1 Introduction

The study of the control of Discrete Event Dynamic Systems (DEDS) has been introduced by Wonham, Ramadge, et al. [2,7,8,10]. This work has prompted a considerable response by other researchers, exploring a variety of alternate formulations and paradigms. In our work, we have had in mind the development of a regulator theory for DEDS. In another paper, [4], we develop notions of stability and stabilizability for DEDS while in [3], we focus on the questions of observability and state estimation, using what might be thought of as an intermittent observation model. In this paper, we combine our work on stabilizability and observability to address the problem of stabilization by dynamic output feedback under partial observations. Our presentation here is necessarily brief, and we refer to [5] for details.

2 Background and Preliminaries

The class of systems we consider are defined over $G = (X, \Sigma, \Gamma, U)$, where X is the finite set of states, with $n = |X|$, Σ is the finite set of possible events, $\Gamma \subseteq \Sigma$ is the set of observable events, and U is the set of admissible control inputs consisting of a specified collection of subsets of Σ, corresponding to the choices of sets of controllable events that can be enabled. The dynamics defined on G are:

$$ z[k + 1] \in f(z[k], o[k + 1]) \quad (2.1) $$

$$ o[k + 1] \in (d(z[k]) \cap u[k]) \cup e(z[k]) \quad (2.2) $$

The function d specifies the set of possible events defined at each state, $e(z)$ specifies the subset of $d(z)$ events that cannot be disabled at each state, and the function f specifies the nondeterministic state evolution. In Section 4, we use this general framework in which there is no loss of generality in taking $U = 2^\Sigma$. Up to that point we assume the slightly more restrictive framework of [8] in which $U = 2^\Sigma$ and $e(z) = d(z[k]) \cap \Phi$. Furthermore, we assume that $\Phi \subseteq \Gamma$.

Our model of the output process is quite simple: whenever an event in Γ occurs, we observe it; otherwise, we see nothing. Specifically, with $h(\sigma) = \sigma$ if $\sigma \in \Gamma$ and $h(\sigma) = \epsilon$ otherwise, where ϵ is the "null transition", our output equation is

$$ \gamma[k + 1] = h(\sigma[k + 1]) \quad (2.3) $$

Note that by letting $h(s_1, s_2) = h(s_1)h(s_2)$ we can think of h as a map from $\Sigma^* \to \Gamma^*$, where Γ^* denotes the set of all strings of finite length with elements in Γ, including the empty string ϵ. The quadruple $A = (G, f, d, h)$ represents our system.

Throughout this paper we will assume that A is alive, i.e. $\forall z \in X, d(z) \neq \emptyset$. Another notion that we need is the composition of two automata, $A_i = (G_i, f_i, d_i, h_i)$ which share some common events. The dynamics of the composition are specified by allowing each automaton to operate as it would in isolation except that when a shared event occurs, it must occur in both systems [5]. We also need:

Definition 2.1 Let E be a subset of X. A state x is E-pre-stable if there exists some integer i such that every trajectory from x passes through E in at most i transitions. The state x is E-stable if every state reachable from x is E-pre-stable. The DEDS is E-stable (respectively, E-pre-stable) if every x is E-stable (E-pre-stable).

Definition 2.2 The radius of A is the length of the longest cycle-free trajectory between any two states of A. The E-radius of an E-stable system A is the maximum number of transitions it takes any trajectory to enter E.

We refer the reader to [4] for a more complete discussion of this subject and for an $O(n^3)$ test for E-stability of a DEDS. In [4] we also study stabilization by state feedback. Here, a state feedback law is a map $K : X \to U$ and the resulting closed-loop system is $A_K = (G, f, d_K, h)$ where

$$ d_K(z) = (d(z) \cap K(z)) \cup (d(z) \cap \Phi) \quad (2.4) $$

Definition 2.3 A state $x \in X$ is E-pre-stabilizable (respectively, E-stabilizable) if there exists a state feedback K such that x is E-pre-stable (E-stable) in A_K. The DEDS is E-stabilizable if every x is E-stabilizable.

We refer the reader to [4] for a complete discussion of this subject and for an $O(n^3)$ test for E-stabilizability, which also constructs a stabilizing feedback.

