Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2006-012 February 28,2006

Interactive Animation of Dynamic Manipulation
Yeuhi Abe and Jovan Popovic

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

Interactive Animation of Dynamic Manipulation

Yeuhi Abe

Jovan Popovié

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Figure 1: Our multi-task control algorithm directs a real-time simulation of a character to accomplish manipulations, such as displacing a box
(top row). Manipulations are compactly described. In the above example, only four Cartesian goal positions are used to describe the motion
of the hands and the box. The missing details are filled in with a secondary posture task that incorporates recorded motion postures from a
similar performance. The control adapts naturally to changes in the environment. As expected, increasing the weight of the box (second row)
produces a slower lift. The performance of the task can also be changed by using a different recorded motion in the posture task (third row).

Abstract

Lifelike animation of manipulation must account for the dynamic
interaction between animated characters, objects, and their envi-
ronment. Failing to do so would ignore the often significant effects
objects have on the motion of the character. For example, lifting a
heavy object would appear identical to lifting a light one. Physi-
cal simulation handles such interaction correctly, with a principled
approach that adapts easily to different circumstances, changing en-
vironments, and unexpected disturbances. Our work shows how to
control lifelike animated characters so that they accomplish manip-
ulation tasks within an interactive physical simulation. Our new
multi-task control algorithm simplifies descriptions of manipula-
tion by supporting prioritized goals in both the joint space of the
character and the task-space of the object. The end result is a ver-
satile algorithm that incorporates realistic force limits and recorded
motion postures to portray lifelike manipulation automatically.

CR Categories: 1.3.7 [Computer Graphics]: Three Dimensional
Graphics and Realism—Animation

Keywords: Motion Control,Physically Based Animation,Robotics

1 Introduction

Animated characters are often required to manipulate objects in
their environment, but lifelike animation of object manipulation is
much easier to describe than to execute. Descriptions are often un-
derdetermined because most tasks can be accomplished in any num-
ber of ways. For example, the description of a reaching task may

specify only hand positions while leaving it up to the imprecise no-
tions of style and preference to determine the motion of the rest of
the body.

Animation of object manipulation also involves complex physi-
cal interactions between characters, objects, and their environment.
Consider, for example, a character steadying one end of a rope
with its hands while counteracting the forces propagated through
the rope from the other end. In interactive applications, kinematic
techniques would generate an unresponsive character and in author-
ing applications, animators would have to create proper responses
by hand. On the other hand, physical simulation could synthesize
such animation procedurally, given proper control for the character.

Our work addresses both the problem of underdetermined motion
descriptions and the problem of handling complex physical interac-
tion by controlling characters manipulating objects within interac-
tive physical simulations. Physical simulation frees animators from
tedious accounting of physical effects and automatically supports
dynamic, unpredictable scenarios in interactive applications. In the
animation of passive natural phenomena (e.g. fluid, cloth, or hair),
physical simulation has all but supplanted the more traditional kine-
matic methods because of the ease with which it handles simple but
numerous micro interactions. In constrast, kinematic methods re-
main the technique of choice for the animation of active characters
because of the many difficulties involved in designing motor control
algorithms capable of generating lifelike motion.

Physically valid object manipulation, in its most general form, chal-
lenges the state-of-the-art of both simulation and control. Object
manipulation requires simulation techniques that can accurately re-
solve numerous frictional contacts and collisions. Simulation must
be robust and accurate because the success of fine manipulation
often depends the arrangement of contact points and subtle applica-
tions of contact forces. Manipulation also requires careful planning

Task Description 1

c
Task Description 2 | S '%
: Model kS £
: AN
External D f
Task Description N [— onstraints "~ & %
Ke} ©
% g
—L F
Prioritized o (@)
Recordedls| Fosture L1 Control L 5
Control

w/ Force Limits

Motion

Figure 2: Algorithm Overview. Our control algorithm combines
multi-priority task descriptions with low-priority posture prefer-
ences inferred from recorded motion to control an interactive phys-
ical simulation of a character manipulating objects.

of strategies that can accomplish requested tasks. The sheer com-
plexity of bodies, hands, and arms demands a new generation of
control algorithms capable of performing such strategies.

Plausible animation of manipulation need not tackle all these chal-
lenges at once. In this work we make the simplifying assumption
that proper task descriptions are provided by the animator (or a
high-level state machine) and that contacts are preserved automati-
cally by clamping constraints that affix points on one object to an-
other. We demonstrate that lifelike animations emerge even with
these simplifying assumptions and we propose a versatile control
framework that supports many of the extensions needed to solve
the general manipulation problem (such as exact control over the
forces exerted on hands and feet).

The primary contribution of this work is a control algorithm that
guides complex characters, with many degrees of freedom, through
lifelike portrayals of common manipulation tasks, within physically
simulated, interactive environments. Our algorithm, illustrated in
Figure 2, simplifies the description of manipulation tasks by acting
on multiple task descriptions simultaneously. The advantage of this
approach is that it allows for a decoupled description of the precise
motion details (e.g., the position of hands needed to grasp or carry
objects) and the secondary motion objectives (e.g., the desired pos-
ture of the character).

The key to our versatile control is a new prioritized formulation that
prevents lower priority posture tasks from interfering with higher
priority manipulation tasks without fully sacrificing the ability to
track lifelike postures accurately. The control algorithm can exploit
accurate tracking in a secondary posture task to generate lifelike
animations by incorporating recorded motion postures. A unique
feature of this approach is that it benefits from motion data even
when it does not obey recorded timings or sequence order. Thus,
new motions can vary significantly from the recorded motion used
to guide the posture. Realistic timing emerges naturally as a con-
sequence of task descriptions that limit the force applied by the
hands. For example, a recorded motion of a person lifting a light
object quickly can be used to guide the posture of a simulated char-
acter lifting a heavy object slowly, even if a significantly different
motion trajectory is used for the object.

