a previous koosh will be

called a "child koosh", while the previous koosh from whose ray it was derived will

be called the "parent koosh". The set of parent and child kooshes form a recursive

tree, whose depth and width may be determined by the user.
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2.1.3 Screening Surface Points

Due to noise, the fuzziness of object boundaries, and occasional ray leakage, a cloud

of surface points results from the above procedure. Before tesselating the cloud of

points into a surface, a screening algorithm has been developed to weed out incorrect

surface points.

This screening algorithm first finds the center of mass for the cloud of proposed

surface points. Each point is then compared to its neighbors in terms of its distance

from the center of mass. Those points which are much farther or much closer to the

center of mass than their neighbors do not pass the screening.

2.2 Advantages over Previous Techniques

2.2.1 Advantages of a Three-Dimensional Algorithm

The advantage of a three-dimensional algorithm, as opposed to a two dimensional al-

gorithm which combines surfaces on different slices, is that a three dimensional algo-

rithm makes fuller use of the three-dimensional data given. Because no one dimension

is weighted any differently than any other dimension, the algorithm avoids unsmooth

approximations in the z-direction which might be present if a two-dimensional algo-

rithm were used.

2.2.2 Further Applications for Edge Detection

The kooshball strategy is a very general method of locating the surface volumetric of

a structure. It is versatile in that the one-dimensional edge detection can be carried

out using any number of different convolution filters and edge detection methods,

while preserving the structure of the kooshball algorithm. Once the algorithm is fully

developed, different edge detection methods may easily be substituted, thus increasing

the effectiveness of the algorithm on different types of image data.
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2.2.3 Advantages of the Ray Approach vs. Marching Cubes

Speed

The most obvious advantage of the kooshball algorithm is its speed. The kooshball al-

gorithm covers more space than the marching cubes approach, using fewer pixels. The

kooshball algorithm is also computationally efficient by performing a one-dimensional

edge detection as opposed to a complete three-dimensional analysis. For these rea-

sons, the kooshball algorithm is expected to be much faster than the marching cubes

region-growing algorithm, especially for large structures in which there is a large

volume to be covered.

Leakage

In the kooshball approach, leakage is expected to be much more easily detectable

than in the traditional region-growing approach, primarily because a ray that leaks

out of the volume will most likely travel a fair distance before being stopped by the

next surface. This means that a very simple filter will screen any leaked rays quite

effectively based on the distance of the proposed surface points from the actual surface

of the object.
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Chapter 3

The Algorithm - Creating a Single

Koosh

The following three chapters give a detailed presentation of the inner workings of the

kooshball algorithm. A uniform distribution of rays is traced out from a single point,

and the edges of the volumetric structure are determined along each ray by an edge

detection convolution. This uniform cluster of rays emanating from the initial point

is named a "koosh". This chapter concerns itself with the formation of the koosh,

and the subsequent edge detection procedure.

3.1 Determining a Uniform Angular Distribution

of Rays

The mathematical description of a uniform spherical distribution of rays around a

point is not trivial. Such a uniform distribution is required so that from a given seed

point we can project a given number of rays, n, such that the rays cover the volume

around the seed point in a uniform manner; n will vary depending on how densely

the surface points are to be located. Two methods of forming a uniform distribution

were considered.
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1. The first method discussed was the 'positive charge' method, involving the

computation of the solution to a perfectly uniform distribution of rays around

the sphere. This is best visualized as a set of mobile positive charges placed on

the surface of the sphere. Each charge will end up as far away as possible from

all the neighbouring charges. When one more charge is added, all the previous

charges change their positions slightly. Mathematically, this solution was far

too complex to use efficiently.

2. The 'globe model' was a second method considered. In this model, the inter-

sections of the longitude (constant theta) and latitude (constant phi) define the

outward direction of each ray. However, a problem exists in that the concen-

tration of rays around the poles is significantly larger than around the equator,

due to the increased density of longitude lines.

3. The third model considered, and the one which was actually used, is the same

as the globe model, except that the theta angles between the rays on each

latitude line are not equal as in the globe model (See Figure 3-1). Instead,

the horizontal arc length between the points is kept constant around every

latitude in the sphere, thus putting large numbers of points on the long central

latitudes while decreasing the number of points at the poles. In order to avoid

the points from longitudinally lining up in a column, a wrap-around feature is

used whereby the arc length between points on one latitude line overlaps onto

the next latitude line.

