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Abstract

This thesis investigates the applicability of the forward modeling approach in adaptive
motor control. The forward modeling approach advocates that in order to achieve
effective motor control, the controller must first be able to predict the outcomes of
its actions with an internal model of the system, which can be used in the search
for the appropriate actions to achieve particular desired movement goals. In realistic
control problems, however, the acquisition of a perfect internal dynamical model is not
generally feasible. This thesis shows how an approximate forward model, obtained
via a simple on-line adaptation algorithm and an on-line action-search process, is
able to provide effective reaching movement control of a simulated three-dimensional,
four-degree-of-freedom arm.

In the course of studying the on-line action search process, a problem which we
refer to as the "control boundary problem' was identified. This problem was found
to occur frequently and was found to be detrimental to the gradient-based search
method. We developed a novel technique for solving the problem, referred to as
the "moving-basin approach.' The moving basin approach leads the system to the
desired goal by adaptively creating subgoals. Results are reported that show the
improvement in the action-search process using the moving basin method.

Once the control boundary problem is solved, the forward modeling approach
is able to provide stable adaptive control under perturbations of various forms and
magnitudes, including those that could not be handled by analytical adaptive control
methods. Further investigation also revealed that changes within the parameters of
a forward model can provide information about the perturbed dynamics.

Thesis Supervisor: Michael I. Jordan
Title: Professor
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An Overview

This thesis work is prompted by the recent growth of research into the application of

neural networks for the control of nonlinear systems. Specifically, it involves research

into the applicability of the forward modeling idea in adaptive motor control.

The forward modelling approach to motor learning and control is an idea simi-

lar to the indirect methods in the adaptive control literature. It advocates that in

order to achieve adaptive motor control, the controller must first be able to predict

the outcomes of its actions (given the state information of the environment) with a

model of the system. This predictive capability should then be utilized in the search

for the appropriate actions in a particular situation. The idea is conjugate to the

direct methods which do not involve building a model of the dynamical system to be

controlled.

The original forward modeling idea involves:

1. the off-line training of neural networks with large number of exemplars;

2. the performance of the neural networks during the applied stage with feedfor-

ward computations only.

Most other connectionist architectures for adaptive control of nonlinear systems, in

either direct or indirect form, require the neural networks to assume a role similar to

that postulated above. There has not been any work on investigating the performance
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of these architectures with the ANN's learning of a small number of on-line exemplars.

This may be due to the fact that ANN training usually requires many exemplars and

epochs to approximate a target function accurately, which created the presumption

that the NN's learning of a small number of on-line exemplars will not do much.

The idea has been tested in the control of simulated robotic arms. In each simu-

lation a neural network (forward model) was trained off-line to predict the resultant

joint accelerations caused by torques applied to the joints at any given state of the

arm. If this prediction is highly accurate, the sequence of feedforward torques re-

trieved from the forward model (using the bac,;'propagation algorithm) would lead to

the accurate execution of a desired trajectory (specified in the form of a sequence of

desired joint accelerations). However an exact forward model of the dynamics of a

robotic arm (even a simple one) produced by off-line training alone is not possible.

There is thus a need to adapt on-line the forward model if the approach is to work

without incorporating additional auxiliary controllers. A simple adaptation method

is to train the forward model on each exemplar collected on-line (after the execu-

tion of its action in each time-step of the control). In view of the large amount of

exemplars and time taken to off-line train the forward model, I presumed that this

one-exemplar-at-each-time-step learning will not work. To my surprise the forward

model is able to stably adapt to various kinds of nonlinear perturbations (of high mag-

nitudes) to the arm dynamics with this method, and in turn performs highly accurate

trajectory tracking. Further investigation revealed that the structure of the forward

model could provide information about what the perturbations are. It also provides

impressive generalizing power such that the learning of a single exemplar could lead

to improvement of prediction in a large neighborhood in the forward model's input

space. This discovery leads to new research into the computational properties of

neural networks in general, and in particular its applicability in adaptive control of

nonlinear systems.
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Chapter 1

Introduction

Whatever you can do, or dream you can do, begin it!

Boldness has genius, magic, and power in it.

Begin it now!

- Goethe

1.1 Background and Motivation

The urge to understand and better control our bodily movements has been around

throughout the ages. During the warring years early in human history, a better

knowledge of this field would yield better fighting forces, and this in turn could

mean the dominance of a particular race or nation over its neighbors. With the

advances of science and technology in modern era, we see the ongoing quest for

intelligent robotics for better industrial production and military capabilities. The

need to find treatments for illnesses related to human motor control, such as Parkinson

and Huntington diseases, and design of actuator interfaces for the disabled, also

require a better understanding of biological motor control systems.
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Of the various motor faculties, arm movements have attracted the most attention

among researchers. While it is known that the inherent dynamics of human arms are

nonlinear and complex, we can effortlessly execute highly flexible and complex arm

movements under many conditions. Research into the arms' motor control system

has in recent years evolved into a multi-disciplinary field involving robotics, medical

science, adaptive control theory, psychophysics and, recently, computational neuro-

science, in the hope that breakthroughs could be achieved through the convergence

of both engineering and reverse-engineering approaches.

The reverse-engineering approach, which consists of the search for control strate-

gies adopted by nature by looking at the actual neural circuits in biological systems,

quickly run aground because of the difficulty in linking the implementing circuits to

the inherent dynamics involved. To date numerous models involving only the use

of feedback control circuits (e.g. alpha-gamma coactivation - see Kandel & Schwarz

1991) to handle perturbed dynamics of the arms have been proposed; but such con-

trol schemes can only explain how local improvement in movement control can be

achieved. Since it is known that biological control systems are able to generalize from

a small amount of experimenting with the perturbed dynamics of the motor faculties

and lead to global improvement in performance, a framework that could fully model

the competence of a biological motor system would have to be made within the realm

of adaptive motor control.

The engineering approach mainly involves the modeling of the nominal dynamics

of the arms using its artificial counterpart - i.e. the robotic manipulator with revolute

joints, which can be achieved using numerous formulation strategies. Of these strate-

gies, the most notable ones are the Newton-Euler formulation and the Lagrangian

formulation, by which many formal adaptive methods for robotic manipulators have

been established in recent years. The fast development of adaptive control for ma-

nipulators, which is by itself a specialized field, is due to the fact that the effective

control of robotic manipulators is inherently linked to industrial interests; and conse-

quently they provide enormous support for such development. These adaptive control

17



methods, many of them well-established in handling certain specific domains of per-

turbed dynamics, provide the theoretical framework that might be adapted to model

the adaptive capabilities of biological motor systems. Such attempts would have to

be made within the constraint of biological plausibility at the implementational level.

In particular, effort would have to be made to tackle a challenging fact - the com-

putational modules of biological motor systems consist of huge number of processing

units, each limited in computational capabilities but whose global connectedness pro-

vide powerful learning capabilities. Many such attempts were made in recent years

(e.g. see Lewis 1995, Miller 1990), and it is this interface that this thesis work is

aimed at.

There are core organizational principles at a conceptual level which provide con-

straints narrowing our scope of research directions at this interface. For example,

Jordan & Rumelhart (1992) have clearly argued that forward modeling is more likely

to have been adapted by motor circuits as the control strategy for certain aspects.

Such control methods involve an identification procedure in which the control system

forms an approximate internal model of the system that is being controlled, coupled

with a search process in which the model is used to search for control signals (also

see Narendra & Parthasarathy, 1990). This leads to the concept of distal supervised

learning in which the controller is trained using a model of the system to be controlled.

The original forward modeling idea utilizes auxiliary feedback controllers to im-

prove the performance of an inaccurate controller trained by an approximate forward

model. The forward model and controller can then be re-trained off-line with the

exemplars collected to yield better feedforward control. The core idea in this thesis

stretches the approach a bit further - the feedback controller is discarded altogether

so that there is only feedforward action involved in the control. The feedforward

action is retrieved from the forward model using an on-line action-search process,

coupled with the on-line adaptation of the forward model for improving its prediction

accuracy (and in turn the precision of feedforward action). By the on-line adaptation

process, the forward model is trained to interpolate through an exemplar collected

18



on-line at each time step of the control. This is similar to some of the formal adaptive

control methods in which the improvement in performance is to be achieved solely

through the updating of parameters' and does not involve feedback control at all. The

success of such an approach depends on whether the process of interpolating through

a small number of exemplars does lead to improvement in the forward model's global

prediction accuracy of the underlying mapping. The main task of the thesis is to

report on the results from simulations and give an idea of the scope of applicability

of such a control method implemented using various learning architectures.

In the course of implementing the on-line action-search process, a form of local

minima problem was found to occur very frequently and proved detrimental. The

common approach to the local minimum problem would be to treat it as an inherent,

unsolvable problem in gradient-guided processes. A simple idea called the moving

basin mechanism was devised and solved this problem to a significant extent. Once

the problem with local minima was solved, the power of the forward modeling is

unleashed and the on-line adaptation process was found to yield stable adaptive

control in the presence of various forms and magnitudes of perturbations.

1.2 Organization of the thesis

The claims made about the applicability of on-line adaptation in this thesis are en-

tirely supported by empirical simulation results. In order to substantiate the credibil-

ity of such support from empirical data, the most important part of the experiments

were carried out on the adaptive control of a simulated 2-joint, 4-degree-of-freedom

manipulator with a configuration similar to a human arm.

Chapter 2 will give a review of the nature of dynamics involved in motor control.

A review of existing analytical methods for adaptive manipulator controls will be

given. Chapter 3 will introduce the idea of forward modeling in its original form, to
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be followed by a description of the trajectory planner used. The preliminary result

of the adaptive control of a simulated 4-dof arm are then presented.

In Chapter 4, the problem with local minima encountered during the action search

process is discussed. This is followed by a description of how it was solved with the

moving-basin idea.

Chapter 5 presents the main results obtained from the control of the simulated

4-dof arm in various performance measures (intra- and inter-trajectory, types of per-

turbations to the dynamics). The unique and desirable properties of the forward

model's on-line adaptation process is also presented together with notes on why they

are counter-intuitive. The most important finding of the thesis - that the success

of on-line adaptation process dispels the conventional view that a neural network's

training necessarily requires extensive number of exemplars and training time - will

be emphasized.

Chapter 6 presents the results on the implementation of the idea using other com-

putational architectures such as Hyper-Basis functions and local expert networks.

This is followed by a brief comparison with Craig's adaptation method. Such com-

parisons provide a better scope of performance measure of the forward modeling

approach.

Chapter 7 provides a summary of the interesting findings in the research. The

feasibility/implementability of the technique investigated is also discussed.

20



Chapter 2

Motor Dynamics and its Adaptive

Control

2.1 Introduction

This chapter will review the mathematical modeling of human arm dynamics based

upon its artificial counterpart - i.e. a robotic manipulator with revolute joints. In

particular the simplifications involved in the modeling will be discussed. This is to

be followed by a glimpse of the complexity in the modeling of ideal multi-degree-of-

freedom manipulators. We will also review some of the existing analytical adaptive

control schemes specific for manipulators, and point out their limitations in handling

nonlinearities. The exposition of the complexity involved in the field of manipulator

controls in this chapter shall establish the justification for the use of the empirical

results in supporting the claims to be made in later chapters of this thesis.

21



2.2 Manipulator's Dynamics

A revolute joint manipulator is usually modeled as a set of n moving rigid bodies

connected by revolute joints in a serial chain. There is a torque actuator and friction

acting at each joint. The equation of motion of such a device can be described by

r = M(O)9 + V(O, 9) + F(9) + G(O) + Td (2.1)

where r is the vector of joint torques, 0 is the vector of joint positions, the vector of

joint velocities, and the vector of joint accelerations. The matrix M(O) is the ma-

nipulator mass matrix. The vector V(O, 9) represents torques arising from centrifugal

and Coriolis forces. The vector F(9) represents torques due to friction acting at the

joints. The vector G(O) represents torques due to gravity, and Td is a vector of un-

known signals due to unmodeled dynamics and external disturbances. Equation 2.1

is sometimes written as

r = M(O)9 + Q(O, 9) (2.2)

where Q(9, 9) = V(O, 9) + F(O) + G(O) + Td.

The major simplification involved in modeling the human arm's dynamics using

ideal manipulator dynamics is in the rigidity of the links and viscosity at the joints.

The mechanical links of manipulators are much more rigid than the human arms,

which can be more fully modeled using flexible joint/bending modes dynamics (see

Yurkovich 1990, Book 1993). As the joints in human arms are surrounded by fluids,

viscous forces play a larger role in human arm dynamics than robotic arm. Viscous

forces are complex and nonlinear, but in robotics they are usually considered as part

of frictional forces and can be written as

F(9) = Fm + Tdf (2.3)

where F, is a diagonal matrix of viscous friction coefficients, and Tdf is unstructured
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Figure 2-1: a 2-joint revolute arm.

friction effects.

