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Abstract

The paper considers multidimensional generalizations of various 1-D results on

the robustness of Hurwitz, Schur and positivity properties on polynomials and

rational functions. More specifically, the convexity property of the stable

region in the coefficient space of multivariable polynomials is studied.

Multidimensional generalizations of Kharitonov-type results are reviewed and

further extensions, including that of the 1-D Edge Theorem, are discussed.

Interval positivity property of multivariable rational functions are also

characterized in terms of ratios of a finite number of Kharitonov-type

polynomials constructed from the extreme values of the intervals of

perturbation.
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I. Introduction

IA. Overview:

Recent interest in the study of robustness of stability property of polynomials

was spurred by the remarkable results [l],[10] of Kharitonov which showed that

only a finite number (4 for real and 8 for complex) of polynomials are needed

to characterize the interval stability property of an entire family of

polynomials. In view of potential application of these results in robust system

design the last few years have witnessed an explosion of activity in this field

of research. Various alternate ways of viewing Kharitonov's results have been

suggested and further generalizations in different directions have been carried

out. A summary of these developments has most recently been documented in [21].

While the characterization of interval Hurwitz property has potential

applications in studying robust stability of systems, the problem of

characterization of interval positive (real) property of rational functions

potentially arises in studying the robustness of convergence properties of

recursive parameter identification or adaptive filtering schemes. Motivated by

these latter class of problems a characterization of interval (strictly)

positive real property of rational functions in one variable in terms of a set

of sixteen Kharitonov polynomials has also been given in [12],[13].

On the other hand, problems associated with the zero-distribution of

polynomials in more than one variable have been studied over sometime primarily

due to their relevance in stable multidimensional (k-D) filter design

[16],[45]. The question of characterizing robustness of stability of

multidimensional polynomials in terms of stability of a finite number of

polynomials as in Kharitonov's result thus arises naturally. Work in this field

was initiated by Bose [6] by demonstrating that Kharitonov's theorem can be

extended to bivariate (k=2) real polynomials, while the validity of such a

result in the case of multidimensions has also been subsequently verified [38].

A key to this development is that a large number of results on robust

stability, including Kharitonov's original theorem, can be viewed quite

transparently in terms of results from passive network theory. In particular,

the one-to-one correspondence between reactance functions and Hurwitz

polynomials along with the fact that a reactance function can be characterized
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by an alternating pole zero pattern in 1-D has been crucially exploited in

[2],[3] in providing elementary proofs of Kharitonov's theorem. The

relationship between multidimensional reactance functions and multidimensional

stable polynomials (specifically, scattering Hurwitz polynomials) was first

established in [4], and the theory was subsequently further elaborated both in

continuous and discrete domain in [5], [9]. While the first results on the

characterization of robust stability of multidimensional polynomials in

[6],[38] rests on these facts, and the 1-D theory [21] continues to mature, it

is becoming increasingly more obvious that a larger variety of 1-D results can

be extended to the multidimensional context. The present paper attempts to

outline such a program of research. It is thus concievable that many of the

results to be discussed are only preliminary and can be developed much further

in various different directions.

IB. Notation and terminology:

The k-tuple of variables (Pl,P2,...pk) (or (Zlz 2 ... zk)) will be denoted by p

(or z). The symbol X is always assumed to be real valued. The partial degree ni

of a polynomial g=g(p) in Pi will be denoted by degig. We also say that

n(nl,n2,...nk) is the (partial) degree of g. The inotation.i p, with
i 12 k

i=(ili 2 ...-ik) will indicate the monomial P P1 P2 ...Pk Thus,

Iil=il+i 2+...+ik is the total dgeree of p-. The araconjugate g* of a
polynomial g is defined as: g=,-g (-p ) (or g (z )xz-, where n is the

(partial) degree of g) with superscript * denoting complex conjugation. If

g,=yg, where y=+1 or -1 then g is said to be paraeven or paraodd respectively.

The polynomials denoted by the symbols 'e' or 'o' are always taken to be

paraeven or paraodd respectvely. Any polynomial g can be decomposed into

paraeven and paraodd parts as in (1.1) through (1.3).

g e + o (1.1)

e = (g+g*)/2 (1.2)

o = (g-g*)/2 (1.3)

The symbol w is always assumed to have real value. Accordingly, we write p=j_
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with _w(wl,2,.... k) to indicate Pi-jwi for all i-1 to k. A region in the

k-dimensional real space of A, where each wi is sign definite will be called an

orthant. Clearly, there are N=2k orthants.

The notation Rep>O (or IzI<1) will denote the cartesian product of half-planes

(or discs Izil<1) for all i-i to k. Obvious variations of this notation with >

(or <) replaced by < (or >), <, >, =, etc. will also be used.

A polynomial is equivalently represented by its set of coefficients. The real

space spanned by the real and imaginary parts coefficients of polynomials with

(partial) degree n is to be denoted by S. With abuse of notation we will often

write g c S and treat g as a point in S having coordinates specified by

coefficients of g.

A rational function F-b/a will be called irreducible if its numertor b and

denominator a are relatively prime polynomials.

In order to precisely pin down the classes of stable multivariable polynomials

of interest to us the following terminology from [4],[5],[9] will be recalled.

A polynomial is scattering Hurwitz (Schur) if it has no zeros in Rep>O (or

Izl<1) and is relatively prime with its paraconjugate (see [4],[5],[9] for

other definitions). It is this class of polynomials that is tied to the

multidimensional reactances (see Fact 2.1 to follow). Strictest sense Hurwitz

(Schur) polynomials are those devoid of zeros in Rep2O (or Izl<l). In the

continuous case, points at (multiple) infinity are also points of forbidden

zero locations. In fact, the strictest sense Hurwitz and Schur poilynomials are

in one-to-one correspondence via the Cayley (bilinear) transform and its

inverse.

In Section II we study multidimensional extensions of some 1-D results on

convexity property of the stable region in the space S of polynomial

coefficients. Section III deals first with various forms of generalizations of

Kharitonov's theorem and then considers the problem of characterizing

robustness of Schur property of multidimensional polynomials. All discussions

upto this point may be essentially traced back to connections with reactance

functions. Multidimensional counterpart of an alternate method of study
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[28],[29] is examined and further generalizations are obtained in Section IV.

In Section V we return to network theory based methods and study the

characterization of interval positivity property of multivariable rational

functions. Conclusions are drawn in Section VI.
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II. Convex Combinations of Stable Multidimensional Polynomials:

Since one of the major issues of concern in the present paper is to identify

regions in coefficient space of polynomials having the property of stability, a

natural question is whether or not these properties hold for a convex

combination of two or more polynomials if the property holds individually for

them. Availability of such results are indeed useful in this context because

the said convexity property allows us to infer stability of domains of regular

shapes from an examination of their boundary (or even vertex) points only.

Unfortunately, it is known that a convex combination of two arbitrary 1-D

Hurwitz polynomials is not necessarily Hurwitz [23],[26]. A necessary and

sufficient condition for this to be true is available in 1-D [27], but not in

k-D (k>l). However, the following results can be conveniently obtained by

appealing to the close relationship between k-D scattering Hurwitz (Schur)

polynomials and k-D (discrete) reactance functions as is mentioned next.

Fact 2.1 [4],[9]: A polynomial g=e+o in k variables, where e is the paraeven

part and o is the paraodd part of g, is scattering Hurwitz (Schur) if and only

if e/o, or equivalently, o/e is an irreducible (discrete) reactance function.

We then have the following sequence of results essentially based on the above

Fact.

Theorem 2.1: Let gi=ei+oi; i=1,2,...m be a set of scattering Hurwitz (Schur)

polynomials in k variables with corresponding paraeven and paraodd parts being

denoted by ei and oi.

(i) If gi's have common paraeven part (or paraodd part) i.e., if e.=e (or

oi=o) for all i, then a convex combination of gi's i.e.,

m m
£ Xigi with £ X. = 1 (2.1a,b)

i=l i= 1
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is also scattering Hurwitz (Schur).

(ii) In fact, the above result holds true even without the restriction

(2.lb).

Remark: Obviously in the statement of the above theorem the terms paraeven and

paraodd have to be interpreted properly in the context of Hurwitz or Schur

polynomials as mentioned in the introduction.

Remark: Part (i) of the above theorem for the case when k=2 and m=2 was stated

first in [6]. A 1-D version of part (ii) appears in [7].

Furthermore, it is possible to prove the following less obvious result. We will

need the Schur version of this result in further discussions to follow. Once

again, 1-D Hurwitz and Schur versions of these appeared in [7] and [18]

respectively.

