Coordinate Ascent for Maximizing Nondifferentiable Concave Functions

by

Paul Tseng†

Abstract

We present a coordinate ascent method for maximizing concave (not necessarily differentiable) functions possessing a certain separable structure. This method, when applied to the dual of a linearly constrained convex program, includes as special cases a successive projection algorithm of Han [11], the method of multipliers [10, 12, 20], and a number of dual coordinate ascent methods [5-7, 13, 15, 17-18, 25, 30]. We also generalize the results of Auslender [1, §6] and of Bertsekas-Tsitsiklis [3, §3.3.5] on the convergence of this method. One primal application of this method is the proximal minimization algorithm [23].

KEY WORDS: separable convex programming, coordinate ascent, method of multipliers

* This research is partially supported by the U.S. Army Research Office, contract DAAL03-86-K-0171 (Center for Intelligent Control Systems), and by the National Science Foundation under grant NSF-ECS-8519058.
† Laboratory for Information and Decision Systems, Room 35-205, Massachusetts Institute of Technology, Cambridge, MA 02139.

Acknowledgement: Thanks are due to Professor D. P. Bertsekas for his numerous helpful comments and for bringing to my attention the work of Auslender.
1. Introduction

Consider linearly constrained convex programs of the form

\[\begin{align*}
\text{Minimize} & \quad f(x) \\
\text{subject to} & \quad Ex = 0,
\end{align*} \]

where \(f: \mathbb{R}^m \to (-\infty, +\infty] \) is a convex function and \(E \) is an \(n \times m \) matrix. A classical method for solving this problem, the dual coordinate ascent method, assigns a Lagrange multiplier vector \(p \in \mathbb{R}^n \) to the constraints \(Ex = 0 \) and, at each iteration, adjusts a subset of the components of \(p \) to maximize (perhaps approximately) the dual functional

\[q(p) = \min_x \{ f(x) - \langle p, Ex \rangle \} \]

while the other components of \(p \) are held fixed. This method has a number of advantages: it is easy to implement, uses little storage, can readily exploit special structures in either the cost or the constraint matrix, and is highly parallelizable on sparse problems (see [4, 15, 17, 28, 30-31] for computational tests). Its convergence properties have been studied extensively [4-9, 13-16, 18-19, 21, 24-29], but the analyses have required the dual functional \(q \) to be differentiable, which is often not the case when, for example, a problem is transformed in a way to bring about a structure that is favorable for decomposition. A solution to this difficulty has been suggested recently by a successive projection algorithm of Han [11]. Han's algorithm, as it turns out, is effectively a coordinate ascent algorithm for maximizing functions \(q \) having the special form

\[q(p_1, \ldots, p_K) = \phi(p_1, \ldots, p_K) + \sum_{k=1}^{K} \phi_k(p_k), \tag{1.1} \]

where each \(\phi_k: \mathbb{R}^{n_k} \to [-\infty, +\infty) \) is a concave function and \(\phi: \mathbb{R}^{n_1 + \cdots + n_K} \to \mathbb{R} \) is a differentiable concave function (see §4 for details). The remarkable fact here is that, although \(q \) may not be differentiable or have bounded level sets, the separable structure of \(q \) nonetheless enables it to be maximized by coordinate ascent. Coordinate ascent for maximizing concave functions of the form (1.1) has been considered by Auslender [1, pp. 94], but convergence requires \(q \) to be strictly convex and to have bounded level sets.

In this paper, we generalize the results in [1] and [11]. More specifically, we propose a coordinate ascent method for maximizing concave functions of the form (1.1), give conditions under which it converges, and show that it contains as special cases the method of multipliers, Auslender's algorithm, the proximal minimization algorithm, some dual coordinate ascent methods, as well as Han's algorithm.
Hence our results unify a number of seemingly unrelated methods.

This paper is organized as follows: in §2 we present a coordinate ascent method for maximizing concave functions of the form (1.1). In §3 we generalize the results of Auslender and Bertsekas-Tsitsiklis on the convergence of this method and give an application to the proximal minimization algorithm. In §4 we apply this method to solve certain separable linearly constrained convex programs. In §5 to §6 we show that this method contains as special cases the algorithm of Han and the method of multipliers.

All actions will take place in the Euclidean space. All vectors are column vectors, and superscript T denotes transpose. We let ⟨·,·⟩ denote the usual Euclidean inner product and let ∥·∥ denote its induced norm. For any set S in ℜ^m (m ≥ 1), we denote by int(S), ri(S) and cl(S) respectively the interior, the relative interior, and the closure of S. For any convex function h:ℜ^m → (−∞, +∞], we denote by dom(h) the effective domain of h, i.e.,

\[\text{dom}(h) = \{ x \in ℜ^m \mid h(x) < +\infty \}. \]

For any x and d in ℜ^m, we denote by ∂h(x) the subdifferential of h at x, and by h′(x;d) the directional derivative of h at x in the direction d [22, pp. 213 and 217], i.e.,

\[h′(x;d) = \max\{⟨d,η⟩ \mid η \in ∂h(x)\}. \tag{1.2} \]

The effective domain and the directional derivative of concave functions are defined analogously.

2. A Coordinate Ascent Method for Concave Programming

Consider the following concave program

\[
\text{Maximize} \quad \phi(p_1, \ldots, p_K) + \sum_{k=1}^{K} \phi_k(p_k)
\]

subject to no constraint on the p_k's,

where \(\phi: ℜ^{n_1+\ldots+n_K} \to ℜ \) is a concave, continuously differentiable function and each \(\phi_k: ℜ^{n_k} \to [−∞, +∞) \) is a concave, upper semicontinuous function that is continuous in its effective domain.
Let $\phi: \mathbb{R}^n_{+} \to [-\infty, +\infty)$ denote the objective function for (2.1), i.e.

$$
\Phi(p_1, \ldots, p_K) = \phi(p_1, \ldots, p_K) + \sum_{k=1}^{K} \phi_k(p_k).
$$

Consider the following coordinate ascent algorithm, which we call the block coordinate relaxation (BCR) algorithm, for solving (2.1):

The BCR Algorithm

Begin with any multiplier vector $(p_1, \ldots, p_K) \in \text{dom}(\Phi)$.

