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Abstract
In this thesis I study combinatorial aspects of an emerging field known as total pos-
itivity. The classical theory of total positivity concerns matrices in which all minors
are nonnegative. While this theory was pioneered by Gantmacher, Krein, and Schoen-
berg in the 1930s, the past decade has seen a flurry of research in this area initiated
by Lusztig. Motivated by surprising positivity properties of his canonical bases for
quantum groups, Lusztig extended the theory of total positivity to arbitrary reductive
groups and real flag varieties. In the first part of my thesis I study the totally non-
negative part of the Grassmannian and prove an enumeration theorem for a natural
cell decomposition of it. This result leads to a new q-analog of the Eulerian numbers,
which interpolates between the binomial coefficients, the Eulerian numbers, and the
Narayana numbers. In the second part of my thesis I introduce the totally positive
part of a tropical variety, and study this object in the case of the Grassmannian. I
conjecture a tight relation between positive tropical varieties and the cluster algebras
of Fomin and Zelevinsky, proving the conjecture in the case of the Grassmannian.
The third and fourth parts of my thesis explore a notion of total positivity for ori-
ented matroids. Namely, I introduce the positive Bergman complex of an oriented
matroid, which is a matroidal analogue of a positive tropical variety. I prove that
this object is homeomorphic to a ball, and relate it to the Las Vergnas face lattice of
an oriented matroid. When the matroid is the matroid of a Coxeter arrangement, I
relate the positive Bergman complex and the Bergman complex to the corresponding
graph associahedron and the nested set complex.

Thesis Supervisor: Richard P. Stanley
Title: Norman Levinson Professor of Applied Mathematics
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Chapter 1

Introduction

In this thesis we study combinatorial aspects of an emerging field known as total

positivity, as well as its relations to tropical geometry and cluster algebras. The

classical theory of total positivity concerns matrices in which all minors are nonnega-

tive. While this theory was pioneered by Gantmacher, Krein, and Schoenberg in the

1930s, the past decade has seen a flurry of research in this area initiated by Lusztig

[30, 29, 31]. Motivated by surprising positivity properties of his canonical bases for

quantum groups, Lusztig extended the theory of total positivity by introducing the

totally nonnegative variety G>o in an arbitrary reductive group G and the totally

nonnegative part B>o of a real flag variety B, which he refers to as a "miraculous

polyhedral subspace" [29]. This thesis concerns combinatorial aspects of the theory

of total positivity, as well as its relations to tropical geometry and cluster algebras.

Tropical algebraic geometry is the geometry of the tropical semiring (R, min, +).

Its objects are polyhedral cell complexes which behave like complex algebraic varieties.

Although this is a young field in which many basic questions have not yet been

addressed [35], tropical geometry has already been shown to have applications to

enumerative geometry, and connections to representation theory.

Cluster algebras are commutative algebras endowed with a certain combinatorial

structure, which were introduced by Fomin and Zelevinsky in [21]. Though they

were introduced a mere five years ago, it is already clear that cluster algebras have

connections to total positivity, canonical bases, hyperbolic geometry, and quiver rep-
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resentations. Remarkably, the classification of the cluster algebras of "finite type"

turns out to be identical to the Cartan-Killing classification of semisimple Lie alge-

bras and finite root systems [22].

This thesis is divided into four chapters, which are based on the papers [48, 41, 3,

4]. We have included a more detailed introduction at the beginning of each chapter

to outline some of the background material and outline the goals of the chapter.

The first project we are concerned with is the study of the poset of cells of Post-

nikov's [34] cell decomposition of the totally nonnegative part of the Grassmannian

Grk+ . This poset is very interesting because it has many different combinatorial de-

scriptions, for example, in terms of certain tableaux, in terms of certain permutations,

and in terms of the MacPhersonian. See Figures A-1 and A-2 for depictions of the

poset of cells of Gr+ in terms of these tableaux and permutations. Our first main

result is an explicit formula for the rank generating function for the poset of cells of

Grk+ . One corollary of this theorem is a new proof that the Euler characteristic of

Gr+n is 1. Additionally, this theorem leads to a new q-analog of the Eulerian num-

bers Ek,n(q), which specializes to the binomial coefficients, Narayana numbers, and

the Eulerian numbers.

Chapter 3 explores a link between totally positivity and tropical geometry. Specif-

ically, we introduce the totally positive part of the tropicalization of an arbitrary affine

variety, an object which has the structure of a polyhedral fan. We then investigate

the case of the Grassmannian, denoting the resulting fan Trop+ Grk,n. We show that

Trop+ Gr2,n is combinatorially the fan dual to the (type An) associahedron, and that

Trop+ Gr3,6 and Trop+ Gr3 ,7 are essentially the fans dual to the types D 4 and E6

associahedra. These results are strikingly reminiscent of the fact that the Grassman-

nian's cluster algebra structure is of types An- 3, D4, and E6 for Gr2,n, Gr 3,6, and

Gr3, 7. Finally, we conjecture a tight relation between the combinatorial structure of

a cluster algebra A and the combinatorial structure of Trop+(Spec A). This chapter

is joint work with David Speyer [41].

Chapter 4 introduces a notion of total positivity for oriented matroids. Specifi-

cally, the Bergman complex of a matroid is a polyhedral complex which generalizes to

14



matroids the notion of a tropical variety. Sturmfels introduced the Bergman complex

B(M) of an arbitrary matroid M [46], and Ardila and Klivans [2] described the ge-

ometry of B(M): they showed that, appropriately subdivided, the Bergman complex

of a matroid M is the order complex of the proper part of the lattice of flats LM of the

matroid; this implies that B(M) is homotopy equivalent to a wedge of spheres. In this

chapter we define the positive Bergman complex B+(M) of an oriented matroid M,

in order to generalize to oriented matroids the notion of the totally positive part of

a tropical variety. We also prove that, appropriately subdivided, B +(M) is the order

complex of the proper part of the Las Vergnas face lattice of M; it follows that B+(M)

is homeomorphic to a sphere. We conclude by showing that if M is the matroid of

the complete graph, then B+(M) is dual to the face poset of the associahedron. This

chapter is joint work with Federico Ardila and Carly Klivans [3].

Chapter 5 is a continuation of the work begun in Chapter 4. In this chapter we

relate the positive Bergman complex and Bergman complex of (the oriented matroid

of) a Coxeter arrangement to graph associahedra and nested set complexes. Graph

associahedra are polytopes generalizing the associahedron that were independently

discovered in the past year by Carr and Devadoss [10] and Postnikov [33]; these poly-

topes have connections to the real moduli space of n-punctured Riemann spheres. The

nested set complex of an arrangement encodes the combinatorics of its De Concini-

Procesi wonderful model, as well as the combinatorics of resolutions of singularities

in toric varieties. In our work we prove that the Bergman complex of a Coxeter ar-

rangement A of type is equal to the nested set complex of type t, and the positive

Bergman complex of A is dual to the graph associahedron of type 4. This chapter is

joint work with Federico Ardila and Victor Reiner [4].

15



16



Chapter 2

Enumeration of totally positive

Grassmann cells

2.1 Introduction

The theory of total positivity dates back to the 1930s, when Gantmacher, Krein,

and Schoenberg studied matrices in which all minors are nonnegative. However, the

last decade has seen a great deal of developments in this area initiated by Lusztig

[30, 29, 31]. Motivated by surprising connections he discovered between his theory

of canonical bases for quantum groups and the theory of total positivity, Lusztig ex-

tended this subject by introducing the totally nonnegative variety G>0 in an arbitrary

reductive group G and the totally nonnegative part B>0 of a real flag variety B. A

few years later, Fomin and Zelevinsky [19] advanced the understanding of G>o by

studying the decomposition of G into double Bruhat cells, and Rietsch [36] proved

Lusztig's conjectural cell decomposition of B>0. Most recently, Postnikov [34] inves-

tigated the combinatorics of the totally nonnegative part of a Grassmannian Grkn:

he established a relationship between Gr+ and planar oriented networks, producing

a combinatorially explicit cell decomposition of Gr . In this chapter we continue

Postnikov's study of the combinatorics of Gr+kn : in particular, we enumerate the cells

in the cell decomposition of Grk+ according to their dimension.

The totally nonnegative part of the Grassmannian of k-dimensional subspaces in

17



]Rn is defined to be the quotient Gr+n = GL+ \ Mat+(k, n), where Mat+(k, n) is the

space of real k x n-matrices of rank k with nonnegative maximal minors and GL+ is the

group of real matrices with positive determinant. If we specify which maximal minors

are strictly positive and which are equal to zero, we obtain a cellular decomposition of

Gr+, as shown in [34]. We refer to the cells in this decomposition as totally positive

cells. The set of totally positive cells naturally has the structure of a graded poset:

we say that one cell covers another if the closure of the first cell contains the second,

and the rank function is the dimension of each cell.

Lusztig [30] has proved that the totally nonnegative part of the (full) flag variety

is contractible, which implies the same result for any partial flag variety. (We thank

K. Rietsch for pointing this out to us.) The topology of the individual cells is not

well understood, however. Postnikov [34] has conjectured that the closure of each cell

in Grk* is homeomorphic to a closed ball.

In [34], Postnikov constructed many different combinatorial objects which are in

one-to-one correspondence with the totally positive Grassmann cells (these objects

thereby inherit the structure of a graded poset). Some of these objects include dec-

orated permutations, J-diagrams, positive oriented matroids, and move-equivalence

classes of planar oriented networks. Because it is simple to compute the rank of a

particular J-diagram or decorated permutation, we will restrict our attention to these

two classes of objects.

The main result of this chapter is an explicit formula for the rank generating

function Ak,n(q) of Grk. Specifically, Ak,n(q) is defined to be the polynomial in

q whose qr coefficient is the number of totally positive cells in Grk,~ which have

dimension r. As a corollary of our main result, we give a new proof that the Euler

characteristic of Grk+ is 1.

Additionally, using our result and exploiting the connection between totally pos-

itive cells and permutations, we find a simple expression for a polynomial Ek,n(q)

which enumerates (regular) permutations according to weak excedences and align-

ments. This polynomial Ek,n(q) is a new q-analog of the Eulerian numbers which has

many interesting combinatorial properties. For example, when we evaluate Ek,n(q)

18
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at q = -1, 0, and 1, we obtain the binomial coefficients, the Narayana numbers, and

the Eulerian numbers. Recent work of S. Corteel [13] has shown that Ek,n(q) has yet

another interpretation: it enumerates permutations according to descents and occur-

rences of the generalized pattern 13 - 2. (This result was conjectured by the author

and E. Steingrimsson.) Finally, the connection with the Narayana numbers suggests

a way of incorporating noncrossing partitions into a larger family of "crossing" par-

titions.

Let us fix some notation. Throughout this chapter we use [i] to denote the q-

analog of i, that is, [i] = 1 + q + + qi-1. (We will sometimes use [n] to refer to

the set {1,..., n}, but the context should make our meaning clear.) Additionally,

[i]! := rn=_ [k] and [: - - are the q-analogs of i! and (J), respectively.
k-i [iUj [il![i-il! are 3

2.2 J-Diagrams

A partition A = (Al, ... , Ak) is a weakly decreasing sequence of nonnegative numbers.

For a partition A, where E Ai = n, the Young diagram Yx of shape A is a left-justified

diagram of n boxes, with Ai boxes in the ith row. Figure 2-1 shows a Young diagram

of shape (4, 2, 1).

Figure 2-1: A Young diagram of shape (4,2, 1)

Fix k and n. Then a J-diagram (A, D)k,n is a partition A contained in a k x (n - k)

rectangle (which we will denote by (n - k)k), together with a filling D: Yx - (0, 1}

which has the J-property: there is no 0 which has a 1 above it and a 1 to its left.

(Here, "above" means above and in the same column, and "to its left" means to the

left and in the same row.) In Figure 2-2 we give an example of a J-diagram. 1

1The symbol J is meant to remind the reader of the shape of the forbidden pattern, and should
be pronounced as [le], because of its relationship to the letter L. See [34] for some interesting
numerological remarks on this symbol.
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n-k
011 11010111011 0 1111zolllllfl
0101010101001010

01011
11

k = 6, n=17
A= (10, 9,9,8,5,2)

Figure 2-2: A J-diagram (A, D)k,n

We define the rank of (A, D)k,n to be the number of 's in the filling D. Postnikov

proved that there is a one-to-one correspondence between J-diagrams (A, D) contained

in (n - k)k, and totally positive cells in Gr+n, such that the dimension of a totally

positive cell is equal to the rank of the corresponding J-diagram. He proved this by

providing a modified Gram-Schmidt algorithm A, which has the property that it maps

a real k x n matrix of rank k with nonnegative maximal minors to another matrix

whose entries are all positive or 0, which has the 1-property. In brief, the bijection

between totally positive cells and J-diagrams maps a matrix M (representing some

totally positive cell) to a J-diagram whose 's represent the positive entries of A(M).

Figure A-1 shows the poset of cells of Gr+4 in terms of J-diagrams.

Because of the correspondence between cells and J-diagrams, in order to compute

Ak,n(q), we need to enumerate J-diagrams contained in (n - k)k according to their

number of l's.

2.3 Decorated Permutations and the Cyclic Bruhat

Order

The poset of decorated permutations (also called the cyclic Bruhat order) was intro-

duced by Postnikov in [34]. A decorated permutation r = (7r, d) is a permutation r

in the symmetric group Sn together with a coloring (decoration) d of its fixed points

r(i) = i by two colors. Usually we refer to these two colors as "clockwise" and

"counterclockwise," for reasons which the next paragraph will make clear.

We represent a decorated permutation ir = (r, D), where r E S,, by its chord

diagram, constructed as follows. Put n equally spaced points around a circle, and

20
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label these points from 1 to n in clockwise order. If r(i) = j then this is represented

as a directed arrow, or chord, from i to j. If 7r(i) = i then we draw a chord from i

to i (i.e. a loop), and orient it either clockwise or counterclockwise, according to d.

We refer to the chord which begins at position i as Chord(i), and we use ij to denote

the directed chord from i to j. Also, if i, j E {1,..., n}, we use Arc(i, j) to denote

the set of points that we would encounter if we were to travel clockwise from i to j,

including i and j.

For example, the decorated permutation (3, 1, 5, 4, 8, 6, 7, 2) (written in list nota-

tion) with the fixed points 4, 6, and 7 colored in counterclockwise, clockwise, and

counterclockwise, respectively, is represented by the chord diagram in Figure 2-3.

7

1

3

Figure 2-3: A chord diagram for a decorated permutation

The symmetric group Sn acts on the permutations in Sn by conjugation. This

action naturally extends to an action of Sn on decorated permutations, if we specify

that the action of Sn sends a clockwise (respectively, counterclockwise) fixed point to

a clockwise (respectively, counterclockwise) fixed point.

We say that a pair of chords in a chord diagram forms a crossing if they intersect

inside the circle or on its boundary.

Every crossing looks like Figure 2-4, where the point A may coincide with the

point B, and the point C may coincide with the point D. A crossing is called a

simple crossing if there are no other chords that go from Arc(C, A) to Arc(B, D).

Say that two chords are crossing if they form a crossing.

Let us also say that a pair of chords in a chord diagram forms an alignment if

they are not crossing and they are relatively located as in Figure 2-5. Here, again, the

21



C

Figure 2-4: A crossing

A B

C D

Figure 2-5: An alignment

point A may coincide with the point B, and the point C may coincide with the point

D. If A coincides with B then the chord from A to B should be a counterclockwise

loop in order to be considered an alignment with Chord(C). (Imagine what would

happen if we had a piece of string pointing from A to B, and then we moved the

point B to A). And if C coincides with D then the chord from C to D should be a

clockwise loop in order to be considered an alignment with Chord(A). As before, an

alignment is a simple alignment if there are no other chords that go from Arc(C, A)

to Arc(B, D). We say that two chords are aligned if they form an alignment.

We now define a partial order on the set of decorated permutations. For two

decorated permutations 7r1 and r2 of the same size n, we say that 7rl covers r2, and

write rl --, r2, if the chord diagram of r contains a pair of chords that forms a

simple crossing and the chord diagram of 7r2 is obtained by changing them to the

pair of chords that forms a simple alignment (see Figure 2-6). If the points A and B

happen to coincide then the chord from A to B in the chord diagram of 7r2 degenerates

to a counterclockwise loop. And if the points C and D coincide then the chord from

C to D in the chord diagram of 7r2 becomes a clockwise loop. These degenerate

situations are illustrated in Figure 2-7.

22
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A% J B

C ZD

7r1 72

Figure 2-6: Covering relation

Let us define two statistics A and K on decorated permutations. For a decorated

permutation r, the numbers A(7r) and K(7r) are given by

A(7r) = #{pairs of chords forming an alignment},

K(7r) = #{i I 7r(i) > i} + #{counterclockwise loops}.

In our previous example r = (3, 1, 5, 4, 8, 6, 7, 2) we have A = 11 and K = 5. The

11 alignments in 7r are (13,66), (21,35), (21,58), (21,44), (21, 77), (35,44), (35,66),

(44, 66), (58, 77), (66, 77), (66, 82).

Lemma 2.3.1. [34] If rl covers r2 then A(rl) = A(-r2) - 1 and K(7rl) = K(7r2).

Note that if rl covers Ir2 then the number of crossings in 7rl is greater then the

number of crossings in 7r2 . But the difference of these numbers is not always 1.

Lemma 2.3.1 implies that the transitive closure of the covering relation "-" has

the structure of a partially ordered set and this partially ordered set decomposes into

n + 1 incomparable components. For 0 < k < n, we define the cyclic Bruhat order

CBkn as the set of all decorated permutations r of size n such that K(lr) = k with

the partial order relation obtained by the transitive closure of the covering relation

"--". By Lemma 2.3.1 the function A is the corank function for the cyclic Bruhat

order CBkn.

The definitions of the covering relation and of the statistic A will not change if we

rotate a chord diagram. The definition of K depends on the order of the boundary

points 1, ... , n, but it is not hard to see that the statistic K is invariant under the

23



A=B

C

A

71

A=B

C=D
rI

D

A=B

CUD
92

A B

A=B

C=D
972

Figure 2-7: Degenerate covering relations

cyclic shift conj, for the long cycle = (1, 2,..., n). Thus the order CBkn is invariant

under the action of the cyclic group Z/nZ on decorated permutations.

In [34], Postnikov proved that the number of totally positive cells in Gr+,n of

dimension r is equal to the number of decorated permutations in CBkn of rank r.

Thus, Ak,n(1) is the cardinality of CBkn, and the coefficient of qk(n-k)-t in Ak,n(q) is

the number of decorated permutations in CBkn with e alignments.

Figure A-2 shows the poset of cells of Grj 4 in terms of decorated permutations.

2.4 The Rank Generating Function of Grk 

Recall that the coefficient of qr in Ak,n(q) is the number of cells of dimension r in the

cellular decomposition of Grk . In this section we use the J-diagrams to find an ex-
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plicit expression for Ak,n(q). Additionally, we will find explicit expressions for the gen-

erating functions Ak(q, x) := an Ak,n(q)x n and A(q, x, y) := k>l n Ak,n(q)Xnyk.

Our main theorem is the following:

Theorem 2.4.1.

-y _____________yiq__ _ _ y)A(q, x y q(1- x) 2+ l yi(q 2i+l _Y)
l qi2+l (qi-q[[i + 1]x +[i]xy)

Ak (q, x) = -(_)+k kk-i [i]ki + k-i]ki
i=o Ak(qki+i+l(l - [i + l]x)k-i + (1) qki(l - [ + ]x)k-il

k-1

k- ()q ([ + k + )

Note that it is not obvious from the above formulas that Ak,n(q) is either polyno-

mial or nonnegative.

