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Introduction

• In front-back diphthongs, observe 
attenuation of F2 peak at the 2nd 
subglottal resonance (AccF2).



• AccF2 ~1350 Hz for males, ~1550 Hz for 
females.

• Front vowel F2 generally above and back 
vowel F2 generally below this frequency.

• What divides front and back vowels is 
uncertain.

• Hypothesis: attenuation is a quantal
(Stevens 1989) phenomenon for [back].

• We model this effect, then test if it is 
quantal in several ways. 



Theory
• Oral and subglottal cavities coupled at the 

glottis, impedances Zf, Zb, Zg .
• What happens as F2 goes through a 

resonant frequency of the subglottal system?



• Subglottal system modeled as open 
tube terminated in lossy compliance.

• Oral cavity modeled as two tubes, 
sufficiently accurate for vowels.



• Wall impedances not included.
•
• Get normal supraglottal poles, 

subglottal pole-zero pair. 
• Pole-zero pair separation depends on 

oral-subglottal coupling (Zg). 
• Using model, can simulate  attenuation 

in /ai/ diphthong (movie on author’s 
laptop):
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Data Collection
• Acoustic, accelerometer data to test 

hypothesis for individual speakers.
• 7 female, 6 male speakers. 
• Native speakers of American English 
• “hVd, say hVd again “, 5x, for all 

vowels.
• Same done for British English, Polish, 

one male speaker each.



Accelerometer Details

• Glued to neck approximately 1 in. 
above the sternal notch. (Stevens et. 
al. 1975)

• Well-tested (Cheyne 1993), non-
invasive.

• Converts the vibration of the skin to 
voltage signal => find subglottal
resonance.



Speaker M1:  acc-F1 = 547 Hz, AccF2 = 1360 Hz

Sample Acc. 
Spectrogram Spectrum of /heed/



Data Analysis-Diphthongs
• Looked at “hoid” and “hide”, in isolation for 3 

male and 3 female speakers.
• Formants and amplitudes recorded by pitch 

period.
• See “jumps” in frequency for some speakers, 

not others, ~100-200 Hz.
• When there is a jump, amplitude dips, 

qualitatively matches the acoustic model.
• When there is no obvious jump, amplitude 

dips around AccF2, suggesting possibility of 
coupling.



Data Showing a frequency jump



Data Analysis-Monophthongs
• Examined front vowels, F2 clearly above 

the measured 2nd sub-glottal resonance for 
all speakers.  

• For back vowels, “hud” F2 is most often 
near Acc-F2, recorded “hub” to see if /d/ is 
pulling it up.

• “hub” F2<AccF2 for all but one speaker.
• Possible errors: accelerometer non-

invasive, oral-subglottal coupling may shift 
measured resonance.



Modeling Jumps



• Can successfully model jumps.
• Model parameters can be adjusted to 

match magnitude, location of jump and 
attenuation.

• Non-robustness of effect predicted:  too 
much or too little coupling gives no jump.

• Speakers’ jump characteristics vary with 
Zb, Zg. 

• Shows that suggested quantal phenomena 
may not occur in practice, can predict via 
modeling.



Monophthong Statistics

• Are all front/back vowels above/below 
AccF2 for individual speakers?

• Subglottal resonance varies between 
utterances.

• ~160 vowels per speaker, found F2 by 
hand for all speakers.

• For each vowel, found mean AccF2 
using a formant tracker.



Diversion: Acc-F2 Statistics
• AccF2 distribution for each individual speaker 

across all vowels is gaussian, χν2~1.
• Variance ~30-60 Hz
• No significant differences in AccF2 for different 

vowels=> AccF2 relatively stable for each 
speaker.

• Mean values:1280-1450 Hz for males, 1380-
1620 for females.

• Agrees with work measuring AccF2 invasively 
(Cranen & Boves 1987, Ishizaka et. al. 1976).



Significance Testing
• Used all monopthongs for American, 

British speakers’ dialects, plus /e/ from /ei/.
• For each speaker: for a given vowel, F2 

error=variance of 10 F2 values (5 
repetitions), the “vowel group.”