At each iteration, choose an $s \in \{1, \ldots, K\}$ and set

$$
p_s := \arg\max \Delta \Phi(p_1, \ldots, p_{s-1}, \Delta p_s + 1, \ldots, p_K).
$$

We will use the following rule to choose the index s at each iteration:

Essentially Cyclic Rule: There exists a positive constant T for which every $k \in \{1, \ldots, K\}$ is chosen at least once between iterations r and $r+T$ ($r = 0, 1, \ldots$).

Note that a special case of Essentially Cyclic rule is the classical cyclic rule for relaxation.

3. Primal Application

Let $p^r = (p_1^r, \ldots, p_K^r)$ denote the iterate generated by the BCR algorithm at the rth iteration ($r = 0, 1, \ldots$) and let s^r denote the choice of $s \in \{1, \ldots, K\}$ at the rth iteration. By modifying an argument given in [3, §3.3.5], we have the following general result:

Proposition 1 If the level sets of Φ are bounded and, for each k, Φ is strictly concave in p_k when the value of p_j, $j \neq k$, are fixed, then, under the Essentially Cyclic rule, the sequence $\{p^r\}$ is bounded and each of its limit points is an optimal solution of (2.1).
Proof: First, because $\Phi(p^0) > -\infty$ and the value of Φ is increased at each iteration, we have that

$$-\infty < \Phi(p^0) \leq \Phi(p^1) \leq \Phi(p^2) \leq \ldots.$$

Since Φ has bounded level sets, this implies that $\{p^r\}$ is bounded and $\Phi(p^r)$ converges to some limit. Next we claim that

$$p^r - p^{r+1} \to 0.$$

Suppose that this were not the case. Then there exist subsequence $\{p^r\}_{r \in R}$ and scalar $\epsilon > 0$ such that

$$\|p^r - p^{r-1}\| \geq \epsilon \text{ for all } r \in R.$$

Since $\{p^r\}$ is bounded, by further passing into a subsequence if necessary, we can assume that

$$\{p^r\}_{r \in R} \to \text{some } p', \quad \{p^{r+1}\}_{r \in R} \to \text{some } p'', \quad (3.1)$$

and $s^r = \text{some } s$, for all $r \in R$. Hence, for each $r \in R$, p^{r+1} is obtained from p^r by maximizing Φ with respect to p_s, while the other components are fixed. Since $(p^r + p^{r+1})/2$ differs from p^r only in the component p_s, this implies that

$$\Phi((p^r + p^{r+1})/2) \leq \Phi(p^{r+1}) \quad \forall \ r \in R. \quad (3.2)$$

Since Φ is continuous within its effective domain and $\Phi(p^r)$ converges to a limit, (3.1) and (3.2) imply that

$$\Phi(p') = \Phi(p''), \quad \Phi((p' + p'')/2) \leq \Phi(p''),$$

which contradicts the assumption that Φ is strictly concave in p_s (p'' and p' differ only in the component p_s).

Let p^∞ be any limit point of the sequence $\{p^r\}$ and consider a subsequence $\{p^r\}_{r \in R}$ converging to p^∞. Consider any $k \in \{1, \ldots, K\}$. Since $p^r - p^{r+1} \to 0$, the Essentially Cyclic rule implies that there exists another
subsequence \(\{ p^r \} \) converging to \(p^\infty \) such that \(s^{r-1} = k \) for all \(r \in R' \). Fix any \(r \in R' \). Since \(p_k^r \) maximizes \(\phi(p_1^{r-1}, \ldots, p_k^{-1}, \Delta, p_{k+1}^{r-1}, \ldots, p_m^{r-1}) + \phi_k(\Delta) \) over all \(\Delta \), the maximality conditions yield

\[
\langle y_k-p_k^r, \partial \phi(p^r)/\partial p_k \rangle + \phi_k'(p_k^r; y_k-p_k^r) \leq 0, \forall \ y_k \in \text{dom}(\phi_k).
\]

Taking the limit as \(r \) tends to infinity, \(r \in R' \), and using the continuity of \(\nabla \phi \) and Lemma 3 in [27], we obtain that

\[
\langle y_k-p_k^\infty, \partial \phi(p^\infty)/\partial p_k \rangle + \phi_k'(p_k^\infty; y_k-p_k^\infty) \leq 0, \forall \ y_k \in \text{dom}(\phi_k).
\]

Adding the above inequality over all \(k \) yields

\[
\Phi'(p^\infty; y-p^\infty) \leq 0, \forall \ y \in \text{dom}(\Phi).
\]

Hence \(p^\infty \) is an optimal solution of (2.1). Q.E.D.

Proposition 1 improves upon both Proposition 3.9 in [3, §3.3.5] (which further assumes that \(\Phi \) is differentiable and that cyclic order of relaxation is used) and Theorem 1.2 in [1, pp. 95] (which further assumes that \(\Phi \) is strictly convex in every coordinate and that cyclic order of relaxation is used). [See also [8, 16, 19, 24, 29, 33-34] for related results.] We remark that Proposition 1 can be further extended to the case where \(\phi \) is quasiconcave (instead of concave) and \(\Phi \) is hemivariate [32] (instead of strictly concave) in each \(p_k \).