Theorem 2.2:

(a) The set of polynomials gij=ei+oj; i,j=1,2 are each scattering Hurwitz

(Schur) if and only if all polynomials in the following four families (i.e.,

convex combinations of gij and gkl except when (i,j)=(k,l)) are scattering

Hurwitz (Schur):

kXe1 + (1-X)e2] + oi; i=1,2 with 0<X<l (2.2a,b)

ei + [Xo1 + (1-X)o2]; i=1,2 with 0<X<l (2.3a,b)

(b) With the hypothesis of part (a) all polynomials of the following family are

scattering Hurwitz (Schur).

[Xe1 + (1-X)e2] + [vo1 + (1-v)o2] (2.4a,b)

where 0 < X < 1 and 0 < v < 1.

In particular, if X=v then we have that any convex combination of gll and g22

is scattering Hurwitz (Schur).
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As an obvious extension of the above theorem we have the following corollary:

Corollary 2.1: Consider the set of m2 polynomials gi .-ei+o for all
2 33 1

i,j=l,2,...m. If each of these m polynomials is scattering Hurwitz (Schur)

then each member of the family g parametrized by X and v is scatteirng Hurwitz

(Schur):

m m
g=e+o; e= ? Xiei; o= v.ioi (2.5a,b,c)

m m
where z X. E v. =1

i=l 1 il

Proof of Theorem 2.1:

(i) Let oi=o. Due to Fact 2.1, ei/o, and thus (X1el+X2e2+...+ekek)/ o are

reactance functions. The proof would be complete if it is shown that the last

mentioned reactance function is in irreducible form. This latter point is

somewhat nonobvious and has not appeared anywhere including [6]. Since it

requires considerations rather technical, we will dwell on it separately in

Appendix A.

(ii) As in 1-D [7], but by following the strategy outlined in (i) above.

Proof of Theorem 2.2:

(a) Only necessity is nontrivial. Due to Fact 2.1, scattering Hurwitz (Schur)

property of (ej+oi) imply that ej/o i for j=1,2 and thus [Xe1 + (1-X)e2 ]/oi is a

reactance function. Scattering Hurwitz (Schur) property of (2.2) then follows

by appealing to arguments of the type in Appendix A and the 1-D version of the

present theorem [7]. Similarly, for (2.3).

(b) Clearly, oi/[ve1 + (1-v)e2]; i=1,2 are reactances as above. Thus,

[Xe1+(1-X)e2]/[vel+(l-v)e2], being a convex combination two reactance

functions, is itself a reactance function. The result then follows from its

irreducibility, which can be ascertained via arguments as in Appendix A and

validity of the present result in 1-D (see [18] for the Schur case, for

example).



10

We next return to the issue of convexity of the stable region in coefficient

space of k-D polynomials raised at the beginning of this section. Although such

a region is non-convex its intersection with certain affine spaces are indeed

so, as is elaborated in the following Theorem. The discussions to follow are

multidimensional generalizations of those appearing in [23] and [32]. We first

need some terminolgy.

In the space S of coefficients of complex polynomials of (partial) degrees

n=(nl,n2,...nk) the subspaces spanned by coefficients of paraeven (or paraodd)

polynomials will be called even (odd) subspaces and will be denoted by Se (or

S0). Also, in what follows we denote the scattering Hurwitz (or Schur) region

of S by H. We then have:

Theorem 2.3: Given any g e S the sets Hn{g+So} and Hn{g+S e} are both convex.

Proof: Consider two arbitrary members gl=g+el, g2=g+e2 of HN{g+Se}. Clearly, a

convex combination of g1 and g2 is in {g+Se}. Also, since g1 and g2 have

identical paraodd parts and are scattering Hurwitz, by Theorem 2.1 a convex

combination of them is in H. Similarly for Hn{g+So}.

Given 91,g2 c S where 1=el1+ol and g2=e2+o2 with obvious decomposition in
paraeven and paraodd parts, we consider the even or odd ordering between them

as defined in the following.

gl e g2 if e1 el1(jw) < e2(j)=e2 (2.6)

gl o g2 if ol-ol(j&) < o2(j)=o2 (2.7)

in the n-th orthant of the _-hyperspace. Note that g1 and g2 may be differently

ordered in different orthants.

With the above terminology one can state the following result, the 1-D version

[32] of which hinges on the Hermite-Bieler theorem [42]. Since a

multidimensional Hermite-Bieler theorem is not known it can be considered to be

a nontrivial generalization.
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Theorem 2.4: Let g e S as well as g+, gn e Hn(g+Se} for n=1,2,...N (N-total

numer of orthants - 2k) be given such that for all n-1 to N we have (2.8) in

the n-th orthant of the o-hyperspace.

< +< +
gn e gn; < m < N (2.8)

Then the set:

{x c {g+e}; n e x e 9gn in the n-th orthant, n-= to N)

is a subset of Hn{g+Se}. The obvious odd counterpart also holds.

Proof: Same as in 1-D [32], but by invoking Theorem 3.1 of following section

instead of Hermite-Bieler theorem.

This motivates the following definition of certain special kinds of vertices of

a convex polytope in S and a consequent theorem which characterizes scattering

Hurwitz (Schur) property of these polytopes in terms of Hurwitz (Schur)

properties of their vertices.

Given g c S, consider a polytope Ae c {g+Se} with vertex set {ul,u 2,...uV}. If

for each n=1 to N (2.9) is satisfied in the n-th orthant

un e Um'Um'u e ne un ; 0 < m < N (2.9)

where u, Um, um, un+ un c {Ul,U2,...u } then the vertex u is noncritical. All

other vertices are to be called critical. Analogous definition holds for A c

{g+So}.

We then naturally arrive at

Theorem 2.5: Given g e S and a convex polytope Ae {g+Se}, we have Ae c H if

and only if the critical vertices of Ae belong to H. The obvious odd

counterpart also holds true.

Proof: Only sufficiency is nontrivial. It follows from the preceeding

definition and Theorem 2.4 that the noncritical vertices also belong to H if
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the critical vertices do. i.e., the entire set of vertices belong to Hn{g+Se}.

Since due to Theorem 2.3 Hn{g+Se) is a convex set, the convex hull of these

vertices, namely Ae , also is in Hn{g+So}. Thus, in particular, Ae c H.

The methodology outlined above can be carried much further. It may be noted

that in 1-D such investigations have resulted in new generalizations of

Kharitonov's celebrated theorem [32]. It is, therefore, concievable that such

an approach is expected to yield yet unknown Kharitonov-type results in the k-D

context. However, such a discussion will not be pursued here.
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III. Multidimensional Extension of Kharitonov Type Results:

IIIA. Continuous domain results:

By exploiting stability results on the scattering description of passive

multidimensional systems a characterization for robustness of scattering

Hurwitz property of a given multidimensional (complex) polynomial in terms of

the scattering Hurwitz property of a finite number of multidimensional

(complex) polynomials has been recently [38] established. The result thus

completely verifies a recent conjecture [6] extending Kharitonov's celebrated

theorem on the characterization of interval Hurwitz property of real as well as

complex polynomials to multidimensions. The multidimensional versions of both

weak (16 point box [1]) and strong (8 point box [10]) forms of Kharitonov's 1-D

results are thus presented in this subsection. Since details of proofs appear

in [38] we will be content with statements of the main results only.

The first important result in this category, which in many respects (e.g., in

the proof of Theorem 2.4 and the generalized Kharitonov theorem to follow) play

the role of Hermite-Bieler theorem [42] of 1-D theory, is as follows. Note that

results of this type when k=l or 2 has been discussed in [3],[11 1 or [6]

respectively.

Theorem 3.1: Let g n=gn(p) for n = 1,2,...N as in (3.1) be a set of

2N scattering Hurwitz polynomials such that for each n:

g+(p) = en(p) + o(2); gn(p) = e() + o(R) (3.1a,b)

Also, assume that for all c in the n-th orthant the following ordering in (3.2)

holds in which m can assume any value between 1 to N.

-< ,+ < +
gnem m e g n (3.2)

Then the polynomial g(p)=e(p)+o(p) is a scattering Hurwitz polynomial if for

each n=l to N (3.3) holds in the n-th orthant.

n e g e gn (3.3)
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A dual version of the above theorem in which the roles of paraeven and paraodd

polynomials are interchanged is also true.