2.3 A Glimpse of the Complexity involved in Mo-

tor Dynamics

Equation 2.1 may not look too intimidating at first glance. However when we look

at it in detail using, say, the Newton-Euler formulation, the dynamics of the 2-joint

arm in Figure 2-1 would look like this:

interactive = -I L (1 27 - ['2 + mn2(l 2 +- lll2cos2)]02
centrifugal _2

71 = m 211c2 stn(02 )

centrif ugal -= m 2 ll c20 8in( 2 )

Coriolis = 2m2lllc2t l2sin(02)

T c_ Tcentrifugal C+ , oriolis + interactive

I2,0 + I1

02

+ centrif ugal
T2 + 2

I2
(2.4)

where Ij, Ij and mj are respectively the moment of inertia, the length and the

mass of link j, and ic; is the position of the center of mass of link j along the link's

length, 7centrif u gal interactive and 7coriolis are respectively the centrifugal torque, theT. , '1 j 3

23
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interactive torque and the Coriolis torque experienced at joint j. Most adaptive

control methods for direct-drive manipulators (see Asada & Slotine, 1986) were tested

on 2-joint arm manipulators. We now consider the dynamics of a 3-joint arm - i.e.

with the addition of one more joint:

I2,0

13,0

I3,1

interactive
Ti

= I2 + m2 ( C2 + 1C + 2llc 2 c 2 )

= 13 + m3 ((X3 + lc3cos(0l + 02 + 03))2 + (Y3 + lc3sin(Oi + 02 + 03))2)

= I3 + m3 (12 + l23 + 2121C3cos03)

= -3(01 + 2 + 3)

-m 3 (01( 2112cos2 + 12+ l + 111c3Cos(02 + 03) + 2lc312cos03 )

+92(12 + 132 + 21213 cos0 3 ) + 93(132 + 12lc3 cos0 3 ))

Tinteractive = I22 Tinteractive rn2/(/c 22 2 llc2cos02)

rfCoriolis = 2m3lc312sinO303 - 3

Cor ioli s- = 2(m 3/c3(01 + 02)03(llsin(02 + 03) + 12 Sin03) + m2 111c201 2 in02)

centrifugal = -m3lc3(llOsin(02 + 03) + (2 + )l2sin 3)

Tcentr ifu9al = m 2 12l2sin 2 + lc3m3 3rsi O3

Ocentrifugal = m2 1il 2 32sin0 2 + 0 3) + 12 sin03)
centrif ugal Coriolis + nteractive

T1 - 0 TO 70 0
01

I2,0 + 13,0 + I
centrif ugal Coriolis + rinteractive

2 + 71 +T- 71tv i

I2 + I3,1

03

T3 + Tcentrifugal

I3
(2.5)

The explosive increase in complexity from Equation 2.4 to Equation 2.5 illustrates

the difficulty involved in actually applying many formal methods in the control of

manipulators with large number of dofs. A normal human arm has seven major

degrees-of-freedom in it, with 4 of them (three at the shoulder joint, one at the

elbow) being required to overcome large centripetal forces when the arm swings at

high speeds. An elaborated formulation of the dyanmics of the arm involving just
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these 4 degrees-of-freedom would take many pages to list out. If more precise modeling

using the flexible joint/bending modes is involved, the complexity could be far more

deterring.

2.4 Review of Adaptive Control Schemes for Ma-

nipulators

The field of adaptive motor control is vast. An extensive and detailed coverage of the

work in this field is beyond the scope of this thesis. This section is to provide a brief

overview of the current state of the research involved.

Traditionally, most work on the problem of adaptively controlling a mechanical

manipulator has simply been the application of methods that were developed for

linear systems (see Craig 1988, Koivo 1983, Stoten 1990, Dubowsky & DesForges

1979). Recently, there has been a tremendous growth in the number of adaptive

control schemes for manipulators proposed to handle certain types of nonlinearities

in the dynamics. Virtually all of these schemes assume perfect knowledge of the

structure of the underlying dynamics - i.e. that a perfect structural model of the

manipulator dynamics can be built, and the performance errors are due entirely to

parameter errors. Some (e.g. Craig's and Slotine's - see the following subsections)

involve explicit identification of some of the manipulator's parameters. These schemes

generally do not involve the use of feedback controllers; and rely solely on parameter

adaptation coupled with the use of a control law to achieve on-line improvement

in performance. Methods of these types were mathematically proven to be robust

under specified and bounded disturbances and parametric uncertainties. Horowitz

and Tomizuka's approach (see Horowitz & Tomizuka 1980, Sadegh & Horowitz 1987),

another prominent group of work in this field, treats those parts of the dynamics

depending only on manipulator position as unknown parameters, which are then

adaptively identified. However their method requires that the parameters be slowly
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varying. Some other methods (e.g. see Slotine & Li 1991,Liu & Yuan 1989) are

based on sliding mode or variable structure systems, in which there is no explicit

identification of systems' parameters'. However these chattering controls (which in

theory switch at infinite frequency) cannot be implemented, and the derivative of

servo error goes to zero in the mean. Such high-frequency control action may also

excite unmodeled resonances.

We now present two of the more well-known schemes for manipulator's adaptive

control. Both of these schemes involve the explicit on-line identification of certain

unknown parameters, do not involve feedback controllers; and rely solely on the on-

line update of parameters to achieve improvement in performance.

2.4.1 Craig's Adaptive Scheme

Craig(1988) proposed a scheme for adaptive manipulator control that takes full advan-

tage of any known parameters while estimating the remaining unknown parameters.

However its applicability is limited to the identification of parameters that can be

linearly decoupled from the dynamical equation.

In Craig's method, the output servo error E = 0~ - 0, where * and 0 are respec-

tively the desired and actual joint position specified at each time step, is related to

the dynamical model's error in the following form:

E + KvE + KpE = M11 (0) [M(0)0 + Q(0, 0)] (2.6)

where M(0) is the error in manipulator mass matrix, Q(0, 9) is the error in the

centrifugal and Coriolis forces. A necessary step in Craig's adaptive parameter iden-

tification scheme is the decoupling of the parameters' errors = P - P from the

1These were sometimes classified as robust control instead of adaptive control.
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dynamics such that the following linear relation can be achieved:

E + K E + K E = M-1(9)W(9, , ) (2.7)

i.e. W(9, 9, 0)4 = MI(0)+ Q(O, 9). If the above is possible, the parameter adaptation

law

P = rw T(, , 9)M-(O)(E + JE) (2.8)

can then be used in conjunction with the control law

T ff = M(0)//* + Q(0, 0) (2.9)

to achieve stable trajectory tracking control. In the above, r is a diagonal matrix of

non-negative constants and T is a diagonal matrix of positive constants, *[t + 1] =

Ad+ Kp(*(t)-O[t])+Kv(b*-[t]), where O*(t), 0*(t) and ad are the prescribed desired

joint angle, joint velocity and joint acceleration at each time-step that fully describe

a reaching trajectory 2 .

The advantage of Craig's scheme over most other schemes developed prior to

its conception is that it has been rigorously proven stable, and it provides explicit

identification of certain parameters(e.g. the viscous and Coulomb friction coefficients,

vi and k respectively, and the masses of the links, which were already decoupled in

the original dynamics formulation.). However there are limitations as to the types of

parameters that can be identified by this method. To illustrate this point, consider

the problem of identifying the displacements (01 and 502) in the joint angle readings

(01 and 02) of a 2-d.o.f. arm (see Equation 3.42, Craig 88). The goal is to obtain a

formulation whereby the vector a is in the form [681, 6 0 2]T or [f(601), f(6 0 2)1 T, where

f is a trigonometric function. Evaluating the dynamics error function of the first

2See Section 3.4.1.
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d.o.f. yields the following:

(R(M(0)0 + Q(0, 0))1

m 21112 (20 1 + 02 )((cos 02 coS 602-sin 02 sin 2 02) - cos 02)

-(92 - 1 )m 211 12((sin 02 cos 602 - cos 02 sin 602) - sin 02)

+m 212g(((sin 01 cos 601 + cos 01 sin 601)(cos 02 cos 602 - sin 02 sin 601)

+(cos 01 cos 601 - sin 01 sin 601)(sin 02 cos 602 + cos 02 sin 602)) - sin(01 + 02))

+(ml + m 2)llg(sin 01 cos 601 + cos 01 sin 601 - sin 01), (2.10)

The above involves (cos 601 sin 602) and (sin 601 cos 602) terms, which implies that the

desired Vi form could not be achieved. Note that it is important for biological

neuromotor systems be able to effectively handle the problems with erroneous joint

positions' readings. This is because, among many species of wildlife, lesions in the

afferent pathways are common.

2.4.2 Slotine's scheme

Like Craig's scheme, Slotine's approach (Slotine & Li 87) requires the unknown ma-

nipulator parameters to be linearly decoupled from the dynamical formulation, such

that the relation between the vector P of unknown parameters and the robotic dy-

namics can be written as:

M(0)0* + V,(0, 0)08 + G(0) = YP (2.11)

where M(0) is the error in the manipulator mass matrix, Vm(0, 0) is the error in the

matrix of involving centrifugal and Coriolis forces, G(9) is the error in the vector

of forces due to gravity, *(t) is the desired trajectory and Y = Y(0, B, *, *) is a
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matrix. It has been shown that the adaptation law

p = -r-lyT(, 9, O*, *)O (2.12)

together with the control law

T = M(0)0* + Vm(9, )0* + G() - Kp0- KDO (2.13)

yields a globally stable adaptive controller. The ^in the above equation denotes the

estimate of the respective terms, 0 = 0 - * and Kp and KD are positive definite

matrices.

Slotine's scheme also has been mathematically proven to be globally stable when

specified conditions are met. But, again, the scheme will not be able to handle the

dynamic error due to the shift of joint angles described in Equation 2.10, or other

forms of perturbations whose parameters cannot be linearly decoupled.

29



Chapter 3

Forward Modeling and On-line

Adaptation

3.1 Introduction

This chapter introduces the core idea of forward modeling. The configuration of for-

ward modeling for manipulator control will then be presented. This is to be followed

by a discussion of related issues such as the nature of the mapping to be learned,

learning efficacies, and the arbitrary distinction between learning and adaptation.

The chapter will end with a description of the simulated 4-dof arm used in the ex-

periments to be presented in the subsequent chapters.

3.2 Distal supervised learning

To control a system requires solving for a control input to the system that will yield a

desired result at its output. A feedforward controller solves for a control signal on the
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Figure 3-1: An inverse model as a feedforward controller. With the direct-inverse
modeling technique, the inverse model will be trained to perform the map u[t] =
f-(y[t + 1], x[t]), where y[t + 1] is the observed system's output caused by an action
u[t] at state x[t].

basis of future desired values of the output. As shown in Figure 3-1, a feedforward

controller is a mapping from reference signals and states to control signals:

u[t] = g(y*[t + 1], x[t]). (3.1)

where the state vector x[t] and the control vector u[t] are defined at time t, and the

reference signal y*[t + 1] is the desired output at time t + 1. The task is specified in

a sequence of y'[t + 1].

Jordan & Rumelhart (1992) discuss the problem of learning a feedforward con-

troller using supervised learning methods. It has been observed that if the required

mapping is one-to-many, i.e. a set of distinct target outputs to be paired with the

same input, and this set of target outputs is non-convex such that the mean of the set

is outside it, then the network will not learn the mapping. A prominent example is the

inverse kinematic mapping of robotic arms involving redundant degrees-of-freedom.

They propose an indirect approach for training a feedforward controller in which the

controller is placed in series with an internal forward model of the controlled system.

A forward model predicts the behavior of the controlled system by performing the

following mapping

r[t + 1] = f(u[t], x[t). (3.2)

where r[t + 1] is the predicted output at time t + 1 after the action u[t] has been
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Figure 3-2: The distal supervised learning approach. The forward model is trained
using the prediction error y[t] - r[t]. The controller is trained by propagating the
performance error y*[t] - y[t] backward through the forward model to yield an in-
cremental adjustment to the controller. It is also possible to propagate the predicted
performance error y'[t] - [t] backward through the forward model. This can be done
iteratively to find a locally optimal control signal based on the initial control signal
proposed by the controller.

elicited at time t.

