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Abstract

We establish the convergence of a class of Metropolis-type Markov chain annealing

algorithms for global optimization of a smooth function U(.) on Rd. No prior informa-

tion is assumed as to what bounded region contains a global minimum. Our analysis is

based on writing the Metropolis-type algorithm in the form of a recursive stochastic

algorithm Xk+l = Xk - ak(VU(Xk) + Jk) + bkWk, where {Wk} are independent stan-

dard Gaussian random variables, {~k} are (unbounded, correlated) random variables,

and ak = A/k, bk = /k loglog k for k large, and then applying results about

{Xk} from [15]. Since the analysis of {Xk} in [15] is based on the asymptotic behavior

of the related Langevin-type Markov diffusion annealing algorithm

dY(t) =--VU(Y(t))dt + c(t)dW(t), where W(.) is a standard Wiener process and

c(t) = V /V'/og ;t for t large, this work demonstrates and exploits the close relation-

ship between the Markov chain and diffusion versions of simulated annealing.
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1. INTRODUCTION

Let U(.) be a real-valued function on some set E. The global optimization problem

is to find an element of the set S* = {x: U(x) < U(y) V yE E} (assuming S* = q).

-Recently, there has been alot of interest in the simulated annealing method for global

optimization. Annealing algorithms were initially proposed for finite optimization (E

finite), and later developed for continuous optimization (E = IRd). An annealing algo-

rithm for finite optimization was first suggested in [1], [2], and is based on simulating a

finite-state Metropolis-type Markov chain. The Metropolis algorithm and other related

algorithms such as the "heat bath" algorithm, were originally developed as Markov

chain sampling methods for sampling from a Gibbs distribution [3]. The asymptotic

behavior of finite state Metropolis-type annealing algorithms has been extensively

analyzed [4]-[9].

A continuous time annealing algorithm for continuous optimization was first sug-

gested in [10], [11] and is based on simulating a Langevin-type Markov diffusion:

dY(t) = -VU(Y(t))dt + c(t)dW(t) . (1.1)

Here U(-) is a smooth function on IRd, W(.) is a standard d-dimensional Wiener process,

and c(.) is a positive function with c(t) - 0 as t -+ oo. In the terminology of simulated

annealing algorithms, U(x) is called the energy of state x, and T(t) = c 2(t)/2 is called

the temperature at time t. Note that for a fixed temperature T(t) = T, the resulting

Langevin diffusion like the Metropolis chain has a Gibbs distribution oc exp(-U(x)/T) as

its unique invariant distribution. Now (1.1) arises by adding slowly decreasing white

Gaussian noise to the continuous time gradient algorithm

(t) = -V(z(t)) . (1.2)

The idea behind using (1.1) instead of (1.2) for minimizing U(.) is to avoid getting

trapped in strictly local minima. The asymptotic behavior of Y(t) as t -- oo has been

studied in [10], [12]-[14]. In [10], [14] convergence results were obtained for a version of

(1.1) which was modified to constrain the trajectories to lie in a fixed bounded set (and

hence is only applicable to global optimization over a compact subset of IRd); in [12],

[13] results were obtained for global optimization over all of IRd. Chiang, Hwang and

Sheu's main result from [12] can be roughly stated as follows: if U(-) is suitably

behaved and c2 (t) = C/logt for t large with C > Co (a constant depending only on
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U(-)), then Y(t) --*S* as t -- oo in probability.

A discrete time annealing algorithm for continuous optimization was suggested in

[14], [15] and is based on simulating a recursive stochastic algorithm

Xk+l = Xk - ak(VU(Xk) + Ik) + bkWk · (1.3)

Here U(-) is again a smooth function on IRd, {(k } is a sequence of IRd-valued random

variables, {Wk} is a sequence of independent standard d-dimensional Gaussian random

variables, and {ak}, {bk} are sequences of positive numbers with ak,bk -- 0 as k -- oo.

