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Abstract

We present a method to reconstruct images from finite sets of noisy projections that may be avail-

able only over limited or sparse angles. The algorithm calculates the maximum a posteriori (MAP)

estimate of the full sinogram (which is an image of the 2-D Radon transform of the object) from

the available data. It is implemented using a primal-dual constrained optimization procedure that

solves a partial differential equation in the primal phase with an efficient local relaxation algorithm

and uses a simple Lagrange multiplier update in the dual phase. The sinogram prior probability is

given by a Markov random field (MRF) that includes information about the mass, center of mass,

and convex hull of the object, and about the smoothness, fundamental constraints, and periodicity

of the 2-D Radon transform. The object is reconstructed using convolution backprojection applied

to the estimated sinogram. We show several reconstructed objects which are obtained from simu-

lated limited-angle and sparse-angle data using the described algorithm, and compare these results

to images obtained using convolution backprojection directly.
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1 INTRODUCTION

This paper addresses the problem of reconstruction from projections, the theoretical and

practical aspects of which have received much attention over the past two decades. Among

the applications that use the currently available reconstruction techniques are medicine,

optics, material science, astronomy, geophysics, and magnetic resonance imaging [1]. The

most widely known application of this theory is the problem of medical transmission X-

ray tomography [2]. In this discipline, "pencil beam" X-rays are fired from many angles

through a single cross section of the body, effectively measuring line integrals of the 2-D

X-ray density function corresponding to the various tissues in the cross section. A collection

of line integrals obtained over lines with the same angle but different lateral positions forms

a 1-D function called a projection. Given a set of projections taken from many different

angles, an image of the density function may be reconstructed and used in diagnosis. For

many medical conditions this tomographic approach to imaging of the body leads to greatly

improved imagery over conventional (chest-type) X-ray images and has proven to be of great

benefit in medical diagnosis [3].

Consider a function f(x) defined on the plane as depicted in Fig. 1. We denote the

integral of f along the line L(t, 8) by g(t, 8). The function g for all values of t and 8 is called

the 2-D Radon transform of f, and an image of g(t, 8), with t in the vertical direction and

9 in the horizontal direction, is called a sinogram. For a single value of 8, g is a function of

t only, and is called the projection of f at angle 8. The Radon transform of f(z) may be

written as

g(t,) = ER2 f(z)6(t -z. w)d (1)

where w = [cos 0 sin O]T, and /(.) is the Dirac delta function. It turns out that only certain

functions g(t, 8) are valid Radon transforms; there are inherent mathematical consistency

conditions that constrain g(t, 8) to lie in a particular functional subspace defined on the

cylinder IR1 x S 1.

The fact that (1) is invertible (for a wide class of functions) is well known. Deans

[4] describes many of the known exact inversion formulas. Except under certain (usually
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impractical) circumstances, however, it is not possible to determine f exactly given the

value of g for only a finite number of lines L(t, 8). It has been the primary concern of

engineers and physicists in this field, over the last 20 years or so, to study approximate

inversion algorithms given such a finite measurement set. The performance of any particular

algorithm depends on the nature of the measurements - their number and arrangement,

and their noise properties - and often on the nature of the object itself.

In this paper, we are concerned with the case of low signal to noise ratio (SNR) and

limited-angle or sparse-angle measurement configurations with parallel-ray projections. In

the medical CT problem, for example, a line integral measurement may be noisy if low

energy X-rays are used. Data acquisition may be restricted to a limited angular range if

there is an obstruction, for example, and may be sparsely sampled if there is a requirement

to obtain the data extremely rapidly. In these situations, images reconstructed using con-

ventional methods are degraded by a variety of artifacts [5], and alternate methods must

be used.

Several investigators have developed algorithms to compensate for some of the data

deficiencies described above. The modified transform methods of [6], [7], and [8] account

for missing projections but do not explicitly address the the issue of noise in the data.

Finite-series expansion methods use additional criteria such as minimum norm [9], minimum

variance [10,11], and maximum entropy [12] to account for noise, or missing projections, or

both. In many cases, streaking artifacts are still present in the reconstructed images [13]

and, in all but certain very special imaging geometries, such as in [14], the computations

are very time consuming and, hence, impractical.

Other researchers have developed methods to incorporate explicit geometric information

about objects. The method of projection onto convez sets (POCS) [15,16] incorporates prior

knowledge by sequentially projecting candidate estimates onto a collection of convex sets,

where each set represents some prior knowledge. Noise in the data tends to cause the

method to diverge, however, and even though it is possible to account for the noise using

a smoothing operator [17], finite pixel error caused by iteration between Radon space and

object space may still cause convergence to the wrong solution [14]. Other investigators
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avoid the latter problem by iterating entirely in projection space [18,19]. Another approach

to geometric modeling is to parameterize the object directly in the class of interest, reducing

the number of parameters that must be estimated. The work by Rossi and Willsky [20,21],

Bresler and Macovski [22,23,24], Hanson [25], and more recently Soumekh [26], Horn [27],

and Fishburn et. al. [28] are examples of this kind of modeling.

Our approach is to treat the noise, the physical imaging geometry, and prior probabilis-

tic information as fundamental and explicitly modeled pieces of an overall inverse problem

formulation. Our solution satisfies the maximum a posteriori (MAP) criterion and incor-

porates the following prior geometric information:

* The values of line integrals taken over lines close in either lateral displacement (with

the same angle) or angle (with the same lateral displacement) tend to be similar in

value.

* The Radon transform of any cross section obeys certain fundamental mathematical

consistency conditions. In particular, these conditions prescribe constraints on the

mass and center of mass of each projection.

* The convex support of the cross-section density function uniquely specifies a related

region of support of the Radon transform.

Since both the primary processing and the introduction of prior knowledge take place in

Radon space, our approach is a projection-space method. This takes advantage of the fact

that the noise is well-modeled as white in this domain, so that the criterion of statistical

optimality is easily specified, but has the disadvantage that prior information about the

object is not conveniently incorporated in Radon space. For example, a local prior proba-

bilistic model of the object is decidedly non-local when transformed into Radon space. We

circumvent this problem by modeling directly in projection space, using a Markov random

field (MRF) model of sinograms that incorporates the three properties listed above.