2 Background

Compact task descriptions, which command only essential details
such as hand position or applied force, are preferred in both manual
[Lee et al. 1990] and automatic [Koga et al. 1994] task planning be-
cause they suppress irrelevant aspects of task execution. Animation
systems can use inverse kinematics to infer full postures from such
task descriptions, making it easy to reuse tasks in different envi-
ronments or in performances by different (shorter or longer-armed)
characters [Yamane et al. 2004]. Lifelike postures, however, re-
quire that such algorithms either incorporate recorded motion data
or leverage prior results from neurophysiology and other studies
of natural motion [Koga et al. 1994; Rose et al. 2001; Grochow
et al. 2004; Yamane et al. 2004]. Our paper addresses a similar
problem for animation of manipulations with significant dynamics
such as catching, throwing, and other more complicated tasks. We
show how to generate lifelike animation of dynamic manipulation
by incorporating motion data into the control needed to accomplish
tasks.

Animations of dynamic manipulation must account for both the dy-
namics and the kinematics of tasks because static considerations
alone will not generate lifelike motion [Lee et al. 1990]. If dynamic
considerations are ignored, lifting a heavy object will look identi-
cal to lifting a light object despite the fact that one task requires
increased effort and a different motion. Motion learning techniques
resolve this problem with data sets that explore variation in task
performance. [Rose et al. 1998; Mukai and Kuriyama 2005; Kovar
and Gleicher 2004]. This is especially effective when tasks can be
restricted to small, well sampled manipulations such as lifting and
reaching, but generalization to all types of manipulation requires
solutions to remarkably difficult machine-learning problems [Duda
et al. 2000]. To extend the range of a limited data set, current in-
teractive applications rely on motion-editing tools that approximate
dynamics with temporal smoothness [Bruderlin and Williams 1995;
Witkin and Popovi¢ 1995; Gleicher 1997; Choi and Ko 2000] be-
cause dynamically consistent editing tools have not been designed
for interactive use [Popovi¢ and Witkin 1999; Liu and Popovié
2002; Sulejmanpasi¢ and Popovi¢ 2005]. Our work shows how to
account for dynamics in interactive animations of object manipula-
tion within a physical simulation.

In interactive physical simulations, a simple replay of a precom-
puted task execution ignores complex physical interactions. Ani-
mations appear artificial because task execution proceeds blindly,
ignoring the effects of other objects in the environment. Even if
motions are preplanned to account for the weight of manipulated
objects, playback is not affected by collisions or other dynamic
interaction with the environment. The executions of such pre-
planned trajectories can be made reactive through the use of joint-
space control that tracks computed trajectories [Zordan and Hod-
gins 2002; Yin et al. 2003]. Although joint-space control has also
been successful in animation of lifelike locomotion and other ac-
tivities [van de Panne et al. 1990; Raibert and Hodgins 1991; Hod-
gins et al. 1995; Grzeszczuk and Terzopoulos 1995; Laszlo et al.
1996; Faloutsos et al. 2001], many manipulation tasks are easier to
describe in Cartesian coordinates. Our control algorithm eases the
animation of dynamic manipulation by supporting task descriptions
in both Cartesian and joint coordinates.

Cartesian control, also known as operational space control, lin-
earizes dynamics of the operational point to enable direct descrip-
tion of manipulation tasks [Khatib 1987]. In addition, the opera-
tional space formulation simplifies control of complex characters
with many degrees of freedom by decoupling the control needed
to accomplish a task from the control of task-redundant degrees of
freedom. Our control algorithm uses a similar approach to generate

lifelike animations with precise control of task-redundant degrees
of freedom.

Precise control requires a carefully formulated decoupling that ac-
counts for the dynamics in the task-redundant degrees of freedom.
Our approach is inspired by the recently proposed task-consistent
decoupling of unconstrained dynamics for branching joint struc-
tures [Khatib et al. 2004a]. We reformulate this approach to sim-
plify the implementation and extend it to decouple both uncon-
strained and constrained dynamics. These extensions are partic-
ularly important for animation of dynamic manipulation because
constraints (or closed-loop joint structures) emerge whenever a
character uses both hands or stands with both feet on the ground.
Our simplified formulation is also a key to precise control that is
required for lifelike animation. Unlike the alternative constrained
formulation [Sapio and Khatib 2005], our technique enables both
the decoupling of constrained dynamics and the precise control of
task-redundant degrees of freedom. This allows us to control pos-
ture (or style of motion) precisely, using the available motion data.

Solutions to more general manipulation problems will require com-
prehensive efforts that incorporate current models of hands and their
behavior [Albrecht et al. 2003; ElKoura and Singh 2003; Pollard
and Zordan 2005]; planning strategies for manipulation and grasp-
ing [Yamane et al. 2004; Li and Pollard 2005]; and improved mod-
els of natural posture [Grochow et al. 2004; Mukai and Kuriyama
2005]. One contribution of our work is to show how these ap-
proaches could be unified to control whole-body motions in inter-
active animations of dynamic manipulation.

3 Control Algorithm

Our control algorithm computes the joint torques that cause ani-
mated characters to accomplish desired manipulations. The algo-
rithm can be used with physical simulation to author new motions
or to execute flexible motion control strategies interactively. It is
particularly suitable for these purposes because it supports compact
task descriptions and the prioritization of conflicting tasks, both of
which can simplify the way that motion is commanded. For exam-
ple, the control algorithm can favor natural postures at a low prior-
ity level without interfering with the primary manipulation task at a
high priority level.

In this section, we derive the basic control algorithm for uncon-
strained, open-loop structures before extending it to the most prac-
tical case: constrained dynamics with unactuated degrees of free-
dom. The end result is a procedure that transforms complex non-
linear dynamics into simple second-order linear systems whose in-
tuitive control is explained in Section 4.