Proposition 1 has the following interesting application (cf. [3, §3.4.3]): Consider a convex, lower semicontinuous function \(\psi: \mathbb{R}^n \rightarrow (-\infty, +\infty] \) that is continuous in its effective domain. Then the BCR algorithm applied to maximize the function \(-c\|p_2-p_1\|^2 - \psi(p_1)\) (\(c > 0 \)) is equivalent to the algorithm:

\[
p_1 := \arg\min_{\Delta} \{ c\|p_1-\Delta\|^2 + \psi(\Delta) \},
\]

which we recognize to be the proximal minimization algorithm for minimizing \(\psi \) [23]. Proposition 1 implies that this algorithm converges if \(\psi \) has bounded level sets. [This however is not the sharpest result available for this algorithm.]
4. Dual Application

Consider the following convex program

\[\begin{align*}
\text{Minimize} & \quad f_0(x_0) + \ldots + f_K(x_K) \\
\text{subject to} & \quad A_k x_0 + B_k x_k = b_k, \ k = 1, \ldots, K,
\end{align*} \tag{4.1} \]

where \(f_k : \mathbb{R}^{m_k} \to (-\infty, +\infty] \), \(A_k \) is an \(n_k \times m_0 \) real matrix, \(B_k \) is an \(n_k \times m_k \) real matrix, and each \(b_k \) is an \(n_k \)-vector. We can also have inequality constraints in (4.1), but for simplicity we will consider only equality constraints throughout.

Let \(X \) denote the constraint set of (4.1), i.e.,

\[X = \{ (x_0, \ldots, x_K) \mid A_k x_0 + B_k x_K = b_k, \ k = 1, \ldots, K \}, \]

and let \(g_k : \mathbb{R}^{m_k} \to (-\infty, +\infty] \) denote the conjugate function of \(f_k \) [22, pp. 104], i.e.

\[g_k(t) = \sup \{ \langle t, \xi \rangle - f_k(\xi) \}. \tag{4.2} \]

We make the following assumptions about the problem (4.1):

Assumption A:

(a) \(f_0 \) is strictly convex, lower semicontinuous and continuous within \(\text{dom}(f_0) \). \(g_0 \) is real valued.

(b) For each \(k \neq 0 \), \(f_k \) is convex lower semicontinuous and continuous within \(\text{dom}(f_k) \). Either \(g_k \) is real valued or \(B_k \) has rank \(m_k \) and \(\text{dom}(f_k) \) is closed.

(c) For each \(k \), \(\text{dom}(f_k) = S'_k \cap S''_k \), where \(S''_k \) is a convex set and \(\text{cl}(S'_k) \) is a polyhedral set. Moreover

\[(S'_1 \times \ldots \times S'_K) \cap (S''_1 \times \ldots \times S''_K) \cap X \neq \emptyset. \]

Assumption A essentially ensures that the \(f_k \)'s and the \(g_k \)'s are well-behaved and that (4.1) is feasible.

Assumption A (c) is actually slightly stronger than the assumption that (4.1) is feasible, i.e. \((S'_1 \times \ldots \times S'_K) \cap (S''_1 \times \ldots \times S''_K) \cap X \neq \emptyset \), but is still very general. For example, if \(f_k \) is separable [26], then \(\text{cl}(\text{dom}(f_k)) \) (but not necessarily \(\text{dom}(f_k) \)) is a polyhedral set (it is in fact a box).
Let \(f: \mathbb{R}^{m_0 + \ldots + n_K} \to (-\infty, +\infty] \) denote the objective function of (4.1), i.e.

\[
f(x_0, \ldots, x_K) = \sum_k f_k(x_k).
\] (4.3)

By Assumptions A (a)-(b), \(f \) has compact level sets on \(X \). This, together with the assumption (cf. Assumption A (c)) that (4.1) is feasible, implies that the set of optimal solutions for (4.1) is nonempty and bounded. Furthermore, because \(f_0 \) is strictly convex, the first \(m_0 \) components of the optimal solutions are unique.

By assigning a Lagrange multiplier vector \(p_k \) to the constraints \(A_k x_0 + B_k x_k = b_k \), we obtain the following dual of (4.1):

Maximize \[q(p_1, \ldots, p_K) \]
subject to no constraint on the \(p_k \)'s,

where (cf. (4.2)) \(q: \mathbb{R}^{n_1 + \ldots + n_K} \to (-\infty, +\infty] \) is the dual functional

\[
q(p_1, \ldots, p_K) = \min \{ \sum_k f_k(x_k) + \sum_{k \neq 0} \langle p_k, b_k - A_k x_0 - B_k x_k \rangle \}
\]

\[
= \sum_{k \neq 0} \langle p_k, b_k \rangle - g_0(\sum_{k \neq 0} A_k^T p_k) - \sum_{k \neq 0} g_k(B_k^T p_k). \] (4.5)

From (4.5) we see that \(q \) is a concave function (since each \(g_k \) is a convex function) and has the form (1.1) (since \(g_0 \) is differentiable by Theorem 26.3 of [22]). Furthermore, strong duality holds for (4.1) and (4.4), i.e. the optimal value in (4.1) equals the optimal value in (4.4). [To see this, note that the set

\[
\{ (x_0, \ldots, x_K, u_1, \ldots, u_K, z) \mid A_k x_0 + B_k x_k = u_k, \ k = 1, \ldots, K, \sum_k f_k(x_k) \leq z \}
\]

is closed. Hence the convex bifunction associated with (4.1) [22, pp. 293] is closed. Since the optimal solution set for (4.1) is bounded, Theorem 30.4 (i) in [22] states that (4.1) and (4.4) have the same optimal value.] Note, however, that (4.4) may or may not have an optimal solution.