Because of the particular form of the chosen MRF, we are able to formulate an analogous

problem on the sinogram continuum (as opposed to the usual lattice system), which leads to
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a closed-form solution given by a partial differential equation (PDE) with constraints. We

solve this constrained PDE using a primal-dual optimization approach that solves the PDE

with assumed Lagrange multipliers in the primal phase and updates the Lagrange multipliers

in the dual phase. The primal phase is fast (although iterative) and parallelizable, due to

the local interactions of the MRF; the dual phase is fast and partially parallelizable, since

it uses a simple update formula on each of the columns of the sinogram separately.

The paper is organized as follows. In Section 2 we present additional background related

to the support and consistency of the 2-D Radon transform. Section 3 develops a Markov

random field model of sinograms, and formally defines the maximum a posteriori solution.

In Section 4, we present a fast iterative solution that solves this large-scale optimization

problem and Section 5 presents some experimental results. Finally, we discuss these results

and some outstanding problems in Section 6.

2 CONSISTENCY AND CONVEX SUPPORT

2.1 Consistency of the Radon Transform

An important fact that we exploit in this paper is that not all functions g: IRl x S1 -- IR1

are valid 2-D Radon transforms. A valid Radon transform, that is, a function that is the

Radon transform of some function f : IR2 - IR1, is constrained to lie in a particular

functional subspace of the space of all real functions. This subspace is characterized by the

property that g is even in t and w and by the property that certain generalized Fourier

coefficients of g must be zero. The precise mathematical conditions for the consistency are

given by the following theorem due to Ludwig [31].

Theorem 1 (2-D Consistency Theorem) In order for g(t, 0) to be the 2-D Radon trans-

form of a function f E S (R 2), where S is the space of rapidly decreasing CO° functions, it

is necessary and sufficient that

(a) g E S(IR1 x S 1),

(b) g(t, 0 + 7r) = g(-t, 0), and
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(c) the integral

f g(t, o)tk dt (2)
-oo

be a homogeneous polynomial of degree k in cos 0 and sin 0 for all k >- 0.

Proof See /S1/, /s30, or [32]. 0

The two lowest order moments of g(t, 0) give the mass and center of mass constraints.

The mass constraint tells us that the integral of any projection, which may be thought of

as the mass of the projection, must have the same value for any 0, and that value is equal

to the integral of f(x). If, for example, a noisy measurement of a true Radon transform has

any two projections that do not integrate to the same value then the measurement is not a

valid Radon transform, and it follows that an inverse transform is theoretically undefined.

The center of mass constraint tells us that the (1-D) center of mass of a given projection is

equal to the projection of the (2-D) center of mass of the object onto the w-axis. From this

one can see that the collection of centers of mass of the projections for different 0 must be

a cosinusoidal function with period 22r. If that is not true for a given measurement then,

again, the measurement is not a valid Radon transform. These two facts are easily shown

using the Consistency Theorem, and may be stated as

m= f g(t, ) dt= /f(z)dz V6 (3)
-- 0 E]R2

and

c(8) =-f g(t, 8)t dt = acos + bsin , (4)

for some real constants a and b. We refer to m as the mass of f(z) and (3) as the mass

constraint for the 2-D Radon transform; the quantity c(O) is the center of mass of projection

g(t, 0), and equation (4) is the center of mass constraint. It is also true that the center of

mass of the projection g(t, 6) is the projection of the 2-D center of mass of f(x) (see [32])

and, indeed, if (R, b) denotes the polar coordinates of the center of mass of the object, then

it can be shown that [20]

c(e) = Rcos(6 -) )
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Given the above development, we see that if the mass and center of mass were known a

priori then (3) and (4) should be imposed as constraints on the estimated sinogram. The

center of mass constraint c(8) = 0, imposed in Section 3, implies that the object is centered

at the origin. Given a known center of mass it is possible to adjust the observed sinogram

(by shifting each of the projections in t) to make it appear as if the object were centered at

the origin. This adjustment may always be accomplished provided one has a field of view

large enough to encompass both the original object and the object shifted to the origin. We

assume this to be the case.

2.2 Object Support and Radon Transform Support

The convex support of an object is smallest convex set that supports the function f(z).

In this section we develop a relationship between the convex support of an object and a

particular region of support of its 2-D Radon transform. This relationship is a special case

of the support theorem stated and proved by Lax and Phillips in [29] and also discussed by

Helgason [30].

Suppose f is zero outside DT, the disk of radius T centered at the origin. Then it is easy

to see from the definition of the 2-D Radon transform in (1) that g(t, 6) must be zero when

t V [-T, T]. Using the periodicity of the 2-D Radon transform established in Theorem 1,

one can now conclude that g(t, 8) is completely determined by its values on the rectangle

YT = ((t, 0) | -T t <t T, 0 <0< r). (5)

But this idea can be refined even further. Let 7 be the set of points in YT for which f(z) 5 0.

Now consider the Radon transform g(t, 8) of f, and the unit vector w = [cos 8 sin 8]T. With

reference to Fig. 2 and to (1), we see that for any given w, the value of the Radon transform

must be zero for t > t+ and t < t_. Here, t+ is the lateral position of the line perpendicular

to w which is positioned as far as possible in the +w direction so it just grazes the set 7;

t_ is the lateral position of the line perpendicular to w which is positioned as far a possible

in the -w direction so it just grazes the set 7. The quantities t+ and t_ are called support

values and the corresponding lines are called support lines of the set 7. Knowledge of both
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t+ and t_ for all 8 in [0, 7r) determines the convex hull of !, denoted hul(!), which is, by

definition, the smallest convex set containing !. The set hul(!) is also the convex support

of the function f(z).