3.1 Unconstrained Dynamics

The dynamics of animated characters is modeled as a set of rigid
body limbs constrained by a set of joints that link the limbs into a
core body structure. When this structure forms a tree graph, also
called an open-loop configuration, the pose of the character can
be described by a set of independent joint variables (see Figure
3). These independent coordinates q allow for the dynamics of the
character to be expressed in a standard numerical form:

7= M(q)q + h(q, Q), M

where M is the joint-space inertia matrix and h is a nonlinear func-
tion of all acceleration-independent terms that computes the grav-
itational, centrifugal and Coriolis forces. Physical simulations can

Open-Loop Configuration

Closed-Loop Configuration

Unactuated Root

%

External Constraints
@ (o OW N

Figure 3: In the unconstrained, open-loop configuration (a) the
shape is fully described by independent coordinates ¢, whereas in
the constrained, closed-loop configuration (b) no set of independent
coordinates can describe the shape, so constraints must be handled
in the dynamics.

evaluate and integrate these equations with one of several efficient
algorithms [Featherstone and Orin 2000], but to animate active
characters a control algorithm is still required to supply the joint
torques 7 needed to accomplish desired tasks.

3.1.1 Exact Linearization

Inverse dynamics simplifies design of control algorithms by com-
pensating for complex nonlinear dynamics. The key idea is to
transform the nonlinear equations of motion into a linear, second-
order system. For example, by choosing joint torques of the form
7 = Mrt* + h, the nonlinear Equation (1) is transformed into a set
of linear, uncoupled second-order equations, § = 7*. This transfor-
mation drastically simplifies systematic computation of command
torques 7° needed to accomplish joint-space tasks such as track-
ing procedurally generated trajectories [Ko and Badler 1996] or
recorded motion data [Yin et al. 2003]. Manipulation tasks, how-
ever, are not easily described in joint space.

Alternatively, Cartesian coordinates, relative to the needed body
part, can be used to intuitively describe manipulation tasks. It
is possible to support such descriptions using inverse kinematics,
but this approach ignores the dynamics of the task. Instead, our
approach applies inverse dynamics in the Cartesian space to di-
rectly and intuitively control the task-space dynamics of manipu-
lation tasks. We refer to this as task-space control. Given a differ-
entiable expression x,(q) for the position (or orientation) of some
body part, we can compute its velocity X, = J;q and its acceleration
X =Jig+ qu as a function of the Jacobian J, = Dgx,. Combining
the expression for task acceleration with Equation (1) allows us to
express the dynamics in the Cartesian task space:

Q=% +Qh-Jq, 2)

where Q; = J,M™! can be thought of as the pseudoinverse of a
task-space inertia matrix. !

As before, we compensate for nonlinearities by using inverse dy-
namics to transform task-space dynamics into a set of linear uncou-

I'Standard robotics literature assumes a root joint placed at the base of a
robot (i.e. foot of the character). By the virtual work principle, this place-
ment implies a specific form for joint torques 7 = J le and a different pseu-
doinverse of the task-space inertia matrix 1 = J; M1y IT We do not follow
this convention here as it is simpler to implement animated characters with
aroot joint at the same location (i.e. the pelvis of the character), regardless
of the supporting leg.

pled equations. Unlike the joint-space control, however, the sys-
tems of equations in task-space control is underdetermined requir-
ing that we choose one of many possible torques. For example, the
well known operational space formulation uses the pseudoinverse?
that minimizes the instantaneous kinetic energy [Khatib 1987]. In
contrast, our strategy does not depend upon a specific pseudoin-
verse but, instead, computes a complement joint torque T from a
secondary posture task that incorporate motion data into the control
of dynamic manipulations:

T=Qi(f; + Qh-J,g) + Pi7, 3

where QF is any generalized pseudoinverse of &, and P, = (1 -
Q1 Q) is the projection matrix onto the null space of €. Apply-
ing this joint torque to Equation (2), transforms the nonlinear task
dynamics into a simple, second-order linear system, X = f;, which
eases description and control of manipulation tasks. The projection
matrix ensures that the complement torque does not interfere with
the primary manipulation task. Multi-task control, as described
next, directs the remaining degrees of freedom to incorporate other
tasks that control the posture of the character, for example.

3.1.2 Multi-Task Control

Multi-task control compensates for the nonlinear dynamics in both
high priority and low priority tasks, allowing for precise and intu-
itive control of manipulations and the style with which they are per-
formed. We again use inverse dynamics to linearize the dynamics
of secondary tasks, but we cannot use Equations (1-3) because sec-
ondary tasks are affected by the joint torque 7; = Q7 (f} +Qh-J,q)
needed to accomplish the primary manipulation task and, also, by
the projection matrix P; that prevents secondary-task torque T from
interfering with the higher priority tasks:

71+ P 7=Mq+h. “4)

Depending on the type of secondary task, we can compensate for
nonlinear dynamics by applying inverse dynamics in joint space or
in task-space. If the task is to track joint values in the motion data,
the joint torques are easiest to compute from command torque 75 in
joint coordinates:

Pt =Mt +h-1,. (5)

Whereas, if the task is more easily expressed in terms of Cartesian
coordinates X»(q), the joint torques are computed from the Carte-
sian command vector f3:

QP 7 = £ + Qoh - Q1) - Jog, 6)

where J, = Dgx, and Q, = JoM~!, analogous to expressions in the
primary-task control.

The derivation of both equations is analogous to the exact lineariza-
tion of primary-task dynamics. It also clarifies that the joint-space
control is a special case of task-space control, as seen by using the
identity matrix for the task Jacobian in Equation (6). In both formu-
lations, the singular projection matrix restricts the computed torque
T to the set that does not interfere with the control of the primary
task. In our implementation, we compute such torques with the
singularity-robust pseudoinverse [Nakamura and Hanafusa 1986;
Maciejewski 1990], which inverts the singular value decomposition
of P, (or Q,P,) after eliminating singular vectors with small singu-
lar values (e.g. less than 0.001 threshold in our implementation).
This prevents large torques in singular directions that can result in
an unstable simulation.

ot =M gM !