Since \(q \) has the form (1.1), let us apply the BCR algorithm to solve (4.4). To ensure that the algorithm is well defined, we make the following technical assumption:
Assumption B: For each $k \neq 0$, there exists an $x_0 \in \text{ri}(\text{dom}(f_0))$ and an $x_k \in \text{ri}(\text{dom}(f_k))$ satisfying $A_k x_0 + B_k x_k = b_k$.

[Note that Assumption B holds if f_0 is real-valued and each A_k has full row rank (an example of this is given in §5 and §6).] It can be seen that, for any multiplier vectors p_1, \ldots, p_K and any $s \in \{1, \ldots, K\}$, there exists a p_s' that maximizes $q(p_1, \ldots, p_{s-1}, \Delta, p_{s+1}, \ldots, p_K)$ with respect to Δ if and only if p_s' is a Kuhn-Tucker vector of the problem

$$\begin{align*}
\text{Minimize} & \quad f_0(x_0) + f_s(x_s) - \sum_{k \neq s} \langle p_k, A_k x_0 \rangle \\
\text{subject to} & \quad A_s x_0 + B_s x_s = b_s.
\end{align*}$$

(4.6)

Since (cf. Assumption A) (4.6) has an optimal primal solution, Theorem 28.2 in [22], together with Assumption B, implies that (4.6) has a Kuhn-Tucker vector.

Let $p^r = (p_1^r, \ldots, p_K^r)$ denote the iterate generated by the BCR algorithm (applied to maximize q) at the rth iteration ($r = 0, 1, \ldots$) and let s^r denote the choice of $s \in \{1, \ldots, K\}$ at the rth iteration. Also let

$$x_0^r = v_{g_0}(\sum_k A_k^T p_k^r)$$

(4.7)

and, for each $s \neq 0$, let

$$x_s^r = \begin{cases}
\text{argmin}\{ f_s(x_s) \mid B_s x_s = b_s - A_s x_0^r \} & \text{if } s^r = s, \\
x_s^{r-1} & \text{if } s^r \neq s,
\end{cases}$$

(4.8)

where x_s^0 denotes any element of $\partial g_s(B_s^T p_s^0)$. [For simplicity we assume that $\partial g_s(B_s^T p_s^0)$ is nonempty, although it suffices that $g_s(B_s^T p_s^0)$ is finite.] Because q may not have bounded level sets and may not be strictly concave in each p_k, Proposition 1 is not applicable here. Nonetheless we can show the following result:

Proposition 2 Under the Essentially Cyclic rule, the following hold:

(a) $\{(x_0^r, \ldots, x_K^r)\}$ is bounded and each of its limit points is an optimal solution of (4.1).

(b) If $\text{cl}(\text{dom}(f))$ is a polyhedral set and there exists a closed ball B around x^* such that
\[f'(x; (y-x)/\|y-x\|) \text{ is bounded for all } x, y \text{ in } B \cap \text{dom}(f), \text{ where } x^* \text{ denotes any optimal solution of (4.1), then } q(p^r) \to f(x^*). \]

(c) If the optimal solution set of (4.4) is nonempty and bounded, then \(\{p^r\} \) is bounded and every one of its limit points is an optimal solution for (4.4).

The proof of Proposition 2 is rather long and is given in Appendix A. Proposition 2 generalizes the results in [5-7, 13, 17-18, 25] on the convergence of dual (single) coordinate ascent methods using exact line search (see [13] for additional references).

Extensions: Note that we can maximize \(q \) with respect to more than one \(p_s \) simultaneously. Also, if \(q \) is differentiable in \(p_s \), for some \(s \), then inexact maximization with respect to only some of the components of \(p_s \) is permissible – as is done in [4, 14, 26-28]. In fact, it is possible to write down a method that generalizes the BCR algorithm, the dual gradient algorithms [15, 18], and the dual coordinate ascent algorithms [28], but such a method would be somewhat cumbersome.

5. Han's Algorithm is a Special Case

In this section we show that the successive projection algorithm of Han [11] is a special case of the BCR algorithm. We also strengthen the results in [11] by applying Proposition 2.

Consider the following convex program treated in [11]

Minimize \[h(x) = \langle x-d, Q(x-d) \rangle/2 \] subject to \[x \in C_1 \cap \ldots \cap C_K, \]

where \(Q \) is an \(m \times m \) symmetric, positive definite matrix and each \(C_k \) is a closed convex set in \(\mathbb{R}^m \). For simplicity, we will assume that \(Q \) is the identity matrix in what follows. The general case can be treated by making the transformation \(y = Q^{1/2}x \).

We can write (5.1) in the following equivalent form:
Minimize \(f(x_0, x_1, \ldots, x_K) = h(x_0) + \sum_k \delta(x_k | C_k) \) \hspace{1cm} (5.2)

subject to \(x_0 - x_k = 0, \ k = 1, \ldots, K, \)

where \(\delta(\cdot | C_k) \) is the indicator function for \(C_k \). We make the following assumption regarding (5.1):

Assumption D: There exists \(k \in \{0, \ldots, K\} \) such that \(C_1 \cap \ldots \cap C_k \) is a polyhedral set, \(C_{k+1} \cap \ldots \cap C_K \) is a closed convex set, and \(C_1 \cap \ldots \cap C_k \cap \text{ri}(C_{k+1}) \cap \ldots \cap \text{ri}(C_K) \) is nonempty.

Note that (5.2) is a special case of (4.1). Moreover, Assumption D implies that Assumptions A and B hold for this problem.