The algorithm (1.3) could arise from a discretization or numerical integration of the

diffusion (1.1) so as to be suitable for implementation on a digital computer; in this case

~k is due to the discretization error. Alternatively, the algorithm (1.3) could arise by

artificially adding slowly decreasing white Gaussian noise (i.e., the bkWk terms) to a

stochastic gradient algorithm

Zk+ 1 = Zk - ak(VU(Zk) + ek) (1.4)

which arises in a variety of optimization problems including adaptive filtering,

identification and control; in this case (k is due to noisy or imprecise measurements of

VU(.) (c.f. [16]). The idea behind using (1.3) instead of (1.4) for minimizing U(-) is to

avoid getting trapped in strictly local minima. In the sequel we will refer to (1.4) and

(1.3) as standard and modified stochastic gradient algorithms, respectively. The asymp-

totic behavior of Xk as k -+ oo has been studied in [14], [15]. In [14] convergence

results were obtained for a version of (1.3) which was modified to constrain the trajec-

tories to lie in a compact set (and hence is only applicable to global optimization over a

compact subset of IRd); in [15] results were obtained for global optimization over all of

IRd . Also, in [14] convergence is obtained essentially only for the case where Ok = 0; in

[15] convergence is obtained for {(k} with unbounded variance. This latter fact has

important implications when VU(.) is not measured exactly. Our main result from [15]

can be roughly stated as follows: if U(') and {(k } are suitably behaved, ak = A/k and

bk = B/k log log k for k large with B/A > Co (the same Co as above), and {Xk} is tight,

then Xk -- S* as k -- oo in probability (conditions are also given in [15] for tightness of

{Xk}). Our analysis in [15] of the asymptotic behavior of Xk as k - oo is based on the

asymptotic behavior of the associated SDE (1.1). This is analogous to the well-known

method of analyzing the asymptotic behavior of Zk as k - co0 based on the asymptotic

behavior of the associated ODE (1.2) [16], [17].
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It has also been suggested that continuous (global) optimization might be per-

formed by simulating a continuous-state Metropolis-type Markov chain [10], [18], [19].

Although some numerical work has been performed with continuous-state Metropolis-

type annealing algorithms there has been very little theoretical analysis, and further-

more the analysis of the continuous state case does not follow from the finite state case

in a straightforward way (especially for an unbounded state space). The only analysis

we are aware of is in [19] where a certain asymptotic stability property is established for

a related algorithm and a particular cost function which arises in a problem of image

restoration.

In this paper we demonstrate the convergence of a class of continuous state

Metropolis-type Markov chain annealing algorithms for general cost functions. Our

approach is to write such an algorithm in (essentially) the form of a modified stochastic

gradient algorithm (1.3) for suitable choice of Sk, and to apply results from [15]. A con-

vergence result is obtained for global optimization over all of IRd. Some care is neces-

sary to formulate a Metropolis-type Markov chain with appropriate scaling. It turns

out that writing the Metropolis-type annealing algorithm in the form (1.3) is rather

more complicated than writing standard variations of gradient algorithms which use

some type of (possibly noisy) finite difference estimate of VU(-) in the form (1.4) (c.f.

[16]). Indeed, to the extent that the Metropolis-type annealing algorithm uses an esti-

mate of VU(.), it does so in a much more subtle manner than a finite difference approxi-

mation, as will be seen in the analysis.

Since our convergence results for the Metropolis-type Markov chain annealing algo-

rithm are ultimately based on the asymptotic behavior of the Langevin-type Markov

diffusion annealing algorithm, this paper demonstrates and exploits the close relation-

ship between the Markov chain and diffusion versions of simulated annealing, which is

particularly interesting in view of the fact that the development and analysis of these

methods has proceeded more-or-less independently. We remark that similar conver-

gence results for other continuous-state Markov chain sampling method based annealing

algorithms (such as the "heat bath" method) can be obtained by a procedure similar to

that used in this paper.

