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Abstract

This paper considers time-varying compensation for linear time-invariant discrete-time plants
subject to persistent bounded disturbances. In the context of certain feedback objectives, it is
shown that time-varying compensation offers no advantage over time-invariant compensation.
These results complement similar existing results for feedback systems subject to finite-energy
disturbances.

First, it is shown that time-varying compensation does not improve the optimal rejection
of persistent bounded disturbances. This result is obtained by exploiting a key observation that
any time-varying compensator which yields a given degree of disturbance rejection must do so
uniformly over time, thereby removing any advantage of time-variation. This key observation
is further exploited to show that time-varying compensation does not improve the optimal
rejection of disturbances regardless of the norm used to measure the disturbances. Thus,
absolutely summable, finite-energy, or persistent bounded disturbances may be treated in the
same manner.

It is then shown that time-varying compensation does not help in the bounded-input
bounded-output robust stabilization of time-invariant plants with unstructured uncertainty.
In doing so, it is also shown that the small-gain theorem is both necessary and sufficient for
the bounded-input bounded-output stability of certain linear time-varying plants subject to
unstructured linear time-varying perturbations.
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the Army Research Office grant DAALO03-86-K-0171. The first author was also supported by
a grant from the Aerospace Corporation, and the second author by NSF grant 8810178-ECS.
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1. Introduction

This paper addresses the possible advantage of time-varying compensation for time invari-
ant plants in order to achieve certain feedback objectives, namely, optimal disturbance
rejection and robust stabilization with unstructured uncertainty. These objectives are

informally summarized as follows.

The problem of optimal disturbance rejection is to find some compensator which
stabilizes a given linear time-invariant feedback control system and also minimizes the
maximum response of certain “error signals” to possible exogenous disturbances. In the
case where the disturbances are assumed to have finite energy, and the quantity to be
made small is the energy of the resulting error signals, the optimal disturbance rejection
problem is also known as H*-optimal control (cf. [7]). In the case where the disturbances
are persistent and bounded, and the quantity to be made small is the maximum value
of the resulting error signals, the optimal disturbance rejection problem is also known as
£'-optimal control (cf. [1, 15]). Further background and motivation to optimal disturbance

rejection problems may be found in [1, 7, 15] and references contained therein.

In [6, 10] it was shown that in the context of optimal rejection of finite-energy distur-
bances, time-varying compensation offers no advantages over time-invariant compensation.
That is, time-varying compensators cannot do better than time-invariant compensators in
uniformly reducing the energy of the resulting error responses to exogenous finite-energy
disturbances. In [9], this result was strengthened to encompass nonlinear time-varying

compensators.

The question of time-varying compensation for minimizing the maximum response to
persistent bounded disturbances was addressed in [12], where it was shown that under
certain very restrictive assumptions, time-varying compensation offers no advantages over

time-invariant compensation.

In this paper, the general problem of time-varying vs. time-invariant compensation
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for minimizing the maximum response to persistent bounded disturbances is addressed.
As in the case of finite-energy disturbances, it is shown that time-varying compensators
cannot do better than time-invariant compensators in uniformly reducing the maximum
€rror responses.

This result is obtained by exploiting a key observation that any time-varying compen-
sator which yields a given degree of disturbance rejection must do so uniformly over time,
thereby removing any advantage of time-variation.

This key observation is then further exploited to show that time-varying compensation
does not improve the rejection of disturbances regardless of the norm used to measure
the disturbances. Thus, finite-energy, persistent bounded, and even absolutely summable
disturbances may be treated in the same manner. Given this independence of norms, it is
only the time-varying vs. time-invariant aspect of the problem which is isolated to lead to
the desired results.

The second objective addresed in this paper is the bounded-input/bounded-output
robust stabilization of a time-invariant plant with unstructured uncertainty.

One example of unstructured uncertainty is that of “additive plant uncertainty.” More
precisely, consider the family of plants Paaq = {P,+ WA} where P, is a known linear time-
invariant plant; A, the unstructured uncertainty, is an arbitrary nonlinear time-varying
system which is known only to be stable and to satisfy a given norm bound; and W is a
known linear time-invariant system which “shapes and normalizes” the effect of A (e.g.,
[4, 5]). Another example of unstructured uncertainty is “multiplicative plant uncertainty,”
where the family of plants takes the form Pru = {Po(I + WA)}.

