Subglottal Coupling and Vowel Space

Morgan Sonderegger &
Xuemin Chi
[smore, xuemin]@mit.edu
Speech Communication Group, MIT

Introduction

 In front-back diphthongs, observe attenuation of F2 peak at the 2nd subglottal resonance (AccF2).

- AccF2 ~1350 Hz for males, ~1550 Hz for females.
- Front vowel F2 generally above and back vowel F2 generally below this frequency.
- What divides front and back vowels is uncertain.
- Hypothesis: attenuation is a quantal (Stevens 1989) phenomenon for [back].
- We model this effect, then test if it is quantal in several ways.

Theory

- Oral and subglottal cavities coupled at the glottis, impedances Z_f, Z_b, Z_g.
- What happens as F2 goes through a resonant frequency of the subglottal system?

- Subglottal system modeled as open tube terminated in lossy compliance.
- Oral cavity modeled as two tubes, sufficiently accurate for vowels.

- Wall impedances not included.
- Pressure at microphone = $\frac{\partial U}{\partial t}(\omega) \cdot T(\omega) \cdot R(\omega)$
- Get normal supraglottal poles, subglottal pole-zero pair.
- Pole-zero pair separation depends on oral-subglottal coupling (Z_g).
- Using model, can simulate attenuation in /ai/ diphthong (movie on author's laptop):

Data Collection

- Acoustic, accelerometer data to test hypothesis for individual speakers.
- 7 female, 6 male speakers.
- Native speakers of American English
- "hVd, say hVd again ", 5x, for all vowels.
- Same done for British English, Polish, one male speaker each.

Accelerometer Details

- Glued to neck approximately 1 in. above the sternal notch. (Stevens et. al. 1975)
- Well-tested (Cheyne 1993), noninvasive.
- Converts the vibration of the skin to voltage signal => find subglottal resonance.

Sample Acc. Spectrogram

Spectrum of /heed/

Speaker M1: acc-F1 = 547 Hz, AccF2 = 1360 Hz

Data Analysis-Diphthongs

- Looked at "hoid" and "hide", in isolation for 3 male and 3 female speakers.
- Formants and amplitudes recorded by pitch period.
- See "jumps" in frequency for some speakers, not others, ~100-200 Hz.
- When there is a jump, amplitude dips, qualitatively matches the acoustic model.
- When there is no obvious jump, amplitude dips around AccF2, suggesting possibility of coupling.

Data Showing a frequency jump

Data Analysis-Monophthongs

- Examined front vowels, F2 clearly above the measured 2nd sub-glottal resonance for all speakers.
- For back vowels, "hud" F2 is most often near Acc-F2, recorded "hub" to see if /d/ is pulling it up.
- "hub" F2<AccF2 for all but one speaker.
- Possible errors: accelerometer noninvasive, oral-subglottal coupling may shift measured resonance.

Modeling Jumps

- Can successfully model jumps.
- Model parameters can be adjusted to match magnitude, location of jump and attenuation.
- Non-robustness of effect predicted: too much or too little coupling gives no jump.
- Speakers' jump characteristics vary with Z_b, Z_g.
- Shows that suggested quantal phenomena may not occur in practice, can predict via modeling.

Monophthong Statistics

- Are all front/back vowels above/below AccF2 for individual speakers?
- Subglottal resonance varies between utterances.
- ~160 vowels per speaker, found F2 by hand for all speakers.
- For each vowel, found mean AccF2 using a formant tracker.

Diversion: Acc-F2 Statistics

- AccF2 distribution for each individual speaker across <u>all</u> vowels is gaussian, $\chi_v^2 \sim 1$.
- Variance ~30-60 Hz
- No significant differences in AccF2 for different vowels=> AccF2 relatively stable for each speaker.
- Mean values:1280-1450 Hz for males, 1380-1620 for females.
- Agrees with work measuring AccF2 invasively (Cranen & Boves 1987, Ishizaka et. al. 1976).

Significance Testing

- Used all monopthongs for American,
 British speakers' dialects, plus /e/ from /ei/.
- For each speaker: for a given vowel, F2 error=variance of 10 F2 values (5 repetitions), the "vowel group."
- AccF2 error=variance of speaker's distribution.
- Tested whether AccF2-F2 significantly (p<.05) positive or negative for each group.