The forward model is itself trained using supervised learning algorithms. With

the forward model held fixed, the composite system is trained using the reference

signal as both the input and the target (Figure 3-2). This procedure solves implicitly

for a control signal at the interface of the controller and the forward model.'

It is important to note that in principle a perfect controller can be learned even

if the forward model is inaccurate. This is due to two factors: first, although an

inaccurate forward model may preclude steepest descent it need not prevent the

algorithm from moving downhill; and second, the true output from the environment

can be substituted for the inaccurate estimate in the calculation of the error term (see

1Although we utilize gradient-based techniques in the current thesis, it is worth noting that the
distal supervised learning approach is not restricted to such techniques.
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Figure 3-2). That is, the system can use the performance error (y*[t] - y[t]) rather

than the predicted performance error (y*[t] - S[t]), (where r[t] is the output of the

forward model and y[t] is the output of the plant). In the current thesis, however, we

are concerned with finding an appropriate control signal before observing the output

from the environment, thus we use the predicted performance error. The cost function

that we utilize is the squared norm of the predicted performance error:

JPp = (Y*[t + 1] - i[t + 1])T(y*[t + 1] - r[t + 1]). (3.3)

To search for a control signal, the state, the reference signal, and the weights in the

forward model are held fixed while u[t] is varied in a direction that decreases Jpp.

3.3 Some Psychophysical Evidence of the exis-

tence of Forward Models

Some models of human motor controls proposed within the psychophysics community

are similar to the forward modeling idea. For example in Adam's scheme (Wilberg,

1991) it was proposed that our CNS uses mental imagery as a representational system.

This is because it has been observed that motor skills can be improved even in the

absence of actual physical movement. We can think of the mental imagery system as a

forward model which provides internal 'simulated' feedback to imagined movements.

Other works also report how the nervous systems might use internal maps for

learning/calibrating motor control systems. For example, Grossberg & Kuperstein

(1989) propose that each adaptive sensory-motor system, such as the eye-head and

hand-arm system, computes a representation, or map, of target positions. The

sensory-motor system also computes a representation of present position that is up-

dated by a copy of the actuation signal to the muscles of the system called the

efferent's copy. This representation of present position can be deemed as a forward
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model that predicts the outcome of the efferent signal, and the mismatch between it

and the afferent signal would be used for adapting the system. Wolpert et al. (1995)

also report on results and simulations based on a novel approach that investigates the

temporal propagation of errors in the sensorimotor integration process. Such find-

ings provide direct support for the existence of an internal model. It has also been

proposed (Miall et. al., 1993) that cerebellum could be a site for such a kinematic

forward model.

3.4 Forward modeling for Manipulator Control

In the context of manipulator control, the state x(t) would be the vector ((t), 0(t)),

where 0 is the joints' position and the joints' velocity. The action u(t) would be

the joints' torque r(t), and the output y would be the joint acceleration 9(t + 1) to

be observed at the next time step t + 1. Jpp = 0 in Equation 3.3 would be equivalent

to having

Tf = M(0)0* + Q(0, 0) (3.4)

where -'ff is the feedforward torque, M and Q are respectively the estimates of M

and Q in Equation 2.2.

Equation 3.4 is sometimes referred to as the computed torque method of manipula-

tor control, which works based on the assumption that desired trajectory of the free

end of the manipulator is known and expressible as time functions of joint positions,

velocities, and accelerations. We now briefly discuss the issue of trajectory planning

in this thesis work.
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3.4.1 Trajectory Planning

Trajectory planning is the time evolution of kinematics variables. Thus a trajectory

has both spatial and temporal aspects: the spatial aspect is the sequence of locations

of an arm or object from start to goal (a path), and the temporal aspect is the time

dependence along a path. A trajectory planned for a hand's reaching movement can be

expressed either in the desired hand's position and velocity (in Cartesian coordinate),

or in desired joints' position and velocity (polar coordinate) at each time step. The

latter is known as joint interpolation (see Hollerbach 1990), which has the advantage

that complex inverse transformations can be left out of the control cycle. Since this

thesis only concerns adaptive dynamical controls, a simple form of joint interpolation

is used for trajectory planning for all the experiments. This trajectory planner has

the form:

/'[t + 1] = K(0' - 0[t]) + K(0 - 0[t]), (3.5)

where K, is a constant diagonal matrix of damping gains, Kp is constant diagonal

matrix of position gains, O' is the target joints' position and * is the taget joints'

velocity at the end of the trajectory. Note that this does not involve the explicit

specification of O*(t) and *(t) at each time step. The path of the hand generated

by such an implicit joint interpolation scheme is, in general, not a straight line.

However it is smoothly varying and thus leads to the demand of slowly-varying 7(t).

Furthermore since it is influenced by [t] and [t], it actually contributes certain

degree of feedback control to the overall reaching movement, and allows the target

position to be reached even if the controller is only fairly accurate. This can be easily

inferred from the fact that it has a similar form of control proposed by Arimoto and

Miyazaki (see Arimoto & Miyazaki 1985), except the M and Q are not precise.
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3.4.2 Nature of mapping and Learning Efficacy

Biological neural networks can handle nonlinear mappings of varying degrees of non-

linearities. For example in the dynamical control of eyeballs, since the eye balls are

nearly spherical and the eye balls' muscles are very strong, their control dynamics

are very linear (see Robinson 1981, Galiana 1990). On the other hand, the arm's

dynamics is relatively nonlinear as the geometry of its posture and joint velocities

determine the gravitational, centripetal and Coriolis forces acting on the joints. A

major issue is whether an artificial neural network (or some other mapping tools)

can learn the forward dynamics of a human arm. This can be put in the context of

the issue of whether the mapping of a nonlinear dynamical system can be learned

by a neural network, which in recent years have been addressed by many papers

(e.g. Zbikowski 1994, Chen & Chen 1995). These approaches of work usually involve

Stone-Weierstrass Theorem and will not be discussed in this thesis.

From my empirical experience, training a forward model to high prediction accu-

racy can be achieved much more easily and quickly than that of an inverse model,

even in cases where the inverse model's mapping is one-to-one. In particular, the

difficulty of on-line training a CMAC inverse model has been pointed out in Kawato

1990. It is possible that this is related to the nature of the exemplar-collection

process. Training exemplars collected from, say, a real robotic arm, consist of the

following :(o[t], o[t], r[t]) H- [t + 1]. A property of such an exemplar set is that for

a given 0 E , where 0 is the set of all possible 0, there are exemplars with r

well-distributed in the set of possible torques F; but the set of possible a given a

particular 0 is a small subset of the global set of possible . Similarly, the set of

possible 0 given a particular 0 is a small subset of the global set of possible . It is a

common practice to scale each of these values by the min/max of them, such that the

activation of the input and output nodes is within the range [-1, 1], to facilitate the

network's training process. Within this hypercube, the [t] and r[t] dimensions are

usually fully-spanned by the exemplars because of the property of the exemplar set.
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On the other hand, the #[t] and [t] dimensions are usually poorly spanned, and the

set of values occupies a narrow strip within the hypercube. The ease of a training a

neural network is related to how well its input space is spanned by the training set.

For a forward model (whose mapping is 0[t + 1] = f(9[t], 0[t], r[t])), the above implies

that only part of the state input subspace - i.e. [t] - are poorly spanned. On the

other hand, an inverse model (whose mapping is [t] = (O[t], 9[t], O[t + 1])) would

have the [t] and O[t + 1] dimensions of its input space poorly spanned. The result is

that it is more difficult to train an inverse model than to train a forward model. For

simple dynamics (such as that of a 2-joint robotic arm) the difference between the

forward model's and inverse model's training is not too noticeable. In fact, virtually

all reports (a recent one is Gorinesky 1993) with positive results using direct-inverse

approach were from experiments or simulations on planar 2-joint arms. However for

more complex dynamics, the difference becomes significant.

3.5 On-Line Adaptation

Perfect tracking control could be achieved with this method if the forward model is

exact (i.e. [t] = y[t] Vu[t], x[t]) and the action at each time step could be retrieved.

However an exact forward model of a system of moderate complexity is very unlikely

even if the system is time-invariant, as the number of exemplars and time required

for the forward model's off-line training grow at an exponential rate with respect to

the desired level of prediction accuracy. This implies that there is a need for on-line

correction of the control.

At this point, an arbitrary but more formal distinction between the terms learning

and adaptation is needed in order to justify the further use of the term on-line adap-

tation. Learning, in a motor control sense, is a process of acquiring the capability

for producing skilled action (Schmidt 1982). In the sense of manipulator control, it

is usually referred to (see Craig 1988) as any control scheme that improves the per-
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formance of the device being controlled as actions are repeated, and does so without

the necessity of a parametric model of the system. Such schemes are advantageous

when the system is difficult to model parametrically, or when the system structure is

unknown. The current applicability of such learning control schemes has been lim-

ited to manipulators that repeat their actions in constant cycles (e.g. see Arimoto

& Kawamura 1984, Atkeson & Reinkensmeyer 1990). During the learning phase of

a learning control scheme, stability should be less of a concern, as the system and

environment should be well-anticipated in case of the failure of control.

Adaptive control, on the other hand, requires that the structure of the system be

known entirely2 ; and that the imperfection in performance is due entirely to the errors

in parameters. An adaptive control scheme thus requires the unknown or changing

parameters to be explicitly sorted out in the formulation of the dynamics of the

system. With the nature/bounds of the parameters known, we can then proceed with

the proof of stability of control and devise measures of the efficiency in parameters'

identification and performance, which are important in establishing the viability of

an adaptive control scheme.

"Off-line training" is applied to a feedforward controller of a dynamical system

when as it is not accurate enough to satisfy certain performance measures (such as

the completion of reaching tasks with high probability of success). It refers to the

training of a forward model with a large training set consisting of exemplars collected

by (probably) passively observing the system. At this stage, the control of the system,

if there is any, should be carried out by subsidiary tools such as feedback controllers.

In the original model proposed in Jordan & Rumelhart 1992 (as well as many

other neural-network-based architectures for controls - e.g. see Kawato 1990, Holler-

bach 1990), fringe PID feedback controllers are to be used in conjunction with the

2 The word "entirely" here is to include the possibility that a viable adaptive control scheme
should be able to accommodate certain degree of unknown dynamics (i.e. ,Perturbations) to the
system.

38



y
*t

Y

Figure 3-3: Feedback controller to correct the error in feedforward torque ff via the
feedback torque tfb.

feedforward controllers (see Figure 3-3) for correcting the inaccuracies in actions due

to inaccuracies in the forward model. Feedback controllers3 are usually of the form

rb(t) = i(O;(t) - Oj(t)) + I/K j(t) + If, j(0j(t) - O,(t))dt (3.6)

where dlb is the feedback torque at joint j. During the course of executing a reaching

trajectory, rfb will be added to the feedforward torque generated by the feedforward

controller. The sequence of exemplars {(0[t], b[t], r[t]) -4 O[t + 1]} collected during the

trajectory will then be used for off-line training the forward model and feedforward

controller, such that future feedforward control will eventually dominate and lead to

the diminishing of the feedback control. If a neural network can be off-line trained to

provide the precise forward model, and the gains of the feedback controllers manually

preset to certain values that ensure stability, this approach will most certainly provide

3 Note that although some physiological observations (e.g. see Abbs & Gracco 1983) supported
the hypothesis that task-level feedback are more likely adopted by biological systems for slow arm
movements, we nontheless restrict the scope to proximal feedback for illustrative purposes.
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Figure 3-4: The local generalizing effect of on-line adaptation in the forward model
of an single-state SISO system. The learning of an exemplar y[t + 1] = f(x[t], uff[t])
at time step t + 1 leads to the reduction of prediction error in a neighborhood of

(X[t], Uff[t]).

precise trajectory tracking control.

We stretch the approach further : what if we leave the feedback controllers out

completely and on-line adapt the forward model ? i.e. the adaptation law is simply

the forward model's learning of a single exemplar received after the action u/ff [t] has

been executed - i.e. to interpolate the point (uff[t],x[t],y[t + 1]) with the mapping:

y[t + 1] = f(uff[t], x[t],w[t + 1]), (3.7)

at each time step, where wi[t + 1] is the adapted weight vector for next time step.

By adaptive tracking control we first require the local prediction accuracy of the

forward model be improved. The main question of our approach is whether Equa-

tion 3.7 would:

1. improve the prediction accuracy in a neighborhood Q of (uff[t],x[t]) of the

forward model's input space at each time step (see Figure 3-4), or

2. cause severe distortion of the forward model's mapping.