By assigning a Lagrange multiplier vector \(p_k \) to the constraints \(x_0 - x_k = 0, \) we obtain the following dual program of (5.2) (cf. (4.4) and (4.5)):

Maximize \(q(p_1, \ldots, p_K) \)

subject to \(p_k \in \mathbb{R}^m, \ k = 1, \ldots, K, \)

where we denote

\[
q(p_1, \ldots, p_K) = \min \{ h(x) + \sum_k \delta(p_k | C_k) + \sum_k \langle p_k, x - x_k \rangle \} \\
= \|d\|^2/2 - h(\sum_k p_k) - \sum_k \delta^*(p_k | C_k),
\]

and \(\delta^*(\cdot | C_k) \) denotes the conjugate function of \(\delta(\cdot | C_k) \), i.e., \(\delta^*(p_k | C_k) = \sup \{ \langle p_k, x \rangle | x \in C_k \} \).

Consider the following iterative algorithm for solving (5.2):

\[
y_k^t = \arg\max_{\Delta} q(y_1^t, \ldots, y_{k-1}^t, \Delta, y_{k+1}^t, \ldots, y_{K-1}^t), \ k = 1, \ldots, K, \hspace{1cm} (5.4a) \\
y_1^0 = \ldots = y_K^0 = 0. \hspace{1cm} (5.4b)
\]

The algorithm (5.4a)-(5.4b) is clearly a special case of the BCR algorithm using cyclic order of relaxation.
(and with zero starting multiplier vector). Let \((x_1^t, ..., x_K^t)\) be the sequence of primal vectors associated with \((y_1^t, ..., y_K^t)\) given by:

\[
x_K^0 = d, \quad (5.5a)
\]
\[
x_0^t = x_{K-1}^t, \quad x_k^t = x_k^{t-1} - y_k^t, \quad k = 1, ..., K, \quad t \geq 1. \quad (5.5b)
\]

We have the following main result of this section:

Proposition 3 The sequences \((y_1^t, ..., y_K^t)\) and \((x_1^t, ..., x_K^t)\) generated by (5.4a)-(5.4b) and (5.5a)-(5.5b) are identical to those generated by Han's algorithm.

Proof: Han's algorithm is given by (5.4b), (5.5a)-(5.5b), and

\[
x_k^t = \arg\min \{ \|x_k^t - y_k^t\|^2 \mid x \in C_k \}, \quad k = 1, ..., K, \quad t \geq 1. \quad (5.6)
\]

Hence it suffices to prove (5.6).

Consider any \(k \in \{1, ..., K\}\) and any positive integer \(t\). It can be seen from (5.4b) and (5.5a)-(5.5b) that

\[
y_1^t + ... + y_{k-1}^t + y_k^t + ... + y_K^t = d - x_{k-1}^t. \quad (5.7)
\]

Hence (5.3) and (5.4b) imply that

\[
y_k^t = \arg\max_{\Delta} \{-h(y_1^t + ... + y_{k-1}^t + y_{k+1}^t + ... + y_K^t) - \delta^*(\Delta|C_k)\}
\]
\[
= \arg\max_{\Delta} \{-h(d - x_{k-1}^t - y_k^t) - \delta^*(\Delta|C_k)\}
\]
\[
= \arg\max_{\Delta} \{-\|\Delta - x_{k-1}^t - y_k^t\|^2/2 - \delta^*(\Delta|C_k)\}. \quad (5.8)
\]

The optimality condition for the right hand side of (5.8) gives

\[-y_k^t + x_{k-1}^t + y_k^t \in \partial \delta^*(y_k^t \mid C_k)\]

and hence (using Theorem 23.5 in [22])
Corollary 3 \{x_{kt}\} converges to the optimal solution of (5.1) and \{\sum_k y_{kt}\} also converges.

Proof: From (5.7) we have that \(x_{kt} = \nabla h^*(y_1^{t+\ldots+y_{kt}^{t+1}+\ldots+y_{Kt-1}^{t-1})\). Since
\((y_1^{t}, \ldots, y_{kt}^{t}, y_{kt+1}^{t-1}, \ldots, y_{Kt-1}^{t-1})\) is the Lagrange multiplier vector generated by the BCR algorithm at the
\((t-1)^{\text{st}}+k\)-th iteration, under cyclic order of relaxation (cf. (5.4a)-(5.4b)), it follows that \(x_{kt}\) is the
corresponding primal vector given by (4.7). Hence, by Proposition 2, \(x_{kt}\) converges to the optimal
solution of (5.1) for all \(k\). By (5.7), the sequence \(\sum_k y_{kt}\) also converges. Q.E.D.

Corollary 4 extends the results given in Theorems 4.8 and 4.10 of [11], which in addition assume that a
certain (relative) interior intersection condition holds. Moreover, from Proposition 2 we see that neither
cyclic relaxation nor zero starting multiplier vector is necessary for convergence. Also the nonempty
interior assumptions made in Lemma 4.9 and Theorem 4.10 of [11] ensure that the dual functional has
bounded level sets, in which case convergence of the sequences \(y_{kt}\) follows from Proposition 2.

6. The Method of Multipliers is a Special Case

Consider the following convex program

\[
\begin{align*}
\text{Minimize} & \quad h(x) \\
\text{subject to} & \quad Bx = b,
\end{align*}
\]

where \(h:\mathbb{R}^m \to (-\infty, +\infty]\), \(B\) is an \(n\times m\) real matrix, and \(b\) is an \(n\)-vector. We make the following assumption
regarding (6.1):
Assumption E:

(a) \(h \) is convex, lower semicontinuous and continuous within \(\text{dom}(h) \). The conjugate function of \(h \), denoted by \(h^* \), is real valued.

(b) \(\text{Dom}(h) = S' \cap S'' \), where \(S'' \) is a convex set and \(\text{cl}(S') \) is a polyhedral set. Moreover, there exists \(x \in S' \cap \text{ri}(S'') \) satisfying \(Bx = b \).