The paper is organized as follows. In Section 2 we discuss appropriately modified

versions of the tightness and convergence results for modified stochastic gradient



algorithms as given in [15]. In Section 3 we present a class of continuous state

Metropolis-type annealing algorithms and state some convergence theorems. In Section

4, we prove the convergence theorems of Section 3 using the results of Section 2.

2. MODIFIED STOCHASTIC GRADIENT ALGORITHMS

In this Section we give convergence and tightness results for modified stochastic

gradient algorithms of essentially the type described in Section 1. The algorithms and

theorems discussed below are a slight variation on the results of [15], and are appropri-

ate for proving convergence and tightness for a class of continuous state Metropolis-type

annealing algorithms (see Section 3,4).

We use the following notations throughout the paper. Let VU(-), AU(-), and

HU(.) denote the gradient, Laplacian and Hessian matrix of U(.), respectively. Let I- I,

<.,. > and 0) denote Euclidean norm, inner product, and outer product, respectively.

For real numbers a and b let a V b = maximum{a,b}, a A b = minimum{a,b},

[a]+ =a V 0, and [a]_- =a A 0. For a process {Xk} and a function f(.), let

En,X{f(Xk)}, Pn,x{f(Xk)} denote conditional expectation and probability given Xn = x

(more precisely, these are suitable fixed versions of the conditional expectation and pro-

bability). Also for a measure /t(.) and a function f(.) let /t(f) = ffd/t. Finally, let

N(m,R)(.) denote normal measure with mean m and covariance matrix R, and let I

denote the identity matrix.

2.1. Convergence

In this subsection we consider the convergence of the discrete time algorithm +

Xk+l = Xk - ak(VU(Xk) + ~k) + bk( IXk I V 1)Wk . (2.1)

Here U(.) is a smooth real-valued function on IRd, {(k} is a sequence of IRd-valued ran-

dom variables, {Wk} is a sequence of independent standard d-dimensional Gaussian ran-

dom variables, and

+ The results are not changed if we replace IXk I V 1 by IXk I V a or IXk I + a for a > 1.
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ak =k b loglog , k large,

where A, B are positive constants.

For k = 0,1,... let 9k = (XoWo...,WklO...k_l). In the sequel we will con-

sider the following conditions (ac, are constants whose values will be specified later).

(Al) U(') is a C2 function from IRd to [O,oo) such that

lim IVU(x) I > 0
Ix 1- o I > 0

lim 1VU(x) T 

inf ( IVU(x) 12- AU(x)) > -oo

(A2) For e > 0 let

dr(x) = exp 2 - dx = iex- dx < o .

7r has a weak limit 7r as e -- ,0.

(A3) Let K be a compact subset of Rd. Then there exists L > 0 such that

E{ lJk 12 !Ik} < La ,V Xk E K, w.p.1

IE{(k Ik}Il < La: , V Xk EK , w.p.1 .

Wk is independent of 9k-

We note that 7r concentrates on S*, the global minima of U(-). For example, if S*

consists of a finite number of points, then 7r exists and is uniformly distributed over S*.

The existence of ir and a simple characterization in terms of HU(.) is discussed in [20].

In [12] and [15] it was shown that there exists a constant Co which plays a critical

role in the convergence of (1.1) and (1.3), respectively (in [12] Co was denoted by co).

Co has a interpretation in terms of the action functional for the dynamical system (1.2);

see [12] for an explicit expression for Co and some examples. The constant Co plays the

same role in the convergence of (2.1) considered here.
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Let K1 C IRd and let {Xj} denote the solution of (2.1) with X0 = x. We shall say

that {XX: k > 0, x E K 1 } is tight if given e > 0 there exists a compact K2 C IRd such

that Po, x{Xk E K 2} > 1 - E for all k > 0 and x E K 1. Here is our theorem on the con-

vergence of Xk as k -- o o.