If (1) could be achieved then, provided that the time step is small (such that x[t + 1] 

x[t]) and y*[t+2] m y*[t+ 1], this would lead to more accurate action search in the next
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time step, which in turn would result in I[t] -y[t] - 0 (Vy[t] within a neighborhood

of y*[t]) as t -- oo. Given a task specified in a smoothly varying sequence of y*[t],

the above implies that the feedforward action found from the forward model would

produce ly[t] - y*[t]ll - 0 as t -, oo.

Note also that the process of interpolating through a single exemplar is fast - it

only takes about 5 iterations of the Scaled Conjugate Gradient Algorithm (see Moller

1990) in our simulations.

When the feedforward controller has been partially trained and has captured the

underlying nominal dynamics of the system to the extent that fairly accurate feed-

forward control is achieved, we might then "on-line adapt" it by training it with one

exemplar observed at each time step of the control. Our assessment of its success

should be based on the improvement of performance over various time scales. At a

short time scale, say within a trajectory, we might measure its success by whether

the target state can be reached and by how far off is the actual trajectory from

the intended trajectory. At a longer time scale, we might measure its success by

inter-trajectory performance.

Thus, the main research work in this thesis set out to investigate the following:

1. if an accurate forward model is available, could accurate control be achieved

without an accurate inverse model, i.e. solely by retrieving the control signals

from the forward model ?

2. given a task specified in a sequence of y*(t) that varies smoothly over time,

would an approximate forward model be able to on-line adapt and provide the

control signals for achieving y*(t) ?

3. if the on-line adaptation is possible, to what extent of inaccuracies in the forward

model be tolerated in completing a task ?
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3.6 Control of a four degree-of-freedom arm in

3-D space

This section presents the results of experiments on the control of a simulated four

degree-of-freedom arm in 3-D space under the influence of gravity. The arm is shown

in Figure 3-5(a). The shoulder and elbow are ball joints and each has two degrees

of freedom. The sampling time was set at eight milliseconds, which is coarse relative

to the amount of time required for a full-span traverse at maximum acceleration

(approximately 100 milliseconds).

3.6.1 Forward model

The forward model was a feedforward network of three hidden layers of sigmoidal

units, the first with 20 nodes and the second and third with 15 nodes. The input

consisted of 21 linear units (4 of which are action inputs, 16 of which are state inputs

and 1 as bias) while the output consisted of 4 linear units. The activation of the action

units are constrained to be within 7min and 7ma,. The network had 1005 connections

and learned to perform the following mapping:

O[t + 1] = f(7[t], [t], [t], w[t]), (3.8)

where 0 is the vector of estimated joint accelerations, r is the torque vector, and the

state variables and are the vectors of joint positions and velocities. The latter

three variables were scaled and presented as inputs to the network. The input also

consisted of sines and cosines of the components of 9.

The forward model was trained off-line with 30,000 exemplars until the relative
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Figure 3-5: (a) The arm and the reaching task. The length of each link is 0.3 m.
The center of mass of each link is at the center of the link. The maximum torques
at the shoulder are 91.3 N m, whereas those at elbow are 15.6 N m. The experi-
ments on robustness involved a reaching movement from the point (-0.12, 0.32, 0.39)
to the point (0.25,0.36,0.16). The joint angles in the initial configuration were
(01, 02, 03, 04) = (0.14, 0.24, 0.04, 1.04). (b) Performance of the controller with nomi-
nal dynamics in the reaching task. Note that the scales of the graphs of each joint
are not the same. The performance error at the beginning of the trajectory is 2.66
rad/s 2. The target is reached in 1.05 seconds.
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error4 is z 0.027. The scaled conjugate gradient(SCG) algorithm of Moller (1990)

was used for off-line training, on-line adaptation and action search. This algorithm

is much faster than the conventional back-propagation algorithm in the action search

process. This is due to the fact that by the time the forward model's output's error

was back-propagated(through all the hidden layers) to its input nodes, the magnitude

of the error signal usually becomes too small, and it is thus difficult to determine a

suitable fixed step size beforehand that would achieve a compromise between speeding

up the process and stability. SCG uses the second order information of the process to

automatically scale up the step size of control adjustment, and in practice a 75-80%

reduction in the number of iterations required for a typical action search is common.

3.6.2 Controller

For the experiments reported here, no separate controller was used. Rather, the

moving basin search process was initialized with a zero torque vector at each time

step and the process was iterated until a control signal was found.

The reference signal for the controller was the desired acceleration computed by

Equation 3.5 with IKp = 3.51 and K, = 1.31I, where I is the identity matrix.

The results for the reaching task under nominal dynamics are shown in Figure 3-

5(b). As can be seen, the system moves the arm stably along the desired trajectory.

Note that the forward model is not accurate enough to provide purely feedforward

control - i.e. the arm would not be able to reach the target without its on-line

adaptation.

4 The relative error measure of network's accuracy is:

e= Ei=l(Y' - f(Xi))2 (39E i - ___ (3.9)

E- 1 (Y - f(xi)) 2

where (xi and yi), i = 1, .., N are the training data and f is the approximating function. f is the
mean of f.

44



Chapter 4

The Moving Basin Mechanism

If Mohammad had not gone to the mountain,

the mountain would have come to Mohammad.

4.1 Introduction

In the previous chapter we have presented simulation results that showed how the

forward modeling idea has worked in accommodating a certain degree of prediction

inaccuracies. However, as with most applied gradient-guided search processes, there

are problems with local minima which could completely wreck the applicability of

the approach. Indeed, in simulations of the adaptive control of four-joint robot ma-

nipulators, it has been observed that gradient-based neural network algorithms are

not always able to find control signals that achieve specified endpoint accelerations

throughout the state space. The problem is particularly acute early in learning, when

the controller is often unable to propose an initial control signal that lies sufficiently

close to a solution. As will be shown below, in robotic control the problem is not due

to the presence of local minima, but arises instead because the search process reaches
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the boundary of the search space. Whether the problem is caused by local minima

or by control boundaries, failure to find an appropriate control signal can lead to

instability.

This chapter describes an approach for achieving more effective search in gradient-

based adaptive control. The approach is related to continuation methods in optimiza-

tion theory (Allgower & Georg, 1990). We propose that the system begins by setting

a target that is known to be achievable at the current point in the state space. The

system then sets a succession of intermediate targets that can be achieved by a linked

succession of "easy" searches. Within the framework of gradient-based optimization,

this approach has an interpretation in terms of a "moving basin" of the cost function.

The moving basin mechanism is shown to be able to solve adaptive control problems

that simple gradient descent cannot.

4.2 The control boundary problem

In preliminary simulation experiments involving the control of a four-dof robot arm,

we have found that the action-search process often causes one (or more) degree-of-

freedom to be required to produce a torque that is greater or smaller than possible.

One possible cause for this problem is that the desired output is actually not achiev-

able. We have found, however, that the problem exists even in cases where the desired

output is achievable, and would be predicted to be so by an accurate forward model if

the initial predicted output were sufficiently near to the desired output. Moreover, the

problem is not due to the presence of local minima in the form of stationary points,

because it can be shown from a Lagrangian formulation of robot arm dynamics that

joint accelerations are monotonic functions of the joint torques (Appendix A). Hence

stationary points cannot appear in the action-search process if the forward model has

been well-trained.
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The control boundary problem can be understood by considering the dynamics of

the action-search process in the forward model's output space. Define the predicted

achievable target set y of a forward model f at time t as:

y = {r = f(u,x[t],w[t]) uin < Uj < U ma 1 j < n}. (4.1)

where u = (u1, ..., un)T is the control vector, u n and u a are the minimum and

maximum values of uj respectively, w[t] is the current weight vector of the forward

model, and x[t] is the state at time t. For a system whose dynamics is monotonic, at

least one of the uj's is equal to its minimum or maximum value at any point on the

boundary of Y.

For a fixed value of t, the action-search process yields a sequence of control vectors

{(' )[t]}:
U(i)[t] = (i-l)[t] + C T (y*[t + 1- (i)[t + 1]), (4.2)

where u(0)[t] is the initial control vector provided by the feedforward controller, a the

step size and {r(i)[t + 1]} is the corresponding sequence of outputs obtained from the

forward model:

k(i+l)[t + 1] = f(u(i)[t],x[t], w[t]). (4.3)

Because the search process utilizes the transpose Jacobian (r/Ou)T rather than the

inverse Jacobian (Sr/0u)-l, the path {(i)[t + 1]} followed in the output space is

generally nonlinear even for affine systems (see Appendix A). Let the angle between

the lines v = y*[t + 1] - r(i)[t - 1] and z = r(i+l)[t + 1] - k(i)[t + 1] be y:

cos(-) = > (4.4)
11z11 Ilvll

For an affine system, Equations 4.2 and 4.3 yield:

Z- = C - V
'au i-1 0u i_- 
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Figure 4-1: (a). The path ({r(i)[t + 1] } taken by steepest descent is generally nonlinear
and often reaches the boundary of the predicted achievable target set y. The moving
basin mechanism tends to straighten the path, allowing the target to be reached. (b)
A plot of the deviations of S(i)[t + 1] from the line joining (°))[t + 1] and y*[t + 1] in an
actual action-search process, with and without the use of moving basin mechanism.
With a 4-step target-shift the deviation is reduced by approximately 83 percent.

· u ,l a 1 <1
Icos()l = <

T a a lvI vll a aT 
au au au au ·i-iai-i i-i i-i

The equality for the above (i.e. = 00) holds only when a is a scaling

matrix - i.e. -9 = 3I, where B is a scalar and I is the identity matrix. However

in general T # Ba -1, which implies y 0°. We often find in practice that

these nonlinear paths reach the boundary of the predicted achievable target set : if

y*[t + 1] - S(°)[t + 1]I is large, as illustrated in Figure 4-1(a).

One approach to dealing with the problem would be to project the gradient onto

Y and to continue the search along the boundary 2y1 (cf. Rosen, 1967). However,

because it cannot be guaranteed that an approximate forward model yields a convex
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predicted achievable target set, this approach is not feasible.' The search could

not continue outside the boundary because this would require the forward model

performing extrapolation, and, due to the nonlinear mapping of the forward model,

the search may not return to y. Furthermore if the action nodes are logistic2 , Y

will become an open set (because at aY one or more of the action nodes' output

will be at its limit, and this is possible only if the magnitude of node's activation

- o), and it is possible that the action search process causes (i)[t + 1] approach

aY asymptotically. In this case action search will fail even if y is convex.

The control boundary problem is problematic for the distal supervised learning

approach in both on-line adaptation and off-line training of the controller. In on-line

adaptation, because the system fails to move along the path leading to the goal, the

forward model fails to receive useful training data. An even more serious problem is

that the controller tends to have its weights set to values of high magnitude in order to

produce actions that are near the boundary. The control boundary problem therefore

tends to persist in subsequent time steps and the system can become unstable.

The control boundary problem is an example of a larger class of problems that

are encountered when using gradient search techniques for nonlinear adaptive control.

Gradient techniques are based on estimates of the partial derivatives of the plant

output with respect to the control variables (cf. Equation 4.2). Control variables

tend to be small in number and therefore act as a bottleneck for the gradient search

process. This leads to performance surfaces that are complex as viewed through the

bottleneck. The approach often taken to deal with complex performance surfaces-that

of increasing the dimensionality of the search space-is not an option in the adaptive

control problem because the dimensionality of the control space is fixed by the nature

of the plant.

1Indeed we find empirically that the set y is generally nonconvex for a partially-trained forward
model. The convexity of Y could not be easily captured because the forward model is presented
only with exemplars within the boundary of Y, whereas it needs training with exemplars on both
sides of Oy in order to effectively produce accurate mapping around 8Y.

2See Appendix B for a discussion on the advantages of using logistic action nodes.
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4.3 The moving basin mechanism

We have developed a very simple approach for retrieving the wanted information

from the forward model in an efficient way that avoids the control boundary problem.

This idea is somewhat analogous to Werbos' notion of "moving targets" (Werbos,

1983). Werbos used the term "moving targets" to describe the qualitative idea that

the network should "set itself intermediate objectives, and vary these objectives as

information is accumulated on their attainability and their usefulness for achieving

overall objectives." Our algorithm works as follows. For a fixed value of t and a

fixed value of the state x[t], the system chooses a grounding action ug[t] . This can

be chosen arbitrarily or can be taken to be the output of the feedforward controller.