Since the expressions for Ak(q, x) and Ak,n(q) follow easily from the formula for

A(q, x, y), we will concentrate on proving the formula for A(q, x, y).

Fix a partition A = (Al,... ., k). Let F,(q) be the polynomial in q such that the

coefficient of qr is the number of -fillings of the Young diagram Yx which contain r

l's. As Figure 2-8 illustrates, there is a simple recurrence for FA(q).

Explicitly, any l-filling of A is obtained in one of the following ways: adding a 1

to the last row of a -filling of (Al, 2 , ... , Ik-1, Ak- 1); adding a row containing Ak

O's to a J-filling of (Al, . , Ak-1); or inserting an all-zero column after the (Ak - )st

column of a 1-filling of (Al - 1, A2 - 1,...,Ak - 1). Note, however, that the second

and third cases are not exclusive, so that our resulting recurrence must subtract off

a term corresponding to their overlap.

Remark 2.4.2.

Fx(q) qF(x ...k-,Xk-l)(q) + F(X1 ... k-l)(q) + F(AI-l,...,Ak-l)(q) - F(x,-l...,...kl-l)(q)
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0 0* * ]0 0
or A or 0 minus 0· * *I0 **0 0 0

Figure 2-8: Recurrence for FA(q)

From the definition, or using the recurrence, it is easy to compute the first few

formulas. Here are F(Ax)(q) and F(l,x,)(q).

Proposition 2.4.3.

F(\)(q) = [2]X\

F(A, 2) (q) = -q-[2]1 + q-1[2]A-2+1[ 3]A2

In general, we have the following formula.

Theorem 2.4.4. Fix A = (A1, A2 ., , Ak). Then

k i

F (q) = y M(tl,... ,t : k)[i + 1] 'ti [j]tjl -Atj+1
i=l l=t <...<ti<k j=2

where M(tl,..., ti : k) = (l)k+iq-ik+Ejltj [i]k-ti nJ-,;ltj+-tj-1

Before beginning the proof of the theorem, we state two lemmas which follow

immediately from the formula for M(tl,..., ti : k).

Lemma 2.4.5. M(tl,..., ti k) = (-l)k-tiq-i(k-ti)[i]k-tiM(tl,..., t : t).

Lemma 2.4.6. M(tl,...,ti: ti) = -[i - 1]-M(tl,...,ti-1: ti).

Proof. To prove the theorem, we must show that the expression for Fx(q) holds for

A = (A1), and that it satisfies the recurrence of Remark 2.4.2. Also, we must show

that F(xX1 \2,...,Ak)(q) = F(A1 ,X2,..k,)(q )

The formula F(A) (q) = [2]X1 clearly agrees with the expression in the theorem. To

show that the recurrence is satisfied, we will fix (tl,..., ti) where 1 = tl < -. < ti < k,

and calculate the coefficient of [2 ]Atl-\t2+1[3 ]At2-t 3+1 ... [i + 1]Ati in each of the five

terms of 2.4.2. We will then show that these coefficients satisfy the recurrence.
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The coefficient in F(Axl...,k)(q) is M(tl,..., ti : k).

The coefficient in F(xl,xA2... xk-1)(q) is M(t,..., ti : k) if ti < k, because the term

we are looking at together with its coefficient do not involve Ak. The coefficient is

[i][i + l]-'M(tl,..., ti,: k) if ti = k.

The coefficient in F(XlA2 . ..X k-l)(q) is M(tl,... , ti: k - 1) if ti < k, which is equal

to -qi[i]-lM(tl,... ,ti: k). But if ti = k, no such term appears, so the coefficient is

0.

The coefficient in F(xA-l,A2-1,...Ak-1)(q) is always M(tl,..., ti : k)[i + 1]- 1 .

The coefficient in F(A1-1,2-1,. ..,_-l-1)(q) is -qi[i]-l[i + ]- 1M(tl,... ,ti : k) if

ti < k, and 0 if ti = k.

Let us abbreviate M(tl,..., ti : k) by M. We need to show that the coefficients we

have just calculated satisfy the recurrence of Remark 2.4.2. For ti < k, this amounts

to showing that M = qM - qi[i]-lM + M[i + 1]-1 + qi[i]-l[i + 1]-1M. And for ti = k,

we must show that M = q[i][i + 1]-1M + M[i + 1]-1. Both of these are easily seen to

be true. Thus, we have shown that our expression for Fx(q) satisfies Remark 2.4.2.

Now we will show that F(A1,x2,...,xkl,o)(q) = F(A1,A2,...,xk 1)(q). It is sufficient to show

that the coefficient of [2 ]At-At2 +l[3 ]Xt2-At 3+1 ... [i + 1]Ati in F(l,...,Ak)(q), plus [i + 1]

times the coefficient of [2]tl-Xt 2+l[ 3]Xt2 -t 3+1 . .. [i + 1]ti-Ak+1 [i + 2]k in F(Al,...,k)(q),

is equal to the coefficient of [2]Xtl-t 2+1 . . . [i + 1]Xti in F(x1...,xAk_)(q).

In other words, we need

M(tl,... ,ti: k- 1) = M(tl,...,ti: k) + M(tl,...,ti, k: k)[i + 1].

From the formula for M, we have M(tl,...,ti : k - 1) = -qi[i]-l 1M(tl,..., ti : k).

And from Lemma 2.4.6, M(tl,...,t i, k: k) = -[i]-lM(tl,...,ti : k). The proof

follows. [

Recall that Ak(q, x) is the polynomial in q and x such that [qxn]Ak(q, x) is equal

to the number of totally positive cells of dimension r in Gr+n. This is equal to the

number of J-diagrams (A, D)k,n of rank r. We can compute these numbers by using

Theorem 2.4.4.
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Corollary 2.4.7.

k i)k+iq_/+Ej'lt tj+l-tj

Ak(q, = E E (-)k+q 1 j1]
i=1 =t<...<t+=k+l (1 - x) 1 + 1X

To compute Ak(q, x), we must sum F(Ax,...,xk)(q)xn, as A varies over all partitions

which fit into a k x (n - k) rectangle. To do this, we use the following simple lemmas,

the second of which follows immediately from the first.

Lemma 2.4.8.

00 ,1 Ad-1

E XX2 . . Xd (1 - Xl)(1 -X12) ... (1-- 1X2...d)
A1=0A2=0 ,d=O

Lemma 2.4.9. Fix a set of positive integers tl < t < ..t2 < td < n + 1. Then

o0 n A 1 Ad-1

E E E ... E [2]\tl-t 2 ... [d]Atdl Atd [d + 1]Atd X
n=O A1=0 A2 =O Ad=O

is equal to

(1 - x)(1 - [2]x)t2-tl ... (1 - [d]x)td-td-1 (1 - [d + 1]X)n+l - td '

Proof. For the proof of the corollary, apply Theorem 2.4.4 and Lemma 2.4.9 to the

fact that
oo m A1 Ak-1

Ak(q,x) = E E F, ..,n,) ( q) x m

m=0 A1 =0 A2 =0 Ak=O

Corollary 2.4.10. The Euler characteristic of the totally non-negative part of the

Grassmannian Grkn is 1.

Proof. Recall that the Euler characteristic of a cell complex is defined to be i (- )ifi,

where fi is the number of cells of dimension i. So if we set q = -1 in Corollary

2.4.7, we will obtain a polynomial in x such that the coefficient of xn is the Euler

characteristic of Grk , . Notice that [i] is equal to 0 if i is even, and 1 if i is odd.
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So all terms of Ak(-l, x) vanish except the term for i = 1, which becomes 1 =

Xk + xk+1 + Xk+2 + .... 

Note that this corollary also follows from Lusztig's result that the totally nonneg-

ative part of a real flag variety is contractible.

Now our goal will be to simplify our expressions. To do so, it is helpful to work

with the "master" generating function A(q, x, y) := Ek>1 Ak(q, x)yk. As a first step,

we compute the following expression for A(q, x, y):

Proposition 2.4.11.

00 1

A(q, x, y) = q[i]!x' Yi qj+] + ]xy
i=1 j-O

Note that 1 is not a well-defined formal power series because it isqJ-qJ[ j+]x+[j]xy

not clear how to expand it. In this chapter, for reasons which will become clear in

the following proof, we shall always use 1 as shorthand for the formal

power series whose expansion is implied by the expression

1

qj(1 - [+ 1]x)(1 - q-J]y

See [43, Example 6.3.4] for remarks on the subtleties of such power series.

Proof. From Corollary 2.4.7, we know that Ak(q, x) is equal to

(-Z)k E El)i -ik+j t j + ( a] ),
i=1 l=tl<<ti+lk+l j1 1 - + x

If we make the substitution aj = tj+l - tj, we then get

Ak(q,x) (- z q (1 - [ + ] x )

ajl j--- =k

Now let fj(p) = (/j_ )p. For future use, define Fj(y) := Ep>l fj(P)YP, which
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is equal to - ]- ]y- We getq3-q3[j+l]x-[jjy ege

Ak(q,x) = (- "-] 1),q1-x .i=1

i

aj>l j=l

and we can now easily compute A(q, x, y) := Ek>l Ak(q, X)Yk.

A(q, , y) =
1

1-x
k

E(-X)kE(-l)iqi
k>l ajoqŽ1i=1

i

fI fj(aj)y"i
j=l

i
E (-x)k(-1)qi H fj(aj)Y'i

1 0z
1 EE

= , _ j=1

Actually, we can replace k > i above with k > 0, since if k < i there will be no set of

aj satisfying the conditions of the third sum. So we have

1 00
A(q, x, y)= r E

i=1 k>O

1

1-x

E
aj>l

k>O
i=E(-l)i
i=l

1 00(

i=l

1

1-x

i

'IJ fi(aj)yi
j=1

E II fJ(aj)(-xY)'J
aj>l j=l

i

- 1)'q'H Fj (-xy )
j=1

i00

E(- 1)qi
i=1

r:l -.i ~- j ja;y
q _ -qij + 1]x + [j]xy

1- 

i=l

i

qt[i]!xiyH
j=1

i

qi[i]!xyij=O
j=0

ij

j=1

1

qi-qIj + l]x + ]xy
1

qj -q[j q + 1]x + j]xy

1

q - q + 1]x + [j]xy'
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00
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i=1
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Now we will prove the following identity. This identity combined with Proposition

2.4.11 will complete the proof of Theorem 2.4.1.

Theorem 2.4.12.

0q[]!0t7J1- q -i2-i-lyi(q2i+l -y)
i= O q -q' Ij+ ]x + ]xy =q(1-_x) - E qi _qi +]x++ [i]xy

Proof. Observe that the expression on the right-hand side can be thought of as a

partial fraction expansion in terms of x, since all denominators are distinct, and

the numerators are free of x. Also note that the i-summand of the left-hand side

should be easy to express in partial fractions with respect to x, since all factors of

the denominator are distinct and the x-degree of the numerator is smaller than the

x-degree of the denominator.

Thus, our strategy will be to put the left-hand side into partial fractions with

respect to x, and then show that this agrees with the right-hand side.

To this end, define ,i(j) by the equation

xi i /i(j)

nI= q - qJ[ + l + ]y j=o q - qj + 1]x + [j]xy'

Clearing denominators, we obtain

i i

X = E /3,(j) J(qr - qr[r + 1]x + [r]xy). (2.1)
j=O r=O

rTj

Fix j. Notice that (qi - q[j + 1]x + [j]xy) vanishes when x = -i---- SO

substitute x = qj into (2.1). We get

fqij ) qr(qj[j + 1] - [j]y) + qj([r]y - qr[r + 1])
(qj[j + 1]- [j]y)i r=O qj[j + 1]- [j]y

roj
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Solving for 3i(j) and simplifying, we arrive at

A(j) =
4.4j2+3ij-i2-3i-2ij( 1)+3q 2

i

[j]![i- j]! I7(1
r=O
rAj

_ q-r-j-ly)

Thus the partial fraction expansion with respect to x of the left-hand side of

Theorem 2.4.12 is
00 i /i(j)qi[i]!y i

=E E qj - qjI + 1]x + j]xy'i=1 j=0

which is equal to

(-l)q 2

oo

j=0

E
i>j
i5o

i

[,] q-('+2)-i (-y)i (1
r=Orgj

qi - qj + 1]x + [j]xy

Now it remains to show that the numerator of (qj - q[j + 1]x + [j]xy) in (2.2) is

equal to the numerator of (qJ - qJ[j + 1]x + [j]xy) in the right-hand side of Theorem

2.4.12. For j = 0, we must show that

(1 - ) (
q i>

i

-1)iq-(i+l)yi fI(l
r=O

_ q-r-l1)-1 = -y
q

(2.3)

And for j > 0, we must show that

i

(-_l)jq 3J j2-yj E [;] q(i+')-'ij(y)i (1 q-r-j-ly)-1 = 1.
i> j r=Oilj

(2.4)

If we make the substitution q -- q-l1 and r - r - 1 into (2.3) and then add the

i = 0 term to both sides, we obtain

(-1)iyiq(i+)
i>O

i+1

.l 1 - qryr=1

(2.5)
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And if we make the same substitution into (2.4), we get

i+1

(-iq()y-i E(_l),q(i+l);]II rT = 1. (2.6)
i>j r=l

Since (2.5) is a special case of (2.6), it suffices to prove (2.6). We will prove this

as a separate lemma below; modulo this lemma, we are done. O

Lemma 2.4.13.

(-l)q -(j+2)y- E(l)i q(+l) I- q+ = 1 .
i( =j -r=

Proof. Christian Krattenthaler has pointed out to us that this lemma is actually a

special case of the 1l summation described in Appendix II.5 of [24]. Here, we give

two additional proofs of this lemma. The first method is to show that the infinite

sum actually telescopes (we thank Ira Gessel for suggesting this to us). The second

method is to interpret the lemma as a statement about partitions, and to prove it

combinatorially.

Let us sketch the first method. We use induction to show that

j+ m-1 i+1

(-l) q(') ]yi +j
i=j [ ]r=l

is equal to
j

(-1) q+ ( ) (-)P p(P)-P--pmy --p2
p=O

+ fl 1 (1 - qr+jy)

Then we take the limit as m goes to oo, obtaining the statement of the lemma.

Now let us give a combinatorial proof of the lemma. For clarity, we prove the

j = 0 case in detail and then explain how to generalize this proof.

First we claim that (-l)iy'q(+l1) .+- l['1y is a generating function for partitions

A with i + 1 parts, all distinct, where the smallest part may be zero. In this formal

power series, the coefficient of ym"q is equal to the number of such partitions with
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m columns and n total boxes. The generating function is multiplied by 1 or -1,

according to the parity of the number of rows (including zero).

To prove the claim, note that each term of rj+l 1 corresponds to a (normal)

partition where rows have lengths between 1 and i + 1, inclusive. The exponent of

y enumerates the number of rows and the exponent of q enumerates the number of

boxes. Now take the transpose of this partition, so that it is a partition with exactly

i + 1 rows (possibly zero). Now the exponent of y is the length of the longest row.

Add i, i- 1,..., 1 and 0 boxes to the first, second, ... , and (i+ 1)st rows, respectively.

Finally we have a partition with i+1 parts, all distinct, where the smallest part may be

zero. Since we've added a total of (i+1) boxes to the original partition, the generating

function for this type of partition is q( 2 )yi tij Figure 2-9 illustrates the

steps in this paragraph. In the figure, the rows and columns of the partitions are

indicated by solid and dashed lines, respectively.

i+l i+lI I i+l I I i+l

Figure 2-9: A combinatorial interpretation for y'q( 2 ) ni+l 1ry

Now we need to find an involution 0 which explains why all of the terms on the

left-hand side of (2.5) cancel out, except for the 1. This involution is very simple:

if (A1,...,Ak) is a partition such that Ak # 0, then q(A,... ,Ak) = (,i,... Ak, 0)-

And if Ak = 0, then (A, ... , Ak) = (A, ... ,Ak-l). Clearly both (Al,...,Ak) and

O(A1,... , Ak) contribute the same powers of y and q to the generating function; the

only difference is the sign. Only the 0 partition has no partner under the involution,

so all terms cancel except for 1.
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For the proof of the general case, we will show that

q(i+l)[;]i-j (2.7)qQ )[yifJ 1 i a g

enumerates certain pairs of partitions, (A, A). First, note that +1 1 is a gen-r=1 1+y is a gen-

erating function for partitions with rows of lengths j + 1 through i + j + 1, inclusive.

It is well-known that ] is a polynomial in q whose q coefficient is the number of

partitions of r which fit inside a j x (i-j) rectangle. To account for the ['] term

in (2.7), let us take a partition which fits inside a j x (i - j) rectangle, and place it

underneath a partition with rows of lengths j + 1 through i + j + 1, giving us a par-

tition with row lengths between 0 and i + j + 1, inclusive. We consider this partition

to have exactly i + j + 1 columns, possibly zero. Finally, to account for the q(T+)

term in (2.7) let us add 0, 1,..., i boxes to the last i + 1 columns of our partition, so

that that the last i + 1 columns have distinct lengths (possibly zero). We now view

the boxes in the first j columns of our figure to comprise one partition A, and the

boxes in the last i + 1 columns of our figure to comprise the transpose of a second

partition A. Let Al denote the length of the first row of A, and let rj(A) denote the

number of rows of A which have length j. Then the pair (A, A) satisfies the following

conditions: A has rows with lengths between 0 and j, inclusive; A has exactly i + 1

rows, all distinct, where the smallest row can have length 0; and rj(A) + i -j = l.

(See Figure 2-10 for an illustration of (A, A).) The term in (2.7) that corresponds to

this pair of partitions is qll+llynumparts(A).

; . ;l .:,

T
i-j

1

Figure 2-10: (A, A), where A = (5, 5, 5, 5, 4, 4, 3, 2, 0) and = (9, 8, 6, 4, 3, 0)
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Our involution 0 is a simple generalization of the involution we used before. This

time, fixes A, and either adds or subtracts a trailing zero to A.

This completes the proof of Theorem 2.4.1.

Remark 2.4.14. Discovering the formulas which appear in Theorem 2.4.1 was non-

trivial. In our early work on this subject, we were able to compute by hand closed

expressions for A (q, x), A2 (q, x), A3 (q, x), and A 4(q, x). By looking at the partial

fraction expansion of these expressions we were able to see enough patterns to conjec-

ture the formula for Ak(q, x) in Theorem 2.4.1.

In Table 2.1, we have listed some of the values of Ak,n(q) for small k and n. It

is easy to see from the definition of J-diagrams that Ak,n(q) = An-k,n(q): one can

reflect a J-diagram (A, D)k,n of rank r over the main diagonal to get another J-

diagram (A', D')n-k,n of rank r. Alternatively, one should be able to prove the claim

directly from the expression in Theorem 2.4.1, using some q-analog of Abel's identity.

