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Abstract

In this paper the problem of optimal rejection of bounded persistent disturbances
is solved in the case of linear discrete-time periodic systems. The solution consists of

solving an equivalent time invariant standard t 1 optimization problem subject to an

additional constraint. This constraint assures the causality of the resulting periodic
controller. By the duality theory, the problem is shown to be equivalent to a linear

programming problem, which is no harder than the standard tl problem. The solution
to this problem has an immediate application to multi-rate sampled systems.
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1 Introduction

The study of periodically time varying systems is a topic of growing research. In [8] an

equivalence between m-input, p-output, linear, N-periodic, discrete systems and a class of

discrete linear time invariant systems was established. Namely, this class consists of mN-

input, pN-output, linear time invariant (LTI) systems with z transforms C(z) such that

C(O) is a lower triangular matrix. This equivalence is strong in the sense that it preserves

the algebraic structure (isomorphism) and the norm (isometry). Hence, we can effectively

use the theory of LTI systems to study periodic ones. In fact, the authors in [8] use this

equivalence to prove that although the performance is not improved , periodic compensators

for LTI plants offer significant advantages in terms of robustness. Moreover, they argue that

the optimal (in £2 to (2 sense) compensator for a N-periodic system is N-periodic. Indeed,

as it is proved in [1] the above argument is true also in the worst case £e to £e sense.

Hence, it can be easily inferred that the optimal controller for the N-periodic system can be

obtained by solving the equivalent LTI problem. This problem however, includes a constraint

on the optimal LTI compensator O(z), namely C(O) should be lower triangular so that C

corresponds to a causal N-periodic controller. It is exactly this problem we solve in this

paper in an optimal £e to £e sense. The unconstrained problem is solved in [2]. In [2] the

problem is transformed to a tractable linear programming problem, via duality theory. In

this paper, we show that the same approach can be extended. In section 2 we present some

mathematical preliminaries together with some background on periodic systems. In section

3 the problem is defined and in section 4 we present the solution following two approaches.

Moreover, in section 4 we comment on the relation between this problem and the problem

of optimal disturbance rejection for multi-rate sampled systems. Finally, in section 5 we

summarize and draw conclusions.

2 Notation and Preliminaries

In this paper the following notation is used:

txn : The normed linear space of all m x n matrices H each of whose entries is a right

sided, absolutely summable real sequence Hij = (Hij(k))°_0. The norm is defined as:

n oo

IIHJL = m~axE E =Hij(k)l
j=l k=O
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tmxn : The normed linear space of all m x n matrices H each of whose entries is a right

sided, magnitude bounded real sequence Hij = (Hij(k)) 0'=o. The norm is defined as:

m

11HlIlt0 = max(sup IHj Ij)
mxn i= 3 k

Cxn : The subspace of £-x, consisting of all elements each of whose converges to zero.

H/(z): The z transform of a right sided m x n real sequence H = (H(k))°_o defined as:

00

H(z) = E H(k)zk
k=O

Amxn : The real normed linear space of all m x n matrices H(z) such that H-(z) is the z

transform of an fl sequence H.

LTVn : The space of all linear bounded and causal maps from xl to fx- We refer to

these operators as stable.

-TIy : The subspace of ITmxV consisting of the maps that commute with the shift operator

(i.e. the time ivariant maps). This space is isometrically isomorphic to Amxn

We will often drop the m and n in the above notation when the dimension is not important

or clear from the context. Also, subscripts on the norms are dropped when there is no

ambiguity.

X* : The dual space of the normed linear space X.

BX: The closed unit ball of X.

S : The left annihilator of S C X.

(, x*) : The value of the bounded linear functional x* at point x E X.

Fact 0[2]

Every linear functional on il,, is representable uniquely in the form

m n oo

f(H) = E E E Yij(k)Hij(k)
i=1 j=l k=O

where Y = (Yij) E £x and H =(Hij) E Xn Hence, (1 xn)* = xn It can be also

shown that (co x)*-= · x where the linear functionals are defined as above.

We now present some background on periodic systems following [8].