The problem of robust stabilization is then to find a single compensator which not
only stabilizes the nominal plant, P,, but also stabilizes the entire family of plants, Paqq
or Pmul- In this case, the compensator is said to robustly stabilize the family Pagqa or Pmul,
respectively.

Now depending of the nature of the exogenous disturbances to the perturbed feedback
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system, the notion of “stabilization” may take on different interpretations (e.g., [3]). For
example, stabilization may mean that finite-energy disturbances lead to finite-energy sig-
nals in the feedback loop. Alternatively, one may wish that exogenous disturbances which
are bounded in magnitude lead to signals in the feedback loop which are also bounded in
magnitude.

In [8, 13], it was shown that in the context of robust stabilization of time-invariant
plants with unstructured uncertainty and finite-energy disturbances, nonlinear time-vary-
ing compensation offers no advantage over time-invariant compensation. That is, given
a nonlinear time-varying compensator which robustly stabilizes a plant with a given un-
structured uncertainty (such as either family Paga or Pru), then there exists a linear
time-invariant compensator which robustly stabilizes the same family of plants.

In this paper, the issue of time-varying compensation for bounded-input/bounded-
output robust stabilization of time-invariant plants with unstructured uncertainty is ad-
dressed. More precisely, it is shown that given a linear time-varying compensator which
robustly stabilizes a plant with a given unstructured uncertainty, then there exists a linear
time-invariant compensator which robustly stabilizes the same family of plants. How-
ever, the notion of stability used here is bounded-input /bounded-output stability rather
than finite-energy input/output stability. Thus, time-varying compensation again offers
no advantage over time-invariant compensation in achieving this objective of robust stabi-
lization.

This result is obtained by first showing that the small-gain theorem is both neces-
sary and sufficient for the bounded-input/bounded-output stability of certain linear time-
varying plants subject to unstructured linear time-varying perturbations. One then ex-
ploits the results regarding time-varying compensation for disturbance rejection to lead to
the desired conclusion.

The remainder of this paper is organized as follows. Section 2 establishes the notation

and definitions used throughout the paper and presents some preliminary facts regard-
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ing time-varying operators. Sections 3 and 4 contain the precise problem statements and
present the main results. Section 3.1 addresses time-varying compensation for optimal
rejection of persistent bounded disturbances, while Section 3.2 extends these results to
arbitrary disturbances. Section 4 addresses time-varying compensation for robust stabi-
lization with unstructured uncertainty. Finally, concluding remarks are given in Section

5.

2. Mathematical Preliminaries

First, some notation regarding standard concepts for input/ouptput feedback systems (e.g.,
[3, 16]) is established.

R denotes the field of real numbers, R" the set of n x 1 vectors with elements in R,
and R™*™ the set of all n X m matrices with elements in R.

Let z € R™ and A € R™*™, Then z(i) denotes the i** element of z, A(:,7) denotes
the i7" element of A, and A(e, ;) denotes the j'* column of A. The following norms are

defined:

oo = max |2(i)

=er™ x|,

def .
"4lma: = ZIA(.’])IOO
J

4] def ox |Az| = maAZ |A(Z,7)]
J

For A € R™*", tr(A) denotes 5, A(3, 7).
£’ denotes the extended space of sequences in R", f = {fo, f1, f2,...}. {3° denotes

the set of all f € £2°, such that

n,e

1l % sup il < co.

L2 \L5° denotes the set {f : f € £3°, and f € £3°}. {P,p € [1,00), denotes the set of all

n,e
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sequences, f = {fo, f1, f2,...} in R such that

i/p
1£lles = (Z lf,-l”) < co.

Given f = {fo, f1, f2,...} € £, the support of f, denoted supp(f), is defined as

supp(f) = {n: fu #0)

S; denotes the k**-shift operator on 03

{07"'301f03f1af2""}) lkaO,
Si:{fo, f1, fo,...} — k times
{f=ks Fmkt1> fmk425- -}, H k<O

In the special case where k = 1, S; is simply denoted as S and is called the shift operator.

Py denotes the k**-truncation operator on 02

Pe:{fo, f1, f2r- -} — {fo,- -, i, 0, .}
Let H : £3, — {32, be a nonlinear operator. H is called causal if
PuHf = PHPf, VE=0,1,2,...,
H is called strictly causal if
P.Hf =P.HP._,f, Vk=0,1,2,...
H is called time-invariant if it commutes with the shift operator:
HS = SH.
Finally, H is called stable if
1 % p g

—_— < 0
ree e || Peflles

Prt#0
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The quantity ||H]|| is called the induced operator norm over £*°.