In [3], we term a system observable if the current state is known perfectly at intermittent points in time. Obviously, a necessary condition for observability is that it is not possible for our DEDS to generate arbitrarily long sequences of unobservable events. This is not difficult to check and will be assumed. We now introduce some notation that we will find useful:

- We define the reach of x in A as:

$$ R(A, x) = \{ y \in X | x \rightarrow^* y \} \quad (2.5) $$
where \(x \rightarrow^* y \) denotes that \(x \) reaches \(y \) via some event string in \(\Sigma^* \). We define the reach of \(x \) in \(A \) as:

\[
R(A, x) = \{ y \in X | x \rightarrow^* y \} \tag{2.6}
\]

- Let \(Y \) denote the set of states \(x \) such that either there exists an observable transition defined from some state \(y \) to \(x \), or \(x \) has no transitions defined to it. Let \(q = |Y| \).
- Let \(L(A, x) \) denote the set of all possible event trajectories of finite length that can be generated if the system is started from the state \(x \). Also, let \(L_i(A, x) \) be the set of strings in \(L(A, x) \) that have an observable event as the last event, and let \(\hat{L}(A) = \bigcup_{x \in X} L(A, x) \).
- Given \(s \in L(A, x) \) such that \(s = pr \), \(p \) is termed a prefix of \(s \) and we use \(s/p \) to denote the corresponding suffix \(r \).

In [3], we describe an observer that computes the subset of \(Y \) corresponding to the set of possible states into which \(A \) transitioned when the last observable event occurred. Let \(Z \subset 2^Y \) denote the observer state space. Then if the observer estimate is \(\hat{x}[k] \in Z \) and the next observed event is \(\gamma[k+1] \), we have:

\[
\hat{x}[k+1] = w(\hat{x}[k], \gamma[k+1]) \tag{2.7}
\]

where

\[
w(\hat{x}[k], \gamma[k+1]) \triangleq \bigcup_{x \in R(A, [\hat{x}[k]])} f(x, \gamma[k+1]) \tag{2.8}
\]

and

\[
\gamma[k+1] \in v(\hat{x}[k]) \tag{2.9}
\]

where

\[
v(\hat{x}[k]) \triangleq h(\bigcup_{s \in R(A, [\hat{x}[k]])} (d(z) \cap u(k))) \cup (d(z) \cap \overline{\Phi}) \tag{2.10}
\]

The set \(Z \) is then the reach of \(\{Y\} \) using these dynamics, i.e., we start the observer in the state corresponding to a complete lack of state knowledge and let it evolve. We let \(\hat{x}(t) \) for \(t \in \Gamma^* \) denote the observer state if the string \(t \) has been observed. Our observer then is the DEDS \(O = (F, w, v, i) \), where \(F = (Z, \Gamma, \Gamma, U) \) and \(i \) is the identity output function. In [3], we show that \(A \) is observable iff \(O \) is stable with respect to its singleton states. We also show that if \(A \) is observable then all observer trajectories pass through a singleton state in at most \(q^2 \) transitions so that the radius of the observer is at most \(q^3 \).

Suppose that the observed sequence of transitions includes errors corresponding to inserted, missed, or mistaken events. We term an observer resilient if after a finite burst of such measurement errors, the observer resumes correct behavior in a finite number of transitions. The observer \(O \) as specified in 2.7,2.9 is designed only for event sequences that can actually occur in the system. When an error occurs, the observer can at any point be in a state such that the next observed event is not defined. In this case, we extend \(w \) and \(v \) to reset the observer state to \(\{Y\} \). This yields an observer \(OR = (F, w_R, v_R, i) \), which is resilient if \(A \) is observable.

A compensator is a map \(C : \Gamma^* \rightarrow U \), yielding a closed loop system \(AC \):

\[
s[k+1] \in d_C(x[k], s[k]) \triangleq (d(x[k]) \cap C(h(s[k]))) \cup (d(x) \cap \overline{\Phi}) \tag{2.11}
\]

where \(s[k] = \sigma[0] \cdots \sigma[k] \) with \(\sigma[0] = \epsilon \).

One constraint we wish to place on our compensators is that they preserve liveness. Suppose that we have observed the output string \(s \). Then, we must make sure that any \(x \) reachable from any element of \(\hat{x}(s) \) by unobservable events only is alive under the control input \(C(s) \):

Definition 2.4 A compensator \(C \) is \(\Phi \)-compatible if for all \(x \in R(A, [\hat{x}[k]]) \), \((d(z) \cap F) \cup (d(z) \cap \overline{\Phi}) \neq \emptyset \). A compensator \(C \) is \(A \)-compatible if for all \(s \in h(\hat{L}(A)) \), \(C(s) \) is \(\hat{x}(s) \)-compatible.