Recursive application of the same idea extends this control algo-
rithm to multiple tasks. For example, additional tasks might limit
the range of joint variables [Liégeois 1977] or maintain balance
[Zordan and Hodgins 2002]. Given a set of Cartesian coordi-
nates {x;(q),...,X,(q)} and a set of associated command vectors
{f;,....f,}, the multi-task control computes the joint torque 7; that
executes the i-th task at a lower priority than the previous (i — 1)
tasks:

7= Tio + QP E + Qh - Q7 - Jiq).
7 = Q] + Qh-J,9),

where P; = (1 -(Q,Pi-)*(,P;_;)) and P, = (1 -Q7Q,). This iter-
ative algorithm naturally resolves task conflicts by executing lower
priority tasks with torques that do not interfere with the higher pri-
ority tasks.

Our formulation of multi-task control improves upon the recent
generalization of operational space control in robotics literature
[Khatib et al. 2004a; Sentis and Khatib 2004], which inspired much
of our work. The fundamental difference is rooted in the formu-
lation of dynamics for secondary tasks. In contrast to the original
formulation, which requires differentiation of the quantity called the
task-consistent posture Jacobian Jo; = J,P,, our formulation differ-
entiates only the regular posture Jacobian J», as seen by comparing
the second term of Equation (20) in the original formulation [Khatib
et al. 2004a] and the last term of Equation (6) in our formulation.
This seemingly small difference has a profound impact on the ease
of implementation and practical application of multi-task control
to animation of dynamic manipulation. Unlike the expression Jﬁuq
with the task-consistent posture Jacobian, our expression J,¢ can be
computed simply and efficiently® without differentiating the com-
plex expression for the projection matrix. The difference between
the approaches is more pronounced for control of constrained dy-
namics because the analytic expression for the projection matrix,
Py, becomes even more complex, as will be shown next.

3.2 Constrained Dynamics

Constrained dynamics emerge whenever a character applies more
than a single limb to any one object. For example, standing with
both feet on the ground or lifting an object with both hands estab-
lishes contact constraints that relate joint variables of one limb to
those of the other. These dependencies make it impossible to de-
scribe characters with an independent set of joint variables, as was
assumed throughout the previous subsection. Instead, we reformu-
late our control algorithm to use a set of dependent joint variables
along with a set of constraint torques 7. that enforce relationships
imposed by contact constraints:

T+ 7.=M(+h, @)

where all expressions retain the meaning from the standard formu-
lation of unconstrained dynamics. The derivation of our control al-
gorithm proceeds by computing the constraint torques prior to exact
linearization of constrained dynamics.

3For example, the value of J¢ can be computed with a small modification
to the standard iterative formula for computing accelerations a; of each link
in a non-branching jointed structure. The iterative formula composes ac-
celerations of each parent link a,; with the relative acceleration expressed
in the motion subspace s; of the joint: a; = a,;) + $;q; + s;{; [Featherstone
and Orin 2000]. Comparison with the alternative expression for acceleration
a = J§ +Jq reveals that by eliminating one term s;{;—the only term depen-
dent on joint accelerations ¢;—from the iterative acceleration formula, we
obtain an iterative formula for computing the value of Jq.

The constraint torques are determined by a set of algebraic equa-
tions ¢(q) = 0, which may, for example, model non-slipping con-
tact by attaching limbs to objects in the environment. The entire set
of constraints determines the structure of the constraint torques by
prescribing the valid subspace 7. = LT as a function of the con-
straint Jacobian matrix L = Dy¢. This expression allows for com-
putation of the constraint torques by solving for the coefficients A
in the subspace [Featherstone and Orin 2000]:

LM'L'A=LM'h-Lq-LM '~ (8)

Given the expression for constraint torques, the derivation of our
control algorithm proceeds as before by applying inverse dynamics
to compensate for nonlinear dynamics in joint-space or task-space.
For example, the control torques for the primary task x,(q) are com-
puted from the Cartesian command vector f} using the following
relationship:

Qor=f+Qh+QI(Lqg-LM'h)-Jq)

where I' = LT(LM'L7)™! and ® = (1 - TLM™'). This expres-
sion highlights the practical benefits of our control formulation (cf.
Section 3.1.2). Instead of differentiating the new projection matrix
(1 - (Q,®)*"(Q; D)) as proposed in prior work [Khatib et al. 2004a;
Sentis and Khatib 2004], our multi-task control is just as easily ap-
plied to both unconstrained and constrained dynamics.

3.3 Unactuated Joints

The joint structure of many animated characters includes passive,
unactuated joints. The most common example is the six degree of
freedom root joint that determines the global translation and ori-
entation of the character. Unlike an active joint that propels limbs
with its torques, the root joint does not apply torques or forces to
propel the character directly: instead the global motion arises as a
consequence of interaction with the ground and the environment.

We adjust our control algorithm by defining a selection matrix S
that extracts actuated joints q, from the full set of joint variables
q. = Sq. For example, the (n — 6) X n matrix § = [0 | 1,_¢] ex-
tracts all but the first six joint variables. Its transpose maps the joint
torques into a vector that agrees with the dimension of joint vari-
ables, allowing us to rewrite constrained dynamics for characters
with unactuated joints:

S't+1.=Mq+h. (10)

The remaining steps in the derivation of our control algorithm are
analogous to Section 3.2.

4 Task Description

Compact descriptions, which command only essential details such
as hand position or applied force, accelerate animation of manipu-
lation tasks and allow for easy, automated motion specification in
interactive applications. Instead of setting and readjusting many
keyframes, animators can describe just the required task, adjust a
few intuitive parameters, and run a simulation to generate a new
motion. Lifelike animations emerge automatically, much like in
passive physical simulations, and adapt immediately to changes in
the environment (e.g., different object motion or weight) or limita-
tions of the character (e.g., locked joints or muscle strength).

Our control algorithm supports compact task descriptions by de-
coupling complex non-linear dynamics to allow for simplified mo-
tion commands in both joint-space and Cartesian task-space. As in
keyframe animation systems, joint-space coordinates ease the de-
scription of tasks that require specific joint configurations such as
poses from recorded motion data and Cartesian task-space coor-
dinates allow for direct control of body parts needed to manipu-
late objects. The exact linearization of dynamics explained in the
last section transforms the nonlinear problem into a simple second-
order linear system. In this section we rely on this reduction to
systematize descriptions of common manipulation tasks.