By introducing the auxiliary variable \(x_0 \), we can write (6.1) as the following problem

\[
\begin{align*}
\text{Minimize} & \quad \text{cl} x_0 - b \|l^2/2 + h(x_1) \\
\text{subject to} & \quad x_0 = b, \ x_0 = Bx_1,
\end{align*}
\]

where \(c \) is any positive scalar. This problem can be seen to be a special case of (4.1) with \(f_0(x_0) = \text{cl} x_0 - b \|l^2/2 \) and \(f_1 = h \). Furthermore, Assumption E implies that Assumptions A and B hold for this problem. The dual functional associated with this problem (cf. (4.5)) is

\[
q(p_1,p_2) = \langle b, p_1 \rangle - h^*(B_1^T p_1) - \| p_2 - p_1 \|^2/2c,
\]

where \(p_2 \) and \(p_1 \) are the Lagrange multiplier vectors assigned to, respectively, the constraints \(x_0 = b \) and \(x_0 = Bx_1 \).

Consider the following algorithm for maximizing \(q \), whereby a maximization with respect to \(p_2 \) alternates with a maximization with respect to \(p_1 \):

\[
\begin{align*}
p_2^{r+1} & = \operatorname{argmax}_\Delta q(\Delta, p_1^r), \\
p_1^{r+1} & = \operatorname{argmax}_\Delta q(p_2^{r+1}, \Delta),
\end{align*}
\]

This algorithm is well defined and is a special case of the BCR algorithm under the cyclic rule of relaxation. By using the special structure of \(q \) (cf. (6.3)), we see from (6.4a) that \(p_2^{r+1} = p_1^r \). Hence \(p_1^{r+1} \) given by (6.4b) is a Kuhn-Tucker vector of the problem (cf. (6.2) and (4.6))

\[
\begin{align*}
\text{Minimize} & \quad \text{cl} x_0 - b \|l^2/2 + h(x_1) - \langle p_1^r, x_0 \rangle \\
\text{subject to} & \quad x_0 = Bx_1.
\end{align*}
\]
Let \((x_0^r, x_1^r)\) be any optimal solution of the above problem. We then obtain from the Kuhn-Tucker conditions for (6.5) that

\[
x_1^r = \arg\min_{x_1} \{ \|Bx_1 - b\|^2/2 + h(x_1) - \langle p_1^r, Bx_1 \rangle \},
\]
\[
p_{1}^{r+1} = p_{1}^{r} + c(B - Bx_1^r),
\]

which we recognize to be the method of multipliers [10, 12, 20] (also see [2], [3, §3.4.4], [23]). By Proposition 2, the sequence \(\{x_1^r\}\) is bounded and any of its limit points is an optimal solution of (6.1). [However, by exploiting the special form that \(q\) possesses, sharper results on the convergence of the method of multipliers can be obtained [23].] It has been shown [23] that the method of multipliers is the proximal minimization algorithm applied to maximize the dual functional \(\langle b, p \rangle - h^*(B^Tp)\). Our results from this section and §3 provide an alternative view: these methods are all coordinate ascent methods, differing in only whether each is applied in the primal space or in the dual space.
References

Appendix A

In this appendix, we prove Proposition 2. A fact that will be frequently used is that (cf. [22, Theorem 23.5]) \(\nabla g_0(\sum_k A_k T_{p_k}) \) is the unique vector \(x_0 \in R^{m_0} \) satisfying

\[
\sum_k A_k T_{p_k} \in \partial f_0(x_0),
\] (A.1)
or equivalently

\[
\nabla g_0(\sum_k A_k T_{p_k}) = \arg\max_{x_0} \{ \sum_k (p_k, A_k x_0) - f_0(x_0) \}.
\] (A.2)

First note from (A.1) and (4.7) that

\[
\sum_k A_k T_{p_k} \in \partial f_0(x_0^r), \quad \forall \ r \geq 0,
\] (A.3)

Also, note from (4.7) and (4.8) that, for any \(s \) and any \(r \) such that \(s^f = s, (x_0^r, x_s^r) \) is the unique optimal solution of (4.6) with \(p_k = p_k^r \) for all \(k \neq s \). Since \(p_k^r = p_k^{r-1} \) for all \(k \neq s \), \(p_s^r \) is an optimal dual solution for the same problem. Hence, from the Kuhn-Tucker conditions for (4.6) (and using the fact that \(p_k^r = p_k^{r-1}, x_k^r = x_k^{r-1} \) for all \(k \neq s, k \neq 0 \)) we obtain that

\[
B_k T_{p_k} \in \partial f_k(x_k^r), \quad \forall \ r \geq 0, \forall \ k \neq 0.
\] (A.4)

To simplify the presentation, let \(K = \{ k \in \{0,1,\ldots,K\} \mid g_k \text{ is real valued} \} \). Throughout the proof, \(f \) will denote the function given by (4.3). Our argument will follow closely that given in [27, §3] and in [28, §3] (in fact, to simplify the presentation, we will borrow some results from [27]).

We precede our proof of convergence with the following four technical lemmas:

Lemma 1 For \(r = 1, 2, \ldots \),

\[
q(p^{r+1}) - q(p^r) \geq f_0(x_0^{r+1}) - f_0(x_0^r) - f_0'(x_0^r; x_0^{r+1} - x_0^r),
\] (A.5)
\[f(x^*) - q(p^r) \geq \sum_{k \in K} (f_k(x_k^*) - f_k(x_k^r)) - f_k'(x_k^r; x_k^* - x_k^r), \]
(A.6)

where \(x^* = (x_0^*, \ldots, x_K^*) \) denotes any optimal solution of (4.1).