Definition 2.5 A compensator \(C \) is \(O \)-compatible if for all \(s,t \in h(\hat{L}(A)) \) such that \(\hat{x}(s) = \hat{x}(t) \), \(C(s) = C(t) \). In this case, there exists a map \(K : Z \rightarrow U \) such that \(C(s) = K(v(\hat{Y}, s)) \) for \(s \in h(\hat{L}(A)) \). \(K \) is termed the observer feedback for \(C \).

We will see in Section 3 that we can restrict attention to \(O \)-compatible compensators in order to address the stabilization problem.

3 Output Stabilizability

The obvious notion of output \(E \)-stabilizability is the existence of a compensator \(C \) so that \(AC \) is \(E \)-stable. Because of the nature of our observations, it is possible that such a stabilizing compensator may exist, so that we are sure that the states go through \(E \) infinitely often, but so that we never know when the state is in \(E \). For this reason, we also define a stronger notion of output stabilizability that requires that we regularly have this information as well. For simplicity, we assume observability throughout.

Definition 3.1 A is strongly output stabilizable if there exists a state feedback \(K : Z \rightarrow U \) for the observer such that \(X_I \) in \(A || OK \) is \(EOC \)-stable, where \(X_I = \{(x, \{Y\}) | x \in X\} \) is the set of possible initial states in \(A || OK \) and where \(EOC = \{(z, \hat{z}) | \hat{z} \in Y \times Z | \hat{z} \in E \} \) is the set of composite states for which the system is in \(E \) and we know it.

Since \(O \) describes all the behavior that can be generated by \(A \), we have the following:

Proposition 3.2 A is strongly output stabilizable if there exists a state feedback \(K : Z \rightarrow U \) for the observer such that \(X_I \) in \(A || OK \) is \(EOC \)-stable, where \(X_I = \{(x, \{Y\}) | x \in X\} \) is the set of composite states for which the observable events are \(EOC \)-stable. Furthermore, if \(A \) is strongly output stabilizable then the trajectories in the reach of \(X_I \) in \(A || OK \) go through \(EOC \) in at most \(nq^3 \) transitions.

Thus we can test strong output stabilizability by testing the observer for stabilizability. The following algorithm adapts one from [3]:
Proposition 3.4 The following algorithm tests for strong output stabilizability and constructs the corresponding feedback. It has complexity \(O(q^3|Z|) \):

Algorithm Let \(Z_0 = E_0 \) and iterate:

\[
P_{k+1} = \{ \hat{z} \in Z | \{ \gamma \in v(\hat{z}) | w(\hat{z}, \gamma) \in P_k \} \text{ is } \hat{z} \text{-compatible} \} \\
K(\hat{z}) = \{ \gamma \in v(\hat{z}) | w(\hat{z}, \gamma) \in P_k \} \text{ for } \hat{z} \in P_{k+1} \\
Z_{k+1} = Z_k \cup P_{k+1}
\]

Terminate when \(Z_{k+1} = Z_k = Z^*. \) \(A \) is strongly output stabilizable iff \(Z = Z^* \).

Consider next the following somewhat weaker notion:

Definition 3.5 \(A \) is output stabilizable (respectively, output pre-stabilizable) with respect to \(E \) if there exists a compensator \(C \) such that \(A_C \) is \(E \)-stable (\(E \)-pre-stable). We term such a compensator an output stabilizing (respectively, output pre-stabilizing) compensator.

Proposition 3.6 \(A \) is output stabilizable iff \(A \) is output pre-stabilizable while preserving liveness (i.e., the closed loop system is pre-stable and alive).

Proposition 3.7 A is output stabilizable with respect to its dead states, i.e., with respect to the states \(y \) such that the compensator for finite length. In doing this, however, we need to make sure \(v(Y, Y) \) is \(y_2 \)-compatible, and \(Q_E \) is \(E \)-stable with respect to \(E \) if there exists a compensator \(C \) such that \(A_C \) is \(E \)-stable (\(E \)-pre-stable). We term \(K(y) \) a stabilizing compensator on the new observations. We now also need to know \(K(y) \), and which forces all trajectories in \(A \) to pass through \(E \) in \(n_0 \) transitions.