For statements of generalized k-D versions of Kharitonov's theorem it will be

convenient to introduce the following notation. Let Ai < Ai and Bi < Bi <

Bi be two sets of closed intervals respectively around A i and Bi, where Ci = Ai1 3. it a.
+ jBi is the coefficient of E in g(p). Note that tie coefficient of i- in

e(p) is Ai if ji1 = even and is jBi if lil = odd.

Consider next a set of 2N 'extreme' paraeven polynomials en(p), en(p) for n - 1

to N formed from the polynomial e(p) by observing the following rule.

Rule 3.1: In forming the coefficient of - in en(p) if jil - even (odd) replace

the coefficient A i (corresp. jBi) of p ! in e(p) by either Ai or Ai (corresp.

jBi or jBi), whiciever maximizes-the value of Ai(jw)- (corresp. jBi(j3)-) for

any given real value of the k-tuple w = (&l,'2....k) in the n-th orthant of

the _~-hyperspace. The coefficients of en(p) are obtained by observing the same

rule with the term 'maximizes' changed to 'minimizes'.

Example: Consider a complex polynomial g(p) of total degree 2 in two variables

(i.e., k=2) Pl, P2- We then have from (1.2) and (1.3):

e(p) = A00 + j(B10P 1 + BO1P2)+(A20Pl + AllPlP2 + 02P2)

2 2
(p) jB00 + (A1 0P 1 + A0 1P 2 )+ j(B20 P1 + B1 1PlP 2 + B0 2P2

Thus, if n = 1,2,3,4 are taken to correspond to the respective quadrants in the

(X1-X2) plane then we have:

-+ j 2 +A 2
el() A00 + j(10P1 + 01P2)+(20P1 + llPlP2 A02P2)

+ 2 -+ 2
e2(p) A0 0 + j(B10P1 + nB0 1 P2)+(A 20P + AP1P2 + A02P2)

e3(p) = A + j(B1lo 1 + 20 + 1P 1 p2 + B 02 P2)
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o + 2 2
e4(P) Aoo + i(B10P1 + BOlP2)+(Ai2 op + AllPlP2 + A02P2)

and

e -(P) = T + E2 2

e1(p) 00 + j( 10P 1 + B01P2 )+(A20P1 + A llP1P 2 + A 02P2

e2(p) = A00 + j(B10op + B01P2 )+(A20Pl + AllPlP2 + A02P2

+-+ 2

e4(p) += A00 + J(B10Po + B0 1P2)+(A20P + AllPlP2 + A02P 2 )+ 2 +1Ap 2

Next, note that the coefficient of P in o(E) as in (1.3) is jBi if 1 - even

and is Ai if jil - odd, and consider another of 2N 'extreme' paraodd

polynomiali o+n(), ODn(E) for = 1 to N formed from the polynomial o(p) by

observing the following Rule.

Rule 3.2: In forming the coefficient of E- in o+(p) if 1il = even (odd) replace

the coefficient jBi (corresp. A i) or - in o(p) by either jBi or jBi (corresp.
ii Ai or Ai), whichever maximizes the value of Bi(j)l- (corresp. Ai(j3)-/j) for

any given real value of the k-tuple X = (=1,2..*.wk) in the n-th orthant of the

!-hyperspace. The coefficients of On(p) are obtained by observing the same rule

with the term 'maximizes' changed to 'minimizes'.

Example: Consider the polynomial g(p) and the same assignment of integers n for

the quadrants in (l1-X2) plane as in the last example. Then we have:

+ 2 2
1() B00 + (A10P1 + A01P2) + j( 20P1 + B11PlP2 + B02 P2)

+ 2 2
o2(p) = jB00 + (A1OPl + A0 1P2) + j(B20Pl + B11P1P2 + B 02 P2)

+ -2 2
o3(P) = jB00 + (A10P 1 + A01P2) + (B2 0P 1 + BllPlP2 + B 2P 2)

-+ 2 2
o4(p) = jBOO + (A10P 1 + A0 1P2) + j(B20P 1 + B1P 1P 2 + B02P2)

and
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°1(P ) j- 00 + ( 1 0 l + A0 1P 2) + j( 2 0P1 + BllPlP2 +B02P

32(p) = jB00 + (AlPl + AO1P2) + (B20P +11PP2 + 02P2
°3( ) J0 0 +(A10Pl +1P2) +(B20Pl + Bll~lP2 B02P2)

o4(P) = jO + (A1 0P1 + A0 1P 2) + ( 2 0 +B 1 1P1P 2 +B02P2

The above construction immediately suggests the following fact, which is

crucial in this development.

Fact 3.1: The extreme paraeven and paraodd polynomials constructed by using

Rules 3.1 and 3.2 satisfy (3.4a,b) for all w in the n-th orthant.

+ j+
en(jw) < e(j^) < en(ji); On(jO) < o(jW) < o (jc) (3.4a,b)

A very important consequence of the above fact and Theorem 3.1 is the following

step (see [3],[11] for 1-D and [6] for 2-D versions) towards establishing

generalized Kharitonov's theorem.

Lemma 3.1: If the set of 2N polynomials (e (p)+o(p)), (en(p)+o(p)), n=l to N,

where On(p) and On(p) are as defined via Rule 3.1, are each scattering Hurwitz

then the polynomial g(p)= e(p)+o(p) given in (1.1) is also scattering Hurwitz.

The obvious dual with the roles of paraeven and paraodd polynomials

interchanged also hold.

The above lemma and its dual version combined together then yield the

generalized (weak) form of Kharitonov's theorem [38].

Theorem 3.2: Let the set of 4N2 polynomials in k-variales p = (p,1'P2...,pk):

(e (p)+o+(p)), (e+(p)+os(p)), (er(p)+oS(p)) and (e-r()+os(p)) for all possible

combinations of r,s = 1,2,...,N be scattering Hurwitz, where the e (p)'s and
+ n

on(P)'s have been constructed by observing Rules 3.1 and 3.2. Then the
polynomial g(p) = e(p) + o(p) in (1.1) is scattering Hurwitz.
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Remark: Note that the above theorem requires a total of 4N2 - 22(k+l) extreme

polynomials for characterizing the interval scattering Hurwitz property of

k-variable polynomials. In the 1-D case i.e., when k - 1, we have 4N2 - 16, and

thus, coincides with weak version [1] of Kharitonov's theorem for complex

polynomials. The k-D generalization of strong form of Kharitonov's theorem next

follows.

Theorem 3.3: Let the set of 4N polynomials in k-variables p = (Pl,P2,...Pk):

(e (p)+o (p)), (en(p)+o)(p), (e (p)+o+(p)) and (en(p)+on(p)) for n = 1,2,...N
n - n n n n + - N

be scattering Hurwitz where e-(p)'s and o-(p)'s have been constructed usingn n
Rules 3.1 and 3.2. Then the polynomial g(p)-e(p)+o(p) in (1.1) is scattering

Hurwitz.

Example: We consider the robustness of scattering Hurwitz property of the

following 3-variable (k-3) polynomial g=g(p1,p2,p 3) as a function of the real

coefficients a, y, y and 6. It is easy to show that g is scattering Hurwitz

when c=6=y=6=1l

g(P1lP 2,P 3) = p1P 2p3l+ P 1P 2 + YP2p3 + P 2 + P2pP3p 1

Thus,

e(pl,P2,P 3)= OP1P 2 + YP2P 3 + &P3P 1; o(P1,P2,P3) = cp1P 2P3

In order to construct the generalized Kharitonov polynomials of Theorem 3.3 it

is first necessary to construct the polynomials en, en, on and On for each of

the 2 k2 3=8 orthants from Rules 3.1 and 3.2. Let us denote the orthants

corresponding to the following signs of (w1,w2,3) as (+,+,+), (+,+,-),

(+,-,+), (+,-,-), (-,+,+), (-,+,-), (-,-,+), (-,-,-,) by the respective natural

numbers from 1 to 8. we then have the tabular assignment of coefficients for

the polynomials en, en, 0n, On, as shown in Table 3.1, where c, 1, y, 6 are

restricted to lie in real intervals [c,x],[O,l],[y,y] and [6,6] respectively.

At this point, the 4N=4(2)k=32 generalized Kharitonov polynomials, in general,
++ + -e-+

would be constructed as the polynomials: (en+on), (en+on), (en+on) and (e+o).

However, in the present case, it is easily seen that at least one half of this

set of 32 polynomials coincide with the other half. Thus, one needs to

consider only a set of 16 polynomials at most. This, in fact, is a consequence
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of the realness of the coefficients of g. This observation can, in fact, be

justified in general as in the following remark.