Though this third method is still only an approximation to a uniform distribution,

it is computationally simple, and allows a large number of rays to be calculated. It is

also guaranteed not to leave any gaps in the ray distribution around the single point.
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Figure 3-1: Left: Phi and Theta Conventions Right: The Globe Model (Flat View)

3.1.1 Determining the Number of Latitudes vs. the Num-

ber of Rays

The preceding section on ray distribution leads to a question about the relationship

between the number of rays emanating from a single point, and the number of lati-

tudes which should be put onto the "direction sphere". (The "direction sphere" is a

mental construct of a sphere centered around the initial point. Points on this sphere

represent locations where the rays intersect the surface of the sphere. The model

enables one to jdge the distribution of the rays. See Figure 3-1, Right.) If too

few latitudes are used, the rays miss large phi angles, while if too many latitudes

are used, there is a danger of all the rays lining up vertically along one side of the

sphere. In the ideal case, one would want the theta angles between points in the

sphere approximately equal to the phi angles between the latitudes.

In order to analyze this problem, the two halves of the sphere were modeled as

cones of radius r and height r (see Figure 3-2). If there are p surface points on a

cone, and n evenly spaced latitudes, the distance between the latitudes on the surface

of the cone (the phi-spacing, in the case of a sphere) will be * V. Because the

circumference of the cone varies linearly with height, the average circumference is 2rr,

making the sum of the circumferences nirr. This is the only dimension affected by

19.



r
4 t r = Circumference

Figure 3-2: Conical Approximation of the Top Half of the Sphere.

the modeling of a cone as opposed to a sphere. Therefore, the distance between two

points on the same latitude on the surface of the cone (the theta-spacing) becomes:

nirr
p

It is wished that the phi-spacing and the theta-spacing be equal in order to have

a uniform distribution. Thus,

narr r
- =_ * d(2
p n

Therefore,

Thus for a cone, the optimal number of latitude lines varies with the square root

of the total number of surface points.

Based on these calculations, and neglecting the coefficient, it was decided that in

order to ensure a good degree of uniformity in the distribution, the number of latitude

lines on the sphere should be exactly equal to the square root of the number of rays

emanating from the originating point.

20



3.2 Finding the Intersection of the Rays and the

3-D Image Surface

In order to use the Bresenham algorithm (discussed in the next section) to its full

extent, it is necessary to find where each ray reaches the edge of the data volume,

given the theta and phi values calculated for each ray. Therefore, an algorithm was

created to calculate the point at which a ray reaches the outside of the image volume,

given the originating point inside that volume, and the polar coordinate angles theta

and phi of the ray from that point. This algorithm first tests to determine which

side of the data volume the ray will intersect, by comparing the angle pointing to

the edge of the data volume to the angle of the ray. This is done for edges in all

three dimensions. The function then performs another trigonometric calculation to

determine the exact voxel on the side of the data volume which will mark the end of

the ray. This is a simple trigonometric calculation.

3.3 Creating a Single Ray: The 3-D Bresenham

Algorithm

A three-dimensional version of the highly efficient Bresenham algorithm [3] was devel-

oped for the purpose of speed in tracing the ray from the koosh point to the surface

of the given image volume. The Bresenham algorithm picks voxels along the ray,

following a straight line. No voxel along the line touches more than two other voxels.

Furthermore, the Bresenham method does not involve floating point computation,

hence it is computationally efficient; this is an important consideration given the

large number of rays that the kooshball algorithm typically processes.

There is an alternative to finding the ray endpoint and then using the Bresenham

algorithm to find a ray. This would be to grow out the ray itself, using its theta and

phi angles along with an altered Bresenham algorithm which checks for the surface of

the volume as it goes along. In the future, this new method might be an advantageous
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one to try in order to increase speed. For the present, however, finding the point at

the edge of the data volume, and then performing the usual Bresenham selection of

points is sufficient.

3.4 Surface Detection Along a Single Ray

A one-dimensional spatial convolution is performed to find the edge of the structure

of interest for each ray. Typical kernels are [-1,-1,0,1,1] or [1,1,0,-1,-1] for first deriva-

tive detection, and [1,-1,0,-1,1] or [-1,1,0,1,-1] for second derivative detection. The

convolution algorithm is general enough so that it can select any number of possible

edge points from a ray, given any length of kernel. However, the edge detection in

the present algorithm only allows for one possible edge point on each ray. It also

chooses only the strongest of all edges along the ray, and does not take into account

the closeness of the edge to the initial point. In the case of two edges having exactly

the same convolution value, the edge nearest to the point of origin is always selected.