From the above discussion, we conclude that the 2-D Radon transform is completely

determined by its values on the set

= {(t, ) E YT I t_(G) < t < t+(0)} (6)

where, for clarity, we have explicitly indicated the functional dependence of t+ and t_ on

0. An example of such a set is shown in Fig. 3. For a given object support set !, we think

of 9 as the matching region of support in Radon space. However, although 7 uniquely

determines 9, it is clear that 9 determines only hul(r), not F itself. Furthermore, 9 is

not necessarily the actual support of g(t, 8) since it is possible for g(t, 6) to be zero when

(t, 8) E 9 if r is not connected. We are primarily concerned with the convex support of f,

since this is what may be determined directly from knowledge of 9.

In Section 3 we assume that an estimate of 9 is available, and we define a prior prob-

ability on sinograms that gives a low probability to sinograms that have non-zero values

outside of 9.

3 SINOGRAM MRF AND MAP ESTIMATION

We chose to represent prior probabilistic knowledge about sinograms using a Markov random

field (MRF) on a discrete sinogram lattice. There are several reasons for this choice. First,

the MRF is a convenient way to describe processes with local interaction in such a way that

the joint probability over all sites is easily determined. Second, the constraints that arise

from the 2-D Radon transform consistency conditions are easily incorporated in the MRF

by limiting the space of allowable configurations. Third, knowledge of the convex support

of the object, which is treated as a penalty rather than a constraint, may be incorporated

into the MRF by adding an additional self-potential term (see below). Finally, this choice,

along with the particular details described below, leads directly to a statistically optimum
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maximum a posteriori solution. We will see in the following section that the form of this

estimate has an analogous variational formulation that, once solved, leads to a fast iterative

solution.

3.1 A Sinogram MRF

This section develops a Markov Random field (MRF) on the sinogram lattice that includes

the mass and center of mass constraints, and that includes the periodicity and smoothness

of the 2-D Radon transform and the convex support of the object. The ingredients needed

to define a MRF are [33]: 1) the lattice, 2) the potential functions, 3) the graph structure,

and 4) the feasible configurations.

The Sinogram Lattice As discussed in Sections 1 and 2, a sinogram is an image of the

Radon transform (or measured Radon transform) of an object over the truncated domain

YT (see equation (5)), with brighter intensities corresponding to larger values of g(t, ).

In order to define a MRF, however, we require a finite lattice system, rather than the

continuum of points in YT. Therefore, we define the sinogram lattice to be a rectangularly

sampled version of YT given by

2T. nd - I nd - 1 Ir
Ys = ((t, =-) 2tI .rd . , d, I =-j,j=O,...,n.} (7)

nd 2 ' ,' ,

where nd is the number of sample points in t, and n, is the number of sample points in 0.

For convenience we adopt the following notation for the remainder of this section. A

site in the sinogram lattice is denoted a = (i, j) and the set of all sites by S. A site value

is denoted in several ways: g. = gii = g(ti,, 0). The collection of all site values is called

the discrete sinogram or just the sinogram when the meaning is clear from the context.

Note, that a site in the sinogram lattice corresponds to a line in the plane passing through

the disk DT. In particular, the site (i,j) corresponds to the line L(ti, ji) = {((,y) E

IR2 zcos8i + y sinOi = ti).

The Potential Functions The physics of this problem does not specify for us a prior

probability on sinograms. We rely on experimentation and intuition to surmise what a
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reasonable form for a prior might be, given what we know about the types of objects under

consideration and the transformation of those objects via the Radon transform. After much

thought and experimentation, one key idea has driven us to implement what turns out to be

the simplest kind of MRF. This idea is simply that sinograms tend to be locally smooth. A

prior that produces such sample functions is an MRF with potential functions that prescribe

an affinity between nearest neighbors - this is the so-called nearest-neighbor "blob" model

[34]. Let s, r E S denote sites that are either vertical or horizontal nearest neighbors. To

prescribe affinities between the sinogram values defined on these sites we define the vertical

pair-potential function as

V(,,r) = b (g, - 9r)2 (8)

and the horizontal pair-potential function as

V(s,r) = bh(g - gr)2 (9)

where (s, r) and (s, r) represent pairs of adjacent sites in the vertical and horizontal direc-

tions, respectively. The positive constants by and bh allow one to make the vertical and

horizontal affinities of different strength, thus making this a non-isotropic random field [35].

In this paper, we choose the constants by and bh a priori; however, it is possible to use the

actual data to estimate these coefficients as part of a hierarchical estimation algorithm [36].

The self-potentials are defined using knowledge of the object's support. As developed in

Section 2, the object's support 7 implies a matching region of support 9 within the Radon

transform domain YT. If either set were known exactly then we would insist that sinogram

values in the region

- = YT- 9 (10)

be exactly zero. However, we shall assume that only an estimate of the sinogram support

is available, and that we have a measure of that estimate's reliability. Therefore, sinograms

with non-zero values in P should have low probability, but not as low if the support estimate

is unreliable. To provide this effect, we define the support self-potential as

V' = C92 (ti,= O) E (11){0, otherwise
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where g. stands for the value of the sinogram at site s=(i,j), and rI is a positive constant

which is used to reflect the support measurement's reliability.

The Graph Structure The form of the potential functions described above dictate the

required neighborhood structure, and, in fact, only nearest neighbors are necessary. In this

case, the most general form of the MRF energy function is [33]

U(g) = E Vs.(g9) + E V(,,r)(g) ,gr) + E V(5s,r)(g ,gr) (12)
8 (a,r) (o,r)

where the first summation is taken over all sites in the lattice, the second over all vertical

nearest-neighbors, and the third over all horizontal nearest-neighbors.