Remark: Note that for real polynomials Bi=Bi-Bi-0. Thus, from Rules 3.1 and 3.2

if follows that e+(p) (or o+(p)) must have only monomials of even (corresp.

odd) total degree lii. Now, consider two orthants n1 and n2 such that the sign

of each component of _ in nl-th orthant is exactly opposite of the sign of

corresponding component of X in n2-th orthant. Then a close examination of

Rule 3.1 and Rule 3.2 show that the generalized Kharitonov polynomials

corresponding to the nl-th orthant are replicated by the polynomials

corresponding to the n2-th orthant in Theorems 3.2 and 3.3. Consequently, in

the case of real polynomials the total number of polynomials required for

characterization of interval scattering Hurwitz property is reduced by a factor

of two.

Remark: In 1-D Theorem 3.3 requires eight extreme (complex) polynomials, which

coincides with strongest form of Kharitonov's theorem [10]. If the polynomials

concerned are all real then the number of extreme polynomials are reduced by a

factor of two to 2N = 2k+l If k = 2 then this result coincides with that in

[6], whereas if k = 1 then 2k+l = 4, which is Kharitonov's 1-D result for the

real case.

IIIB. Discrete domain results:

Given Kharitonov's theorem a natural question is if the corresponding obvious

discrete counterpart of it is true for Schur polynomials. Unfortunately, it is

known [20],[24],[25] that the four Kharitonov polynomials are not enough to

guarantee the stability of the corresponding discrete domain polynomial family

even in 1-D. The most straightforward approach to studying discrete domain

stability, namely, via the Cayley transform on the continuous domain results is

not effective due to the distortions of the faces of the rectangular

parallelopiped introduced by the transform (although some progress can be made

as in [24]). Nevertheless, 1-D results which are aesthetically somewhat less

pleasing and perhaps computationally more burdensome have been recently

obtained [18],[20] primarily by using convexity arguments and the geometry of

the coefficient space (cf. discussions in Section II). In the present
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subsection it will only be indicated that the major techniques exploited in

these studies do carry over to multivariable polynomials with complex

coefficients. The details of further developments, as in [18], can then be

derived in an exactly analogous manner.

As before, we will denote the space spanned by the paraeven (paraodd)

polynomials of degree n by Se (So). Consider then a family of polynomials g

such that their paraeven (paraodd) coefficients are contained in the convex

hull Ae C Se ( or Ao c So) of fixed paraeven or paraodd polynomials ei; i=1 to

m (or oi; i=l to m).

As a consequence of Corollary 2.1 the following result is then almost

immediate:

Theorem 3.4: Consider the polyhedron A c S consisting of coefficients of

polynomials g-e+o, where the coefficients of e belong to Ae and those of o

belong to Ao as described above. Then any g e A is scattering Schur (Hurwitz)

if and only if the set of m2 polynomials (ei+oj); i,j=1,2,...m are each

scattering Schur (Hurwitz).

Proof: Necessity is trivial. To show sufficiency it is only needed to realize

that for any g=e+o c A we have e c Ae and o c Ao, and thus e (also o) is a

convex combination of m vertices of Ae (correspondingly Ao). Thus, due to

Corollary 2.1 and the scattering Schur (Hurwitz) property of (ei+oj), g is

scattering Schur (Hurwitz).

The statement of a natural result, which in 1-D has been claimed to be the

closest known discrete analog of Kharitonov's theorem, thus follows.

Theorem 3.5: Consider the family of polynomials in k variables z=(zl,z2,.. Zk):

g = E (Ai + Bi)z- (3.5)

of (partial) degree n=(nl,n2,...nk) and with complex coefficients, where we

have used the multi-index notation introduced earlier, and where for each i the

coefficients Ai, Ani and Bi, Bn i vary inside boxes shown in Figure 3.1(a),(b)

(if Ai=An i for some i then -Ai varies over then real interval [-Ai, +Ai];



20

similarly for Bi's). Then the polynomial family in (3.5) is scattering Schur if

and only if each member of a finite number of g's defined by all possible

combination of corner points from the sets Rij, Iij; jl1 to 4, 0 < i < n (or

corresponding real intervals when Air=A n or Bi-Bn i) is scattering Schur.

Proof: Note first that the coefficient of zi in the paraeven and paraodd parts

of g are respectively given by:

(Ai + An i) + j(Bi - Bn-i) (3.6)

(Ai - An_i ) + j(Bi + Bn.i) (3.7)

and as Ai, Ani and Bi, Bni vary inside the boxes in Figure 3.1(a),(b) we

actually have tRat:

a. < A. + An.<a.; <B.-B < ((3.8)i i An-i < ai;i < Bi n-i i (3.8)

Ai <Ai An-i < ai; b < Bi n-i (3.9) -i-i n-i -1 - i n-i (

Thus, the coefficients of the paraeven and paraodd parts of g vary within the

the rectangular parallelopiped in the coefficient spaces, which we may identify

with Ae and Ao of Theorem 3.4. The proof is then completed by invoking Theorem

3.4 after recognizing that the family of g's in (3.5) is actually the

polyhedron A in Theorem 3.4.

Remark: Although the above theorem bears resemblance with the generalized k-D

Kharitonov's theorem in that the coefficients are allowed to vary inside boxes

(albeit with sides skewed with respect to the axis) it is far less powerful

because the number of extreme polynomials i.e., the number of vertices of the

polytope A in the above theorem grows with the (partial) degrees of the

polynomial family under consideration. In particular, we need as many as 4M,

where

k
M = n (ni +1) (3.10)

i= l 

extreme polynomials for a polynomial family of partial degree n=(nl,n2,...nk).
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For real polynomials we need only 2M polynomials, the 1-D version of which

coincide with the result in [18].

Remark: Note further that the 1-D version of this result has been used [18] to

derive various sets of necessary conditions as well as sufficient conditions

(but not both simultaneously) for the robust stability of the polynomial family

g in (3.5). However, since Theorem 3.5 can form the basis for such a study in

multidimensions the rest of the development can be considered to be routinely

carried out in a manner exactly similar to the one reported in [18] for 1-D.

It has thus been shown that most of the l-D results on discrete domain

robustness of stability, which rely on convexity arguments can be naturally

extended to multidimensions essentially by virtue of Theorems 2.1 and 2.2. This

statement, in fact, holds even for results which we have not explicitly dealt

with here, and includes the ones in [20], for example.
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IV: Alternate Methods of Analysis and Further Generalizations of

Kharitonov-type Results in Multidimensions:

In this section we report recent investigations [40] by the present author into

multidimensional counterpart of a vast range of 1-D generalizations of

Kharitonov's theorem as has been worked out by Anagnost, Desoer and Minnichelli

in [28], [29]. Essentially by using some analytical results along with

convexity arguments discussed earlier, we show that Kharitonov-type results can

be obtained in a very broad setting even for multidimensional polynomials. The

method to be presented and the resulting consequences are so broad that both

discrete and continuous domain results including k-D generalization of

Kharitonov's theorem (i.e., Theorem 3.3) as well as the k-D generalization of

the Edge Theorem of Bartlett, Hollot and Lin [22], among other results, fall

out as corollaries of the present discussion. As indicated in [29] in the 1-D

context these results can also be used for graphical implementation of tests

for k-D robust stability. However, as is always the case in higher dimensions

[16], the implementation of such tests are much more complex than in l-D, and

it is concievable that these preliminary results can be improved much further.

The primary objective of this section is, therefore, to indicate how the

methodology of investigation advanced in [28],[29] can be adapted to

incorporate into the k-D context, albeit in a somewhat nontrivial manner.

Let U = UlxU2x... Uk, where each Ui, i=l to k is an open subset of the complex
plane. Roughly speaking U is going to be the domain of undesirable or forbidden

zero locations of multivariable polynomials g=g(z) in z_(zl,z2,... k). Ui's may

be half-planes or unit-discs, or even sets of mixed types (as arising in

certain formulations of the lumped distributed network problems e.g., [39]) in

special cases of interest. Let aUi denote the boundary of U i for each i=l to k

and aU = 8UlXau2x... aUk be the distinguished boundary of U.