LTy™ denotes the set of all linear causal stable operators, T: (5, — (°,. Lpf™
denotes the set of all T € L7.3™ which are time-invariant.

The remainder of this section is devoted to showing that £35™ may be viewed as the
dual space of a certain normed space, L7 *", to be defined.

First, givenany T € ;"(,m, it is straightforward to show that its action on any f € £2°
may be given the kernel representation

n
(THa =D Taif;, n=0,12,...
=0

where the T,,; are a collection of matrices in R™*™ uniquely defined by T'. It then follows

that
IT=suwp|[Tio ... Tiilleo

Using this kernel representation, L7;" may be identified as the set of all infinite

lower-triangular block matrices,
Tee O 0

T Tlo T11 0 oo
=1 T Ton Toz ... |>
with elements in R"*™ whose rows have uniformly bounded |e|_ norms, i.e.

sup|[Tio ... Tiille < 00

The normed space LT'*" is now defined as the set of all infinite upper-triangular block

matrices,
Goo Go1 Goz
0 G11 G12 ‘e
G = 0 0 G22 ‘e ’

with elements in R™*™ whose columns have |e|  _ norms which are summable, i.e.

def = GOi
1Gllce D11 - < oo.
i=0 || Gy

mazx




Let (LI*")" denote the dual space of LJ**". 1t is now shown that (£J**")" = L3}3™.

Proposition 2.1 Let T € L123™. Then T defines a linear functional on L§*" whose

value at G, denoted (T, G), is defined as

Too 0 0 o G()o G01 G02
TlO Tn 0 0 G11 G12

def
(T,G)Y=tr{ | Ty Ty Too ... 0 0 Go

Conversely, any element of (L") takes the form of (T, G) with T € L335™. Furthermore,

one has that

sup (T,G) =|T|.
Gl <1

Proof The proof of Proposition 2.1 involves straightforward arguments, hence the details
are ommitted here. First note that by the summability of the columns of G, the “infinite
trace” present in the definition of (T, G) is well defined. It is then easy to see that any
T e ﬁ?{,—m defines an element of (E{,”x")'. To see that (L x")* is precisely £73™, one
simply exploits that the summability of the columns of any element of £ *" implies that
L7*" has a Schauder basis (e.g., [11]). Thus, any element of (£T'*™)" is uniquely defined
by evaluating the functional on the basis elements. This evaluation process in turn uniquely

nxm

defines an element of L77™. | |

Finally, the following proposition regarding a composition of operators as a linear

functional is presented.

Proposition 2.2 Let Ty € L33, T € L737, Ts € L), and G € LI™". Let G be the
upper block triangular portion of (T3GT;) viewed as a product of infinite-matrices. Then

(1) Gecp ™,




~

(2) (WTLTs, G) = (T2, G).

Proof Asin Proposition 2.1, the proof of Proposition 2.2 involves straight{orward argu-
ments, hence the details are ommitted here. First, the summability of the columns of G
guarantees that G is well-defined and belongs to £5*™. To see (2), note that any G € £§*"
can be approximated arbitrarily closely by a G' € £{™" which has a finite number of non-
zero elements. Thus, replacing G by G' above makes all products of infinite-matrices a
finite-matrix product. Statement (2) then follows since tr(AB) = tr(BA) for finite matri-

ces A, B. E

Notational Convention In order to avoid a proliferation of notation, the following
convention is adopted. In Section 3.1, all operators are assumed to be multi-input /multi-
output without explicit reference to the dimension of the inputs and outputs, and in Sec-
tions 3.2 and 4, all operators are assumed to be single-input/single-output. Furthermore,
all subscripts on norms will be dropped throughout. This informality results in no loss of

clarity.

3. Optimal Disturbance Rejection

The standard block diagram for the optimal disturbance rejection problem (e.g., [7]) is
shown in Fig. 3.1. In this figure, P denotes some fixed time-invariant discrete-time plant, i
denotes a possibly time-varying compensator, and the signals w, z, y, and u are defined as
follows: w, exogenous disturbances; z, signals to be regulated; y, measured plant outputs;
and u, control inputs to the plant. For technical simplicity, it is assumed that the transfer

function from u to y is strictly causal.