However, problems will still arise in the very common case where the edge of a far-off

structure sends out stronger edge detection signals than the target structure's edge.

22



Chapter 4

Recursive Branching

4.1 Convex Curves and Child Kooshes

In order to find its way along convex curves, the kooshball algorithm chooses a number

of rays £om the primary koosh (we use the term "koosh" to describe a point with a

uniform distribution of rays emanating from it). On each of these chosen rays, a new

point of origin (or "koosh point") is picked in a random fashion to begin a new koosh.

A recursive algorithm is readily applicable due to the nature of the problem. Each

spawned child koosh depends on its parent koosh for a starting point. Each parent

koosh, meanwhile, is expected to have one or more child kooshes. Since each koosh

process proceeds in exactly the same manner as its parent koosh, and is also dependent

on the parent koosh for a starting point, a recursive algorithm seems to be the most

plausible. It is also very easy to make a flexible tree structure in a recursive setting

as opposed to an iterative setting, which tends to be more rigid. Thus, a recursive

algorithm was chosen due to both its simplicity and fexibility.

4.2 Set-up of the Recursive Tree

The algorithm proceeds in a recursive fashion; that is, each generation produces a set

of rays, some of which are selected as seed points for the next generation of koosh

points. This creates a tree of koosh points, with each koosh point located on a ray
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of its predecessor. The recursive structure of the tree at each level is controlled by

two variables: the total number of rays per koosh point, and the number of rays per

koosh point used to spawn child koosh points. These two parameter arrays are called

raysperkoosh and branchfactor respectively (see Chapter 7: Verification). Both have

an effect on the depth vs. width ratio of the tree. If the number of rays per koosh

point is large on a certain level, then a large number of surface points will result from

that level. If the branch factor' is large, the number of koosh points on the next level

will be large, leading to a large number of surface points. Two constraints on the

structure of the tree are: it can't narrow as its depth increases (i.e. branchfactor must

be >= 1), and the branchfactor can only take on integer values.

The breadth and depth of such a tree are important considerations, because the

structure of the tree can affect the probability of having a large number of false surface

points. The situation proceeds as follows: If the tree is narrow and deep, then a false

point located at the top level of the tree can lead to false points all the way down,

thereby seriously affecting the quality of the segmentation. This is why it is good to

have a very broad first level, whose rays definitely originate from inside the structure.

However, if the tree is too broad, then it may not be able to reach down enough levels

to maneuver itself around convex curves within the structure. A balance must be

made.

At present, the algorithm defaults to a raysperkoosh of 100 and a branchfactor of

100. At every other level, raysperkoosh is 10 and branchfactor is 1. This means that

there will be 100 rays on the first level, and 1000 rays on each level after that. We

use the notation "(100,100),(10,1)..." to denote this tree structure (See Chapter 6 for

a full explanation of this notation).

4.3 Tree Level Calculation

Given the total number of required surface points, the algorithm calculates the num-

ber of levels to include in the tree, and the number of rays which should be computed

to find edge points in the last level. This calculation is complicated by the factors
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outlined below.

The rays which are initially chosen as sites from which to choose the points of

origin for the child kooshes are chosen in an even manner, i.e. the second out of every

five rays. This, however, leads to a problem when all the points of origin have exactly

the same type of uniform distribution, since generations of child koosh will be colinear

with an initial ray, and all will find the same surface point that was originally found

by that ray. In a deep tree, this could be lead to many repeated surface points.

This problem has been addressed in two separate ways. First of all, the edge

points of any ray which is being used to spawn a child koosh are not added to the

array of surface points, since it is assumed that the same edge point will be found by

a ray traveling in the same direction in the next generation. If the number of rays

emanating from a kooshball of the next generation is the same as for the original

generation, then the same uniform distribution of rays around the point will be used,

but the point detection along the original ray will only be performed once.

Secondly, given that the number of rays per origin point, as well as the branchfactor

remain the same over two generations, the positions of rays chosen to support child

kooshes are translated randomly, so that in one generation, the second ray out of

every five is chosen, while in the next generation, the fourth ray out of every five is

chosen. These two measures are used to avoid colinear sets of previous seed points.