Theorem 1: Assume (Al), (A2), (A3) hold with a >-1 and / > 0. Let {Xk} be given

by (2.1), and assume {Xx: k > 0, x E K} is tight for K a compact set. Then for

B/A > CO and any bounded continuous function f(.) on IRd

lim E0, x{f(Xk)} = rT(f)
k--oo

uniformly for x in a compact set.

Note that since 7r concentrates on S*, under the conditions of Theorem 1 we have

Xk - S* as k - oo in probability.

Theorem 1 is proved similiarly to [15, Theorem 2] where we considered the algo-

rithm

Xk+l = Xk - ak(VU(Xk) + Sk) + bkWk , (2.2)

and we will not go through the details here. The main difference between the condi-

tions and proofs of Theorem 1 and [15, Theorem 2] is that in Theorem 1 the condition

lim IVU(x) 1/ Ix I > 0 is needed to establish the tightness of {Y(t)} for the diffusion
Ix I-oo
dY(t) = - VU(Y(t))dt + c(t)( IY(t) I V 1)dW(t) associated with (2.1), whereas in [15,

Theorem 2] the weaker condition lim IVU(x) I = oo suffices to establish the tightness
Ix I-oo

of {Y(t)} for the diffusion dY(t) = -VU(Y(t))dt + c(t)dW(t) associated with (2.2).

2.2. Tightness

In this subsection we consider the tightness of the discrete time algorithm+

Xk+1 = Xk - ak(4k(Xk) + r7k) + bk( IXk I V 1)Wk . (2.3)

Here {1bk(')} are Borel functions from IRd to IRd, {rk} is a sequence of Rd-valued ran-

dom variables, and {Wk}, {ak}, {bk} are as in Section 2.1. Below we give sufficient

+ The results are not changed if we replace IXk I V 1 by IXk I V a or IXk I + a for a > 0.
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conditions for the tightness of {Xk: k > 0, x E K} where K is a compact subset of IRd.

Note that algorithm (2.3) is somewhat more general than algorithm (2.1). The reason

for considering this more general algorithm is that it is sometimes convenient to write

an algorithm in the form (2.3) (with b(x) $ VU(x) for some x, k) to verify tightness,

and then to write the algorithm in the form (2.1) to verify convergence. We will give an

example of this situation when we consider continuous state Metropolis-type annealing

algorithms in Sections 3 and 4.

Let ck = -(Xo,Wo,..,Wk-l,rlo,--...,k-l) In the sequel we will consider the follow-

ing conditions (ac, A, %'l, '72 are constants whose values will be specified later).

(B1) Let K be a compact subset of IRd. Then

sup IW (x) I < 0
k;xEK

iim 1] 7ak < 00
k, Ixl--oo < XI

<4(x) l

k, Ix -oo> 

(B2) There exists L > 0 such that

E{ !?rk 12 I6k} < Lak( IXk 12 V 1) w.p.1

IE{r7k I(Lk}l I Lae( IXk I V 1) w.p.l

Wk is independent of 6k.

Theorem 2: Assume that (B1), (B2) hold with c > -1, / > 0, and

0 < 'Y2 -- 'Y < 1/2. Let {Xk} be given by (2.3) and K be a compact subset of Rd.

Then {Xjk: k > 0, x E K} is a tight family of random variables.

Theorem 2 is proved similarly to [15, Theorem 3] where we considered the algo-

rithm

Xk+1 = Xk - ak(k(Xk) + T/k) + bkWk (2.4)

and we will not go through the details here. The main difference between the



conditions and proofs of Theorem 2 and [15, Theorem 3] is that in [15, Theorem 3] we

allowed {f4(x): x E IRd} to be a random vector field but we did not allow the bounds in

(B2) to depend on Ix i.

3. METROPOLIS-TYPE ANNEALING ALGORITHMS

In this Section we review the finite state Metropolis-type Markov chain annealing

algorithm, generalize it to an arbitrary state space, and then specialize it to a class of

algorithms for which the results in Section 2 can be applied to establish convergence.