Since all objects are known to be zero outside the disk of radius T, the boundary value

above and below the sinogram must be zero as shown in Fig. 4a. The boundaries to the left

and right of the sinogram must be treated differently, however. Here, we use the symmetry

property of the consistency theorem stated in Section 2

9(t, O) = 9(-t, O + -r)

to conclude that the neighbors wrap around in a toroid that is twisted or flipped about the

t-axis as shown in Fig. 4b. In other words, the sinogram is actually defined on a Mobius

strip. Given these boundaries conditions, pair potentials involving one site outside of the

lattice may now be computed. Sites above or below the sinogram are given the fixed value

zero, whereas sites to the left or right are given the value of the sinogram on the opposite

side of the sinogram and in the opposite t direction.

The Feasible Configurations The mass and center of mass constraints used for the

MRF are discrete approximations to the integral expressions of (3) and (4). Thus, letting

m denote the object's mass we have

2T nd

nd

1 2T ndimd i=1~~~~~and ~~1 1 2T tigij =O j, l < j < n (14)
m nd



where
2T nd + 1

ti = -- (i ) (15)
nd 2

is the lateral position of the ith line.

The presence of constraints, even linear equality constraints such as these, makes the

computation of the MAP estimate more difficult since the algorithm must be a constrained

optimization method [37]. In fact, the solution must be an element of a set of feasible

discrete sinograms fl, which contains all real matrices of dimension nd by n, that satisfy

(13) and (14).

3.2 The MAP Formulation

The Gibbs Prior Having now defined all the elements of the MRF, the joint probability

density for the discrete sinogram prior is simply given by the Gibbs density

p(g) = Ie-U(9) g E fl (16)

where g denotes the vector of sinogram site values and Z is given by

Z = |g eu(g) dg

so that p(g) integrates to one. The function U(g) is the energy function defined in (12).

The Observations We assume that noisy observations of the true site values are available

over a (possibly) limited-angle or sparse-angle subset /o of YT and that the observations

are given by

Yii = gij + nii (ti, j) EY , (17)

where the nij are independent zero-mean Gaussian random variables with variance u2 .

Letting g denote the vector of true sinogram site values and letting y and n denote the vector

of observations and noise samples, respectively, we may write the observation equation in

vector form as

y = Sg + n (18)
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where S is a matrix that selects the observations as follows. In the measurement configu-

ration we consider, a column of the matrix given by [giij] is either observed completely (in

additive noise) or not observed at all. Suppose, for the purposes of this discussion only, we

form g by stacking the columns of [gij], stacking all the observed columns first, from the top

proceeding downwards, and the remaining columns following in any order. Then, denoting

the number of observed columns by no, we see that S is given by

S = [I0]

where I is the nond X n,nd identity matrix.

The Sinogram MAP Estimate Now, with the observation equation given by (18) and

the prior probability given by (16), we may now derive the form of the MAP estimate

,map. Denoting the noise covariance matrix by Kn we may use (18) to write the conditional

measurement density (zero mean, jointly Gaussian) as

(ylg) = l2'rK.n-/ 2 exp (- ( I-Sg)TK'l(y- g)) (19)

Using the definition of conditional probability twice, and the prior probability given by (16),

the posterior distribution is found to be

p(gly) = p(ylg)p(g)/p(y) (20)

= 2f K- 1/2 exp (-((y- Sg)TK;(y- Sg) + U(g)))
zp(y) 2

The MAP estimate, which maximizes (20) with the true observations Y substituted into

the expression, is given by

maP = 8argmin 2 (Y - Sg)T (Y - Sg) + U(g) (21)

where we have used the fact that K,= o2I.

The posterior distribution of (20) is a Gibbs density, and since the observation equation

is not convolutional, its graph structure is identical to that of the prior. The only significant

difference between the two MRF's is the form of the energy function, which, in the posterior
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density, contains a self potential term that couples the observations y to the sinogram g.

The identification of the posterior density as a Gibbs density serves as the basis for the

stochastic relazation and simulated annealing methods of Geman and Geman [33] and others,

algorithms that have been the focus of much research in recent years. These methods,

besides being generally very slow, are inappropriate for this application for two reasons.

First, the stochastic methods do not conveniently incorporate constraints [32]. Second,

and most importantly, the minimization problem of (21) requires minimizing a quadratic

function with linear constraints, which when taken advantage of as we do in the next section,

leads to a much faster algorithm.

4 Primal-Dual MAP Algorithm

This section develops the theory and implementation of a fast iterative algorithm for com-

puting §map. The key step in the development this method is to write the vector minimiza-

tion problem of (21) as a constrained minimization problem involving an unknown function

g(t, 6) over the continuous domain YT. The solution to this variational formulation is a

partial differential equation (PDE) with three unknown functions: the sinogram and two

Lagrange multiplier functions. We use a generic primal-dual method to find the solution to

this PDE, incorporating a fast iterative local relaxation algorithm in the primal stage and

simple Lagrange multiplier update formulas in the dual stage.

4.1 Variational MAP Formulation and Solution

The Minimization Problem Consider the problem, which we refer to as (V), of mini-

mizing

/ /I=|| 2 2(y-_)2 dt dO+| xg 2dt do+ | a 2 + ' ] ag dt dO (22)

subject to the equality constraints

AT
J1 =m= I (t,8) dt (23)

JA =0= I tg(t, 6) dt
14T
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and boundary conditions

g(T, 6) = g(-T, 0) = 0 (24)

g(t, 0) = g(-t, r)

where re, fi, and -y are positive constants. This problem is a continuous formulation of the

sinogram MAP problem of (21). The first term in I is analogous to the first term in (21)

- both represent a penalty that seeks to keep the estimate close to the observations. The

second two terms are analogous to the terms of U(g), given in (12). The first term comprises

the support information, which matches the summation over single sites in U(g). The second

term integrates the sum of the squares of the two partial derivatives of g, which corresponds

to the two summations of pair-potentials in U(g). The two integral constraints in (23) are

exactly the mass and center of mass constraints. Finally, the boundary conditions, which

include the twisted boundary, are stated in (24).