4.4 Recursive Structure of the Code

In order to implement the tree-like kooshball function, the code is written in a re-

cursive manner. This provides the simplest and most elegant code. The recursive

structure of the algorithm is set up so that most of the variables used in the recursive

algorithm are static, and are accessed and adjusted by non-recursive functions which

are called by the recursive algorithm. The code is written in this manner in order to

make the manipulation of important variables simple to comprehend. Only a small

number of functions actually manipulate the global variables (these are the functions

TreeInfoStoreo and EdgePointStoreo, both of which use static variables to achieve

25



their purpose).
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Chapter 5

Screening the Cloud of Surface

Points

The outcome of the previous steps is a cloud of points which must be tesselated into a

surface. Between these two steps, however, a screening algorithm is used to weed out

any points which are plainly not on the surface. The screening procedure outlined in

this section is not designed to work on convex curves, unless all parts of the surface

of the structure are visible from its center of mass.

Given a center point P, let r be the distance between P and a proposed surface

point S, (see Figure 5-1). In its ideal form, our screening strategy would take all

points (Si..S,) contained within a solid angle centered around the PS axis. The r

value of the selected point would be judged against the r values of its neighbours,

Si..S,, , and accepted based on its deviation compared to the standard deviation of

r,n in the set (S, S1, S2, S3,..S,,).

In actuality, however, the calculation of a solid angle centered around each PS

axis is computationally intensive as well as unnecessary. Instead, a method of linearly

ordering all the points, in reference to their spherical coordinate angles (, b) from

point P is utilized. The points are ordered such that they are surrounded by their

closest neighbours (by angle). Points are then compared to neighbouring points in

the linear array.
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Figure 5-1: Solid Angle Method for Comparing r Values

5.1 Choosing a Center Point

The center point P is taken as the center of mass for the cloud of surface points. It

is assumed that in cases where the screening is done, the center of mass will occur

inside the object, and all parts of the surface will be visible from that center point

(i.e. no ray from that point will pass through the surface of the object more than

once). In chapter 8, the possibility of having more than one center point from which

to judge the surface points will be discussed.

5.2 Ordering the Surface Points in a One Dimen-

sional Array

The objective in ordering the proposed surface points into a one-dimensional array

is to ensure that each point is bordered on both sides by those points nearest to it

(where "nearest" refers to the angle between two points. One method by which to

achieve this objective is to chart a spiral path along the surface of a sphere drawn

around point P (see Figure 5-2).

Each point along the spiral path is then ordered on one criterion: how far along the

spiral path it occurs. The points zigzag along the path, never having a phi spacing

of more than the path width. If the path is widened, then the phi-spacing of the

28



Figure 5-2: Charting a Spiral Path Down the Sphere

ordered points will increase, while the theta-spacing decreases (See Figure 5-2). It

is important to choose the correct path width in order to keep the average phi and

theta spacing between the points equal.

The implementation of this concept uses a step-wise spiral, with a large number

of steps per rotation. In Chapter 3, a simple approximation was made to equalize

the average phi-spacing and the average theta-spacing by taking the square root of

the total number of rays, and slicing the sphere into that number of horizontal slices.

The same approximation can be made to determine the path-width and number of

revolutions of the spiral.

In this case, however, the manner in which the points are analyzed plays an im-

portant part in the determination of the path width. Since all neighbouring points are

given equal weight in the screening analysis, it is optimal if the average phi-spacing of

the points compared in the screening is equal to their average theta-spacing. In the

algorithm, the number of points compared with the point being tested in each screen

is stored in the constant SCREENWIDTH. If SCREENWIDTH is 5, then each point

S is being compared with four of its neighbours (S 1, S2, S3, S4): two from each side.
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Therefore, the average theta-spacing from point S is twice the average theta-spacing

between any two points. Doubling the average phi-spacing, i.e. doubling the path

width, corrects this problem. The implementation is shown in the DoScreeningo

procedure:

numslices = (int)(sqrt((double)numsurfacepoints)*(2/(SCREENWIDTH- 1)));

At the current time, the sorting of the surface points is done using an insertion

sort. It is therefore one of the time-limiting factors of the algorithm, especially when

the number of points is raised, since the sort routine is of the order n-squared. The

changing of this sorting procedure to a QuickSort will be mentioned in Chapter 8,

Future Work.

5.3 Performing the Screening

The actual screening is performed as follows: each point is compared to its neighboring

points in the one-dimensional ordered array. Including the point which is to be

screened, the r distance from SCREENWIDTH points are passed to the ScreenPoint(

algorithm. The average and standard deviation of these points are found. If the

point being screened deviates from the average by more than the standard deviation

multiplied by a given factor, called the sdfactor, then the point is not accepted.

Starting at a value of 0.1, the sdfactoris raised at 0.1 intervals until the percentage

of points which pass through the screen is equal to that specified by the user.