Proof: We first prove (A.5). From (4.5), (A.2), (4.7) and (A.4) we have

\[q(p^r) = \sum_k f_k(x_k^r) + \sum_{k \neq 0} \langle p_k^r, b_k - A_k x_0^r - B_k x_k^r \rangle, \]

and hence

\[q(p^{r+1}) - q(p^r) = \sum_k f_k(x_k^{r+1}) + \sum_{k \neq 0} \langle p_k^{r+1}, b_k - A_k x_0^{r+1} - B_k x_k^{r+1} \rangle \]

\[- \sum_k f_k(x_k^r) - \sum_{k \neq 0} \langle p_k^r, b_k - A_k x_0^r - B_k x_k^r \rangle \]

\[= f_0(x_0^{r+1}) - f_0(x_0^r) - \sum_{k \neq 0} A_k T p_k^r, x_0^{r+1} - x_0^r \]

\[+ \sum_{k \neq 0} [f_k(x_k^{r+1}) - f_k(x_k^r) - \langle B_k T p_k^r, x_k^{r+1} - x_k^r \rangle] + \langle p_k^{r+1} - p_k^r, b_k - A_k x_0^{r+1} - B_k x_k^{r+1} \rangle]. \]

Since (cf. (4.8)), for all \(k \neq 0 \), \(\langle p_k^{r+1} - p_k^r, b_k - A_k x_0^{r+1} - B_k x_k^{r+1} \rangle = 0 \), this implies that

\[q(p^{r+1}) - q(p^r) \geq f_0(x_0^{r+1}) - f_0(x_0^r) - \sum_{k \neq 0} A_k T p_k^r, x_0^{r+1} - x_0^r \]

\[+ \sum_{k \neq 0} [f_k(x_k^{r+1}) - f_k(x_k^r) - \langle B_k T p_k^r, x_k^{r+1} - x_k^r \rangle]. \]
(A.7)

For any \(k \neq 0 \), since (cf. (A.4)) \(B_k T p_k^r \in \partial f_k(x_k^r) \) and \(f_k \) is convex, we have

\[f_k(x_k^{r+1}) - f_k(x_k^r) - \langle B_k T p_k^r, x_k^{r+1} - x_k^r \rangle \geq 0, \]

which, together with (A.7), (1.2) and the fact (cf. (A.3)) \(\sum_{k \neq 0} A_k T p_k^r \in \partial f_0(x_0^r) \), proves (A.5).

The proof of (A.6) is similar to that for (A.5). Fix any \(r \geq 0 \). Since \(x^* \) is feasible for (4.1), we have
\[f(x^*) - q(p^r) = f(x^*) - q(p^r) + \sum_{k \neq 0} \langle p_k^r, b_k - A_k x_0^* - B_k x_k^* \rangle \]
\[= f_0(x_0^*) - f_0(x_0^r) - \langle \sum_{k \neq 0} A_k T p_k^r, x_0^* - x_0^r \rangle \]
\[+ \sum_{k \neq 0} [f_k(x_k^*) - f_k(x_k^r) - \langle B_k T p_k^r, x_k^* - x_k^r \rangle]. \] (A.8)

Again, for any \(k \in K \), since \(B_k T p_k \in \partial f_k(x_k^r) \) and \(f_k \) is convex, we have

\[f_k(x_k^*) - f_k(x_k^r) - \langle B_k T p_k^r, x_k^* - x_k^r \rangle \geq 0, \]

which, together with (A.8), (1.2) and the fact \(\sum_{k \neq 0} A_k T p_k \in \partial f_0(x_0^r) \), proves (A.6). Q.E.D.

Let \(S_k = \text{dom}(f_k), k = 0, \ldots, K \). Lemma 1 implies the following facts, whose proof is identical to that for Lemmas 2 and 3 in [27]:

Lemma 2

(a) For each \(k \in K \), both \(\{x_k^r\} \) and \(\{f_k(x_k^r)\} \) are bounded, and every limit point of \(\{x_k^r\} \) is in \(S_k \).

(b) Let \(h: \mathbb{R}^m \rightarrow (-\infty, +\infty] \) (\(m \geq 1 \)) be any convex, lower semicontinuous function that is continuous in its effective domain \(S \). For any \(y \in S \), any \(z \in \mathbb{R}^m \) such that \(y + z \in S \), and any sequences \(\{y^t\} \rightarrow y \) and \(\{z^t\} \rightarrow z \) such that \(y^t \in S \) and \(y^t + z^t \in S \) for all \(t \), \(\lim_{t \rightarrow +\infty} \sup \{h'(y^t; z^t)\} \leq h'(y; z) \).

Lemma 2 in turn implies the following two lemmas:

Lemma 3 \(x_0^{r+1} - x_0^r \rightarrow 0 \).

Proof: Since (cf. Lemma 2 (a)) \(\{x_0^r\} \) is bounded, if (a) does not hold, then there exists subsequence \(R \) for which \(\{x_0^r\}_{r \in R} \) converges to some point \(x_0' \) and \(\{x_0^{r+1}\}_{r \in R} \) converges to some point \(x_0'' \neq x_0' \). Let \(z = x_0'' - x_0' \) (\(z \neq 0 \)). By Lemma 2 (a), both \(x_0' \) and \(x_0' + z \) are in \(S_0 \). Then using (A.5), the continuity of \(f_0 \) on \(S_0 \), and Lemma 2 (b), we obtain
\[\lim_{r \to +\infty} \inf_{r \in R} \{ q(p^{r+1}) - q(p^r) \} \geq f_0(x_0' + z) - f_0(x_0') - f'_0(x_0'; z). \]

Since \(q(p^r) \) is nondecreasing with \(r \) and \(f_0 \) is strictly convex (so the right hand side of above is a positive scalar), it follows that \(q(p^r) \to +\infty \). This, in view of the weak duality condition

\[\max \{ q(p_1, \ldots, p_K) \mid p_k \in \mathbb{R}^{n_k}, k = 1, \ldots, K \} \leq \min \{ f(x) \mid x \in X \}, \]

contradicts the feasibility of (4.1) (cf. Assumption A (c)). Q.E.D.