To simplify notation we define the following indicator function notations:

1 (t,O) E 
( G(te) = (,)e (25)

0O otherwise

which indicates the complement of the region of support in the sinogram domain, and

Xy(t,) (t,)yo (26)

{O otherwise

which indicates the region in the sinogram over which observations are available. Using this

notation we may write I as

||= Jf2+IG2+ ) +7 (8 ) + A1 Xy(y-g)2dtde . (27)

The problem is now in the form of a classical variational problem which may be solved using

standard calculus of variations techniques (see [38], for example).

Partial Differential Equation A necessary condition for g(t, 0) to be a solution to (V)

is that it satisfy the following second order partial differential equation (PDE) [32]

(2CXG + I2X) g-2jt a- g 2XYY - A1() - A 2()t (28)
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and the additional boundary condition

ag(t,0) - ag(-t, r)
at at

In addition, g(t, O) must satisfy the original constraints and boundary conditions. Note that

(28) contains three unknown functions: g(t, 0), and two Lagrange multiplier functions Al (8)

and A2(0) (one for each constraint). To simplify the expressions in the remainder of this

section we use the notation gt and gtt to stand for the first and second partial derivatives

of g(t, 9) with respect to t, respectively, and ge and gee to stand for the first and second

partial derivatives of g(t, 9) with respect to 0, respectively.

To solve (28) for g(t, 0), A1 and A2 must first be determined. An analytic expression

for Al may be found by integrating both sides of (28) and simplifying; and an analogous

expression for A2 may be found by multiplying both sides of (28) by t, then integrating and

simplifying. The results are [32]

A re) - xyydt (30)A1(,) = T [ 2ICrag dt- 2 gtlT + XY -i(30)
-3 IT T T

A2(0) = [ 2tcGg dt - 2tgt -T- tXyydtl (31)

These equations may be substituted into (28) to give an integro-differential equation in a

single unknown function g(t, 8).

Primal-Dual Optimization Method Unfortunately, although the resulting integro-

differential equation could be discretized and solved numerically, the problem is very large

and computationally intractable. The approach we take instead is to use the generic primal-

dual method described by Bertsekas in [39] to solve the PDE directly. In outline, the

method requires us to solve (28) numerically given estimated Lagrange multipliers, update

the Lagrange multipliers if the solution doesn't meet the required constraints, and repeat

until a jointly optimum trio of §, Al, and A2 is found.

To find an initial estimate of the Lagrange multipliers we make several approximations

which often hold true at or near the solution. First, near the solution we expect that

16



g(t, 8) # 0 for (t, 9) E g, especially when rI is large. Hence, we may make the approximations

2ncXGg dt a 0 and 2tniGgdt t O.
-T -T

Second, the terms in (30) and (31) involving the partial derivative gt evaluated at ±T may

often be close to be zero. These approximations, applied to (30) and (31), yield the following

initial Lagrange multiplier estimates

)A(-) = [1 yydt] (32)

2A(O) = 3 [_ 1 I tXy d] (33)
2T3 T2 d-T

each of which may be evaluated given only the data. Substituting these functions for the

true Lagrange multipliers in (28) yields the PDE

(2rXG + XY) g - 2gtt -2 79ge =

~_ l /f T 3t /f
-Xyy - 1 fT + mt dt (34)
12 2I J -T Xy dt + 2T' 2 X y 2T3a 2 T -T

which, unlike the original, has a single unknown g(t, 0), and may be solved numerically

using any of several techniques for solving elliptic PDEs as discussed below.

If g does not meet the constraints after solving (34), the first primal stage, then we

conclude that the approximations used to derive the approximate PDE of (34) were not

accurate. This situation will in fact occur if / is large or if the observations are missing

entire projections, such as in the limited-angle and sparse-angle problems. Therefore, the

dual stage updates the Lagrange multiplier functions to move them closer to their optimum

values using the following formulas [39]

X+1(8) = k(0) I m-a r g(t, ) dt) (35)

-(8) = a() + (T - - tg(t, ) dt) (36)
m -T

where a is a positive constant, and k is an iteration counter. Note that the update cal-

culations can be done independently, and therefore in parallel, for each projection in the

sinogram. After each update, the new Lagrange multiplier functions are substituted into
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(28), which is solved numerically for a new §. When § meets the constraints to within a

specified tolerance, then the three functions are jointly optimal and § is the desired sinogram

estimate.

The constant ax, which appears in (35) and (36), is chosen large enough so that conver-

gence to the correct Lagrange multipliers (and, hence, the correct solution to (V)) occurs

quickly, yet not so large that the sequence will not converge. Bertsekas [39] describes the

the selection of a and relates this generic primal-dual method to the method of multipliers,

about which a great deal of theory is known. In our experiments, a was chosen empirically

to yield a good rate of convergence for our problem.

4.2 Numerical Methods

The sinogram is approximated on a rectilinear grid with vertical and horizontal sample

spacings given by At = 2T/nd and Ae = Ir/nv, respectively. The PDE of (28) may then be

approximated at an interior point by the finite difference equation [40]

djgij - rijgi+lj - ,lijgi- j-tijgij+1 - bijgij-1 = Sij (37)

where

li, = 28 (38)

ri,j = 26

bii = 2'

tij = 27

dij = 4,8 + 4 + (2/XG + XY) 

sij = 2 XYY- A1() - A2 ()t) ) 

and / = 8/At and ' = 7/A2. Sinogram values in (37) that correspond to points outside

the lattice must be evaluated according to the boundary conditions developed in Section 3.

The set of equations given by (37) for all j, j = 1,..., nd and i, i = 1, . . ., n may be
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organized and written as a vector equation

Ag = , (39)

and, although this is a very high dimensional problem, the local interactions that result from

the nearest-neighbor construction allow for efficient iterative solutions. Several traditional

methods (cf. [411) including Jacobi, simultaneous over-relaxation (SOR), and Chebyshev

semi-iterative relaxation methods may be employed to solve (39). However, we have chosen

to implement a relatively new method due to Kuo, Levy, and Musicus [40] which has been

shown to have very favorable convergence properties, and is relatively easy to implement.

This method, in addition, has been shown to be ideally suited for parallel implementation.