The forward model is used to estimate the grounding output rg[t + 1] that would be

obtained if that action were used as a control signal:

[t + 1] = f(Ug[t],x[t],w[t]). (4.5)

As shown in Figure 4-2, the pairing of the grounding action and the grounding

output essentially induces an error surface whose minimum is located at the known

location ug[t]. That is, if the system wished to achieve ,(l)[t] as a target, then the

grounding action ug[t] would be the appropriate action. The system now effects a

series of steps in which a sequence of virtual targets are interpolated along the path

between the grounding output and the desired output y*[t + 1]. At each step, the

action-search process is utilized to find a locally-optimal control action. This action

is then used to initialize the search at the next step. As shown in Figure 4-2, this

process has an interpretation in terms of a moving basin of the cost function that is

tracked by a linked sequence of action searches.

By setting intermediate targets along the line joining the commanded goal y* [t + 1]

and the grounding goal k,[t + 1], the system reduces the effect of the nonlinearity of

the search path. By following a straighter path, the system reduces the probability
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---- D shift of basin by altering the goal

- - - - shift of actions by action-search process

Ug[t] u( )[t] uff[t]

Figure 4-2: The basin on the left corresponds to the cost J when Sg[t+1] is the target,
and the basin on the right corresponds to the cost J when y*[t + 1] is the target. The
basin of J is shifted by slowly shifting the virtual target from Srg[t+ 1 ] to y*[t + 1], and
the action-search finds the locally-optimal action u(i)[t] for each virtual target until
the feedforward action uff[t] is found. Note that the state and the forward model's
parameters are invariant during the search process.

of meeting the boundary of the predicted achievable target set (see Figure 4-1).

4.3.1 Choosing the starting point

There are advantages to choosing the null or neutral action as the grounding action.

When the predicted achievable target set is nonconvex, a neutral grounding action

produces a grounding goal which is near the geometric center of the set, and the

straightened search path has a better chance of reaching all of the points in the set3 .

Also, in problems involving a redundant plant, choosing a grounding action at the

origin of the control space increases the tendency of the action-search process to find

solutions in which the norm of the control signal is small (i.e., "least-effort" solutions

- also see Appendix B). The symmetry of the actual achievable target set y is easily

captured by the forward model during its off-line training because the geometric center

3 The dynamics of a serial-link arm has this property of symmetry in the controls (see Appendix
A).
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of Y is well-interpolated by the exemplars in the training set. The utilization of this

property by the action search process thus compensates the difficulty encountered in

capturing the convexity of y by the forward model.

4.3.2 Stationary points

The action search would succeed for dynamical systems of more general form:

xk(t) = a(x(t), t) + b(x(t), u(t), t);

where b(x(t), u(t), t) is at least C' in u(t) = (ij, .., U,)T(t) E U(The feasible control

set), and

a -0 O,i = 1,...,n;Vu

-i.e. the dynamics is monotonic in the controls.

The moving basin is not capable of handling local minima in the form of stationary

points, which exists if the plant's dynamics is non-monotonic in the controls - i.e.:

3u such that a | = 0, for some i = 1,...,n;

These non-monotonicities correspond to folds in the achievable target set. In that

case the common approach of including a momentum term in the action search process

may be effective in overcoming the problem of stationary points:

u(')[t] = u(i-1)[t] + pa6u(t)[t];

u(i-[t] e (y*[t + 1] - (i)[t + 1]) + Au(i-2)[t];

where a, d are constants, and Au(°)[t] - 0.
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4.4 Simulation Results

In order to observe how much improvement can be gained with the use of moving

basin idea, it was applied on the control of the simulated 4-dof arm described in

Section 3.6. The moving basin algorithm utilized a linear interpolatory process with

a variable step size. A recursive procedure was used to refine the step size up to a

certain maximum resolution before the algorithm gave up and issued the feedforward

action that was predicted to achieve the virtual target closest to the commanded

goal, plus a small stochastic component. In the following subsections we first show

the results comparing the performance with and without the use of the mechanism

within a specific trajectory in details. This is to be followed by results comparing

inter-trajectory performance, giving a more global view of the effectiveness of the

idea.

4.4.1 Performance within a trajectory

The moving basin idea was applied onto a reaching task depicted in Section 3.6, with

the torque vector at the start of the action-search process at each time step of the

control biased by a certain amount. Figure 4-3 shows the difference in performance

with and without the moving basin. In the case where the moving basin is not utilized,

the initial torque was biased to 95% of the maximum torque (i.e. r(O)[t + 1] is close

to the boundary).

4.4.2 Global Performance

As has been stated earlier, the occurrence of control boundary problem also depends

orn the initial (°)[t + 1]. A comparison of the performance with and without using

the moving basin is made in 500 reaching tasks using the simulated 4-dof arm, whose
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Figure 4-3: (a) Performance with and without the moving basin. The hand is able
to reach the target with a fairly straight path with using the moving basin. Without
the moving basin the control is able to track the desired trajectory up to - 0.5sec,
after which the control boundary problem occurs and the hand strays and exhausts
one of its degrees of freedom.
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Y 0.0 0.3 0.5 0.7 0.8 0.9 0.98
Without moving basin 0 10 36 49 39 109 195
With moving basin 0 0 0 0 1 31 79

each initial joint position is randomly set to within 90% of the span of each joint

angle, and the desired acceleration computed as follows:

8 
*[t + 1] = 4(0* - O[t]) + 3-(* - [t]), (4.6)

The initial grounding action u(0)[t] is:

u(0)[t] = a x uma (4.7)

a is a bias factor within the range [0, 1) and uma the maximum torque vector. The

torque of the forth degree of freedom has been increased threefold. Larger a means

that the y(°)[t + 1] is closer to the boundary, and hence has a higher chance of being

trapped. The table below shows the number of failed trajectories with different a:

The reaching task is considered a failure if one or more of the joints reaches its

limit. Note that since the actual task is to achieve the desired acceleration at each

time step, the more appropriate measurement of the approaches' success should be

the amount of reduction in the total deviations from desired accelerations for all

the trajectories. However this could not reflect the true performance either, as it

also depends on the adaptive capability of the forward model. The result nontheless

indicates that the distance of r(O)[t + 1] from the boundary has a significant effect

on the attainability of the solutions. It is also interesting to note that there is no

failed trajectory with a = 0 even without the moving basin, indicating that Y is fairly

symmetric4 and curved paths of r(i)[t + 1] are tolerated by the approach. However

the use of moving basin does reduce the number of failed trajectories for higher

4 The scaling of the control torques affects the dynamics in an affine manner. Hence the symmetry
of Y is not affected.
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a, indicating that in situations where Y is not symmetric, the moving basin would

increase the reachability of any point within y with u(°)[t] = 0.

4.5 Discussion

This chapter describes a computational technique that allows gradient-based methods

to be used more effectively in nonlinear adaptive control problems. By utilizing the

moving-basin search procedure and the symmetry of the dynamics, the control system

in our simulations is able to avoid the control boundaries and thereby stably track

the reference trajectory.

Although the simulations studied a simple version of the moving-basin algorithm

in which the search procedure was initialized with the zero torque vector at each

time step, it is straightforward to cache the results of the search at one time step

to initialize the search at the following time step. Because reference signals tend to

change smoothly in time, the cached value will often be sufficiently close to a solution

such that the local gradient search will succeed. This implies that the moving-basin

search will generally be required only at the onset of a movement and at other points

where the desired trajectory changes unpredictably.
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Chapter 5

Adaptive Control of a 4-dof arm

It is a profound and necessary truth that the deep things in

science are not found because they are useful; they are found

because it was possible to find them.

- Oppenheimer

5.1 Introduction

The single-trajectory performance of the control of the simulated 4-dof arm described

in Chapter 3 provided preliminary results showing the robustness of the use of forward

model with on-line adaptation. This chapter reports on the more comprehensive

and detailed empirical results obtained via the adaptive control of the simulated 4-

dof arm. I show that with the inclusion of noise in the inputs during the on-line

adaptation process, certain types of perturbations to the modeled generic dynamics

can be reflected in the weight changes in the forward model. These findings, together

with the attempt to explain them, will be presented in this chapter.
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5.2 Robustness to Perturbed Dynamics

A series of experiments is performed to investigate the robustness of the control system

with respect to inaccuracies in the forward model. The experiments involved training

a forward model to perform the mapping of nominal dynamics of the 4-dof arm

described in Section 3.6 and then assessing how it performs when the plant dynamics

are altered in various ways. Subsections 5.2.1, 5.2.2 and 5.2.3 report on the three

sets of experiments performed on a single trajectory for the reaching task described

in section 3.6 to provide an intra-trajectory performance measure of the robustness

of the approach. The performance error is measured using I19*[t] - 9[t] 112 (in rad/sec 2 )

along the trajectory. Note that the maximum 1I*[t] -[t]l 2 under nominal condition is

~ 3 rad/sec2 . Section 5.3 reports the inter-trajectory performance obtained through

simulations.

5.2.1 Performance with changes of the links' masses

In this set of experiments the mass of the first link of the arm was scaled by a certain

constant factor without (off-line) re-training of the forward model. Figure 5-1 shows

the performance with changes in the mass of link 1. The trajectory is completed stably

with up to 510 percent increase of the mass of the first link or 5 percent increase of the

mass of the second link, or with 50 percent decrement of either mass. Beyond these

values the system becomes unstable. The smaller tolerance with respect to increases

in the mass of the second link is due to the fact that near-boundary torque is required

at the second joint to achieve the desired initial acceleration. Note that it takes less

than 0.2 sec (< 25 exemplars) to achieve near-perfect tracking.
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Performance Error (rad/sec2 )

10.0

0

---- link l's mass increased 5 times

-:- link l's mass increased 2 times

Figure 5-1: Performance with mass of link 1 changed by a constant factor. The target
is reached within 1.3 seconds in all cases.

5.2.2 Performance with errors in the joint angle sensors

In this set of experiments the values of 0 were either scaled by a constant factor or

displaced by a constant amount.' As shown in Figures 5-2 and 5-3, the trajectory

is completed stably when 0 is scaled by as much as 1.65 or displaced by as much as

1 radian. This is significant robustness, given that the span of the joint angles are

i1.57 radians.

5.2.3 Performance with errors in joint velocity sensors

In this set of experiments the readings of 8 were either scaled by a constant factor or

displaced by a constant amount. The target is reached stably with a scaling factor of

up to 20 (Figure 5-4), or displacements of as much as 14.5 rad/sec (Figure 5-5).

1Note that in the experiments with perturbations to the sensor readings, the information provided
to the trajectory planner (i.e. Equation 3.5) remains accurate, such that the arm would reach the
target if the desired accelerations at each time step were achieved.
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Figure 5-2: Performance with joint angles' readings scaled by a constant factor.
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Figure 5-3: Performance with joint angles' readings shifted by a constant amount.
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Figure 5-4: Performance with joint velocity readings scaled by a constant factor.
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Figure 5-5: Performance with joint velocity readings shifted by a constant amount.
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5.3 Inter-Trajectory Performance

As stated in Chapter 3, the utilization of a non-adaptive control method with fringe

PID feedback controllers could also yield local improvement in performance within

a trajectory such as those reported in Section 5.2.1 through 5.2.3. Viable adaptive

control schemes should not only yield such local improvement, but also global im-

provement in performance via on-line adaptation through a relatively small number

of on-line exemplars. A measure of this aspect could be established via the assessment

of performance improvement across trajectories.

Since the current main interest is in assessing the robustness of the control in

the domain where the forward model has been well-trained and the task well-defined

and achievable, the global performance evaluation (which requires a good trajectory

planner, an integral part of a good overall control scheme) has not been extensively

studied. Nonetheless it was found that with appropriate choices (by manual search)

of the coefficients in the simple trajectory planner used (Equation 3.5), most reaching

tasks within reachable space can be completed within seconds under nominal dynam-

ics. Figure 5-6a shows the inter-trajectory performance of the approach with the

fourth degree-of-freedom's strength increased by threefold. The 400 trajectories are

randomly-selected reaching tasks with the starting posture restricted to within 90%

of the joints' spans.2 Equation 3.5 with the coefficients set to 41 and I respectively

is used as the trajectory planner. The moving average of the maximum performance

error length is calculated with a window size of 25 by:

E-i+13 Il -[t]*lj
ep(i) = i-1 2 ,i[t] [t]* 13 < i (5.1)25 

2The control is considered a failure if one or more of the joints reaches its boundary. In this sense
it is not a very fair assessment of the adaptive capability if the initial posture is restricted to within
100% of the joints' spans, as there would be cases where the arm's first exploratory move cause one
or more of the joints to reach its boundary.
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a. d.o.f.4's torque x 3

... Max Perforamnce Error Length II 0(t) - 0*(t) I 
for each trajectory

-- Moving Average (window size = 25)

of II0(t)- 0*(t) IL

100th 200th 300th 400th Trajectory

b. Shift of all joint angles' readings + d.o.f.4's torque x 3

cd

d

100th 200th 300th 400th Trajectory

1.5

-1.0

100th 200th 300th

d. Shifts of all joint velocities' readings + d.o.f.4's torque x 3

- -1A. ~~~~~~~~~~~~-]

400th Trajectory

rad/sec

id/sec

1 00th 200th 300th 400th Trajectory

Figure 5-6: Performance for distinct trajectories under various perturbations. (a)
shows the average (in dark line) of the maximum performance errors encountered in
each trajectory (in grey line) when the d.o.f.4's torque is increased threefold. (b) to (d)
show the averages of the max performance errors under respective listed perturbations
to the dynamics.
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where

Il0[It] - [t]*I2I = max I[ - [t]jll

is the maximum performance error length of the jth trajectory. Figure 5-6b, c and

d show the inter-trajectory performances with shifts and scalings of the joint angles'

readings and shifts of the joint velocity readings (in addition to the threefold increase

of d.o.f. 4s' torque) respectively. Note that the target is reached in all the trajectories

executed except in the first and forth trajectories of the case where the joint angles'

readings are scaled by -1. The results show that the performance errors tend to be

reduced as more trajectories are executed - i.e. the on-line adaptation of the forward

model does lead to improvement in performance across trajectories.