K

Fig. 3.1 Block Diagram for Disturbance Rejection

Let T, (L) denote the resulting closed-loop dynamics from w to z for a given compen-
sator I{. The objective of optimal disturbance rejection can then be stated as minimizing

over all admissible compensators the resulting input/output norm of T%,,(L\).

8.1 > Disturbance Rejection

In the case where the disturbances w are persistent and bounded, the pertinent input /out-
put norm of T3, (K) is its induced operator norm over (.

The cost resulting from such a minimization can be stated more precisely as follows:

LTV < inf {||IT:w(K)|| : K is any stabilizing linear tsme-varying controller} .

It is stressed here that the phrase “time-varying” should be interpreted as meaning “not
necessarily time-invariant.” If one indeed wishes to restrict the compensation to be time-
invariant, then the class of admissible compensators is reduced, and the following cost is

defined:
def

prr = inf {||T:w(K)| : K is any stabilizing linear t2me-invariant controller} .

The main result i1s now stated:

Theorem 3.1 purv = p7y.
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Clearly, one has that pry < prr. The remainder of this section is devoted to proving the

reverse inequality, urr < prv.

The first step is to employ a parameterization of all stabilizing and possibly time-
varying compensators {13, 14, 17]. Then it can be shown (e.g., [7]) that
= inf |7 - TLQT.
prv = inf |Ty - BQT|

and

rr=. i |77 - T,QT3],

MTI QELrs ” 1 2Q 3“
where Ty, T3, and T3 are stable linear time-invariant operators which belong to Lr; and
depend only on the plant P, and T} — T,QT; is the resulting closed-loop dynamics from

w to z. Thus in proving Theorem 3.1, it suffices to show that
1 - < 1 —Ts .
o T -TQ%| < i T3 - T2QTs|]

First, some preliminary lemmas are presented.

Lemma 3.1 Let Ty, Ty, and T3 € L7 and Q € Ly satisfy

|7y — T2QT5|| = .

Then

HT] - TQ(S-nQSn)Tg,” S M, Vn = 0,1,2, ‘e

Proof By definition of the induced operator norm,

Ty — T2 QT3] e sup I(Th ~ T2QTs)f]]
sesee [I£1l
Ty = ToQT3)Sx f|
= ek 171

= |[(Ty — ToQT3)Sq||
= ||Scn(Th — T2QT3)Snl| -
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Using the time-invariance of Ty, T3, and T3,
1S—n(Ts = T:QT)Su]| = |T1 — Ta(5-nQSn)Ts].,

which vields the desired result. |

Lemma 3.1 essentially states that given any @ € Lryv which yields some closed-loop
induced norm, one can find a family of operators in L7y, namely {S_,,Q5,}, which yield
at most the same closed-loop induced norm. However, a closer inspection shows that this
family is simply “delayed versions” of the original ). This fact becomes clear using the

matrix identification of Q). More precisely, if

QOO 0 0
QIO Qll 0
Q=10 Qun Qun ..|>

then

Qnn 0 0
Qrinn  Qn+1)(n+1) 0
S-nQ52 = | Qo) Qna)(nt1) Qint2)(n+2)

It is this uniformity in time of the closed-loop norm which will ultimately remove the

advantage of time-variation in @.

Lemma 3.2 Let Ty, Ty, T3, and Q) be as in Lemma 3.1, and define the following sequence

of averages

— def 1 =
= S_+QSy, n=0,1.2,...
[ n+1; £QSk, n=0,

Then
|7y - T2Q,.Ts|| < g, Vn=0,1,2,...

I*Urthez'moz'e, one has that ‘
” n "l”—n ] “ “7 Pt I
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Proof The first inequality follows from Lemma 3.1 apd the convexity of ||Ty — T2 QT3]
in ). The second inequality follows from the easily obtained identity

1
n+1

S-Q_n - -@ns = S (Q - S—(n+1)Q5n+1) .

As in Lemma 3.1, Lemma 3.2 states that given any @ € Lrv, one can find a family of
operators in L7y, namely {Q,}, which yield at most the same closed-loop induced norm
as (). A major difference between these two lemmas is that the sequence of operators {Q,,}
asymptotically approaches commuting with the shift operator S. Thus, the operators {Q,,}
become asymptotically close to being time-invariant, in some sense.