4.1 Manipulation

Our descriptions of manipulation tasks rely on two fundamental
control primitives: stabilization, which directs characters towards
prescribed values such as desired object locations; and tracking,
which follows prescribed trajectories, such as those that describe
the desired motion of manipulated objects. Both stabilization and
tracking provide a way of choosing the command vector f* (c.f.
Section 3) that will accomplish various manipulation goals. Many
other choices of the f* are possible, but we have deliberately used
simple choices to highlight the functionality of our control formula-
tion, rather than confuse the details with complex motion planning
strategies.

Since spatial configurations of manipulated objects are described
relative to the global Cartesian coordinate frame, their manipula-
tion is easiest to describe in Cartesian coordinates. We express ma-
nipulation tasks in Cartesian (or task-space) coordinates by using
forward kinematics to compute the position (or orientation), x(q),
of relevant body parts. If a character needs to reach for an object
or to carry it to another location, we use stabilization to direct its
hands to their desired location x,. Stabilization creates a motion
that progressively eliminates the error between the current and de-
sired configurations, x(q) — X, by utilizing the command vector

£ = k(xs — x(q)) — 2 VAX(q). (11)

Substituting this command vector into the second-order linear sys-
tem, described in the last section, reveals a critically damped system
whose speed of convergence is controlled by the gain coefficient k.
Animators can increase the gain to create stiffer motions that ac-
complish tasks quickly or decrease it to create more relaxed mo-
tions. In our animations, we selected gains manually to showcase
relaxed, more reactive animations, but in the future gains could also
be set automatically according to measured human responses.

Tracking is used when more precise execution is required. For ex-
ample, a character tossing an object must release the object at a
prescribed location with a precise velocity. In such a case, we use
tracking to direct the character’s hands along the trajectory x,(f)
required to generate the required toss velocity. As in stabilization,
tracking eliminates the error between the current and desired trajec-
tories by computing the command force f* needed for a critically
damped system:

£ = k(x () — X(@) + 2 Vk(X, (1) — X(qQ)) + X;. (12)

4.2 Force Limits

Force limits restrict the magnitude of applied manipulation forces.
This ensures that commands are not accomplished with unrealis-
tic joint torques. For example, a heavy object is lifted slower than
a light object because of the limits imposed on the application of

Figure 4: Task-space forces guide the hand toward desired position
Py using stabilization control (a), or move the hand along a specified
trajectory t;, optionally grasping an object (b). For every force f in
task-space, there is an equivalent force 7 in joint-space that will
cause the same motion of the hand and visa-versa.

the upward force. In nature, force limits are a function of muscle
strength, but, in animation, force limits are more intuitively speci-
fied in the Cartesian task space. Our control algorithm can be ex-
tended to impose such limits by thresholding the task-space forces
needed to perform each command.

Given a command vector f*, we can compute the required task-
space force f; using the expression for task-space dynamics in
Equation (2):

f=0MI) ¢ +Qh-Jq. (13)

The task-space force f should be thought of as the external force that
must act, in the absence of internal joint torques, to create the mo-
tion commanded by the vector f* (Figure 4). The task-space force
is measured in the usual units of force and its maximum magnitude
can be adjusted intuitively to control the strength of manipulations.
When the task-space force exceeds a preset value, its thresholded
value f can be used in place of the original command vector. If
thresholding occurs, the Equation (13) is inverted to solve for the
command vector f* that corresponds to the thresholded task-space
force f. In our experiments, these modified command vectors gen-
erate animations with manipulation compromises similar to those
observed in nature.

4.3 Posture

Most manipulation tasks can be accomplished in a number of ways,
particularly by complex characters with many degrees of freedom.
Although task descriptions command the motion of hands and other
body parts, redundancies in body construction allow for variations
that are evident in natural motion. The multi-level control formula-
tion allows for systematic description of such variation with posture
tasks. As a lower priority task, posture control parameterizes varia-
tions without interfering with higher priority manipulation tasks.

Variations depend on many factors including strength, personal
preferences, and style. We model these variations by incorporat-
ing motion data into a posture task that favors recorded poses. This
is implemented as a stabilization task in joint-space, where mo-
mentary goal configurations are computed with a nearest-neighbor
search through a couple seconds of similar motion capture data.
The similarity between poses is computed using the horizontal
translation- and vertical rotation-invariant distance between syn-
thetic markers affixed to each body part, as first proposed by Kovar
and colleagues [Kovar et al. 2002].

Other descriptions of the posture task are also possible. They
could be derived from physiological measurements of muscular ef-
fort [Khatib et al. 2004b; Sapio et al. 2005] or learned automati-
cally from recorded motion data [Grochow et al. 2004; Mukai and
Kuriyama 2005]. We deliberately choose a simple posture model

instead of the more powerful and involved alternatives. In doing so
we simplify evaluation of our control formulation: the lifelike mo-
tions seen in our examples are the result of proper control, not of a
carefully learned model. Nevertheless, motion data is essential for
resolving task redundancies and our work shows how to incorporate
this knowledge into controls for physical simulation of manipula-
tion tasks.

5 Results

The performance of our control algorithm was evaluated within
the Open Dynamics Engine (www.ode.org), an open source, high
performance library for simulating rigid multibody dynamics. In
each experiment, a compact description commands the task for a
complex character with 44 degrees of freedom. The control algo-
rithm incorporates postures from supplied motion data to complete
the missing details and directs the character in accomplishing each
tasks. All collisions and contacts are detected and resolved in the
simulation. In particular, we approximate grasping and ground con-
tacts with clamping constraints that affix points on one body to the
other. All simulations, including the control computation, run at
interactive rates on a 2.8 GHz Pentium 4, with 60 or more updates
per second, depending on the task complexity. All animations are
included in the accompanying live video.