Let 1£,e denote the space of real m x 1 vector valued sequences. Let A denote the right shift
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operator on /oo, e i.e.

A(a) = {O, a(O), a(l),...

where a = {a(O), a(l),...) E £"e. Finally, let f represent the input-output map from ou"

to p-,eof a linear causal time varying system.

Definition :The map f is N-periodic if and only-if it commutes with the Nth power of the

right shift i.e.

fAN = ANf

Let W represent the isomorphism

a(O) a(N1) a(2N) ...

W : ' --+ : a = {a(0),a(N + 1) a(2N + 1) ...

a(N - 1) a(2N - 1) a(3N - 1) ...

Define the map L as

L(f) = WfW-1

then L(f) represents a system with inputs in 'mN and outputs in IpN - Moreover, as shown

in [8] L(f) is LTI and the following hold:

Fact 1

Given a m-input p-output linear causal N-periodic system f, one can associate via-the map

L a unique causal (pN x miN) LTI system L(f) with a transfer matrix F(z). Conversely,

any (pN x mN) proper transfer matrix F(z) with P(O) lower triangular can be associated

by L -1 to a unique m-input, p-output, linear, causal, N-periodic system.

Fact 2

L preserves the algebraic properties and the norm. In particular,

sup IIfullt = sup IlFwlle
uEBIA P' wEBt 

Hence, f is input-output stable if and only if F = L(f) is stable.

Suppose in addition, that f is finite dimensional. In [1] it is shown that we can obtain a

doubly coprime factorization (dcf) of f by obtaining a dcf of the lifted system F. The key

observation in [1] is that the factors of F obtained using the standard formulas in [6] possess

the property of being lower triangular at z = 0. Hence, since L is an isomorphism, we can

obtain a dcf of f, the factors being the images of the inverse map of the lifted LTI factors of

F ; therefore N periodic. In summary we have:
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Fact 3

Let F = NIDi l = D-1N, and

X, -Yr, Di YX/) i
-N, Dr , VN Xi

represent a dcf of F where the factors are given as in [6]. Then, the following represent a

dcf of f:

f = nid-1 = d,'ln,

X, -Yr)dl !i)Y i
-n. dr nl Xl

where nj = L-'(N1 ), d = L-(DI), , y = LL((X), yi = L'(EY), nr = L-'(Nr), dr = L-(D),

Ox = L-r(Xr), y, = L-'(Yr) are in £TV and N-periodic.

Also, along the lines of [12], it is shown in [1] that the optimal performance in periodic

plants is achieved with periodic controllers, namely:

Fact 4

Let Hp, Up, Vp be N -periodic and stable causal linear operators. Then

inf IIHp - UpQVpl = inf IIHp - UpQpVpII
QE£Tv Q,

where Q, is N-periodic and in £TV.

3 Problem Definition

The standard block diagram for the disturbance rejection problem is depicted in Figure

1. In this figure , Pp denotes some fixed linear causal N-periodic plant, Cp denotes a time

varying compensator (not necessarily periodic), and the signals w, v, y, and u are defined

as follows: w, exogenous disturbance; v, signals to be regulated; y, measured plant output;

and u, control inputs to the plant. Let T,v represent the resulting map from w to v for a

given compensator Cp. Our objective can be now stated as:

Find Cp such that the resulting closed loop system is stable and also the induced norm

IITvW, over £e is minimized.(OBJ)

In the sequel we show that this problem can be turned to an equivalent LTI problem .

For this purpose, consider the same problem as defined above, for the lifted plant P = L(Pp)

and let T,} denote the map from fti = Ww to v = Wv. Then it is well known [14, 5, 13, 4]

that all the feasible maps are given as T,, = H - UQV where H, U, V E 1TI and Q E £TV-



Moreover, H, U, V are determined by P. Now, the following lemma shows the aforementioned

equivalence.