Lemma 4 Under the Essentially Cyclic rule, \(\{ (x_0^r, \ldots, x_K^r) \} \) is bounded and its limit points are in \((S_0 \times \ldots \times S_K) \cap X\).

Proof: For each \(s \in \{1, \ldots, K\} \), we have (cf. (4.8)) that

\[A_s x_0^r + B_s x_s^r = b_s, \quad \forall \ r \geq 1 \text{ such that } s = s^i, \quad (A.9) \]

\[x_s^r = x_s^{r-1}, \quad \forall \ r \geq 1 \text{ such that } s \neq s^i. \quad (A.10) \]

Since (cf. Lemma 2 (a)) \(\{ x_s^r \} \) is bounded for all \(s \in \mathcal{K} \) and \(B_s \) has rank \(m_s \) for all \(s \in \mathcal{K} \), this implies that \(\{ x_s^r \} \) is bounded for all \(s \). Fix any \(s \in \{1, \ldots, K\} \) and, for each \(r \geq T \), let \(\tau(r) \) be the largest integer \(h \) not exceeding \(r \) such that \(s^h = s \). Then (cf. (A.9) and (A.10))

\[A_s x_0^r + B_s x_s^r = \sum_{h=\tau(r)}^{r-1} A_s (x_0^{h+1} - x_0^h) + b_s, \quad \forall \ r \geq T. \]

Since (cf. Essentially Cyclic rule) \(r - \tau(r) \leq T \) for all \(r \geq T \), this, together with Lemma 3 (a), implies that every limit point \((x_0', \ldots, x_K') \) of \(\{ (x_0^r, \ldots, x_K^r) \} \) satisfies

\[A_s x_0' + B_s x_s' = b_s. \]

Since the choice of \(s \in \{1, \ldots, K\} \) was arbitrary, this implies that \((x_0', \ldots, x_K') \in X \). By Lemma 2 (a), \(x_s' \in S_s \).
for all \(s \in K \). For each \(s \in K \), since \(x_s r \in S_s \) for all \(r \) and \(S_s \) is closed, \(x_s r \in S_s \). Q.E.D.

Lemmas 2 and 4 allow us to prove Proposition 2. We first prove part (a). To simplify the presentation, let \(x^r = (x_0^r, \ldots, x_K^r) \), \(S' = S_0^r \times \ldots \times S_K^r \), \(S'' = S_0^r \times \ldots \times S_K^r \), and \(S = S' \cap S'' \). Also let \(E \) denote the \(n_1 + \ldots + n_K \) by \(m_0 + \ldots + m_K \) matrix

\[
E = \begin{bmatrix}
A_1 & B_1 & 0 & \cdots & 0 \\
A_2 & 0 & B_2 & \cdots & 0 \\
& \vdots & & \ddots & \vdots \\
A_K & 0 & 0 & \cdots & B_K
\end{bmatrix}
\]

Consider any convergent subsequence \(\{x^r\}_{r \in R} \) converging to some vector \(x' \). By Lemma 4, \(x' \in S \cap X \). Let \(x^* = (x_0^*, \ldots, x_K^*) \) denote any optimal solution of (4.1) and suppose that \(x' \neq x^* \) (otherwise (a) follows trivially).

Let \(y \) be any element of \(S' \cap \text{ri}(S'') \cap X \) (\(y \) exists by Assumptions A (c)). Fix any \(\lambda \in (0,1) \) and denote \(y(\lambda) = \lambda y + (1-\lambda)x^* \). Then \(y(\lambda) \in S' \cap \text{ri}(S'') \cap X \). It can be shown (see proof of Proposition 1 (b) in [27]) that there exists an \(\varepsilon > 0 \) such that \(\{ x \in S' \mid \|x - x'\| \leq \varepsilon \} \) is closed. Since \(\text{cl}(S') \) is a polyhedral set and \(y(\lambda) - x' \) belongs to the tangent cone of \(S' \) at \(x' \), this implies that there exists \(\delta \in (0,1) \) such that, for all \(r \in R \) sufficiently large,

\[
x^r + \delta z \in S', \tag{A.11}
\]

where \(z = y(\lambda) - x' \). On the other hand, since \(y(\lambda) \in \text{ri}(S'') \), \(x^r \in S'' \) for all \(r \), and \(\{x^r\}_{r \in R} \rightarrow x' \), we have that, for all \(r \in R \) sufficiently large,

\[
x^r + \delta z \in S''. \tag{A.12}
\]

Since \(y(\lambda) \in X \) and \(x' \in X \), \(Ez = 0 \); hence
$$\langle p^r, Ez \rangle = 0, \forall r \in R. \quad \text{(A.13)}$$

Since (cf. (A.3), (A.4)) $E^T p^r \in \partial f(x^r)$ for all r, (1.2) implies that $f'(x^r; z) \geq \langle p^r, Ez \rangle$ for all r. Since $x' + \delta z \in S$, this, together with (A.11)-(A.13) and Lemma 2 (b), implies that

$$f'(x'; z) \geq 0.$$

Hence $f(x') \leq f(y(\lambda))$. Since the choice of $\lambda \in (0,1)$ was arbitrary, by taking λ arbitrarily small (and using the continuity of f within S), we obtain that $f(x') \leq f(x^*)$. Since $x' \in S \cap X$, x' is an optimal solution of (4.1). This completes the proof of part (a). The proof of parts (b) and (c) is analogous to that of Proposition 1 in [27] and is omitted. Q.E.D.