Table 2.1: Ak,n(q)

Note that it is possible to see directly from the definition that Grt+ is just some

deformation of a simplex with n vertices. This explains the simple form of Al,n(q).
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A1,l(q) 1

A 1,2(q) q +2
A 1 ,3 (q) q2 + 3q + 3
A1, 4(q) q3 + 4q2 + 6q + 4
A 2,4(q) q4 + 4q3 + 10q2 + 12q + 6
A 2,5(q) q6 + 5q5 + 15q4 + 30q3 + 40q2 + 30q + 10
A 2,6 (q) q8 + 6q7 + 21q6 + 50q5 + 90q4 + 120q3 + 110q 2 + 60q + 15

A3,6 (q) q9+6q8 +21q 7+56q6+114q5 +180q4+215q 3+180q2+90q+20
A3,7 (q) ql2 + 7qll + 28q10 + 84q9 + 203q8 + 406q7 + 679q6 + 938q5 +

1050q4 + 910q3 + 560q2 + 210q + 35



2.5 A New q-Analog of the Eulerian Numbers

If 7r E Sn, we say that 7r has a weak excedence at position i if r(i) > i. The Eulerian

number Ek,n is the number of permutations in S, which have k weak excedences.

(One can define the Eulerian numbers in terms of other statistics, such as descent,

but this will not concern us here.)

Now that we have computed the rank generating function for CBk+ (which is

the rank generating function for the poset of decorated permutations), we can use

this result to enumerate (regular) permutations according to two statistics: weak

excedences and alignments. This gives us a new q-analog of the Eulerian numbers.

Recall that the statistic K on decorated permutations was defined as

K(7r) = #{i 1 7r(i) > i + #{counterclockwise loops}.

Note that K is related to the notion of weak excedence in permutations. In fact, we

can extend the definition of weak excedence to decorated permutations by saying that

a decorated permutation has a weak excedence in position i, if 7r(i) > i, or if r(i) = i

and d(i) is counterclockwise. This makes sense, since the limit of a chord from 1 to

2 as 1 approaches 2, is a counterclockwise loop. Then K(7r) is the number of weak

excedences in 7r.

We will call a decorated permutation regular if all of its fixed points are oriented

counterclockwise. Thus, a fixed point of a regular permutation will always be a weak

excedence, as it should be. Recall that the Eulerian number Ek,n is the number of

permutations of [n] with k weak excedences. Earlier, we saw that the coefficient of

qk(n-k)-t in Ak,n(q) is the number of decorated permutations in CBkn with e align-

ments. By analogy, let Ek,n(q) be the polynomial in q whose coefficient of qk(n-k)-t

is the number of (regular) permutations with k weak excedences and e alignments.

Thus, the family Ek,n(q) will be a q-analog of the Eulerian numbers.

We can relate decorated permutations to regular permutations via the following

lemma.
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Lemma 2.5.1. Ak,n(q) = EZin ()Ek,n-i(q).

Proof. To prove this lemma we need to figure out how the number of alignments

changes, if we start with a regular permutation on [n - i] with k weak excedences,

and then add i clockwise fixed points. Note that adding a clockwise fixed point adds

exactly k alignments, since a clockwise fixed point is aligned with all of the weak

excedences. Since clockwise fixed points are not in alignment with each other, it

follows that adding i clockwise fixed points adds exactly ik alignments.

This shows that the new number of alignments is equal to ki plus the old number

of alignments, or equivalently, that k(n - i - k) minus the old number of alignments

is equal to k(n - k) minus the new number of alignments. In other words, the rank

of the permutation on [n - i] is equal to the rank of the new decorated permutation

on [n]. Both permutations have k weak excedences. Since there are () ways to pick

i entries of a permutation on [n] to be designated as clockwise fixed points, we have

that Ak,n(q) = Ein0 ()Ek,n(q).

Observe that we can invert the formula given in the lemma, deriving the following

corollary.

Corollary 2.5.2.

Ek,n(q) = E(-1)i Aki,,,(q).

Putting this together with Theorem 2.4.1, we get the following.

Corollary 2.5.3.

k-1

Ek,(q) = qn-k2 Z (-n) (1)i(qki-[k-i] - q[k -i-1] n)

k-1
= q-k 2 Z()i[k - ]nqki-k( qk-i + (i )

i=O (
38



Notice that by substituting q = 1 into the second formula, we get

Ek, = i(_)i(n+ l)(k - i)n

the well-known exact formula for the Eulerian numbers.

Now we will investigate the properties of Ek,n(q). Actually, since Ek,n(q) is a

multiple of qn-k, we first define E,n(q) to be qk-nEk,n(q), and then work with this

renormalized polynomial. Table 2.2 lists Ek,n(q) for n = 4, 5,6, 7.

Table 2.2: k,n(q)

We can make a number of observations about these polynomials. For example, we

can generalize the well-known result that Ek, = En+l-k,n, where Ek,n is the Eulerian
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E1, 4 (q) 1

E2,4 (q) 6 + 4q + q2

/ 3, 4(q) 6 + 4q + q2

E 4 ,4 (q) 1

E1,5 (q) 1

E 2,5(q) 10 + 10q + 5q2 + q3

E3 ,5(q) 20 + 25q + 15q2 + 5q3 + q4

E4, 5(q) 10 + 10q + 5q2 + q3

E5 ,5(q) 1

E1, 6(q) 1

E 2, 6(q) 15 + 20q + 15q2 + 6q3 + q4

E3,6(q) 50 + 90q + 84q2 + 50q3 + 21q4 + 6q5 + q6

E4, 6(q) 50 + 90q + 84q2 + 50q3 + 21q4 + 6q5 + q6

5 ,6(q) 15 + 20q + 15q2 + 6q3 + q4

E 6 ,6 (q) 1

El,7(q) 1

E2, 7(q) 21 + 35q + 35q2 + 21q3 + 7q4 + q5

E3, 7 (q) 105+ 245q+ 308q2 + 259q3 + 161q4 + 77q5 + 28q6 + 7q7 + q8

E4, 7(q) 175 + 441q + 588q2 + 532q3 + 364q4 + 196q5 + 84q6 +
28q7 + 7q8 + q9

E5,7(q) 105+245q+308q 2 + 259q3+ 161q4 + 77q5 + 28q6 + 7q7 +q8
E6, 7(q) 21 + 35q + 35q2 + 21q3 + 7q4 + q5

E 7,7 (q) 1



number corresponding to the number of permutations of S, with k weak excedences.

Proposition 2.5.4. Ek,.(q) = E.+l-k,.(q)

Proof. To prove this, we define an alignment-preserving bijection on the set of permu-

tations in Sn, which maps permutations with k weak excedences to permutations with

n+1-k weak excedences. If 7r = (al, a2 ,..., an) is a permutation written in list nota-

tion, then the bijection maps r to (bl, b2, .. , b), where bi = n-an+li modulon. 

The reader will probably have noticed from the table that the coefficients of 2,n (q)

are binomial coefficients. Indeed, we have the following proposition, which follows

from Corollary 2.5.3.

Proposition 2.5.5. E2,n(q) = i=O (i+2)qi.

Proposition 2.5.6. [34] The coefficient of the highest degree term of Ek,n(q) is 1.

Proof. This is because there is a unique permutation in Sn with k weak excedences

and no alignments, as proved in [34]. That unique permutation is rk : i i +

k modulo n. U

Proposition 2.5.7. Ek,n(-1) = k-1)

Proof. If we substitute q = -1 into the first expression for Ek,n(q), we eventually get

(-)n+l ELk- (n) (_l)i. It is known (see [1]) that this expression is equal to (n-l).

Proposition 2.5.8. Ek,n(q) is a polynomial of degree (k - 1)(n - k), and Ek,n(O) is

the Narayana number Nk,n = n (k) (k l)

We will prove Proposition 2.5.8 in Section 2.6.

Corollary 2.5.9. Ek,n(q) interpolates between the Eulerian numbers, the Narayana

numbers, and the binomial coefficients, at q = 1, 0, and -1, respectively.

Proof. This follows from the fact that Ek,n(q) is a q-analog of the Eulerian numbers,

together with Propositions 2.5.7 and 2.5.8. 0
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Based on experimental evidence, we formulated the following conjecture about the

coefficient of q in /k,n(q). However, nice expressions for coefficients of other terms

have eluded us so far.

Conjecture 2.5.10. The coefficient of q in Ek,n(q) is (k+l)(kn2)

Remark 2.5.11. The coefficients of Ek,n(q) appear to be unimodal. However, these

polynomials do not in general have real zeroes.

Since it may be helpful to have formulas which enumerate permutations by align-

ments (rather than k(n - k) minus the number of alignments), we let Ek,n(q) be

the polynomial in q such that the coefficient of q' is the number of permutations on

{1,... n} with k weak excedences and 1 alignments. Note that by using Corollary

2.5.3 and performing a transformation which sends q to q-1, we get the following

expressions.

k-1

Ek,n(q) = E ( (-1)iqi(n-k)(q[k - i]n - qn[k - i - 1]n)
i=O

= Z(-l)i[k - i]nqi(n-k)(nqi+ n )qk)
i=O

Remark 2.5.12. An occurrence of the generalized pattern 13- 2 in a permutation r

is a triple of indices (i, i + 1, j) where i + 1 < j such that ri < 7rj < 7ri+l. Together

with E. Steingrimsson [45], we conjectured that the polynomials tk,n(q) enumerated

permutations according to descents and occurrences of the generalized pattern p, where

p is any one of the patterns 13 - 2, 31 - 2, 2 - 13, 2 - 31. This conjecture was subse-

quently proved by Sylvie Corteel [13]. Additionally, she showed that the polynomials

Ek,n(q) arise in the study of the ASEP model in statistical physics [13].

Theorem 2.5.13. [13] The coefficient of qT in Ek,n(q) is the number of permutations

on n letters with k - 1 descents and r occurrences of the generalized pattern 13 - 2.
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2.6 Connection with Narayana Numbers

A noncrossing partition of the set [n] is a partition r of the set [n] with the property

that if a < b < c < d and some block B of r contains both a and c, while some

block B' of 7r contains both b and d, then B = B'. Graphically, we can represent a

noncrossing partition on a circle which has n labeled points equally spaced around

it. We represent each block B as the polygon whose vertices are the elements of B.

Then the condition that r is noncrossing just means that no two blocks (polygons)

intersect each other.

It is known that the number of noncrossing partitions of [n] which have k blocks

is equal to the Narayana number Nk,n = () (k (l) (see Exercise 68e in [43]).

To prove the following proposition we will find a bijection between permutations

of Sn with k excedences and the maximal number of alignments, and noncrossing

partitions on [n].

Proposition 2.6.1. Fix k and n. Then (k - 1)(n - k) is the maximal number of

alignments that a permutation in Sn with k weak excedences can have. The number

of permutations in Sn with k weak excedences that achieve the maximal number of

alignments is the Narayana number Nk,n = , () (k-l) 

Proof. Recall the bijection between J-diagrams and decorated permutations. The J-

diagrams which correspond to regular permutations with k weak excedences are the

J-diagrams (A, D) contained in a k by n - k rectangle, such that each column of the

rectangle contains at least one 1. The squares of the rectangle which do not contain

a 1 correspond to alignments, so the maximal number of alignments is (k - 1)(n - k).

(It is also straightforward to prove this using decorated permutations.)

In order to prove that the number of permutations which achieve the maximum

number of alignments is Nk,n, we put these permutations in bijection with noncrossing

partitions of [n] which have k blocks.

To figure out what the maximal-alignment permutations look like, imagine starting

from any given permutation and applying the covering relations in the cyclic Bruhat

order as many times as possible, such that the result is a regular permutation. Note
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Figure 2-11: The bijection between maximal-alignment permutations and noncrossing
partitions

that of the four cases of the covering relation (illustrated in section 2.3), we can use

only the first and second cases. We cannot use the third and fourth operations because

these add clockwise fixed points, which are not allowed in regular permutations. It

is easy to see that after applying the first two operations as many times as possible,

the resulting permutation will have no crossings among its chords and all cycles will

be directed counterclockwise.

The map from maximal-alignment permutations to noncrossing partitions is now

obvious. We simply take our permutation and then erase the directions on the edges.

Since the covering relations in the cyclic Bruhat order preserve the number of weak

excedences, and since each counterclockwise cycle in a permutation contributes one

weak excedence, the resulting noncrossing partitions will all have k blocks. In Figure

2-11 we show the permutations in S4 which have 2 weak excedences and 2 alignments,

along with the corresponding noncrossing partitions.

Conversely, if we start with a noncrossing partition on [n] which has k blocks,

and then orient each cycle counterclockwise, then this gives us a maximal-alignment

permutation with k weak excedences.

The map from maximal-alignment permutations to noncrossing permutations is
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obvious. Note that a maximal-alignment permutation must correspond to a noncross-

ing partition because, if there were a crossing of chords, we could uncross them to

increase the number of alignments (while preserving the number of excedences).

[]

Corollary 2.6.2. The number of permutations in Sn which have the maximal number

of alignments, given their weak excedences, is Cn = n (nnl) the nth Catalan number.

Proof. It is known that Zk Nk,n = Cn. °

Remark 2.6.3. The bijection between maximal-alignment permutations and non-

crossing partitions is especially interesting because the connection gives a way of in-

corporating noncrossing partitions into a larger family of "crossing" partitions; this

family of crossing partitions is a ranked poset, graded by alignments.

2.7 Connections with the Permanent

Let Mn(x) denote the permanent of the n x n matrix

l+x x ... x 

1 1+x x ... x

1 1 1+x x... x

1 1 1 1 1 x

Clearly [xk]Mn(x) is equal to the number of decorated permutations on [n] which

have k weak excedences, i.e. [xk]Mn(x) = Ak,n(1). It would be interesting to find

some q-analog of the above matrix whose permanent encodes Ak,n(q).
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Chapter 3

The Tropical Totally Positive

Grassmannian

This part of my thesis is based on joint work with David Speyer [41].

3.1 Introduction

Tropical algebraic geometry is the geometry of the tropical semiring (, min, +). Its

objects are polyhedral cell complexes which behave like complex algebraic varieties.

Although this is a very new field in which many basic questions have not yet been

addressed (see [35] for a nice introduction), tropical geometry has already been shown

to have remarkable applications to enumerative geometry (see [32]), as well as con-

nections to representation theory (see [21], [22], [29]).

In this chapter we introduce the totally positive part (or positive part, for short)

of the tropicalization of an arbitrary affine variety over the ring of Puiseux series, and

then investigate what we get in the case of the Grassmannian Grk,". First we give

a parameterization of the totally positive part of the Grassmannian, largely based

on work of Postnikov [34], and then we compute its tropicalization, which we denote

by Trop+ Grk, We identify Trop+ Grk,n with a polyhedral subcomplex of the ()-

dimensional Grdbner fan of the ideal of Plicker relations, and then show that this

fan, modulo its n-dimensional lineality space, is combinatorially equivalent to an (n -
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k - 1)(k- 1)-dimensional fan which we explicitly describe. As a special case, we show

that Trop+ Gr2,n is a fan which appeared in the work of Stanley and Pitman (see [44]),

which parameterizes certain binary trees, and which is combinatorially equivalent to

the (type An- 3) associahedron. We also show that Trop+ GCr3,6 and Trop+ GCr3,7 are

fans which are closely related to the fans of the types D4 and E6 associahedra, which

were first introduced in [23]. These results are strikingly reminiscent of the results of

Fomin and Zelevinsky [22], and Scott [38], who showed that the Grassmannian has a

natural cluster algebra structure which is of type An_3 for Gr2,n, type D4 for Gr 3,6,

and type E6 for Gr3,7. (Fomin and Zelevinsky proved the Gr2, case and stated the

other results; Scott worked out the cluster algebra structure of all Grassmannians

in detail.) Finally, we suggest a general conjecture about the positive part of the

tropicalization of a cluster algebra.

3.2 Definitions

In this section we will define the tropicalization and positive part of the tropicalization

of an arbitrary affine variety over the ring of Puiseux series. We will then describe

the tropical varieties that will be of interest to us.

Let C = Ul C((tl/n)) and R = U°°=1R((t l /" )) be the fields of Puiseux se-

ries over C and R. Every Puiseux series x(t) has a unique lowest term at" where

a E C* and u E Q. Setting val(f) = u, this defines the valuation map val :

(C*)n -* Qn,(xl,...,xn) - (val(xl),...,val(xn)). We define R+ to be {x(t) E

CI the coefficient of the lowest term of x(t) is real and positive}. We will discuss the

wisdom of this definition later; for practically all purposes, the reader may think of

C as if it were C and of 1Z+ as if it were R+.

Let I C C[xl,..., x,] be an ideal. We define the tropicalization of V(I), denoted

Trop V(I), to be the closure of the image under val of V(I) n (C*)n, where V(I) is the

variety of I. Similarly, we define the positive part of Trop V(I), which we will denote

as Trop+ V(I), to be the closure of the image under val of V(I) n (Z+)n. Note that

Trop V and Trop+ V are slight abuses of notation; they depend on the affine space in
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which V is embedded and not solely on the variety V.

If f E C[x1,..., xn] \ {0}, let the initial form in(f) E C[xl,. . , xn] be defined as

follows: write f = tag for a E Q chosen as large as possible such that all powers of t

in g are nonnegative. Then in(f) is the polynomial obtained from g by plugging in

t = 0. If f = 0, we set in(f) = 0. If w = ( 1l,..., wn) E Rn then in,(f) is defined

to be in(f(xitw")). If I C C[Xl,..., n] then in.,(I) is the ideal generated by inw(f)

for all f E I. It was shown in [40] that Trop V(I) consists of the collection of w for

which in,(I) contains no monomials. The essence of this proof was the following:

Proposition 3.2.1. [40] If w E Qn and in"(I) contains no monomial then V(in'(I))n

(C*)n is nonempty and any point (al,..., an) of this variety can be lifted to a point

(al,..., an) E V(I) with the leading term of ii equal to aitwi.

We now prove a similar criterion to characterize the points in Trop+ V(I).

Proposition 3.2.2. A point w = (wl , ..., wn) lies in Trop+ V(I) if and only if in,(I)

does not contain any nonzero polynomials in R+[xl,..., Xn]

In order to prove this proposition, we will need the following result of [15], which

relies heavily on a result of [26].

Proposition 3.2.3. [15] An ideal I of R[xl,... ,xn] contains a nonzero element of

R+[xl,... , Xn] if and only if (R+)n n V(in,7(I)) = 0 for all 71 E Rn .

We are now ready to prove Proposition 3.2.2.

Proof. Define T C Qn to be the image of V(I) n (Z+) n under val. Let U denote the

subset of Rn consisting of those w for which inw(I) contains no polynomials with all

positive terms. By definition, Trop + V(I) is the closure of T in Rn . We want to show

that the closure of T is U.

It is obvious that T lies in U. U is closed, as the property that in'(f) has only

positive terms is open as w varies. Thus, the closure of T lies in U.

Conversely, suppose that w E U. Then, by Proposition 3.2.3, for some ir E R n,

(R+)n n V(inn(in'(I))) 0. For e > 0 sufficently small, we have in,7(in,(I)) =
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in77+,(I). Therefore we can find a sequence wl, w2, ... approaching w with (R+)n n

V(in,i(I)) 0.

As w varies, in(I) takes on only finitely many values, and the subsets of R"

on which in,(I) takes a specific value form the relative interiors of the faces of a

complete rational complex known as the Gr6bner complex (see [47]). These complexes

are actually fans when I is defined over R ([46]). Therefore, we may perturb each

wi, while preserving in, (I), in order to assume that the wi E Qn and we still have

wi - w. Then, by Proposition 3.2.1, each wi E T, so w is in the closure of T as

desired. O

Corollary 3.2.4. Trop V(I) and Trop+ V(I) are closed subcomplexes of the Grdbner

complex. In particular, they are polyhedral complexes. If I is defined over R, then

Trop V(I) and Trop+ V(I) are closed subfans of the Grdbner fan.