Chain Interaction. The chain interaction simulation is a simple
demonstration of the immediate benefits gained by incorporating
physical effects into animation of manipulation tasks. We command
the character to steady its hands while it holds on to a serial linkage
approximating a chain. The command uses the task-space stabiliza-
tion to maintain a fixed hand motion as the other end of the chain
is tugged and pulled by forces controlled interactively by a mouse-
based interface. The secondary posture task keeps the character
close to the initial posture. The strength with which the character
resists the motion of the chain can be adjusted easily with control
of the single gain parameter of the task-space stabilization com-
mand. Unlike with the kinematic methods, the character’s entire
body reacts to the motion of the chain. In particular, the motion of
the legs, while subtle, contributes to a convincing portrayal of this
manipulation task.

Box Interaction. The box interaction simulation demonstrates
the immediate contribution of force limits to lifelike performances
of manipulation tasks. The right hand is replaced with a heavy pen-
dulum mass whose desired position is controlled interactively with
a mouse-based interface. The dynamics of the pendulum mass are
modeled as that of a body part connected to the arm with an unac-
tuated joint. Stabilization control in task-space is used to bring the
arm to the desired position. A secondary posture control references
motion capture of a similar motion. This causes the character’s pos-
ture to vary naturally with the action of the primary control task; the
character crouches when the hand is low, stands when the hand is
high, and appears balanced even though no explicit balance con-
trol is utilized. When the momentum of the pendulum is large, a
force limit prevents the character from achieving the desired arm
position. However, when the pendulum slows, the force required to
achieve the desired position falls below the specified limit and the
character can achieve the desired position flawlessly. Note that such
precise control is not possible without accounting for the dynamics
of the object in the exact linearization of the task-space dynam-
ics. On the other hand, if realistic force limits are not imposed, the
character will always achieve desired positions perfectly without
realistically reacting to the momentum of the pendulum mass. Both

force limits and correct dynamics are required to produce believable
manipulation.

Lift. The box lifting simulation demonstrates our algorithm auto-
matically adapting to the weight of objects and incorporating mo-
tion data. The high priority control changes in stages. While reach-
ing for the box, stabilization control is used to bring the hands
to their holding position. Once the hands are in place they are
clamped to the box using the position constraint of the rigid body
simulation. This forms another closed loop about the arms in addi-
tion to the one about the feet, both of which we explicitly account
for with our control algorithm. The inertial properties of the box
are know, but force limits prevent the character from lifting heavy
boxes quickly or even at all. A secondary posture task favors pos-
tures from recorded motion data of a similar lifting motion. When
we use different recorded data, the performance of the same task
description adapts automatically. Instead of lifting with the back
the character lifts the object with the knees. This confirms that our
multi-task control decouples primary and secondary tasks and ac-
complishes each to the greatest extent possible.

Catch. 1In a ball catching simulation, the character catches balls
of different weights, sizes and velocities. First, stabilization con-
trol is used to position the character’s hand approximately where
the ball should be caught. Then, when the ball is close to the hand,
tracking control is used to match the hand velocity to that of the ball.
If contact is detected, the ball is clamped to the hand with a simula-
tion constraint. Finally, stabilization is used to bring the ball back
to where the catch was made. The arm configuration varies natu-
rally with the hand position because the posture task incorporates a
short 10-second sequence of arm placement in various catch loca-
tions. As the weight of the ball increases, the character reacts nat-
urally. Again, force limits prevent the use of extreme joint torques
that might be capable of stabilizing the arm around the catch loca-
tion regardless of the object weight. Instead, the arm motion slows
down the ball before returning to its commanded location.

Catch and Toss. The catch and toss simulation demonstrate a
performance of a more complex manipulation task. The character
catches an object before tossing it along the prescribed trajectory.
The simulation requires three inputs: the plane in which the char-
acter catches the object, the position and velocity at the point of re-
lease, and a motion capture sequence of a similar catch-and-throw
motion. The commands in this animation are similar to those in
the lifting and catching animations except for the trajectory track-
ing used to toss the object. The trajectory is a Hermite curve that is
fully specified by the initial and final positions and velocities. The
parameterization of the curve was choosen for simplicity and looks
reasonable for this motion, but it should be noted that the realism of
the resulting motion does depend upon the tracking trajectory and,
thus, other choice would generate less believable motion. The con-
troller is robust to changes in the velocity and angle of the caught
object, the weight, size and shape of the object, and the specified
direction and velocity that the object should be thrown. All rea-
sonable settings of these parameters create a plausible motion with
different, nonlinear effects. For instance, if the weight of the object
is large, the character will not be able to control the object as accu-
rately, causing collisions between the object and the character, but
still tracking the trajectory as closely as possible.

Multi-Task Tracking. Inademonstration similar to the lifting ex-
ample, we include a medium priority task (in-between the primary
and posture tasks) that commands the pelvis center along a circular

Precise Tracking of Secondary Task

4.6 zo=> =z
s = =T
% § 4. _
o = \
o 8
E < 4 N
c [o]
S g 4 \ ’
= 5 -
2 > 38 -7
50 100 150 200 250 300 50 100 150 200 250 300
Time (60 Hz) Time (60 Hz)
— = Previous Control Desired Trajectory =~ ====- Our Control

Figure 5: This graph demonstrates the capacity of our multi-task
control to accomplish multiple tasks. Here we compare the tracking
accuracy in the secondary task that commands a point on the pelvis
along a circular trajectory. The control of the primary task, which
steadies the object held by two hands, affects the tracking of this
secondary tasks. If these effects are ignored, as in the previous
task-space formulation for constrained dynamics [Sapio and Khatib
2005], the tracking suffers. Our formulation takes these effects into
account to enable superior tracking.

trajectory. The control algorithm tracks all three tasks while re-
solving their conflicts in a prioritized fashion. This demonstrates
how our multi-task formulation accounts for the effects of higher-
priority tasks to allow for precise control of lower-priority tasks,
even with low tracking gains. Ultimately, this is what enables ac-
curate tracking of recorded postures, which greatly contributes to
the realism of our animations. Figure 5 compares our task-space
control and a previous formulation for constrained dynamics [Sa-
pio and Khatib 2005]. As the figure shows, our control algorithm
converges quickly to desired trajectories even when the previous
formulation diverges. These results agree with similar experiments
conducted for unconstrained dynamics [Khatib et al. 2004a]. Both
these experiments and ours confirm that accurate control of lower-
priority tasks must account for the effects of higher-priority tasks.
In some of our experiments, the error incurred otherwise lead to
unstable behavior.