5.4 Properties of the adapted network

We further investigate the features of changes within the forward model after certain

amounts of on-line adaptation. Such effort is made in the hope that it might lead to

more formal characterization of the robustness and stability of the approach.

5.4.1 Distributed changes

As expected, the on-line adaptation process led to distributed changes throughout the

whole network (see Figure 5-7), which is the result of the massive amount of crosstalk

within the forward model. The maximum magnitude of a single weight's change is

small compared to the maximum magnitude of a connection in the original network

and to the sum of the magnitudes of the weight changes. However, the property of

backpropagation training is reflected in the network's changes - that larger magnitude

changes in the weights occurred at the layers closer to the output.
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(a) Nominal dynamics

IIAwll, = 0.001669

(b) with scaling of linkl's mass by 5.0

Figure 5-7: The changes in the forward model after the arm has reached the target in
the reaching task. The density of a connecting line is proportional to the magnitude of
change of the connection. The darkest line corresponds to the maximum magnitude
of weight change (AwjlI). (a) shows the changes under nominal dynamics. (b)
shows the changes with scaling of linkl's mass by 5.0 (ref Figure 5-1). In both cases
the IlAwlljo is small compared to the original forward model's maximum weight of
2.377.
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(a) DOF4's torque scaled by 3.0
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(b) Combined DOF4's torque scaled by 3.0 and white noise at input

o0-- .· o. llAwllo = 0.034841
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' . 0 · > . W0 10 , ' 0 0, :-..........'O 1 2
Figure 5-8: The changes in the forward model after the completion of the second
reaching task. The density of a connecting line is proportional to the magnitude of
change of the connection. The darkest line corresponds to the maximum magnitude
of weight change (lAwlloo). (a) shows the much-distributed changes with scaling of
DOF4's torque by 3.0 only. The actual perturbation in the plant cannot be observed.
(b) shows the changes with scaling of DOF4's torque by 3.0 and white noise at state
input. The much larger changes at the connections proximal to DOF4's input indi-
cates that the main problem is at DOF4's input. Note also that although Ei lA\wil
increases by only 91% in (b), IlAwjloo increases by 455%.
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.5.4.2 "Shaking out" of perturbation information with white

noise

It was also found that the on-line adaptation process with white noise present at

the input sensors results in the information about certain kinds of perturbations in

the actual plant being "shaken out" (by the forward model's experimentation with

actions), as reflected in the localization of connection changes after the completion of

a single reaching task. Figure 5-8 shows the changes in the forward model after the

completion of a reaching task which starts at the hand position (0.25, -0.01, -0.8) to

the point (-0.45, -0.31, 0.15). If there is no white noise present, the changes within

the forward model after the completion of the trajectory is rather distributed (see

Figure 5-8a). However if white noise were present at the state inputs, the on-line

adaptation process results in localized changes concentrated at the weights directly

connected to d.o.f. 4's torque input, hence providing a well-contrasted image reflect-

ing the persistent error in d.o.f. 4's input (see Figure 5-8b). This contrast can be

quantified by the ratio of average magnitude of change of weights connected to node

j to the average magnitude of change of weights of the rest of the network:

nj _2=1Zwjl

H(nodej) EN ik (5.2)
N-nj i,kj lAWikl

where n3 is the number of connections from node j, wj i are connections from node j

and N is the total number of connections of the network. For example maxj H(nodej)

of the network in Figure 5-8b is H(r 4) = 11.75.

There are some peculiar points about the significance of this result. As described

in Section 5.4.1, the largest magnitudes of change of weights normally occurs at the

layers proximal to the output layer. Furthermore how could the prediction errors

(caused by persistent perturbations), reflected at the outputs, find their way through

the 3 hidden layers and accumulate at the appropriate sites at the input layer?

It is well known that the addition of noise to the input data of a neural net-
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work during training can, in some circumstances, lead to significant improvements in

generalization performance. Previous work (see Bishop, 1994) has shown that such

training with noise is equivalent to an explicit form of regularization in which an extra

term is added to the error function. A property of this extra regularization term is

that its effect diminishes with respect to the order of the derivatives.

It is quite obvious that certain types of dynamical perturbations could be deemed

as a form of more-structured noise of the underlying mapping, and thus there might

be a link between the regularization effect of noisy input and the "shaking out of

structural information" phenomenon. The following subsections describe an attempt

to explain such a phenomenon by linking the rigorous analysis of the noisy input's

regularization effect to the empirical observations.

Tikhonov Regularization and Training with Noise

In Bishop (1994), it has been shown that the inclusion of noise in the inputs while

training a neural network basing on minimizing the sum-of-squares error function

E = J /Sr(x) - tl2p(x, t)dxdt (5.3)

= k J {yk(X) - tk} p(tk x)p(x)dxdtk, (5.4)

is equivalent to adding a Tikhonov regularizer term of the form

ER 72If z{ (i) + {Yk(X)tk} 2 }P(tkX)P(X)dXdtk (5 5)

to the error term - i.e. the resultant error function to be minimized is

E = E + ER (5.6)

In the above, tk is the kth component of the target output, p(x, t) is the probability

density of the exemplars in the joint input-target space, p(tklx) denotes the condi-
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tional density for t given the value of x and p(x) denotes the unconditional density

of x, and V is controlled by the amplitude of the noise.

We now investigate the above relation between training with noise and regulariza-

tion in greater detail. Let the noise on the input vector be described by the random

vector 6. The error function when training with noise can then be written in the form

E = JJJ j {k(X + 6) - tk} p(tklx)p(x)f(6)ddtkd6 (5.7)

where p(6) denotes the density function of the noise. The noise distribution is gener-

ally chosen to have zero mean, and to be uncorrelated between different inputs. Thus

we have

J ji(6)d6 = 0; |Jipfi(6)df = 72j (5.8)

We now assume that the noise amplitude is small, and expand the network function

as a Taylor series in powers of ~ to give

yk(X + ) = ek( ox + 3) (5 9). _xi =0 2 i 3j C=
Substituting the above expansion in the error function (ignoring the higher order

terms) yields

2

Et= 2ii:J J J {(Yk(x) tk) + ($i l 2 EY

p(tk x)p(x)P(~)dxdtkd

2 /= k f 2(Ok(x) tk) .i +. Ezzj
+(k(X)- tk)2

+ aEi + a21 2 )
O9xi =o 2 j a =o

p(tkx)p(x)P(s)dxdtkd6 (5.10)

We now analyse the terms within the bracket on the righthand side. The second term
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within the bracket simply becomes E in Equation 5.4. Making use of Equation 5.8,

the first term within the bracket becomes

271 / E k(X) - tk} aP(tkIx)p(x) dxdtk
The third term within the bracket can be expressed as

The third term within the bracket can be expressed as

(5.11)

+

O~ik]
i Ox =0 m OXmOaXj =0j

J

+4 IE (kZ ~maj (5.12)
e now further analyse the terms of Equation 5.12. The first term can be further

We now further analyse the terms of Equation 5.12. The first term can be further

expressed as

(5.13)+ 512-Ok Ok
_ d X1 aX 2 =0

which, making use of Equation 5.8, becomes

1 2JJEz
k i

(x a] p(tklx)p(x)dxdtk (5.14)

which has the form of a first-order regularization term.

The second term in Equation 5.12 can be expressed as:

( l axk

3 aOk 02 k
12

'Oxl Ox,

- x2a + ) (12 k
0 2 k

ax2 IkOx

+ 2 k 2 Yk

6 X1 aX1lX 2

-U+2 aX92 + )..J

+ 2ak a2Yk +
Oxa2aX3 

(5.15)

Assuming the noise's distribution is symmetric about its mean:

f j( )4 = 0 Vi, j, k; (5.16)

The terms in Equation 5.15 thus vanish as we integrate.

70

(9ldk 21-



The third term in Equation 5.12 can be expressed as:

·.) 2 ( 0 k +42 aX
2Y +2 lX 2

(5.17)

Note that, with the same assumption used in Equation 5.8, all the coefficients of the

derivative terms in the above that involve odd powers of any ~j will become zero when

integrated with respect to ~ - i.e.

I 6i6jP()d6

1 j i (() d6

Jo 6ifjdk6Ii(6)d6

= 0;

= 0;

= 0;

3J2iP( )d 
I &4p(()df

i7 j
i j k
i5j k l I

isj> 0;

> o;

which implies that Equation 5.17 involves ( 2 ) and aax ) (i $ j) terms only -
i.e. it is positive definite and only has second-order regularizer terms.

From the above, we can see that ER in Equation 5.5 is actually

R= JJk ikic { 2 { zk) + {k(X) k} a2 2 axi 09x··,~ i t

+( 9k% 2

+HVax? 
+ V (aziazj )

$

(5.18)
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where #u and v are some non-negative scalars that are monotonic functions of the

amplitude of the noise. For noise of small magnitude, the second-order regularizer

terms would become insignificant. Bishop pointed out that even though the term

{yk(x)-tk} % is not pdf, if the magnitudes of noise and {yk(x)- tk} are small, this

term will be insignificant.

Linear Perturbation with Noise

We now consider the case where the activations of the nth input has been scaled by a

constant factor of small magnitude, together with superposition of noise on all inputs

except the nth 3 . In such a case we have

j Fip~)d
J IP()d

J (iiP)d

J 2i3)d~

CXn

77l 2ij

C2 

3 cxn

2C 22

C44
n

where c is a constant.

The first term within the bracket of Equation 5.10 becomes

-27' X1 C E k -{ tk }a2 p(tklX)P(X)dxdtk
k in

l21ZZ{r~7~~Z C2 -2 
2 k

+ JJ{ k(x) - tk} {2 cxn'a + c 2 }p(tklx)p(x)dxdtk
(5.20)

3 Note that the assumption that the noise at action inputs can be ignored is a biologically plausible
one. This is because the action vector is generated proximally within the neural network, not input
via distal afferent circuits, and thus the magnitude of its noise would probably be small compared
to those at state inputs.
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The first term in Equation 5.12 becomes

k in

+, II:
2J J r

(o Y) P(tklx)p(x)dxdtk

c2 2 p(tklx)px)dXdt 2
n x

The second term in Equation 5.12 becomes

2 C3 J J E xn Y Y p(tklX)p(x)dXdtk

Those terms related to xn within the third term in Equation 5.12 are

(5.21)

(5.22)

c4 ( O2yk 2

n J ± 2 (Oznazj )}J:A

The regularization term thus becomes:

ER= JJ 
k in

{ 21(
2

(aI,) +{2 - tk} 92 }
OX2

+ ( ' kz )2

±JJz {{Yk -
9Yk

tk}CXn 
a9n

]E '9oza i)Y }
j96n

12 2
+2cx

p(tk Ix)p(x)dxdtk

NA: 2

1 (c2 t}
2 nIE~k

+ 3X3k a2 Yk
n7X-n 'X2

+ 144 ( a2k 2kn eOX 2

122
j.in

2( nj 21 (tklx)p(x)dxdtk\ xn 8xj j

For finite {k - tk} and 0_, Equation 5.24 is bounded below, even though it is

not pdf. The terms c and C4X4 __not pdf. The terms C2X ()2 and C44 (x82 2 signify that the significance of the

regularization related to the nth input varies according to the activation xn and the

magnitude of c.
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Furthermore, if 4

1. 8_ is approximately constant with respect to x, - this would be the case if the

input being scaled is an action input to an affine dynamical systems;

2. the mapping learned prior to the input's scaling is accurate, and the current

prediction error, k, is enirely due to the input's scaling;

3. the target output is relatively noiseless and the nominal mapping is not one-to-

many - i.e. tk = yk;

then {k - tk} = k -cxn (or at least they have the same sign) and oak 2 0. The

second term in Equation 5.24 becomes

{z x3 ( 2 2 2k 22
c+ V 122 P(tk x)p(x)dxdtk; (5.25)

which is pdf. We cannot assume cx, is of the same order as the noise,' but we can

deduce from Equation 5.25 that the effect of cx, on the first-order regularization term

is three times as significant as the noise.