Now suppose that there exists a Q € Ly such that the {Q,,} converge to § in norm,

i.e., in the uniform operator topology. Then

|

From Lemma 3.2, it follows that @ is time-invariant, i.e., Q € L7, and achieves the same

2.-0| —o

closed-loop induced norm as Q. Given this time-invariant Q, the proof of Theorem 3.1 is
then complete.

Now in the special case where @) is periodically time-varving (i.e., $3Q = QS for some
k > 0), it is easy to show that the sequence of averages {Q,,} does converge. Unfortunately,
however, this sequence {Q,,} need not converge for a general Q € Lrv.

It turns out that this condition of {@n} converging in norm is unnecessarily demand-
ing. Using the identification of L7y as the dual space of £y, the weaker condition of the
{@,} converging in the weak* topology (e.g., [11]) on Lrv is sufficient. This is captured

in the following lemma.

Lemma 3.3 Let Ty, T, T3, and Q be as in Lemma 3.1, and let {Q,,} form a sequence

of operators as defined in Lemma 3.2. Since the sequence {Q,,} is bounded, it has a weak*

13




convergent subsequence, say {-Q‘m }. Let Q be the weak* limit of {ank }, le {-Q_m} udiin Q.
Then

(1) Q € Lz,

(2) (T1 - TQ,,T) == (Tl - TzQTs),

(9 |7 - ZOT|| <

Proof (1)Let E,, =Q — @, Then
SQ = S@nk + SETH:

and

QS =0q,, S+E,S.

Thus for any G € Ly,

~ -

(SQ - QS,G) = (S@nk "@nkss G) + (SEw,,G) — (En, S, G).

Since ny is arbitrary, it follows from Lemma 3.2, Proposition 2.2, and E,,, ¥%% 0 that

-~ -~

(S - 0S,G) =0, YGe L

Thus SQ = QS which proves (1).
(2) Since @ — Q,,, =3 0, it follows from Proposition 2.2 that T5(Q — T, )T5 25 0
which proves (2).
(muman-QamnugﬂaM(n—ﬂ@mn)ﬂ:Cn—néa)mmmmu

(3) then follows from a standard result on weak™ convergent sequences. See [11, Sec. 4.9,

problem 9]. |

With Lemma 3.3 in hand, the proof of Theorem 3.1 is now complete. In words,

Lemma 3.3 states that given any @ € Ly which yields some closed-loop induced norm,
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one can find a time-invariant operator, namely Q € L7, which yields the same closed-loop

induced norm, which is the desired result.

3.2 t» Disturbance Rejection

In this section, it is shown how to exploit Lemma 3.1 and Lemma 3.2 to show that time-
varying compensation does not improve the optimal rejection of general {P-disturbances,
p € [1,00], with the operator norms induced over fP. Thus, both finite-energy and
persistent bounded disturbances may be treated in the same manner. Since the multi-
input /multi-output case is rather cumbersome, only the single-input /single-output case is
discussed.

First, some specialized notation for this purpose is established. X* denotes any one

of the spaces £7,p € [1,00], and X denotes the space such that X* is its dual (e.g., [11)).

ej, 7 =0,1,2,..., denotes the j'* standard coordinate vector of X*, i.e.
j0's
——
e; ={0,...,0,1,0,...}.

L1y (X*) denotes the set of all linear causal operators T : X* — X such that

def 1P T 1|
T -— —————— < 0.
ITI= sup sup S5
Py 190

L77(X*) denotes the set of all T € Lv(X™) which are time-invariant. Given any T €
Lry(X™), T, denotes the bounded linear operator T, : X — X such that T is its adjoint,
ie., (T.)" = T. (It is easy to see that T, is well-defined using a matrix representation of
T.)

The main result is now stated as follows:

Theorem 3.2 Let T7,75,T3 € Lr;(X*) and Q € LTv(X™) be such that

1Ty - T2QT3|| = p.
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Then, there exists a Q € L1(X*) such that

|7 - 20T < .

Proof Following Lemma 3.1 and Lemma 3.2, define

= def 1

= — ! = 2,...
Qn n+1 ZS—kQSla n Ovlv ’
k=0
Then using the same arguments as in Lemma 3.1 and Lemma 3.2, one has that
”Tl —TQGnTSH SIJ, Vn:oalv?‘a"‘

and

|@.5- 5T, < == Qll, ¥n=012,...