Proposition 3.8 \(A \) is output pre-stabilizable while preserving liveness if there exists a state feedback \(K \) such that \(K_E \) is \(E \)-stable and for all \((y_1, y_2) \in W \), \(K((y_1, y_2)) \) is \(y_2 \)-compatible. Furthermore, the compensator defined by \(C(s) = K(w_{QK}(Y, Y), s) \) for \(s \in L(Q_E, (Y, Y)) \) and \(C(s) = \Phi \) for all other \(s \), pre-stabilizes \(A \), where

\[
K(y) = \begin{cases} \\
F \subset \Phi \text{ if } v_QF(y) \neq \emptyset \\
F \text{ is } y_2 \text{-compatible if } y \in EQ \\
K_0(y) \text{ otherwise} \\
\end{cases}
\]

Finally, the trajectories in \(A_C \) go through \(E \) in at most \(n_0^3 \) transitions.

Proposition 3.9 The following algorithm tests for output pre-stabilizability while preserving liveness and constructs the corresponding feedback. It has complexity \(O(q^3|W|) \):

Algorithm Let \(Z_0 = EQ \) and for \(y = (y_1, y_2) \in EQ \), let \(K(y) = F \subset \Phi \) where \(F \) is such that \(v(QF(y)) = \emptyset \) and \(F \) is \(y_2 \)-compatible. Iterate:

\[
P_{k+1} = \{ y \in W | \{ \gamma \in v(y) | w(y, \gamma) \in P_k \} \text{ is } y_2 \text{-compatible in } A \} \\
K(y) = \{ \gamma \in v(y) | w(y, \gamma) \in P_k \} \text{ for } y \in P_{k+1} \\
Z_{k+1} = Z_k \cup P_{k+1}
\]

Terminate when \(Z_{k+1} = Z_k = Z^*. \) \(A \) is output pre-stabilizable iff \((Y, Y) \in Z^* \).

Note that if, at some point, we are certain that the trajectory has passed through \(E \), we can force the trajectory to go through \(E \) again by starting the compensator over, i.e., by ignoring all the observations to date and using the pre-stabilizing compensator on the new observations. We now present an approach which allows us to detect, as soon as possible, that the trajectory has passed through \(E \). Given an output pre-stabilizable \(A \), suppose that \(C \) is the corresponding compensator and \(K \) is the corresponding \(Q \)-feedback for \(C \). Recall that in general, given some \(y = (y_1, y_2) \in R(Q_E, (Y, Y)) \), not all events defined at \(y_2 \) are defined at \(y \). Suppose that we start \(Q_K \) in \((Y, Y) \) and then observe \(s \in h(L(A_C) \cap L(Q_E, (Y, Y))) \), so that \(y = w_{QK}(Y, Y), s \) is the present state of \(Q_K \), and suppose that the next observation is a transition \((Y, Y) \notin v_Qk(y) \). We then know that the trajectory has passed through \(E \). At this point, we wish to force the trajectory to pass through \(E \) again, but in doing so, we can use our knowledge of the set of states that the system can be in, i.e., \(w(y_2, \sigma) \). What we would then like to do is to have \(Q \) transition to the state \(z = (w(y_2, \sigma), w(y_2, \sigma)) \). However, as we have defined it so far, \(z \) may not be in \(W \). What we must do in this case is to augment \(W \) with all such \(z \)'s and any new subsequent states that might be visited starting from
such a z and using the dynamics of Q (or its restriction under feedback) extended to arbitrary subsets $y_1, y_2 \subset Y$. We modify this definition as follows: if $w_{E_{Q}}(y_1, \sigma) = \emptyset$, then we set $w_{Q_K}(y_1, y_2, \sigma) = (w_{Q}(y_2, \sigma), w_{Q}(y_2, \sigma))$. Let W^e be the union of the reaches of all states of the form (Y', Y') with $Y' \subset Y$ and define $Q^e = (F^e, u, v)$ where $F^e = (W^e, \Gamma, \Gamma)$. Note that $E_{Q} \subset W^e$ and $R(Q_K, (Y, Y)) \subset W^e$. If in fact any $z = (Y', Y')$ is pre-stable with respect to $R(Q_K, (Y, Y))$ in Q^e, then we can force the trajectory to pass through E. The next result states that pre-stabilizability of Q is sufficient for being able to do this:

Proposition 3.10 If there exists a feedback K for Q such that Q_K is E_{Q}-pre-stable and $K(y)$ is y_2-compatible, then there exists a feedback K' such that for any $Y' \subset Y$, $z = (Y', Y')$ is pre-stable with respect to $R(Q_K, (Y, Y))$ in Q^e, and $K'(y)$ is y_2-compatible for each $y = (y_1, y_2) \in R(Q_K, z)$.

Note that K' can be chosen so that $K'(y) = K(y)$ for all $y \in R(Q_K, (Y, Y))$ and the algorithm in Proposition 3.9 can be used for constructing such a K'.

In order to construct an output stabilizing compensator, we use the above proposition recursively as follows: Let K_0 be a feedback that pre-stabilizes Q and preserves liveness, as can be constructed using the algorithm in Proposition 3.9. Let $Z_0 = (y, x)$ be the initial state of Q_{K_0} and let $W_0 = R(Q_{K_0}, Z_0)$, i.e., the states we may be in when we know that the trajectory has already passed through E. We then augment Z_0 to include the states to which we may “reset” our compensator:

$$Z_1 = Z_0 \cup \{(\hat{x}, \hat{z})|\hat{z} = w(y_2, \sigma)\}$$

for some $y = (y_1, y_2) \in W_0$ and $\sigma \in \hat{v}(y_2, K_0(y))$ (3.13)

where $\hat{v}(y_2, K_0(y)) = (v(y_2) \cap K_0(y)) \cup (v(y_2) \cap \emptyset)$. Next, we find a feedback K_1 that satisfies Proposition 3.10 for each $(Y', Y') \in Z_1$, and we let $W_1 = R(Q_{K_1}, Z_1)$. Proceeding in this fashion, we construct W_2, W_3, etc., until $W_{k+1} = W_k = W'$ for some k. Let K' be the corresponding feedback. Then (1) $Q_{K'}$ is E_{Q}-pre-stable; (2) $K'(y)$ is y_2-compatible for all $y \in W'$; and (3) for all $y' \in E_{Q} \cap W'$ and $\sigma \in \hat{v}(y_2, K'(y'))$, $(w(y_2, \sigma), w(y_2, \sigma)) \in W'$.

Finally, we construct $Q' = (F', w', v')$ where $F' = (W', \Gamma, \Gamma)$:

$$w'(y, \sigma) = \begin{cases} w_{Q}(y, \sigma) & \text{if } \sigma \in w_{Q_{K'}}(y) \\ (w_{Q}(y_2, \sigma), w_{Q}(y_2, \sigma)) & \text{otherwise} \end{cases}$$

$$v'(y) = \hat{v}(y_2, K(y))$$

(3.15)

Then, the compensator $C(s) = K'(w'((Y, Y), s))$ for all $s \in L(Q', (Y, Y))$ stabilizes A.

4 Sufficient Conditions Testable in Polynomial Time

We have presented necessary and sufficient conditions for output stabilizability that can be tested in polynomial time in the cardinality of the observer state space. However, while in many cases the observer state space may be small, there are worst cases in which its cardinality is exponential in q (see [3]). In this section, we present sufficient conditions that can always be tested in polynomial time in q.

It is well known in linear system theory that controllability and observability imply stabilizability using dynamic output feedback. Unfortunately, this is not true in our framework, since we only require that the state is known intermittently. We start this section by showing that we obtain a result similar to that for linear systems if we assume as in [5] that after a finite number of transitions, and for each transition after that, we have perfect knowledge of the current state.

A set $Q \subset X$, Q is f-invariant in A if all state trajectories from Q stay in Q. In [4], we present an algorithm that computes the maximal f-invariant subset of a given set. Let E_w be the maximal w-invariant subset of the set of singleton states of Q. If $E_w \neq \emptyset$ and if O is E_w-stable, then at some finite point the observer state enters E_w and never leave, so that the state will be known perfectly from that point on:

Proposition 4.1 Suppose that (i) $E \cap E_w = \emptyset$; (ii) A is $E \cap E_w$-stabilizable; (iii) O is E_w-stable, then A is output-stabilizable.