At this point we might conjecture that the contrast could be genuine reflection of

the changes in the dynamics - i.e. if the input to the r4 node is scaled by a factor c

larger than 1, we should expect that the magnitude of weights directly connected to

the corresponding input node, Iw, , would become larger. By the same conjecture,

if the scaling factor is smaller than 1, we should expect that the Iw 4 I would become

smaller. An investigation into how the changes in w, 4 correspond to the scaling

factor might cast some light on this; as well as to provide the clue as to how the en-

hancement in the first-order regularization would result in the sharpening of contrast.

This was carried out by observing the changes of Iw, I in 1046 distinct trajectories,

each with a constant scaling factor c randomly assigned a value between 0.5 and 2.5

4 These conditions are consistent with those described in section 5.4.2
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at the start of trajectory. Of these 1046 trajectories, 251 were with scaling factor

0.5 < c < 1. It was found that the average change in w,, E(Ilw(T)I - w,(0)[),

of these 251 trajectories were +0.002257 - i.e. Iw I increases on average even when

c < 1. In fact w, decreases in only 17 of these 251 trajectories. Of the other 795

trajectories where I < c 2.5, E(lw, 4(T)I - Iw4 (0)1) = 0.09.

From the above observation, we can safely conclude that the increase in contrast

does not genuinely reflect the changes in the dynamics as conjectured. However the

fact that Iw, I increases on average, even in cases where c < 1, does provide support

for the following hypothesis : in the course of minimizing ER during training, there is

a tendency for the output's activation to be forced away from the more linear range

(where 0_~ is largest) of the logistic function. Such tendency could be manifestedaxi

by having larger magnitude of activation of the hidden nodes further away from the

output layer, such that there is greater chance of having larger magnitude of output

(and hence smaller 8k) in subsequent layers consisting of logistic nodes. The localized

change of weights at the input layer (which is farthest away from the output layer)

might be a result of this tendency. The analysis, however, does not fully explain how

the network's training could lead to the manifestation of such a tendency.

"Shaking out" other forms of perturbations

We now look at the changes in the forward model after executing the same reaching

task while two of the inputs, r4 and 01, are simultaneously scaled by two constant

factors, 3.0 and 35.0 respectively. Figure 5-9 shows the simultaneous reflection of the

2 sources of persistent errors in the forward model.5 Note that the influence of joint

velocities on the arm's dynamics is in the form of quadratic terms, and for small 1

values, a - constant. However, f qfi()d $ (cxn) q for q > 1, where node n is the

l1 input, because there is noise present at 1 as well.

5 With a small scaling factor (< 10) of 01, the changes in weights proximal to 0l1's input are too
faint to be observed from the adapted forward model.
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Combined DOF4's torque scaled by 3.0, white noise at state input and e scaled by 35.0
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Figure 5-9: The changes in the forward model after the completion of the second
reaching task with scaling of DOF4's torque by 3.0, white noise at state input and
scaling of 1 by 35.0. In this case H(r 4 ) = 8.82 and H(9 1 ) = 4.21, which are the
highest and second highest of all Hs respectively.

It is also worthwhile to note that the reflection can be achieved even when noise is

not present, but only after numerous distinct trajectories has been executed, by which

time sufficient "actual spanning" of the forward model's input space is achieved. We

can see that in such a case

ER = / JC2x (a ) p(tklx)p(x)dxdtk; (5.26)

and the delay in achieving the contrast might be due to the lack of other regularization

terms in Equation 5.24.

Some other forms of perturbation are less directly interpretable than the cases

mentioned above. For e.g. if the perturbation is a displacement in the joint vcloc-

ities' readings, the appropriate compensation in the forward model should be the

distributed changes in the bias of the nodes in the first hidden layer. On the other

hand the changes in the bias of the nodes in the first hidden layer could not be easily

interpreted as to which input has been displaced. The findings nonetheless indicate
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that there is structural information within the forward model to be exploited. For

example a mapping between various forms and magnitudes of perturbations and the

forward model's changes can be built via simulation, which may then be used in fault

identification or anticipatory compensation of known perturbations of a plant.

In recent years there has been a growth in research work linking the role of per-

sistent excitation to the use of neural networks for robotic control (see Lewis & Liu

1995, Craig 1988). Intuitively the noise at the training inputs would provide a form

persistent excitation, as it "urges" the controller to explore its parameter space more

via interacting with the environment than when it is not present. This is certainly

an area worth looking into in future.

5.4.3 Effect on global prediction accuracy

The on-line adaptation process also leads to effective generalization over a wide neigh-

borhood in the input space, as shown in Figure 5-10. The statistics reported were

taken after the adaptation process at 0.4 sec after the initiation of a trajectory de-

picted in Figure 3-5 (for (a), (b) and(c)) or one described in subsection 5.4.2 (by

which time the forward model is providing accurate control). The sampling points

were taken within the hypercube with each edge spanning between [-1,1] of the for-

ward model's input space, which is effectively 12-dimensional. The diagonal of this

hypercube is thus V48 ~ 7 in length. Note that the range of joint velocities for

each joint in most joint angle configurations is much smaller than the range of possi-

ble joint velocities (whose limits are used for the scalings of the sensory information

prior to its being input to the forward model). The set of possible scaled inputs is

thus a small subset of the hypercube. The restriction of the statistical sampling to

within the hypercube of the input space is therefore insufficient in providing a precise

measurement of the prediction accuracy. Comparisons at a distance too far from the

point (x', r'), where the forward model would be performing extrapolation, is there-

fore avoided. Note also that the prediction accuracies at larger distance are similar

77



in both cases, indicating that local adaptation does not result in "trading" global

accuracy for local accuracy in these cases.
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Figure 5-10: Typical influence of the local adaptation in global prediction accuracy.
(a) shows the improvement in global prediction at a distance of up to :t 0.73 from
(x', r') when performing under nominal dynamics. (b) the improvement at a distance
of up to ~ 0.9 when performing with the scaling of joint angles by 1.6. (c) improve-
ment at up to , 1.05 when performing with the shifting of joint angles by 0.7 rad.
(d) the improvement at up to t, 1.2 with threefold increase of DOF4's torque.
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Chapter 6

Performance Using Various

Learning Architectures

6.1 Introduction

This chapter presents the empirical results showing how neural networks, hyper basis

functions and local experts perform as the forward model in the adaptive control of

a simulated 2-joint arm. Such extensive effort is made in the hope of establishing

the applicability of the forward modeling approach in view of the lack of formal

analysis about its stability. The dynamics of the simulated 2-joint arm was described

in section 2.3. The nominal range of torques at joint 1 and 2 are [-20.0, 20.0]Nm

and [-10.0, 10.0]Nm respectively, and the masses of both links are 1 kg. In each

case the forward model was trained using the same exemplar set (containing 30,000

exemplars), until a local minimum of the prediction error cost is reached. The forward

model is then applied in 1000 distinct reaching tasks specified by the starting and

target joint positions in conjunction with the use of the trajectory planner given by

Equation 3.5, where the coefficients are set to Kp = 20I and If, = 13.33I. The
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control is considered a failure in tracking a trajectory when onrie or more of the joints

reaches its limit, or when the time taken is more than 160 seconds, before the target

position is reached. Three measures of performance are taken for comparison:

1. number of trajectories successfully completed,

2. average number of time steps per successful trajectory;

3. average performance error per time step of the successful trajectories.

For each family of learning architecture, numerous networks of distinct configurations

were trained, and the one that performed best under nominal condition was then

chosen for comparison under perturbed conditions. The perturbed conditions for the

experiments are

1. the mass of linkl increased by three times (ml x 3),

2. joint angle readings shifted by 1 radian ( + rad),

3. joint velocity readings shifted by 1 rad/sec ( + lrad/sec).

To provide an idea of the contribution of on-line adaptation, the performance un-

der nominal condition with (w/ o-l) and without on-line adaptation (w/o o-l) of the

forward model are also presented.

6,2 Performance of neural networks

Numerous feedforward neural networks of different architectures were trained. Ta-

ble 6.1 shows the performance of two of the networks: one with a single hidden layer

(consisting of 12 logistic units), and one with two hidden layers (first hidden layer

has 20 units; second layer has 10 units). It is observed that the network with single
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# free parameters
Max weight magnitude
Average weight magnitude
Off-line Relative error
# successful trajectories
Average #time steps

successful trajectory
Average P'erformance Error (r / time step (raa s

Table 6.1: Performance of two neui

Conditions

# successful trajectories
#time stepsAverage successful trajectory

Average Performance Errortime step

Nominal
w/o o-l

177

128.66

7.31

o-l
998

258.40

2.40 

ral networks under nominal condition

ml x 3

998

249.00

2.68

0+
lrad

983

277.19

5.321

lrad.sec-l
984

248.57

2.38

Table 6.2: Performance of NN under nominal and perturbed conditions.

hidden layer, though it has larger off-line relative error, performs better than the one

with 2 hidden layers.

The 1-hidden layer NN was then applied in the control of the arm under various

perturbed conditions described in section 6.1, whose performance is as shown in

Table 6.2.

6.3 Performance of Local Expert networks

In the experiments using local expert networks (LEN; see Jacobs & Jordan 91, Haykin

94), gating networks with softmax output nodes and no hidden layer were used in

conjunction with linear expert networks. Numerous LENs, whose architectures differ

only in the number (between 2 to 15) of local experts, were initially chosen and

trained. The one with 4 local experts was deemed to give the best performance1

1In fact if the number of local experts is greater than 4, the training would result in only 4 of
them remaining active.
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48.34

1.88
0.015

998
258.40

2.40

440

2.94
0.53

0.007
619

416.31
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Conditions

# successful trajectories
Average #time stepssuccessful trajectory
Average rerformance rror

time step

w/o o-l
246

330.42

8.31

Table 6.3: Performance of LEN (with
conditions

# of Nodes
# free parameters
Off-line Relative error
# successful trajectories
Average #time steps
~Average successful trajectory
Average Performance Error (rad/sec2)time step

w/ o-l
955

307.33

0.42

4 local

2
224

0.040
1000

229.27

0.27

940
344.24

0.65

9+
lrad

957
261.02 Ii~

1.13

lrad.sec-1

957
372.45

0.49

experts) under nominal and perturbed

3
336

0.038
1000

200.71

0.26

Table 6.4: Performance of two HBF networks under nominal condition

under nominal condition. Table 6.3 shows its performance under various conditions.

6.4 Performance of Hyper-Basis Functions

Two HBF networks (see Poggio & Girosi 90, Poggio & Girosi 92), one with 2 nodes and

the other with 3 nodes, were initially chosen and trained for this set of experiments.

Table 6.4 shows the performance of the two networks under nominal condition.

Although the 3-node network provides better performance, the two-node network

was chosen to obtain further performance measures because its number of parame-

ters is closer to those of the representatives of other mapping tools. The two-node

network was then applied onto the adaptive control under the same perturbed con-

ditions described in section 6.2. It is observed (see Table 6.5) that the HBF network

performs better than the neural networks and local experts in all measures under

all the conditions investigated, even though its off-line relative error is larger than

others. Table 6.6 provides a comparison of performance of the HBF network under

various perturbations with and without on-line adaptation. The table shows that
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Conditions

# successful trajectories
Average #time stepssuccessful trajectory
Average Performance Errortime step

Table 6.5: Performance of HBF network under nominal and perturbed conditions

Conditions

# successful trajectories
Average #time stepssuccessful trajectory
Average erormancerrortime step

m x3
w/o o-l

376
257.60

7.45

w/ o-l
1000

230.02

0.30

0 + Irad
w/o o-l

141

170.65

13.16

w/ o-1
1].000

206.29
3.00

0 + lrad.sec-1

w/o o-l
303

221.33

6.52 

w/ o-l
1000

201.56

3.01

Table 6.6: Performance using HBF
without (w/o o-l) online adaptation.

under perturbed conditions with (w/ o-l) and

there is larger performance error/time step without on-line adaptation. Recall that

the trajectory planner described by Equation 3.5 provides a certain degree of feed-

back compensation. The observation means that there is larger degree of feedback

compensation involved in completing the reaching tasks succeeded without on-line

adaptation.