The finite state Metropolis-type annealing algorithm may be described as follows

[5]. Assume that the state space Z is finite set. Let U(.) be a real valued function on E

(the "energy" function) and {Tk} be a sequence of strictly positive numbers (the "tem-

perature" sequence). Let q(i,j) be a stationary transition probability from i to j, for

i,j E E. The one-step transition probability at time k for the finite state Metropolis-

type annealing chain {Xk} is given by

P{Xk+l = j lXk = i} = q(i,j)sk(i,j) , j i,

P{Xk+l = i Xk= i} = - q(i,j)sk(i,j) (3.1)

where

sk(i,j) = exp - [U(j) - U(i)]+k (3.2)

This nonstationary Markov chain may be interpreted (and simulated) in the following

manner. Given the current state Xk = i, generate a candidate state Xk = j with proba-

bility q(i,j). Set the next state Xk+l = j if sk(i,j) > Ok where 0 k is an independent ran-

dom variable uniformly distributed on the interval [0,1]; otherwise set Xk+1 = i. Sup-

pose that the stochastic matrix Q = [q(i,j)] is symmetric and irreducible, and the tem-

perature Tk is fixed at a constant T > 0. Then it can be shown that the resulting sta-

tionary Markov chain has a unique invariant Gibbs distribution with mass c<

exp(-U(i)/T), and furthermore converges to this Gibbs distribution as k -- oo [21].

There has been alot of work on the convergence and asymptotic behavior of the nonsta-

tionary annealing chain when Tk -+ 0 [4]-[9].
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We next generalize the finite state Metropolis-type annealing algorithm (3.1), (3.2)

to a general state space. Assume that the state space E is a o-finite measure space

(E, A ,p). Let U(.) be a real-valued measurable function on . and let {Tk} be as

above. Let q(x,y) be a stationary transition probability density w.r.t. ,u from x to y, for

x,y E S. The one-step transition probability at time k for the general state Metropolis-

type annealing chain {Xk is given by

P{Xk+l E A IXk = x} = q(x,Y)skk(,y)dtt(y) + rk(x)1A(x) (3.3)

where

rk(x) =1 - fq(x,y)sk(x,y)du(y) , (3.4)

and

sk(,y) =exp [U(y) - U(x)]+ (35)

Note that if ,u does not have an atom at x, then rk(x) is the self transition probability

starting at state x at time k. Also note that (3.3)-(3.5) reduces to (3.1), (3.2) when the

state space is finite and A, is counting measure. The general state chain may be inter-

preted (and simulated) similarly to the finite state chain: here, q(x,y) is a conditional

probability density for generating a candidate state Xk = y given the current state

Xk = x. Suppose that the stochastic transition function Q(x,A)= f q(x,y)dpt(y) is /-

symmetric and irreducible, and the temperature Tk is fixed at a constant T > 0. Then

similarly to the finite state case it can be shown that the resulting stationary Markov

chain has a tt -a.e. unique invariant Gibbs distribution with density ocexp(-U(x)/T),

and furthermore if a certain condition due to Doeblin [21] is satisfied converges to this

Gibbs distribution as k -- oo. There has been almost no work on the convergence and

asymptotic behavior of the nonstationary annealing chain when Tk -- 0, although when

E is a compact metric space one would expect the behavior to be similar to when Y is

finite.

We next specialize the general state Metropolis-type annealing algorithm (3.3)-(3.5)

to a d-dimensional Euclidean state space. Actually the Metropolis-type annealing chain

we shall consider is not exactly a specialization of the general-state chain described

above. Motivated by our desire to show convergence of the chain by writing it in the

form of the modified stochastic gradient algorithm (2.1), we are led to choosing a



nonstationary Gaussian transition density

1 i 1 l -x 2 (3
q(x,) = (27rb( Ix 12 V l))d/2 exp 2 b( Ix 12 V 1) I (3.6)

and a state dependent temperature sequence

b[( Ix 12 V 1)
Tk(x) = 1( l l ) |_ const.( Ix I2 V 1) (3.7)