- Back vowel F2<Acc-F2 is "expected," etc.
- 4 categories: significant & expected, nonsignificant & not expected, etc.
- Only groups for certain vowels ever not significant & expected: "hodd," "hoed," hood," "hawed," "hud," "who'd."
- Statistics for these vowels across 14 speakers, 78 groups:

Significant & expected	Non-significant and expected	Non-significant and non-expected	Significant and non-expected
65 (86 %)	5 (6%)	1 (1%)	5 (6%)

- Front groups all > AccF2, few back groups problematic.
- Central (/er/) group above, below, or across AccF2 for different speakers.
- Pattern holds even for speakers without jumps.
- Using "hub" instead of "hud":

Significant & Non-significant & and expected		•	Non-significant and non-expected		Significant and non-expected		
65 (9 1	1%)	2	(3%)	1	(1%)	4	(5%)

 Speakers with jumps have gaps in their F2 data for all vowels=> possible vowel spaces are constrained by attenuation phenomenon.

Cross-Linguistic Data

- So far so good, but maybe this is a pattern of American English vowels.
- Anecdotally, British, Polish measurements also follow pattern.
- Can look at how cross-linguistic vowel formant data patterns.
- 44 male, 18 female surveys, >3 speakers.
- 9 back, 7 central, 9 front vowels, different qualities (short, long, breathy, nasal, laryngealized).

- Relatively sharp front/back division.
- To find where, vary the boundary line frequency, plot the error metric.
- Error metric=(# of back vowels>freq) + (3*# of front vowels<freq).
- Somewhat arbitrary front vowels must "count" more because back vowels tend to front (much more common than backing diachronically), more lax vowels (less peripheral) are back.

- Find boundary line ~1395 Hz, agrees with subglottal data averaged with other studies (1355± 56 Hz).
- 4.7% of front/back vowels on "wrong" side.
- 20 central vowels divided 13/7 by line at 1395 Hz.
- Strong tendency towards hypothesis, same for female data?

- Find boundary line ~1555 Hz, agrees with subglottal data averaged with other studies (1518±104Hz)
- 9.3% of front/back vowels on "wrong" side.
- 8 Central vowels divided 6/2 by line at 1555 Hz.

Cross-Linguistic Results

- Observe dividing effect for male and female data, stronger for males.
- Hard to explain location of boundary line otherwise – even if ~halfway across quadrangle, not true in Barks.
- Still anecdotal shaky method, few speakers in some studies, bias towards Germanic/IE languages, general unreliability of formant measurements.

Theoretical Implications

- Some support for central vowels being unspecified for [back].
- Another possible reason for why only 3 horizontal classes, versus 5 vertical ones?
- Dispersion theories of vowel space structure: Lijencrants & Lindblom 1972 & passim ("Adaptive Dispersion"), Flemming 1995 & passim ("Dispersion Theory") in OT.
- Maximize distance between vowels, minimize effort, maximize number of contrasts.

- Both theories take frequency-phoneme map for granted.
- AccF2 may help define this map.
- No reference to features in either theory, but vowel spaces are formed by change acting on features.
- Both theories assume a relatively homogeneous space of possible vowels.
- But some speakers have unstable regions which repel possible vowels with F2 near AccF2.
- Need dispersion attributes+quantal attributes?

Conclusion

- Possible quantal features can be modeled, tested at several levels.
- Hypothesis generally supported at all levels
 AccF2 may give front/back distinction.
- Possibly a quantal feature, certainly a phonetic tendency.
- Should be enough that it's generally true many aspects of languages are biases, not universals.
- Many thanks to Professor Ken Stevens and members of the Speech Communication Group.
- Work supported by NIH Grant DC00075.

References

Languages used in the formant survey, references available from author MS.

- J. van den Berg, "An electrical analogue of the trachea, lungs and tissues." *Acta Physiol. Pharmacol. Neerlandica* **9**: 1-24 (1960).
- H. Cheyne, Estimating glottal voicing source characteristics by measuring and modeling the acceleration of the skin on the neck. Ph.D. dissertation, MIT (1993).
- B. Cranen & L. Boves, "On subglottal formant analysis." *JASA* 81: 734-746 (1987).
- E. Flemming, *Auditory Representations in Phonology*. Ph.D. dissertation, UCLA (1995).
- K. Ishizaka et. al., "Input acoustic impedance measurement of the subglottal system." *JASA* **60**: 190-197 (1976).
- D. Klatt & L. Klatt, "Analysis, synthesis, and perception of voice quality variations among female and male talkers." *JASA* 87: 820-857 (1990).
- J. Lijencrants & B. Lindblom, "Numerical simulations of vowel quality systems: The role of perceptual contrasts." *Language* **48**, 839-862 (1972).
- K.N. Stevens et. al., "A miniature accelerometer for detecting glottal waveforms and nasalization." *J. Speech and Hearing Research* **18**: 594-599 (1975).
- K.N. Stevens, "On the quantal nature of speech." *J. of Phonetics* **17**: 3-46 (1989).