A polynomial g=g(z) in k variables may be called widest sense U-Hurwitz if g40

for z c U. Similarly, other variants of multivariable U-Hurwitz property can

also be naturally considered. For example, if g is widest sense U-Hurwitz and

the set of zeros of g in aU form a sequentially almost complete set [5] of

k-tuples of order at most (k-l) then g is scattering U-Hurwitz; g is strictest

sense U-Hurwitz if g#0 for all z in U = Ul1 U2x...xUk, where each Ui is a
1 2 kP~~~~~~~~
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compact domain (a corresponding modification, to include noncompact Ui's by

taking into account the points at infinity is also possible as in the case of

conventional strictest sense multidimensional Hurwitz and Schur polynomials

[17],[35],[5]).

All results in this section and their proofs will be given only for the

restricted class of strictest sense U-Hurwitz polynomials. It must be mentioned

that analogous results can also be proved for the wider class of scattering

U-Hurwitz polynomials by exploiting the methods to be presented in the

following. However, exposition in such a general context involves rather

technical considerations and will be reported separately elsewhere. Apart from

considerations of simplicity of exposition, this will also establish in the

sequel the result that a strictest sense Hurwitz counterpart of the generalized

Kharitonov's theorem (Thoerem 3.3 in the present paper) hold true.

One of the main tools of the analysis to follow is a multidimensional extension

of the notion of evaluation map E(.) associated with the polynomial g, as a map

from the space S of polynomial coefficients to the complex numbers C defined as

E(g) = g(z), where z is a k-tuple of complex numbers. Clearly, for a fixed z,

E(.) so defined is a linear map from S to C.

Evaluation map E(.) was apparently first introduced by Dasgupta [30] in the

present area of study and has been later exploited extensively in [28],[29].

Consider next a set of m polynomials gi=gi(z); i=l1 to m and the family A of

polynomials obtained by convex combinations of gi, i-1 to m. Thus, in the space

S of polynomial coefficients A is a convex polyhedron (i.e., convex hull of

vertices, which correspond to coefficients of gi's). Let Ed(A) denote the set

of exposed edges (i.e., the one dimensional edges along with the vertices) of

A.

Also, for a fixed z let Hz denote the set of complex numbers Hz= {g(z); g c A}.

Since the evaluation map is linear, Hz can be seen to be the convex hull of the

set of points {E(gi); i=l to m}, and is thus a convex polygon.

We then have our first result which can be stated as follows.
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Theorem 4.1: The family A of polynomials is strictest sense U-Hurwitz if and

only if the following two conditions simultaneously hold true:

(a) g is strictest sense U-Hurwitz for some g in A

(b) 0 X Hz for all z in the distinguished boundary au of U

Sketch of proof: For simplicity we restrict ourselves to the case k=2.

Necessity: If the family A is strictest sense U-Hurwitz then clearly (a)

follows. To show (b) assume for contradiction that there is a z0 c aU such that

O E Hz . Then there would exist a g e A such that g(z0 )-O. Since z C AU c U,

this contradicts with strictest sense U-Hurwitz property of g.

Sufficiency: Given that g=g e A is strictest sense U-Hurwitz and (b) holds

assume for contradiction that there is a g e A which is not strictest sense

U-Hurwitz i.e., has at least one zero in U, say, zO'(z 10 , z20). Since A is

pathwise connected, as we continuously deform g along a path in A emanating

from g and ending in g, the zero (z10,z20 ) of g, due to the continuity property

of zeros of polynomials as a function of coefficients, must float over the

boundaries aU1 and aU2 into domains outside of U1 and U2 respectively. For the

purpose of the present proof, however, this will be allowed to happen in a

controlled manner as described in the following (see Figure 4.1).

First we shall maintain z1 fixed at zl=z10 and deform g continuously from g

towards g as explained above. Clearly, then there must be a g' c A on the

continuous path connecting g to g such that g'0 for z=z1 0 and some z2=z 0 C

au2. We then maintain z2 fixed at z2=z 0 ^ aU2 and continue on with the

deformation process from g' further towards g. Invoking the same argument as

above (but with the roles of z1 and z2 reversed) it then follows that there

must exist a g" c A on the continuous path connecting g' to g such that g"=O

for Zl=ziO c aUl. However, this last situation is impossible in view of the

fact that (zi0,z2 0) c 8U and (b) holds true. Thus, sufficiency of (a) and (b)

has been demonstrated.

Remark: It must be mentioned that apart from the possibility of incorporating

the wider class of scattering U-Hurwitz polynomials, Theorem 4.1 can be further
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broadened to include the case when A is not just a polytope but is an arbitrary

connected subset in the space of polynomial coefficients. Such a generalization

in 1-D has been worked out in [29].

Remark: Other than considering the special case of k=2 the proof of Theorem 4.1

can be considered incomplete due to the valid criticism that the continuity

property of zeros of a polynomial in k variables apparently ceases to hold when

the polynomial becomes identically zero for a fixed value of one of the k

variables. However, such degeneracies can be adequately handled by means of

detailed but elementary arguments as shown in a different context in [15].

Our next result is a multidimensional analog of the 1-D 'edge theorem' of [22],

which has been proven via alternate techniques in [29]. It will be shown that

via argument of the type exploited in the last theorem, we can conveniently

obtain a k-D generalization, which roughly states that in order to test for the

strictest sense U-Hurwitz property of a polyhedral family of polynomials, it

suffices to test the exposed edges.

Theorem 4.2: The family A of polynomials is strictest sense U-Hurwitz if and

only if the following two conditions simultaneously hold true:

(a) The set of polynomials belonging to the exposed edges Ed(A) of A are

all strictest sense U-Hurwitz.

(b) If aU, j=1,2,...mi are connected components of aUi then each of

components of the distinguished boundary au, namely

aU1 xaU2 x...xxa k (4.1)1 2 k

for all possible choices of ji from {l,2,...mi}, contain a z such that 0 X Hz.

For a proof of the above theorem we need the following lemma.

Lemma 4.1: aHz c E(Ed(A)) i.e., the boundary of Hz is a subset of the image of

exposed edges of A under the evaluation map.
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A 1-D version of this lemma is stated and proved in [29]. Since the proof in

[29] essentially exploits the linearity property of the evaluation map - a fact

valid irrespective of the number of dimensions - a separate proof in the

present context would be repetition of exactly same arguments.

Sketch of proof of Theorem 4.2 for k=2:

Necessity: If A is strictest sense U-Hurwitz then (a) trivially holds, whereas

(b) follows from Theorem 4.1.

Sufficiency: Clearly, condition (a) of the present Theorem implies condition

(a) of Theorem 4.1. The proof would be completed by showing that (b) of Theorem

4.1 is also implied by conditions (a) and (b) of the present theorem. For this,

suppose for contradiction there exits a z0 in au such that 0 c Hz and that zo
--

belongs to

(aU1 x aU2 ) (4.2)

for some fixed Jl and j2. Then due to condition (b) of the present theorem

there exists a z belonging the boundary component (4.2) such that 0 X Hz. Since

zO and z belong to the same boundary component it is possible to continuously

move from ~O to z, as a result of which Hz must move continously. Thus, there

must exist a z' in the boundary component (4.2) above such that 0 c aHz, c

E(Ed(A)) (the last inclusion follows from Lemma 4.1) contradicting strictest

sense U-Hurwitz property of Ed(A). Consequently, a go c au with 0 c Hz cannot

exist.

As an application of the above analysis, we now show that Theorem 4.1 can, in

fact, be used to prove a strictest sense U-Hurwitz version of generalized

Kharitonov theorem (our Theorem 3.3).

Corollary 4.1: If the set of 4N polynomials mentioned in Theorem 3.3 are all

strictest sense Hurwitz then g in Theorem 3.3 is also so.

We first need to recall an elementary fact in the follwing Lemma for a proof of

the above Corollary. For the purpose of the proof of Corollary 4.1 we will

replace the notation z of the present section with the notation p as is

conventionally used in continuous domain.
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Lemma 4.2: If g-g(p) is a strictest sense Hurwitz polynomial in k-variables

e=(P1lP2 ...Pk) then arg(g(jw)) is a strictly increasing continuous function of
each xi' where -w(,l'2,' '"k)' It is assumed that g involves the variable Pi.

The lemma follows from the fact that the 1-D polynomial gl(Pi) obtained by

freezing p-iwV, v=1 to k except i in g is Hurwitz, and the well known result

that the phase function of an 1-D Hurwitz polynomial is a strictly increasing

continuous function of the frequency variable [29].

Proof of Corollary 4.1: It follows from the construction of generalized

Kharitonov polynomials (cf. Fact 3.1) that for each n-1,2...k we have

e-(jw) < e(jw) < e+(jw) (4.3)n - n-

On(j~)/j < o(jw)/j < o+(j)/j (4.4)

which can be interpreted to mean that for all p=jw with X in the n-th orthant

the polygon Hn is a rectangle with horizontal and vertical sides in the complex

plane C with its four corner points as given in Figure 4.2.