One might wonder whether it would be better to modify the definition of R+ to

require that our power series lie in 1?. This definition, for example, is more similar

to the appearance of the ring of formal powers series in [29]. One can show that in

the case of the Grassmanian, this difference is unimportant. Moreover, the definition

used here has the advantage that it makes it easy to prove that the positive part of

the tropicalization is a fan.

Suppose V(I) C Cm and V(J) C Cn are varieties and we have a rational map

f : C m _- Cn taking V(I) - V(J). Unfortunately, knowing val(xi) for 1 < i < m does

not in general determine val(f(xi,.. ., xm)), so we don't get a nice map Trop V(I) -+

Trop V(J). However, suppose that f takes the positive points of V(I) surjectively

onto the positive points of V(J) and suppose that f = (fi,... , fn) is subtraction-free,

that is, the formulas for the fi's are rational functions in the xi's whose numerators

and denominators have positive coefficients. Define Trop f : Rm -+ Rn by replacing

every x in f with a +, every / with a -, every + with a min and every constant a

with val(a).

Proposition 3.2.5. Suppose V(I) C Cm and V(J) C Cn are varieties. Let f 

Cm -+ Cn be a subtraction-free rational map taking V(I) to V(J) such that V(I) n
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(R+)m surjects onto V(J) n (+) n. Then Trop f takes Trop+ V(I) surjectively onto

Trop+ V(J).

Proof. This follows immediately from the formulas val(x + y) = min(val(x), val(y))

and val(xy) = val(x) + val(y) for x and y E R+. EO

We now define the objects that we will study in this chapter. Fix k and n, and let

N - (n). Fix a polynomial ring S in N variables with coefficients in a commutative

ring. The Pliicker ideal Ik,n is the homogeneous prime ideal in S consisting of the

algebraic relations (called Pliicker relations) among the k x k minors of any k x n-

matrix with entries in a commutative ring.

Classically, the Grassmannian Grk,n is the projective variety in PC- defined by

the ideal Ik,n of Pliicker relations. We write Grkn(C) for the variety in PCN-1 defined by

the same equations. Similarly, we write Grk,n(R) for the real points of the Grassman-

nian, Grk,n(R+) for the real positive points, Grk,n(JZ+) for those points of Grk,n(C)

all of whose coordinates lie in R+ and so on. We write Grk,n(C) when we want to

emphasize that we are using the field C, and use Grk,n when discussing results that

hold with no essential modification for any field. The totally positive Grassmannian

is the set Grk,n(R+).

An element of Grk,n can be represented by a full rank k x n matrix A. If K E ([])

we define the Pliicker coordinate AK(A) to be the minor of A corresponding to the

columns of A indexed by K. We identify the element of the Grassmannian with the

matrix A and with its set of Pliicker coordinates (which satisfy the Pliicker relations).

Our primary object of study is the tropical positive Grassmannian Trop+ Grk,n,

which is a fan, by Corollary 3.2.4. As in [40], this fan has an n-dimensional lineality

space. Let 0 denote the map from (C*)n into (C*)(k) which sends (a,..., an) to the

(~)-vector whose (i,..., ik)-coordinate is ai,ai2 ' aik. We abuse notation by also

using for the same map (C*)n (C*) (). Let TropX denote the corresponding

linear map which sends (al,..., an) to the (n)-vector whose (il,..., ik)-coordinate is

ai, + ai2 + *- + aik. The map Trop q is injective, and its image is the common lineality

space of all cones in Trop Grk,n.
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3.3 Parameterizing the totally positive Grassman-

nian Grk,n(R+)

In this section we explain two equivalent ways to parameterize Grk,n(R+), as well as

a way to parameterize Grk,n(R+)/qO((R+)n). The first method, due to Postnikov [34],

uses a certain directed graph Webk,n with variables associated to each of its 2k(n - k)

edges. The second method is closely related to the first and uses the same graph,

but this time variables are associated to each of its k(n - k) regions. This has the

advantage of giving a bijection between (R+)k(n- k) and Grk,n(R+). Finally, we use

Webk,n with variables labelling each of its (k - 1)(n - k - 1) inner regions in order to

give a bijective parameterization of Grk,n(R+)/((R+ )n).
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Figure 3-1: Webk,n for k = 4 and n = 9

Let Webk,n be the directed graph which is obtained from a k by n - k grid, as

shown in Figure 3-1. It has k incoming edges on the right and n - k outgoing edges

on the bottom, and the vertices attached to these edges are labelled clockwise from 1

to n. We denote the set of 2k(n - k) edges by E. Let us associate a formal variable

xe with each edge e E E, and if there is no ambiguity, we abbreviate the collection

{Xe} by x. If p is a path on Webk,n (compatible with the directions of the edges),

then we let Prodp(x) denote Hep Xe. And if S is a set of paths on Webk,n, then we

let Prods(x) denote lipEs Prodp(x).

As in [34], we define a k x n matrix Ak,n(x), whose entries aij(x) are polynomials
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in the variables xe, by the following equation:

aij(x) = (-1)i+l E Prodp(x),
p

where the sum is over all directed paths p from vertex i to vertex j. Note that

the k x k submatrix of Ak,n(x) obtained by restricting to the first k columns is the

identity matrix. In particular, Ak,n(x) is a full rank matrix and hence we can identify

it with an element of Grk,n. Also note that every element of the totally positive

Grassmannian Grk,f(R+) has a unique matrix representative whose leftmost k x k

submatrix is the identity. We shall see that as the {Xe} vary over (R+)2k(n-k), the

Ak,n(x) range over all of Grk,n(R+).

We now show it is possible to express the maximal minors (Pliicker coordinates)

of Ak,n(x) as subtraction-free rational expressions in the x, as shown in [34]. If

K E ([n]), then let Path(K) denote the set

{S: S is a set of pairwise vertex-disjoint paths from [k]\(K n [k]) to K\([k] n K)}.

Note that for K = [k], we consider the empty set to be a legitimate set of pairwise

vertex-disjoint paths.

Applied to Webk,n, Theorem 15.4 of [34] implies the following.

Proposition 3.3.1. The Pliicker coordinates of Ak,n(x) are given by

AK(Ak,n(X)) = E Prods(x).
SEPath(K)

Proof. We give a brief proof of this result: the main idea is to use the well-known

Gessel-Viennot trick [25]. First note that aij (x) has a combinatorial interpretation: it

is a generating function keeping track of paths from i to j. Thus, the determinant of a

k x k submatrix of Ak,n(x) corresponding to the column set K also has a combinatorial

interpretation: it is a generating function for all sets of paths from [k]\(K n [k]) to

K\([k] n K), with the sign of each term keeping track of the number of crossings in
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the corresponding path set. What we need to show is that this is equal to the sum

of the contributions from path sets which are pairwise vertex-disjoint. To see this,

consider a path set which does have an intersection. Look at its lexicographically last

intersection, and compare this path set to the one obtained from it by switching the

two path tails starting at that point of intersection. These two path sets get different

signs, but have equal weights, and hence they cancel each other out. a

Proposition 3.3.1 allows us to define a map (o (R+)2k (n- k ) --+ Grk,n(R + ) as

follows. Let K E ([n]), and define PK : (R+)2k(n-k) R+ by

PK(x):= E Prods(x).
SEPath(K)

Clearly if we substitute positive values for each xe, then PK(x) will be positive. We

now define I0 by

0(X)= {PK(X)}KE([n])-

In other words, o is the map which sends a collection of positive real numbers {xe}

to the element of Grk,n with Pliicker coordinates PK(x) (which is identified with the

matrix Ak,n(x)).

By Theorem 19.1 of [34], the map 40D is actually surjective: any point in Grk,n(R+)

can be represented as Ak,n(x) for some positive choices of {(e}. In summary, we have

the following result (which will also be a consequence of our Theorem 3.3.3).

Proposition 3.3.2. The map I0 : (R+)2k(n - k) - Grk,n(R) is a surjection onto

Grk,n(R+).

Unfortunately, the method we have just described uses 2k(n - k) variables to pa-

rameterize a space of dimension k(n-k). We will now explain how to do a substitution

of variables which will reduce the number of variables to k(n - k).

We define an inner region of Webk,n to be a bounded component of the complement

of Webk,n (viewed as a subset of R2). And we define an outer region of Webk,n to be

one of the extra inner regions we would obtain if we were to connect vertices i and

i + 1 by a straight line, for i from 1 to n - 1. A region is an inner or outer region. Note
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that there are k(n - k) regions, which we denote by R, and there are (k - l)(n- k- 1)

inner regions.

Let us label each region r E R with a new variable zr, which we define to be the

product of its counterclockwise edge variables divided by the product of its clockwise

edge variables.

X1 X5 X8

x2 A \/X 4 X B X9 s C

X 3 X 7

Figure 3-2: Labels for regions

For example, the new variables A, B, C shown in Figure 3-2 would be defined by

A X1X2 B X5X6 = 

X3 X4 X7

It is easy to check that for a path p on Webk,n, Prodp(x) is equal to the product

of the variables attached to all regions below p. Since Prods(x) and Ak,n(x) were

defined in terms of the Prodp(x)'s, we can redefine these expressions in terms of the

k(n - k) region variables. Proposition 3.3.2 still holds, but our map is now a map 1

from (R+)k(n-k) onto Grk,n(R+), taking the region variables {xr} to the element of

Grk,n(R+) represented by Ak,n(x).

Since we are now parameterizing a space of dimension k(n - k) with k(n - k)

variables, we should have a bijection. We shall prove that this is so by constructing

the inverse map.

Theorem 3.3.3. The map I 1 : (R+)k(n-k) __ Grk,n(R+), which maps {Xz}rER to the

Grassmannian element represented by Ak,n(x), is a bijection.

Before we prove this theorem, we need a lemma about matrices and their minors.

We use a very slight generalization of a lemma which appeared in [20]. For complete-

ness, we include the proof of this lemma. First we must define some terminology.

Let M be a k x n matrix. Let A,j denote the minor of M which uses row set I
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and column set J. We say that AI, J is solid if I and J consist of several consecutive

indices; if furthermore I U J contains 1, we say that AI,J is initial. Thus, an initial

minor is a solid minor which includes either the first column or the first row.

Lemma 3.3.4. [20] A matrix M is uniquely determined by its initial minors provided

that all these minors are nonzero.

Proof. Let us show that each matrix entry xij of M is uniquely determined by the

initial minors. If i = 1 or j = 1, there is nothing to prove, since xij is an initial minor.

Assume that min(i, j) > 1. Let A be the initial minor whose last row is i and last

column is j, and let A' be the initial minor obtained from A by deleting this row and

column. Then A = A'xij + P, where P is a polynomial in the matrix entries xij,

with (i', j') (i, j) and i' < i, j' < j. Using induction on i + j, we can assume that

each xi,j, that occurs in P is uniquely determined by the initial minors, so the same

is true of xij = (A - P)/A'. 

We now define a reflected initial minor to be a solid minor AI,J such that I contains

k or J contains 1. Thus, a reflected initial minor is a solid minor which includes either

the first column or the last row. A trivial corollary of Lemma 3.3.4 is the following.

Corollary 3.3.5. A matrix M is uniquely determined by its reflected initial minors

provided that all these minors are nonzero.

Now we are ready to prove Theorem 3.3.3.

Proof. To prove the theorem, we will construct an explicit inverse map : Grk,n(R+)

(R+)k(n- k). The first step is to prove that I)1 = id.

Let us index the regions in Webk,n by ordered pairs (i, j) as follows. Given a

region, we choose i to be the label of the horizontal wire which forms the upper

boundary of the region, and choose j to be the label of the vertical wire which forms

the left boundary of the region. Now we define a map K from the set of regions to

([2n) by

K(i,j) := {1,2,...,i-1} U{i+ j-k,i+j- k + 1,..., -1,j}.
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If (i, j) is not a region of Webk,n, then we define K(i, j) := 0.

Let A be a k x n matrix whose initial k x k minor is the identity. We define (A)

by
A ,, (lA)]/\, ... _ \(A~iA ] ;lo A ,.. . ,(A 

(i(A))(ij):=
AK(i, j-1) (A)AK(i+l,j) (A)A K(i+2,j-2) (A) 

Note that by convention, we define A0 to be 1.

See Figure 3-3 for the definition of in the case of Gr3,6(R+).

brevity, we have omitted the A's from each term.

(3.1)

Note that for

A4 5 6A1 34A125

A 345A156A124

A156A124

A126A145

A126

A125

A3 4 5 A1 2 4

A2 4 A 145

A145A 123

A 125 A 134

A125

A1 2 4

5 4

Figure 3-3: Web 3,6

We claim that if A = 4Dlx, then T(lx = x. To prove this, we note that the

variable in region (i, j) can be expressed in terms of vertex-disjoint paths as follows.

First observe that if K(i,j) 4 0 then there is a unique set of pairwise vertex-

disjoint paths from [k] \ ([k] n K(i, j)) to K(i, j) \ ([k] n K(i, j)). If one examines the

terms in (3.1) and draws in the six sets of pairwise vertex-disjoint paths on Webk,n

(say the three from the numerator in red and the three from the denominator in blue)

then it is clear that every region in Webk,n lies underneath an equal number of red

and blue paths - except the region (i, j), which lies underneath only one red path.

Thus, by definition of the maps PK, it follows that

(I 1 (X)) (i,j) =
PK(i,j)(Z)PK(i+lj-2) ()PK(i+2,j-1)(X)
PK(i,j-1) (X) PK(i+l,j) (X)PK(i+2,j-2) (X) = (j.
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To complete the proof, it remains to show that i is injective. This will complete

the proof because we know that TNl iT = T, and T injective then implies that 4(lx =

id.

Choose an element of Grk,,(R+), which we identify with its unique matrix rep-

resentative A whose leftmost k x k minor is the identity. Let V denote the set of

rational expressions which appear in the right-hand side of (3.1) for all regions (i, j)

in Webk,,. Let P7 denote the set of all individual Plucker coordinates which appear

in V. We prove that I[ is injective in two steps. First we show that the values of

the expressions in V uniquely determine the values of the Pliicker coordinates in P.

Next we show that the values of the Pliicker coordinates in P uniquely determine the

matrix A.

The first step is clear by inspection. We illustrate the proof in the case of

Gr3, 6(R+). By the choice of A, A 123 = 1. Looking at the rational expressions in

Figure 3-3, we see that knowing the value A determines A124; the value A 124 to-
A 123

gether with the value _44a determines A134; and similarly for A234, A1 25, A126 . Next,A 12 4

these values together with the value a1453 determines A145, and so on.
A1 2 5 A1 34

For the second step of the proof, let A' denote the k x (n - k) matrix obtained

from A by removing the leftmost k x k identity matrix. Note that the values of the

Pliicker coordinates AK(i,j)(A) (which are all elements of P7) determine the values of

all of the reflected initial minors of A'. (Each such Pliicker coordinate is equal to one

of the reflected initial minors, up to sign.) Thus, by Corollary 3.3.5, they uniquely

determine the matrix A' and hence A. This completes the proof of Theorem 3.3.3. 0

Now let us parameterize Grk,(R+)/q((R+)n). We shall show that we can do this

by using variables corresponding to only the (k - 1)(n - k- 1) inner regions of Webk,.

First recall that the n-dimensional torus acts on Grk,n(R+) by scaling columns of

a matrix representative for A E Grk,n(R+). (Although the torus has dimension n, this
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is actually just an (n - l)-dimensional action as the scalars act trivially.) Namely,

all ... aln (lall ... Analn

akl ... akn Alakl ... Anakn

If A E Grk,n(lR+ ) then we let A denote the torus orbit of A under this action. Note

that if K = {i,..., ik}, then AK(AA) = AilAi2 ... AikAK(A).

We will now determine the corresponding torus action on (R+)k(n- k) such that the

above bijection commutes with the actions. If r is an internal region then Xr is a ratio

of Pliicker coordinates with the same indices appearing on the top and bottom, so Xr

is not modified by the torus action. A simple computation shows that the torus acts

transitively on the values of the outer region variables. Thus, taking the quotient by

0((+)n ) on the right hand side of the equation corresponds to forgetting the outer

variables on the left.

Define a map 2: (1R+)(k- 1)( n - k -1 ) Grk,n(R+)/q((R+)n) by lifting a point

c E (R+)(k - 1)(n - k-1) to any arbitrarily chosen point c E (R+)k(n- k) and then mapping

c to 4IP (). We have just proven:

Theorem 3.3.6. The map 2 : (R+)(k- 1)(n- k - 1) -- Grk,n(+)/((+) n ) is a bijec-

tion.

3.4 A fan associated to the tropical positive Grass-

mannian

In this section we will construct a lower-dimensional fan associated to the tropical

positive Grassmannian Trop+ Grk,n. By methods precisely analogous to those above,

we can prove an analogue of Theorem 3.3.6 for the field of Puiseux series.

Theorem 3.4.1. The map q)2 : (1R+)(k-1)(n-k-1) - Grk,n(IZ+)/q((71+)n ) is a bijec-

tion.
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This theorem allows us to compute Trop + Grk,n/(Trop )(Rn ) by applying the

valuation map to the image of 4D2. By Proposition 3.2.5 we can tropicalize the map

'2, obtaining the following surjective map.

Trop )2: R (k- l ) (n - k- 1) -- Trop+ Grk,n/(Top 0)(R )

The map Trop 12 is the map we get by replacing multiplication with addition and

addition with minimum in the definition of 2. Explicitly, it is defined as follows.

Let K E ([]), and let inner region variables take on values {xr} in R. Outer region

variables are chosen arbitrarily. If p is a path on Webk,n then let Sump(x) denote the

sum of all variables which label regions below p. Similarly, if S is a set of paths, then

let Sums(x) denote pES Sumnp(x). We define Trop PK(x): R(k-l)(n-k-l) -- by

TropPK() := min{Sums(x): S E Path(K)}.

The map Trop I2 is the map

Trop 2 : R( - )(n" - - l) -l Trop+ Grk,/(Top )( (nR) C RN/(Trop 0)(R n)

given by

(Trop2 (X))K = PK (X).

Definition 3.4.2. The fan Fk,n is the complete fan in R(k- 1)(n- k- 1) whose maximal

cones are the domains of linearity of the piecewise linear map Trop c12.

Because Trop42 surjects onto Trop+ Grk,n/(Trop0)(IRn), the fan Fk,n reflects

the combinatorial structure of the fan Trop+ Grk,n/(Trop q)(Rn), which differs from

Trop+ Grk,n only through modding out by the linearity space. However, Fk,n is much

easier to work with, as it lives in (k - 1)(n - k -1)-dimensional space as opposed to

(n)-dimensional space.

Since the maps Trop PK are piecewise linear functions, to each one we can associate

a fan F(PK) whose maximal cones are the domains of linearity for Trop PK. It is clear

that the fan Fk, is the simultaneous refinement of all of the fans F(PK).
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From now on, we will refer to Trop+ Grk,n/(Trop q)(R n ) as Trop+ Grk,n.

3.5 Trop+ Gr2,, and the associahedron

In this section we will describe the fan F2,n associated to Trop+ Gr 2,n. We show

that this fan is exactly the Stanley-Pitman fan Fn-3, which appeared in the work of

Stanley and Pitman in [44]. In particular, the face poset of F2,n, with a top element

i adjoined, is isomorphic to the face lattice of the normal fan of the associahedron,

a polytope whose vertices correspond to triangulations of the convex n-gon. (In the

language of [11], this is the associahedron of type An-3.)

Let us first do the example of Trop+ Gr2,5.

