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Abstract

Computational tools for medical image analysis help clinicians diagnose, treat, moni-
tor changes, and plan and execute procedures more safely and effectively. Two funda-
mental problems in analyzing medical imagery are registration, which brings two or
more datasets into correspondence, and segmentation, which localizes the anatomical
structures in an image. The noise and artifacts present in the scans, combined with
the complexity and variability of patient anatomy, limit the effectiveness of simple
image processing routines. Statistical models provide application-specific context to
the problem by incorporating information derived from a training set consisting of in-
stances of the problem along with the solution. In this thesis, we explore the benefits
of statistical models for medical image registration and segmentation.

We present a technique for computing the rigid registration of pairs of medical
images of the same patient. The method models the expected joint intensity dis-
tribution of two images when correctly aligned. The registration of a novel set of
images is performed by maximizing the log likelihood of the transformation, given
the joint intensity model. Results aligning SPGR and dual-echo magnetic resonance
scans demonstrate sub-voxel accuracy and large region of convergence.

A novel segmentation method is presented that incorporates prior statistical mod-
els of intensity, local curvature, and global shape to direct the segmentation toward a
likely outcome. Existing segmentation algorithms generally fit into one of the follow-
ing three categories: boundary localization, voxel classification, and atlas matching,
each with different strengths and weaknesses. Our algorithm unifies these approaches.
A higher dimensional surface is evolved based on local and global priors such that the
zero level set converges on the object boundary. Results segmenting images of the
corpus callosum, knee, and spine illustrate the strength and diversity of this approach.

Thesis Supervisor: W. Eric L. Grimson
Title: Bernard M. Gordon Professor of Medical Engineering

Thesis Supervisor: Olivier D. Faugeras
Title: Adjunct Professor of Computer Science and Engineering
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Chapter 1

Introduction

The advances in internal imaging over the last thirty years have greatly improved

the type of medical care that is available to patients. Clinicians now have the ability

to non-invasively peer inside the human body to diagnose, treat, monitor changes,

and plan and execute procedures more safely and effectively than before such medical

imaging techniques existed. Imaging modalities such as magnetic resonance (MR),

computed tomography (CT), ultrasound, and positron emission tomography (PET)

all provide different measures of the structure and function of internal anatomy. How-

ever, no imaging method in existence today directly provides all the information that

a doctor or surgeon might need to diagnose a condition or treat a patient.

While most imaging methods produce full three dimensional volumes of the ana-

tomy, people cannot visualize the entire volume simultaneously. Traditionally, the

medical scans are viewed as a series of consecutive two dimensional slices of the full

3D volume. This is often referred to as the "lightbox method" due to the medical

films that are viewed on lightboxes. Figure 1-1 illustrates such 2D slices of an MR

and CT scan. Many of the questions that doctors tend to ask rely on coherent, full

3D information, and are not easily answered when the scan is viewed slice by slice.

Examples of such questions include:

* "How close is the brain tumor to the motor cortex?"

* "How has the volume of this lesion changed over time?"

13



Figure 1-1: LEFT: Sagittal slices of an MR of the head. RIGHT: Sagittal slices of

the CT of the spine.

* "What is the most direct path to the tumor that avoids all critical structures?"

In order to draw the necessary conclusions of diagnosis or treatment, the doctor must

often mentally transform the 2D slices back into 3D, which can be difficult. In recent

years, the development of computational tools for medical image analysis has made it

easier for clinicians to visualize and interact with the internal structures and answer

such questions important for better treatment for patients.

1.1 Medical Image Segmentation and Registration

One of the major classes of problems commonly addressed in computational process-

ing of medical images is segmentation. Segmentation is the process of labeling each

volume element or voxel in a scan based on the anatomical structure to which it

corresponds. The label is assigned using properties of the observed intensities in the

image as well as known anatomical information about normal subjects. Figure 1-2

shows an MR scan of the brain and the knee with the corresponding segmentations

or label maps.

A fully segmented or labeled scan allows surgeons to both better qualitatively

visualize the shapes and relative positions of internal structures and more accurately

measure their volumes and distances quantitatively. Such labeling is critical to an-

swering questions like those listed above that refer to the exact size or proximity

of the structures of interest. One cannot exactly measure the distance between two

14



structures without knowing the boundary of each. Segmentation also allows better

visualization of the entire anatomy in an internal scan. Three dimensional surface

models can be generated from the label maps using an algorithm such as Marching

Cubes [66] or SurfaceNets [32]. Figure 1-2 shows 3D surface models of the brain and

knee. Segmentation has uses both for patients with pathology and for normal volun-

teers. Scans of people without pathology can be used as a method of comparison to

define abnormality. Detailed segmentations and subsequent 3D models can be used

to generate an anatomical atlas for visualization, teaching, and as training data for

other algorithms [35].

Due to the noise typically present in medical imagery, the similar appearance of

different tissues in many modalities, and the complexity of anatomical structures,

accurate segmentation is difficult. While segmentation is performed automatically

whenever possible, most applications still require at least some amount of manual

intervention, and some are still performed completely manually. Full manual segmen-

tation typically consists of the user outlining each anatomical structure in 2D, one

slice at a time, through the entire volume. Such an approach to segmentation is ex-

tremely tedious and time consuming, and still suffers from errors, due to the difficulty

in maintaining consistency across slices. Studies of the consistency of segmentations

across experts and the reproducibility of the a segmentation by the same expert over

time shows a high degree (- 15%) of variance [50]. Yet due to the lack of satisfactory

automatic segmentation algorithms, for many applications manual outlining is still

common.

In addition to segmentation, registration is another important problem frequently

addressed in medical image analysis. Registration is the process of aligning data that

arise from different sources into one consistent coordinate frame. For example, various

anatomical structures appear more clearly in different types of internal scans. Soft

tissue, for example, is imaged well in MR scans, while bone is more easily discernible

in CT scans. Blood vessels are often highlighted better in an MR angiogram than in a

standard MR scan. Multiple scans of the same patient will generally be unregistered

when acquired, as the patient will may be in different positions in each scanner, and

15



Figure 1-2: The process of segmentation and model generation. LEFT: The raw
MR scans of the knee and the head. MIDDLE: The label-map overlayed on the
MR. RIGHT: Three dimensional surface models generated from the label-map using
Marching Cubes[66].

each scanner has its own coordinate system. In order to fuse the information from

all scans into one coherent frame, the scans must be registered. The very reason why

multiple scans are useful is what makes the registration process difficult. As each

modality images tissue differently and has its own artifacts and noise characteristics,

accurately modeling the intensity relationship between the scans, and subsequently

aligning them, is difficult.

The class of transformations considered by the registration algorithm depends on

the application. Rigid registration corresponds to finding the six degree of freedom

pose that best aligns the two datasets. This type of alignment is used when there is

no significant tissue shift between acquisitions. Elastic registration is required when

dealing with soft tissue that deforms between scans. Many more degrees are freedom

are required to model these non-rigid transformations, which makes the registration

problem much more challenging.

The segmentation and registration problems are closely related, in that the so-

lution of one greatly assists in the computation the other. If one could bring two

16



Figure 1-3: Augmented Reality Visualization where internal structures are overlaid
on a video image of the patient. LEFT: The ventricles appear in blue and the tumor
appears in green. RIGHT: An aneurysm appears off the blood vessels shown in red.

different images perfectly into registration, then an anatomical atlas could be regis-

tered to a novel scan, producing a full segmentation. If, on the other hand, one could

reliably segment all the anatomical structures in an image, then registration becomes

straightforward, as the alignment of two label maps is a simpler task.

1.2 Applications of Computational Medical Image

Analysis

The registration and segmentation tools for described above have many applications

that can provide better treatment for patients. In this section, we describe some

applications where medical image analysis is currently being used, such as surgical

navigation, functional brain mapping, surgical simulation, and therapy evaluation.

1.2.1 Surgical Navigation

Many surgical procedures require highly precise localization, often of deeply buried

structures, in order for the surgeon to extract or repair targeted tissue with minimal

damage to nearby structures. Three dimensional, registered visualization and tracking

techniques can help surgeons to safely navigate through the surgical field by trans-

17

. ....... .. ..... .



Figure 1-4: As the surgeon moves the trackable probe around the patient's head
(upper left), an arrow shows the corresponding position in the rendered image of 3D
models (upper right) and the cross-hairs highlight the probe position in the orthogonal
slices of the grayscale MR scan (bottom three images).

ferring reconstructions of internal anatomy into the frame of the patient. Creating

3D visualizations of anatomical structures requires methods of accurately segmenting

those structures from the internal scans. Combining 3D models of soft tissue (ac-

quired from MR) with bone (from CT) and function data (fMRI) into one coherent

coordinate frame requires reliable multi-modal registration algorithms. Alignment

techniques are also required to precisely register the 3D anatomical models with the

patient in operating room.

Such image-guided surgical tools allow the surgeon to directly visualize important

structures, and plan and act accordingly, using methods of visualization such as: (1)

"enhanced reality visualization" [39], in which rendered internal anatomical structures

are overlaid on the surgeon's field-of-view (Figure 1-3), and (2) instrument tracking

18
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Figure 1-5: Non-invasive functional maps produced from trans-cranial magnetic stim-
ulation. Muscle responses are shown blended on the cortex model. Red is large re-
sponse; yellow is medium response, and green is small response. The muscles mapped
are (a) index finger, (b) forearm, (c) biceps, and (d) jaw.

[60], in which medical instruments acting on the patient are localized in the 3D

coordinate frame of the MR or CT imagery (Figure 1-4). The resultant benefits

include: accelerated migration to minimally-invasive surgeries via improved hand-eye

coordination and better transfer of a priori plans to the patient; shorter procedures

through increased visualization of the surgical field; reduced risk of sensitive tissue

damage; and more accurate and complete tissue resection, ablation, or biopsy.

1.2.2 Functional Brain Mapping

Segmentation of anatomical structures from an MR scan and subsequently generating

models from those labelings can provide useful information to the surgeon about the

relative positions of internal structures. However, functional areas of the brain, such

as motor cortex or language area, cannot be segmented from a standard MR scan
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because they often appear the same as the surrounding tissue. Yet knowing the

positions of functional areas can be very important to a surgeon during the planning

of a surgery, and during a surgery itself. For example, brain tumors near functional

areas can invade the surrounding tissue or can push it out of the way. A tumor that

has invaded the motor cortex may be inoperable due to the risk of paralysis while a

tumor that has displaced the motor cortex may still be operable.

The most common techniques for functional brain mapping utilize 3D medical

scanners to image the brain while the subject undergoes an activity aimed at ac-

tivating the functional area of interest. Scanners currently used for this purpose

are single photon emission computed tomography (SPECT), positron emission to-

mography (PET), and functional magnetic resonance imaging (fMRI). Multi-modal

registration of these scans to a structural image is necessary to provide context to

ground the functional information with respect to the rest of the anatomy. Tran-

scranial Magnetic Stimulation (TMS) is a functional mapping method that actively

maps out regions of the brain by registering and tracking the position of a magnetic

coil placed on the scalp with an MR image. When the coil is fired, the position

with respect to the image is correlated with a measured functional response (such as

a muscle twitch or momentary visual suppression). Registered functional maps are

produced that combine the function data with the 3D models of the anatomy (see

Figure 1-5).

1.2.3 Surgical Simulation

There are many challenges faced in the process of training surgeons in a new proce-

dure. The feasibility of surgeons practicing on cadavers is limited due to the expense

and lack of availability. For many types of procedures, the primary method of learning

is first by observation and then by actually performing the procedure, only sometimes

under supervision. Thus, the phrase "watch one, do one, teach one" quite often de-

scribes the very intense learning environment many surgeons find themselves facing.

Another approach to the problem of training surgeons is the development of surgi-

cal simulation systems. Simulation systems generally combine 3D visualization with
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Figure 1-6: LEFT: Diagram of an arthroscopic knee surgery. The surgeon holds a
scope with one hand and an instrument with the other. The view from the scope
is projected on a monitor. RIGHT: A surgeon using the knee simulator. A force-
feedback device lets the surgeon feel a 3D model of the femur, shown on the monitor.
(Images courtesy MERL: http://www.merl.com)

haptic feedback to provide the user with as realistic an experience as possible [33].

The development of such a system relies heavily on the ability to generate accurate

models of anatomical structures and their types of deformations. Realistic geometric

models require accurate segmentation of the medical imagery and subsequent model

generation that stays faithful to the original data [62]. Figure 1-6 illustrates a pro-

totype simulation system for arthroscopic knee surgery. In such a procedure, the

surgeon holds a scope in one hand and an instrument in the other, and performs the

entire surgery percutaneously. Due to the limited field of view, there is potential that

an inexperienced surgeon may damage critical structures in the knee. The simulator

consists of a Phantom force-feedback device [91] allows the user to feel the virtual

structures while at the same time visual feedback presented on a monitor shows the

instrument being moved with respect to the knee [33].

1.3 Change Detection

When treating a patient, the physician must not only consider the health of the

patient at that one moment in time, but also the change in that patient's condition

over time. In a sense, patients are moving targets that the physician must track to

determine the path of the disease and the effectiveness of the treatment. Medical
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Figure 1-7: An example of the importance of registration and segmentation for change
detection studies. (a) The same slice through 20 proton-density images of the same
patient over time. The images were all registered into one coordinate frame. (b) The
same 20 slices as T2-weighted images. (c) Adaptive segmentation of the gray matter
and white matter [41, 108].

image analysis tools can provide accurate, quantitative measures of progress that can

be used to adjust the therapy.

One example of a change detection system is the multiple sclerosis study at

Brigham and Women's Hospital [26, 41]. Indications of multiple sclerosis include

lesions that appear, change size, and disappear in the white matter of the brain. The

change detection protocol takes a series of MR scans of a patient, registers them to-

gether and segments out the lesions. Figure 1-7 shows corresponding slices of 20 MR

scans of a patient over time, along with the gray matter / white matter segmenta-

tions [41, 108]. The change in number and size of the lesions over time can be used

to better understand the disease and also monitor the treatment.

1.4 Statistical Models

Segmentation and registration are generally quite challenging due to the complexity

both of the human anatomy and of the imaging techniques used to visualize the

internal structures. The noise and artifacts present in the images combined with the
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variability that exists across patient anatomy limit the effectiveness of simple image

processing routines. To perform a satisfactory analysis of the images at hand, some

amount of understanding or interpretation is required. This information is typically

very general (e.g. not specific to the inputs) and is hard-coded into the algorithm.

Such heuristics include:

0 "A strong edge often signifies an object boundary."

* "Object boundaries are generally smooth."

* "Images, when aligned, explain each other well."

In semi-automatic approaches to the problems of medical image analysis, the im-

portant contextual knowledge is transferred to the algorithm by means of manual

interaction. Example interactions include:

* "The object of interest is in this region."

* "Bone, in this CT image, has intensity above this threshold."

* "These three landmarks correspond in both images."

Such assertions are designed by the developer or provided by the operator based on

their prior knowledge or experience in working with the medical imagery. It is difficult

to automatically encode richer, more complex information using these methods.

Statistical models provide understanding or context to the problem by incorpo-

rating information derived from a training set, usually consisting of instances of the

problem along with the solution. While the model framework is general and devised

by the developer, the model itself can be quite rich and is specific to the problem

being addressed. Example models presented in thesis include:

* "Here is an estimation of the probability distribution over the shape of all

normal femurs."

* "A normal corpus callosum has curvature roughly according to this distribu-

tion."
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" "In SPGR-MR, the intensity of the femur has the following distribution as a

function of the distance to its boundary."

* "Images such as these, when aligned, have intensity co-occurrence similar to

this joint intensity profile."

This type of knowledge can be used to fill in the gaps due to incomplete or noisy

information, as typically found when analyzing medical images.

1.5 Contributions

This thesis addresses the issues of modeling prior knowledge of medical image analysis

problems, and incorporating those derived statistical models into the solution of the

problems themselves. An approach is presented to the multi-modal registration prob-

lem that analyzes the co-occurrence of the intensity values at corresponding points

in registered images of different modalities, and uses that information to direct the

alignment of novel image pairs. Various models are explored to assist in the segmen-

tation or boundary detection problem. Models of the shape of anatomical structures

across a population assist in the localization of those structures in novel images. The

intensity distribution of a structure is modeled as a function of the distance to its

boundary, providing richer image constraints than the commonly used large-gradient

boundary detector. While most segmentation methods include a user-adjusted regu-

larization term to keep the boundary smooth, the approach presented here builds a

curvature model of the object to determine the smoothness constraints. Examples of

the statistical models and their uses are highlighted here, and are fully explored in

the upcoming chapters.

1.5.1 Joint Intensity for Multi-Modal Registration

The registration of multi-modal medical images is an important tool for fusing many

data sources into one coherent frame, since various scan modalities highlight comple-

mentary anatomical structures (see Figure 1-8a). An approach is presented to the
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Proton Density Intensity

a b c

Figure 1-8: (a) An SPGR and a Proton Density image of the same patient, in align-
ment. (b) The joint intensity histogram for the image pair. (c) A novel image being
registered using the prior model, with intensity histogram shown. The top image
shows the initial alignment, and the bottom shows the final pose. Each image shows
three orthogonal slices of the two scans blended with two different colors. The joint
intensity histogram under the pose in shown in the upper right quadrant.

multi-modal registration problem that incorporates prior information from a pair of

pre-registered images to use in the alignment of a novel pair of such images. The

joint intensity distribution is estimated based on the co-occurrence of intensity pairs

at corresponding points in the registered training images. Figure 1-8b illustrates a

joint intensity or co-occurrence map for a Spoiled Gradient-Recalled (SPGR) and a

Proton Density (PD) MR image. Given a novel set of unregistered images, the al-

gorithm computes the best registration by maximizing the log likelihood of the two

images, given the transformation and the prior joint intensity model. Figure 1-8c

shows the initial pose and computed registration for a novel image pair. Notice that

the sampled joint intensity under the final pose closely resembles the co-occurrence

model. This algorithm is tested on 36 pairs of SPGR / PD images and 36 pairs of

PD / T2-weighted images, and typically results in sub-voxel registration accuracy.
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Figure 1-9: (a) The boundary of a corpus callosum overlaid on the signed distance map
to the shape. (b) The primary mode of shape variance captured from the training set
of 50 corpora callosa. (c) An illustration of the level set representation with a signed
distance hyper-surface. (d) The automatic segmentation of a novel image using the
shape prior is shown in red. The cyan contour is the result of the standard evolution
without the shape influence.

1.5.2 Statistical Anatomical Shape Models for Segmentation

Having an expectation of the shape of an anatomical structure can greatly assist

in the segmentation of that structure from an image. Shape models are derived to

express the probability that a certain shape will occur, and these priors are then

used to help localize the boundary of an object in the image. Building a probability

distribution over shape is a challenging, possibly ill-posed problem. The effectiveness

of the shape model is closely related to the representation of shape that is chosen.

Many different shape representations have been proposed that all handle the issues of

alignment, feasible transformations, choice of features, and correspondence differently.

An overview of existing approaches is presented in the next chapter.

The shape representation chosen here is the signed distance map, where each point

on a grid stores the distance to the boundary with negative values when inside the
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object (Figure 1-9a). Each such distance map is considered to be a point in a high

dimensional space. A population of training shapes is then a cloud in that space,

and a Gaussian model is fit to represent shape variance. Figure 1-9b illustrates the

primary mode of shape variance captured by the shape model.

The shape representation and prior model are then used to direct a level set based

segmentation [9]. Level set approaches to image segmentation involve solving the

energy-based active contours minimization problem by the computation of geodesics

or minimal distance curves [93]. In this approach, a curve is embedded as a zero level

set of a higher dimensional surface (Figure 1-9c). The entire surface is evolved to

minimize a metric defined by the curvature and image gradient. In addition to the

curvature and image gradient terms, a global shape force is added to the evolution

that pulls the surface towards more likely shapes, based on the prior model. Figure 1-

9d shows the segmentation of a corpus callosum with and without shape influence.

1.5.3 Intensity-Locality Priors for Segmentation

Voxel classification approaches to image segmentation often utilize prior intensity

models of tissues [12]. Local spatial priors and models of distances between tissue

types have also been added to the tissue classification framework [51]. Extensions

to level sets have been proposed that incorporate global intensity information in-

stead of only local gradient forces. In [113], segmentation is performed by evolving

a curve to maximally separate predetermined statistics inside and outside the curve.

The combination of global and local information adds robustness to noise and weak

boundaries. Such approaches, however, do not incorporate a prior intensity model

based on training data.

This thesis presents a method of modeling the distribution of intensity over the

entire image as a function of the signed distance from the boundary of the structure.

This provides a means of representing both changes of the intensity of the struc-

ture relative to its boundary and the intensity profiles of neighboring structures as

a function of their distances to the object of interest. A training example consists

of an image and an object boundary. A distance map is computed from the object
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Figure 1-10: Top: One example of each of four training sets of objects. Middle: The
joint intensity/distance-to-boundary PDF derived from the training set. Bottom: The
curvature profile of each object class. Notice that the ellipse class has only positive
curvature.

boundary, and a distribution of intensity vs. distance is derived. Measuring the co-

occurrence of distance and intensity captures the intensity profile inside the object,

at and around the boundary, and outside the object. Figure 1-10 shows examples of

the joint distributions for a few images. During segmentation, the evolving surface

is pulled towards the boundary of the object based on the intensity profile. Incorpo-

rating distance into the model allows convergence from far initialization positions, as

opposed to a local attraction only at the boundary.

1.5.4 Curvature Models for Segmentation

Boundary estimation methods of segmentation generally consist of influence from the

image along with a regularization effect to keep the boundary smooth (having small

curvature) in the face of noise. Without such a smoothing term, the algorithm is

more likely to get caught in a local minimum or find a highly erratic boundary not

usually representative of the structure being segmented. Determining the amount of
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Figure 1-11: Starting, middle, and the final alignments computed by the registration
algorithm. Each image shows the colorized SPGR and PD images overlaid in the
three orthogonal slices. The images in the upper right depict the histogram of the
intensity pairs at that alignment.

regularization that should be used for a particular application is difficult. Generally,

a user-adjustable empirically-set smoothing parameter is used to trade off the weight

of the image term with the simple smoothing model.