We will show that conditions (a) and (b) of Theorem 4.1 are satisfied. Clearly,

(a) is satisfied because any one of the 4N generalized Kharitonov polynomials

is in A and is strictest sense Hurwitz.

For (b), we first claim that there exists at least one value of p=jc such that

0 X H . For this, set Pi=jw for each i=l to k in the 4N generalized Kharitonov

polynomials each of which then produces a 1-D Hurwitz plynomial with degree

equal to their common total degree, say, t. Then, if w -> ~ then the rectangle

H travels to infinity uniformly [28] at an asymptotic angle of ½tn (mod2i).

Oherefore, 0 X HP for Pi=jw and w -> o.

Now suppose 0 c H for some p=jw. Then since H is a continuous function of p

there must exist a a' such that 0 E aHP for p=jc'. We assume without loss of

generality that the bottom edge of H with p=jw contains 0 (note that a corner

point may not be the origin, because they are the images of generalized
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Kharitonov polynomials, which are assumed strictest sense Hurwitz) i.e., we

have the situation shown in Figure 4.3, where n denotes the orthant to which W'

belongs. Now if we increase any one of the component variables in

'=(' , .... ), say, xi by an infinitesimal amount by keeping Wi, i-2 to k

fixed, due to Lemma 4.2, the images of the generalized Kharitonov polynomials

[e+(jc)+On(jw)] and [en(jw)+on(jw)] will move respectively into the first and

the third quadrant. However, this is impossible because they must have the same

imaginary parts by construction. The proof of Corollary 4.1 is thus complete.

Note further that in analogy with the 1-D case [29] if the domains Ui are each

connected, unbounded then condition (b) of Theorem 4.2 can, in fact, be

dropped. This fact deserves a separate statement as in the following.

Corollary 4.2: Assuming Ui's to be each connected unbounded domain, the

polyhedral family A is strictest sense U-Hurwitz if and only if Ed(A) i.e., the

set of exposed edges of A are so.

Proof: Only sufficiency needs to be demonstrated. First note that by using

techniques used in the proof of Corollary 4.1 it is easily shown that if Izil

-> m for each i then 0 X Hz for some z. The existence of such a z=(zl,z2, .. k)

in U=UlXU2x...xUk is guaranteed due to the unboundedness of Ui's. Next, for

contradiction suppose there is a z' in U with g(z')0O for some g in A. Consider

then domains Ui c Ui such that zi c Ui and zi C aUi. This can be done due to

the connectedness of U.'s. Thus, conditions (a),(b) of Theorem 4.2 are both

satisfied by U =U1 XU2 x...xUk. Consequently, A is strictest sense U-Hurwitz,

which in turn shows (since g e A and z' e U*) that g(z') • 0 - a contradiction.

From computational point of view Theorems 4.1 and 4.2 provide two different

kinds of tests for strictest sense U-Hurwitz property of A. The edge theorem

can be implemented by considering convex combinations of two vertex polynomials

parametrized by a single parameter O<a<l. The extra variable a, although adds

to computational burden, nevertheless poses a problem solvable in finite number

of steps (at least in principle), because they fall into the category of

problems of decision algebra [16]. In particular, if k=2 it is known that tests

for discrete domain stability of polynomials can be implemented via Schur-Cohn

method [36],[41], the essential computational core of which is to check the
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sign pattern of a set of real 1-D polynomials in x in the interval [-1,+1] (see

also [19] for similar calculations). In the present context the extra parameter

a which enters into calculations in a rational manner makes it necessary to

determine the sign pattern of a set of polynomials in x and a for x e [-1,+1]

and O<o<1. Computational algorithms for solving this latter problem exist, for

example, in [16].

On the other hand, multidimensional versions of graphical test procedure

suggested in [29] can be given in the same spirit as that of [34], for example.

To demonstrate this we confine attention to the discrete domain problem i.e.,

where Ui's are unit discs, their boundaried being parametrized as zi exp(jei)

for i=1 to k. Again for the sake of simplicity we treat the case k=2 only.

Consider the nearest point function [29]:

Nr(81,e2) = arg min {lsli}); z=(z,z 2 ), zi exp(jei) (4.5)

ssH z

which, in fact can be shown to be a continuous function of both 81 and 82. To

test for condition (b) of Theorem 4.1, therefore, one needs to determine

whether or not Nr(e1,82) becomes zero for any 81, 82 in [0,2n]. One way of

implementing this test would be to hold 82 fixed and make a Nyquist-like plot

of the closed contour traced out by Nre (e1 ) = Nr(e1,e2 ) as e1 changes from 0

to 2n (see Figure 4.4). Repeat next the plot for values of 82 with small

increments which will correspond approximately to continuous deformation of the

contour just mentioned. We then have the following:

Fact 4.1: Nr(e1,82) d 0 for all 81, e2 if and only if the number of

encirclement of the origin by the plot of Nre (e1) for 0<e1<2n is constant as a

function of the parameter e2.

Of course, the accuracy of such a test concievably depends on the smallness of

the increments in e2. Nevertheless, since it has been noted [29] that when A is

a convex polyhedron, thus Hz is a convex polygon, computation of Nr(e1,e2) is

not a laborious task, the method suggests the principles underlying a

computationally feasible (though nonfinite) graphical test for determining

whether or not the polyhedral region A is strictest sense U-Hurwitz.
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V. Interval Positive Property of Multivariable Rational functions:

In the present section it will be indicated that multidimensional extensions

of recent 1-D [12],[13] results on robustness of positivity property of

rational functions with real as well as complex coefficients are also feasible.

In particular, the class of strict(est) sense positive k-D rational functions

is introduced, and the interval strict(est) sense positive property as well as

the interval positive property is characterized in terms of the corresponding

property of a set of 22 (k+2 ) rational functions, which in fact, are ratios of

Kharitonov-like k-D polynomials formed from the extreme values of the intervals

of coefficient perturbations. For this, we will first briefly recall and

reformulate, whenever necessary, some basic notions of multivariate positive

functions from our recent discussions on the topic [5].

A rational function F of k-variables p = (Plp 2,...-Pk) is said to be positive

if ReF>0 for Rep>O. A characterization of F=n/d, where n and d are coprime

polynomials, to be a positive function is provided by the following result

proved in [5].

Fact 5.1: The irreducible rational function F=b/a is a positive function if and

only if:

(i) a+b is a scattering Hurwitz polynomial

(ii) ReF>O for p=jw, whenever F is well defined.

Let us recall that the numerators as well as the denominators of irreducible

rational positive functions are necessarily products of scattering Hurwitz and

reactance Hurwitz [5] polynomials. Furthermore, irreducible factors of the

latter type may occur only with multiplicity equal to one. We will also need

the notion of strict positivity of multivariable rational functions, which is

introduced in the following:

A rational function F of k-variables is said to be strictly positive if (i) F

is positive and (ii) neither its denominator nor its numerator in irreducible

rational form contains a reactance Hurwitz factor (i.e., it is a ratio of

scattering Hurwitz polynomials).
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The following comments regarding the motivational contents of the above

definition are in order. Clearly, in 1-D our definition coincides with the

standard definition of strict positivity [12],[13]. It is classically known in

network synthesis theory that if a 1-D positive function contains a reactance

Hurwitz factor in its numerator or denominator (i.e., if it is not strictly

positive) then a pure reactance can be extracted from it in such a way that the

residual function is a strictly positive function. In multidimensions, however,

if a rational positive function has reactance Hurwitz factors in its numerator

or denominator, it is not known [5],[37] whether or not a reactance containing

these reactance Hurwitz factors can always be extracted in such a way that the

residual is strictly positive. Nevertheless, there exist k-D positive functions

with reactance Hurwitz factors in its numerator or denominator from which a

reactance extraction of the above type can be carried out. Consequently, in

keeping with the notion of 1-D strict positivity, k-D reactance Hurwitz factors

is not allowed in the numerators and denominators of multivariable strict

positive functions either.

Example: The function F1 in the following is a positive function with

scattering Hurwitz denominator and numerator. Thus, F1 is strictly positive.