\

/ 2

-A- 
I N

/X1

\

5 4

, / / 1---

~x
\ 2

I 

3

Figure 3-4: Web 2,5

We use the web diagram

given by:

Web2,5, as shown in Figure 3-4. The maps Trop PK are

Trop Plj = 0 for all j

Trop P23 = 0

Trop P24 = min(xl, 0)

Trop P25 = min(xl + X2, X1, 0)

Trop P34 = Xl

Trop P35 = min(xl, x1 + x 2)

Trop P45 = xl + X2

Each map Trop PK : R 2 -- R is piecewise linear and so gives rise to the complete
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fan F(PK). For example, the map Trop P2 4 is linear on the region {(xl,x 2): xl > 0),

where it is the function (x1 ,x 2) -4 0, and on the region ((xl, 2) : xl < 0, where

it is the function (x1 ,x 2) -+ x1 . Thus, F(P24 ) is simply the subdivision of the real

plane into the regions xl > 0 and xl < 0. The three nontrivial fans that we get from

the maps Trop Pj are shown in Figure 3-5. In each picture, the maximal cones of

each fan are separated by solid lines. F2,5 , which is the simultaneous refinement of

the three nontrivial fans, is shown in Figure 3-6.

XI 0
Xl

X +X 2

min(0, X 1) min(0, X 1, X+X 2) min(X 1, X +X2)

Figure 3-5: Fans for Trop Pj

In [40], it was shown that maximal cones of the fan TropGr2, correspond to

trivalent trees on n labelled leaves. It turns out that maximal cones of the fan

Trop Gr2+ correspond to trivalent planar trees on n labelled leaves, as is illustrated

in Figure 3-6.

We will now describe the fan that appeared in [44], but first, we must review some

notions about trees. A plane binary tree is a rooted tree such that each vertex has

either two children designated as left and right, or none at all; and an internal vertex

of a binary tree is a vertex which is not a leaf. A trivalent planar tree is an (unrooted)

tree such that every vertex has degree three, and such that the leaves are labelled

in a clockwise fashion. It is known that both plane binary trees with n - 1 leaves,

and trivalent planar trees with n labelled leaves, are counted by the Catalan number

Cn-2 = 1 (2(n-2))

There is a simple bijection between such trivalent planar trees and plane binary

trees: if T a trivalent planar tree, then simply contract the edge whose leaf is labelled

1, and make this the root. This bijection is illustrated in Figure 3-6.

Let us now define the Stanley-Pitman fan Fn-3 in R" -3 . (Note that we use different
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Figure 3-6: The fan of Trop+ Gr 2,5

indices than are used in [44]). The maximal cones of Fn,-3 are indexed by plane binary

trees with n - 1 leaves, in the following manner. Let T be a plane binary tree with

n - 1 leaves. Label the internal vertices of T with the numbers 1, 2,... n - 2 in the

order of the first time we drop down to them from a child when doing a depth-first

search from left to right starting at the root. (See Figure 3-6 for examples.) Let

x 1,..., xn_3 denote the coordinates in Rn-3. If the internal vertex i of T is the parent

of vertex j, and i < j, then associate with the pair (i, j) the inequality

xi + . + j-1 > 0,

while if i > j then associate with (i, j) the inequality

xi + . * + xj-1 < .

These n - 3 inequalities define a simplicial cone CT in R-3.
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The result proved in [44] is the following.

Theorem 3.5.1 ([44]). The Cn_2 cones CT, as T ranges over all plane binary trees

with n - 1 leaves, form the chambers of a complete fan in Rn-3. Moreover, the

face poset of Fn-3, with a top element i adjoined, is dual to the face lattice of the

associahedron which parameterizes triangulations of the convex n-gon.

The key step in proving that our fan F2,n is equal to the Stanley-Pitman fan Fn-3

is the following lemma, also proved in [44].

Lemma 3.5.2 ([44]). Let Di = {(xl, .. .,Xn-3) E ]Rn-3 X1+_. *+Xil = min(O, xl, xl+

X2, ... , X1 + - -. + Xn_3)}. Let Ti consist of all plane binary trees with n - 1 leaves and

root i. Then Di = UTE7ICT.

Proposition 3.5.3. The fan F2 ,n is equal to the fan Fn-3 .

Proof. First let us describe the fan F2,n as explicitly as possible. Note that if we label

the regions of Web2,n with the variables xl,..., xn, 3 from right to left, then all of the

maps Trop PK are of the form

min(xl + X2 + . + i, X + 2 +. + Xi+l, X .,X + X2 + . + xj),

where 0 < i < j < n. Since this map has the same domains of linearity as the map

Oij := min(xi, xi + xi+l,... ,xi + ... + xj),

we can work with the maps ij instead. Let F(i, j) be the fan whose cones are the

domains of linearity of 0ij. Then F2,n is the simultaneous refinement of all fans F(i, j)

where 0 < i < j < n.

Now note that the previous lemma actually gives us an algorithm for determining

which cone CT a generic point ( 1, ... , Xn3) E Rn -3 lies in. Namely, if we are given

such a point, compute the partial sums of xl + ..- + xi, for 1 < i <n - 2. Choose i

such that xl + .. + xi-1 is the minimum of these sums. (If i = 1, the sum is 0.) Then

the root of the tree T is i. The left subtree of T consists of vertices {1,..., i - 1},
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and the right subtree of T consists of vertices i + 1,..., n - 2}. We now compute

min(0, xl, x1 + x2, . .., xl + .- + xi-2 and min{xi, xi + xi+l, .., xi + ... + xn_3 in

order to compute the roots of these two subtrees and so forth.

Now take a point (l,. .., xn-3) in a cone C of F2,n. This means that the point

is in a domain of linearity for all of the piecewise linear functions ij = min{xi, xi +

i+l,..., xi + + xj} where 0 < i < j < n, and we take x0 to be 0. In other words,

for each i and j, there is a unique k such that xi+* '+xk = min{xi, xi +Xi+l,... ,xi+

·- + xj}. In particular, we can reconstruct the tree T such that (l,..., xn-3) E CT,

and every point x E C belongs to this same cone CT.

Finally, we can show by induction that CT C C. (We need to show that all of

the functions ij are actually linear on CT.) This shows that each cone C in F2,n is

actually equal to a cone CT in Fn-3, and conversely.

3.6 Trop+ Gr3,6 and the type D4 associahedron

In connection with their work on cluster algebras, Fomin and Zelevinsky [23] recently

introduced certain polytopes called generalized associahedra corresponding to each

Dynkin type, of which the usual associahedron is the type A example. When we

computed F3,6, the fan associated with Trop+ Gr3, 6, we found that it was closely

related to the normal fan of the type D4 associahedron, in a way which we will now

make precise. (We defer the explanation of our computations to the end of this

section.)

Proposition 3.6.1. The f-vector of F3,6 is (16, 66, 98, 48). The rays of F3,6 are listed

in Table 3.1, along with the inequalities defining the polytope that F3,6 is normal to.

Using the formulas of [23], we calculated the f-vector of the normal fan to the

type D4 associahedron: it is (16, 66,100, 50). More specifically, our fan has two cones

which are of the form of a cone over a bipyramid. (Type FFFGG in the language

of [40].) If we subdivide these two bipyramids into two tetrahedra each, then we get

precisely the D4 associahedron.
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el
e2

e3

e4

-el
-e2

-e3

-e4
el - e2
el - e3
el - e4
-el + e4
e2 - e4

e3 - e4

el - e2 - e3
e2 + e3 - e4

xl < 5
x2 < 7
X3 7

x4 10
-x1 < 0
-x 2 < -2
-X3 < -2
-x 4 < -5
Xl - x 2 <_ 0
x1 - X3 < O
XI - X4 <_ -1

-x 1 + X4 < 9
x 2 - x4 < 0
X3- X4 < O0

X1-X2-X 3 < -3
X2 + X3 - x4 < 6

Table 3.1: Rays and inequalities for F3,6

In Section 3.8, we will give some background on cluster algebras and formulate

a conjecture which explains the relation of F3,6 to the normal fan to the type D4

associahedron.

We depict the intersection of F3,6 with a sphere in Figures 3-7 and 3-8. Each of the

figures is homeomorphic to a solid torus, and the two figures glue together to form the

sphere S3 . The bipyramids in question have vertices {e2 +e3 -e 4, -el, e2, e3, -el +e4}

and {el - e2 - e3, -e4 , el - e2, el - e3, el - e4 }.

Now we will explain how we computed F3,6. We used two methods: the first

method was to use computer software (we used both cdd+ and Polymake) to compute

the fan which we described in Section 3.4. The second method was to figure out which

subfan of Trop Gr3,6 (which was explicitly described in [40]) was positive.

To implement our first method, we used the well-known result that if F1 and F2 are

fans which are normal to polytopes Q1 and Q2, then the fan which is the refinement

of F1 and F2 is normal to the Minkowski sum of Q1 and Q2. Since the fan Fk, is

the simultaneous refinement of all the fans F(PK), we found explicit coordinates for

polytopes Q(PK) whose normal fans were the fans F(PK), and had the programs
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cdd+ and Polymake compute the Minkowski sum Qk,n of all of these polytopes. We

then got explicit coordinates for the fan which was normal to the resulting polytope.

For the second method, we used the results in [40]: we checked which of the rays

of Trop Gr3 ,6 did not lie Trop+ Gr3,6 , and checked which facets of Trop Gr3,6 did lie in

Trop+ Gr3,6. As Trop+ Gr 3,6 is a closed subfan of Trop Gr 3,6, this implied that every

face of Trop Gr 3,6 which lay in a totally positive facet was in Trop+ Gr 3,6 and every

face of Trop Gr3,6 which contained a non-totally positive ray was not in Trop+ Gr3,6;

for every face of Trop Gr 3,6, this proved sufficient to determine whether it was in

Trop + Gr 3,6 or not.

3.7 Trop+ Gr3,7 and the type E6 associahedron

As in the case of F3,6, we used computer software to compute F3,7, the fan associated

to Trop+ Gr3,7.

Proposition 3.7.1. The f-vector of F3,7 is (42,392, 1463, 2583, 2163, 693). Its rays

are listed in Table 3.2, along with the inequalities defining the polytope that F3,7 is

normal to. Of the facets of this fan, 595 are simplicial, 63 have 7 vertices, 28 have 8

vertices and 7 have 9 vertices. All faces not of maximal dimension are simplicial.

Using the formulas of [23], we calculated the f-vector of the fan normal to the

type E6 associahedron: it is (42, 399,1547, 2856, 2499, 833).

In Section 3.8, we will explain why F3,7 differs from the E6 fan, and how one can

refine F3,7 to get a fan combinatorially equivalent to the fan dual to the type E6

associahedron. In this refinement, the simplicial facets remain facets. The 7, 8 and

9 vertex facets split into 2, 3 and 4 simplices respectively. The following table shows

how the vertices of the 7, 8, and 9 vertex facets are grouped into simplices.
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< ABCDEFG > - < ABCDEF > U < ABCDEG >

< ABCDEFGH > < ABCDEF > < ABCDFG >

U < ABCDGH >

< ABCDEFGHI > < ABCDEF > U < ABCEFG > U

< ABCFGH > U < ABCGHI >

3.8 Cluster Algebras

Cluster algebras are commutative algebras endowed with a certain combinatorial

structure, introduced in [21] and expected to be relevant in studying total positivity

and homogeneous spaces, such as Grassmannians.

We will not attempt to give a precise definition of a cluster algebra here, but will

rather describe their key properties. Slightly varying definitions can be found in [21],

[22] and [38]; we follow [38] but do not believe these small variations are important.

A cluster algebra is an algebra A over a field k, which in our examples can be

thought of as R. Additionally, a cluster algebra carries two subsets C and X c A,

known as the coefficient variables and the cluster variables. C is finite, but X may be

finite or infinite. If X is finite, A is known as a cluster algebra of finite type. There

is also a nonnegative integer r associated to a cluster algebra and known as the rank

of the algebra.

There is a pure (r - 1)-dimensional simplicial complex called the cluster complex

whose vertices are the elements of X and whose maximal simplices are called clusters.

We will denote the cluster complex by S(JA). If x E X and A E S(A) is a cluster

containing x, there is always a unique cluster A' with A n A = A \ {x}. Let

A' = (A \ {x}) U {x'}. Then there is a relation xx' = B where B is a binomial in the

variables of (A n A') U C.

For any x E X and any cluster A, x is a subtraction-free rational expression in
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the members of A U C and is also a Laurent polynomial in the members of A U C.

Conjecturally, this Laurent polynomial has non-negative coefficients. Note that this

conjecture does not follow from the preceding sentence: -3+v3 = x2 -xy + y 2 is a

subtraction-free expression in x and y, and a polynomial in x and y, but it is not a

polynomial with positive coefficients.

It was demonstrated in [38] that the coordinate rings of Grassmannians have

natural cluster algebra structures. Usually these cluster algebras are of infinite type,

making them hard to work with in practice, but in the cases of Gr2 ,,, Gr3,k for k < 8

and their duals, we get cluster algebras of finite type.

In the case of Gr2,,, the coefficient set C is {A127, 237 ... , 7 (n-l)n, Aln} and the

set of cluster variables X is {Aij : i < j and i - j ±1l mod n}. (Note that

these A's are Pliicker coordinates and not simplices.) Label the vertices of an n-gon

in clockwise order with the indices 1, 2,... , n) and associate to each member of

X U C the corresponding chord of the n-gon. The clusters of Gr 2,n correspond to the

collections of chords which triangulate the n-gon. Thus, S(A) in this example is (as

an abstract simplicial complex) isomorphic to the dual of the associahedron. Since we

have shown that the fan of Trop+ Gr 2,n is combinatorially equivalent to the normal

fan of the associahedron, it follows that Trop+ Gr2,n is (combinatorially) the cone on

S(A).

In the case of Gr3, 6, the coefficient set C is equal to {A1 2 3 , A2 3 4 , A3 4 5 , A4 5 6 , A5 6 1 7

A61 2 }. X contains the other 14 Pliicker coordinates, but it also contains two un-

expected elements: A1 3 4 A2 5 6 - A1 5 6 A2 34 and A2 36 A 145 - A 23 4 A 15 6 . By definition,

all Pliicker coordinates are positive on the totally positive Grassmannian, so by the

results above on subtraction-free rational expressions, these new coordinates are pos-

itive on the totally positive Grassmannian as well.

The new coordinates turn out to be Laurent polynomials with positive coefficients

in the region variables of Section 3.3. Thus, we can tropicalize these Laurent poly-

nomials and associate a fan to each of them. When we refine F3,6 by these fans, the

refinement subdivides the two bipyramids and yields precisely the normal fan to the

D4 associahedron, which is again the cone over S(A).
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In the case of Gr3,7, C again consists of {Ai(i+l)(i+ 2)} where indices are modulo

7. X contains all of the other Pliicker variables and the pullbacks to Gr3, 7 of the

two new cluster variables of Gr 3,6 , along with the 7 rational coordinate projections

Gr3,7 -+ Gr 3,6 . Thus, X contains 28 Pliicker variables and 14 other variables.

As in the case of Gr3,6, the 14 new variables are Laurent polynomials with positive

coefficients in the region variables of Section 3.3, so to each one we can associate a

corresponding fan. When we refine F3,7 by these 14 new fans, we get a fan combina-

torially equivalent to the fan normal to the E6 associahedron.

We can describe what we have seen in each of these Grassmannian examples in

terms of the general language of cluster algebras as follows:

Observation when A is the Coordinate Ring of a Grassmannian. Embed

Spec A in affine space by the variables X Li C. Then Trop+ Spec A is a fan with

lineality space of dimension ICl. After taking the quotient by this lineality space, we

get a simplical fan abstractly isomorphic to the cone over S(.A).

This observation does not quite hold for an arbitrary cluster algebra of finite type.

For example, if we take the cluster algebra of Gr2,6 and set all coefficient variables

equal to 1, we get a different cluster algebra which is still of type A 3. However, when

we compute the positive part of the corresponding tropical variety, we get a fan whose

lineality space has dimension 1, not 0 as the above would predict. Our fan is a cone

over a hexagon cross a 1-dimensional lineality space, which is a coarsening of the

fan normal to the type A3 associahedron. Based on this and other small examples,

it seems that in order to see the entire cone over S(A), one needs to use "enough"

coefficients.

Conjecture 3.8.1. Let A be a cluster algebra of finite type over R and S(A) its

associated cluster complex. If the lineality space of Trop+ Spec A has dimension ICI

then Trop+ Spec A modulo its lineality space is a simplicial fan abstractly isomorphic

to the cone over S(A). If the condition on the lineality space does not hold, the

resulting fan is a coarsening of the cone over S(A).
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Remark: The condition on the lineality space can be restated without mentioning

tropicalizations. Consider the torus (R*)Xuc acting on the affine space R x uc and let

G be the subgroup taking Spec A to itself. We want to require that dim G = IC1.

Remark: In the notation of [21] and [22], the condition on the dimension of the

lineality space is equivalent to requiring that the matrix B be of full rank. We thank

Andrei Zelevinsky for pointing this out to us.

Note how surprising this conjecture is in light of how the two complexes are

computed. The fan described in the conjecture is computed as the refinement of a

number of fans, indexed by the vertices of S(A4). That the rays of this fan, which

arise as the intersections of many hypersurfaces, should again be in bijection with the

vertices of S(fA) is quite unexpected.

We expect an analogous statement to hold for infinite type cluster algebras.
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Figure 3-8: The intersection of F3,6 with a sphere
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el
e2

e 3

e4

e5
e6
-el
-e2

-e3

-e 4

-e 5

-e 6

el - e2
el - e3
el - e4
el - e5
el - e6
e2 - e3

e2 - e5

e2 - e6

e3 - e 6

e4 - e5
e4 - e6

e5 - e6

-el + e5
-e2 + e5
-e2 + e6
e2 +- e4 - e5
e2 + e4 - e6
es + e4- e6
e3 + e5 - e6
el - e2 + e6
el - e2 - e4
el - e3 - e4
el - e3 - e5
e2 - e3 - e5

-el + e5 - e6
el + e2 - e3 - e5
e2 +- e4 - e5 - e6
el -e2 - e4 + e6

e2 - e3 + e4 - e5
-el + e3 + e5 - e6

X1 < 10

x 2 < 16

X3 < 19
x4 < 14
X5 < 26
x6 < 35
-xI < -1
-x2 < -4
-X3 < -10
-x4 < -5
-x 5 < -17
-x 6 < -26
xl - 2 <_ -1
Xl - x 3 < -4
XI - X4 < -1
X1 - X5 < -7
X - x6 <_ -17

X2 - x 3 < -1
X2 - 5 < -4
2 - x6 < -12

X3 - x6 _< -10

X4 - X5 < --5
X4 - 6 < -14

X5 - 6 < -5
-x1 + X5 < 23
-x 2 + x5 < 21
-x 2 + x6 < 28
X2 + X4 - X5 8
x 2 + x4 - x 6 < 1
x3 + x4 - x6 < 3
x3 + X5 - x 6 < 13
Xl - x 2 + x 6 < 33
X - X2 - X4 < --7
Xl - 3 - X4 < -12
X - 3 - x5 < -19
X2 - 3 - x5 < -17
-x1 + X5 - x6 < -7
X + X2 - X3 - X5 < -9
x2+x4-x 5- 6 < -19

-X2 - x 4 +x 6 < 26
X2 - X3 + X4 -X 5 _ -- 7

-xl+x 3+x 5-x 6 < 11

Table 3.2: Rays and inequalitiesfor F3,7
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Chapter 4

The Positive Bergman Complex of

an Oriented Matroid

This chapter is based on joint work with Federico Ardila and Carly Klivans [3].