Instead of modeling smoothness as a manually-adjusted one degree-of-freedom

parameter, a training set of examples of the same anatomical structure can be used to

derive a richer model of curvature. A distribution of the curvature over the structure

is derived from training examples, and subsequently used in the segmentation of a

novel image. For example, when segmenting a structure that only consists of positive

curvature (e.g. a convex shape), the evolving boundary will be influenced by the

curvature prior to maintain convexity, making a non-convex solution very unlikely.

Figure 1-10 illustrates curvature profiles derived from various structures.

1.6 Summary of Results

The algorithms presented in this thesis have been tested on a variety of medical image

data. Multi-modal registration experiments were performed on T2-weighted and PD

image pairs, as well as SPGR and PD images. Figure 1-11 shows an example of the

progress of the registration algorithm on a SPGR/PD pair, starting from about 900

away, and registering within one voxel of the ground truth alignment. Figure 1-12

tabulates the results of the registration validation experiments, where many image

pairs were aligned within a millimeter, and most were aligned within a voxel (which
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Registration
# Error # Error

19 1.42 28 1.26
20 0.75 29 0.76
21 0.69 30 2.24

22 1.33 31 0.90

23 0.66 32 0.78
24 1.01 33 1.28
25 1.07 34 0.74

26 0.70 35 1.08

27 0.81 36 0.89

PD / T2
# Error

10 0.79

11 0.73
12 0.68

13 1.52

14 0.63

15 0.80
16 0.89

17 0.82

18 1.36

SPGR / PD
Error # Error

1.45 10 1.47

2.69 11 3.17

0.16 12 1.32
0.78 13 1.18
1.69 14 1.59

1.53 15 1.25

0.85 16 1.26

1.36 17 1.19
0.73 18 1.85

Registration
# Error # Error

19 2.57 28 1.54

20 2.67 29 2.15

21 2.77 30 1.50
22 3.47 31 1.43

23 3.87 32 1.83
24 2.48 33 1.64

25 1.60 34 3.18

26 2.03 35 2.01

271 1.31J 361 2.46

Figure 1-12: The results of registering 36 test images. The registration error (in mm)
was computed by taking the average error of the eight vertices of the imaging volume.

has dimensions 0.9753 x 0.9375 x 3.0 mm). The registration results are discussed

further in Section 4.5.

The segmentation algorithm was tested on MR images of the corpus callosum and

knee, as well as CT images of the spine. The results of a few of the segmentations

are shown in Figure 1-13. For controlled testing, experiments on synthetic imagery

were also performed, and are described further in Chapter 5. Validation experiments

were performed on a dataset of 50 corpora callosa, where each corpus was segmented

automatically using our algorithm and also manually outlined by two operators, with

one manual segmentation chosen as ground truth. Figure 1-14 compares the ground

truth segmentation to both the automatic and other manual segmentation. The

automatic segmentation compares favorably to the variance found between the two

sets of manual outlines.

1.7 Overview of Validation Techniques

Validation of any medical image analysis technique is an important part of the algo-

rithmic development process, especially when the results will be used in image-guided

therapy. One technique for validating a registration or segmentation algorithm in-

volves comparison of the output of the method to some form of ground truth or gold
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Figure 1-13: Segmentation results of various anatomical structures using statistical
priors. (a,b) Segmentation of two 2D slices of the femur. The training data consisted
of neighboring slices. (c) Segmentation of a corpus callosum, with training on 49 other
corpora callosa. The blue outline is the segmentation without shape information. (d)
Segmentation of the T6 vertebra of the spine, by training on T3-T5 and T7-T9.

standard. For segmentation, one can compare the percentage of volume overlap or

maximum nearest neighbor distance between the gold standard and the label map

produced by the algorithm. Error measures that compare the ground-truth transfor-

mation with the computed one can be used to evaluate registration methods.

While such evaluation may seem quite straightforward, in many applications, ac-

quiring satisfactory ground truth is nearly as difficult as solving the problem itself.

For segmentation of very complicated structures, such as the gray matter / white

matter boundary in the brain, manual segmentations by experts can vary in voxel

overlap by as much as 15% [50]. Consistent, accurate manual segmentation of tube-

like structures such as blood vessels or nerve fibers is very difficult due to the way

they wind in and out of the 2D slices generally used for outlining. Ground truth for

rigid registration techniques can be computed using reliable fiducials that stay fixed

in the same position on the patient throughout various scans [110]. Computing a

gold standard for most types of non-rigid deformation of tissue that occurs between

acquisitions continues to be an open research problem, making validation of non-rigid
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Discrepancy in Segmentations
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Figure 1-14: A plot comparing the automatic segmentation of 50 corpora callosa to
the variability found between two manual segmentations. One manual segmentation
(in magenta) was chosen as the ground truth. The cases were sorted by the automatic
segmentation, shown in blue, with corresponding second manual segmentation shown
in red.

registration algorithms quite challenging.

The framework of statistical models that we explore requires training data from

which to derive the prior knowledge. The training data are assumed to be accurate

solutions to the segmentation or registration problem being explored. Correctly seg-

mented label maps are assumed to be available for some number of images of the

same modality and anatomical region to be used as test data by the algorithm. At

least one registered pair of scans is required to build the statistical model used in the

multi-modal alignment process. Again, it is assumed that the modalities of scan and

the structures being imaged are consistent from training data to test data.

The need for accurate training data to derive the statistical models may limit

the practical use of such models in applications where the ground-truth is difficult to

come by. However, in the many applications for which some amount of ground-truth

is available, statistical models are applicable and the validation process is less of a

challenge. To evaluate the performance of the algorithms presented in this thesis, we
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generally adhere to a "leave-some-out cross-validation" approach. Of all the datasets

available (with ground truth), at least one set is left out of the training process

used to derive the prior model. Each scan left out is then used as input to the

algorithm in turn. The output or result is then compared to the gold standard for

each corresponding test set.

1.8 Roadmap

In this dissertation, Chapter 2 highlights related work and additional approaches

to image segmentation and the multi-modal registration problem, both with and

without the use of statistical models. Chapter 3 describes the framework of using

statistical models and the tools to derive them. Issues of representation and choice of

density estimator are also discussed. The application of joint intensity models to the

multi-modal registration problem is presented in Chapter 4, along with experiments

and results. Chapter 5 describes our approach to model-based segmentation that

incorporates prior shape, spatial intensity, and curvature information into the level

set method of boundary detection. Examples on a variety of medical data are shown

and used for a basis of evaluation. Chapter 6 ties together the use of statistical models

for registration and segmentation, and concludes with a discussion of promising areas

of future work.
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Chapter 2

Background

This chapter discusses previous work in multi-modal volume registration and segmen-

tation, and relates these methods to approaches presented here. We further discuss

the use of statistical models in the solution to these medical imaging problems.

2.1 Multi-Modal Volume Registration

The registration of two images consists of finding the transformation that best maps

one image into the other. If I, and 12 are two images of the same patient and T is

the correct transformation, then the voxel Ii(x) corresponds to the same position in

the patient as the voxel I2(T(x)). In the simplest case, T is a rigid transformation,

consisting of three degrees of freedom of rotation and three degrees of freedom of

translation. The need for rigid registration arises primarily from the patient being in

different positions in the scanning devices used to image the anatomy. The informa-

tion from all the images is best used when presented in one unified coordinate system.

Without such image fusion, the clinician must mentally relate the information from

the disparate coordinate frames.

2.1.1 Fiducial / Feature Alignment

One method of aligning the two images is to define an intermediate, patient-centered

coordinate system, instead of trying to directly register the images to one another. An
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T1., T2-P

Figure 2-1: Maximum intensity projections of two 3D scans, with fiducials placed on
the patient. The fiducials define a patient-centered coordinate system that can be
used to align the two scans.

example of a patient-centered reference frame is the use of fiducial markers attached

to a patient throughout the various image acquisitions. The fiducial markers define

a coordinate system specific to the patient, independent of the scanner or choice of

imaging modality. If the markers remain fixed and can be accurately localized in all

the images, then the volumes can be registered by computing the best alignment of

the corresponding fiducials [45, 76]. The main drawback of this method is that the

markers must remain attached to the patient at the same positions throughout all

image acquisitions. For applications such as change detection over months or years,

this registration method is not suitable. Fiducial registration is typically used as

ground-truth to evaluate the accuracy of other methods, as careful placement and

localization of the markers can provide very accurate alignment [110].

When fiducial markers are not available to define the patient coordinate frame,

corresponding anatomical feature points can be extracted from the images and used

to compute the best alignment [74, 73]. This approach depends greatly on the ability
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Figure 2-2: An illustration of surface-based registration, where the same surface (e.g.
skin) is extracted from two different scans and then aligned, which implies the align-
ment of the original images.

to automatically and accurately extract reliable image features. In general, methods

of feature extraction such as intensity thresholding or edge detection do not work well

on medical scans, due to non-linear gain fields and highly textured structures. Even

manual identification of corresponding 3D anatomical points can be unreliable. With-

out the ability to accurately localize corresponding features in the images, alignment

in this manner is difficult.

2.1.2 Surface-Based Techniques

Instead of localizing feature points in the images, richer structures such as object

surfaces can be extracted and used as a basis of registration. A common method of

registering MR and CT of the head involves extracting the skin (or skull) surfaces from

both images, and aligning the 3D head models [48, 57]. For PET/MR registration,

the brain surface is typically used since the skull is not clearly visible in PET [82]. The

3D models are then rigidly registered using surface-based registration techniques [26].

The success of such methods relies on the structures being accurately and consistently

segmented across modalities and the surfaces having rich enough structure to be

unambiguously registered.
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Figure 2-3: (a,c) An SPGR and a Proton Density image of the same patient, in
alignment. (b) The joint intensity histogram for the image pair.

2.1.3 Correlation

Voxel-based approaches to registration do not extract any features from the images,

but use the intensities themselves to register the two images. Such approaches model

the relationships between intensities of the two images when they are registered, and

then search through the transformation space to find an alignment that best agrees

with the model. Various intensity models are discussed, including correlation, mutual

information, and joint intensity priors.

Correlation is a measure commonly used to compare two images or regions of

images for computer vision problems such as alignment or matching. Given the

intensity values of two image patches stacked in the vectors u and v, the normalized

correlation measure is the dot product of unit vectors in the directions of u and v:

U V 
(2.1)

An advantage of correlation-based methods is that they can be computed quite ef-

ficiently using convolution operators. Correlation is applicable when one expects a

linear relationship between the intensities in the two images. In computer vision prob-

lems, normalized correlation provides some amount of robustness to lighting variation

over a measure such as sum of square differences (SSD), ||u - v f . The primary rea-
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son for acquiring more than one medical scan of a patient stems from the fact that

each scan provides different information to the clinician. Therefore, two images that

have a simple linear intensity relationship may be straightforward to register, but do

not provide any additional information than one scan by itself. On the other hand, if

the images are completely independent, (e.g. no intensity relationship exists between

them), then they cannot be registered using voxel-based methods. In general, there

is some dependence between images of different modalities, and each modality does

provide additional information.

One simplified model of the medical imaging process is that an internal image is

a rendering function R of underlying tissue properties, P(x), over positions x. An

MR image could be represented as a function RmR(P) and a registered CT image of

the same patient would be another function, say RcT(P). Suppose a function F(.)

could be computed relating the two rendering functions such that the following is

true (with the possible addition of some Gaussian noise, K):

F(RCT (P)) = RM(P) + (2.2)

The function F would predict the intensity at a point in the MR image given the

intensity at the corresponding point in the CT image. Such a function could be used

to align an image pair that are initially in different coordinate systems using SSD:

T* = argmin (F(RcT(P(x))) - Rmp,(P(T(x)))) 2  (2.3)
T X

where T is the transformation between MR and CT coordinates. In [102], van del

Elsen, et al., compute such a mapping that makes a CT image appear more like an

MR, and then register the images using correlation. In general, explicitly computing

the function F that relates two imaging modalities is difficult and under-constrained.
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2.1.4 Mutual Information

Maximization of mutual information (MI) is a general approach applicable to a wide

range of multi-modality registration applications [3, 15, 72, 109]. One of the strengths

of using mutual information (and perhaps in some special cases, one of the weaknesses)

is that MI does not use any prior information about the relationship between joint

intensity distributions. While mutual information does not explicitly model the func-

tion F that relates the two imaging modalities, it assumes that when the images are

aligned, each image should explain the other better than when the images are not

aligned.

Given two random variables U and V, mutual information is defined as [3]:

MI(U, V) = H(U) + H(V) - H(U, V) (2.4)

where H(U) and H(V) are the entropies of the two variables, and H(U,V) is the joint

entropy. The entropy of a random variable is defined as:

H(U) = - pu (u) log pu (u)du (2.5)

where pu (u) is the PDF associated with U. Similarly, the expression for joint entropy

entropy operates over the joint PDF:

H(U, V) = - J PUV(u, v) log pu,v (u, v) du dv (2.6)

When U and V are independent, H(U, V) = H(U)+ H(V), which implies the mutual

information is zero. When there is a one-to-one functional relationship between U

and V, (i.e. they are completely dependent), the mutual information is maximized

as MI(U, V) = H(U) = H(V) = H(U, V).

To operate on images over a transformation, we consider the two images, Ii(x)

and 12(x) to be random variables under a spatial parameterization, x. We seek to
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Figure 2-4: Flowchart of the a priori training and the online registration.

find the value of the transformation T that maximizes the mutual information [109]:

T* = argmax MI (I,(x), 12 (T(x))) (2.7)
T

= argmaxH(Ii(x)) + H(I2 (T(x))) - H(I(x),I 2 (T(x))) (2.8)
T

The entropies of the two images encourage transformations that project 1 onto com-

plex parts of 12. The third term, the (negative) joint entropy of I1 and I2, takes on

large values when X explains Y well. The derivatives of the entropies with respect to

the pose parameters can be calculated and used to perform stochastic gradient ascent

[109]. West et al. compare many multi-modal registration techniques and find mutual

information to be one of the most accurate across all pairs of modalities [110].

2.1.5 Prior Intensity Model

Our approach to multi-modal registration, presented in Chapter 4, involves building

a prior model of the intensity relationship between the two scans being registered.

The framework for our registration process is illustrated in Figure 2-4. The method

requires a pair of registered training images of the same modalities as those we wish

to register in order to build the joint intensity model. To align a novel pair of im-

ages, we compute the likelihood of the two images given a certain pose based on our

model by sampling the intensities at corresponding points. We improve the current

hypothesized pose by ascending the log likelihood function. In essence, we compute
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Figure 2-5: LEFT: Breast images of a patient taken at two different time points (pre-
and post-gadolinium injection). RIGHT: The second image has been aligned to the
first using non-rigid registration to determine areas that could contain lesions [51].

a probabilistic estimate of the function F (that relates the two imaging modalities)

based on intensity co-occurrence. To align the novel images, the pose is found that

maximizes the likelihood that those images arose from the same relation F.

Building a joint-intensity model does require having access to a registered pair of

images of the same modality and approximately the same coverage as the novel pair

to be registered. Mutual information approaches do not need to draw upon previously

registered scans. However, when this information is available, the prior joint intensity

model provides the registration algorithm with additional guidance which results in

convergence on the correct alignment more quickly, more reliably and from more

remote initial starting points.

2.1.6 Flexible Registration

The registration methods described thus far assume that a rigid transformation can

be found to correctly align the images. When the underlying anatomy shifts or de-

forms between the acquisitions, a non-rigid transformation is required to relate the

two images. Applications such as therapy evaluation and, more generally, change de-

tection require the alignment of flexible anatomical structures over time. Deformable

registration is also used to align an anatomical atlas with a patient scan for atlas-

based segmentation. Non-rigid registration is quite challenging, even when the images

are of the same modality, as the space of feasible deformations is high dimensional,

complex, and depends on properties of the tissue. Methods such as splines and tem-

plates are used to characterize the deformation space [2, 10, 98]. Such approaches
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Figure 2-6: The process of segmentation and model generation. LEFT: The raw MR
scans of the knee. MIDDLE: The label-map overlayed on the MR. RIGHT: Three
dimensional surface models generated from the label-map using Marching Cubes[66].

have been used with mutual information as the measure of voxel similarity. Since the

search space is so vast with non-rigid matching, mutual information may not be a

strong enough intensity model since the intensity relationship is not actually known.

Having a prior intensity model at hand can help to constrain and direct the search

more effectively.

2.2 Segmentation

The segmentation problem can be formulated in a variety of ways, giving rise to

algorithms with fairly different approaches to the problem. Three types of segmen-

tation algorithms discussed here are boundary localization, voxel classification, and

deformable atlases.

Segmentation via boundary detection consists of computing the closed curves,

{C1, ... Ck} (or in 3D closed surfaces {Si}) such that all points inside the curve Ci

correspond to tissue class wi, and conversely, all points in the image that represent

the anatomical structure wi are contained by Ci. Boundary localization techniques

typically model some property of the border of the object of interest with neighbor-

ing objects. The assumption generally made is that high-gradients are indicative of

boundaries, although other measures such as texture discontinuities are also used.
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The strength of an "edge" at the boundary of the structure may vary or be weak

relative to the texture inside the object, creating difficulties for such gradient-based

boundary detection methods.

Voxel classification methods consist of computing a label map L(x) over the region

covered by image I(x) such that L(x) = wi if and only if I(x) images the anatomical

structure wi. These algorithms make a decision on the tissue class associated with

each voxel in the image based on factors such as the intensity value, decisions of

neighboring voxels, and properties of the imaging modality. However, the distribution

of intensity values corresponding to one structure may vary throughout the structure

and also overlap those of another structure, defeating intensity-based segmentation

techniques.

The third approach seeks to deform a given labeled atlas to the novel image to

be segmented [11, 78, 107]. The atlas generally consists of at least a scan I*(x) and

its segmentation L*(x). Given a new image I(x), the algorithm computes a non-

rigid transformation or warp T such that I*(T(x)) is in correspondence with I(x).

If the correspondences are computed correctly, then the deformed atlas determines

the labeling or segmentation of the new scan: L(x) = L*(T(x)). Modeling the

class of deformations that correctly warp one person's anatomy into another's can

be quite challenging, and can result in correspondence mismatches, or errors in the

segmentation.

2.2.1 Boundary Localization Methods

Active contour methods are commonly used to localize the boundary of an object.

The contour can be represented in a variety of ways, and is considered "active" as

it generally evolves over time with the goal of converging on the object boundary.

The classical active contour, a snake, is an energy-minimizing spline parameterized

by a set of node points that is commonly used to extract the boundary of an object.

The snake methodology defines an energy function E(C) over a curve C as the sum

of an internal and external energy of the curve. The curve is evolved to minimize the
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C(q,t=O)

Figure 2-7: An illustration of a snake evolving and converging on the boundary of an
object in the image. The curve is represented as a spline of node points.

energy [52].

E(C) = C'(q)|2dq - A f I(C(q))|dq (2.9)

The internal energy is a regularization force keeping the curve smooth and is added

to give the snake robustness in the presence of image noise. The external energy

term is a function of the image, I, designed to exhibit an attraction force towards

the feature being localized (such as an edge). The tradeoff between the image term

and the regularization term is generally adjusted empirically depending on the shape

being segmented and the properties of the image.

While regularization is important for insensitivity to noise, the curvature penaliza-

tion term in the update equation causes an asymmetry in the snake. In the absence of

image information, a curve evolving to minimize the energy will shrink smoothly to a

point. Therefore, if the snake is initialized inside the object too far from an edge, the

snake will disappear and not localize the boundary. On the other hand, if the snake

is initialized outside the object, but still far from any edges, the snake will shrink

based on the regularization term towards the boundary, and then will be attracted to

the edge. In many applications, including medical image segmentation, the intensity

inside the object to be segmented is relatively uniform as compared to the region

outside the object, where other structures may have various intensity distributions.

Therefore, boundary localization via snake may be more successful when the snake

segments the object from the inside.
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Figure 2-8: An illustration of a topological singularity for a snake. At the moment
that the snake meets itself, it is ambiguous whether there are two objects touching
or one pinched object. Level set techniques handle topology changes naturally.

An extension to snakes called balloons addresses the shrinking problem, along with

some other drawbacks inherent to classical snakes [13]. Balloons include an outward

pointing force at each position on the contour that is strong enough to counter the

shrinking effect of the regularization, but weak enough to ensure that the contour will

stop at a sufficiently strong edge. Furthermore, stability issues that plague snakes

are addressed, such as the normalization of the image force so as to not move more

than a pixel, and interpolation to handle discretization errors.

One of the challenges with classical snakes and balloons involves adjusting the

spacing between the nodes as the curve evolves. As a snake expands, the resolution of

the spline is reduced if the number of node points stays constant. During contraction,

the nodes move much closer together, resulting in unnecessary computational expense.

Therefore, one must dynamically adjust the positions of the node points on the spline

when it undergoes large changes. Topology changes pose another difficulty for classical

snakes. Consider the snake in Figure 2-8 that is an oval pinching into a figure-8. A

singularity exists at the time in which the snake meets itself, as it is not clear whether

there are two curves in contact, about to break apart, or one pinched curve. In order

to handle these factors with traditional snakes, one must reparameterize the nodes to

reflect topology changes, which is difficult, given the inherent ambiguity.