The screen procedure returns a boolean value which is 1 (pass) or 0 (fail) to each

point in the surfacepoints array.
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Chapter 6

User Parameters

Apart from the image to be segmented, the user has a number of parameters which

can be adjusted for the specific data volume, or specific structure to be segmented.

These parameters can be separated into three classes: those dealing with the surface

points, those dealing with the recursive method, and those dealing with the screening

of the surface points. Many of these parameters are present for testing purposes, so

that the optimum values can be determined for the regular use of the algorithm.

6.1 Surface Point Parameters

The most important restriction in the program occurs in the number of surface points

which it is asked to find. This will affect the speed of the algorithm as well as its

eventual accuracy in surface determination. The surface points parameter determines

the total number of surface points which are proposed, which is a greater number than

the total number of surface points considered after screening.

Another parameter is the starting point, which will eventually be inputted by

clicking the mouse at the proper point in the three-dimensional data volume. At

present, the coordinates for this parameter must be inputted manually. The starting

point must be located inside the volume of the structure, at least two voxels away from

the surface, depending on the length of the convolution used for the edge detection

algorithm.
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The maximum ray length is a parameter whose intent is to localize the length of

any particular ray. If the ray length is set to the longest path-length which exists

within the structure, it ensures that the rays do not stray too far from the structure,

while at the same time making sure that a ray is not halted in the interior of the

structure if it was begun in the interior of the structure.

6.2 Recursion Parameters

The recursion parameters specify the structure of the recursive tree, as well as the

number of surface points found at each level of the tree. The structure of the tree

is determined by the branching factor, a factor whose value is the number of child

kooshes resulting from all the rays of a parent koosh. The number of surface points

found on each level is dependent on the rays projected from each seed point, i.e. the

number of projected rays that make up one koosh.

Therefore, in order to make a tree with 100 points in the first level, 1000 on the

second level, and 1000 on every level afterwards, one could have 100 rays per koosh

on the first level, with a branching factor of 10. On the second level, one would also

want 100 rays per koosh, to make 1000 points in all (there will be 10 kooshes on the

second level since the branching factor for the first level was 10). For the third level,

the branching factor could be 5, and the rays per koosh could be 2 (this would also

make a thousand surface points). Afterwards, the branching factor would have to be

decreased to 1, and the rays per koosh would have to remain at 2.

The program possesses no ability to narrow the tree as it goes further down - each

branch of the tree is considered in the same manner. Therefore, either all kooshes on

one level have a child koosh, or none of them do. This rule is only broken on the last

and second to last levels, due to the restriction placed on the tree by the number of

surface points parameter.

Once again, these parameters have been placed in the program mainly for testing

purposes. In the final version of the algorithm, the user-adjusted parameters will not

go into such detail for the structure of the recursive tree. Rather, an average optimum
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tree structure will be used for all cases, perhaps with a width vs. depth variable.

6.3 Screening Parameters

A parameter is used to control the stringency of the screening process. This screening

parameter is given by the user as a percent of the total points which must pass through

the filter. If the value is set at 100, the points are not screened at all. Otherwise, the

algorithm goes through and screens all the points at decreasing stringency values, until

the percentage of points which pass through the filter is higher than that specified

by the screening parameter. This allows the user to adjust the stringency of the

screening depending on the effectiveness of the edge detection.
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Chapter 7

Verification

7.1 Test Data Sets

7.1.1 The Three Sets of Test Data

In order to test the algorithm, a driver program was developed which creates four

test shapes of any dimensions: a rectangular prism, an ellipsoid, a hollow ellipsoid,

and a three-dimensional "L" shape. All of our tests were done on cubic volumes, and

the three shapes are referred to as the cube, sphere, and hollow sphere. The outer

radius of the hollow sphere is twice the inner radius.

The sphere and cube are used for timing tests, while the "L" is used to verify

the orientation of the image, and to ensure that the algorithm can function when the

surface of a structure is not closed. The hollow sphere is used to test the recursive

functioning of the algorithm: a starting point is picked in the annulus of the sphere,

and the algorithm works its way along, detecting the surface on both sides of the

annulus. 

The driver program also contains a timing feature which measures the CPU time

and the actual running time of a process. This is used in timed trials of the algo-

rithm. All trials were run on a SPARCstation 1 computer at the MIT Whitaker

College Biomedical Imaging and Computational Laboratory, a machine rated at ap-

proximately 1 MFLOP.
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7.1.2 Accuracy

The test cases contained only those structures being tested, without noise or any

other structures present. As expected, the accuracy of the algorithm was very good,

being within two pixels from the surface for all points.