Lemma

The (OBJ) is equivalent to the problem

inf IIH- UQVII (OPT)
QE£TI

subject to Q(O) is lower triangular

Proof

From facts 3 and 4 we obtain

inf IITwll[ = inf [IHp - UpQpVpll
Cp Qp

where Qp is N-periodic, stable, and Hp = L-(H), Up = L-'(U), Vp = L-'(V). Now, by

facts 1 and 2 it follows that

inf IIHp - uQvl[ = inf IIH - UQVII
Qp Q=L(Qp)

QED

4 Problem Solution

Clearly, if in (OPT) we remove the constraint on Q(0) then the problem becomes the

standard e1 optimization problem [2]. In [2] the authors solve the problem by solving the

dual problem with linear programming methods. We can solve (OPT) by simply extending

the method in [2] to account for the constraint on Q(O). To view this let f{P }Nv0 be as in

[2] the basis for the functionals in tex, that annihilate the space

S, = {UQV: Q E mxn)

These functionals are attributed to the unstable zeros of U and V. Moreover, assume

JPnJN, E c° ,n, Xi.e. U, V have no zeros on the unit circle. Suppose now, that we are

able to find functionals {Xj}j=1 in c° xn such that

(UQV, Xj) = 0 Vj = 1,2,...,r iff Q(0) lower triangular (1)

then the annihilator subspace IS of

S = {UQV: Q E e.xn, Q(0) lower triangular}
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can be characterized as

'S = span({Pn}j'j U {Xj}=>)

Hence, we have a complete characterization of -l and we can proceed exactly as in [2] to

solve (OPT). So the problem can be stated as follows: Find {Xj)}= 1 such that (1) holds.

In the sequel we show how to obtain these (Xjj}=1. First, define the functionals Rj,

j = 1, 2,..., r as follows: Let r be the number of elements of Q with indices (k, 1) that do

not belong in the lower triangular portion of Q , i.e. k < 1. For each j = 1,2,..., r define

= { 1 il = k and jl = I;

Rj(q) = 0 for q = 1, 2,...

then Rj E co xn and also

(Q, Rs) = 0 Vj = 1, 2,.. ., r iff Q(0) lower triangular

Therefore, the problem can be reformulated as: Find {Xj}j=1 such that

(UQV,Xj) = 0 iff (Q,Rj) = 0 Vj = 1,2,...,r (2)

We approach this problem in two ways:

Approach 1

By performing an inner outer factorization [6] for U, V we obtain

U= UiWo, v= VOVi

where the subscript i stands for "inner" and o for "outer". Let U,, V,, denote the right and

left inverses of Uo, Vo respectively. Also, let Z = UoQVo then

inf IIH - UQVI = inf =1H - UiZV ||
QEICTI ZE£TI

Hence, if R C {R)}=,1, the condition (Q,R) = 0 becomes

(Uozvol, R) = O

with Q = UoZVot

Let Tuo,, Tvo, be the bounded operators on £l defined as

(TUr.X)(t) = E Uo(,r)X(t - r)
r=O
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t

(TVoX)(t) = C X(r)Vo,(t - T)
T-O

where X E f1 Then, as it can be easily checked, the weak* adjoint (bounded) operators

, on c are given as

00

(T Y)(t) = E Ur(Tr + t)Y(r)
=O0

(TVY)(t) = E Y(r)Vo,(r + t)
r-o=0

where Y E co

Now, the interpretation

Uo ZVol = Tuo.r(Tvo,(Z))

allows us to verify that

(Uo ZVVo1, R) = (Z, T, (To,(R)))

Define as R, = T~o.(To(R)) then

(Q, R) = 0 iff (Z, R) = 

Moreover, since the only nonzero element of R is R(O) we have that

R. = ({U(O)R(O)VoJ(O), O O,,...} E c

In a similar fashion as before define the bounded operators Tuv, Tvi on l as

(Ti,X)(t)= - E u , (r)x(t - -)
r=0

(TvX)(t) = ] X(r)Vi(t - .)
T=0

where X E £1 and their weak* adjoints Ti, TV; bounded on co as

00

(T,,Y)(t) = E UvT(r)Y(r + t)
00

(T;,Y)(t) = E Y(r)VyT(r + t)
r=O

where Y E co

8



Notice, that since Ui, Vi inner then JiT(z-1)Ui(z) = I and V(z-l)ViT(z) = I. Note also

that T.i, TvU represent multiplication from the right whereas TVi, Tvi represent multiplication

from the left. Hence, it follows that TLjTuV = I and TTv, = I

Interpreting

UiZVi = Tu,(Tv,(Z))

and

UiRzVi = TU,(Tv,(Rz))

we can verify that

(UiZVi, UiR,zV) = (Z, R,)