The ambiguity of topology changes can be addressed by making the "grass burn-

ing" assumption [71, 93]. Initially, the entire region inside (or equivalently outside)

the curve is assumed to be "burned", and as the front moves, it causes further burning

of the space. If one assumes that a point, once burned will never regenerate, then the

topological ambiguity is resolved. Topologically adaptable snakes (or T-Snakes) ad-

dress topology changes in this way and also provide an efficient and effective method
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Figure 2-9: Level sets of an embedding function u for a closed curve C in Rt.

of reparameterizing the nodes to handle sampling issues [71]. At a given point in time,

the evolving curve is represented as a spline of node points on a grid, with all interior

grid points labeled as burned. Each of the node points are adjusted as commonly done

to minimize an energy function consisting of internal and external terms. Any points

on the grid that are crossed by the contour are also labeled as burned. The curve is

then reparameterized by intersecting the boundary with a uniform triangularization

of the embedding space, and using the intersection points as the new nodes of the

spline. Thus, the nodes are guaranteed to have a bounded proximity as a function of

the resolution of the underlying grid.

Issues of sampling and topology can also be addressed by reformulating the prob-

lem using level set methods [93]. Segmentation in this way, introduced in both [9] and

[54], involves solving the energy-based active contours minimization problem by the

computation of geodesics or minimal distance curves [93]. In this approach, a curve is

embedded as a zero level set of a higher dimensional surface (Figure 2-9). The entire

surface is evolved to minimize a metric defined by the curvature and image gradient.

The equivalence of geodesic active contours to the traditional energy-based active

contours (snakes) framework is derived by first reducing the minimization problem to

the following form [9]:

min J g(JVI(C(q))j) IC'(q)l dq (2.10)
C(q) 

where g is a function of the image gradient (usually of the form 1+JVJP).-Using
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Euler-Lagrange, the following curve evolution equation is derived [9]

aC) LO= gr - (Vg -N)N (2.11)

at

where r is the curvature and K is the unit normal. By defining an embedding function

u of the curve C, the update equation for a higher dimensional surface is computed [9]

a= g Vul + Vu -Vg (2.12)

In this level set framework, the surface, u, evolves at every point perpendicular to

the level sets as a function of the curvature at that point and the image gradient.

The curvature term is used to keep the level set smooth as it evolves and the image

term is effectively an attractive force towards high gradients. Further details on the

derivation and implementation of level sets is presented in Chapter 5.

Recent work based on level sets include extensions such as codimension-2 regu-

larization [68], texture models [80], global intensity statistics [113], and pedal curve

evolution [40].

The snake and level set framework is applicable both in segmenting 1D curves

in 2D space and 2D surfaces in 3D. Two-dimensional surfaces have two principal

curvatures at every point (ri and K2 ), and generally the regularization method chosen

penalizes high mean curvature ('9" ) or high Gaussian curvature (Ki K 2 ). In some

applications, such as the segmentation of tubular structures, penalizing a combination

of both principal curvatures does not make sense, as the maximal curvature (K 1 )

should be large given the tube-like structure. In [68], Lorigo, et al. develop a system of

segmenting blood vessels and other tubular structures by changing the curvature term

to only penalize the minimal curvature, K2. Their curvature model accurately reflects

the properties of the shapes they are segmenting, which results in more accurate vessel

extraction than when using the traditional curvature terms.

The boundary segmentation algorithms described above all assume that there is

a strong edge at the boundary of the object as compared to the gradients inside

(or outside) the object. In some cases, the regions do not have separable uniform
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intensities, but instead differ in their texture properties. Geodesic active contours can

be extended to incorporate vector values, such as intensity variances over a window

or responses from oriented filters [87, 67].

The active contour methods described thus far include only local information

in the evolution process. However, in many cases, the segmentation process can

be effectively directed by the global intensity statistics over the image. In [113],

segmentation is performed by evolving a curve to maximally separate predetermined

statistics inside and outside the curve. The statistics chosen can be mean intensity or

richer, vector-valued texture. This method includes both global and local information,

adding robustness to noise and weak boundaries. The algorithm is formulated using

level set techniques providing the advantages of numerical stability and topological

flexibility.

Paragios and Deriche in [80], also perform texture segmentation by combining

local (boundary) and global (region) information, but in addition, they include a prior

texture model. The supervised texture model is constructed by extracting M features

(based on the response of M filters) from each of N example texture classes. The bank

of filters included are the Gaussian, Laplacian of Gaussian, and 2D Gabor operators.

A probabilistic model for each texture class is computed using a mixture of Gaussian

model. The energy function is defined as a convex combination of a boundary term

and a region term that both incorporate the probabilities of the observed textures

given the prior statistical model. The approach is also implemented using a level set

framework.

When segmenting or localizing an anatomical structure, having prior information

about the expected shape of that structure can significantly aid in the segmenta-

tion process. In [40], Guo and Vemuri evolve pedal generating curves to perform

segmentation, instead of directly evolving the boundary surface itself. The choice

of the generator curve (such as an ellipse or rhombus) allows the addition of rough

shape constraints. However, the shape model derived from the pedal curves is rela-

tively weak, due to the diverse set of pedal curves that can be derived from a given

generator.
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Figure 2-10: An example of how local boundary detectors can leak through regions
where the gradient is not strong enough. Global information, such as shape priors,
can prevent this type of error.

As snakes and level sets are traditionally local algorithms, they may "leak" through

the boundary of the object if the edge feature is not salient enough in a certain region

in the image. Figure 2-10 illustrates examples of the segmentation of a few anatomical

structures missing part of the boundaries. Furthermore, boundary finding methods

can get caught in a local minimum, and are thus sensitive to the starting position.

2.2.2 Voxel Classification

Voxel classification approaches to segmentation differ from curve evolution methods

in that the boundary is not explicitly represented during the segmentation process.

Instead, each voxel is associated with a tissue class, based on information such as

the intensity of that voxel, imaging artifacts, the decisions of neighboring voxels, and

relative position of neighboring structures. The object boundaries are implied from

the label maps once the segmentation process converges on a solution.

In cases when the intensity ranges of the different tissue classes are disjoint, seg-

mentation can be achieved by simply thresholding the image between the intensity

distributions of the different structures. Figure 2-11 show an example of thresholding

CT data. In this instance, thresholding performs reasonably well picking out the

vertebrae of the spine, but incorrectly includes the cartilage between vertebrae, due

to the intensity overlap. There are also "holes" inside the vertebrae model due to
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Figure 2-11: An illustration of thresholding, the simplest segmentation technique,
that is applicable when the intensity ranges of the object and the rest of the image
are disjoint. LEFT: A CT scan of the spine. MIDDLE: Colorized overlay of the
thresholded region. RIGHT: Three dimensional model of the spine created from the
thresholding. Notice that there are holes in the vertebrae models and the cartilage is
sometime classified as bone.

regions that were imaged darker than the surrounding areas of bone. While simple

intensity information may not be sufficient for accurate labeling, it can still provide

constraints in a more sophisticated segmentation framework.

In the spine example above, the binary intensity threshold was chosen manually.

A tissue intensity model can be used instead of a manual threshold to compute a soft

assignment of tissue classes. In this approach, the probability of an intensity value

x is estimated for each tissue class wi based on a set of training data. The tissue

intensity model can be used alone, by just assigning a voxel with intensity x to the

class wi that maximizes P(xwi), or a term can be used in conjunction with other

factors to provide a richer segmentation model.

In practice, observed intensity classes of different anatomical structures are rarely

separable. Imaging noise and artifacts can cause intensity overlap, defeating methods

based solely on intensity. Thus, imaging models are developed to account for the

effect seen in the scan. For example, magnetic resonance images can contain spatially

varying, non-linear gain artifacts due to inhomogeneities in the RF coil. Wells et al.

introduced a means of simultaneously estimating the gain field and the tissue classes
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Figure 2-12: (a) Original MR scan with non-linear gain artifacts. (b) Estimation of
the gain field. (c) Image of gray matter probability. (d) Corrected MR image (with
gain field removed).

by means of the Expectation-Maximization algorithm [108]. Figure 2-12 illustrates

the results of gray matter / white matter segmentation with gain field correction.

In the original EM segmentation approach, the estimation of the smoothly-varying

gain field incorporates spatial dependence, but the classification of each voxel is per-

formed independent from all other voxels. Other types of imaging artifacts, such

as speckle due to thermal noise, can cause local mis-classifications. In addition to

non-linear smoothing operators, the effects of noise can be reduced with the addition

of spatial priors on tissue classes, such as the Gibbs prior in [51] which models the

piecewise homogeneity of tissues. Such a prior is similar to the regularization term

found in boundary detection methods.

A second type of spatial prior described in [51] involves incorporating a model of

relative distance between anatomical structures, encoding assertions such as "white

matter should be a certain distance away from the scalp." Without a model-dependent,

locally defined reference frame, the richness of such spatial priors is limited to mea-

sures such as relative distance that are invariant to the choice of coordinate system.

Approaches that register the model to the image data (such as deformable atlases or

our shape-based segmentation algorithm) can incorporate richer information about

the relative positions and poses of anatomical structures to aid in multi-structure

segmentation.
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2.2.3 Deformable Atlases

A medical image atlas consists of at least one internal scan that has been carefully

annotated, such as the fully segmented 3D anatomical atlases described in [35, 55].

A deformable atlas generally includes of a model of the feasible transformations from

the "standard" atlas, perhaps along with likelihoods, used to describe the variance

seen across a population. If the atlas can be successfully matched to a novel scan,

then all information present in the atlas (such as the tissue labels) is then known

with respect to the image, achieving segmentation of the new scan. Some deformable

atlases consist of sparse corresponding points, finite elements, or features to represent

the shape [16, 17, 19, 18, 83, 89, 105], while others represent deformations as dense

warps, a cascade of similarity groups, or flow fields [10, 11, 25, 37, 65, 78, 106, 107].

Cootes, Taylor, and others have developed Active Shape Models, which is a frame-

work for building a deformable atlas and subsequently matching the atlas to a novel

image [16, 17, 19]. In this approach, a set of corresponding points are identified

across a set of training images. The principal modes (eigenvectors) of the points are

computed and used as a probability model over shape variation. The best match of

the model to the image is found by searching over the model parameters so that the

points on the spline move along the normal towards the nearest edges in the image. A

similar approach described in [105] allows for the points to move tangentially as well,

which simultaneously solves for the point correspondence and provides robustness to

initial misalignment.

Cootes, et al. [18] have extended their shape work to include grayscale information

in their Active Appearance Models. Along with the variance of the point positions,

intensity distributions over the object are included in the model. The model fitting

stage again consists of searching over the eigen-coefficients, but now since the model

includes intensity, the goodness of fit is determined by matching the grayscale values

of the model and the image. Once the algorithm has converged, the correspondence

to the novel image (i.e. the segmentation) is given by the model parameters.

The warping based approaches to atlas-based segmentation need to find the best

non-rigid transformation to match the atlas to the image. Warfield, et al. [107] use
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a combination of feature identification, object classification, and model alignment to

perform template driven segmentation. The deformations are generally sufficiently

high-dimensional that a hierarchical registration approach is necessary to avoid local

minima. Christensen et al. [10, 11] compute the deformation field as a sum of basis

vectors, allowing for a coarse to fine solution. Other approaches use a cascade of sim-

ilarity groups beginning with rigid transformations, and subsequently allowing more

flexible warps, such as piece-wise affine [37, 77, 78]. Tissue deformation models can

also assist in computing the deformation field. One approach is to model structures

as either rigid, fluid, or flexible, which is successful when dealing with anatomy con-

taining very different structures such as bone, muscle, and cerebrospinal-fluid (CSF)

[25, 65].

2.2.4 Statistical Models in Level Set Segmentation

The segmentation framework presented here is a hybrid of boundary localization,

voxel classification, and atlas matching. The following list summarizes key features

of the three general classes of segmentation algorithms.

" Boundary Detection: A curve or surface evolves towards the object boundary

based on an image term and a regularization term.

* Voxel Classification: Each voxel is classified given a prior intensity model,

along with homogeneity and relative geometry constraints.

" Deformable Atlas: Shape models are derived from training data and aligned

with a novel image to provide the segmentation.

Our approach to object segmentation extends geodesic active contours [9, 54] by

incorporating prior intensity, curvature, and shape information into the evolution

process. Specifically, we use the idea of evolving a higher dimensional signed distance

surface whose zero level set is the implicit boundary of the object. Unlike traditional

level set techniques that maintain equivalence to minimizing an energy function over

a curve, our method uses information over the entire image and higher dimensional

surface.
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We model the distribution of intensity over the image as a function of the signed

distance from the boundary of the structure. This provides a means of represent-

ing both changes of the intensity of the structure relative to its boundary and the

intensity profiles of neighboring structures as a function of their distances to the ob-

ject of interest. At every iteration of the segmentation, each position on the surface

(representing a distance to the boundary) is adjusted towards a maximum a poste-

riori distance, based on the image information at that position and the values of

neighboring points on the surface. A distribution of the curvature of the structure is

also modeled from the training data to determine the degree of regularization of the

underlying level sets. The intensity-distance model directs the height of the surface

towards a likely distance and the curvature model keeps the surface regular. Tis-

sue homogeneity is achieved based on a two-part regularization term that keeps the

evolving surface regular and the zero level set smooth, as determined by the prior

curvature model.

Deformable shape models are derived from a training set using Principal Compo-

nent Analysis on the distance surface to the object. This process captures the primary

modes of shape variation and induces a Gaussian probably model over shapes. At

each step of the surface evolution, we estimate the maximum a posteriori (MAP)

position and shape of the object in the image, based on the prior shape information

and the image information. The estimated MAP model is then used as a global force

to direct the segmentation.
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Chapter 3

The Construction of Statistical

Models

Any algorithm that analyzes medical scans must include, at least implicitly, some

model of the imaging modality and/or the underlying anatomy. Even a simple seg-

mentation scheme such as thresholding has the implied model that the intensity distri-

bution of the object to be extracted must be disjoint from the intensity of surrounding

objects in the image. Classical snake-based approaches model the boundary of ob-

jects as having high gradients or edges. An elementary correlation-based method to

multi-modal image registration assumes that the joint intensity model between the

images has a linear relationship when registered. The image analysis algorithm is

typically chosen based on the user's prior knowledge of the problem. For example,

based on the knowledge of various imaging processes or having seen different scans,

one may know that thresholding for segmentation can produce reasonable results in

CT images, but is likely to fail miserably with ultrasound.

In this framework, all the knowledge imparted to the algorithm is provided either

by the developer (in design) or by the user (through interaction). Due to the diffi-

culties of manually encoding accurate, application specific information, the richness

of such models is limited. For example, the same segmentation algorithm (such as

snakes) may be applied to very different anatomical structures (say femur and heart)

with varying degrees of success. The user may be able to adjust some rough param-
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eters of the algorithm for each application, but there may not be way of encoding

specific information important to the problem, such as the shape of the object, inten-

sity profile, imaging modality, etc. While the ideal solution to segmentation may be

a general, unsupervised method that solves a wide variety of problems, an alternative

approach is to devise a framework in which specific knowledge inherent to the prob-

lem can be easily incorporated. Statistical models provide a means of automatically

deriving more complex information directly from a training set, once the important

relationships have been identified.

Statistical models developed in this thesis consist of a representation, a training

set, and a probability density estimator. The representation defines the way a certain

characteristic or relationship present in the data is described as some d-dimensional

vector z. For simple measures such as intensity, the representation is just the scalar

measure itself. Modeling more complex properties such as pose, shape, curvature,

texture, or biomechanics requires choosing a means of representing the features as a

vector of coefficients. The co-occurrence of two or more values, such as intensity and

distance to boundary, can also be included in one representation vector. Generally in

medical image applications, the information encoded consists of either imaging models

(such as intensity relationships between two modalities) or anatomical models (such

as the shape or relative position of structures). The choice of what to include in the

model depends on application and dependencies present in the data. The goal is to

choose measures that are predictive and discriminating that can be used to direct the

algorithm when processing a novel image.

The training set consists of n examples of the properties across a population,

T = {z 1,..., z}. This set can be considered a cloud of n points embedded in a

d-dimensional space. From this training set, we wish to define a probability density

estimator, which is a function P(xlT) that provides a reasonable estimate of the

probability of a novel element x, given the prior model derived from the training

data.

56



x 2 Si - 428 .

xl 0a 1  a

Figure 3-1: LEFT: An illustration of fitting the Gaussian model of an Gaussian with
an arbitrary mean and covariance matrix. MIDDLE: Principal Component Analysis
aligns the Gaussian with the standard axis, making the variables statistically inde-
pendent. RIGHT: PCA also captures the principal variances, which can be factored
out, leaving an independent, variance-one Gaussian.

3.1 Gaussian Model

The Gaussian distribution is one of the most commonly used density estimators,

primarily due to the existence of simple, analytical methods of estimating the model

parameters, even with very high dimensional data. The model is determined by

two parameters: the mean, a d-dimensional vector jp, and the covariance, a d x

d symmetric, positive semi-definite matrix E. The Gaussian is the function with

the highest entropy of all distributions with the same variance, which, in terms of

information theory, indicates that it is the best model when only the mean and

variance is known.

The central limit theorem often further justifies the use of the normal distribution.

The central limit theorem states that, in fairly general terms, the mean of a set of

random variables approaches a Gaussian distribution as the number of random vari-

ables increases [51. Therefore, an observed process will resemble a Gaussian in nature

when it is the result of a very large linear combination of possibly unknown, unre-

lated factors, as is often assumed with naturally occurring quantities. For example,

the height of an adult depends on many factors such as genetics, race, development,

nutrition, exercise, heath, etc. Therefore, one may expect that the distribution of

heights of randomly chosen adults would approximate a Gaussian.

Given t m, d-dimensional training elements, {zi,..., za}, we seek to estimate the
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model parameters (mean and variance) of the best fit Gaussian, using a maximum

likelihood approach. The mean can be estimated using the following:

1 n
-Ez (3.1)
ni=1

The mean is then subtracted from each vector to align the centroid of the distribution

with the origin. Define ii = zi-1 as the centroid-aligned points. The training matrix

M, is defined as follows:

M = 21 2 ... 2n (3.2)

- I - dxn

The remaining parameter of the Gaussian model to estimate is the covariance ma-

trix E:

= - (zi - )(zi - t) T  (3.3)
i=1

1
= -MM T  (3.4)n

3.1.1 Principal Component Analysis

In general, the principal axes of the Gaussian will not lie along the standard basis

axes of the training vectors, but will be rotated arbitrarily in the d dimensional space.

A nice property of the Gaussian stems from the fact that the co-variance matrix is

symmetric and positive semi-definite: There exists a d x d dimensional rotation matrix

U that diagonalizes the co-variance matrix E such that the principal axes lie along the

standard basis, and the variables in that basis are statistically independent. Using

Singular Value Decomposition, the covariance matrix E is decomposed as:

UAU T = E (3.5)
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where A is a diagonal matrix of eigenvalues of E and the columns of U = [uj], are

the corresponding eigenvectors (as UA = EU).

When d > n, or the dimensionality exceeds the number of training elements, the

system is underconstrained, and a number of the eigenvalues will be zero, indicating

the Gaussian has collapsed into the number of dimensions spanned by the training set.

In these cases, the covariance matrix could be very large d x d, especially when the

representation has one component for each voxel, as used in this work. Computing

eigenvectors of such a large matrix is inefficient, especially when the number of non-

zero eigenvalues is relatively small. Instead, the eigenvalues and eigenvectors of E

can be easily computed from those of a smaller matrix, T:

T = - E(zi - '(Zj- A) (3.6)
n i=1

1
= -M TM (3.7)

n

Let v be an eigenvector of T with corresponding non-zero eigenvalue A. The following

proves that Mv is an eigenvector of E with eigenvalue A.

1
E(Mv) = -MM T (Mv) (3.8)

n

- M(-M T M)v (3.9)
n

- M(Tv) (3.10)

-MAv (3.11)

- A(Mv) (3.12)

Thus for every eigenvector v of T, Mv is an eigenvector of E. Since E and T have the

same rank, all remaining eigenvalues of E are zero. Computing the eigenvectors of T

is of complexity O(n3), which can be a considerable savings over directly computing

those of E, which would take O(d 3 ) time.

Under the Gaussian model, the eigenvectors represent the principal axes of varia-

tion in the training set, with the corresponding eigenvalues being the degree of vari-
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ation along that axis. For many representations of naturally occurring data sources,

the degree of variation of the principal modes drops off very quickly, indicating that

a high percentage of the variation present in the dataset can be accounted for using

a relatively small number of modes. The matrix of eigenvectors, U, can be used to

rotate (and project) an example into the eigenspace. Let k be the number of modes

to consider, or the dimension of the reduced eigenspace. An example element x can

be represented by k principal components as follows:

a = UT(x- p) (3.13)

where Uk is a matrix consisting of the first k columns of U, and a is a vector of

eigen-coefficients. Given a vector a in the eigen-space, an estimate of the example

can be reconstructed:

x = Uka+ (3.14)

As the dimension of the eigen-space, k, is generally much smaller than the embedding

dimension of the examples, d, tasks such as optimization can be performed more

efficiently in the eigenspace.

3.1.2 Derived Probability Density

The primary goal of modeling a set of examples with a Gaussian distribution is to

be able to estimate the probability of a certain example. Once the parameters of the

model have been estimated, the probability distribution over examples is as follows:

1 /1
P(x) = 1 exp (_'(x - p) TE- 1(x - p)) (3.15)

(27r)(| 12 [E 2

It is also convenient to express the probability density as a function of the coefficients

of the eigenvectors, -y. In full rank cases when k = d, the above expression is equivalent
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to the following:

P (Y) = 1 exp 1 7 T A-11 (3.16)
(27r)42 AlI 2 (2

In the more general case, when k < d or when the system is rank deficient, the

following expression is used over coefficients a for the probability subspace defined

by the k-dimensional Gaussian:

1 ti
P(a) = 1 exp Ta

T A a) (3.17)
(27r) I IAk 2 2

where Ak is the matrix consisting of the first k rows and columns of A. Depending

on the dimensionality of the variation in the training set and the desired fidelity

of the reconstruction, any value 0 < k < d can be used. Many methods use a

multi-resolution scheme, beginning with a small k, and increasing k as the algorithm

approaches the solution. Care must be taken not to directly compare the value of the

PDFs over different choices of k, as each density function is different, and depends

on the values of the eigenvectors included for that k.