F1 - (Pl+P 2+PlP2)/(Pl+l)

Next, note that if a (strictly) positive rational function F has a nonzero

difference in partial degrees of its numerator and denominator (in fact, this

difference may not be larger than 1) in one of the variables, say Pi, then (see

Theorem 36b in [5]) a reactance can be extracted from F; thus producing a

strictly positive function with equal pi-degrees in its numerator and

denominator. This situation is no different from the one discussed in the last

paragraph. In both cases the rational function F has a zero or a pole for a

fixed Pi (in this case Pi= -) and arbitrary values of the rest of the variables,

thus allowing for a reactance extraction to be possible. We will, therefore,

also be concerned with multivariable positive functions devoid of singularities

of this latter kind . Consequently, we have the following definition:

A rational function F in k-variables p = (P1,P2,-,P Pk) is said to be strictest

sense positive if it is strictly positive and the partial degrees of its
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numerator and denominator polynomials in each Pi; i-1 to k are the same (i.e.,

relative partial degree of F in each variable Pi is zero).

Various other ways of characterizing this latter notion of positivity

(including those analogous to Fact 5.1), which are all mathematically

equivalent, exist, but we will not undertake this discussion here.

Example: Note that F1 is strictly positive but not strictest sense positive,

because a reactance P2 can be trivially extracted from F1 as mentioned in the

preceeding discussion. Interestingly, it is possible for a strictest sense

positive function to have zeros (or singularities of the 2nd kind) on the

distinguished boundary ReEOq as is demonstrated by F2-(1+F1 l)-1 in the

following:

F2 =(Pl+P 2+PlP 2 )/(1+Pl+2P2+PlP2 )

in which the positive function F2 has a zero at pl=p2-0.

For the purpose of the present section we will adopt a slightly different

notation than in Section 3. The extreme paraeven (paraodd) parts of g

associated with the n-th orthant will be denoted by ge and go (go and g+)

respectively (obviously, these depend on n, but this dependence is not

reflected in our choice of notation for the sake of clarity). Analogous

notations for polynomials other than g will also be used.

Given n=(nl,n2,...,nk), we consider the real interval sets as in (5.1) for each

i(il,i2,...,ik) such that O<ij<nj ; j=l to k.

I: < < i < i < i (5.1)

The ai'rs and Bi's will, along with their upper and lower bounds in (5.1),

denote the real parts and imaginary parts of coefficients of polynomials in our

ensuing discussions. We then consider for each n=1,2,...,N a set of four

polynomials:

+ +e +o)'e (5.2)

K(I,n) = {(ge+go),(ge+go),(ge+go),( geg+g)} (5.2)
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+ +where ge, ge , 90 and g0 are the extreme polynomials for the n-th orthant

associated with the interval set I in (5.1), and are constructed via Rules 3.1

and 3.2. The set of 4N generalized Kharitonov polynomials associated with the

interval set I is, thus, K(I) = {g; g c K(I,n), n-1,2,...,N}.

We next state a multidimensional version of a weak form of Dasgupta's 1-D

result [121. For a specified degree n=(n1,n2,...,nk) consider for each

i_(ili2,...,ik ) with O<ij<nj for for all j=l to k, two sets of real intervals

designated by N and D, (such as (5.1)) in the following:

N: 2 i < < < (5.4)

D: y_ < i < i< ; 6 i < < (5.5)

Theorem 5.1: Let F=b/a be a rational function in k-variables P=(PlP2,... Pk),

where a and b are each polynomial of (partial) degree n-(nl,n 2,...,nk) as in

(5.6), in which the coefficients satisfy (5.4) and (5.5).

b = Zi (ai+j.i)P a - Zi (Yi+j6i) (5.6)

Then F is a positive function in the strictest sense if each member of the set

P(N,D) of 16N2 rational functions in (5.7)

P(N,D) = {h/g ; h c K(N) , g c K(D)) (5.7)

is strictest sense positive and is in irreducible rational form.

The converse statement i.e., if all F as in (5.6) with their coefficients

satisfying (5.4), (5.5) are (irreducible) strictest sense positive functions,

then each member of P(N,D) is also so, is trivial.

For proofs of Theorems 5.1 and 5.2 to follow we will need the following

elementary fact [13].
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Lemma 5.1:

Let a-ae+ao and b-be+bo be two complex numbers decomposed into their real and

imaginary parts respectively, which satisfy the following inequalities:

( ae <a e I/j aj 'go/j (5.8)

he < be < et /i < bo/j < ho/i (5.9)

where e ' ge' h-e and he are each real and _o, go, ho and ho are each imaginary

number satisfying (AB-CD)_0 with each choice of A, B, C and D as follows:

A - he or ; B e or - (5.10a,b)-e ~e or ge

C ho ; D or go D or go (5.11a,b)

Then we must have

aebe - ab o >2 0 (5.12)

Proof of Theorem 5.1:

Since the numerators and denominators of strictest sense positive functions in

irreducible rational form are necessarily scattering Hurwitz, we have that each

h c K(N) and g c K(D) is scattering Hurwitz. Thus, from Theorem 3.3 it follows

that both b and a, as in (5.6), are scattering Hurwitz polynomials if their

coefficients are restricted by (5.4) and (5.5) respectively.

Next, note that since a is scattering Hurwitz a(j_)*0 for almost all X

(specifically, if c Q2, where 9 is a sequentially almost complete set [5] of k

tuples of order k-l). Thus, F is well defined for any X c 9. In what follows

we fix _w 9 in the p-th orthant, where p is arbitrary.

Let h=he+ ho, 9=ge+ g0 be decompositions of h and g in (5.7) into paraeven and

paraodd parts. Then since h c K(N), g c K(D) implies that h/g is a positive

function, it follows that for p=j_ we have

(hege-hogo) > 0 (5.13)
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In particular, (5.13) holds for all h £ K(N,p) and for all g C K(D,P). Thus, we

have (AB-CD)O>0 for each choice of A, B, C and D as follows:

A = he or he + B - gor g+ (5.14a,b)

C = h o or ho , D = g9 or go (5.15a,b)

where g, g+ he and h+ are the extreme paraeven polynomials for g and h in the
e e e e + - +

p-th orthant as defined before in (5.2). Similarly, go, go, hO and ho are the

corresponding set of paraodd polynomials.

Furthermore, since h c K(N,p) and g c K(D,p), it follows from Fact 3.1 that for

the chosen pej_, which belongs to the p-th orthant, we have (5.16) and (5.17).

e < ae < ge ; g/ j < a/ g+j (5.16a,b)

h- < b <he ; h/j < bo/j h (5.17a,b)
e - e - e - -

Thus, invoking Lemma 5.1 it follows that we have (aebe-aobo)0) i.e., ReF(j_)>0

for arbitrary c QP. Next, since the denominator a of F is scattering Hurwitz

and degia=degib=ni for each i=l to k ( i.e., F is regular at infinity) it can

be shown (by invoking Theorem 35 in [5]) that F=b/a is a positive function.

Since a and b are both scattering Hurwitz with equal partial degrees in each

variable Pi, F is also strictest sense positive.

Remark: Note that if degib > degia for some i=1 to k in Theorem 5.1 then

Theorem 35 from [5] becomes inapplicable to F. Thus, the proof of Theorem 5.1

does not extend to the broader class of (strictly) positive functions which

allows for nonzero difference in degree between the numerator and denominator.

However, for the subclass of (strictly) positive functions which satisfies

degia > degib for all i=l to k the proof of Theorem 5.1 can be seen to hold

true. Thus, the statement of the theorem can be slightly broadened to include

this latter class without substantially changing the proof.

Remark: Various special cases e.g., the ones for real polynomials as well for

1-D polynomials can be inferred from Theorem 5.1. As discussed in Section 3, in
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the case of real rational functions i.e., if polynomials h and g have real

coefficients then K(I) consists of 2N distinct members. Thus, the cardinality

of the set P(N,D) in this case is IP(N,D)J-4N. If k-1 then N=2k-2, thus we

have IP(N,D)1=16, which coincides with Dasgupta's result in [12].

We next address the problem of characterization of interval positive property

of rational functions. In fact, a result exactly similar to Theorem 5.1 holds,

but the proof requires a different strategy and makes use of Fact 5.1.

Given two multi-indices m=(ml,m2,...,mk) and n_(nl,n 2,...,nk) such that the

corresponding members of m and n do not differ by more than one, we now

consider the inequalities (5.4) for all i_(il,i 2 ,...ik) where O<ij<nj; j-1 to

k. Similarly, we also consider (5.5) for all i=(il,i2,...ik) where O<ijNmj,

j-1 to k. We then have the following result.