2 ak log log k

The choice of the transition density is clear, given we want to write the chain in the

form of (2.1). The choice of the temperature sequence is based on the following con-

siderations. Ignore for the moment the dependence on Ix I and examine the modified

stochastic gradient algorithm (1.3) and the associated diffusion (1.1). If we view (1.3) as

a sampled version of (1.1) with sampling intervals ak and sampling times tk = Zk-lan,

then we have corresponding sampled temperatures T(tk) = c2 (tk)/2, and it is straight-

forward to check that if C = B/A then

__ C2(tk)
Tk -- = T(tk) as k oo .2ak 2

Finally, the fundamental reason that the Ix I dependence is needed in both (3.6), (3.7) is

that in order to establish tightness of the annealing chain by writing the chain in either

the form of (2.3) or (2.4) we need a condition like

14~(x) I - const. Ix I , Ix I large, (3.8)

for suitable choice of 41 (-). In words, the annealing chain must generate a drift

(towards the origin) at least proportional to the distance from the origin. To accom-

plish this we include the dependence on Ix I in (3.6), (3.7) and then write the chain in

the form of (2.3) to establish tightness. This discussion leads us to the following con-

tinuous state Metropolis-type Markov chain annealing algorithm.
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Metropolis-type Annealing Algorithm #1:

Let {Xk} be a Markov chain with 1-step transition probability at time k given by+

P{Xk+l E A IXk = x} = ASk(x,y)dN(x,bk( lx V 1)I)(y) + rk(x)1A(x) (3.9)

where

rk(x) = 1 - fsk(x,y)dN(x,b[( Ix 12 V 1)I)(y) (3.10)

and

Sk(xy) = exp 2ak [U() - U(x 1 (3.11)

Theorem 3: Assume (Al), (A2) hold and also

sup IHU(x) I < oo. (3.12)

Let {Xk} be the Markov chain with transition probability given by (3.9)-(3.11). Then
for B/A > Co and any bounded continuous function f(.) on IRd

lim E0,x{f(Xk)} = 7r(f) (3.13)
k-.oo

uniformly for x in a compact set.

The proof of Theorem 3 is in Section 4.1. Observe that the condition (3.12) can be
rather restrictive. It implies along with (Al) that there exists constants M 1,M2 such
that

M1 Ix I -< |VU(x) I < M2 Ix l, Ix I large.

It turns out that the lower bound on IVU(x) I is essential but the upper bound on
|VU(x) I can be weakened by using a suitable modification of (3.11) as follows.

+ The results are not changed if we replace Ix 12 V 1 by Ix 12 V a or Ix 12 + a for a > 1.
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Metropolis-type Annealing Algorithm #2:

Let {Xk } be a Markov chain with 1-step transition probability at time k given by+

P{Xk+l E A IXk = x} = jAsk(X,y)dN(X,b2( Ix 12 V 1)I)(y) + rk(x)1A(x) (3.14)

where

rk(x) = 1 - fsk(x,y)dN(x,b2( Ix 12 V 1)I)(y) (3.15)

and

2ak [U(y) - U(x)]+ I x 1x2 V 1s k (x,y) = exp if U(x) aj
b2 IX 12 V I V 1

2ak [ Y 12 - Ix 12]+ x 2 V (3.16)exp i (x) > x2 V 13a6

and y > 0.

Theorem 4: Assume (Al), (A2) hold and also

inf lim sup IHU(y) I x12< 00. (3.17)6>0 ]x[-1c* Iy-xI<61X1 U(x)

Let {Xk} be the Markov chain with transition probability given by (3.14)-(3.16) with
0 < "y < 1/4. Then for B/A > Co and any bounded continuous function f(.) on IRd

lim Eo0 ,xf(Xk)} = r(f) (3.18)k-+oo

uniformly for x in a compact set.