In summary, the Gaussian model is quite useful for wide ranges of applications,

from when there are 106 one-dimensional samples to when there are twenty 2563-

dimensional samples. (Although clearly in the latter case, one expects a terrific

amount of redundancy in the system to be able to model such a large space with

so few examples.) The analytic solution of the parameters, along with the ability

to compute the principal components efficiently make the computations tractable

when more complex models are not. However, the Gaussian assumption is commonly

overused for such reasons, when the underlying distribution may not be Gaussian

at all. In such cases, other models should be used, such as mixtures of Gaussians

or non-parametric estimators as described below. In cases where the dimensionality

is too high, principal component analysis can be used to compute the subspace of

maximal variance, and then a more sophisticated model can be used to estimate the

distribution of the eigen-coefficients.
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3.2 Mixtures of Gaussians

While single Gaussian models can be estimated quite easily, they are limited in their

ability to effectively explain more complex distributions. Non-Gaussian distributions

often arise that may be modeled very poorly with a single Gaussian. Simple examples

of such distributions are shown in Figure 3-2. Mixtures of Gaussians are richer and can

account for a wide variety of distributions, at the price of added difficulty in reliably

estimating the model parameters. The Gaussian mixture derives a probability density

function that is the convex combination of K Gaussians. Equivalently, the model

breaks up the space into K classes, {w1,..., WK}, with prior probabilities in = P(we)

that a random point was generated from that class. Since each class represents a

Gaussian distribution, the probability of a point x under this model is given as

K

P(x) = Z P(xw)P(wk) (3.18)
k=1

where k, k, ir are the mean, covariance, and prior probability of the kth Gaussian

and together fully determine the mixture model. For the entire PDF to sum to one,

the sum of the i's must be one.
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3.2.1 Parameter Estimation using K-Means

A simple method of estimating the parameters of the mixture model is to cluster

the training points via the K-means algorithm, and then perform the single Gaussian

parameter estimation based on the clusters. The cluster algorithm begins by choosing

random values for the means, pk. We define the assignment h(') of example i into

class k as follows:

hk = 1 if Vjsk ||Zi - pkII < Izi - p.|| (3.20)

h = 0 otherwise (3.21)

where each point is assigned to the class with the nearest mean. Once the assignments

have been made, the means are recalculated based on the assignments:

Z h zi
k -- (3.22)

The algorithm iterates between these two steps until the portions remain the same,

indicating convergence.

While K-means clustering is simple and computationally efficient, which is ad-

vantageous in high dimensional spaces, the algorithm can perform poorly when the

clusters overlap, due to the hard class assignments made. Furthermore, K-means is

not very robust to outliers.

3.2.2 Parameter Estimation using Expectation Maximization

A more robust method of parameter estimation for the mixture model is the Expecta-

tion Maximization (EM) algorithm. In the EM approach, a set of hidden variables are

identified, such that if the values of those variables were known, then the maximum

likelihood estimates of the model parameters could be determined. Furthermore, if

the model parameters were known, then the hidden variables could be computed.

The estimation step (E-step) of the algorithm assigns the hidden variables to their

expected values, based on the current model parameters. The maximization step
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(M-step) subsequently maximizes the likelihood of the model given the training data

and the hidden variables. Nice properties of the EM algorithm include assured in-

crease (or no change) in the likelihood with each iteration which implies guaranteed

convergence to a local maximum [22, 5].

The E-step of the algorithm is to compute the probability of each class, given a

certain data point, using the current estimate of the model parameters. This quantity,

hk, is defined as

h('= P(wk zI) (3.23)

P(zi I Wk)P(Wk) (3.24)
EZ P(z I W,)P(w3 )

- r 2k r4J exp (Zi - lk)T k(z - Ak))) (3.25)

where the normalization factor Z is the denominator of equation 3.24.

Given the posterior probabilities computed in the E-step, in the M-step we seek

to maximize the log likelihood with respect to each of the model parameters. The

likelihood of a training element zi is given as

K

P(zi) = E rkP(ZiWk) (3.26)
k=1

With the independence assumption, the likelihood of the entire training set is just

the product

n K

P( ... , zn}) = 7 rikP(ZiIWk) (3.27)
i=1 k=1

and the associated log likelihood is

n K

1 = E log E 1FkP(Zi k) (3.28)
i=1 k=1

To compute the update for each of the model parameters, we differentiate the log
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likelihood function with respect to each parameter in turn.

= : h(') EZ1(zi - pi) = 0 (3.29)
O9lik i=1k

h=E- p = h E-lzi (3.30)
i=1 i=1

h )(EE- ) =(EE-)zi (3.31)
i=1 i=1

h = h(' zi (3.32)
i=1 i=1

= 1 h() zi
Ai = = (3.33)

IEn=1 h('

(3.34)

Similarly, the log likelihood is differentiated with respect to the remaining parame-

ters (taking care to normalize the prior probabilities), yielding the following M-step

updates [5]:

En - I(x (3.35)

Wk = (k) (3.36)En 1 h(() -Ik(( )(.7

%= 1 k

When Ek is a diagonal matrix of constant variance a 2 for every class, the Expectation-

Maximization algorithm actually reduces to K-means as o -+ 0. The EM approach

for mixture model parameter estimation generally works well for relatively low di-

mensional data without significant overlap. However, the algorithm can get trapped

in a local minimum due to poor initial conditions.

3.3 Parzen Windowing

The single Gaussian and mixture model are density estimators that require the es-

timation of parameters based on the training set. Non-parametric models such as
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Parzen Windowing are derived by directly sampling from the training data, and do

not require a model-fitting stage [81]. A Parzen density estimator consists of a ker-

nel function f(x) that is centered at each training element. The sum of the kernel

functions represents the probability distribution. Typical kernels include a symmetric

Gaussian (Eq. 3.15) or the uniform distribution:

1 w
f(x) = d 1xi < - i= 1, ... , d (3.38)

W 2

Given the windowing function, the probability density function is derived as

n
P(x) = - f (x - z2) (3.39)

The windowing function f must satisfy the following for P(x) to be a probability:

f (x) dx = 1 (3.40)

Vx f (x) > 0 (3.41)

The choice of the windowing function is an important factor, dependent on the

application. The uniform model is much more efficient, and may be suitable in sit-

uations where there is plenty of training data. Since the uniform model has a hard

cutoff, there will be regions of the space where the probability is exactly zero, which

could cause instabilities in certain types of algorithms (such as gradient ascent on the

log likelihood). The Gaussian windowing function is more computationally expensive,

but offers a smoother decay.

No matter which form of function is selected, a scale parameter must be chosen. In

the uniform case, the scale is the extent of the distribution, w, and in the normal dis-

tribution, the smoothness is the variance, -. Smoothing the distribution in this way

provides robustness to noise in the training data and to sampling errors. Smoothing

too much weakens the model (in the extreme, infinite smoothing creates a uniform

distribution). Smoothing too little causes holes in the probability distribution, yield-

ing incorrect probability (using a delta function for each training element yields zero
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Figure 3-3: Probability density functions estimated via Parzen Windowing with in-
creasing smoothing parameters. Smoothing helps generalize a weak model, but too
much smoothing results in loss of fidelity.

probability for any novel point). Figure 3-3 shows various Parzen windowing with

various smoothing parameters. When one has a very large amount of sample training

data relative to the space to fill, a low scale parameter can be used. High smoothing

is generally required in cases of sparse data, where lack of smoothing causes sampling

errors.

One approach to computing the scale parameter and assessing the model fit is

cross-validation [95, 5]. In this scheme, the training set, T, is partitioned into s

partitions, {7 1, .. ., T}. The model is then fit using the set {W, ... , 'T_1, %+1,.. - , T8}

and then tested by computing the probability of 77, for every i. When s = n, this

process is referred to as leave-one-out cross validation. While such a method of

selecting the smoothing parameter is more well founded than the often-used empirical

approach, cross-validation can greatly increase the time it takes to determine the

model, as the density function must be recomputed many times for each partition.

When the number of training elements is relatively large, it is inefficient to com-

pute the sum in Equation 3.39 to compute the probability of every novel point x.

Instead, a table can be generated that a priori samples the probability density func-

tion over the space of x. Then, computing a new probability only consists of a table

lookup, and perhaps an interpolation. For high dimensional data, the table itself can

be quite large, and infeasible to store, so one must balance the time/space tradeoffs.
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Figure 3-4: A random set of points under some distribution. A sophisticated model is
required when using a Cartesian representation (a), while the points in polar coordi-
nates are very close to a Gaussian (b). A sample of 50 red points from the unknown
distribution is chosen in (c, top), and appear roughly Gaussian. A Gaussian model
is fit and then samples from the model are shown back in polar coordinates in red (c,
bottom) with samples (in yellow) from the true distribution.

3.4 Discussion

When using any of the above density estimators to build a statistical model, important

issues arises that can greatly affect the accuracy and reliability of the model. The

choice of data representation greatly influences the ability of the model to generalize.

Most models generalize by considering regions "near" elements of the training set to

be more likely than those far away. While all the feasible instances may actually

be near each other in some ideal space, in an inconsistent or unnatural choice of

embedding space, the likely elements but could be spread out with unlikely regions

in between.

3.4.1 Choice of Representation

The representation chosen for the training data has significant impact on the ability

to derive an accurate, concise model. Consider the example distribution of points

illustrated in Figure 3-4a. If we represent an example by the obvious choice, say,

z = [x y]T, then this distribution is clearly non-Gaussian. If this representation

is to be used, then a more sophisticated model must be fit, such as the mixture
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of Gaussians or a Parzen estimation. However, consider instead representing the

example as z = [r 9]T. Figure 3-4b shows a scatter plot of the same points in this

basis. In polar coordinates, the distribution can be accurately encoded by 5 degrees

of freedom (2 for p and 3 for the symmetrical E), whereas under the Cartesian

representation, many more parameters would be required to accurately estimate the

distribution.

While this Cartesian/polar example is trivial, issues of the choice of representation

arise often and are crucial to the degree to which the model captures the true under-

lying distribution. An incorrect model will cause likely instances to be discounted or

unlikely instances to be considered plausible, resulting in the model influencing the

algorithm in a detrimental manner.

The choice of representation is very important when modeling variances in shape

across a population. Generally we are given a relatively small number of example

shapes (as compared to the large number of degrees of freedom of a shape) from

which we wish to generalize the plausible variances. Consider if we only had access

to around 50 random points in the previous example (Figure 3-4c). If they happen

to fall mostly at the bottom of the spiral (as is most likely), a Gaussian model would

seem to represent them reasonably well, but would actually be a very poor model

of the true underlying distribution. The wrong choice of shape representation (or a

misalignment of the features of the training objects) results is this type of error, as

discussed further in Chapter 5.
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Chapter 4

Intensity Priors in Registration

Various modalities of medical imagery are commonly used together in diagnosis or

planning, as each modality captures different types of information about the anatomy.

Soft tissue, for example, is imaged well in MR scans, while bone is more easily dis-

cernible in CT scans. Blood vessels are often highlighted better in an MR angiogram

than in a standard MR scan. Figure 4-1 shows three different acquisitions of MR

scans. Notice that some anatomical structures appear with more contrast in one im-

age than in the others. The union of all the imagery is most effective when all are

presented in the same coordinate system. Since the scans are acquired in different

machinery and the patient is in different positions, the transformations between the

various acquisitions is generally not readily available. Chapter 2 described various

methods of fusing medical images, including alignment using fiducials, landmarks,

surfaces, and voxels.

This chapter describes a voxel-based multi-modal registration algorithm that in-

corporates prior knowledge on the expected joint intensity distribution of the two

images when correctly aligned. The goal of the joint intensity model is to estimate

the relationship between the intensity values of two imaging modalities. The frame-

work for our registration process is illustrated in Figure 4-2. The training step requires

one pair of registered scans of the modalities and anatomical structures to be captured

in the model. The intensity pair at a certain point is a sample of a joint distribution

of intensities of corresponding points in the two images. This joint distribution is

70



Figure 4-1: SPGR, Proton Density, and T2 Weighted Magnetic Resonance images of
a brain. Notice that some anatomical structures appear with more contrast in one
image than the others.

Novel Unregistered
Images

Mo ity A Modaity B

Registered Training Sampling the Initial
Images Joint Intensity Pose

Modjity A Modlity B Given a Pose

Samples Improved

A priori Joint intensity Maximum Pose
Training Model Likelihood

Estimator

Figure 4-2: Flowchart of the a priori training and the online registration.

what we seek to estimate. The model can then be used to register novel scans of the

same two modalities and same anatomical structures as in the training set. To align

a novel pair of images, we compute the likelihood of the two images given a certain

pose based on our model by sampling the intensities at corresponding points. We

improve the current hypothesized pose by ascending the log likelihood function.

We consider two models of joint intensity: mixture of Gaussians and Parzen Win-

dow Density. In both methods, we seek to estimate the probability of observing a

given intensity pair at the corresponding point in the two images.

4.1 Modeling by Mixture of Gaussians

Given a pair of registered images from two different medical image acquisitions, we can

assume that each voxel with coordinate x = [Xi, X2 , X3 ]T in one image, I,, corresponds

to the same position in the patient's anatomy as the voxel with coordinate x in the

other image, 12. Further, consider that the anatomical structure Sk at some position
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Figure 4-3: LEFT: Joint intensity histogram of the registered MR PD/T2 training
images used to fit a mixture of Gaussians. RIGHT: Rough segmentation of a reg-
istered image pair. Each voxel is classified based on which Gaussian it most likely
belongs to, based on the mixture of Gaussian model.

in the patient will appear with some intensity value il in the first image and i2 in the

second image with joint probability P(ii, i 2 Sk). We also define P(Sk) = irk to be the

prior probability that a random point in the medical scan corresponds to structure

Sk.

By making the assumption that voxels are independent samples from this distri-

bution (and ignoring relative positions of voxels), we have

P(I1, 12) = JJP(i(x), 1 2 (X)) (4.1)
XEI

= E rk P(Il(x), I2(x) S) (4.2)
xEI k

We model the joint intensity of a particular internal structure Sk to be a two di-

mensional (dependent) Gaussian with mean pk and full covariance matrix Ek. Letting

i be intensity pair [ii, i 2 ]T,

P(i|I SO)= e-'21 A -k -11,) (4.3)
\27rlEkl 1

This model of the intensities corresponds to a mixture of Gaussians distribution,

where each 2D Gaussian Gk corresponds to the joint intensity distribution of an

internal anatomical structure Sk. Thus, the probability of a certain intensity pair
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(independent of the anatomical structure) given the model, M is

P(i|I M) = ( e 2 -- J?--) .(4.4)

To learn the joint intensity distribution under this model, we estimate the parameters

irk, Ak, and Ek using the Expectation-Maximization (EM) method [23].

For the MR image pairs of the brain, a mixture of K = 10 Gaussians was used

to fit the data. This perhaps is a slight over-fitting of the data, but in this case, it

seems this only results in one anatomical structure being explained by more than one

class. Figure 4-3a shows the joint intensity histogram of the training image pair with

the converged mixture of Gaussian fit superimposed.

The mixture of Gaussians model was chosen to represent the joint intensity dis-

tribution because we are imaging a volume with various anatomical structures that

respond with different ranges of intensity values in the two acquisitions. We assume

that those ranges of responses are approximately Gaussian in nature. Therefore, one

might expect that each Gaussian in the mixture may correspond roughly to one type

of anatomical structure. In other words, the model produces an approximate seg-

mentation of the structures in the images. Figure 4-3b shows the segmentation of a

registered pair of MR images using the Gaussian mixture model prior. Gerig, et al.

[31] used similar methods of statistical classification to produce accurate unsupervised

segmentation of 3D dual-echo MR data.

Segmentation of medical images based solely on intensity classification (without

using position or shape information) is, in general, very difficult. Often different tissue

types may produce a similar or overlapping range of intensity responses in a given

medical scan, making classification by intensity alone quite challenging. MR images

include nonlinear gain artifacts due to inhomogeneities in the receiver or transmit

coils [51]. Furthermore, the signal can also be degraded by motion artifacts from

movement of the patient during the scan.

The segmentation produced by this method shown in Figure 4-3b suffers from

the difficulties described above. For example white matter and gray matter have
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Figure 4-4: Two views of the joint intensity distribution function computed using
Parzen estimation with a Gaussian windowing function.

overlapping ranges of intensities in both image acquisitions. Furthermore, note that

the distinction between gray and white matter on the right hand side is not segmented

clearly. This is most likely due to the bias field present in the image.

Despite these difficulties, the segmentation does a reasonable job of picking out

the major structures, although it is inaccurate at region boundaries. Therefore, we

do not intend to use this method alone to compute an accurate segmentation of the

underlying structures. Instead, we could use the mixture model in combination with

a more sophisticated algorithm to solve for segmentation, or for registration purposes,

as described in section 4.3.

4.2 Modeling by Parzen Windowing

The prior joint intensity distribution can also be modeled using Parzen window density

estimation. A mixture of Gaussians model follows from the idea that the different

classes should roughly correspond to different anatomical structures and thus provides

an approximate segmentation into tissue classes. However, the EM algorithm for

estimating the parameters of a mixture of Gaussians is sensitive to the initialization

of the parameters and in some cases can result in an inaccurate prior model of the

joint intensities.

We therefore also consider modeling the joint intensity distribution based on the

Parzen window density estimation using Gaussians as the windowing function. In

practice, this model defined by directly sampling the training data provides a better
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Figure 4-5: Starting, middle, and the final alignments computed by the registration
gradient ascent algorithm. Each image shows the colorized SPGR and PD images
overlaid in the three orthogonal slices. The images in the upper right depict the
histogram of the intensity pairs at that alignment. When the images are aligned, the
histogram should resemble the distribution in Figure 4-4.

explanation of the intensity relationship than the Gaussian mixtures that require the

estimation of various parameters.

Consider our registered training image pair (I1, '2). We estimate the joint intensity

distribution of an intensity pair i = [ii, i2]T given the prior model, M:

P(i I M) = 1I2 (4.5)
N AE (IJ 12) (27ro-

where the i's are N samples of corresponding intensity pairs from the training images.

Figure 4-4 illustrates this estimated joint intensity distribution.

4.3 Maximum Likelihood Registration

Given a novel pair of unregistered images of the same modalities as our training im-

ages, we assume that when registered, the joint intensity distribution of the novel

images should be similar to that of the training data. When mis-registered, one

structure in the first image will overlap a different structure in the second image, and

the joint intensity distribution will most likely look quite different from the learned

model. Given a hypothesis of registration transformation, T, and the Gaussian mix-

ture model, M, we can compute the likelihood of the two images using Equation
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Figure 4-6: Samples from the negative log likelihood function over various angles and
x-shifts. Note that over this range, the function is very smooth and has one distinct
minimum, which in this case occurs 0.86 mm away from the correct alignment.

4.1:

P(1 , I2 T, M) = J P(I1(x), I2 (T(x)) I T, M). (4.6)
x

We register the images by maximizing the log likelihood of the images, given the

transformation and the model, and define the maximum likelihood transformation,

TML, as follows:

TML = argmax E log(P(Ii(x), I2 (T(x)) T, M)) (4.7)
T X

The likelihood term in this equation can be substituted with either Equation 4.4 or

4.5, depending on which joint intensity model is chosen. For the results presented

here, the Parzen model is used, as it better explains the intensity relationship between

the two modalities. However, the mixture of Gaussians model encodes coarse tissue

type classes and thus provides a framework for later incorporating into the registration

process prior knowledge of the relative positions and shapes of the various internal

structures.

To find the maximum likelihood transformation, TML, we use Powell maximiza-

tion [84] to ascend the log likelihood function defined in Equation 4.7, finding the best

rigid transformation. In both the mixture of Gaussian and Parzen window models

of the distribution, the log likelihood objective function is quite smooth. Figure 4-6

illustrates samples from the negated objective function for various rotation angles
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2. Intensity Histgram of Training PD Image

Inteftty Inlsnst Intnsfty

Figure 4-7: One dimensional histograms of two PD weighted images. Notice that the
training image histogram (left) is not aligned with the test image histogram (center).
We therefore scale the intensity values by the appropriate factor to best align the
histograms. The scaled test histogram appears on the right.

(along one dimension) and x position shifts of the transformation. Over this sampled

range of +60 degrees and +20 mm, the function is always concave and has one mini-

mum which occurs within a millimeter of the correct transformation. Computing the

registration by maximizing the likelihood of the image pair given the transformation

and the model seems to be an efficient, accurate method of registration.

4.4 Intensity Histogram Normalization

The registration method presented here relies on the joint intensity distribution of the

registered test images being similar to that of the training data. In some cases, due

to an intensity artifacts present in the image or other related factors, the registered

image pair will not have a similar distribution to that of the training data. Consider

the 1D histograms in Figure 4-7. Notice that the unscaled test image intensity values

(center) are not aligned with that of the training image (left). To resolve this prob-

lem, we adjust the intensities of each novel image to make the test image intensity

distribution more closely match that of the training data. We find the factor by which

to scale the image intensities so that the intensity histogram best matches that of the

corresponding modality used in training.
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PD / T2 Registration
# Error # Error # Error # Error
1 0.74 10 0.79 19 1.42 28 1.26
2 0.89 11 0.73 20 0.75 29 0.76
3 0.86 12 0.68 21 0.69 30 2.24
4 0.79 13 1.52 22 1.33 31 0.90
5 0.90 14 0.63 23 0.66 32 0.78
6 0.80 15 0.80 24 1.01 33 1.28
7 0.81 16 0.89 25 1.07 34 0.74
8 0.80 17 0.82 26 0.70 35 1.08
9 0.82 18 1.36 27 0.81 36 0.89

Table 4.1: The results of registering 36 test images. The registration error (in mm)
was computed by taking the average error of the eight vertices of the imaging volume.