Hence, if X = UiRz Vi then

(UQV, X) = O iff (Q, R) = 0, j = 1,2,..., r

It then follows that the functionals we are looking for are

Xj = UiR, V

with

Rj = {U(O)Rj(O) Vo(0), O0, 0,...} E c°

Approach 2

For simplicity, we indicate the method in the case where V = I. The extention in the

case where V # I should be immediate to the reader.

Let U be written in the Smith form [7] as:

U = S1ES 2

with S 1, S 2 square, stable transfer matrices with stable inverses and E can be partitioned as

=(Eu 0)

with

Eu = diag(Go, zgl, .. , zkg k )
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where Go is a diagonal stable transfer matrix with no zeros at z = 0, and gl,.. ., gk are scalar

stable transfer functions also with no zeros at z = 0.

Since, S2 has a stable inverse then, if we partition S2 as S2 = (S21 ) we guarantee that

S21 has a stable right inverse S,. Letting, ~ = S21Q then

inf 11H - UQ = inf /H- S1EuQII
QE11 QEV

with Q = SQ

Hence, if R E {Rj}j=_ then

(Q,R) = 0 iff (S, R) = 0

Using the same reasoning as in the previous approach, it is easy to check that

(Q, R) = 0 iff (Q,F) = 0

where

F= {ST(O)R(O), 0, O,...}

Now, define D E co as

D = diag(Go T(O),zgi-(0),... zkg (O))

then we can verify

(uQ, D)= (4, F)

As in approach 1, let Tsl- be the operator on e1 associated with the stable transfer function

S -1 and let Ts;t be its adjoint on c°. Then by defining

X = Ts, 1 (D)

we can show that

(2uQD)=(S1 JuQ,X)

Hence

(siuQ, x) =0 iff (, F) = 0

It then follows that the functionals we are seeking for, are given as

Xj = T 1 l (diag(G oT(0), zg,(O) . . , k ))j)
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where

Fj = {ST(O)Rj(O),OO,O...

Remarks

Sofar in this section, we implicitly assumed that we were dealing with the "good" rank

case [3, 9]. Namely we assumed that J(z), V7(z) have full row and collumn rank respectively.

However, there is no loss of generality since in the "bad" rank case [3, 91 it is shown that in

order to solve the unconstrained problem it is necessary to solve a square (unconstrained)

subproblem. In particular, we can partition U, V as

U = (V V2)

where U, V are square and invertible. Let K = UQV then

K· ( K K 12 )
K K 21 K 22

A necessary condition for the existence of solution is that R interpolates U, V which is the

aforementioned subproblem.

The functionals Xj, j = 1..., r obtained by Approach 2 will contain finitely many nonzero

components. Namely, Xj(m) = 0 V m > k. In Approach 1 however, the obtained functionals

will not, in general, have this property. They will decay though, (since they lie in co ) and

the rate of decay will be dictated by the poles of Ui and Vi. Hence, it seems that the linear

programming problem in the dual space [2] will be simpler when Approach 2 is used, provided

that a simple way to obtain a Smith decomposition of a transfer matrix exists.

The situation becomes very simple when U(O) and V(O) are invertible matrices. To re-

alize that, let K = UQV then by Fact 3 both U(O), V(O) are lower triangular. Hence, since

K(O) = U(O)Q(O)V(O), we have that Q(O) is lower triangular if and only if K(O) lower tri-

angular. Therefore, the functionals we are looking for are simply the Rj's as defined in the

begining of the section.

Example

Consider an optimization problem in a 2-periodic single-input single-output system with

the equivalent LTI problem being as follows:

------- ·-- ~~~~"--~----I---- ------- 11



inf IIH- UQII
QEI1

such that Q(O) is lower triangular, where H = (0 2, U = (0 1 )
We first solve the unconstrained problem following [2]:

The basis for the functionals that annihilate S. = {UQ: Q E P£} consists of the following:

F, = 1( 00)' ...