7.1.3 Varying the Screening Stringency

To investigate the effect of varying the screening stringency, the algorithm was tested

on a solid sphere of radius 29, in a volume of 64x64x64 pixels. The results for the

test are shown on Table 7.1 (timing) and Figure 7-1. The Sd Factor is a measure of

the total number of iterations the algorithm had run before the required percentage

of points could be accepted by the screening procedure.

Figure 7-1 shows the sequence of outlines of the structure which has been identified

by the algorithm. From the unscreened outlines, it is clear that the initial cloud of

surface points defines the sphere, with small outcroppings on the top right, and on

the left side. Both of these artifacts disappear as the stringency of the screening is

increased, as can also be seen in the figure. This is positive evidence that the screening

procedure is working correctly.

The vast difference in times between the unscreened run (28.9s) and the fastest

screened run (292.7s) is a result of the current sorting algorithm used by the program,

which is an insertion sort. An appropriate replacement for this sort is discussed in

Section 8, Future Work.

7.1.4 Tree Structure Tests on a Hollow Sphere

To investigate the effect of changing the recursive tree structure of the algorithm, it

was tested on a hollow sphere, with the starting point located in the annulus of the

hollow sphere. Six trials were then made, with an increasing depth to width ratio

for each trial. It was expected that as the tree became more deep and less wide,

the algorithm would travel further on average before finding the surface points. This

should lead to less of a concentration of points directly around the starting point, as
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% of Points Time Sd Factor
Allowed Through (CPU seconds) (0.1 minimum

10% 292.7 0.4
20% 300.6 0.9
30% 302.5 1.1

40% 305.2 1.3
50% 312.4 1.7
60% 312.3 1.8
70% 318.8 2.2
80% 324.2 2.6
90% 335.1 4.0

NO Screen 28.9 0
Data Volume Sphere Radius Starting Point

64x64x64 29 pixels (32,32,32)

Table 7.1: Screening 10,000 Surface Points from the Solid Sphere

hs2,pic hs4.pic hs6.pic 1 hs.pic

Figure 7-2: Results on Hollow Sphere for Varying Tree Depths

the surface points travel farther away from the initial koosh point.

The tree structure is given in raysperkoosh/branchfactor pairs (r,b). Therefore,

(100,100) means that there will be 100 rays per koosh, and all 100 of these rays

will be used to start child kooshes. If the last level of the tree structure just keeps

repeating, (i.e. (100,100),(10,1),(10,1),(10,1)...), it is written as follows: "(100,100),

(10,1)...". Table 7.2 gives the information for the runs shown in Figure 7-2.

Figure 7-2 shows the sequence of trials as the depth of the tree is increased. The

starting point in this figure is at (32,5,32), and the slice which is shown is slice 29.

The heavy concentration of surface points around the starting point can be seen in
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Trial # Tree Structure Bottom Level
1 (10000,10),(10000,10)... 0
2 (1000,1000),(5,1)... 2

3 (100,100),(10,1)... 10
4 (10,10),(10,1)... 100

Table 7.2: Legend for the Tree Structures Tested

Dimensions 8x8x8 16x16x16 32x32x32 64x64x64
CPU Time(s) 4.9 7.7 13.6 26.6

Table 7.3: Varying Data Volume Dimensions and CPU Run Times, 10,000 Point Trial
on a Solid Sphere. The data shows a linear relation between the length of the cube
and the CPU run time of the algorithm, suggesting that kooshball algorithm reacts
very favorably to large data volumes.

the first picture, as shown by the two white bars near the top of the figure. The

almost even distribution of points around the sphere in the last figure can be seen

equally clearly.

7.1.5 Size of the Image

Trials were run to test the effect of data volume size on the run time of the algorithm.

The results shown in Table 7.3 and in suggest an approximately linear relationship

between the radial dimension of the sphere, and the CPU time necessary to find

10,000 points. This demonstrates the scaling capability of the kooshball algorithm

for large structures.