4.5 Results

The training and registration algorithms described above were tested using MR

datasets from 37 patients. Each patient was scanned using two protocols, a coronal

SPGR scan of 256 x 256 x 124 voxels with a voxel size of 0.9375 x 0.9375 x 1.5 mm

and a dual echo (proton density and T2-weighted) axial scan of 256 x 256 x 52 voxels

with a voxel size of 0.9753 x 0.9375 x 3.0 mm. One of the patients' datasets was used

for training purposes and the remaining 36 were used for testing. The two types of

registration performed in these experiments were PD with T2 and SPGR with PD.

The joint intensity distribution for each modality pair was modeled using a Parzen

estimation. The initial pose in all cases was about 900 and a few centimeters away.

Each registration converged in 1 - 2 minutes on a Pentium Pro 200. Tables 4.1 and

4.2 show the results of the registrations.

4.5.1 Error Metric

Given a transformation T produced by registration algorithm and the ground truth

alignment, T*, we consider various error measures that accurately represent the mis-

alignment. One commonly used method of evaluating error is to compare the trans-

'The MR datasets were provided by M. Shenton and others, see acknowledgments.
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SPGR / PD Registration
# Error # Error # Error # Error
1 1.45* 10 1.47 19 2.57 28 1.54
2 2.69 11 3.17 20 2.67 29 2.15
3 0.16 12 1.32 21 2.77 30 1.50
4 0.78 13 1.18 22 3.47 31 1.43
5 1.69 14 1.59 23 3.87 32 1.83
6 1.53* 15 1.25 24 2.48* 33 1.64
7 0.85* 16 1.26 25 1.60* 34 3.18
8 1.36 17 1.19 26 2.03 35 2.01
9 0.73 18 1.85 27 1.31* 36 2.46

Table 4.2: The results of registering 36 test images. The registration error (in mm)
was computed by taking the average error of the eight vertices of the imaging volume.
*The patient moved between scans and thus scanner coordinates cannot be used as ground truth. The
ground truth registration for these scans was determined by aligning manually-defined corresponding
landmarks.

formation parameters themselves. For example, T could be presented as Euler angles

and a translation vector: T = (0, 4, 0, tz, ty, tz), and the error for each parameter

is computed, such as:

o = 99* 1= q-j £*1 =(4.8)

E6x = ItX-t*j E, = |ty-t*I Ez = Itz - t*j

Representing alignment error as a function of Euler angles can be misleading due to

the non-linearities of 3D rotation and the non-uniformity of the space spanned by

the three angles. If, for example, the Euler rotations were performed in a different

order, the magnitudes of the angles could be very different even for the same trans-

formation. Ideally error should be independent of the choice of parameterization of

the transformation.

Another approach to measuring error is to report two values, translation and

rotation offsets, which is less dependent on the parameterization. To compute these

values, consider representing T in a quaternion-like form such as T = (w, vX, Vy, Vz,

t2, ty, tz), where v is a unit vector axis of rotation and w is the rotation angle. In
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this framework, rotation and translation angle is computed by:

6" = 1w - w* (4.9)

Et = |t-0t* (4.10)

In this approach, the rotation error can still be misleading, as it still depends on the

point about which the rotation is performed.

The error metric we use in this work computes the average error of transformed

points in a region of interest specified by the user, and is completely independent

of the way in which the transformations are parameterized. Consider a point v in

the image 12. Based on the ground truth assumption, T*(v) is the corresponding

point in I,. The point T(v) is the computed corresponding point, and the distance

between the two transformed points is the transformation error for that particular

point. If all points of interest in the images were known, then the average or RMS of

the distances between the points under two transformations could be used as a metric

of the expected error of a random point in the region of interest, V:

EV = 1 E JT(v) - T*(v)1 (4.11)

For the brain images used here, we did not select out a particular region of interest V

per se, but instead choose V to consist of the eight vertices of the imaging cube. Note

that this bounding box is an overestimate of the region of interest, as it contains a few

centimeters of empty space around the patient's head, where the voxel information

does not contribute to the registration.

4.5.2 Proton Density and T2-Weighted Images

We first consider the problem of registering PD images to transformed T2 as a means

of testing the registration algorithm. Each T2-weighted scan was rotated by 900 and

translated 5 cm and then registered with the corresponding PD scan. Since these

T2 and PD images were acquired at the same time and are originally in the same
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coordinate system, by perturbing one scan by a known amount, we have accurate

ground-truth upon which to validate the registration process. All 36 test cases regis-

tered with sub-voxel, and in most cases with sub-millimeter accuracy. Note that the

method has a large region of convergence and thus does not require the starting pose

to be very near the correct solution.

4.5.3 SPGR and Proton Density Images

A more interesting and more challenging alignment problem consists of registering

each patient's coronal SPGR scan with the same patient's PD image. This regis-

tration problem is more challenging given that the two modalities were not acquired

simultaneously and also do not contain the same region of the head: the PD/T2

images are cropped at the chin (see Figure 4-1).

Since each patient had the scans performed during the same sitting in the scan-

ner, the headers of the scans provide the ground-truth alignment between the various

acquisitions, assuming the patient did not move between acquisitions. However, since

the patients' heads were not fixed in the scanner, patients could move between ac-

quisitions. Despite this issue, we use the scanner poses as ground truth, since in

most cases it seems that the patient did not move significantly. In six cases (marked

with an * in Table 4.2), the patients did move significantly (by a few centimeters) in

the scanner between the SPGR and PD acquisitions. Since scanner coordinates do

not provide meaningful ground truth for these cases, the ground truth alignment was

determined by manually selecting corresponding landmarks in each scan and comput-

ing the best rigid alignment given the corresponding points [45]. For all cases, the

initial pose was set to the identity, which, due to the directionality of the acquisitions

corresponded to a starting position of about 90' and a few centimeters away from the

correct poses. Of the 36 cases we have used in our initial tests of this method, almost

all of the cases automatically registered to within one voxel.

81



PD / T2 Registration
Average (aro. Skld-) Pose Emor v. 2n625 Pose AngIe

G- 9%MxPose Erro

300-

250 1-0

150 -

0 20 40 60 so 100 12D 140 1SO 1lei
irM. Pose ogI. (doeg..)

95% Moo Ps Error ve Initia Pow Angle

.200

100

5)

SPGR / PD Registration
Average (aid Sk-Oev) Pow Error vs. InI Posw Angle

3250

0 9%MxPose Error

250 -

100

0 20 40 so s niilm gli eges)2 I 1W0 1--
00% Ma Pose rrr (doeA)

96% Mmo Ps Eror10 vs1100 Pow5 Angle

p200250

'150

100

so

20 40 so PAl (dg )120 140 160

Figure 4-8: Analysis of the convergence of the algorithm from various initial angle
offsets. The left-hand plots illustrate results for PD / T2 registration and right-hand
plots illustrate results for the SPGR / PD registration. The top graphs show the
average and standard deviation of final pose error. The bottom row shows the 95%
of maximum final error.

4.5.4 Region of Convergence

To evaluate the robustness of the algorithm to initial alignment, the starting pose was

varied and the registration was performed repeatedly at initial angle offsets of zero

to 180 degrees, at ten degree increments. For each trial, a random rotation axis was

selected, and the initial pose was perturbed by the given angle about the random axis.

Three hundred trials were run at each angle offset. The results of this experiment are

shown in Figure 4-8. For the PD / T2 experiments, the algorithm correctly registered

the scans to within a voxel 95% of the time from as far as 900 away, and often even

registered correctly when a full 1800 away. For the SPGR / PD experiments, the

algorithm successfully registered the scans 95% of the time for up to about 60' initial

82

0 40 60 M0 1M 120 W 160 180 0O ISO

--- Mar Pose Error



Insensitity to Choice of Training Data
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Figure 4-9: The graph indicates the robustness of the algorithm over choice of training
data. For each trial, one of eleven different scans was used as training data and one
other scan was used as the test. For clarity, the scan numbers on x-axis are sorted
based on error. All trials resulted in an alignment within one voxel of the ground
truth and within 1 mm of all other trials.

offset, still showing a relatively large region of convergence.

4.5.5 Insensitivity to Choice of Training Data

One patient's scans were selected to be used as the training data for all of the reg-

istration experiments described earlier in this section. To assess the dependence on

the particular scans chosen as training data, an experiment was run where training

was performed once on each of eleven different scans, and a novel scan was registered

once for each of the eleven training sets. The results of the registrations are shown in

Figure 4-9. Each time, the novel scan was registered to within a voxel of the ground

truth, with a variance of 0.13 mm.

4.6 Discussion

The multi-modal registration method described here incorporates prior knowledge

of the intensity relationship between the two imaging modalities based on already

registered training images. A joint intensity distribution, P(ii, i 2 ), is derived and then
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used to compute the maximum likelihood pose of two novel images as in Equation

4.7. Note that each voxel is assumed to be completely independent from all other

voxels, which is a not a very realistic assumption. While the algorithm performs

well despite the independence assumption, the a stronger, spatially dependent model

may converge more quickly and from further starting points given the additional

information.

One approach to strengthen the model is to derive a distribution over small neigh-

borhoods of both images. This approach could certainly assist in registering highly

textured regions. However, more training data may been required to fill the larger

probability space. Another approach to relaxing the independence assumption is to

compare the distributions as a whole. Instead of finding a maximum likelihood set of

independent intensity pairs, one could use the Kullback Leibler distance to minimize

the divergence between the training and sampled distribution, effectively finding a

typical set of intensity pairs.

The use of statistical models for registration may be even more beneficial when

applied to elastic registration problems. In the non-rigid case, there are significantly

more alignment parameters to estimate, and a strong joint intensity model can poten-

tially direct the parameter search more effectively than without any prior knowledge.
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Chapter 5

Statistical Priors for Segmentation

Statistical models have the potential to add useful information to the segmentation

process based on example training data. Instead of simply looking for high gradients

or requiring the user to interactively cue the algorithm, we seek to encode into the

algorithm answers to questions such as these:

* "What shape am I looking for?"

* "What intensity profile should I expect?"

* "How should the local curvature behave?"

* "What are the relative positions of the objects?"

We begin by discussing means of representing shape and building distributions over

shape variances present across a population. The shape model used in this work is

defined and compared to other shape representations. We then consider methods of

adding statistical intensity information into the model to relax the common assump-

tion that high gradients appear at the boundary. While the shape model capture

global shape information, a curvature prior is used to encode the type of local curve

regularization required. Segmentation experiments and results are discussed along

the way on both synthetic images and 2D and 3D medical scans.
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5.1 Statistical Distribution over Shape

To incorporate shape information into the process of segmenting an object in an

image, we consider a probabilistic approach, and compute a prior on shape variation

given a set of training instances. To build the shape model, we choose a representation

of curves, and then define a probability density function over the parameters of the

representation.

5.1.1 Curve Representations

Accurately modeling the shape variance across a distribution of examples is difficult,

and requires careful choice of the shape representation. The ability of the model to

capture the true deformations across a population is closely tied to issues of invari-

ance and correspondence, which we discuss here. Invariance relates to the types of

transformations that affect the representation. For example, the measure of an ob-

ject's volume is invariant to pose, but not to scale. When comparing two objects,

correspondence involves the matching of similar parts of an object, which is crucial

when the objects differ in a way to which their representation is sensitive. Comparing

two identical squares that are misaligned by 450 will result in a mismatch or poor

model of population variance if the representation is not invariant to rotation.

When defining the shape representation, one must ask, "What types of differences

do I care about, and what are nuisance parameters?" For example, since each object

or image is generally given in its own coordinate system, the pose of the object is

not an important factor when trying to capture object shape variance. Before two

objects can be compared, they must be aligned or, equivalently, transferred into a

representation that is pose invariant. Therefore, pose is a nuisance parameter in this

scenario.

Scale, however, may or may not be important depending on the application. In

computer vision, scale invariance is typically desired, since the size of the projection

in an image depends on distance from the object to the camera. If we care about

the object itself, and not the distance from the camera, scale becomes a nuisance.
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Figure 5-1: An illustration of shape correspondence errors. (a, b) Two curves rep-
resented as zero level sets of the signed distance function. (c) A "reasonable" mean
or half-way morph between the two shapes, that resembles each of the originals. (d)
The result of averaging the distance map, which is the result of comparing un-like
parts of the object. Any shape representation that does not solve the correspondence
problem at some level will be susceptible to these issues.

In medical applications, a 3D scan accurately portrays the size of an object, so scale

changes reflect the actual characteristic of the object, which should be captured by

the model (e.g. clinically, an enlarged kidney is an important characteristic).

Even with a representation that factors out all of the nuisance parameters, the

issue of correspondence still arises due to the importance of comparing only like

regions of the objects. A shape model can capture the variation of a certain feature

of an object, only if it is compared to the same feature in other objects. For example,

when looking at variances in the shape of the vertebrae, if two training examples are

misaligned and a process of one is overlapping a notch of the other, then the model

will not be capturing the appropriate anatomical shape variance seen across vertebrae.

Figure 5-1 shows an example of correspondence mismatches. The bump in this object

shifts from left to right, and most shape representations will cause misalignment of

this feature. One method of inspecting correspondence between two objects is to

morph between them. In general, if the intermediate stages of the morph appear to

be from the same class of object, then the corresponding regions of the objects are

reasonably matched.

A common means of representing a 1D curve in 2D space is to parameterize it

by some measure such as arc length. Given two curves C1 (p) and C2 (q), the average
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Figure 5-2: Correspondence errors when combining parameterized curves. LEFT
and RIGHT: Boundary curves of two different corpora callosa. TOP: The result of
averaging the curves when their parameter is in correspondence. The mean curve
looks like a corpus callosum. BOTTOM: A small mismatch in correspondence causes
the average to look unlike the original shapes.

curve can be computed as:

C1(p) +C 2(T (q))
C2p =(5.1) 2

where T determines the correspondence between C1 (p) and C2 (q). The appearance

of the average depends greatly on the correctness of the transform T (see Figure 5-

2). Similarly, when relating or combining multiple curves in order to derive a shape

distribution, the consistency of parameterizations of the training curves is important

to capture the actual shape variances present in the population.

One solution to the correspondence problem is to explicitly generate all point-wise

correspondences to ensure that comparisons are done consistently. In general, localiz-

ing corresponding features automatically is a very difficult problem. Low level vision

algorithms offer detectors for features such as edges, ridges, lines, and corners, but

then robust correspondence of these features is still necessary. Higher level features

such as the base of the femur condile or the valley of the right central sulcus are more

difficult to detect reliably without a template and are more limited in number. In

reality, we are back to the problem of non-rigid registration just to create the shape

model, to later use for segmentation.
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Thus, algorithms that require point-wise correspondence for their training set

generally rely on significant human interaction. Manually localizing corresponding

landmarks is tedious and also prone to errors, especially when dealing with 3D objects.

There are very few naturally occurring feature points (e.g. zero-dimensional) in 3D

anatomical structures. Instead, features are typically one-dimensional curves such

as ridges of sulci and gyri, or even two-dimensional surfaces such as the falx. This,

coupled with the fact that 3D imagery is often viewed a only one slice at a time, makes

the consistent selection of points difficult. In [18], Cootes et al. require the labeling

of 123 corresponding landmarks on each of 72 training instances when building a 2D

model of the region of the brain around the ventricles. Almost 9000 mouse clicks

were used to define only a 2D model. In many applications, especially in 3D, careful

labeling of such a large training set is infeasible.

If the point correspondence are labeled correctly, the Active Shape Models of

Cootes, Taylor, et al. do an excellent job of representing the shape deformation and

performing the model-based matching. A vector vi representing the ith training shape

is defined from the m corresponding feature points:

Vi = [X 1 Y1 Z1 X 2 Y2 Z2 ... Xm Ym Zm]T (5.2)

A Gaussian model is then fit to the training set, T = {v 1,... , vn} as described in

Chapter 3. Mixture models are also used to fit to the data, especially when the distri-

butions are clearly non-Gaussian, due to the type of data in a specific application [17].

A small number of principal modes are determined and each instance of the object

can be represented by a vector of coefficients. The model is then matched to a novel

image, by searching through the space of coefficients for a shape whose boundary falls

on edges in the image. A detailed report on Active Shape and Appearance Models,

still under preparation, can be found on their web site [19].

Instead of representing a shape as a spline of node points along the boundary

of the object, the skeleton or medial axis can be used. Node points (also called

core atoms) can be placed along the skeleton of the object, equidistant from two
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Figure 5-3: LEFT: Two examples of Lagrangian representations of a curve, a spline
parameterized by node points (top), and the medial axis (bottom). RIGHT: Eulerian
representations, namely a dense flow field from a known shape (top) and the signed
distance map (bottom).

different points on the boundary. Each core atom encodes a local coordinate system

as it stores the distance to the curve and the relative angle of the two connecting

segments. Figure 5-3 includes an image of a medial axis representation. Medial-node

models are generally constructed by hand and then fit to a set of training data in

order to derive a distribution of local shape properties [101]. Given a novel image,

the model is fit to the image data while each node includes a local shape prior. In

this approach, the correspondence is solved for the training data using supervised

gradient-based model-fitting. For a novel image, the same image force is used, with

the local shape priors included.

A shape model has potential to be much stronger when the model is derived

from a set of training examples of the same class of object to be segmented. Staib

and Duncan [94] incorporate global shape information into the segmentation task

by using an elliptic Fourier decomposition of the boundary. Figure 5-4 shows an

example of a hierarchical set of coupled ellipsis such that each ellipse moves along

the path of the parent one at a certain rate, resulting in the desired curve being

drawn. The parameters of this representation consist of the Fourier descriptors of

the ellipses. Based on a training set of curves, a Gaussian prior is placed on all the
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Figure 5-4: Fourier decomposition of a curve. As each ellipse moves along the path
of the preceding one at a predetermined rate, the black curve is drawn. Three time
steps are shown. (Figure reproduced from [94])

Fourier coefficients. An object in a new image is localized by adjusting the parameters

using a maximum a posteriori approach, combining the image term, that places the

computed boundary along an edge, and a prior term, which seeks probable coefficients

given the model.

The representations discussed thus far have been Lagrangian in nature, meaning

that coordinates representing the shape move as the shape changes. In contrast, and

Eulerian representation is one where the underlying coordinate system remains fixed

as the shapes change. Figure 5-3 shows an example of both Eulerian and Lagrangian

representations.

5.1.2 Distance Maps

We propose the signed distance map as a representation to model shape variance. A

curve C to be represented is embedded as the zero level set of a higher dimensional

surface, u, whose height is sampled at regular intervals (say Nd samples, where d is

the number of dimensions). Each sample encodes the distance to the nearest point

on the curve, with negative values inside the curve. (see Figure 5-5). Formally, the
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Figure 5-5: Level sets of an embedding function u for a closed curve C in R'.

unsigned surface u is defined as:

Iu(x)I = minI|C(q) - xj| (5.3)

There are many nice properties of the distance map worth noting. First, the

gradient magnitude of the surface is constant across the image and equal to one

(IVul = 1). The direction of the gradient is equal to the outward normal of the

nearest point on the curve C. Given the surface u, the nearest point on the curve

from any point x in space can be computed by x - u(x) Vu(x). The distance map

is smooth and provides the propagation of the boundary information without loss of

fidelity. The redundancy of information over a region in space also offers stability in

many types of computation. The only region of the distance map that can be unstable

is on the skeleton. The skeleton is a set of points in space that are equidistant from

two or more different closest points on C. On the skeleton, the gradient is undefined.

Exactly computing the distance map can be quite an expensive operation. For a

curve in 2D represented by a spline with m nodes, and N x N pixel image, the naive

approach is to compute the distance from each pixel to all m + 1 spline segments,

and take the minimum, which is O(mN 2 ) time. There are various approximation

algorithms that are typically used to speed up the computation.

An estimation of the distance map can be computed using bi-directional propa-

gation. The image is initialized with 0 for pixels on the boundary and oc everywhere

else. A mask (such as the one in Figure 5-6) is swept over the image in the forward

direction. The value of that pixel is replaced by the minimum of its value and the

92



Forward Mask: +1 +o Reverse Mask: +0 +1

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 0 0 00 00 0 0 1 cc 0 0 1 00 0 0 1 00 0 0 1

00 00 00 00 00 0-0 00 00 00 2 o oo 1 1 oo 1 1 v2

00 00 00 00 00 00 00 cc 00 00 oo 1+v' 00 2 2 1+v 1+v2 2 2 1-+v

0000 0000 V2- 1 1 V -f 1 1 N/2 v/2 1 1 vr Iv'2 1 1 V

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

2 1 1 i v-2 1 / V2 1 1 1 1 i 1 F 1 1 Z

Figure 5-6: Bi-directional Chamfer algorithm for computing distance maps. The
forward and reverse masks are shown at the top. The first block in the first row
shows the initialization. The remaining blocks show the result of the forward pass.
The bottom row shows the result of the reverse pass.

sums of the mask values with the neighboring pixels:

u(x,y) <- min m(i,j)+u(x+i,y+j)
-1 ij1

(5.4)

where u is the distance map and m is the mask. In this pass, all the information is

propagated from the upper-left corner of the image to the lower-right. In the second

pass, the mask is reversed, and so is the direction of the sweep (lower-left to upper-

right). Various masks can be used, such as the Chamfer distance (used in Figure 5-6)

or the Manhattan distance (without the diagonal elements).