• AccF2 error=variance of speaker’s 
distribution.

• Tested whether AccF2-F2 significantly 
(p<.05) positive or negative for each group.



• Back vowel F2<Acc-F2 is “expected,” etc.
• 4 categories: significant & expected, non-

significant & not expected, etc.
• Only groups for certain vowels ever not 

significant & expected: “hodd,” “hoed,” 
hood,” “hawed,” “hud,” “who’d.”  

• Statistics for these vowels across 14 
speakers, 78 groups:

5   (6%)1   (1%)5   (6%)65   (86%)

Significant and 
non-expected

Non-significant 
and non-
expected

Non-significant 
and expected

Significant & 
expected



• Front groups all > AccF2, few back 
groups problematic.

• Central (/er/) group above, below, or 
across AccF2 for different speakers.

• Pattern holds even for speakers 
without jumps.

• Using “hub” instead of “hud”:

4   (5%)1   (1%)2   (3%)65   (91%)

Significant and 
non-expected

Non-significant and 
non-expected

Non-significant 
and expected

Significant & 
expected



• Speakers with jumps have gaps in their F2 data 
for all vowels=> possible vowel spaces are 
constrained by attenuation phenomenon.



Cross-Linguistic Data
• So far so good, but maybe this is a 

pattern of American English vowels.
• Anecdotally, British, Polish 

measurements also follow pattern.
• Can look at how cross-linguistic vowel 

formant data patterns.
• 44 male, 18 female surveys, >3 

speakers.
• 9 back, 7 central, 9 front vowels, 

different qualities (short, long, breathy, 
nasal, laryngealized).





• Relatively sharp front/back division.
• To find where, vary the boundary line 

frequency, plot the error metric.
• Error metric=(# of back vowels>freq) + 

(3*# of front vowels<freq).
• Somewhat arbitrary – front vowels must 

“count” more because back vowels tend 
to front (much more common than 
backing diachronically), more lax vowels 
(less peripheral) are back. 





• Find boundary line ~1395 Hz, agrees 
with subglottal data averaged with 
other studies (1355± 56 Hz).

• 4.7% of front/back vowels on “wrong” 
side.

• 20 central vowels divided 13/7 by line 
at 1395 Hz.

• Strong tendency towards hypothesis, 
same for female data?





• Find boundary line ~1555 Hz, agrees 
with subglottal data averaged with 
other studies (1518±104Hz)

• 9.3% of front/back vowels on “wrong” 
side.

• 8 Central vowels divided 6/2 by line at 
1555 Hz.



• Observe dividing effect for male and 
female data, stronger for males.

• Hard to explain location of boundary line 
otherwise – even if ~halfway across 
quadrangle, not true in Barks.

• Still anecdotal – shaky method, few 
speakers in some studies, bias towards 
Germanic/IE languages, general 
unreliability of formant measurements.

Cross-Linguistic Results



Theoretical Implications
• Some support for central vowels being 

unspecified for [back].
• Another possible reason for why only 3 

horizontal classes, versus 5 vertical ones?
• Dispersion theories of vowel space structure: 

Lijencrants & Lindblom 1972 & passim 
(“Adaptive Dispersion”), Flemming 1995 & 
passim (“Dispersion Theory”) in OT.

• Maximize distance between vowels, minimize 
effort, maximize number of contrasts.



• Both theories take frequency-phoneme map 
for granted.

• AccF2 may help define this map.
• No reference to features in either theory, but 

vowel spaces are formed by change acting 
on features.

• Both theories assume a relatively 
homogeneous space of possible vowels.

• But some speakers have unstable regions 
which repel possible vowels with F2 near 
AccF2.

• Need dispersion attributes+quantal
attributes?



Conclusion
• Possible quantal features can be modeled, 

tested at several levels.
• Hypothesis generally supported at all levels 

=> AccF2 may give front/back distinction.
• Possibly a quantal feature, certainly a 

phonetic tendency.
• Should be enough that it’s generally true –

many aspects of languages are biases, not 
universals.

• Many thanks to Professor Ken Stevens and 
members of the Speech Communication 
Group.

• Work supported by NIH Grant DC00075.
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