7.1.6 Number of Surface Points

Table 7.4 shows the number of surface points versus time for the cube test. This trial

was done without screening, with a tree structure of (100,10), (10,1).... The relation

is linear, as can be seen in Figure 7-3.
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Number of Points 1250 2500 5000 7500 10000 20000 40000
CPU Time (s) 1 3.2 4.8 1 7.6 110.5 13.1 24.3 48.3

Table 7.4: Number of Surface Points vs. CPU Time for a 64x64x64 Data Volume
Cube Test (Cube Length = 52)

0
E
I-

0
C,

-0 0.5 1 1.5 2 2.5 3 3.5 4
Number of Surface Points - ,,4

Figure 7-3: Graph of Results for Time vs. Number of Surface Points Trial
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7.2 Medical Data Sets

7.2.1 The Test Image

The kooshball algorithm was also tested on a ventricle from an MRI image of the

brain. The ventricle was chosen partly because it is the most defined structure in the

brain, and would thus yield to the edge detection methods present in the algorithm

at this time. It was also chosen because it is convoluted, and makes a good test of

the recursive part of the algorithm, that part which allows it to maneuver its way

around convex curves.

The data set went through two preprocessing procedures before it was used to

test the algorithm. First, a cubic volume of the brain image containing the ventricle

was cut out and made into its own data set. This prevented the algorithm from

getting distracted by the strong contrast regions at the edge of the skull and on the

edges of other structures. Our justification for this preprocessing procedure is that

the kooshball algorithm will eventually be used in a semi-automated environment,

where the user will define the rough region containing the structure of interest. The

kooshball algorithm will then be limited to that data located in a box surrounding

the region of interest.

The data was also smoothed in 3D by a low pass filter which removed much of

the random noise, thereby taking away another component of the data volume which

might distract the edge detection mechanism of the algorithm. Images of four slices

of the ROI and smoothed data set are shown in Figure 7-4.

7.2.2 Potential Problems for the Kooshball Algorithm

The main problem which the algorithm meets when processing the medical data

occurs because of its simple edge detection mechanism. At this point, the algorithm

does not take into account the distance of the edge from the initial point: only the

strength of the -edge. Therefore, if a:ray-passes through two surfaces, and the second

hasa 'stronger edge, the second, rather tha;n- the first surface will be detected.' v 
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Table 7.5: Information on Medical Data Trials
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Figure 7-4: Slices of the Smoothed Ventricle Image: slices 13,16,23 and 29

roiNew.012 roitev.016 roi0.a'; roiev,.029

-Figure 7-5: 40,000 PointTrial of the kooshball algorithm on the medical test data.
Here, slices 13,16,23 and 29 are hown. The starting point is on slice 17. Note that
the algorithm does quite well, especially for those slices close to the starting slice.
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A second problem occurs because of the contrast between different MRI slices.

This contrast in gradient between the slices is sometimes picked up more strongly

than the edge of the ventricle itself. The algorithm sees this as a strong edge. Fortu-

nately, however, the edge of the ventricle in this case is strong enough to override this

problem. If in future versions of the kooshball algorithm the slice contrast creates

difficulty, it can be eliminated by normalizing along the data slices.

7.2.3 Accuracy

The accuracy of the algorithm can be seen in Figure 7-5, by comparing it to the

original data in Figure 7-4. Data concerning this run is locate in Table 7.5. Though

there is some noise in the 40,000 point run, the ventricle is shown very clearly along

most of its length. Because the ventricle is convoluted, the algorithm does not perform

very well on slice 29. The reason for this is investigated in the tree recursion portion

of this section. What Figure 7-4 clearly shows is that the algorithm can perform

successfully on medical data, with good accuracy.

7.2.4 Changing the Recursive Tree Structure for Better Re-

suits

In an attempt to achieve better results for the algorithm, the tree structure was

varied, as shown in the runs on Table 7.5. The results from these runs demonstrate

the balance between too wide a tree and too deep a tree in a very clear manner. All

these runs were performed with 20,000 surface points.

The first run is flat, with all 20,000 points coming from rays emanating from a

single koosh. The fact that it outlines some of the surface in slice 29 shown in Figure

7-6 shows that at least some of that surface is visible from the starting point. The

second run, which goes down two levels, with 100 kooshes giving 200 surface points

each, outlines the surface on slice 29 adequately. This is the optimal tree setting for

this slice. When the tree is deepened in trial 3, less of the surface is shown. The

fact that the tree is deeper means that there is more chance of leakage affecting the
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tr-2 tr-1

Figure 7-6: Depth of Tree Trials: Slice 29 of a Brain Ventricle Data Set. The depth
of the tree in the trials from left to right was 0,1,2,20. The trial with only one tree
level yields the best results.

outcome. Further trials showed varying degrees of success in finding the surface on

slice 29, but had increased noise. The increase in noise most likely results from the

increased effect of one leaked ray, all of whose child kooshes could start from the

wrong part of the data volume.