While this method is efficient and independent of the complexity of the object,

it is prone to inaccuracies. For example, note that the value in the upper-left and

upper-right corners of the final frame in Figure 5-6 is 1 + V/2 e 2.414, while the true

distance is v/-3~ 1.732, which is a relatively large error. The algorithm can be made

more accurate by expanding the mask to 5 x 5 or larger, which, of course increases

the computation time. Another trick to increase the accuracy is to store at each pixel

both the distance to the nearest point and the coordinates of the nearest point itself
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(i.e. both the min and the argmin). The distance between the coordinates of the

current point and the (estimated) nearest point is computed instead of just adding

the value in the mask to the neighbor's distance.

Often times the entire distance map need not be computed. Using narrow band

level set techniques [93], only the distance values within a distance of around 5 pixels

are necessary, but need to be very accurate. The bidirectional propagation approach

fills the entire space with an approximation, so other techniques are necessary. One

heuristic involves propagation of the distance information via a heap. All the pixels

with zero distance are set to zero, and all their neighbors are placed into a heap,

noting the closest point. The top (closest) element is taken from the heap and its

distance from the neighbor's closest point is computed. Its neighbors are then placed

into the heap. There are some subtleties with this approach such as when to stop

propagating (when the front meets itself at the skeleton).

The distance map of a curve can also be computed using level set techniques.

Consider the situation where the original curve C is evolved with unit speed in the

normal direction K:

Ct = JV (5.5)

In this scenario, the time at which the front crosses each point is the distance of that

point to the original front. This computation must be done both in the positive and

negative directions to compute the distance both inside and outside the curve. This

process can also be implemented in the level set framework, as described in the next

section. We now use the distance map as the representation upon which we build the

shape model.

5.1.3 Building the Training Set

All the curves in the training dataset are rigidly aligned to one coherent coordinate

frame to account for any gross offsets in translation or rotation. Note that since the

structures in the training set can be quite different, rigid registration is not sufficient
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Figure 5-7: Outlines of the corpus callosum of 6 out of 51 patients in the training set
embedded as the zero level set of a higher dimensional surface, the signed distance
function.

to achieve perfect correspondence. However, the goal is to develop a representation

robust to slight misalignments, so the registrations need not be perfect. We have used

alignment methods such as the Hausdorff distance [47], iterative closest point (ICP)

[4], and first and second moments [44]. For the structures we have modeled, all of

these methods perform well for this rough alignment of the curves.

Each aligned curve is then embedded as the zero level set of a higher dimensional

surface, u, (the signed distance map) whose height is sampled at regular intervals

(say N' samples, where d is the number of dimensions). Each such sampled surface

(distance map) can be considered a point in a high dimensional space (u E R Nd).

The training set, T, consists of a set of surfaces T = {u 1 , U2 ,... , un}. Our goal is to

build a shape model over this distribution of surfaces. Since a signed distance map is

uniquely determined from the zero level set, each distance map has a large amount of

redundancy. Furthermore, the collection of curves in the training set presumably has

some dependence, as they are shapes of the same class of object, introducing more

redundancy in the training set. The cloud of points corresponding to the training set

is approximated to have a Gaussian distribution, where most of the dimensions of the

Gaussian collapse, leaving the principal modes of shape variation.

As described in Chapter 3, we use Principal Component Analysis to derive the

shape model. The mean surface, p, is computed by taking the mean of the signed

distance functions, M = E ui. The matrix of eigen-vectors U along with the diagonal
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Figure 5-8: The plot in the upper left shows the 51 corpora callosa training shapes
projected into a 2D eigenspace. The red contour is the 2c- variance ellipse. The a,
axis roughly corresponds to size, and a 2 to concavity. The five corpora shown are
labeled on the plot. Shape (A) is very close to the mean. Notice that (C) is an outlier
in size, and (E) is an outlier in both size and concavity.

matrix of corresponding eigen-values - is computed using from the co-variance matrix

using SVD.

An estimate of a novel shape, u, of the same class of object can be represented by

k principal components in a k-dimensional vector of coefficients, a.

a = UT(u - p) (5.6)

where Uk is a matrix consisting of the first k columns of U that is used to project

a surface into the eigen-space. Given the coefficients a, an estimate of the shape u,

namely ii, is reconstructed from Uk and p.

i = U a+ p (5.7)

Note that in general ii will not be a true distance function, since convex linear com-

binations of distance maps do not produce distance maps. However, the surfaces

generally still have advantageous properties of smoothness, local dependence, and

zero level sets consistent with the combination of original curves.

Under the assumption of a Gaussian distribution of shape represented by a, we

96



Mode 1

-2

Mean

Merged

Figure 5-9:
dataset.

The four primary modes of variance of the corpus callosum training

can compute the probability of a certain curve as:

P(a) = exp ( aTE 1a)

(27r)TIk| I (2
(5.8)

where Ek contains the first k rows and columns of E.

Figure 5-7 shows a few of the 51 training curves used to define the shape models

of the corpus callosum. The original segmentations of the images are shown as red

curves. The curves are overlaid on the signed-distance map. Figure 5-9 illustrates

zero level sets corresponding to the means and three primary modes of variance of

the shape distribution of the corpus callosum. Figure 5-8 shows the projection of

the training elements onto the two principal directions, and illustrates some of the

outliers. Figure 5-13 shows the zero level set (as a triangle surface model) of seven

rigidly aligned vertebrae of one patient used as training data. The zero level sets of
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Figure 5-10: The first and second mode of shape variance are shown for the distance
map, as well as for a binary image, smoothed with Gaussian masks of different a.
Notice that the distance map representation captures shape variance much better
than the others, due to the robustness to mismatch of correspondence.

the two primary modes are shown as well. Note that for both the corpus and the

vertebrae, the mean shapes and primary modes appear to be reasonable representative

shapes of the classes of objects being learned. In the case of the corpus callosum, the

first mode seems to capture size, while the second mode roughly captures the degree

of curvature of the corpus. The third mode appears to represent the shifting of the

bulk of the corpus from front to back.

Another approach to correspondence is to roughly align the training data before

performing the comparison and variance calculation. A rough alignment will not

match every part of each training instance perfectly, so one must consider the ro-

bustness of the representation to misalignment. Turk and Pentland [99] introduced

Eigenfaces as a method of building models for recognition. Each image in a set of

face images (N x N array of intensities) is considered as a point in an N 2 -dimensional

space, from which the principal components are computed. The Eigenface method is

similar to our method of combining signed distance maps of binary images, with an

important distinction. Any slight misalignment in the faces compares the intensity

variance between independent objects, while slightly misaligned pixels in a distance
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Figure 5-11: Curves segmented from six slices of a patient's femur. The curves are
embedded as level-sets of a higher dimensional geodesic surface.

map are generally very highly correlated. Smoothing a grayscale or binary image

propagates information spatially as well, increasing the correlation between neigh-

boring pixels, but results in loss of information, whereas no information about the

binary image is lost by computing its signed distance function.

Using the signed distance map as the representation of shape provides tolerance

to slight misalignment of object features, in the attempt to avoid having to solve

the general correspondence problem. In the examples presented here, the rough rigid

alignment of the training instances resulted in the model capturing the shape vari-

ances inherent in the population due to the dependence of nearby pixels in the shape

representation. We are exploring the tradeoffs between leaving certain transformation

parameters intrinsic in the representation, or extrinsic by aligning the training set un-

der those classes of transformation. Currently, rigid pose is extrinsic, but scale and

affine warp are left as intrinsic. We are also extending this method to use landmark

correspondences (when they are available) to ensure the comparison of "like" pixels

instead of "near" pixels using flow fields as in [49].

99



Mode 1

-2a

Mean

+2or

Merged

Mode 2

I-Vn

Mode 3 Mode 4

Figure 5-12: The four primary modes of variance of the slices of the femur.

5.2 Geodesic Active Contours

Once the shape model has been derived, a method is required to actually perform

the segmentation. In this section, we discuss the level set or geodesic active contour

boundary localization method, which will be adapted in the next section to incorpo-

rate the shape prior.

In order to derive the level set method of segmentation [9, 54, 75] we first ex-

plore examples of curvature flow. Let C(q) be a simple, closed curve in the plane

parameterized by arclength. The total arclength about C is given by

J C'(q)| dq (5.9)

Assume that we wish to find the curve C that minimizes the Euclidean arclength

above (even though in this simple example, the minimal such curve is a point). The
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Figure 5-13: Top: Three-dimensional models of seven thoracic vertebrae (T3-T9)
used as training data. Bottom left and right: Extracted zero level set of first and
second largest mode of variation respectively.

Euler-Lagrange equation states that in order to minimize an equation of the form

minf 4b dq (5.10)
C (q) f

via gradient descent, the curve C is evolved over time based on the following equation:

C = Ic - -0 c (5.11)
ag

In the example above, 4 is simply IC'(q)l, which yields the following expression to

update C over time:

Ct = C'(q) - |C'(q)| (5.12)
19C aq WC

0 C'(q)
-0 - - (5.13)

&q |C'(q)|
(5.14)

1q
= -rV (5.15)

101

-9 1P



Figure 5-14: A front propagating with speed proportional to its curvature. By
Grayson's Theorem [38], the curve will collapse smoothly to a circle and a point.

where t is the tangent to the curve, i is the curvature, and K is the normal. Thus,

evolving a curve with speed equal to the curvature will minimize the Euclidean ar-

clength, shrinking the curve down to a point. This flow is also called the Euclidean

heat flow or the Euclidean curvature flow[9]. Figure 5-14 illustrates this process on

an example curve.

Instead of explicitly representing the curve by the parameterization C(q), we again

choose an implicit representation of the zero level set of the signed distance map, u

(Figure 5-5). When propagating the curve front at a speed 3, the following equivalence

holds between the Laplacian and Eulerian curve representations [8, 54, 75]:

Ct = j ut = 3IVul (5.16)

Therefore, in the previous example where a curve shrinks smoothly to a point, the

entire distance surface u can be evolved by Ut = KIVul. In this case, the zero level

set of the surface will similarly shrink smoothly to a point. To implement this, we

need an expression for the curvature r, of a level set as a function of the surface u.
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The curvature, K, is the divergence of the unit normal, which yields the following

expression involving first and second partial derivatives of u:

K =V -A (5.17)

V U (5.18)
|VUI

a a26
= U+ + YUY (5.19)

U y Y 3 X .(5.20)

To use the idea of minimal curves to segment a boundary in an image, an energy

function is derived that includes both an image gradient term and a curvature term,

such as the classical snake energy function [52]:

miJ |C'(q)| 2 dq - Af VI(C(q))|dq (5.21)

Caselles and Kichenassamy simultaneously showed an equivalence between the above

energy and a function of the form that can be solved using Euler-Lagrange [8, 54]:

min f g(|VI(C(q))j) |C'(q)j dq (5.22)
C(q)

The first term in the integral is used to scale the arclength by a function g of the

image gradient that is small when the gradient magnitude is large. In this non-

Euclidean space, the arclength now depends on the image, and curves overlapping

large gradients are "shorter". The function g is often of the form

1
g(jVI) = (5.23)OVID I + JVJ|2

By again using Euler-Lagrange from Eq. 5.11, but now with the new <D that includes

g, we obtain the following expression to update the curve C:

Ct = gKA/ - (Vg -fi)K (5.24)
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The equivalence in Eq. 5.16 of evolving the curve C and the surface u results in the

evolution equation for level set based segmentation:

Ut = giK Vu +Vu-Vg (5.25)

Evolving the surface u by the above equation will find the local minimal curve based

both on the image gradients and the curvature.

As described in Section 2.2.1, in many circumstances it is advantageous to initialize

the curve inside the object to be segmented. However, without strong gradients

nearby, the curvature term will cause the curve to shrink to a point. Therefore, an

outward balloon force can be added to the update equation [9, 13]:

Ut = g(v-+ K) jVu +Vu-Vg (5.26)

The balloon force can be constant throughout [9], or a function of the image gradient

(such as v = c g as proposed in [67]) which prevents a curve from ballooning past a

boundary.

The Lagrangian representation implicitly represents the curve as the zero level set

of an entire surface that is evolved to minimize a given energy function. Actually,

only the region nearby the zero level set needs to be evolved, as surface points distant

from boundary have no effect on the implicit curve. Therefore, for efficiency reasons,

generally only a narrow band of the surface is updated at every step [75]. Care must

be taken to assure that the band is updated so that the zero level set never leaves the

valid region. Narrow banding often results in a considerable computational savings, as

it effectively reduces the dimensionality of the problem back to that of the underlying

curve instead of the hyperspace.

The general framework of level set segmentation described here has been extended

in many ways, such as alternative regularization [68], texture models [80], global

intensity statistics [113], and pedal curve evolution [40]. Further descriptions of some

of these extensions can be found in Section 2.2.1.
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Figure 5-15: (a) The curve expected to be found in the image. (b) The image contain-
ing the shape to be segmented. (c) The same solid curve appears in three different
locations. Given that the target shape is known, the direction of evolution depends
on the position of the evolving curve with respect to the object. The dotted lines
show a later step in evolution given the curve's position and target shape.

5.3 Shape Priors and Geodesic Active Contours

Our first extension to level set segmentation involves incorporating the shape models

presented in Section 5.1 into the level set evolution process. Recall in that section, we

represent a curve as the signed distance map u, and perform PCA on a set of training

curves, resulting in an ability to approximate a shape by a k-dimensional vector of

eigen-coefficients, a. Given the eigen-representation and a probability distribution

over coefficients a, the prior shape information can be folded into the segmentation

process. This section describes adding a term to the level set evolution equation to

pull the surface in the direction of the maximum a posteriori shape and position of

the final segmentation.

5.3.1 Estimation of Pose and Shape

In addition to evolving the level set based on the curvature and the image term,

we include a term that incorporates information about the shape of the object being

segmented. To add such a global shape force to the evolution, the pose of the evolving

curve with respect to the shape model must be known (see Figures 5-15 and 5-16).
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Figure 5-16: Three steps in the evolution process. The evolving curve is shown in solid
blue superimposed on the image (top row). The curve is matched to the expected
curve to obtain a pdf over pose (bottom row). The next evolution step (based on
pose and shape) is shown as the dotted blue line.

Without an estimate of the pose, the shape model cannot adequately constrain or

direct the evolution. Therefore, at each step of the curve evolution, we seek to estimate

the shape parameters, a, and the rigid pose parameters, p, of the final curve using a

maximum a posteriori approach.

(5.27)(aMAPPMAP) = argmax P(a, p I u, VI)
alp

In this equation, u is the evolving surface at some point in time, whose zero level set

is the curve that is segmenting the object. The term VI is the gradient of the image

containing the object to be segmented. By our definition of shape and pose, the final

segmentation curve is completely determined by a and p. Let ?* be the estimated

final curve, which can be computed from a and p. Therefore, we also have

U*MAP = argmax P(u* u, VI) (5.28)
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Figure 5-17: The relationship between the distance map and the image gradient.

To compute the maximum a posteriori final curve, we expand the terms from Eq.

5.27 using Bayes' Rule.

P(u, VI I a, p)P(a, p) (5.29)
P(u, VI)

P(u I a, p)P(VI I a, p, u)P(a)P(p)

P(u, VI)

Note that the preceding step assumes that shape is independent from pose. Since

our current model does not attempt to capture the relationships between these two

quantities, this is reasonable. Future work may incorporate positional priors (and

relative positional priors between objects) into our shape model. We proceed by

defining each term of Eq. 5.29 in turn. We discard the normalization term in the

denominator as it does not depend on shape or pose.

Inside Term. The first term in Eq. 5.29 computes the probability of a certain

evolving curve, u, given the shape and pose of the final curve, 7t (or (a, p)). Notice

that this term does not include any image information whatsoever. Given our method

of initializing the curve with a point inside the object, it is reasonable to assume that

the curve should remain inside the object throughout the evolution. Therefore, if

the evolving curve lies completely inside the final curve, then it is more likely than

a curve that lies partially or fully outside the final curve. We model this term as a

Laplacian density function over Voutside, the volume of the curve u that lies outside
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the curve d*.

P(u I a, p) = exp (-Voutside) (5.30)

This term assumes that any curve u lying inside u* is equally likely. Since the initial

curve can be located at any point inside the object and the curve can evolve along

any path, we do not favor any such curve.

Gradient Term. The second term in Eq. 5.29 computes the probability of seeing

certain image gradients given the current and final curves. Consider the relationship

between u* and IVII when u* correctly outlines the boundary of the object (see Figure

5-17). Notice that the distance map u* is linear along the normal direction of the

curve at any boundary point, q, and u*(q) = 0. Furthermore, under the assumption

that the object boundary is a smoothed step edge, IVII approximates a Gaussian

along the normal at q. Therefore, we'd expect the relationship between IVII and

u* to be Gaussian in nature. Figure 5-17 shows an example scatter plot of these

quantities when u* is aligned with the object boundary. Let h(u*) be the best fit

Gaussian to the samples (u*, VII). We model the gradient probability term as a

Laplacian of the goodness of fit of the Gaussian.

P(VI I t*, u) = exp (-I h(?t) - IVII 2) (5.31)

Shape and Pose Priors. The last two terms in Eq. 5.29 are based on our prior

models, as described in Section 5.1.3. Our shape prior is a Gaussian model over the

shape parameters, a, with shape variance Ek.

1 / E \ ~ 5.2P(a) = exp (5.32)
(21r)k|Ek I

In our current framework, we seek to segment one object from an image, and do

not retain prior information on the a posteriori of the object appearing in a certain
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Figure 5-18: An illustration of the need for both the inside and image terms. (a) If
only the inside term is used, then any pose inside the object would be equally likely.
(b) If only the gradient term is used, the curve could fall outside the object. (c) When
both terms are combined, the PDF over pose provides a better result.

location. Thus, we simply assume a uniform distribution over pose parameters, which

can include any type of transformation, depending on application.

P(p) = U(-oo, oc) (5.33)

Currently we are modeling translation and rotation. We feel, however, that positional

priors could provide a rich source of information to explore in the future, especially

when segmenting multiple objects from a single image that may have clear prior

relative poses, or when a distribution over pose in a fixed image-based coordinate

system is known.

These terms define the maximum a posteriori estimator of shape and pose, which

estimates the final curve or segmentation of the object. For efficiency, these quan-

tities are computed only in a narrow band around the zero level set of the evolving

surface, and the MAP pose and shape are re-estimated at each evolution step using

simple gradient ascent on the log probability function in Eq. 5.29. While each ascent

may yield a local maximum, the continuous re-estimation of these parameters as the

surface evolves generally results in convergence on the desired maximum. Next, we
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(the MAP pose and shape)
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(based on image and model)

Figure 5-19: Diagram of the Registration / Segmentation "closed loop" of the algo-
rithm. At each step, a rough estimate of the final curve and shape is computed (7),
and then the evolving surface u is updated based on local image information and the
global shape and pose.

incorporate this information into the update equation commonly used in level set

segmentation.

5.3.2 Evolving the Surface

Initially, the surface, u, is assumed to be defined by at least one point that lies inside

the object to be segmented. Given the surface at time t, we seek to compute an

evolution step that brings the curve closer to the correct final segmentation based on

local gradient and global shape information (see Figure 5-19).

The level set update expression shown in Eq. 2.12 provides a means of evolving the

surface u over time towards the solution to the original curve-minimization problem

stated in Eq. 2.10. Therefore, the shape of the surface at time t+1 can be computed

from u(t) by:

u(t + 1) = u(t) + A1 (g (c + r) jVu(t) I + Vu(t) - Vg) (5.34)

where A1 is a parameter defining the update step size.

By estimating the final surface ?t at a given time t, (Section 5.3.1), we can also
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Figure 5-20: Illustration of the various terms in the evolution of the surface, u. The
surface 7t, is the maximum a posteriori (MAP) final shape. To update u, we combine
the standard gradient and curvature update term, v, and the direction of the MAP
final shape, ?t - u.

evolve the surface in the direction of the maximum a posteriori final surface:

u(t + 1) = u(t) + A2 (u*(t) - u(t)) (5.35)

where A2 E [0, 1] is the linear coefficient that determines how much to trust the

maximum a posteriori estimate. Combining these equations yields the final expression

for computing the surface at the next step.

u(t + 1) = u(t)+Al (g (c + ) JVu(t)| + Vu(t) -Vg)

+A2 (*(t) - u(t)) (5.36)

Figure 5-20 illustrates this evolution. The two parameters A, and A2 are used to

balance the influence of the shape model and the gradient-curvature model. The

parameters also determine the overall step size of the evolution. The tradeoff between

shape and image depends on how much faith one has in the shape model and the

imagery for a given application. Currently, we set these parameters empirically for a

particular segmentation task, given the general image quality and shape properties.

The original evolution equation (Eq. 5.34), to which we added the shape influence

term, was derived from an energy minimization expression (Eq. 2.10). We are cur-
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Figure 5-21: Several time steps in the curve evolution process of segmenting the hand.
The red curve is the zero level-set of the evolving surface. The green curve is the next
step in the curve evolution. The magenta curve is the maximum a posteriori estimate
of the position of the final curve.

rently exploring ways of adding a "shape energy" term to the curve integral in Eq.

2.10, and then deriving the complete evolution equation using Euler-Lagrange, instead

of adding the shape force after the fact. In this new framework, both processes will

be fused into a single energy minimization. One difficulty is that the curve integral

is inherently local and does not require any notion of correspondence, whereas global

shape information involves the comparison of a shape to a model, in correspondence.

We have tested the segmentation algorithm on synthetic and real shapes, both in

2D and in 3D. For controlled testing, a training set of rhombi of various sizes and

aspect ratios was generated to define a shape model. Test images were constructed by

embedding the shapes of two random rhombi with the addition of Gaussian speckle

noise and a low frequency diagonal bias field. Figure 5-22 illustrates several steps in

the segmentation of the synthetic objects. In the first frame of each trial, the small

red circle represents the initialization point. The yellow curve illustrates the MAP

shape and pose at each time step. The final segmentations are shown in the last

frames.