Our implementation of Kuo's local relaxation algorithm (KLR) is a special case of the

more general implementation described in [40]. We assume the PDE to be of the form

92 u 82u
-pa-sz2 - q-z2 + r'(Z1, Z2)U = f(Zl, X2),

where (21, x2) E [0, 1] x [0, 1], and to satisfy the conditions given in [40]. Then the PDE is

approximated by the 5-point stencil

djuj - rui+l,j - luI-i1,j - tui,,j+l - bu,$j-1 = 8ij,

with

l=p, r=p, b=q, t=q,

di,j = 2p + 2q + ijh 2 , si,j = fi,jh2

where h is the grid spacing and gi,j is defined as g(ih, jh). Each grid point is assigned a

color, either red or black, according to an alternating pattern as on a checkerboard. Then

the local relaxation procedure can be written as:

red points (i + j is even):

A(n+1) = wj)u(n) + Wi(jd,-l ((n) rn (n) + b (n ) tu ( n ) + 8i,) 
I i'ij~- (1S--Oij)lZ~ .) +-ci,,d,1 (/Iu, $ + -I i+1,j + + i+i ,i ,

black points (i + j is odd):

u+l _= (1 -wi,jI)uI() + wi,jdl/ (n+l) + ru ) + bu(n+l) + tu(n+l) +
Sli 19- +l, + i,+l 
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where wi,j is called the local relaxation parameter and is given by

2
1+ I1- pj'

where
2 /r 2r

pi,d= pcosM" - + q cosij =-Ml + 1 M2 +1

One point related to convergence of KLR is worthy of comment. In the initialization

phase, KLR calculates an array of local relaxation parameters, iij, one per site, which

are theoretically optimum for a particular boundary condition which our problem does

not satisfy (because of the twisted boundary property). Therefore, KLR still converges to

the correct solution, but it may do so more slowly than the predicted convergence rates.

However, we have found in our experiments that no slow-down is evident; the rate, in

practice, is still of order VW, where N is the total number of points in the grid.

5 Experimental Results

5.1 Overview

In this section, we present results from several simulation studies, each designed to demon-

strate a different aspect of the sinogram MAP algorithms described in Section 4. The object

that is used for all of the simulations in this section is an ellipse with the letters M I T in

its interior, as shown in Fig. 5. The ellipse is centered at the origin and rotated 45 degrees

in the clockwise direction, and has two values: 0 outside of the ellipse and 1 within the

body of the ellipse, except within the letters, where the value is 0. The noise-free sinogram

shown in Fig. 6a is calculated using approximate strip integrals (see [42]) from analytic

expressions for the ellipse and characters in the interior. The sinogram has 81 rows and

60 columns, approximating g(t, 6) over the angular range [or/2, 3Xr/2)] and the lateral range

[-T, T]. The 81x81 pixel image in Fig. 6b is a reconstruction from the noise-free data of

Fig. 6a using convolution backprojection (CBP) with a ramp filter (see [42]).

The MIT ellipse was chosen as a test object for this experiment because the loss of

angular information has strikingly different effects depending on where the missing angles
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occur. For example, if the missing projections have lines that integrate along the long

axis of the ellipse, then the narrowness of the ellipse cannot be observed, but the detail

of the letters in the interior is quite apparent from the observed projections. If, however,

the missing angles occur along the short axis of the ellipse, then the letters cannot be

observed well, but the narrowness is apparent. The first case is where information about

the boundary of the object has a striking effect on the reconstruction; the smoothing effect

helps in both cases.

One noisy, two limited-angle, and two sparse-angle cases were derived from the noise-free

sinogram and used as simulated observations. Fig. 6c shows a noisy sinogram, created by

adding independent samples of zero-mean Gaussian noise with variance a2 to each element

of the true sinogram of Fig. 6a. The signal to noise ratio (SNR) of this sinogram is 3.0dB,

using the following definition of SNR:

7r 2T nd
-- E 7 2 (t,, 2 j)
v nd j=l i=1

SNR = 10 log 2 (40)

where g(ti, Oj) is the true sinogram. Fig. 6d shows a reconstruction of Fig. 6c using CBP.

Figs. 7a and 7b show sparse-angle reconstructions from, respectively, 15 and 10 evenly

spaced projections of a 10.0dB noisy observed sinogram of the ellipse (not shown). This

corresponds to projections taken 12.0 and 18.0 degrees apart, respectively. Figs. 7c and 7d

are reconstructions from the first (left) 40 projections and the last (right) 40 projections,

respectively, of the same 10.0dB noisy sinogram. The first limited-angle arrangement lacks

projections with information about the narrow dimension of the ellipse, while the second

arrangement lacks detailed information about the letters within the ellipse. Each of these

four reconstructions was made using CBP, assigning zero to the missing projections.

Given an observed sinogram (perhaps noisy or only partially observed), the first pro-

cessing step is to estimate the object mass using

2T nd
rh==J n E E y(ti, 0j), (41)

jEJi=1

where J is the set of observed projections and J is the number of elements in J. Each

sinogram is then normalized by dividing each observation by mn so that the normalized
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sinogram corresponds to an object with unit mass. This normalization is necessary so that

the coefficients fl, y, and ar have the same qualitative effect on low mass sinograms as on

high mass sinograms. Using the normalized sinogram, the noise variance is estimated from

the top and bottom rows, and this estimate is used as the true variance in subsequent

computations.

In general, the center of mass must also be estimated, perhaps using methods described

in [32] or [21], so that the observed projections can be shifted to correspond to an object

centered at the origin. In these simulations, however, we assume that the object is already

centered at the origin - which is very nearly true for the M I T ellipse. In order to study

the effect of correct and incorrect convex hull estimates, the convex hulls used in these

studies are fixed and known, although not always correct. Experiments that show the full

hierarchical procedure that first estimates the convex hull are described in [32].