6 Conclusion

Our control algorithm directs complex characters in realistic per-
formances of dynamic manipulation tasks. The multi-task formula-
tion supports intuitive task descriptions in joint space or task space.
The tasks are executed at multiple priority levels to ensure that
lower-priority tasks do not interfere with higher priority manipu-
lation goals. The accurate tracking of lower-priority tasks capital-
izes on recorded motion postures to generate lifelike motions from
compact task descriptions with many missing details. The control
adapts easily to dynamic disturbances and different environments
that require significant deviation from motion data.

The control algorithm cannot guarantee successful performance of
all manipulation tasks. Temporary underactuation (loss of con-
trol over some degrees of freedom) will impede manipulation even
when it could be accomplished with the remaining degrees of free-
dom. For example, although a character could jump to reach an
object, our control algorithm cannot look ahead to pre-plan the
torques needed for such a jump. Although a general solution to
underactuated control problems for complex characters is still an
open problem, offline optimization has enjoyed some success par-
ticularly after simplifying equations of motion [Liu and Popovi¢

2002; Safonova et al. 2004]. Underactuated control is less critical
in authoring applications where animators could be relied upon to
provide feasible task descriptions.

The choice of Cartesian (or task-space) control eases the descrip-
tion of many manipulation tasks but it also introduces the possi-
bility of artificial algorithmic underactuation. Whenever a jointed
structure approaches a singular configuration, the task-space con-
trol temporarily loses actuation over some degrees of freedom. This
underactuation is artificial because it is strictly a function of the
chosen joint-angle parameterization; it never appears in the joint
space. In authoring applications, these situations could be avoided
with intelligent task descriptions, but a more general solution would
impose joint limits in the highest priority task to avoid kinematic
singularities [Liégeois 1977]. In our work, the posture task servers
as a partial substitute to joint limits by keeping the character out
of unnatural configurations, but this approach would ultimately fail
for extreme postures.

The control algorithm assumes that all contacts are maintained re-
gardless of the applied joint torques. This control strategy is suc-
cessful for the simulation of some tasks but the control algorithm
will need to maintain these contacts explicitly before it can gener-
ate animations with realistic locomotion or balance. This extension
will likely fit into our control formulation naturally because addi-
tional task commands can maintain contact constraints by ensuring
that contact forces remain within the required friction cones [Mur-
ray et al. 1994].

The control of contact forces brings out the more general need to
systematize task descriptions beyond the use of stabilization and
tracking, the two command primitives we relied upon in all of our
experiments. For example, in our throwing experiments, the hand
motions were directed to follow prescribed trajectories even though
natural throwing motions are rarely so precise. New commands
should also support alternative, less-detailed task descriptions that
incorporate motion data to fill in missing details automatically. Our
use of recorded motion postures has only enticed a more systematic
inclusion of general motion invariants. For example, low-priority
posture tasks could incorporate recorded velocities, accelerations,
and forces to generate even better performances of dynamic manip-
ulation tasks.

References

ALBRECHT, 1., HABER, J., AND SEDEL, H.-P. 2003. Construction and
animation of anatomically based human hand models. In Sym-
posium on Computer Animation (SCA), 98—109.

BRUDERLIN, A., AND WiLLiaMs, L. 1995. Motion signal processing.
In Computer Graphics (Proceedings of SIGGRAPH 95), ACM
SIGGRAPH, Annual Conference Series, 97-104.

CHor, K.-J., anp Ko, H.-S. 2000. Online motion retargetting. Jour-
nal of Visualization and Computer Animation 11,5 (Dec.), 223~
235.

Dupa, R. O., Harr, P. E., anp STork, D. G. 2000. Pattern Classifi-
cation, 2nd ed. John Wiley & Sons, Inc., New York.

ELKoura, G., aNp SiNH, K. 2003. Handrix: animating the human
hand. In Symposium on Computer Animation (SCA), 110-119.

Favourtsos, P., van e PANNE, M., AnD TeErzOPOULOS, D. 2001. Com-
posable controllers for physics-based character animation. In
Proceedings of ACM SIGGRAPH 2001, Annual Conference Se-
ries, 251-260.

FeATHERSTONE, R., aAND ORIN, D. E. 2000. Robot dynamics: Equa-
tions and algorithms. In International Conference on Robotics
and Automation (ICRA), 826-834.

GLEICHER, M. 1997. Motion editing with spacetime constraints. In
1997 Symposium on Interactive 3D Graphics, 139-148.

GrocHow, K., MARTIN, S. L., HERTZMANN, A., AND PopPovié, Z. 2004.
Style-based inverse kinematics. ACM Transactions on Graphics
23,3 (Aug.), 522-531.

Grzeszczuk, R., anp Terzopouros, D. 1995. Automated learning
of muscle-actuated locomotion through control abstraction. In
Proceedings of SIGGRAPH 95, Annual Conference Series, 63—
70.

Hobains, J. K., Wooten, W. L., Brogan, D. C., ano O’Brien, J. F.
1995. Animating human athletics. In Proceedings of ACM SIG-
GRAPH 95, Annual Conference Series, 71-78.

Knaris, O., SEnTis, L., Park, J.-H., AND WARREN, J. 2004. Whole
body dynamic behavior and control of human-like robots. Inter-
national Journal of Humanoid Robotics 1, 1,29-43.

Kuatig, O., WaArreN, J., Sario, V. D., ano Senmis, L. 2004.
Human-Like Motion From Physiologically-Based Potential En-
ergies, vol. XII of On Advances in Robot Kinematics. Springer,
New York, ch. Humanoids and Biomedical Applications.