Theorem 5.2: Let F=b/a be any rational function in k-variables

E=(P',P2-...,Pk) , where a and b are polynomials of respective (partial) degrees

m=(ml,m2,...,mk) and n=(nl,n2,...,nk) and are otherwise given as in (5.6), in

which the real and imaginary coefficients satisfy (5.4) and (5.5). Then F is a

positive function if each member of the set P(N,D) of 16N 2 rational functions

as in (5.7) is a positive function in irreducible rational form.

The converse statement that if every F prescribed via (5.6) with its

coefficients satisfying (5.4) and (5.5) are (irreducible) positive functions

then each member of P(N,D) is also so, is trivial.

Proof: Consider the set of intervals as in (5.18) designated by S+N.

S+N : -i = + y- < .i < c' + < = i (5.18a)

-i = i + <6 i < i + i (5.18b)

In (5.18) if any of the coefficients a, y, y or 6 is not defined for a certain

subscript i then we assume that coefficient to be zero. We next observe that

the polynomial (a+b), due to (5.6), can be written as in (5.19) below.
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a+b- i (- i + J.i)p - (5.19a)

where

hi 'Oi + ¥i ;i '- Hi + &i (5.19b,c)

and the summation in (5.19a) ranges over all possible i.

Since each member of P(N,D) is positive, we assert, due to Fact 5.1, that each

member of the set of 16N2 polynomials {(h+g); h e K(N), g e K(D)) is scattering

Hurwitz. A closer examination of (5.4), (5.5), (5.18) and the coefficients of

members of K(N) and K(D) reveals that K(S+N) (i.e., the generalized Kharitonov

polynomials associated with the interval set S+N) is, in fact, a subset of

{(h+g); h c K(N), g c K(D)}. Thus, in particular, each member of K(S+N) is

scattering Hurwitz. Consequently, in view of (5.18) and (5.19), it follows from

(generalized Kharitonov) Theorem 3.3 that (a+b) as in (5.19) is scattering

Hurwitz if coefficients of a and b individually satisfy (5.4) and (5.5), thus

if hi, 6i satisfy (5.18).

Next, since P(N,D) is a positive set, if h/g c P(N,D) then Re(h/g)>0 for all

p =j, whenever h/g is well defined. Via a use of Lemma 5.1 it can then be

shown in an exactly same manner as that in the proof of Theorem 5.1 that

Re(b/a)>O for an pajw, whenever b/a is well defined. If d=gcd(b,a), b=b'd,

a=a'd then F=b/a=b'/a' and since (b+a)=d(b'+a') is scattering Hurwitz (due to

Theorem 2 in [14]) the factor (b'+a') is also so. Furthermore, ReF=Re(b'/a')>O

for p=jw, wherever F is well defined. Thus, invoking Fact 5.1 it can be

concluded that F is a positive function.

Remark: Theorem 5.1 can also be proved via the technique used in proving

Theorem 5.2 if slightly modified forms of Lemma 5.1 and Fact 5.1 are exploited.

This is sketched in the following. If P(N,D) is a strictest sense positive set

then we can conclude that for p=jw except possibly for X from a sequentially

almost complete set of order less than (k-1) [5], (AB-CD)>O (where A, B, C and

D are defined in (5.14), (5.15)), which from a modified form of Lemma 5.1

yields that a ebe-a b >0 i.e., ReF>O. This latter conclusion along with the

scattering Hurwitz property of (a+b) and a modified form of Fact 5.1 can be

used to show that F is strictest sense positive.
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Remark: Exactly similar remarks as those made after Theorem 5.1 on the number

of polynomials needed to characterize interval positive property of real as

well as 1-D rational functions can also be made here in the context of Theorem

5.2.

The results of the present section are fairly recent even in the 1-D case. It

has been shown that much like in the study of stability property of

polynomials, the positivity property of multivariable rational functions

belonging to a certain region of the coefficient space can be guaranteed by

requiring that a finite set of 'extreme rational functions' have the same

property. The cardinality of this set is independent of the degree of the

rational functions being considered and depends only on the number of

dimensions (i.e., k) involved. Analogous results for discrete transfer

functions are not known. An approach mimicking that described in the present

section is bound to run into the same difficulties which plague the

corresponding problem for studying stability of polynomials. The question of

efficiently identifying regions (polytopic, polyhedral) of discrete domain

positivity in the space of coefficients of rational functions thus remains

open.
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VI. Conclusions

Multidimensional extensions of robustness of stability property of polynomials

as well as the positivity property of rational functions have been discussed.

The motivation for dealing with such problems essentially derives from

increasing need for studying digital filters [16] as well as feedback control

systems [8] described by more than one transform variable. A very broad set of

techniques, which largely rely on passive network theory, have been shown to

generalize from 1-D to higher dimensions. It is thus fair to speculate that our

discussions here should open up ways for many other results in the area. We

have mostly been concerned with only one specific class of stable

multidimensional polynomials, namely the scattering Hurwitz (Schur) class.

There exist [5],[9],[38] other classes of stable multidimensional polynomials

such as the reactance Hurwitz (which in some sense is diametrically opposite to

scattering Hurwitz), immittance Hurwitz (i.e., pruduct of scattering and

reactance Hurwitz) polynomials etc. , each having meaningful interpretations in

terms of passive system theory. The potential applicability of the techniques

presented here in studying robustness of these properties remains to be seen

(recent claim of a Kharitonov like result for 1-D modified Hurwitz polynomials

[13] can be taken to be a positive step in this direction). There are, of

course, other issues of concern even for scattering Hurwitz polynomials which

we have not addressed in the current paper. For example, characterization of

Kharitonov poly-domains (roughly speaking, Kharitonov domains are domains in

the complex plane for which Kharitonov-like results hold) generalizing the

results of (33], study of stability domains for multivariable polynomial

families described by linear inequalities as in [31] (network ideas once again

surface here) and the study of robust stability of polynomial matrices

involving more than one variable remain completely open.
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Appendix A:

Completion of the proof of Theorem 2.1:

Our exposition is for Hurwitz polynomials. Exactly similar arguments apply for

Schur polynomials by using facts from [9].

Let d be the gcd between ( Xe l+X2e2+...+Xmem) and o, assumed nonconstant, thus

involving, say, the variable Pk' Then (Xlel+X2e2+.. .+mem)+o would be the

product of a scattering Hurwitz polynomial and d. However, since o is reactance

Hurwitz [5], so is its factor d, which thus would have a sequentially almost

complete set 9 of zeros of k-tuples of order (k-l) on the distinguished

boundary p=j_ [5]. Let 9i be a sequentially almost complete set of (k-1) tuples

(~lt2,...-k) of order k such that the 1-D polynomials obtained by freezing in

gi the variables '( i, , .... _l ) from 2 is scattering Hurwitz (i.e., simply

Hurwitz). Choose then any ?6 from the nonempty intersection of 2i's and 9 such

that dl=d(j_%,pk) still contains the variable Pk (the feasibility of such a

choice can be confirmed in view of discussions in [5]). Substituting '=_06 in

(le l+X 2e 2+. ..+ m em ) we then have a convex combination of l-D Hurwitz

polynomials with a common paraodd part (thus itself a Hurwitz polynomial, due

to the validity of present theorem in l-D) containing the nonconstant

polynomial d1. But this contradicts with the fact that d and thus d1 is

reactance Hurwitz (i.e., dl contains zeros on jw axis).

Appendix B.

Proof for strictest sense Hurwitz (Schur) polynomials:

Many of the statements of results in Sections II and III, in fact, remain valid

if the term scattering Hurwitz (Schur) is replaced by strictest sense Hurwitz

(Schur). We consider the proof for Theorem 2.1(i) as a typical instance. Other

results follow from analogous arguments.

If the polynomials gi are strictest sense Hurwitz then they are also scattering

Hurwitz [5]; thus the conclusion of Theorem 2.1 still apply. However, we need
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to show that (Xlel+X2e2+...+Xmem) is strictest sense Hurwitz in addition to

being scattering Hurwitz. For this, as in Appendix A substitute pa-j_ 6 in each

gi' where -6 is now arbitrary. Then the resulting 1-D polynomials are Hurwitz;

consequently, due to the validity of Theorem 2.1 in 1-D, the l-D polynomial

obtained from (Xle1+X2e2+...+Xmem) with Epj_ 6 must also be so. However, this is

impossible if (X1el+X 2e2+...+kmem) is only scattering Hurwitz but not strictest

sense Hurwitz, because such a polynomial must have zeros on the boundary

(possibly including points at multiple infinity [41) of Rep>O [4].
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