4.1 Introduction

Bergman [6] defined the logarithmic limit-set of an algebraic variety in order to study

its exponential behavior at infinity. We follow [46] in calling this set the Bergman

complex of the variety. Bergman complexes have recently received considerable at-

tention in several areas, such as tropical algebraic geometry and dynamical systems.

They are the non-Archimedean amoebas of [15] and the tropical varieties of [40].

When the variety is a linear space, so that the defining ideal I is generated by

linear forms, Sturmfels [46] showed that the Bergman complex can be described solely

in terms of the matroid associated to the linear ideal. He used this description to

define the Bergman complex B(M) of an arbitrary matroid M. Ardila and Klivans

[2] showed that, appropriately subdivided, the Bergman complex of a matroid M is

the order complex of the proper part of the lattice of flats LM of the matroid. This

result implies that the Bergman complex of an arbitrary matroid M is a finite, pure

polyhedral complex, which is homotopy equivalent to a wedge of spheres.

Sturmfels [47] suggested the notion of a positive Bergman complex B+(M) of an
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oriented matroid M and conjectured its relation to the Las Vergnas face lattice of

M. We define the positive Bergman complex and positive Bergman fan so that given

a linear ideal I with associated oriented matroid MI, the positive tropical variety

associated to I is equal to the positive Bergman fan of M,.

We prove that appropriately subdivided, B+(M) is a geometric realization of the

order complex of the proper part of the Las Vergnas face lattice of M. B+(M) is

homeomorphic to a sphere and naturally sits inside B(M), the Bergman complex

of the underlying unoriented matroid of M. We conclude by showing that, for the

oriented matroid of the complete graph K, the face poset of a certain "coarse"

subdivision of B+(Kn) is dual to the face poset of the associahedron An- 2.

The chapter is organized as follows. In Section 4.2 we introduce a certain oriented

matroid M which will play an important role in our work. In Section 4.3 we define

the positive Bergman complex and prove our main theorem. In Section 4.4 we explain

the relation between the positive Bergman complex of an oriented matroid and the

positive tropical variety of a linear ideal. In Section 4.5 we describe the topology

of the positive Bergman complex of an oriented matroid. Finally, in Sections 4.6

and 4.7 we describe in detail the positive Bergman complex of the oriented matroid

of K/: we relate it to the associahedron, and we give a formula for the number of

full-dimensional fine cells within a full-dimensional coarse cell.

Throughout this chapter we will abuse notation and use M to denote either a

matroid or oriented matroid, depending on the context. Similarly, we will use the

term "circuits" to describe either unsigned or signed circuits. When the distinction

between matroids and oriented matroids is important, we will use M to denote the

underlying matroid of an oriented matroid M.

4.2 The Oriented Matroid M,

Let M be an oriented matroid on the ground set [n] = (1, 2,..., n} whose collection

of signed circuits is e. Let w E R" and regard w as a weight function on [n]. For any

circuit C E C define in,(C) to be the w-maximal subset of the circuit C - in other
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words, the collection of elements of C which have the largest weight. We will say that

the circuit C achieves its largest weight with respect to w at in,(C). Define in,(e)

to be the collection of inclusion-minimal sets of the collection {in (C) I C E e}. We

then define M, to be the oriented matroid on [n] whose collection of circuits is in,(e).

It is not clear that M, is a well-defined oriented matroid; we will prove this shortly.

Given w E R n , let F(w) denote the unique flag of subsets 0 = F0o C F1 c

·- C Fk C Fk+1 = [n] such that w is constant on each set F \ Fi-1 and satisfies

WIF\F-i_ < WIF+l\F, for all 1 < i < k. We call F(w) the flag of w, and we say that

the weight class of w or of the flag F is the set of vectors v such that F(v) = F.

It is clear that Mw depends only on the flag F := F(cw) and so we also refer to

this oriented matroid as M:.F

Example 4.2.1. Let M be the oriented matroid of the digraph D shown in Figure 4-

1. Equivalently, let M be the oriented matroid of the point configuration shown in

Figure 4-2.

Figure 4-1: The digraph D

6

1

Figure 4-2: A point configuration

Note that D is an acyclic orientation of K4, the complete graph on 4 vertices.

The signed circuits C of M are {124, 135,236,456,1256,1346,2345}, together with

the negatives of every set of this collection. Choose w such that W6 < W1 = W2 = 3 =

W4 = W 5, which corresponds to the flag 0 C {6} C {1, 2, 3, 4, 5, 6}.
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If we calculate in,(C) for each C E e we get {124,135, 2,46,125,134, 2345},

together with the negatives of every set of this collection. However, 2345 is not

inclusion-minimal in this collection, as it contains 23 and 45. Thus in,(e) is equal

to {124, 135,23,45,125, 134}, together with the negatives of every set, and M" is the

oriented matroid whose collection of signed circuits is in,,(e). Notice that in this case

M, is the oriented matroid of the digraph D' in Figure 4-3.

Figure 4-3: The digraph D'.

We must show that M, is well-defined. For convenience, we review here the circuit

axioms for oriented matroids [9]:

C1. 0 is not a signed circuit.

C2. If X is a signed circuit, then so is -X.

C3. No proper subset of a circuit is a circuit.

C4. If Xo and X1 are circuits with X1 $ -XO and e E Xo+ n X-, then there is a

third circuit X E e with X + C (XO+ U X + ) \ {e} and X- C (Xo- U X1) \ {e}.

We will also need the following stronger characterization of oriented matroids:

Theorem 4.2.2. [9, Theorem 3.2.5] Let e be a collection of signed subsets of a set

E satisfying C1, C2, C3. Then C4 is equivalent to C4':

C4'. for all Xo, Xl E e, e E X + n X and f E (XO+ \ X- ) U (Xo \ X+), there is a

Z E e such that Z+ C (X+ UX +) \ {e}, Z- C (X U X) \ {e}, and f E Z.

Proposition 4.2.3. Let M be an oriented matroid on [n] and w E Rn . Then M, is

an oriented matroid.
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Proof. The strategy of our proof is to show that if C1, C2, C3 and C4' hold for M,

then C1, C2, C3 and C4 hold for M,. First note that it is obvious that C1 and C2 hold

for M,. C3 holds for Mw because we defined in,(e) to consist of inclusion-minimal

elements. It remains to show that C4 holds for M,. To do this, we start with two

circuits in M, lift them to circuits in M, and then use C4' for M to show that C4

holds for M,.

Take Yo and Y1 in in,(C) such that Y1 # -Yo and e E Yo+ n Y,-. By definition,

there exist circuits Xo and X1 of M such that Yo = in (Xo) and Y1 = in,(Xl). Notice

that the presence of e in Y and Y1 guarantees that the maximum weights occurring

in X and in X 1 are both equal to we.

Choose any f E (YO+ \ Y1-) U (Yo- \ Yl+). Clearly such an f exists. Then f E

(X+ \ X1) U (Xo \ X+). By C4' for M, there exists a circuit X in e such that

(a) X + C (XO+ U X +) \ e},

(a2) X- C (XO U X-) \ {e}, and

(a3) f EX.

Look at in,(X). We will prove that in,(X) contains the third circuit of Mo which

we are looking for. We want to show that

(bl) in,(X)+ C (YO+ U Y+) \ {e}

(b2) in.(X)- C (YO U Y;-) \ {e}

First, it is obvious that e is not in in,(X) + , since e was not in X + . Clearly

in,(X) + is a subset of XO+ U X +. To show (bl) and (b2), we just need to show that

the maximum weight which occurs in X is also equal to We. By (a1 ) and (a2), this

maximum weight is at most we. By (a3 ), equality is attained for f E X, since Wf = We.

Note that if in,,(X) is not inclusion-minimal in the set {inr (C) I C a circuit of M},

then it contains some inclusion-minimal in~(W) for another circuit W of M. And

since in,(X) + C (YO+ U Y1+) \ {e} and in.(X)- C (Y- U Y-) \ {e}, it is clear that we

also have in,,(W)+ C (YO+ U Y+) \ {e} and in.(W)- C (Y U Y1) \ {e}.

O
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In the following proposition, we describe the bases of M, and their orientations.

Let us say that if S C [n] and w E RIn, the w-weight of S is the sum iES Wi-

Proposition 4.2.4. The bases of Mw are the bases of M which have minimal w-

weight. The basis orientations of M, are equal to their orientations in M.

Proof. We know that if N is an oriented matroid on [n] with signed circuits e, then

the bases of N are the maximal subsets of [n] which contain no circuit. Thus, the

bases B of M, are the maximal subsets of [n] which do not contain a set of the

collection {in,(C) C a circuit of M}. We want to show that B is exactly the set of

bases of M which have minimal w-weight.

First let us choose a basis B of M which has minimal w-weight. We claim that B

is independent in M,. Suppose that B contains a subset of the form in(C), where

C is a circuit of M. Write B = in,(C) U {bl,..., bm}, and choose any c E in~(C). We

now construct a new basis B" of M of smaller weight than B, as follows. Start with

the set C. We know that CU(b l , ... , bm} is a spanning set of M. Let Bo be a minimal

subset (possibly empty) of {bl,..., bm} such that C U Bo is still a spanning set of M.

Since C is minimally dependent in M, the set B' := (C \ {(c) U Bo will be a basis of

M. Now by the basis exchange axiom, for some b E B' \ B, B" := (B \ {(c) U {(b is

a basis of M. Since b E B' \ B, it follows that b E C \ in (C). Thus, the weight of b

is strictly less than the weight of c, which implies that the weight of B" is less than

the weight of B. This is a contradiction.

The previous argument shows that r(M) < r(M). But every circuit of M is

contained in a circuit of M, so r(M) > r(M). It follows that M and M, have the

same rank.

Now let B be a basis of M~, i.e. B is a maximal subset of [n] which does not

contain an element of {inw(C) C a circuit of M}. We claim that B is a basis of M

with minimal w-weight. First note that B is clearly independent in M: if it were

dependent in M, it would contain some circuit C of M and hence would contain

inr(C). Also, B has r(M) = r(M) elements. Therefore it is a basis of M.

Finally, let us show that B has minimal w-weight. Suppose not. Let cl,..., cr be
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the elements of B with highest weight. We claim that c1 ,..., cr} D in,(C) for some

circuit C of M, which will be a contradiction. Since B is a basis of M, adding to B

any element of [n] \ B creates a circuit. Since B is not a basis of minimal w-weight,

there must be an element b E [n] \ B such that the weight of b is strictly less than

the weight of each of the elements cl, ... , cr. Thus B U b contains a circuit C, and

in.(C) C cl,..., cr}, as claimed.

To prove the claim about orientations, start with a basis B of minimal weight

of M. Recall that an oriented matroid has exactly two basis orientations, which are

opposite to each other. Therefore we can assume without loss of generality that B

has the same orientation in M and M,.

For any two ordered bases B1 = (e, x 2 ,... ,Xr) and B2 = (f, x 2 ... ,xr) of M, with

e : f, we have

Xw(e, X2,. . . Xr) = -Cw(e)C(f)x(f, X2 ... Xr)

where Xw is the chirotope of M, and C, is one of the two opposite signed circuits

of M,, in {e, f, 2,...,xr}. Now B1 and B2 are also bases of M; let C be one of the

two opposite signed circuits of M in e, f, x2,..., xr}. Then in, (C) contains a circuit

of M,; it must be either C, or -C,. In any case, we have C(e)C(f) = C,(e)C,(f),

so X(B1)Xw(B 2) = X(B1)X(B2). It follows that if B1 has the same orientation in M

and M, then so does B2.

Recall that one can obtain any basis of a matroid from any other by a sequence

of simple basis exchanges of the type above. Since B has the same orientation in M

and M, so does any other basis of M,,. O

4.3 The Positive Bergman Complex

Our goal in this section is to define the positive Bergman complex of an oriented

matroid M and to relate it to the Las Vergnas face lattice of M, thus answering

Sturmfels' question [47]. We begin by giving some background on the Bergman
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complex and fan of a (unoriented) matroid.

The Bergman fan of a matroid M on the ground set [n] is the set

3(M) := {w E Rn M, has no loops}.

The Bergman complex of M is

B(M) := {w E Sn-2 M, has no loops},

where S n- 2 is the sphere { w E R" : w + . + wn = 0, w2 +.. + w2 =1}.

For simplicity, in this section we will concentrate on the Bergman complex of M,

but similar arguments hold for the Bergman fan of M.

Since the matroid M, depends only on the weight class that w is in, the Bergman

complex of M is a disjoint union of the weight classes of flags F such that M; has

no loops. We say that the weight class of a flag F is valid for M if M;F has no loops.

There are two polyhedral subdivisions of B(M), one of which is clearly finer than

the other. The fine subdivision of B(M) is the subdivision of 3(M) into valid weight

classes: two vectors u and v of B(M) are in the same class if and only if F(u) =

F(v). The coarse subdivision of 3(M) is the subdivision of B(M) into M,-equivalence

classes: two vectors u and v of B(M) are in the same class if and only if Mu = M,.

The following results give alternative descriptions of B3(M):

Theorem 4.3.1. [2] Given an (unoriented) matroid M on the ground set [n] and

w E R" which corresponds to a flag .F := F(w), the following are equivalent:

1. M.F has no loops.

2. For each circuit C of M, in,(C) contains at least two elements of C.

3. F is a flag of flats of M.

Corollary 4.3.2. [2] Let M be a (unoriented) matroid. Then the fine subdivision of

the Bergman complex B(M) is a geometric realization of A(LM - { 0, i }), the order

complex of the proper part of the lattice of flats of M.
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We are now ready for the positive analogues of these concepts. The positive

Bergman fan of an oriented matroid M on the ground set [n] is

1B+(M) := (w E Rn M,, is acyclic).

The positive Bergman complex of M is

B+(M) := w E S n - 2 MW is acyclic).

Within each equivalence class of the coarse subdivision of 13(M), the vectors w

give rise to the same unoriented M,. Since the orientation of M, is inherited from

that of M, they also give rise to the same oriented matroid M. Therefore each

coarse cell of B(M) is either completely contained in or disjoint from 3+(M). Thus

B+ (M) inherits the coarse and the fine subdivisions from B3(M), and each subdivision

of B+(M) is a subcomplex of the corresponding subdivision of B(M).

Let M be an acyclic oriented matroid on the ground set [n]. We say that a covector

v E {+, -, 0) n of M is positive if each of its entries is + or 0. We say that a flat of

M is positive if it is the O-set of a positive covector. Additionally, we consider the set

[n] to be a positive flat. For example, if M is the matroid of Example 4.2.1, then 16

is a positive flat which is the O-set of the positive covector (O + + + + 0).

The Las Vergnas face lattice Ft~v(M) is the lattice of positive flats of M, ordered

by containment. Note that the lattice of positive flats of the oriented matroid M sits

inside LM, the lattice of flats of M.

Example 4.3.3. Let M be the oriented matroid from Example 4.2.1. The positive

covectors of M are + + + + 0, 0+0++, +++ 0,+ + + ++, +++ +, ++
+ + + 0, + + + + ++) and the positive flats are {16, 124, 456, 1, 4, 6, 0, 123456}. The

lattice of positive flats and the lattice of positive flats of M are shown in Figure 4-4.

We now give an analogue of Theorem 4.3.1.

Theorem 4.3.4. Given an oriented matroid M and w E Rn which corresponds to a

flag F := :F(w), the following are equivalent:
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Figure 4-4: The lattice of positive flats and the lattice of flats.

1. Mr is acyclic.

2. For each signed circuit C of M, in,(C) contains a positive element and a neg-

ative element of C.

3. F is a flag of positive flats of M.

Proof. First we will show that 1 and 2 are equivalent. The statement that M, is

acyclic means that M,, has no all-positive circuit: in other words, each circuit of Mw

contains a positive and a negative term. Since Mw is the matroid whose circuits are

the inclusion-minimal elements of the set {in (C) I C a circuit of M}, this means that

for each circuit C of M, in1, C contains a positive and a negative term. Finally, this

is equivalent to the statement that for each circuit C of M, C achieves its maximum

value with respect to w on both C+ and C-.

Next we show that 3 implies 2. Assume we have an w such that F is a flag of

positive flats. Let the flats of this flag be F1 C F2 C ... C Fk. For each Fi, ([n] -F) is

a positive covector. By orthogonality of circuits and covectors, we know that for any

circuit C and any covector Y, (C+ n Y) and (C- n Y) are either both empty or both

non-empty. For any circuit C of M, consider the largest i such that C n ([n] - Fi) is

non-empty. Then clearly C will attain its maximum on F+l - F and in,(C) contains

a positive element and a negative element of C.

Finally, assume that 1 and 2 hold, but 3 does not. From 1 we know that M is

acyclic; therefore the unoriented MF has no loops, and F is a flag of flats by Theorem
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4.3.1. Let Fi be a flat which is not positive; by [9, Proposition 9.1.2] this is equivalent

to saying that M/Fi is not acyclic. Let C be a positive circuit of M/Fi; then we can

find a circuit X of M such that C = X - Fi. Then X has positive elements of weight

greater than wi, and no negative elements of weight greater than wi. It follows that

in,(X) is positive, contradicting 2.

Corollary 4.3.5. Let M be an oriented matroid. Then the fine subdivision of B+(M)

is a geometric realization of A(Ft(M) - (, i }), the order complex of the proper

part of the Las Vergnas face lattice of M.

4.4 Connection with Positive Tropical Varieties

In [41], the notion of the positive part of the tropicalization of an affine variety (or

positive tropical variety, for short) was introduced, an object which has the structure

of a polyhedral fan in Rn . In order to describe this object, we must define an initial

ideal.

Let R = [x1,..., xn] and w E Rn. If f = ~ cix" E R, define the initial form

in,(f) E R to be the sum of all terms cixaI such that the inner product w ai is

maximal. For an ideal I of R[x1, ... .,xn], define the initial ideal in (I) to be the ideal

generated by inw(f) for all f E I.

If I is an ideal in a polynomial ring with n variables, the positive tropical variety

associated to I is denoted by Trop+ V(I) and can be characterized as follows:

Trop + V(I) = w E Rn I in,(I) contains no nonzero polynomials in R+[xl,... , xnl]

Now recall that if I is a linear ideal (an ideal generated by linear forms), we can

associate to it an oriented matroid MI as follows. Write each linear form f E I in

the form axi, + a2xi2 + ' * + amxim = blxjl + b2xj2 + ... + bnxjn, where ai, bi > 0

for all i. We then define MI to be the oriented matroid whose set of signed circuits

consists of all minimal collections of the form i l i 2 ... imjlj2... n). We now prove
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the following easy statement.

Proposition 4.4.1. If I is a linear ideal and MI is the associated oriented matroid,

then Trop+ V(I) = B+(MI).

Proof.

B+(MI) = {w E R" I (MI)" is acyclic}

= {w E Rn I (MI), has no all-positive circuit}

= {w E R" Min,() has no all-positive circuit}

= {w E R" in(I) contains no nonzero polynomial in IR+[xl, Xn]}

= Trop+ V(I).

4.5 Topology of the Positive Bergman Complex

The topology of the positive Bergman complex of an oriented matroid is very simple:

it is homeomorphic to a sphere. This follows from Corollary 4.3.5 together with

results about the Las Vergnas face lattice, which we will review here.

Theorem 4.5.1. [9, Theorem 4.3.5] Let M be an acyclic oriented matroid of rank r.

Then the Las Vergnas lattice F1T(M) is isomorphic to the face lattice of a PL regular

cell decomposition of the (r - 2)-sphere.