To show that the computational complexity of testing Proposition 4.1 is polynomial in q, we proceed as we did in [3]. First, we construct an automaton $A' = (G', f', d', \ell)$, over Y that models the state transition behavior sampled at the times at which observable events occur so that f' and d' can be constructed from A and ℓ is the identity function. Note that the observers for A and A' are identical. Next, let $P = Y \times X$ and construct the pair automaton Op with state space P and event set Γ. The dynamics of Op have the following interpretation. Suppose that the system might be in either state x or state y, and suppose that the event γ occurs. Then, the next state of A' could be any element of $S = f'(x, \gamma) \cup f'(y, \gamma)$. The dynamics of Op capture this possible ambiguity by moving from (x, y) to any (x', y') with $x', y' \in S$. Also, there are some special states in Op, namely those in $Ep = \{(x, z) | x \in Y\}$, corresponding to no ambiguity. Indeed the following provides an efficient way in which to compute E_w:

Proposition 4.2 E_w is the maximal w-invariant subset of the singleton states of O iff $\{(x, z) | x \in E_w\}$ is the maximal wp-invariant subset of Ep in Op.

Furthermore, it follows from [3] that O is E_w-stable iff Op is $\{(x, z) | x \in E_w\}$-stable, and from [4] we can show that Proposition 4.1 can be tested in $O(q^4)$ time.

We can also test a weaker sufficient condition. A set Q is sustainably (f, u)-invariant in A if there exists a state feedback such that Q is alive and f-invariant in the closed loop system. Let E_u be the maximal sustainably (u, w)-invariant subset of the singleton states and let K_u be the associated state feedback (see [4] for construction). Note that K_u only needs to act on the singleton states, and thus it can also be thought of as a feedback for A. Note also that K_u needs to disable those events that take states in E_u outside of E_u, and it is unique provided that it only disables such events.

Proposition 4.3 Suppose that (i) $E \cap E_w = \emptyset$; (ii) A is $E \cap E_w$-stabilizable; and (iii) O is E_w-stable. Then if $K_s(z)$ is a stabilizing feedback, the feedback

$$\hat{K}(z) = \begin{cases} K_s(z) \cap K_s(z) & \text{if } z = \{x\} \in E_u \\ \Phi & \text{otherwise} \end{cases}$$

(4.16)
is an output stabilizing feedback for A.

It can be shown that this sufficient condition for output stabilizability can also be tested in $O(q^3)$ time.

We conclude this section by presenting an even weaker sufficient condition. We term a state x always observable if whenever the system is in x, the observer estimate is $\{x\}$. We term a system a-observable if it is stable with respect to its always observable states. Suppose that A is a-observable and let us construct the automaton A_a which is the same as A except that only events in always observable states can be controllable, i.e., $e_a(x) = d(x)$ for all states x that are not always observable. If A_a is stabilizable then A is also output stabilizable since whenever we need to exercise control, we have perfect knowledge of the state.

Proposition 4.4 Given an a-observable system A, if A_a is E-stabilizable then A is output stabilizable.

It can be shown that this sufficient condition can be tested in $O(q^3)$ time.

5 Resiliency

In this section we study the property of resilient output stabilizability in the sense that in spite of a burst of observation errors, the system stays alive and goes through E infinitely often. To begin we say that the discrepancy between two strings s and t is of length at most i, denoted by $\xi(s, t) \leq i$, if there exists a prefix, p, of s and t such that $|s/p| \leq i$ and $|t/p| \leq i$.

Definition 5.1 A is resiliently, strongly output stabilizable if there exists a strongly output stabilizing compensator $C : \Gamma^* \rightarrow U$ and an integer i such that for all strings s that can be generated by A_C, i.e., $\forall x \in X$, and $\forall s \in L_f(A_C, x)$; and for all possible output strings t which can be generated by corrupting $h(s)$ with a finite length burst, i.e., \forall positive integers j, and $\forall t \in \Gamma^*$ such that $\xi(t, h(s)) \leq j$, the compensator acting on such corrupted strings still strongly stabilizes the system after the error burst has ended. That is, for each such x, s, and t, the compensator $C'(h(s')) = C(th(s'))$, defined for $s' \in h(L(A, f(x, s)))$ is such that

- the range of $f(x, s)$ is alive in A_C, i.e., for all $x \in R(A_C, f(x, s))$, $d_C(x) \neq \emptyset$
- for all $p \in L(A_C, f(x, s))$ such that $|p| \geq i$, there exists a prefix p' of p such that $|p'/p| \leq i$ and $f(x, sp) \subseteq w_{CR}(Y, th(p')) \subseteq E$, where w_{CR} is the transition function of the resilient observer O_{CR} for A_C.