6.5 Comparing to Craig's method

This chapter will not be complete without some comparison of performance with

a prominent analytical method. Craig's method is chosen for this purpose. The

following aspects were investigated:

1. Stability of parameter update law under nominal dynamics - Craig's method

requires the the input be sufficiently persistently exciting in order for the pa-

rameters to converge. An explicit bound on the unknown parameters is also

required to prevent them from becoming very large (i.e. diverging - see Fig-

ure 6-1), which may occur even under benign perturbed conditions. Craig's
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w/o o-1
343

266.63

7.08

w/ o-l
1000

229.27

0.27

ml x3

1000
230.02

0.30

O+

lrad
1000

206.29

3.00-

lrad.sec- 1

1000

201.56

3.01

Nominal
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thesis (Craig 1988) reported the observation that in the case where the ma-

nipulator is hanging straight down (so gravity causes no sag) and the desired

trajectory is constant (i.e. the manipulator is not moving), the input is not

sufficiently exciting. In such case the noise present in the system causes the

tendency of parameters to diverge, even though the performance error remain

quite small. This is not surprising because the unknown parameters are treated

as control inputs to a linear dynamical system, and the parameter adaptation

law (Equation 2.8) is a linear feedback term for its control.

The on-line adaptation of a HBF forward model under similar circumstance

shows sign of parameter initially drifting, but not diverging - i.e. there is no sign

of the rate of drift of parameter values increasing as the adaptation proceeds.

From simulation with input noise amplitude at 5% of input amplitude, it has

been observed that the HBF forward model parameters initially drifted (see

Figure 6-2), but the drift eventually stops. Forward modeling hence appears to

be more stable in this aspect.

2. Explicit identification of parameters. Craig's method can lead to fast and ac-

curate identification of important manipulator parameters such as the masses

of links, viscous and Coulomb frictional coefficients; while the distributed rep-

resentation within a neural network, LEN or HBF does not give such clear

interpretation. However, the observation of the "shaking out" phenomenon

described in section 5.4.2 does point to the possibility that certain types of

system's parameters might be extracted from an NN forward model.

3. Applicability to perturbations whose parameters cannot be linearly decoupled. As

explained in section 2.4.1, Craig's method requires the unknown parameters to

be explicitly decoupled from the dynamics equation, and thus cannot handle

perturbations such as shifts in joint sensor readings. The results presented in

Chapter 5 and 6 show that the forward modeling is, to a large extent, able to

handle such perturbations. This is a big plus for the forward modeling approach,

and the use of learning tools, such as HBF and neural networks, for mapping
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Figure 6-1: In Craig's control scheme, parameters diverge when excitation is lacking.
Adaptedfrom Craig 1988.
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II w(t) - W()11

0.008

0.006

0.004

0.002

60.0 time(sec) 120.0
Figure 6-2: Parameters in a HBF forward model slowly drifting away to a stable
point due to noise present in the inputs, even when the arm is not moving. Note
that the drifted amount is small compared to the squared length of the parameters:

Ilwll = 21.15, while IlAwll < 0.009.

of nonlinear time-varying functions in general.

4. Rigorous proof of stability. Craig's method has been proven to be stable under

certain specified conditions, while the forward model's on-line adaptation lacks

such rigorous proof of stability. This area of work is inherently tied to theoretical

foundation of neural networks and machine learning in general. Much effort has

been made in the attempt to establish the proof of the stability, but it has not

been fruitful.
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Chapter 7

Conclusion

To know that we know what we know, and that we do not know what we

do not know, that is true knowledge.

- Thoreau

Although the approach has only been applied on simulated manipulator control,

the simulations nonetheless demonstrated its potential in performing the highly non-

linear and complex adaptation process that could be applied to the control of other

types of dynamical systems. In particular, the results presented in Sections 5.2.2 and

5.2.3 revealed that the approach is able to handle perturbations whose parameters

cannot be linearly decoupled from the dynamical formulation, as required in both

Craig's and Slotine's methods. A main and general result is that there is no need for

an explicit feedback controller for achieving improvement in performance. In chapter

5 we also see how information as to certain types of perturbations can be reflected in

the weight changes within a forward model.

We have yet to establish analytical conditions under which the on-line adaptation

provide stable adaptive motor control. However what the empirical results suggest is

that the on-line action search and adaptation leads to the effective exploitation of the
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forward model. This procedure leads to a more extensive form of exploration, which

creates feedback from the environment that more accurately pinpoints the error in

the prediction made in previous time steps. Provided that the task is specified in

the form of slowly-varying desired outputs, this pinpointing may shift the basin (see

Figure 3-4) in the forward model's input space appropriate to the completion of the

task. The overall process is effortful learning that leads to the fast convergence rate

of performance errors observed in both intra- and inter-trajectory performance, which

can be viewed as a form of goal-directed behavior (see Wilberg 1991).

The fact that the spontaneous interpolation of a small number of exemplars by a

partially-trained network could be a convenient solution to such a complex adaptive

control problem also opens up questions about the power of neural networks that has

not been exploited. A more detailed study of this aspect of neural network training

could be complementary to the currently dominant trend of looking at a network

being trained with large number of exemplars.

The claims made in this thesis rely mainly on empirical results obtained from

simulations, and these claims need to be substantiated in tests on other dynamical

systems. Continued empirical success in the domain of nonlinear control would attract

support from the scientific community for further development of the approach.
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Appendix A

Monotonicity, convexity and

symmetry of direct-drive

manipulator'sdynamics

The Lagrangian formulation [Section 5.2, Asada 86] of an n-degree-of-freedom ma-

nipulator's dynamics is given as follows in computed-torque form:

n n n

E Hijqj + ZE hijk4jqk + Gi = Qi
j=1 j=1 k=1

(A.1)

where qi, qi, qi are the displacement, velocity and acceleration of joint i respectively,

and Qi is the generalized force at joint i. Hij is the [i, j] component of the manipulator
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inertia tensor:

T=(miJ() ) + J()TiJ()).H i=l
i=1

and J() [J(i) () 0J( O...0],L L1...Li,

J fir(i) (i) ... 0],A [A1 ...Ai, .

6Hj 1 8 Hjk
hijk = - I- qi

bqk 2 qi

JW bj_l for a prismatic joint

bj_l x rj,ci for a revolute joint

J(i) |0 for a prismatic joint

bj_1 for a revolute joint

where rj-_,ci is the position vector of the centroid of link i referred to the link j - 1,

and bj_l is the 3 x 1 unit vector along joint axis j - 1. Ii is the inertia tensor of the

link i, and Gi is the gravity torque term:

n
Gi = mjgTJi ).

j=l
(A.2)

In fact the dynamics of the serial-link arm has the following affine form :

c(t) = a(x(t), t) + b(x(t), t)u(t) (A.3)

in which the dynamics is linear in the control, and hence has the following properties:

1. Monotonicity

Since Hij, hijk and Gi are not dependent on qj in Equation A.1, and are fixed

for a particular state (q, ), each qj in Equation A.1 is either a non-decreasing

(if Hij > 0) or non-increasing (if Hij < 0) linear function of Qi.

2. Convexity

Equation A.1 may be rewritten as:

Hq+ C = Q; (A.4)
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where

qT = (ql,",qn), QT (Q 1 ., Qn),
n n

cT = QE E jqk(hljk, ., hnjk)+ (G, .., Gn)-
j=l k=1

Let QT = (Q(),..., Q(1)) and QT = (Q(2 ), ..., Q(2)) be any two torque vectors

that achieve joint accelerations ql1 and l2 respectively at the same state:

Hq + C = Q1.

H2 + C = Q2.

Any joint acceleration q 3 that lies between q1 and 2 takes the form:

q3 = q1 + (2 -1), where O < < 1 (A.5)

Let q3 be achieved by Q3 at the same state:

Q3 = Hq3+C

= (1 - )Hql + SHq2 C

= Q1 + (Q2 - Q1) (A.6)

which is of the same form as Equation A.5 - i.e. Q lies between Q1 and Q2

at the same positional ratio 6. Hence the achievable joint acceleration set is

convex and symmetric for a convex and symmetric torque set.
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Appendix B

Utilizing logistic action nodes

This appendix elaborates on how the utilization of logistic input (action) nodes

in the forward model could influence the action search process involving redundant

degrees-of-freedom.

Suppose a forward model is to perform the forward kinematic function f: R3 ?

R2 that predicts the position of the hand x = (x,y)T given a joint position 0 =

(91,0 2, 3)T of a three-joint arm:

x = f(O) (B.1)

The action-search process described in Section 4.2 is then applied to find a joint

position * for reaching a desired hand position x* from the forward model. As this

problem involves redundant degrees-of-freedom, there are infinite number of 9*s that

would provide the same x*. If linear input nodes are used, the dynamics of the search

process will be dominated solely by the modeled f, and the resulting * may be a

reaching posture with excessively acute or obtuse joint positions. A way to improve

the chance of retrieving a more relaxed posture is to start the action search process
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with initial input of neutral or relaxed joint positions of each joint. This "tendency"

of the action search process producing a more relaxed reaching posture can be further

enhanced if the following conditions are met:

1. the input nodes of the forward model are logistic, i.e. their output function is:

2
(vj) = 1 + ev -1; (B.2)

where vj E (-co, oo) is the activation of node j and p a constant. The first

derivative of the logistic function is l'(x) = = (l(x)+1)(1-1(x)) > 0 Vx, andax -- 2

has the properties

l'(x) - max(l'(x))= d as Jx - 0, and lim '(x) - 0;

Each vj is updated at the ith step of the iterative action search process (cf

Equation 4.2) by:

(i+l) = +i)+ Qi)

and

b(i) = l'(vji) ) E (i)wkJ; (B.3)35(*) - ~ k u; (B.3)
k

where 6. is the back-propagated error signal (see pp 327, Rumelhart 86) of input

node j, 6 is the error signal of node k at the layer proximal to the input layer,

ac a step size and Wkj is the weight of connection joining node j to node k.

2. each joint position j is represented as vj of the respective jth input node via

the affine scaling :

v = c(j - j); (B.4)

where j is the neutral joint position (i.e. the most relaxed position) and c is a

scaling constant that is to be determined in conjunction with P of Equation B.2
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such that l(c(9yra _ -j) M 1, where Om is the maximum of Oj;

3. the search starts with vj = O, Vj;

4. the action search process leads to unidirectional changes of the activations at

each input node j - i.e. for i = 1, ...,m- m 1, !i)!i+) > 0; and v(i ) is monotonic

in i in Equation 4.2;

For each input node j, 3 in Equation B.2 can be set independently to reflect the

degree to which each joint should compromise. Consider the following deviation cost

function for joint j :

Jj(v) = (j - 2 (B.5)

Let the action search ends after m(< oo) iterations' - i.e. vj ) = Then3 - j

m-1

= a i)
i=O

m-1
= c I(vi()) E (6i)wkj

i=O k

92l(x)

aza#
al'(x)

= '(X)( - xl(x));
0

Let - = ;1__ for some e > O. Since l'(x) > O0 and -xl(x) < O Vx, the above implies
-- l(e)

a91l(X) <0, IxI>e

>o, Ixl<e

Let p be the number of iterations taken for a ri 0i)[ to first exceed e - i.e.

p--1

- v°) a 
i=O

m-1

+ aE i)p
i=p

where

{ < O i = p,...,m-1<0, i=p, ...,Im-1I

1This is possible with 6 -- oo only if there is redundant degrees-of-freedom.
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For i > p, the above implies l(v!i)) - 0 as j co, and since ]6(i)wkj < o and

m is finite, Zi 1 ji) , 0 as j - co, and Ivj - v°) .

For i < p(where ap > 0), if a can be set to arbitrarily small values for any

chosen p < oo such that

I'l (vi)) E 6()Wkj < Vi = o0, p- 1;
k

for some < c, then E i- bi) < - as j(= (e) -+ oo. The above implies that

the deviation of v from v °O) could be arbitrarily small as we increase Pj.

Condition (4) takes into consideration the practical situation where 3i such that

v(i)bi) < 0. Since for large Iv(')I, l'(v 3 ) + 0 for large ),'() for large, which implies that Iv i+l)

reduces slowly when v) s ') < 0. - i.e. the property of l'(vj) - 0 as vjl -- o is

desirable for achieving smaller Ivjl only when vi)6 i) > OVi = 1, ..., m- 1.
33 
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