5.2 Effect of Smoothing Coefficients

The coefficient y has the effect of smoothing or blurring the sinogram in the horizontal

direction; the coefficient ,l has a similar smoothing effect in the vertical direction. Fig. 8

shows sinogram MAP estimates resulting from the full-view observations of Fig. 6c, using

no support information. Fig. 8a corresponds to y = 0.05 and , = 0.01, Fig. 8b to 'y = 0.5

and ,l = 0.01, Fig. 8c to y = 0.05 and 6 = 0.1, and Fig. 8d to y = 0.005 and , = 0.001.

Images reconstructed from these sinograms using CBP are shown in the respective panels

of Fig. 9. The reconstruction in Fig. 9a - which used what has empirically shown to be

good smoothing coefficients - should be compared to the unprocessed CBP reconstruction

of Fig. 6d.

It should be noted from Fig. 9b that excessive smoothing of the sinogram in the horizon-

tal direction results in circular blurring of the reconstructed image. Similarly, the haziness of

the image in Fig. 9c results from excess smoothing of the sinogram in the vertical direction,

which effectively produces a low-pass filtering effect on each projection. There is notice-

able improvement in both reconstructions shown in Figs. 9a and 9b over that in Fig. 6d;

however, there are important differences. For one, the contrast between the ellipse body
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and the background is better for the larger smoothing coefficients of Fig. 9a. However, that

enhancement also accompanies a decreased definition of the ellipse boundary. The legibility

of the internal letters, however, appears to be best in the highest contrast image shown in

Fig. 9a.

5.3 Effect of Known Support

Fig. 10 shows the effect of varying /c for known (correct) support. The different values of

ar are given by (a) rc = 0.0, (b) ar = 5.0, (c) rI = 10.0, and (d) rc = 10,000. In each case,

the full-view observations of Fig. 6c were used, and y = 0.05 and / = 0.01. The object

reconstructions were made using full-view CBP, and should be compared to those of Figs. 6d

and 9a,b,c,d.

We see from the set of experiments shown in Fig. 10 that known support sharpens the

boundary of the ellipse considerably. However, in the image with the sharpest boundary

(Fig. 10d), the letters in the ellipse are not as legible as the images in the other panels -

the contrast of the letters does not appear to be as large. This is likely to be due to the

mass constraint, which, for ir large, must produce an estimate that has all its mass (for a

given projection) between the two support values. But, in addition there is a smoothness

requirement which is attempting to reduce abrupt variations within the projections. This

may have the overall effect of increasing the magnitude of (normally small) values of line

integrals that pass through the internal letters.

5.4 Effect of Incorrect Support

In this set of experiments we examine the effect of using support information which is

incorrect. Fig. 11 shows results where the support corresponds to an ellipse which has been

rotated 90 degrees from the correct orientation. The observed sinogram is that of Fig. 6c,

and the algorithm used the smoothing coefficients y = 0.05 and P = 0.01. The different

reconstructions in Fig. 11 correspond to setting /c to (a) iv = 0.0, (b) rv = 5.0, (c) v = 10.0,

and (d) rv = 10, 000.

This set of experiments shows that as iv grows larger, the image values outside the
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assumed region of support grow smaller. Eventually, this effect overwhelms the evidence

of the observations and virtually obliterates the parts of the true ellipse that lie outside of

the incorrect support. But the effect of the mass constraint and the smoothing coefficients

also affect the appearance of the final image. Since each projection has mass m, when the

support width is incorrectly narrowed, and rc is too large, then the sinogram values must

be very large within the region of support just to accommodate the required mass, and the

values will typically be very much larger than the observations. As mentioned previously,

this will have the effect of reducing the contrast of the inner details of these projections,

and the effect on the image is to eliminate contrast within even the intersection of the

correct support and the incorrect support. On those projections that have support values

that are much too wide, it is the smoothing terms that dominate. In order to lower the

overall energy of the sinogram (that is, the energy term in the Markov random field), the

vertical pair-potentials or equivalently, the vertical derivatives should be small. Therefore,

these projections tend to become as smooth as possible over the prescribed support and

contribute to the image a 'shadow" ellipse which corresponds to the incorrect support.

Fig. 12 shows a sequence of reconstructions that have kept rc to the constant 5.0, but

vary the orientation of the assumed object support. In these reconstructions, we have used

the support of an ellipse that has the same size and eccentricity at the true object support,

but has been rotated in the counter-clockwise direction by (a) 0.0 degrees, (b) 15.0 degrees,

(c) 30.0 degrees, and (d) 45.0 degrees.

This set of experiments shows that a modest choice of rc, together with a less severe

support error will produce an image that retains many of the details of the true image with

only a small 'shadow" due to the incorrect support. However, it is clear that an incorrect

support estimate can produce results much worse than having not introduced any support

information whatsoever (compare these results to that of Fig. 11a).

In Fig. 13 we show a sequence of reconstructions that have used ar = 5.0, but with

support which is the incorrect size. Figs. 13a and 13b show two cases where the support is

too small, and Figs. 13c and 13d show two cases where the support is too large. Overall,

the size of the support increases from Fig. 13a to Fig. 13d. The reconstruction using the
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correct support and I = 5.0 may be seen in Fig. 12a.

We may conclude from this set of experiments that is is preferable to err on the side

of using a support estimate that is too large than too small, in general. Although the

boundaries are not as sharp when the support is too large, the loss of contrast in the

interior and the effect of double-boundaries for small support is much more undesirable.

5.5 Sparse-Angle Studies

Fig. 14 shows the results of several sparse-angle experiments. The (a) and (b) images

correspond to the 15-view and 10-view 10dB cases respectively, where y = 0.05 and , = 0.01

and the support is known and rc = 10,000. The (c) and (d) images correspond to the 15-

view and 10-view cases, respectively, with the same smoothing coefficients, but with I. = 0.0

- i.e., no known support information is used.

This experiment demonstrates nicely the potential of the algorithm. In either sparse-

angle case, the contrast of the image is improved over those in Fig. 7 dramatically. And

while the boundary is quite sharp as expected in the case of t. = 10,000, it is quite clear

what the shape of the object is in case of IK = 0.0. The loss of contrast in the interior of the

ellipse when rc = 10,000 remains evident in these experiments, however.