Since it is unclear whether Lry(X™) is the dual of some vector space (as is the case for
LTv), one cannot follow the same route as Lemma 3.3.
Given this predicament, consider the sequence in X* given by {Q,e0}. Since it is a

bounded sequence, it has a weak™® convergent subsequence. Thus, let

— wkx
an €p — Vo.

Then

wkx

-@nk € = ank Seg = S_Q_m; €0 T @nkS - S_Q—nk) eg — Svp.

Similarly, for any finite integer NNV,

N N
- o wkx S
Q. E aje; | = § ,@;5;5vp.
=0

—
This motivates the definition of § as

PnQf ¥ weak"1imQ, Pnf, fe€X*,N=0,1,2,...
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The above expression clearly defines a unique causal time-invariant linear operator on X*.

Using a standard result on weak* convergent sequences [11}, one has that
|Pn || < timinf [@u, Pu ],

which then implies § is also bounded, hence Q € Lr(X ™).
< p. First, let (f,z) denote the

Thus, it remains to be shown that “T1 - TQQT};

value of f € X* acting on z € X. Then for any integer N < oo, f € X*, and z € X,
(PNT2Q, Tsf,2) = (Qn, PNT3f, (T2)u(Pr )uz)

— (QPNT:f, (T2)u( PN )uz)
= (PNT2QPNTsf,z)

= (PNTQTsf, z).
Thus, for any integer N < oo and f € X™,

PN(Ty = T2 0, Ts)f 25 Pn(Ty - ToQTy)f

which implies
|Pv(T: - 20T )f| < |PM(T: - BT, TS |

which completes the proof. |

4. Robust Stabilization

To set up the problem of robust stabilization, consider the block diagram of Fig. 4.1.

u e

1 l o P

—
K JoeOer

2

o

Fig. 4.1 Block Diagram for Robust Stabilization
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In this figure, the plant, P, and compensator, I{, are viewed as single-input/single-
output causal operators on £¢°. This feedback system is said to be well-posed (e.g., [16]) if

given any (uj,uqz) € £ x £2°, there exist unique (e3,ez) € £ x £2° which satisfy
€1 = u; + I\’CQ
€2 = ug + Pe;.

such that the mapping (ui,u2) — (€1,e2) is causal. Assuming well-posedness, the com-
pensator, I\, is then said to stabilize the plant, P, if the mapping (uj,uz) — (e1,€9) is
stable.

Now, define the following families of plants:
Paaa © {P:P =P, +WA)

where

(1) P, : £8° — £ is linear and strictly causal,

(2) AL — [ is strictly causal and stable with ||A|| < 1,
(3) W: L2 — £2° is linear, causal, and stable,

and

Pau = {P: P = P,(I+WA))

where
(1) P, : 0% — (% is linear and strictly causal,
(2) A: L2 — [ is causal and stable with ||A]| < 1,
(3) W :£2° — £ is linear, causal, and stable.
The assumptions of strict-causality simply assure that any causal compensator results in
a well-posed feedback system for every P € 'Pad;i or Pru [16].
The problems of robust stabilization addressed in this paper can now be stated as
follows:

(1) Find a single compensator, K, which stabilizes every P € Paqgq,
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or
(2) Find a single compensator, I, which stabilizes every P € Ppy.

In either case, the compensator, I, is said to robustly stabilize the family P.qq4 or Pmul,
respectively.

In this section, it is shown that there exists a linear time-varying robustly stabi-
lizing compensator if and only if there exists a linear time-invariant robustly stabilizing
compensator. Thus, time-varying compensation offers no advantage over time-invariant
compensation for these particular objectives of robust stabilization.

First, some preliminary lemmas which generalize the results of [2] are presented.

Lemma 4.1 Let H € Lrv satisfy
irzf ”S..LHSL” =6>1.

Then there exist an n* > 0, m > 1, and f € £3°\L™ such that

[E:5
[F2

Vn > n".

Proof Choose constants m, M, and « such that
l<m<M<é,
1<y <M/m,

and set

€= (M —ym)y,
M' = max(M,6 —¢€/2).
Now using arguments as in Lemma 3.1, one can show that for some N > 0,
IS_NHSNI < 6+¢/2.