Kuats, O. 1987. A unified approach to motion and force control
of robot manipulators: the operational space formulation. Inter-
national Journal of Robotics Research 3, 1, 43-53.

Ko, H.-S., anp BabLer, N. I. 1996. Animating human locomotion
with inverse dynamics. IEEE Computer Graphics and Applica-
tions 16, 2, 50-59.

Koaa, Y., Konpo, K., KUFFNER, J., AND LatoMBE, J.-C. 1994. Plan-
ning motions with intentions. In Proceedings of SIGGRAPH
94, Computer Graphics Proceedings, Annual Conference Series,
395-408.

Kovar, L., aNp GLEICHER, M. 2004. Automated extraction and pa-
rameterization of motions in large data sets. ACM Transactions
on Graphics 23, 3 (Aug.), 559-568. In Press.

Kovar, L., GLEICHER, M., AND PigHIN, F. 2002. Motion graphs. ACM
Transactions on Graphics 21, 3 (July), 473-482.

LaszLo, J. F., vaN DE PANNE, M., anDp Fiume, E. L. 1996. Limit cy-
cle control and its application to the animation of balancing and
walking. In Proceedings of SIGGRAPH 96, Annual Conference
Series, 155-162.

LEE, P, WEL S., ZHao, J., AND BapLER, N. I. 1990. Strength guided
motion. In Computer Graphics (Proceedings of SSIGGRAPH 90),
vol. 24, 253-262.

L1, Y., anp Porrarp, N. S. 2005. A shape matching algorithm for
synthesizing humanlike enveloping grasps. In IEEE/RAS Inter-
national Conference on Humanoid Robots, 442—449.

Lifceors, A. 1977. Automatic supervisor control of the configura-
tion and behavior of multibody mechanisms. IEEE Transactions
on Systems, Man, and Cybernetics 7, 12, 868-871.

L, C. K., anp Popovi¢, Z. 2002. Synthesis of complex dynamic
character motion from simple animations. ACM Transactions on
Graphics 21, 3 (July), 408—416.

Macieiewski, A. A. 1990. Dealing with the ill-conditioned equa-
tions of motion for articulated figures. IEEE Computer Graphics
and Applications 10, 3, 63-71.

Mukal, T., anp Kurivama, S. 2005. Geostatistical motion interpola-
tion. ACM Transactions on Graphics 24, 3 (Aug.), 1062—-1070.

Murray, R. M., Li, Z., aNp SAstrY, S. S. 1994. A Mathematical
Introduction to Robotic Manipulation. CRC Press, Boca Raton.

NAKAMURA, Y., AND HaNAFUsA, H. 1986. Inverse kinematics solu-
tions with singularity robustness for robot manipulator control.
Journal of Dynamic Systems, Measurement, and Control 108,
163-171.

PoLrarD, N. S., AND ZorpaAN, V. B. 2005. Physically based grasping
control from example. In Symposium on Computer Animation
(SCA), 311-318.

Porovié, Z., ano WiTkiN, A. P. 1999. Physically based motion trans-
formation. In Computer Graphics (Proceedings of SIGGRAPH
99), ACM SIGGRAPH, Annual Conference Series, 11-20.

RaiBert, M. H., anp Hobains, J. K. 1991. Animation of dy-
namic legged locomotion. In Computer Graphics (Proceedings
of SIGGRAPH 91), ACM SIGGRAPH, Annual Conference Se-
ries, 349-358.

Rosk, C., Counen, M. F., AN BopenHEMER, B. 1998. Verbs and ad-
verbs: Multidimensional motion interpolation. [EEE Computer
Graphics and Applications 18, 5, 32-40.

Rosg, C. E, Svoan, P-P. J., ano Couen, M. F. 2001. Artist-
directed inverse-kinematics using radial basis function interpo-
lation. Computer Graphics Forum 20, 3, 239-250.

SaroNova, A., Hopains, J., aND PorLarp, N. 2004. Synthesizing
physically realistic human motion in low-dimensional, behavior-
specific spaces. ACM Transactions on Graphics 23, 3 (Aug.),
514-521.

Sario, V. D., anp Knar, O. 2005. Operational space control of
multibody systems with explicit holonomic constraints. In Inter-
national Conference on Robotics and Automation (ICRA), 2961—
2967.

Sario, V. D., WARREN, J., Kuars, O., ano Derp, S. 2005. Simu-
lating the task-level control of human motion: a methodology
and framework for implementation. The Visual Computer 21, 5,
289-302.

SENTIS, L., AND KHaTIB, O. 2004. Prioritized multi-objective dynam-
ics and control of robots in human environments. In /IEEE/RAS
International Conference on Humanoid Robots, vol. 2, 764-780.

SuLEIMANPASIC, A., AND Popovi¢, J. 2005. Adaptation of performed
ballistic motion. ACM Transactions on Graphics 24, 1 (Jan.),
165-179.

VAN DE PANNE, M., FiuMmE, E., AND VRANESIC, Z. 1990. Reusable mo-
tion synthesis using state-space controllers. In Computer Graph-
ics (Proceedings of SIGGRAPH 90), ACM SIGGRAPH, Annual
Conference Series, 225-234.

Wirtkin, A., anp Popovi¢, Z. 1995. Motion warping. In Computer
Graphics (Proceedings of SIGGRAPH 95), ACM SIGGRAPH,
Annual Conference Series, 105-108.

Yamang, K., KUFFENER, J. J., aND Hopains, J. K. 2004. Synthesizing
animations of human manipulation tasks. ACM Transactions on
Graphics 23, 3 (Aug.), 532-539.

Y, K., CLiNg, M., anp Par, D. K. 2003. Motion perturbation based
on simple neuromotor control models. In Pacific Conference on
Computer Graphics and Applications (PG), 445-449.

ZorpaN, V. B., anp Hopains, J. K. 2002. Motion capture-driven
simulations that hit and react. In Symposium on Computer Ani-
mation (SCA), 89-96.