5.6 Limited-Angle Studies

Fig. 15 shows the results of several limited-angle studies. The (a) and (b) images are

reconstructions obtained with known support (with K = 10, 000) from the two limited-angle

cases. The experiment resulting in panel (a) uses the first 40 (left-most) projections, whereas

panel (b) uses the last 40 (right-most) projections. Panels (c) and (d) correspond to the

same observations as in (a) and (b), respectively, but in these cases no support information

was used. As in the sparse-angle studies, the smoothing coefficients for all four studies were

- = 0.05 and , = 0.01.

These limited-angle studies show behavior which is similar to the sparse-angle studies.

The boundary of the ellipse is quite sharp, as expected, in the case of Kc = 10, 000, and there

is an accompanying loss of contrast in the interior. The images generated using Kc = 0.0
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have different problems, however. In particular, the image in Fig. 15c shows good contrast

in the letters in the interior but is unable to provide any boundary definition on the long

sides of the ellipse. This is because the leftmost 40 projections which are observed view the

ellipse from the broadside, and as such do not contain information about the narrow ellipse

dimension. The image in Fig. 15d suffers from the opposite problem. There is a loss of

definition of the letters in the interior because many of the projections that would normally

be obtained from the broadside of the ellipse are missing. It is in the first case that support

knowledge can aid tremendously; unfortunately, when projections from the broadside of the

ellipse are missing, there is little that our method can do to provide any additional clarity

of the interior detail.

6 DISCUSSION

It is generally acknowledged in the computed tomography literature that in the case of noisy

and limited-angle or sparse-angle data, prior knowledge is essential in order to obtain good

reconstructions. We have focused on three types of prior knowledge:

* Line integrals close in either angle or lateral displacement tend to be similar in value,

* Radon transform functions are constrained to a certain functional subspace, and

* Knowledge of the convex hull of the object is equivalent to knowledge of a particular

region of support of the object's Radon transform.

In Section 3, we developed a Markov random field (MRF) model of sinograms that contains

prior information about the mass and center of mass of the unknown sinogram, the convex

support of the object, and the expected similarity of line integrals which are close in either

angle or lateral displacement. The primal-dual MAP estimation algorithm developed in

Section 4 is based on a variational formulation that leads to an efficient solution of the

original Markov random field MAP estimation problem. Even with the necessity of keep-

ing and updating Lagrange multipliers, this method is fast and memory efficient, and is

parallelizable in both the primal phase and the dual phase.
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The simulations presented in Section 5 show the range of results that may be obtained

using this approach. The improvement over the unprocessed CBP reconstructions is quite

dramatic in all cases where the support was correct or nearly correct. In particular, the

boundary of the ellipse is made much sharper, and the letters within the ellipse can be made

out in all of the processed cases, and in none of the unprocessed cases.

In most cases the convex support of the object is not known a priori. In other research,

we have reported several methods to estimate the convex hull of objects from the available

data [43],[44],[32]. These methods require two steps: 1) estimation of the support values

from observed projections and 2) estimation of a complete set of feasible support values

for all projections (including the ones corresponding to missing observations). The feasible

support values uniquely identify a convex polyhedron, which serves as our estimate of the

convex support of the object. In the second step, different types of prior geometric knowledge

about the shape of the object may be used to force estimates to be circular, elliptic, or have

smooth boundaries. For example, knowledge that the MIT ellipse is an ellipse leads to

nearly perfect support estimation from the noisy, sparse-angle, and limited-angle cases used

in Section 5, even though the size, eccentricity, and orientation of the ellipse is not known

a priori. Estimating the convex support, mass, and center of mass of the object is viewed

as a part of a hierarchical reconstruction algorithm in [32]. With these steps in place, the

only user inputs that are required are the values of the smoothing coefficients / and -y.

In this paper only two consistency constraints were imposed: mass and center of mass.

A method that incorporates a much larger number of consistency constraints and that

requires no prior geometric knowledge related to these constraints - e.g. mass and center

of mass - is described in [32]. The two methods contrast in the following way. The

approach described in this paper characterizes, through the mass and center of mass, a

functional subspace in which the desired sinogram must lie, and forces this to happen using

Lagrange multipliers. The alternate approach described in [32] characterizes the subspace

orthogonal to the desired sinogram, and again uses Lagrange multipliers to achieve this goal.

The alternate method is also a generic primal-dual optimization algorithm, however, the

Lagrange multipliers are scalars rather than functions. The primal stage is almost identical
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to that given herein, but the dual stage generally requires more computation and has less

potential for parallelism.
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Figure 1: The geometry of the 2-D Radon transform.
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Figure 2: The convex support of an object and of a projection.
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Figure 3: The support of a Radon transform.
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(a)

(b)

Figure 4: (a) The vertical and (b) horizontal boundaries of the sinogram MRF.
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Figure 5: The MIT ellipse.
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Figure 6: (a) A noise-free sinogram, (b) and its reconstruction. (c) A noisy sinogram

(SNR=S.OdB), (c) and its reconstruction.
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Figure 7: Reconstructions from a noisy sinogram (SNR=10.0dB) from (a) 15 sparse views,

(b) 10 sparse views, (c) left-most 40 views, and (d) right-most 40 views.
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Figure 11: Effect of incorrect support for (a) K = 0.0, (b) n. = 5.0, (c) n = 10.0, and (d)

n=10, 000.0.
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Figure 12: Effect of using an incorrect support which is rotated counter-clockwise by (a)
0.0 degrees, (b) 15.0 degrees, (c) 30.0 degrees, and (d) 45.0 degrees.
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Figure 14: Sparse-angle studies with y = 0.05 and , = 0.01. (a) 15 observed projections and
known support. (b) 10 observed projections and known support. (c) 15 observed projections
and no support. (d) 10 observed projections and no support.
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