We say that C is a resiliently, strongly stabilizing compensator for A.

The requirements on C' ensure that the compensator C acting on the corrupted output string (a) preserves liveness, and (b) stabilizes A following the burst.

Let us return to the characterization of strong output stabilizability in Proposition 3.3, but note that we must now use the resilient observer O_R in place of O in the actual implementation. If an error burst now occurs, it may put the system and observer in arbitrary states not necessarily within the reach of the initial states X_I defined in Proposition 3.3. Since $A \parallel O_{KR} = A \parallel O_K$, we have:

Proposition 5.2 A is resiliently, strongly output stabilizable if there exists a state feedback $K : Z \rightarrow U$ for the observer such that $A \parallel O_K$ is E_{OC}-stable.

Finally, we have the following companion of Proposition 3.2 which states that it is necessary and sufficient to test O for E_{OC}-stabilizability, but since the burst may put the system and the observer in arbitrary states, we need an X-compatible feedback:

Proposition 5.3 A is resiliently, strongly output stabilizable with respect to E iff there exists a state feedback K for the observer such that O_K is E_{OC}-stable and for all $x \in Z$, $K(x)$ is X-compatible.

An algorithm for testing resilient, strong output stabilizability and constructing a feedback is identical to Algorithm 3.4 except that when we search for a feedback, we search for one that is X-compatible, and the computational complexity is again $O(q^3 |Z|)$.

Definition 5.4 A is resiliently output stabilizable if there exists an output stabilizing compensator C such that for all strings s that can be generated by A_C, i.e., $\forall x \in X$, and $\forall s \in L_f(A_C, x)$; and for all possible output strings t which can be generated by corrupting $h(s)$ with a finite length burst, i.e., \forall positive integers i, and $\forall t \in \Gamma^*$ such that $\xi(t, h(s)) \leq i$, the trajectories starting from $f(z, s)$ visit E infinitely often, i.e., $f(x, s)$ is E-stable in A_C. where $C'(h(s')) = C(th(s'))$ for all $s' \in h(L(A, f(x, s)))$. We say that C is a resiliently stabilizing compensator for A.

Lemma 5.5 If C is a resilient output stabilizing compensator then $C(s)$ is X-compatible for all $s \in h(L(A))$.

Necessary and sufficient conditions for resilient output stabilizability parallel those of output stabilizability except that we need to use X-compatible feedback. Since, a resilient output stabilizing compensator needs to be defined for all strings in Γ^*, given a feedback K for the automaton Q defined in Section 3.2, we define $Q_{KR} = (G_{KR}, w_{KR}, v_{KR})$ so that $v_{KR}(\Gamma) = (\Gamma$ and $w_{KR}(Y, \gamma)$ resets Q_K to (Y, Y) if $\gamma \notin v_{KR}(y)$. We can then define a compensator $C(s) = K(w_{KR}(Y, Y), s))$ for all $s \in \Gamma^*$. We state the following companion of Proposition 3.8 where

$$E_{QR} = \{y = (y_1, y_2) \in W \exists F \supseteq \emptyset \text{ such that } v_{QF}(y) = \emptyset \text{ and } F \text{ is } X \text{-compatible}\}$$

(5.17)

Proposition 5.6 A is resiliently output stabilizable iff there exists a state feedback K such that Q_K is E_{QR}-pre-stable and for all $y \in W$, $K(y)$ is X-compatible in A. Furthermore, the compensator defined by $C(s) = K(w_{KR}(Y, Y), s))$ for all $s \in \Gamma^*$ resiliently stabilizes A.

We can test for resilient output stabilizability and can construct a feedback by modifying Algorithm 3.4, using E_{QR} in place of E_Q and checking X-compatibility.
Acknowledgements

Research supported by the Air Force Office of Scientific Research under Grant AFOSR-88-0032 and by the Army Research Office under Grant DAAL03-86-K0171.

References