19




Setting H= S_nHSy, it follows that

1<é6< HS,k}?Sk” <é+¢€/2,

Vk=0,1,2,...

Given this inequality, there exists an €® € £%° and ng > 0 such that

(1) supp(e®) C [0,70]
@) fl] =

(3) |(He)n,| 2 M°

Similarly, there exists an €! € £*° and n; > ng + 1 such that

(1) supp(e!) C [mo + 1,ma]
(2) |le*]| = M'/m
(3) |(Behns| 2 (M /m

Now since M' > § — ¢/2 and “S_LHSLN < 6+ ¢/2 for all k, it follows that

|(H e,

Thus,

(ff(eo + el)) o >

In general, the above construction of e! based on e

recursive form. Let a; (%) denote the lower bound

(H Z ej>
=0 / el
and let
eall) = 4]
Then given signals €°,...,e*~? and constants ng,...,

nr > nr—1 + 1 such that
(1) supp(e*) C [nk—1 + 1,n]
(2) ”6"” = Otz(k) = Cl/](k - 1)/771

<elie]l-

>a

(M)

- £,

0

k),

ni—1, there exists an e5 € £*° an

may be given the following

d




(3) [(I—"Iek)m > M'ag(k).

Again, since M' > § — ¢/2, it follows that

-~ k-—l .
H Z e’
= /..

provided that the as(k) are non-decreasing. If so, then

k
EY e
=0 ne

Thus, it is seen that the variables o and «a, satisfy the recursion equation

ety e Tl lem) el =]

< eag(k—1)

> M'ag(k) —ecar(k = 1) = a;(k)

Furthermore, using the selection of A’ and ¢, it is straightforward to show that if for some
k

b

ai(k) = ymaq(k)

then
O(](k -+ 1) Z 777102(]3 -+ 1),
Cll(k -+ 1) _>__ ’)’(11(}3),
az(k+1) > vyaq(k).
Since a1(0) > yma2(0), it follows by induction that the sequences a;(k) and aq(k) are
exponentially increasing.
Now, let g = >~ ; e’. Since the sequence a2 (k) is exponentially increasing, g € £9°\£%.

Furthermore, for any n € [ng + 1, ng+1],

P,,_lf?g” > ’(f}g) > 6y (k) = mag(k+1) = m || Pa,,, 0] = m||Pag]|

L

Thus,

Foo ]

——— >m, Vn > ng.
1 2g]l ’
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Similarly,
| PNtn—1HSNng||

>m, Vn>ng+ N
[ PN+nSNY| °

which completes the proof with f = Sng. [ |

It is noted that [2] proved a less general version of Lemma 4.1 in which the operator
H is restricted to be time-invariant. Since [2] used the time-invariance of H extensively,

the methods cannot be directly applied to Lemma 4.1.

Lemma 4.2 Let H € Lrv be as in Lemma 4.1. Then there exists a strictly causal

A € Lry such that ||A]| < 1 and the operator (I + AH)™?! is not stable.

Proof The proof essentially follows the example in [2]. First, choose f and n* as in
Lemma 4.1 and define the integer function ¢(n) for n > n* as follows: ¢(n) 4l an integer
less than n such that I(Hf)¢(n)| = ||Pn—1H f||. Now define the strictly causal operator

A€ Lry by
0<n<n

et L -
{ (Hf)g(n) €o(n), M >N .

By the construction of f, it is clear that ||A]| < 1.

(De)n =

To see that (I + AH)™? is not stable, let
v={UT+AH)f ={fo,..., fn,0,...}.

Now the strict causality of A guarantees the invertibility of (I + AH) [16]. Thus, one has
that v € £ while f = (I + AH)™ v € £\£*, which proves the lack of stability. |

In words, Lemma 4.2 may be given the interpretation that the small-gain theorem (e.g.,

[3]) is actually necessary for the linear time-varying operators considered in Lemma 4.1.
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It is noted that [2, 13] show how to construct a nonlinear iime-invariant A which is
destabilizing.
The next theorem give a necessary and sufficient conditions for the existence of a

linear compensator to robustly stabilize either family Pagd of Pmul-

Theorem 4.1 Let S(P,) denote the set of all linear, possibly time-varying, compensators
which stabilize the plant P,. Then there exists a I € S(P,) which robustly stabilizes Faaa
if and only if