F2 = 0 ) ,°, .}

The resulting optimal solution Iu = H - UQ, is:

= 12( 22)
where k12, /22 arbitrary in fl such that

11012 11L + 11k221 11, < 1

and

-021 2 - 022

Also,

Ioull~L = 1

Now, in the constrained case, we obtain by using Approach 2 the following extra func-

tional:

F3 =0 { 1) 7(0 ° ' }

The resulting optimal solution is:

=(1 .z)0 1.5
with

Q=(O O)0 .5

Also,

Il'll.l = 1.5

First, note that the optimal Q obtained for the constrained case does have the lower trian-

gular structure at z = 0. Also, notice that the optimal performance is (as expected) worse
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in the constrained case than in the unconstrained one. Moreover, we demonstrate that if we

just "project" Q, so that it corresponds to a causal periodic controller we do not necessarily

obtain optimal performance:

Let Q,, denote the causal projection of Q, i.e.

Q (-21 -22 + 022(0))
Up =-421 2 - •22

and let IpU = H- UQ,, then

, ( = 1 z(2 - 022(0)))
-,21 -•22

Hence, since 1121'11 + 11062211 l < 1 we have that

14FUPIll,, > 2

thus IIu.,pl11 > IIlYl.

The connection to MRSD systems

An important feature of the solution presented in this paper is its immediate applicability

in the case of multi-rate sampled data (MRSD) systems. As it was shown in [10] MRSD

systems belong in a more general class of periodic systems the so-called (Pi, Mi) shift varying

systems. Furthermore, these systems are equivalent in the strong sense (just as in the case

of N-periodic) with a class of LTI systems. The z transform of this class of LTI systems

should satisfy an analogous to the N-periodic case constraint. Namely, let G(z) represent the

equivalent LTI system of an MRSD one. Let D = G(0) and let as in [11] {Pq}qQ=l, {M}R 1

be the sets of integers, relative prime, which are associated with this MRSD system. Then

the structure of the matrix D is determined by these sets as follows:

Di D 12 ... D.R

DQ1 DQ 2 ... DQR

where each Dqr is a Pq x Mr matrix with

(Dqr)~,3 = 0 when (a - 1) -( 1) <0; 1 < a < Pq, 1 < < Mr
pq Mr

where N is the least common multiple of (P 1 ,P 2 ,... ,PQ,Ml,....., MR). Hence, we can pro-

ceed exactly as in the N-periodic case by simply modifying the functionals Rj defined in the
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begining of this section as follows: Let J be the number of elements in D that are (by the

above property) necessarilly zero. To each j E {1, 2,..., J} we associate the indices of the

element of D that is necessarily zero. Also, for each j E {1, 2,..., J} consider a matrix Lj

with the same dimension as D that has all its entries but one equal to zero. The nonzero

entry is taken to be one and its indices are taken to be the ones that correspond to j in the

D matrix. Define the functionals {Rj}J 1 as

Rj(O) = Lj; Rj(k) = O, k = 1,2,...

It is now clear that the solution of the N-periodic case applies immediately. Thus, if we con-

strain ourselves to (Pi, Mi) compensators to solve the optimal disturbance rejection problem,

then exactly the same methods of this section apply. Moreover, the results in [1] can be ex-

tended to show that optimal performance in a (Pi, Mi) system can be achieved by a (Pi, Mi)

compensator. Therefore, we can obtain a complete solution to the optimal disturbance

rejection problem for MRSD systems.

5 Conclusions

In this paper we presented the solution to the problem of optimal em to em disturbance

rejection in the case of periodic systems. We showed how we can simply extend the method

in [2] to obtain the solution. The key observation was that we can obtain a simple set

of functionals to account for the constraint on Q(O) when considering the equivalent LTI

problem. The case is even easier when there are no zeros at z = 0. We have shown that the

complete solution involves a tractable linear programming problem. Finally, we indicated

how we can obtain optimal compensators for MRSD systems using an identical method of

solution to the one presented .
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