The proof of Theorem 4 is in Section 4.2. Observe that the condition (3.17) (and
also (Al)) will be satisfied if U(x) - const. Ix IP and HU(x) = O( Ix jp- 2 ) as Ix I -+ 0o
for any p _ 2. Note that if K is any fixed compact, Xk E K, and k is very large, then
(3.16) and (3.11) coincide. Note also that (3.16) like (3.11) only uses measurements of
U(.) (and not VU(.)).

+ The results are not changed if we replace Ix 12 V 1by [x 12 V a or Ix 12 + a for a > 1.
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4. PROOFS OF THEOREMS 3 AND 4

In the sequel c1 ,c 2,... will denote positive constants whose value may change from

proof to proof. We will need the following lemma.

Lemma 1: Assume that V(.) is a C2 function from ]Rd to JR. Let

s(x,y) = exp(--X[V(y) - V(x)]+)

and

9(x,y) = exp(-X[<VV(x),y-x> ]+)

where X > 0. Then

Is(x,y) - 9(x,y) I - X sup IHV(x + e(y - x)) I ly - x 12
fE(0,1)

for all x,y E lRd .

Proof: Let

f(x,y) = V(y) - V(x) -< V(x),y--x>

Then by the 2nd order Taylor Theorem

If(x,y) l < sup IHV(x + E(y - x)) I ly - x 12 (4.1)
CE(0,1)

By separately considering the four cases corresponding to the possible signs of

V(y) - V(x) and < VV(x),y-x> , it can be shown that

[s(x,y) - s(x,y) I < 1 - exp(-X I[f(x,y) I) <X I f(x,y) I (4.2)

Combining (4.1) and (4.2) completes the proof.

4.1. Proof of Theorem 3

We write

Xk+1 = Xk - ak(VU(Xk) + Jk) + bk( IXk I V 1)Wk (4.3)

(this defines (k) and apply Theorem 1 to show that if {Xx: k > 0, x E K} is tight for K

compact then (3.13) is true. We further let 4b1(x) = VU(x) and r/k = -k and apply

Theorem 2 to show that {Xjk: k > 0, x E K} is infact tight for K compact and (3.13) is
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infact true.

We first show that we can find a version of {Xk } in the form

Xk+1 = Xk + bk( IXk I V 1)*kWk (4.4)

To do this we inductively define the sequence {Wk,,k} of random variables as follows.

Assume Xo,Wo, ... , Wkl, 0, ., k-l have been defined. Let

k = -XoWoWk-lo , .--, k-l). Let Wk be a standard d-dimensional Gaussian ran-

dom variable independent of Sik, and let Sk be a {0,1}-valued random variable with

P{'k = 1 [k, Wk} = sk(Xk,Xk + bk( IXk I V 1)Wk) . (4.5)

Note that P{(k = i Ikk,Wk) = P{k = i IXk,Wk}. Using (4.5) it is easy to check that

(4.4) is a Markov chain which has transition probability given by (3.9)-(3.11). Hence

(4.4) is indeed a version of {Xk} and we always deal with this version in the sequel.

Now comparing (4.3) and (4.4) we have

~k = -JVU(Xk) + bk (Xk I V 1)(1 -- k)Wk (4.6)
ak

and in particular Jk is a function of Xk, Wk and fk. Note that since ok C- ak, Wk is

independent of ak, and Po{k = i Iak,Wk} = P{gk = i IXk,Wk}, it follows that Wk is

independent of Ok and P{Ck = i I9k,Wk} = P{gk = i IXk,Wk}. Hence

P{(k E A I k} = P{(k E A IXk}. We will use these facts below.

The following lemma gives the crucial estimates for E {(lk I jik} and

JEf4k iPkj 1.

Lemma 2: There exists L > 0 such that

a) IE{(k lkk} I -< L k ( IXk I V 1) w.p.1
bk

b) Et{ Ik 12 Igk} < L b k( IXk 12 V 1) w.p.1
ak

Assume that Lemma 2 is true. Then (A3) is satisfied with o =-- > -1 and

0 < = 2< =, and (B1), (B2) are satisfied for the same choice of a and r/ and for

= Y1 = = O. Hence Theorems 1 and 2 apply and Theorem 3 follows. It remains to
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prove Lemma 2. We will use the following claim.