Proposition 4.5.2. [9, Proposition 4.7.8] Let A be a regular cell complex. Then

its geometric realization is homeomorphic to the geometric realization of the order

complex of its face poset.

The previous two results imply that the geometric realization of the order complex

of the Las Vergnas lattice is homeomorphic to a sphere.

Putting this together with Corollary 4.3.5, we get the following result.

Corollary 4.5.3. The positive Bergman complex of an oriented matroid is homeo-

morphic to a sphere.

84



4.6 The positive Bergman complex of the com-

plete graph

In this section, we wish to describe the positive Bergman complex B+(K,) of the

graphical oriented matroid M(Kn) of an acyclic orientation of the complete graph

K,. We start by reviewing the description of the Bergman complex B(Kn) of the

unoriented matroid M(K,), obtained in [2]. For the moment we need to consider Kn

as an unoriented graph.

An equidistant n-tree T is a rooted tree with n leaves labeled 1,..., n, and lengths

assigned to each edge in such a way that the total distances from the root to each

leaf are all equal. The internal edges are required to have positive lengths. Figure

4-5 shows an example of an equidistant 4-tree.

0. A

A B C D B 0.62 
A B C D B 0.2 C

Figure 4-5: An equidistant tree and its corresponding distance vector.

To each equidistant n-tree T we assign a distance vector dT E IR(): the distance

di is equal to the length of the path joining leaves i and j in T. Figure 4-5 also shows

the distance vector of the tree, regarded as a weight function on the edges of K4.

The Bergman fan B(Kn) can be regarded as a space of equidistant n-trees, as the

following theorem shows.

Theorem 4.6.1. [2, 39] The distance vector of an equidistant n-tree, when regarded

as a weight function on the edges of K,, is in the Bergman fan B(Kn). Conversely,

any point in 13(Kn) is the distance vector of a unique equidistant n-tree.

As mentioned earlier, the fine subdivision of (M) is well understood for any

matroid M. The following theorem shows that the coarse subdivision of (Kn) also

has a nice description: it is a geometric realization of the well-studied simplicial

complex of trees T,, sometimes called the Whitehouse complex [7, 37].
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Theorem 4.6.2. [2] Let w, w' E B(Kn). Let T and T' be the corresponding equidis-

tant n-trees. The following are equivalent:

1. w and w' are in the same cell of the coarse subdivision.

2. T and T' have the same combinatorial type.

Now we return to the setting of oriented matroids. The positive Bergman com-

plex B+(Kn) is defined in terms of an acyclic orientation of Kn. This graph has n!

acyclic orientations, corresponding to the n! permutations of [n]. The orientation

corresponding to the permutation r is given by ri -- rj for i < j. Clearly the n!

orientations of Kn will give rise to positive Bergman complexes which are equal up to

relabeling. Therefore, throughout this section, the edges of Kn will be oriented i -~ j

for i < j.

As we go around a cycle C of K, C + is the set of edges which are crossed in

the forward direction, and C- is the set of edges which are crossed in the backward

direction.

Proposition 4.6.3. Let w be a weight vector on the edges of the oriented complete

graph Kn. Let T be the corresponding equidistant tree. The following are equivalent:

1. w is in B3+(Kn).

2. T can be drawn in the plane without crossings in such a way that its leaves are

numbered 1, 2, ... , n from left to right.

Proof. We add three intermediate steps to the equivalence:

(a) In any cycle C, the w-maximum is achieved in C+ and C-.

(b) In any triangle C, the w-maximum is achieved in C+ and C-.

(c) For any three leaves i < j < k in T, the leaf j does not branch off before i and

k; i.e.,their branching order is one of the following:
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i j k i j k i j k

The equivalence 1 (a) follows from Theorem 4.3.4, and the implication (a) =

(b) is trivial. Now we show that (b) (a). Proceed by contradiction. Consider

a cycle C = vl ... Vk, with k minimal, such that (a) is not satisfied. Consider the

cycles T = vlVklVk and C' = vlv2 ... vk-l, which do satisfy (a). Since C does not

satisfy (a), the edge vlVk1_ must be w-maximum in T, along with another edge e of

the opposite orientation. Similarly, the edge Vk-_lV must be w-maximum in C', along

with another edge f of the opposite orientation. Therefore, in C, the edges e and f

are w-maximum and have opposite orientations. This is a contradiction.

Let us now show (b) X (c). In triangle ijk (where we can assume i < j < k), (b)

holds if and only if we have one of the following:

Wij < Wjk = Wik, or Wij = Wjk = Wik, or Wjk < ij = Wik.

These three conditions correspond, in that order, to the three possible branching

orders of i, j and k in T prescribed by condition (c).

Finally we show (c) X 2. The backward implication is immediate. We prove the

forward implication by induction on n. The case n = 3 is clear. Now let n > 4, and

assume that condition (c) holds. Consider a lowest internal node v; it is incident to

several leaves, which must have consecutive labels i, i + 1,..., j by (c). Let T' be the

tree obtained from T by removing leaf i. This smaller tree satisfies (c), so it can be

drawn in the plane with the leaves in order from left to right. Now we simply find

node v in this drawing, and attach leaf i to it, putting it to the left of all the other

leaves incident to v. This is a drawing of T satisfying 2. 0

The associahedron An-2 is a well-known (n - 2)-dimensional polytope whose ver-

tices correspond to planar rooted trees [49]. There is a close relationship between

B+(Kn) and An-2 .
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Corollary 4.6.4. The face poset of the coarse subdivision of B+(Kn), with a 1 at-

tached, is dual to the face poset of the associahedron An-2.

Proof. In the trees corresponding to the cells of B+(Kn), the labeling of the leaves

always increases from left to right. We can forget these labels and obtain the usual

presentation of the dual to the associahedron, whose facets correspond to planar

rooted trees. O

Figure 4-6 shows the positive Bergman complex of K4 (in bold) within the Bergman

complex of K4 . Vertices of the coarse subdivision are shown as black circles; vertices

of the fine subdivision but not the coarse subdivision are shown as transparent circles.

Observe that the coarse subdivision of B+(K4 ) is a pentagon, whose face poset is the

face poset of the associahedron A 2 (which is self-dual).

3 4 0)1 = O2 = )4 --= (5= 6

to3< C0 2= Cs < (01 = 04= 5

4

/2 co A2=)3= '° O= 4=(5

135 .. 236

1 16 6

Figure 4-6: B+(K4 ) C B(K 4 )

Now, recall that different orientations of Kn give rise to different positive Bergman

complexes. Let us make two comments about the way in which these positive Bergman

complexes fit together.

Consider the n! different acyclic orientations o(ir) of Kn, each corresponding to a

permutation 7r of [n]. Each orientation o(7r) gives rise to a positive Bergman complex:

it consists of those weight vectors such that the corresponding tree can be drawn with

the leaves labeled r l,.. ., 7rn from left to right. Clearly, each permutation and its

reverse give the same positive Bergman complex. The possible positive Bergman

complexes B3+(Kn) give a covering of B(Kn), and each one of them is dual to the
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associahedron An- 2 . This corresponds precisely to the known covering of the space

of trees with ! polytopes dual to the associahedron, as described in [7].

Also, recall from [2] that the Bergman complex B(K,) is homotopic to a wedge

of (n - 1)! spheres. In fact, B(Kn) is covered by the (n - 1)! dual associahedra

corresponding to the permutations r with rl = 1, because every tree can be drawn in

the plane so that the leftmost leaf is labeled 1. This covering is optimal, since B(Kn)

is homotopic to a wedge of (n - 1)! spheres.

4.7 The number of fine cells in 3+(Kn) and B(Kn).

Since B+(Kn) and B(Kn) are (n - 2)-dimensional, we will call the (n - 2)-dimensional

cells inside them full-dimensional. In this section we will give a formula reminiscent

of the "hook-length" formula for the number of full-dimensional fine cells within a

full-dimensional coarse cell of B(Kn).

Proposition 4.7.1. Let r be a rooted binary tree with n labeled leaves. For each

internal vertex v of T, let d(v) be the number of internal vertices of T which are

descendants of v, including v. Let C(r) be the coarse cell of B(Kn) corresponding to

tree r. There are exactly
(n- 1)!

Hl d(v)

full-dimensional fine cells in C(r).

Proof. The cell C(r) consists of the distance vectors d E R(2) of all equidistant n-

trees T of combinatorial type r. Notice that dij = 2h - 2h(v), where v is the lowest

common ancestor of leaves i and j in T, h(v) is the distance from v to the root of T,

and h is the distance from the root of T to any of its leaves.

To specify a full-dimensional fine cell in C(r), one needs to specify the relative

order of the dij's. Equivalently, in the tree T that d comes from, one needs to

specify the relative order of the heights of the internal vertices, consistently with

the combinatorial type of tree r. Therefore, the fine cells in C(r) correspond to the

labellings of the n - 1 internal vertices of r with the numbers 1, 2,..., n - 1, such that
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the label of each vertex is smaller than the labels of its offspring. In the language of

[42, Sec. 1.3], these are precisely the increasing binary trees of type r', where r' is

the result of removing the leaves of tree T, and the edges incident to them. Figure

4-7 shows a tree type r and one of the increasing binary trees of type r'.

1

7 8

Figure 4-7: A type r tree and an increasing binary tree of type r'.

Suppose we choose one of the (n - 1)! labellings of r' uniformly at random. Let

A,, be the event that the chosen labeling L is increasing; it remains to show that

P(AT,) = 1/-, d(v).

Let r' and r2 be the left and right subtrees of r'. Let B 1 and B 2 be the events

that r and -r are labeled increasingly in L, and let B be the event that the root of r

is labeled 1. Then A,T' = B n B1 n B2. It is clear that B, B 1 and B2 are independent

events. It is also clear that P(B1) = P(A~,) and P(B2) = P(Aq). Therefore,

P(A,) = P(B)P(B1)P(B2 )
1

=n- 1P(AP(A)P(A)

The result follows by induction. O

It is also possible to obtain analogous formulas for the number of fine cells inside

a lower-dimensional coarse cell, corresponding to a rooted tree which is not binary.

We omit the details.

Notice that Proposition 4.7.1 is essentially equivalent to the formula for the num-

ber of linear extensions of a poset whose Hasse diagram is a tree [42, Supp. Ex.

3.1].
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Corollary 4.7.2. The positive Bergman complex B+(K,) contains exactly (n - 1)!

full-dimensional fine cells. The Bergman complex B3(Kn) contains exactly n! (n -

1)! / 2n-1 full-dimensional fine cells.

Proof. We recall the known bijection between increasing binary trees with vertices

labeled a < ... < ak, and permutations of {al,... , ak} [42, Sec. 1.3]. It is defined

recursively: the permutation r(T) corresponding to the increasing binary tree T is

-r(T) = r(Ti) al 7r(T2), where T1 and T2 are the left and right subtrees of T. For

example, the tree of Figure 4-7 corresponds to the permutation 57316284. It is not

difficult to see how T can be recovered uniquely from 7r(T).

Since the full-dimensional fine cells of B+(Kn) are in correspondence with the

increasing binary trees with labels 1,..., n - 1, the first result follows.

To show the second result, recall that the Bergman complex B(Kn) is covered

by n! positive Bergman complexes. Each permutation 7r of [n] gives rise to a pos-

itive Bergman complex B+(K,); this complex parameterizes those trees which can

be drawn in the plane so that its leaves are in the order prescribed by r. With

(n - 1)! fine cells in each positive Bergman complex, we get a covering of B(Kn) with

n!(n - 1)! fine cells. Each fine cell appears several times in this covering, since it sits

inside several positive Bergman complexes.

More precisely, each binary tree with n labeled leaves can be drawn in the plane

in exactly 2n -1 ways: at each internal vertex, we may or may not switch the left and

right subtrees. Therefore, each fine cell of the Bergman complex B(Kn) is inside 2" -1

different positive Bergman complexes. The desired result follows. O

Recall that the maximum-dimensional fine cells of B(Kn) correspond to the max-

imal chains in the lattice of flats of Kn; i.e., the partition lattice n. Thus we have

given an alternative proof of the fact that there are n! (n - 1)! / 2n-1 maximal chains

in II, [42, Supp. Ex. 3.3].

As an illustration of Corollary 4.7.2, notice that, in Figure 4-6, the positive

Bergman complex B+(K 4) consists of 3! = 6 fine cells, while the Bergman complex

B(K 4 ) consists of 4! 3! / 23 = 18 fine cells.
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Chapter 5

Bergman complexes, Coxeter

arrangements, graph associahedra

This chapter is joint work with Federico Ardila and Victor Reiner [4].

5.1 Introduction

In this chapter we relate the Bergman complex and the positive Bergman complex

of a Coxeter arrangement to the nested set complexes that arise in De Concini and

Procesi's wonderful arrangement models [12, 16], and to the graph associahedra in-

troduced by Carr and Devadoss [10], by Davis, Januszkiewicz, and Scott [14], and by

Postnikov [33]. We will follow the notation of the previous chapter.

Graph associahedra are polytopes which generalize the associahedron, which were

discovered independently by Carr and Devadoss [10], by Davis, Januszkiewicz, and

Scott [14], and by Postnikov [33]. There is an intrinsic tiling by associahedra of

the Deligne-Knudsen-Mumford compactification of the real moduli space of curves

Mon(R), a space which is related to the Coxeter complex of type A. The motivation

for Carr and Devadoss' work was the desire to generalize this phenomenon to all

simplicial Coxeter systems.

Let AD be the Coxeter arrangement corresponding to the (possibly infinite, possi-

bly non-crystallographic) root system P associated to a Coxeter system (W, S) with
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diagram r; see Section 5.4 below. Choose a region R of the arrangement, and let M

be the oriented matroid associated to A and R. In this chapter we prove:

Theorem 5.1.1. The positive Bergman complex B+(Mp) of the arrangement A is

dual to the graph associahedron P(r).

In particular, the cellular sphere B+(Mp) is actually a simplicial sphere, and a

flag (or clique) complex.

This result is also related to the wonderful model of a hyperplane arrangement

and to nested set complexes. The wonderful model of a hyperplane arrangement is

obtained by blowing up the non-normal crossings of the arrangement, leaving its

complement unchanged. De Concini and Procesi [12] introduced this model in order

to study the topology of this complement. They showed that the nested sets of the

arrangement encode the underlying combinatorics. Feichtner and Kozlov [16] gave an

abstract notion of the nested set complex for any meet-semilattice, and Feichtner and

Miiller [17] studied its topology. Recently, Feichtner and Sturmfels [18] studied the

relation between the Bergman fan and nested set complexes (see Section 5.5 below).

In this chapter we also prove:

Theorem 5.1.2. The Bergman complex B(M) of AS equals its nested set complex.

In particular, the cell complex B(Mp) is actually a simplicial complex.

5.2 The matroid M.

In this section we give a detailed study of the matroid Ms, which was introduced in

the previous chapter. For convenience, we recall a few relevant definitions here.

Definition 5.2.1. Let M be a matroid or oriented matroid of rank r on the ground

set [n], and let w E Rn. Regard w as a weight function on M, so that the weight of

a basis B = {bl,..., b) of M is given by wB = Wbl + Wb2 + + b. Let B, be the

collection of bases of M having minimum w-weight. (If M is oriented, then bases in

B, inherit orientations from bases of M.) This collection is itself the set of bases of

a matroid (or oriented matroid) which we call M,.
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The matroid M, depends only on a certain flag associated to w.

Definition 5.2.2. Given w E Rn , let .F(w) denote the unique flag of subsets

0 = Fo C F C ... C Fk C Fk+l = [n] (5.1)

such that w is constant on each set Fi \ Fi_l and satisfies WIFi\Fi_, < WIFi+l\Fi We

call F(w) the flag of w, and we say that the weight class of w or of the flag F is the

set of vectors v such that F(v) = F.

It is shown in [2] that
k+l

M = - Fi/Fi_l (5.2)
i=l

where Fi/Fi_l is obtained from the matroid restriction of M to F by quotienting out

the flat Fi_l. Hence we we also refer to this oriented matroid M, as Mr.

We now make some observations about when two flags of flats in M correspond to

the same cell of the coarse subdivision of B(M). Recall that the connected components

of matroid M are the equivalence classes for the following equivalence relation on the

ground set E of M: say e - e' for two elements e, e' in E whenever they lie in

a common circuit of M, and then take the transitive closure of A. Recall also that

every connected component is a flat of M, and M decomposes (uniquely) as the direct

sum of its connected components.

Definition 5.2.3. To each flag F of flats of a matroid M indexed as in (5.1), asso-

ciate a forest T:F of rooted trees, in which each vertex v is labelled by a flat F(v), as

follows:

* For each connected component F of the matroid M, create a rooted tree (as

specified below) and label its root vertex with F.

* For each vertex v already created, and already labelled by some flat F(v) which is

a connected component of some flat Fj in the flag F, create children of v labelled

by each of the connected components of Fj_1 contained properly in F(v).
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Alternatively, one can construct the forest T: by listing all the connected compo-

nents of all the flats in F, and partially ordering them by inclusion.

Proposition 5.2.4. For any flag F of flats in a matroid M, the labelled forest T:

determines the matroid M:.

Proof. Recall the expression (5.2) for Ms. By construction of T , every component

of Fi is F(v) for some unique vertex v, and every component of Fi_1 lying in F(v) is

F(v') for some child v' of v. Since quotients commute with direct sums, this gives

Mr= ( (F(v)/ (D F(v')) (5.3)
vertices v of TrY children v' of v

In general, the converse of this proposition does not hold; one can have M:F = MF,

without Tj = Tp,. For example (cf. [18, Example 1.2]), in the matroid M on ground

set E = {1, 2, 3, 4, 5} having rank 3 and circuits {123, 145, 2345}, the two flags

.F:= (0 c 1 c 123 c 12345)

A' := (0 C 1 C 145 C 12345).

exhibit this possibility.

However, we can give at least one nice hypothesis that allows one to reconstruct

T from MF. Given a base B of a matroid M on ground set E, and any element

e E E\B, there is a unique circuit of M contained in B U {e}, called the basic circuit

circ(B, e). Note that the flat spanned by circ(B, e) will always be a connected flat.

Definition 5.2.5. Say that a base B of a matroid M is circuitous if every connected

flat spanned by a subset of B is spanned by the basic circuit circ(B, e) for some

e E E\B.

Note that the basic circuit circ(B, e) spanning the connected flat F must be (F n

B) U e. Before we state our proposition, we prove two useful lemmas.
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Lemma 5.2.6. Let F be a flat in a matroid, spanned by some independent set I.

Then every connected component of F is spanned by some subset of I, namely, by the

intersection of that component with I.

Proof. Let F have components F1,..., Ft. Then

Zr(F) =r(F) = I = E Fi n I = r(Fi n I) < Er(Fi),
i i i i

which means we must have an equality for each i: r(Fi n I) = r(Fi). In other words,

Fi n I spans Fi. L

Lemma 5.2.7. Let F C G be flats of a matroid that are spanned by subsets of a

circuitous base B. If G is connected, then G/F is also connected.

Proof. Let IF = F n B and IG = G n B; these are bases for F and G, respectively.

Also, IF C IG, and IG - IF is a base for the quotient G/F. Since G is a connected

flat spanned by a subset of the circuitous base B, there exists e in G - B such that

cl(circ(B, e)) = G, and circ(B, e) = IG U e.