Segmentation experiments were performed on 2D slices of MR images of the femur

and corpus callosum (Figures 5-23 and 5-24). For the femur experiments, the training
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Figure 5-22: Several time steps in the curve evolution process of segmenting two
rhombi. The training set for the rhombus consisted of rhombi of various sizes and
aspect ratios. The red curve is the zero level set of the evolving surface. The green
curve is the next step in the curve evolution. The yellow curve is the MAP estimate
of the position and shape of the final curve.

set consisted of 18 nearby slices of the same femur, leaving out the slice being seg-

mented and its neighbors. In both femur examples, the same initialization point was

used to seed the evolution. As the curve evolves, the maximum a posteriori estimator

of shape and pose locks into the shape of the femur slice.

The corpus callosum training set consisted of 49 examples like those in Figure

5-7. The segmentations of two corpora callosa are shown in Figure 5-24. Notice that

while the MAP shape estimator is initially incorrect, as the curve evolves, the pose

and shape parameters converge on the boundary. The segmentations of the femur

slices and the corpora all converged in under a minute on a 550 MHz Pentium III.

The vertebrae example illustrates the extension of the algorithm to 3D datasets.

Figure 5-25 illustrates a few steps in the segmentation of vertebra T7. The training

set in this case consisted of vertebrae T3-T9, with the exception of T7. The initial

surface was a small sphere placed in the body of the vertebra. The red contour is a

slice through the zero level set of the evolving hyper-surface. The yellow overlay is

the MAP pose and shape estimate. Segmenting the vertebra took approximately six

minutes.

To validate the segmentation results, we compute the undirected partial Hausdorff

distance [47] between the boundary of the computed segmentation and the boundary
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Figure 5-23: Initial, middle, and final steps in the evolution process of segmenting
two slices of the femur. The training set consisted of 18 nearby slices of the same
femur, leaving out the slice being segmented and its neighbors.

Figure 5-24: Four steps in the segmentation of two different corpora callosa. The
last image in each case shows the final segmentation in red. The cyan contour is the
result of the standard evolution without the shape influence.

of the manually-segmented ground truth. The directed partial Hausdorff distance

over two point sets A and B is defined as

hK(A,B) = Kth minIa - bl I
aEA bEB

(5.37)

where K is a quantile of the maximum distance. The undirected partial Hausdorff

distance is defined as

HK(A, B) = max(hK(A, B), hK(B, A)) (5.38)

The results for the corpora and vertebra shown in Table 5.1 indicate that virtually
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Figure 5-25: Early, middle, and final steps in the segmentation of the vertebra T7.
Three orthogonal slices and the 3D reconstruction are shown for each step. The red
contour is a slice through the evolving surface. The yellow overlay is a slice through
the inside of the MAP final surface.

K Corpus 1 Corpus 2 Vertebra
95% 1.3 mm 1.5 mm 2.7 mm
99% 1.6 mm 2.0 mm 4.4 mm

Table 5.1: Partial Hausdorff distance between our segmentation and the manually-
segmented ground truth.

all the boundary points lie within one or two voxels of the manual segmentation.

5.4 The Inclusion of Intensity Models

The previous sections established a shape model that can be used in conjunction

with the surface evolution to direct the segmentation. Intensity information has so

far been included only as the classical heuristic of high gradients at the boundaries.

Since our shape model already requires training data, we seek to establish a prior

intensity model to further aid in segmentation.

Cootes, et al. extended their Active Shape Models [16] to Active Appearance

Models [18] to strengthen the intensity model. Yet, recall that their approach re-

quires point-wise correspondences throughout the training data, which is what we

ideally prefer to avoid. The appearance models include intensity samples at shape

normalized positions in the image. The shape normalization is computed from the
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Figure 5-26: The top image is the target. The bottom five images illustrate steps in
the minimization process where the combined shape and intensity model computes
the best fit over the target image. Notice that the intensity values and the shape
change as the model is fit.

correspondences.

Even without explicit point-wise correspondences and a priori shape normaliza-

tion, we attempt to include grayscale information by adding the samples to the linear

model. Originally, the i'th training example was represented by the distance map ui.

In this framework, samples of the intensity image Ii are placed in a vector vi, and

both are combined into one larger vector as our representation:

zi= u] (5.39)

The Gaussian model is built as before (see Chapter 3), but now the vector eigen-

coefficients, &, represent both the shape and the grayscale intensities. If Uk is the

matrix consisting of the first k eigenvectors, then the reconstructed information is

computed from a as follows:

[I i = Uk a +, (5.40)
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Figure 5-27: This example illustrates how averaging distance maps is more robust to
misalignment than averaging grayscale. Two example corpora are shown in (a) and
(b). The zero level set of the average of the distance maps is shown in (c). Image (d)
shows the average of their intensities with the average contour superimposed.

where fi is the reconstructed "distance" surface, and i holds the reconstructed grayscale

intensities.

When segmenting a novel image, we still compute the most likely pose and shape of

the model, and then evolve the curve as described in the previous section. The inten-

sity model is incorporated when computing the maximum a posteriori pose and shape.

Instead of a gradient-based image term (Eq. 5.31), we compute the sum of squared

differences between the observed image I under the pose p and the expected inten-

sity vector it computed from the current a. Thus, the model fitting stage searches

over the eigen-coefficients to find the best match of shape and intensity. Figure 5-26

illustrates a novel image and the shape + intensity model fitting to the image.

When the model appropriately captures the intensity variance, the matching pro-

cess benefits from the richer model. However, there is a flaw in this approach to

incorporating grayscale information. While the distance map is robust to slight mis-

alignment, the intensity information is not, which causes blurring and unrealistic

images when the intensities are combined. Figure 5-27 illustrates the problem with
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Figure 5-28: Problems with including intensity information with the distance-map
shape model. LEFT: The distance values are high in magnitude and the modes are
not affected by the addition of intensity information, but the intensity reconstructions
are not consistent. RIGHT: The intensity values are scaled higher relative to the
distances, which adversely affects the shape model as well.

averaging (or more generally, combining) grayscale images that are not aligned. This

is similar to the alignment problems in the original EigenFaces paper [99].

We further explore the problems with combining unregistered intensity values

by looking at the primary modes of variance of the shape/intensity model. Figure

5-28 illustrates some of these issue. Note that when building the model, we are

concatenating distances and intensities in the same vector, which implies an weighting

factor between them. When the distances are given greater weight, the shape model

is not significantly affected by the intensities not being in correspondence, but does

lose fidelity when the intensity influence is increased.

We have also considered using the distance maps to warp all the intensity sam-

ples into a consistent coordinate system before including them in the state vector.

This effectively boils down to making a hard decision on correspondences (albeit au-

tomatic). When this approach is used, correspondence errors cause very noticeable

artifacts in the reconstructions when a sharp intensity edge is slightly misaligned after

being warped. Aiming to keep the robustness to correspondence, we abandon this

technique of building an intensity model, and consider a slightly less rich, but more

robust method.
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Figure 5-29: (a) Statistical dependency of node samples of the surface U and pixels of
image I. (b) The directions of the normal and tangent of U are shown at the position
x. The contour curve of height U. is drawn.

5.5 Statistical Image-Surface Relationship

Given an image I(x), the segmentation problem involves finding the closed curve C

that lies along the boundary the object of interest in the image. We define a surface

U as the signed distance function to the curve C. Therefore, U(x) is both the height

of the surface U at the position x and the signed distance from x to the nearest point

on the curve C. Instead of estimating the position of C directly, we estimate the value

of U at every position x in the image. Once U is computed, the boundary of the

object is found by extracting the zero level set of U.

We define a statistical dependency network over the surface U and the image I.

To estimate the value U. of U at a certain position x in the image, we maximize

P(Ux I I, U\Ux), namely the probability of the height of the surface at that point,

given the entire image and the rest of the surface. This expression is difficult to model,

given all the dependencies. We therefore simplify the problem to a Markov network

with only local dependencies. The links of the nodes in Figure 5-29a represent the

dependencies considered. We assume the height of the surface at a certain point

depends only on the intensity value of the image at that point, and the neighboring
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heights of the surface. This assumption can be expressed as:

P (Ux I I, U\U.) = P (Ux I Ix, UK(x)) (5.41)

where K(x) is the neighborhood of x.

Using properties of our network, we derive an expression for the above probability

consisting of terms we will estimate from a set of training data.

P(U I, U(x)) = P , I, U()) (5.42)
P(IXI U(x))

P(Ix, Ux) P(U, Ix, UA((x)) (5.43)
P (Ixi UA((x) ) P (Ixi Ux)
P (IXI UX)

' I U(x P (UA(x) I Ixi Ux) (5.44)

P(Ix, Ux)P(U(x) I Ux) (545)
P (Ix, UN(x) )

The definition of conditional probability is used in Equations 5.42 and 5.44, and we

are multiplying by the identity in Equation 5.43. In the final expression, we note that

when conditioned on U, the heights of the surface at neighboring locations do not

depend on Ix.

The first term in Equation 5.45 is the image term, that relates the intensity and

the surface at x. The next term relates the neighborhood of U about x to U., and will

act as a regularization term. The following two sections describe a means of estimating

these functions based on prior training data. The denominator of Equation 5.45 does

not depend on U,, and thus is ignored during the estimation process.

5.5.1 Intensity Model

We define a joint distribution model, P(i, d), that relates intensity values, i, to

signed distances d, based on a set of training images and training segmentations. Let

{ 1, I2, . .. , I,} be a set of images of the same modality containing the same anatom-

ical structure of various subjects and {C 1, C2 ,... , C,} be the set of corresponding

segmented boundary curves of the anatomical structure. Let Uj be the signed dis-
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Figure 5-30: Top: One example of each of three training sets of random ellipses
under different imaging conditions The red contour shows the boundary of the object.
Bottom: The joint intensity/distance-to-boundary PDF derived from the training
set. Left and right of the white vertical line indicates the intensity profile inside and
outside the object respectively.

tance map to the closed curve C3. The training set T, is a set of image-surface pairs,

T = {(I, U), ... , (In, Un)}. We use a Parzen window density estimator with a Gaus-

sian windowing function to model the joint distribution. The PDF is the mean of

many 2D Gaussians centered at the positions (Ij (x), U (x)) for every pixel in every

training image:

/ ' 2 a

P(i, d) = A.. ed\ 2, r 2 / (5.46)
j=1 xEX

where X is the set of all positions in the image, ai and ad are the variances of the

Parzen kernel, and the normalization factor Z = (27ruUdnJX)- 1.

Figure 5-30 illustrates the estimated joint probability density functions for random

ellipses with various contrast scenarios. Notice that Ellipse A can be easily segmented

using a gradient based method, but cannot be thresholded, as the intensity distribu-

tion inside and outside the object overlap significantly. On the other hand, simple

gradient methods would fail to extract Ellipse B due to high texture, while a single

intensity threshold isolates the object. Neither scheme would work for Ellipse C, as

higher level knowledge is required to know which edge is the correct boundary.
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Figure 5-31: Top: One example of each of four training sets of objects. Middle: The
joint intensity/distance-to-boundary PDF derived from the training set. Bottom: The
curvature profile of each object class. Notice that the ellipse class has only positive
curvature.

Figure 5-31 illustrates the estimated joint PDFs for the corpus callosum and slices

of two acquisitions of the femur. In the sagittal scan of the femur (Figure 5-31d),

the dark layer around the brighter, textured region is cortical bone, which gives

essentially no MR signal. Without prior knowledge of the intensity distribution of

the entire femur, the cortical bone could easily be missed in a segmentation. However,

by training a joint distribution over intensity and signed distance, we generate a PDF

that encodes the fact that the dark region is a part of the object. This example is

similar to the synthetic ellipse in Figure 5-31a.

5.5.2 Curvature Model

Boundary detection methods commonly use a regularization term to uniformly pe-

nalize regions of high curvature, independent of the structure being segmented [52,

9, 113]. Our goal is to use the term P(Ug(.) I U,) as a local regularizer, but one that

can be estimated from a set of training data, and thereby tuned to the appropriate

application. One method of modeling this function is to create a 5D Parzen joint PDF
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over U, and its four neighbors. A drawback of this approach is that a 5D space is

difficult to fill and thus requires many training samples. Furthermore, the neighbor-

hood depends on the embedded coordinate system, and would give different results

based on the pose of the object in the image (consider a square aligned with the axes

versus one rotated by 450). Therefore, instead of considering the four neighbors (two

horizontal and two vertical) in the "arbitrary" embedded coordinate system, we use

four (interpolated) neighbors in the direction of the local normal (h) and tangent (^)

to the embedded curve (see Figure 5-29b). In other words, we reparameterize to an

intrinsic coordinate system based on the surface:

P(Ug(x) lUx) = P(U+,Uh-,U+,U-1Ux) (5.47)

= P(Uh+,Uh-,Uj+,U;-JUX) (5.48)

= P(UI+, Ut- IUX)P(U+, UI UX) (5.49)

The last step makes the assumption that the neighbors in the normal direction and

those in the tangent direction are conditionally independent given Ux.

We now seek to model the quantities in Eq. 5.49 based on properties of U and

the boundary to be segmented. While U is considered to be a finite network of nodes

and Ux a particular node, we define u(x) to be the analogous continuous surface over

x. Given u, the unit normal and unit tangent to the underlying level set are defined

as [93]:

Vu _ 1 [ux
t= VU u u (5.50)

_ = (5.51)

We now consider the values the first and second partial derivatives of u in the direc-

tions of the tangent and normal. We first evaluate the second-order Taylor expansion
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of u in the direction of w:

u(x+w) = u(x)
Ou

xA w
9x

A2 TO2
+ - 2 w +

2 ax2
(5.52)

We compute a general expression for derivatives of u at x in the direction of w:

Ou
Ow

imU(x + Aw) - u(x - Aw)
A-40 2A
Ou
-W
ax

And the second derivative:

Ow 2

u(x + Aw) + u(x - Aw) - 2u(x)

A2

02u
w _wOX2

Using these general expressions, we compute the first partial in the direction of ft:

au _ u
-= -n

On x

[u2 u,]

= (u 1-u

= 2+ u

= vul

UI[
It is not surprising that a = IVul, given that n by definition lies

the gradient.

in the direction of

When u is a signed distance map, = IVul = 1. Now consider the

first derivative in the direction of the tangent:

Ou au
-= -t

Ox

[lux us]

=0
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As expected, effectively dotting the tangent and normal yields a derivative of zero.

More interestingly, we consider the second derivatives:

O2 = n -n (5.64)

1 X F uxx uxy U (5.65)
2~ + U2[u 1

= 2 EUX 29 5.5

+ U2u +(5.66)
uX +

We derive the value of the above expression under the special case when u is a distance

function (or constant multiple thereof):

2 2

= s + =

8 (U2 +2u) = C ( U2 + U2) = c

2uxuX + 2uYUXu = 0 2uxux + 2uuy, = 0

usttxx + uxuyuxy = 0 uXuu2 + u u = 0

UXXU + 2ux uY + YY = 0

where the last line is the result of summing the two equations from the previous

line. Therefore, j = 0 when u is a constant multiple of a distance function. The

final expression we consider is the second derivative in the direction of the tangent,

which we will show is related to the curvature of the underlying level set. Recall the

curvature of the level sets can be computed from the surface u by:

UXU2 -2uuuX + UYU2

r= 2 uyyux3(5.67)

With this equation for curvature in mind, we turn to computing the second derivative

of u in the tangent direction:

t= t (5.68)
aj2 19x 2

1 [ uxx uxy iF -uy (5.69)
u2 [-un Ux] ( I.69X YUXY UYY IL
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Su2u 2 - 2uxuzuY + UYY (7
Y Y X.(5.70)

u2 + U2

= r (u + U ) (5.71)

Note that in cases where u is a signed distance map, 9 = K.

In summary, here are the values of the first and second partial derivatives of u

in the tangent and normal directions under the assumption that the surface u is a

continuous signed distance map:

o9u 0u 0=u 1 au = 0

(5.72)

af,2 = 0;7 = K

We can now use this information about the ideal distance map and underlying

curvatures to regularize U at x. Consider the formulas for (centered) finite differences

of an arbitrary ID function.

df(x) f(x+t)-f(x-t) (573)
dt 2t

d2f(x) f(x +t)+ f(x -t) - 2f(x)
dt 2  2 (5.74)

Notice that f(x) does not appear in d , indicating that changing f only at one

position at a time cannot change the local slope. However, changing f(x) does directly

affect the second derivative.

We define the likelihood of the neighbors in the normal direction to be:

P= exp ((Un+ +U2 X)) (5.75)

where Z1 is a normalization factor and -1 determines the strength of the constant-

normal-direction constraint. This has the effect of keeping the gradient magnitude of

the surface constant (however not necessarily 1), preventing the surface from evolving

arbitrarily. Typically one needs to extract the zero level set and reinitialize the dis-

tance function from time to time during the evolution. This direction of regularization
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reduces the need to reinitialize the surface.

As for the likelihood of the neighbors in the tangent direction, we seek an ex-

pression that takes into account the curvature profile of the training data. A convex

shape, for example, has non-negative curvature everywhere, so if the training set con-

sists of all convex shapes, the level sets of the surface should stay convex throughout

the estimation. The fact that a polygon has bi-modal curvature (0 and oo) could be

used to define a polygon-finder, if the surface can be constrained to match the distri-

bution of curvatures of the training set. For each training surface, Uj, we compute a

curvature map Kj using Equation 5.67. We then define a PDF which encourages the

curvature as reflected in the discrete differences (U;+ + Uj_ - 2U,) to be consistent

with curvatures observed in the training data (Kj (x)). The PDF is derived using

Parzen windowing, similar to the intensity PDF defined in Section 5.5.1.

I n I|I(Uj+ + U-_ - 2Ux) - Kj (X) 112
P(U;., U;_IUx) = Z (5.76)

Z2 j=1 xEX 2

The third row of Figure 5-31 shows the curvature profile of training sets of various

objects.

In summary, the regularization of the surface is broken down into a regularization

in the local normal and tangent directions. The second derivative in the normal

direction is modeled as a zero mean, low variance Gaussian to keep the surface linear

in that direction. A distribution over the second derivative in the tangent direction

(e.g. the curvature of the level sets) is derived from the training data and used as an

object-specific curvature regularization term.

5.6 Surface Estimation

In the previous section, we defined a model of the embedding surface of the boundary

that we wish to estimate given a novel image. Starting with an initial closed curve, we

build the higher dimensional surface by computing the signed distance to the curve

at every point. Given the prior model and the image, the height of the surface at
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location x is related to the image intensity at x and the local neighborhood of the

surface by the following equation:

P (UX I I., U,(x)) Oc P(IxI UX) P (U;+, Ui_ I UX) P (Uh+,I Uft- IUX) (5.77)
Image Term Curvature Term Linearity Term

We use this equation to re-estimate each surface point independently, maximizing its

log probability while assuming the rest of the surface is constant.

UT = max log P(U. I I, Ug(x)) (5.78)
U.

Instead of finding the global maximum of the PDF for each U, we adjust Ux in the

direction of increasing probability towards the local maximum by differentiating the

log probability in Equation 5.77. At each time step, Ux is updated as:

Ux = Ux + ADx (5.79)

where D is defined at every point x by

d
DX = d log P(UX I Ix, Ug(x)) (5.80)

dU,
d d

- d log P(I, UX) + d log P(Ui+, U- I UX) (5.81)
dUx dUx

d
+ d log P(Uii+, Uh- IUX)dUx

This update is repeated until there is little change in the surface. While small, local

oscillations in the surface can occur if the step size A is too high, in practice, an

empirical value of A can easily be found such that the surface evolves in reasonable

time without oscillations.

The image and curvature terms in Eq. 5.81 are derived from the training set using

a Parzen density estimator. Therefore, the derivative of the log is computed by taking

the gradient of the sampled probability in the direction of Ux. Figure 5-32 illustrates

these gradients. The linearity term is not based on training data, and thus can be
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Figure 5-32: Top Row: The joint intensity vs. distance PDF and the curvature PDF
from the synthetic image in Figure 5-31a. Bottom Row: the (partial) derivatives of
the PDFs.

cleanly differentiated analytically:

d
d log P (U f+, U -IU )dUx

d= k (Uj+ + Ui- - 2Ux)2
dUx

= -4k (Ui+ + Uf- - 2Ux)

which has a minimum when Ux = 1 (Uf,+ + Uf,-) which implies that the second deriva-

tive in the normal direction is zero. The linearity regularization term that acts on the

surface in the direction normal to the level set keeps the gradient magnitude locally

constant, but in general the surface does not remain a true distance function. We

therefore extract the boundary and reinitialize the distance map when the gradient

magnitudes stray from 1. The regularization term greatly reduces the need to reini-

tialize, but it does not eliminate it. Typically reinitialization occurs once or twice

during the segmentation, or about every 50 iterations.
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(b)

(c)

(d)

Figure 5-33: The results of segmenting various ellipses. Each group consists of the
initial, middle, and final steps in the evolution with the zero level set of the surface
overlaid. In each case, the training set consisted of random ellipses with similar
rendering. A balloon force was added only for (a) as described in the text.

For efficiency, traditional level set based evolutions do not evolve the higher di-

mensional surface at every point over the image, but just in a narrow band around the

boundary of the object [9]. As most level set segmentation methods are equivalent

to curve energy minimization, the band size should not affect the results. Banding in

this way can also be applied to our method of surface estimation, but clearly anything

outside the band would not contribute to the surface estimation. In the 2D examples

presented here, banding was not used, but for efficiency, banding will most likely be

a necessity when the method is extended to 3D segmentation.

Some level set segmentation methods require a balloon force be added to the

evolution when the initial curve is placed inside the object [9]. This is due to the

fact that the regularization term by itself will shrink the evolving curve to a point

if the boundaries are not close enough to the edge. A balloon force counteracts
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Figure 5-34: Initial, middle, and final steps in the segmentation two corpora callosa.
The training set consisted of 48 other corpora callosa with the same MR imaging
parameters. The cyan curve in the last frame of each is the manually-segmented
ground truth.

the regularization force and pushes the curve outward. In our method, a balloon

force is generally not necessary even when starting only from inside the object, as the

intensity vs. distance distribution will force the curve to grow or shrink as appropriate.