7.2.5 Testing the Screening Procedure On a Medical Data

Set

As mentioned before, the screening algorithm was not expected to perform well on a

convoluted structure such as the ventricle. This proved not to be the case. Though it

has trouble with groups of points, the algorithm did quite well getting rid of individual

points which were far away from the surface of the structure. However, many of the

surface points were erased before this occurred.

7.3 Summary of Results

Using four test shapes, we performed qualitative tests on the effectiveness of the

screening procedure, and on the effect of varying the tree structure of the kooshball

algorithm. The screening procedure works well on the test shapes, producing a more

defined result on a solid sphere as the stringency is increased (Figure 7-1). The tree

structure was tested on the annulus of a hollow sphere, and it was found that it did
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travel around the annulus when the depth of the tree was increased(see Figure 7-2).

Timing trials were performed while first varying the size of the data volume, and

then while varying the number of surface points. In the data volume trial on a solid

cube, it was found that the CPU time used for the algorithm to complete its task

varied linearly with the length of one side of the cube (see Table 7.3). In the surface

point trials, the CPU time vs. number of points is also linear (Table 7.4, and Figure

7-3).

A medical data set containing the ventricle of a brain was also used to test the

algorithm(Figures 7-4 and 7-5). The algorithm outlined the volume accurately on

the whole, though this accuracy dropped off at slices far from the starting point.

Tests made by changing the tree structure yielded some better results (Figure 7-6).

The medical test data does show us, however, that the algorithm can outline a

real medical structure with a fair bit of accuracy.
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Chapter 8

Future Work

A number of improvements are scheduled to be made on the kooshball and screening

algorithms. The purpose of this initial version of the algorithm was solely to observe

its ability to effectively segment structures in MRI images. Now that this ability has

been established, further work will enable the algorithm to work faster, perform on

a broader range of structures and test cases, and allow us to investigate its potential

to a further extent.

8.1 Choosing Surface Points Closer to the Start-

ing Point

The most necessary change, which will allow other structures in the brain to be seg-

mented, will take place in the edge detection method. A weighting factor which takes

into account the distance between the proposed edge and the origin of each ray is

essential for segmenting structures whose-edges are not as strong as the ventricle.

Though this would be a simple change, work needs to be done on the optimal weight-

ing scheme which would detect -the closest edge without being distracted- by noise or

slight contrast variations close to the initial-point. 
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8.2 Creating and Processing Multiple Edge Points

on a Single Ray

A more complicated edge detection scheme, involving the use of more than one pro-

posed edge point per ray is also expected to be pursued. In this scheme, the model

would choose the optimal of a set of three edge points from each ray, depending on

the strength of each edge, its distance from the center of mass, and its deviation

from the strongest edge points given by its nearest neighbours. An entirely different

method of screening the edge points will have to be developed in order to accomplish

this task.

8.3 Replacing the Insertion Sort

At the present time, the insertion sort which is used in the screening process consumes

the vast majority of CPU time in running the algorithm. This is because the sort is

on the order of n-squared, and therefore does not perform well when many surface

points are being found. A suitable alternative would be a quicksort: it's order of

log(n) would be much more suitable for the purpose of sorting a large amount of

surface point information.

8.4 Screening Surface Points on Convex Surfaces

The screening procedure must be moderated so that it can handle convex shapes;

in its present form, it is incompatible with the the recursive part of the algorithm.

Modifying the screening procedure might be achieved by taking the center of masses

of different sections of the structure, and doing a number of comparisons for each

surface point, involving a distance comparison between the surface point and each of

these center of masses. In this way, a portion of the structure which was invisible to

one center of mass could be screened from the center of mass for the surface points in

its section of the structure. An investigation must be made into the efficacy of this
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approach.

8.5 Time Optimization

After the algorithm is finalized, the code will be optimized so that it will run at a

much faster rate. The optimization of C-code has not been performed at this point

because of the changes pending in the algorithm structure.

8.6 Incorporation into the WCBICL 3-D Viewing

System

When it is completed, the algorithm, complete with starting seed points and parame-

ters, will be incorporated in existing MIT Whitaker College Biomedical Imaging and

Computational Laboratory Software. This software, currently under development, is

based on [5] and has been modified by several researchers to serve as a general pur-

pose visualization and segmentation system. The output from the algorithm will be

tesselated into a surface, and its volume will be automatically calculated. It is hoped

that eventually the algorithm will be used by clinicians to determine the volume and

location of structures of interest in medical data in a fast and accurate manner.
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