We now claim that circG/F(IG - IF, e) = IG - IF U e. We need to check that

IG - IF U e - g is independent in G/F for any g E IG - IF U e. Since IF is a basis

of F, this follows from the fact that IG U e - g is independent in G. We conclude by

observing that G/F is the flat spanned by circ(IG - IF, e), so it is connected. O

Proposition 5.2.8. Let B be a circuitous base of a matroid M. Then for any two

flags YF, F of flats spanned by subsets of B, one has M: = M:, if and only if

T = T,.I

Proof. We start by making two observations about the matroid MF and the tree TF.

First we observe that, under these hypothesis, the expression (5.3) is actually the

decomposition of Mr into its irreducible components. By Lemma 5.2.6, the F(v)' s are

connected flats spanned by subsets of B. The direct sums D,'F(v') are also spanned

by subsets of B. Lemma 5.2.7 then guarantees that F(v)/ D, F(v') is connected for

each vertex v of the tree.
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Secondly we show that, among the sets cl(circ(B, e)) with e in F(v)\ U F(v') and

not in B, there is a maximum one under containment, which is precisely F(v).

Take any e in F(v)\ U F(v') and not in B. The flat F(v) is spanned by a subset

I of B, and I U e is dependent. Therefore circ(B, e) C I U e C F(v), which implies

cl(circ(B, e)) C F(v).

Now, since F(v) is a connected flat spanned by a subset of B, F(v) = cl(circ(B, e))

for some e E E\B. Clearly e E F(v). If e was in F(v') for some child v' of v,

the argument of the previous paragraph would imply that cl(circ(B,e)) C F(v').

Therefore e E F(v)\ U F(v').

The two previous observations give us a procedure to recover the tree T: from

the matroid MF. The first step is to decompose M:F into its connected compo-

nents M 1 ,..., Mt, having accompanying ground set decomposition E = E1 U .. U Et.

The second step is to recover the flat corresponding to each Mi, as the maximum

cl(circ(B, e)) with e E Ei\B. The labelled forest T, is simply the poset of inclusions

among these flats. [

It will turn out that the simple roots A of a root system · always form a circuitous

base for the associated matroid Mp; see Proposition 5.4.7(iii) below.

Remark 5.2.9. When the matroid M is connected, the forest T: constructed above

is a rooted tree. It coincides with the tree constructed by Feichtner and Sturmfels in

[18, Proposition 3.1] when they choose the minimal building set for their lattice. In

this way, Proposition 5.2.4 follows from [18, Theorem 4.4].

5.3 Graph associahedra

Graph associahedra are polytopes which generalize the associahedron, which were

discovered independently by Carr and Devadoss [10], Davis, Januszkiewicz, and Scott

[14], and Postnikov [33]. There is an intrinsic tiling by associahedra of the Deligne-

Knudsen-Mumford compactification of the real moduli space of curves MO (R), a space

which is related to the Coxeter complex of type A. The motivation for Carr and
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Devadoss' work was the desire to generalize this phenomenon to all Coxeter systems.

In order to define graph associahedra, we must introduce the notions of tubes and

tubings. We follow the presentation of [10].

Definition 5.3.1. Let r be a graph. A tube is a proper nonempty set of nodes of I

whose induced graph is a proper, connected subgraph of r. There are three ways that

two tubes can interact on the graph:

* Tubes are nested if tl c t2.

* Tubes intersect if tl n t2 ¢ 0 and tl ¢ t2 and t2 ¢ tl.

* Tubes are adjacent if t1 n t 2 = 0 and tl U t2 is a tube in F.

Tubes are compatible if they do not intersect and they are not adjacent. A tubing

T of r is a set of tubes of r such that every pair of tubes in T is compatible. A

k-tubing is a tubing with k tubes.

Graph-associahedra are defined via a construction which we will now describe.

Definition 5.3.2. Let r be a graph on n nodes, and let Ar be the n - 1 simplex in

which each facet corresponds to a particular node. Note that each proper subset of

nodes of r corresponds to a unique face of Ar, defined by the intersection of the faces

associated to those nodes. For a given graph r, truncate faces of Ar which correspond

to 1-tubings in increasing order of dimension (i.e. first truncate vertices, then edges,

then 2-faces, ... ). The resulting polytope P(r) is the graph associahedron of Carr

and Devadoss.

Figure 5-1 illustrates the construction of the graph associahedron of a Coxeter

diagram of type D4. We start with a simplex, whose four facets correspond to the

vertices of the diagram. In the first step, we truncate three of the vertices, to obtain

the second polytope shown. We then truncate three of the edges, to obtain the third

polytope shown. In the final step, we truncate the four facets which all correspond to

tubes. This step is not shown in Figure 5-1, since it does not affect the combinatorial

type of the polytope.
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Figure 5-1: P(D4 )

(a) 0O )
Figure 5-2: A2 is P(A 3)

(DSatyan Devadoss

(b) *t D e ::

()Satyan Devadoss

When the graph r is the n-element chain, the polytope P(F) is the associahedron

An- 1. One can see this by considering an easy bijection between valid tubings and

parenthesizations of a word of length n - 1, as illustrated in Figure 5-2.

We thank Satyan Devadoss for allowing us to reproduce in our Figures 5-1 and

5-2, two of his figures from [10].

Carr and Devadoss proved that the face poset of P(F) can be described in terms

of valid tubings.

Theorem 5.3.3. [10] The face poset of P(F) is isomorphic to the set of valid tubings

of r, ordered by reverse containment: T < T' if T is obtained from T' by adding

tubes.

Corollary 5.3.4. [10] When F is a path with n- 1 nodes, P(r) is the associahedron

An of dimension n. When F is a cycle with n - 1 nodes, P(F) is the cyclohedron W,.

100

(EE

ra-I
I

d

--<j-X0 - -0

T�Sd�o

ED)



5.4 The positive Bergman complex of a Coxeter

arrangement

In this section we prove that the positive Bergman complex of a Coxeter arrangement

of type is dual to the graph associahedron of type 1. More precisely, both of these

objects are homeomorphic to spheres of the same dimension, and their face posets are

dual. We begin by reviewing our conventions about Coxeter systems and the related

arrangements and matroids.

A Coxeter system is a pair (W, S) consisting of a group W and a set of generators

S C W, subject only to relations of the form

(ss')m( 8's') = 1,

where m(s, s) = 1, m(s, s') = m(s', s) > 2 for s # s' in S. In case no relation occurs

for a pair s, s', we make the convention that m(s, s') = oo. We will always assume

that S is finite.

Note that to specify a Coxeter system (W, S), it is enough to draw the corre-

sponding Coxeter diagram F: this is a graph on vertices indexed by elements of S,

with vertices s and s' joined by an edge labelled m(s, s') whenever this number (oo

allowed) is at least 3.

Remark 5.4.1. In what follows, the reader should note that nothing will turn out to

depend on the edge labels m(s, s') of F; the positive Bergman complex, the Bergman

complex, or the graph associahedron associated with r will depend only upon the

undirected graph underlying F.

Although an arbitrary Coxeter system (W, S) need not have a faithful represen-

tation of W as a group generated by orthogonal reflections with respect to a positive

definite inner product, there exists a reasonable substitute, called its geometric rep-

resentation [27, Sec. 5.3, 5.13], which we recall here. Let V := RSI with a basis of
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simple roots A := a,: s E S}. Define an R-valued bilinear form (., ) on V by

(a,, a,l) := - cos )

and let s act on V by the "reflection" that fixes af and negates ,:

s(v) := v - 2(v, a,)a,.

This turns out to extend to a faithful representation of W on V, and one defines the

root system P and positive roots 4D+ by

4 := {w(a): wE W,s E S}

D+ := a ( a = E csas with c > 0}
sES

It turns out that (4 = D+ U - where - := -+. We use Mt to denote the

matroid represented by (b+ in V, which is of finite rank r = SI, but has ground set

E of possibly (countably) infinite cardinality. Its lattice of flats LM. may be infinite,

although of finite rank r, and is well-known (see e.g. [5]) to be isomorphic to the

poset of parabolic subgroups

{wWjw - 1 : w E W, J C S}

ordered by inclusion. In other words, every flat F is spanned by w(V+) for some

standard parabolic subroot system 4D and w E W.

Definition 5.4.2. Given a root a E (I, expressed uniquely in terms of the simple roots

A as a = EsES csa,, define the support of a (written supp a) to be the vertex-induced

subgraph of the Coxeter diagram F on the set of vertices s E S for which c, Z 0.

We will need the following well-known lemma about supports of roots. A proof of

its first assertion for the Coxeter systems associated to Kac-Moody Lie algebras can

be found in [28, Lemma 1.6]; we will need the assertion in general.
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Lemma 5.4.3. Let (W, S) be an arbitrary Coxeter system with Coxeter graph r. Then

for any root a E EI the graph supp a is connected, and conversely, every connected

subgraph F' of r occurs as supp a for some positive root a.

Proof. For the first assertion, let p be a root, which we may assume is positive without

loss of generality. It is known (see e.g. [8, Sec. 4.5]) that 3 can be expressed

P = SkSk-1 ... S1(a)

for some simple root a E A and some si E S, in such a way that each root :=

Sjj-1... S2S1(a) is positive. Hence by induction on k, it suffices to show that if

/3 = s(-y) for positive roots 3, -y and s in S, then connectedness of supp-y implies

supp / is connected. If not, then the expression

P = s(y) = - 2(y, as)as (5.4)

would imply that supp/3 = supp y U {s}. If this set is disconnected, one must have

(Y, as) = 0, forcing the contradiction that B = -y.

For the second assertion, let Fr be a connected subgraph of F, and we will exhibit a

positive root p with supp /3 = Fr using induction on the number of vertices of Fr. Let

s E S be a vertex lying in r' whose removal leaves a connected subgraph rF" = r-s}.

By induction there exists a positive root y having supp y = rF", and we claim that

/ := s(-y) has supp(,3) = r'. To see this, note that y = EtEr,, ctat with each ct > 0.

Hence

(aY) Y)= Z Ct(s, at)< 0
tEr"

since each (as, at) is nonpositive, and at least one is negative due to r" U {s} = rF'

being connected. Therefore the expression (5.4) for , shows that supp(/) = rF' l

If one wants to think of the oriented matroid M as the oriented matroid of

a hyperplane arrangement (as opposed to the oriented matroid of a collection of

vectors), one must work with the contragredient representation V* [27, 5.13]. Let
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{6, : s E S} denote the basis for V* dual to the basis of simple roots A for V. Then

the (closed) fundamental chamber R is the nonnegative cone spanned by {6,: s E S}

inside V*. The Tits cone is the union UwEw w(R), a (possibly proper, not necessarily

closed nor polyhedral) convex cone inside V*. Every positive root a E (+ gives an

oriented hyperplane Ha in V* with nonnegative half-space {f E V*: f(a) > O}.

These hyperplanes and half-spaces decompose the Tits cone' into (closed) regions

that turn out to be simplicial cones which are exactly the images w(R) as w runs

through W; the tope (maximal covector) in the oriented matroid Ma associated to

w(R) will have the sign + on the roots (I+ n w-l(( + ) and the sign - on the roots

Remark 5.4.4. We should be somewhat careful when speaking of the Bergman

complex and the matroids M, when W is infinite, since the ground set E = qD+

is infinite. One way around this is to only refer to the matroids MF associated to

flags of flats F in LM., viewing the Bergman complex as a coarsening of the ordering

complex of LM. Similarly, there is an issue with interpreting the minimal blow-up

of the Coxeter arrangement when W is infinite. In [10] this problem is avoided by

assuming finiteness of Wj for proper parabolic subsystems (W, J) with J C S, so

that the arrangement of hyperplanes H. cuts out a Coxeter complex which is locally

finite. However, if one is not so concerned with the blow-ups themselves, but rather

with the truncations of the fundamental simplex R which tile the blow-up, these

polytopes are well-defined in any case.

We will now collect some facts about the matroid Ma. But first let us recall the

notion of positive flats.

Definition 5.4.5. Let M be an acyclic oriented matroid on the ground set [n]. We

say that a covector v E {+, -, O0n of M is positive if each of its entries is + or 0.

We say that a flat of M is positive if it is the O-set of a positive covector.

'We should point out that when W is infinite, only part of the hyperplane or its nonnegative
half-space lies inside the Tits cone, so we only consider their intersection with the Tits cone.
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Observation 5.4.6. If M is the acyclic oriented matroid corresponding to a hyper-

plane arrangement A and a specified region R, then the positive flats are in corre-

spondence with the faces of R.

For example, consider the braid arrangement A 3, consisting of the six hyperplanes

xi = xj, 1 i < j < 4 in R4. Figure 5-3 illustrates this arrangement, when intersected

with the hyperplane 4 = 0 and the sphere X2 + X2 + x2 = 1. Let R be the region

specified by the inequalities xl > x2 > x3 > x4, and let MA3 be the oriented matroid

corresponding to the arrangement A3 and the region R. Then the positive flats are

0, 1, 4, 6, 124, 16, 456 and 123456.

456

2

5
3

6

16

24

Figure 5-3: The braid arrangement A 3.

Proposition 5.4.7. Let (W, S) be an arbitrary Coxeter system, with root system q)

and Coxeter diagram r.

(i) Positive flats in the oriented matroid Mp correspond to subsets J C S.

(ii) Connected positive flats in the oriented matroid Mb correspond to subsets J C S

such that the vertex-induced subgraph rJ is connected, that is, to tubes in r.

(iii) The simple roots A form a circuitous base for the matroid Ma.

(iv) If F C G are flats in Mb with G connected, then the matroid quotient G/F is

connected.
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Proof. (i): The hyperplanes bounding the base region/tope R are {H : s E S}, so

positive flats are those spanned by sets of the form {a, : s E J} for subsets J C S.

We denote such a positive flat by cl(J).

(ii): Let J C S with subgraph rJ, and consider its associated positive flat cl(J).

The first assertion of Lemma 5.4.3 shows that cl(J) will not be connected if r is

disconnected. To see this, represent the flat cl(J) by a matrix in which the rows

correspond to simple roots of cl(J), i.e. vertices of rJ, and the columns express each

positive root in cl(J) as a combination of simple roots. By permuting columns, one

can obtain a matrix which is a block-direct sum of two smaller matrices, and hence

cl(J) will not be connected.

On the other hand, if rJ is connected, then the second assertion of Lemma 5.4.3

shows that there is a positive root a with supp a = 1rj, and consequently {a, : s E

J} U {a} gives a circuit in M. spanning this flat, so it is connected.

(iii): This follows from the argument in (ii); given J C S with rJ connected, the basic

circuit circ(A, a) where suppa = rJ spans the connected flat corresponding to J.

(iv): Let F, G correspond to the parabolic subgroups uWju - 1 , vWKv - 1, or equiva-

lently, assume they are spanned by u> +, vc +f. One can make the following reduc-

tions:

* Translating by v-l, one can assume that v is the identity.

* Since (WK, K) itself forms a Coxeter system with root system K, one can

assume M = G and K = S. In particular, Mt is connected.

* Replacing the Coxeter system (W, S) by the system (W, uSu-1), one can assume

that u is the identity.

In other words, F is the positive flat corresponding to some subgraph Fr of r, and we

must show MU/F is a connected matroid. This is a consequence of (iii) and Lemma

5.2.7. []

We now give our main result.
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Theorem 5.1.1. Let (W, S) be an arbitrary Coxeter system, with root system A,

Coxeter diagram F, and associated oriented matroid M.. Then the face poset of the

coarse subdivision of B+(M4,) is dual to the face poset of the graph associahedron

P(r).

Proof. By Theorem 5.3.3, we need to show that the face poset of (the coarse subdi-

vision of) B+(M.) is equal to the poset of tubings of F, ordered by containment. We

begin by describing a map I from flags of positive flats to tubings of r.

By Proposition 5.4.7, positive flats of Ma correspond to subsets J C S or sub-

graphs Fr of the Coxeter graph r. Furthermore, a positive flat is connected if and

only if rJ is a tube, and hence an arbitrary positive flat corresponds to a disjoint

union of compatible tubes, no two of which are nested. Since an inclusion of flats

corresponds to an inclusion of the subsets J, a flag .F of positive flats corresponds to a

nested chain of such unions of non-nested compatible tubes, that is, to a tubing @(F).

Furthermore, in this correspondence, inclusion of flags corresponds to containment of

tubings.

We claim that the map from flags to tubings is surjective. Given some tubing of

F, linearly order its tubes J1, ... , Jk by any linear extension of the inclusion partial

ordering, and then the flag F of positive flats having Fi spanned by {as: s E J1 U

J2 U ... U Ji} will map to this tubing.

Lastly, we show that is actually a well-defined injective map when regarded as

a map on cells of the coarse subdivision of B+(Mt). To do so, it is enough to show

that two flags F, A' of positive flats give the same tubing if and only if M:F and M:,

coincide. By Lemma 5.4.7(iv) and Proposition 5.2.8, we need to show that @(F)

and T(P') coincide if and only if T:F and TF, coincide. But this is clear, because

by construction, the rooted forest T:~ ignores the ordering within the flag, and only

records the data of the tubes which appear, that is, the tubing.

[

Corollary 5.4.8. The Bergman complex and the positive Bergman complex of a Cox-

eter arrangement A are both simplicial. The latter is furthermore a flag simplicial

107



sphere.

Another corollary of our proof is a new realization for the positive Bergman com-

plex of a Coxeter arrangement: we can obtain it from a simplex by a sequence of

stellar subdivisions.

5.5 The Bergman complex of a Coxeter arrange-

ment

Nested set complexes are simplicial complexes which are the combinatorial core of

De Concini and Procesi's subspace arrangement models [12], and of the resolution of

singularities in toric varieties [16]. We now recall the definition of the minimal nested

set complex of a meet-semilattice L, which we will simply refer to as the nested set

complex of L, and denote N(L).

Say an element y of L is irreducible if the lower interval [, y] cannot be decomposed

as the product of smaller intervals of the form [0, x]. The nested set complex N(L)

of L is a simplicial complex whose vertices are the irreducible elements of L. A set

X of irreducibles is nested if for any antichain ({l,..., xk} in X, x1 V ... V Xk is not

irreducible. These nested sets are the faces of N(L).

If M is a matroid and LM is its lattice of flats, we will also call N(LM) the nested

set complex of M, and denote it N(M). (Recall that the irreducible elements of LM

are the connected flats of M.) It turns out that when we are considering the oriented

matroid Ma of a Coxeter arrangement of type 4, the Bergman complex B(MP) and

the nested set complex N(Mb) are equal.

To prove this theorem, we use a result of Feichtner and Sturmfels [18]. They

showed that, for any matroid M, the order complex of N(M) refines the coarse subdi-

vision of the Bergman complex 1(M) and is refined by its fine subdivision. Moreover,

they proved the following theorem.

Theorem 5.5.1. [18] The nested set complex N(M) equals the Bergman complex

B(M) if and only if the matroid G/F is connected for every pair of flats F C G in
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which G is connected.

Combining their Theorem 5.5.1 with Proposition 5.4.7(iv) immediately yields the

following result.

Theorem 5.1.2. For any Coxeter system (W, S) and associated root system A, the

coarse subdivision of the Bergman complex B(M) of the Coxeter arrangement of type

q) is equal to the nested set complex N(Mp).
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Appendix A

The poset of cells of Gr 42,4

In this section we give two depictions of the poset of cells of Gr 4 , the first in terms

of J-diagrams, and the second in terms of decorated permutations. Note that the

objects in the two posets have been drawn so as to indicate the natural bijection

between J-diagrams (A, D)k,n and decorated permutations on 4 letters with 2 weak

excedences.
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Figure A-i: L-diagrams
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Figure A-2: Decorated permutations
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