However, in cases where the intensity distribution inside and outside the object are

very similar (e.g. Figure 5-30A), only a force at the boundary is felt, which may not

be strong enough to pull the zero level set to the edge. For cases such as this, a

balloon force can be added to the system to force the expansion.

We report results of testing this method on synthetic data and 2D slices of MR

data. Three sets of ellipses were used to test the algorithm under varying contrast

conditions. In each case, a training set of 25 random ellipses was generated and used to

derive the intensity and curvature model. A novel random ellipse was generated using

similar rendering for segmentation. Figure 5-33 shows the results of the segmentation.

In the top row, there are two starting curves for the ellipse with the strong edge. In

the first case only, (a), a small balloon force was required to push the curve outward,

as described above. In case (b), the initial curve crossed the edge, so no balloon force

was necessary. Figure 5-33c-d show the segmentations of the other two renderings.

In (d), both the interior bright region and the dark boundary are included in the

segmentation due to the prior intensity model, consistent with the training images.

The segmentations of two corpora callosa are shown in Figure 5-34. The training

set consisted of 48 segmented corpora callosa. Notice that the intensity distribution
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Figure 5-35: Initial, middle, and final steps in the 2D segmentation two acquisitions
of the femur. In each case, the training set consisted of the ten neighboring slices of
the test slice. The cyan curve in the last frame of each is the manually-segmented
ground truth.

in Figure 5-31b is consistent and compact, despite the large number of images. The

cyan boundary in the final frame shows a manual segmentation of each corpus. Due

to the topological invariance of the level set method, the contours grow, shrink, com-

bine, and split to reach the final segmentation. The algorithm is generally robust to

initialization, as long as some portion of the object lies inside the initial curve.

Figure 5-35 shows the segmentation of two slices of femurs from two different MR

acquisitions. In each case, the training set consisted of the ten neighboring slices of

the test slice. In the axial slices (a), the surface evolves such that the zero level set

converges on the boundary of the femur. Notice that in the third image, the two dark

spots in the femur create a "snag" for the zero level set as the distances for the dark

intensities are much more likely to be outside the object. However, the neighborhood

term distributes the information and pulls the region inside the object. Also note

that there are other regions in the image with intensity values in the range of those

inside the femur. One such region can be seen surrounded by the boundary in the

lower left area of the third frame. Again, the neighboring information and curvature
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Figure 5-36: Illustration of the various terms in the evolution of the surface, u. The
surface 7t, is the maximum a posteriori (MAP) final shape. To update u, we combine
the local image and curvature update term, D(x), and the direction of the MAP final
shape, zt*- u.

prior cause this region to correctly be left out of the segmentation.

The sagittal slice of the femur in (b) illustrates both a strength and a weakness

of the method. The final boundary successfully captures both the marrow inside

the bone and the dark region of cortical bone at the boundary. Furthermore, the

segmentation excludes the cartilage, which is the mid-tone semi-circular strip at the

bottom of the image. However, the boundary does leak into the muscle located in

the upper left as the intensities very closely match those of the interior of the femur.

Using a texture measure in addition to the intensity could prevent this leakage.

5.7 Unifying the Statistical Segmentation Models

The preceding sections separately describe the use of global shape models and local

intensity and curvature models for segmentation. Thus far, the global shape model

introduced in Section 5.3 only uses local gradient information to evolve the surface,

but does not use any local priors. The local priors described in Section 5.4 comprise a

much stronger intensity model than simply using gradients, allowing for more distant

initializations of the curve and faster convergence. However, when using only local

priors, other structures nearby with similar intensities, such as the fat next to the

femur or the fornix next to the corpus callosum, may be included in the segmentation.
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Figure 5-37: Segmentation of two axial slices of the femur. The red curve is the zero
level set of the evolving surface, U. The magenta curve is the zero level set of the
MAP estimate U*.

The combination of the global shape model and the local intensity and curvature prior

in one framework yields an algorithm more robust to noise and intensity overlap.

The final update rule for the surface U(x) is derived from the local priors in

Eq. 5.79 and the global shape influence in Eq. 5.35:

Local Term

U.w(x) = U(x) + A1D(x) + A 2 (U*(x) - U(x)) (5.84)

Global Shape

The choice of A, and A2 determine the tradeoff between the local and global terms

and the step size of the iteration. Thus far, values for these parameters have been

chosen empirically. In our experiments, we have found that the local models generally

capture the intensity and curvature profiles well, and thus there is a large range (1-2

orders of magnitude) of A, values that work well, and primarily affect only the speed

of the evolution. The algorithm is more sensitive to the choice of the A2 parameter

mainly because the U* estimate can be quite noisy early in the evolution process.

One approach to choosing A2 which showed promise in our initial experiments is to

have A2 be a function of the goodness of fit in estimating U*. Clearly, when there is

confidence in the estimate of U*, the influence should be higher, so A2 is increased.
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Figure 5-38: Six steps in the segmentation of a corpus callosum using the combined
algorithm. The red curve is the zero level set of the evolving surface, U. The magenta
curve is the zero level set of the MAP estimate U*. The blue curve in the final frame
is a result of segmenting the corpus with the local intensity and curvature term,
but without the shape prior. The strength of the local and global priors make the
algorithm insensitive to the choice of the initial curve.

Unfortunately, as often is the case with selecting evolution step sizes, this approach to

selecting the parameters may seem a bit ad hoc. In Chapter 6, we discuss future work

in attempts to fuse the local intensity and global shape influences more naturally in

to one process.

Results of the unified segmentation algorithm are shown for axial slices of the

femur in Figure 5-37. The initialization consists of the five red circles covering the

image. Notice how the red curve evolves as the magenta curve changes pose and

shape to localize the femur. Notice that our segmentation algorithm actually returns

two answers: the final evolving curve U and the final model estimate U*. In the cases

illustrated here, U and U* usually converge to within a pixel of one another. We report

the curve U as the final answer, due to the fact that our global shape model may

not always have enough degrees of freedom to capture pixelwise (or sub-pixelwise)

fluctuations in the boundary. Even though the final U is reported as the label map,

the final U* can provide the user with important information. Since U* is restricted

to only feasible shapes from the prior model, if there is a large discrepancy between

the two surfaces at convergence, this can indicate one of two important occurrences:

(1) the segmentation algorithm may have been distracted by noise or other objects in

the image and may have converged on the incorrect boundary, or (2) the anatomical
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Figure 5-39: A plot comparing the automatic segmentation of 50 corpora callosa to
the variability found between two manual segmentations. On manual segmentation
(in magenta) was chosen as the ground truth. The cases were sorted by the automatic
segmentation, shown in blue, with corresponding second manual segmentation shown
in red.

structure in the image may have some type of pathology that had not been previously

observed when building the shape model.

Figure 5-38 illustrates the results of segmenting the corpus callosum from an MR

image using both the local and global priors. Again, the red curve was initialized

using a grid of circles distributed over the image, and evolves during the segmentation

process. The magenta curve gets pulled towards the object boundary and influences

the evolution. The blue curve in the final image is the result of segmenting the

corpus without the global shape prior. The bright protrusion captured by the blue

curve is an anatomical structure called the fornix that has an intensity profile almost

identical to that of the corpus callosum. Therefore, no algorithm using only local

intensity information would be able to detach that structure from the corpus callosum.

However, using the global shape model, the protrusion is extremely unlikely and is

eliminated from the final segmentation.

In order to evaluate the algorithm, fifty corpora callosa were segmented and com-
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pared to manual segmentations. A "leave-one-out" cross-validation method was used,

in that each image being labeled was left out of the training set in turn. Two sets of

manual segmentations were performed on the fifty images. The first set is considered

ground truth and the second set is used to show the amount of variance typically

found when manually labeling the boundaries of objects. Since the corpus callosum

is a very narrow structure, comparing segmentations via volume overlap can be mis-

leading, as a disproportionate fraction of the voxels lie on the boundary. Therefore,

the Hausdorff metric [47] previously described in Equation 5.38 is again chosen to

compare segmentations. The results of the segmentations are shown in Figure 5-39.

Notice that the automatic segmentation performs comparably to variance found in

manual outlining. In five of the cases, the automatic segmentation did not completely

extract the correct boundary due to confusion with a thin band of bright white matter

adjacent to the corpus callosum, causing the higher errors. However, in two of those

cases, the operators also disagreed on the segmentation, indicating the difficulty in

extracting the exact boundary. Overall, the segmentation algorithm performed well

and was insensitive to the initial starting curve, and showed robustness to the noise

and other structures present in the images.

5.8 Summary

This chapter explored methods of incorporating both local and global prior knowledge

into the process of medical image segmentation. Representing shape variation across

a population of objects can be quite difficult due to issues of correspondence between

the training shapes. One approach to the correspondence problem is assume that it

has been solved, and that either dense flow fields [49] or corresponding feature points

[16] have already been identified. Automatically computing accurate correspondences,

especially in three dimensions, is still an open research problem. The other extreme

is to ignore correspondences even though the representation cannot truly handle any

misalignment, as in Eigenfaces [99], which can detract from the accuracy of the model.

We have proposed using the signed distance function as a representation of shape
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since the boundary information is propagated spatially without loss of fidelity, which

provides robustness to slight misalignments in the training set, without requiring full

correspondence.

To incorporate intensity information, we derived a model that relates intensity

and distance to the object, which captures the intensity profile inside, outside, and at

the object boundary. An object-specific local curvature model was also developed and

folded into the segmentation process, eliminating the need to hand craft the boundary

smoothness term as is traditionally done. The distance surface estimation using

the local terms effectively combine the boundary detection and voxel classification

methods of segmentation. The global shape influence is effectively an atlas-matching

approach. The complete framework therefore unifies three common approaches to

segmentation.

138



Chapter 6

Conclusions and Future Work

We have presented novel registration and segmentation algorithms that incorporate

prior information via statistical models derived from training data. The prior models

provide application-specific context to help direct the search process towards the best

solution. The algorithms and results we have presented suggest various directions of

future work, in both the registration and segmentation domains.

6.1 Joint Intensity Registration

The multi-modal registration technique using joint intensity priors has demonstrated

sub-voxel accuracy and large region of convergence. To date, we have tested this

registration algorithm only on MR images, but here is interest in acquiring more

datasets of different modalities, including MR Angiogram, CT, and PET to further

examine this registration technique.

Another area of further investigation is to include additional statistical models

to the current framework. Non-linear bias fields present in the MR data can cause

mismatches in intensity histograms between the training and test images. Registra-

tion using a prior on joint intensity information can be sensitive to these differences.

Thus, there is interest in integrating the statistical intensity correction work of Wells,

et al. [108] into this registration technique to both provide a more reliable intensity

correspondence between training and test data, and perhaps assist in the process of
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segmenting the anatomical structures in the images.

Additional information such as prior knowledge of the shapes or relative positions

of internal structures may help in the multi-modal registration process. Such infor-

mation certainly aids in segmentation, by offering guidelines such as what structures

are most likely to appear next to other structures. Given that segmentation and reg-

istration are related in that the knowledge of one greatly assists in the computation

of the other, this would imply that the addition of these types of priors may also

assist in registration.

6.2 Segmentation using Statistical Priors

We presented a means of incorporating prior knowledge into the geodesic active con-

tour method of medical image segmentation. The shape representation of using PCA

on the signed distance map was chosen with the intention of being robust to slight

misalignments without requiring exact point-wise correspondences. Our extension to

active contours that estimates the model parameters and then evolves the curve based

on that estimation provides a method of robustly converging on the boundary even

with noisy inputs. The representation and the curve evolution technique merge well

together since the evolution requires a distance map of the evolving curve, which is

inherent in the shape model. However, these two modules need not be coupled. A

different statistical shape model could be tied into the evolution method, or a different

method of model-based matching could be used with the proposed shape model.

6.2.1 Representing Shape Variation

In the analysis of shapes presented in this thesis, an n x n distance map is repre-

sented as a point in Rn2. However, most points in Rn 2 are not valid distance maps.

Furthermore, the set of all distance functions is not closed under linear operations.

Averaging two distance functions or taking convex combinations of a set of them will

generally not result in a distance function. Yet these are exactly the operations that

occur when we perform principal component analysis, as described in Chapter 5. The
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following two questions arise: (1) When is it reasonable to combine distance functions

in this way? (2) Can the distance maps be represented in different space that ensures

closure over such operations?

A surface u is a distance function if IVul is one everywhere, except on the skeleton,

where Vu is undefined. Therefore, we consider situations when the convex combi-

nation of two distance functions yield a function whose gradient magnitude is one

everywhere. Let u and v be two distance functions such that the skeletons of both u

and v are identical. Define the function w to be an arbitrary weighted average of u

and v:

w = Au+Av (6.1)

where A +A= 1 and 0 < AA < 1. We compute the gradient magnitude of w to show

that it is one everywhere:

jVwj = IV(Au + Av)1 (6.2)

= A Vu + AVvj (6.3)

= (A + A) Vul (6.4)

= (A+ ) jVul (6.5)

-1 (6.6)

where Eq. 6.4 holds because Vu = Vv since they have identical skeletons. Note that

when the skeletons of u and v are identical, there is a one-to-one correspondence

between points on the zero level sets of u and v. The greater the correspondence

mismatch, the more the gradient magnitude of Au + Av will deviate from one. In the

extreme, the average of distance functions of a point located at each of all possible

positions in the image will have gradient magnitude zero everywhere.

Averaging two distance maps whose skeletons are not alike in general does not

produce a distance map. However, the zero level set of the average does have a nice

property: It is a subset of the skeleton of the XOR of the two initial shapes (see
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Figure 6-1: (a,c) Consider averaging the distance functions of the red and blue curves.
The zero level set of the average distance function is shown in magenta. (b,d) The
zero level set of the average two distance functions is a subset of the skeleton of the
XOR of the objects (shown in gray). The green skeleton lines in (d) are the regions
of the XOR's skeleton where the two closest boundaries belong to the same object.

Figure 6-1). The skeleton of the XOR (like all skeletons) occurs half way between

the two boundaries. When the two XOR boundaries are due to the two different

shapes, the value of the average of the distance surfaces is zero ( (+d)+(-d)) exactly

on the skeleton of the XOR. When the XOR boundaries are due to only one of the

shapes, the zero level set is not contained in the skeleton (shown in green in Figure

6-1). Furthermore, these regions also correspond to feature mismatches where the

average of the distance functions does not have gradient magnitude equal to one.

Further work is required to fully understand when combining distance functions is

reasonable, but empirically when the training objects seem to be roughly aligned, the

convex combinations produce results close enough to a distance map for our needs.

Another question that would help understand the uses of distance maps relates to

constraining operations to a subspace: What is the dimensionality of the subspace of

all n x n distance maps? If the subspace of valid distance maps could be represented
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analytically, then perhaps the operations we wish to perform on distance maps could

be defined to be closed under that subspace, ensuring that we always remain on the

manifold of distance functions when representing shapes or evolving surfaces.

Clearly distance maps are generally extremely redundant, with neighboring values

highly correlated. This is why it is possible to represent distance functions of a class of

shapes using a relatively small number of principal components, as shown in Chapter

5. The inherent redundancy begs the following question: Is there a k-dimensional

manifold of all distance functions embedded in R,2 (with k < n2 )? Not surprisingly,

the dimensionality of such a manifold is a function of the complexity of the shapes

being represented. If arbitrarily complex shapes are permitted then the answer to

the previous question is no, as illustrated in Figure 6-2a. However, in special cases

when the shapes to represent are constrained in some way, then the answer is yes

(Figure 6-2b). Since the existence and also properties of a sub-manifold depend on

the population of shapes to be considered, it may be rather difficult to compute the

manifold in practice without knowing types of shape variation present. However,

being able to analytically represent such a manifold would be very useful in the

manipulation of distance functions.

6.2.2 Local Statistical Models

Currently, our imaging model consists of relating intensity to distance from the bound-

ary. However, other measures derived from the image can be used in this framework,

such as image gradient (VI), texture measurements, or even the image gradient in

the intrinsic coordinate system of the level sets (VI- VU). These other measures may

be more appropriate for segmentation of some anatomical structures.

The local curvature model thus far has been fully derived and implemented for

1D curves embedded in 2D. Recall that the curvature profile enters the evolution

equation by means of the neighborhood term of the distance surface:

P (U(X) I UX) = P(U;, U;IUX) P(Uii+, Uft-IU) (6.7)

Curvature Term Linearity Term
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a b

Figure 6-2: Exploring the dimensionality of the subspace of n x n distance functions.
(a) A "worst case scenario" where the complex boundary (shown in blue) has islands

at arbitrary positions inside each of the n2 pixels. Each sample can vary continuously

from -/2 to v/2 independently of any other sample, resulting in n2 degrees of free-

dom. (b) A simple case where the manifold of the distance functions of all centered

circles of varying radii is just one dimensional.

To model the curvature term in this equation, the probability of observing a certain

curvature value, P(K), is derived from training data. As shown in Figure 5-31, the

curvature profile is quite different for various shapes, and therefore having a rich

model of curvature has potential over simply penalizing high curvatures empirically.

The derivation of the neighborhood term into the linearity (distance) term and the

curvature is different when dealing with 3D imagery. In this case, the zero level set is

a 2D surface, and the function U is a 3D hypersurface. Furthermore, the 2D boundary

surface now has two principal curvatures ri and i 2 . The neighborhood of U now has

three orthogonal directions instead of two. Once again, we define the neighborhood

to depend on the orientation of the underlying level set with one direction equal to

the normal, but in this case, the tangent space is two dimensional. We therefore

consider the two principal directions of the tangent space, ti and 2, and model the
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Figure 6-3: Three dimensional models and joint histogram of the two principal cur-

vatures of various structures. (a) Blood vessels in the brain. (b) Base of the femur.

(c) Vertebra of the spine. Notice that in (a) much of the probability mass occurs with

larger maximal curvature (r1) because of the tube-like structure of vessels. (Segmen-

tation and distance map of the vessels provided by Liana Lorigo [69].)

regularization probability as follows:

P (U(x) I U-) = P(U +, U- U-2+, U- ,IUx) P(Uh+, Uh-IUx) (6.8)

Principal Curvatures Linearity Term

In the 2D case, we derive in Eq. 5.71 that the derivative of u (the continuous version

of the network U) in the direction of i is proportional to the curvature K of the

underlying level set. In the 3D case, we expect the following relationships to similarly

hold:

2 1  2 OC K2  (6.9)
tf1 wtt 2

Therefore, when modeling a curvature prior of a 2D boundary, we can derive the
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joint probability distribution of the two principal curvatures. Figure 6-3 shows an

example of such PDFs derived from various structures. Note that the joint curvature

profiles are quite different for each object. In the blood vessels, which are effectively

tubes, the maximal curvature, which depends on the tubular radius, is expected to

be large, especially for thin vessels. The minimal curvature, which corresponds to

the "bending" of the tube, should be smaller, as found to be the case in the joint

curvature profile. This observation by Lorigo et al., led to their derivation of an

alternative regularization force for tubular structures that only penalizes the minimal

curvature [68, 69]. Their results show marked improvement over the classical method

of penalizing either the mean or Gaussian curvature.

While tubular objects generally have high maximal curvature and low minimal

curvature, other structures may also have a certain expected joint distribution of the

principal curvatures, but not quite as simple as those of tubes. By incorporating the

joint curvature prior into the segmentation process (as we had incorporated the 1D

curvature prior for curves), the segmentation will favor shapes whose principal curva-

tures match that of the model, which can help eliminate noise and other distracters.

6.2.3 Multi-Structure Segmentation

Throughout this work, we have considered segmenting only one object at a time from

the image. However, often the goal is to segment multiple structures in a region for

a full reconstruction of the anatomy. While each object could be segmented in turn,

there is useful information in segmenting some or all structures simultaneously. For

example, Zeng, et al. [114] use level set methods to evolve two surfaces simultane-

ously, one for gray matter and one for white matter, with a prior on the thickness

of the cortical mantle. Kapur [51] also uses a prior based on relative distance be-

tween structures. While distance measures can help constrain the segmentation of

multiple structures, they cannot provide strong priors on the full 3D pose or shape

of neighboring objects.

In our approach, we estimate the alignment of the shape model to the evolving

curve at every iteration. The registration provides a correspondence between our
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Figure 6-4: LEFT: Image of vertebrae of the spine. RIGHT: Once the pose and shape
of one vertebra (Us*) has been estimated (red curve), a distribution of the pose and
shape of neighboring vertebrae (U* in yellow and U* in green) is induced.

model and the image. If our model is extended to include a distribution of relative

poses of neighboring anatomical structures (again, learned from training data), then

these priors can be expressed in image coordinates and thus can influence the evolving

surfaces corresponding to the other objects. Figure 6-4 illustrates this idea when

segmenting the vertebrae of the spine.

6.2.4 Combining Local and Global Information

There are clear benefits to both local and global approaches to image segmentation.

Local algorithms can capture precise pixelwise variations in the boundary of an object

that would be difficult to model globally. Global methods provide context and high

level guidance to the search process, and can relate information from spatially distant

regions. The local and global terms presented here are essentially disjoint processes

that are combined in the final evolution update equation. However, ideally one energy

function could be developed that that unifies both the local and global information,

and the final evolution equation can be computed analytically by gradient descent.

Many local energy functions are defined to be integrals around the evolving curve,

making it more difficult to encode global information such as shape. Furthermore, as
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observed in Chapter 5, a registration step is required to bring the global model into

alignment with the image. Therefore, the correspondence between the prior shape

model and the evolving curve must be somehow encoded in the unified energy function

for any non pose-invariant global representation. Investigating methods of encoding

this correspondence into an energy function is an interesting area of future work.
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