1 ST — =1
Kglgfpo) “I‘ (I - P,IV) W” <1.

Similarly, there exists a I’ € S(P,) which robustly stabilizes Prul if and only if

inf HI{PO(I— I{P‘,)‘IWH < 1.
KeS(P,)

Proof First consider the family P,aq. To prove necessity, let H(IV) = I{(I - P,y W,

and suppose

| g
oz, JHE)26>1

Then for any K € S(P,),
HS_LH(IX’)SL“ = “S_kI{Sk(I - POS_kKSk)'lW” >6>1,

where it is used that K € S(P,) implies S—x K'Si € S(P,). (This fact is easily shown using
arguments similar to those found in Lemma 3.1.)
Thus, for any K € S(P,), H(K) satisfies the hypothesis of Lemma 4.2. However,

writing the feedback equations for Fig. 4.1 with up = 0, one has that
ey = (I — H(K)A) ™Y (I = KEP,)  uy.

Since H(I) satisfies the hypothesis of Lemma 4.2, it follows that one can construct an
admissible A which makes (I — AH(K))™? unstable, hence (I — H(X)A)™! is unstable

[18, Proposition 2.1].




The proof of necessity for Pru essentially follows the same line of reasoning. Namely,
redefine H(K) = KP,(I — KP,)"'W. Again, for any K € S(P,), H(K) satisfies the

hypothesis of Lemma 4.2. Then with u, = 0, one has that
e1 = (I — HE)A) NI —-EKP,) u,,

which, via Lemma 4.2, leads to the desired result.
The proofs of sufficiency are straightforward, hence omitted. Briefly, they simply

K(I - P, I)~'W

<lor |[EP(I-KP)'W| <

involve choosing a I\’ such that either |
1 and performing standard manipulations of the feedback equations of Fig. 4.1 along with

an application of the small-gain theorem. E
The main results regarding robust stabilization are now presented.

Theorem 4.2 There exists a linear time-varying compensator which robustly stabilizes
the family Paqa (resp., Pmu) if and only if there exists a linear time-invariant robustly

stabilizing compensator for Pagq (resp., Pmul )-

Proof With Theorem 4.1 in hand, the proof of Theorem 4.2 is essentially complete.
More precisely, it 1s easy to show that either optimization

- ; i
1\'é§fp,) |K(I - P,K)"'W|

or

inf || KP,(I-KP,) 'W||
KeS(P,)

1s equivalent to an optimal disturbance rejection problem.
Thus from Theorem 3.1, there exists a stabilizing time-varying compensator satisfying

either ”I\.’(I— P,KY W[ <1lor ”KPO(I- KP,)-1 T/V” < 1 if and only if a stabilizing

time-invariant compensator satisfies the same bound. |
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It is noted that the methods in this section do not seem to be restricted to the classes
Pada and Ppy. Rather, they should apply to any class of unstructured uncertainty for.
which a necessary and sufficient condition for the existence of a robustly stabilizing com-
pensator takes a form equivalent to some optimal disturbance rejection problem (cf. The-

orem 4.1).

5. Concluding Remarks

This paper has considered linear time-varying compensation for linear time-invariant dis-
crete time plants subject to persistent bounded disturbances. For both objectives of
optimal disturbance rejection and robust stabilization, it was shown that time-varying
compensation offers no advantage over time-invariant compensation.

In the analysis of optimal disturbance rejection, the key observations are really those
of Lemma 3.1 and Lemma 3.2. It is these lemmas which exploit the original time-invariance
of the plant to intuitively show why time-varying compensation does not improve optimal
disturbance rejection. Furthermore, as used in Section 3.2, their proofs are really indepen-
dent of the norms used to measure the signals and operators. Given this independence of
norms, it is only the time-varying vs. time-invariant aspect of the problem which is isolated
to lead to the desired results.

In the discussion of robust stabilization, the key observation was Lemma 4.2 which
essentially stated that the small-gain theorem is also necessary for the stability of certain
classes of time-varying plants. However, it is still unknown whether time-varying compen-
sation improves multi-objective robust stabilization problems (e.g., robust performance).

As mentioned earlier, these results complement existing results regarding time-vzirying
compensation for time-invariant plants subject to finite-energy disturbances. Since induced
operator norms over £ disturbances are more closely related to time-domain feedback

specifications (e.g., overshoot), it is interesting that these results remain true.
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