Claim: Let u E Rd with Iu I = 1. Then

a) f dN(O,I)(w) = 0(6)
o<( u,w> 65

b) f wdN(O,I)(w) = (6 2 )
0<< u,w) <5

c) f w () wdN(O,I)(w) = 0()
0<< u,w) _<

Proof: Let ul = u and extend ul to an orthonormal basis {ul,...,ud} for ]Rd. Then by

changing variables (rotation) and using the Mean Value Theorem we get

a) f dN(O,I)(w) /2 1 - dv= 0(
-<< u,w) :5& (27)1/2 2J dv = O()

b) f wdN(O, I)(w) ulf6 v )2 expv2 { dv =0(62)
o< uw) - 0 (2,w 

c) f w 0 wdN(O,I)(w) = u1 0 ulfv2 1 exp iv2 dv
0_(w _< (2701/2 exp 2d

+ Eui 0 ujJ () Ljdv

P=roo ofLemmo(a2a:0

Proof of Lemma 2a):

Using (4.6) and the fact that P{ k E A I|k} = P{(k E A IXk} and Wk is indepen-

dent of Xk we have (w.p.1)
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E,{k I k} = Ef{k IXk}

= -VU(Xk) + b-( (Xk I V 1)E{(1 - -k)Wk IXk}

= -VU(Xk) - bk( lXk I V 1)E{WkE{gk lXk,Wk} IXk}

= -VU(Xk) - b'k( IXk I V 1)E{WkP{k = 1 lXk,Wk} Xk}

= -VU(Xk) -- ak( JXk I V 1)wE {WkP{(k = 1 IXk,Wk}} ·
ak Wk

Henceforth we condition on Xk = x where Ix I > 1; the case where |x I < 1 is similar.
Hence using (4.5)

E{fk lXk = X} = -VU(x) bk Ix Ifwsk(x,x + bk Ix Iw)dN(O,I)(w) .

Let

2ak [(<7U(x),y-x> ]+
k(x,y) = exp bk I 12 (4.7)

and sk(x,y) = sk(x,y) - Sk(x,y). Then by (3.12) and Lemma 1

ISk(X,y) < acl -k 1 I (4.8)

Hence
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E{fk IXk=x}= -VU(x) - bIIwsk(xX + bk Ix w)dN(O,I)(w)

Ib k x Iwsk(x,x + bk ix Iw)dN(O,I)(w)

-VU(x) - b Ix Ifwsk(x,x + bk Ix Iw)dN(O,I)(w)

+ O(bk Ix I) (4.9)

--u(x) - b Ix I f wdN(0,I)(w)
ak ( VU(x),w) '0

bkIx wexp 2ak dN(O,I)(w)
ak < VU(x),w) >0 bk X

+ O(bk IX I) . (4.10)

Clearly

E{fk IXk = x} = O(bk Ix 1) (4.11)

for x such that VU(x) = 0. Henceforth we assume that VU(x) # 0. Let

VU(x) = VU(x)/ IVU(x) 1. Completing the square in the second integral in (4.10) we get

E{fk IXk = x} = - VU(x) - Ix I wdN(,I)(w)
ak < VU(x),w) _0

bk Ix( f wexp 2 bk 2 J Lx 2 dN [_ 2ak IU(x) (
ak ( VU(x),w) >_0 kx

+ O(bk Ix l) (4.12)

Now by (3.12) IVU(x) I = O( Ix I) and so

exp 2 - = 1 + (4.13)

Substituting (4.13) into (4.12), using ak/bk = 0(1) and IVU(x) = 0( Ix I), and chang-

ing variables from w + 2(ak/bk)(VU(x)/ Ix I) to w gives



E{(k IXk = x} = - VU(x) - bk x I f wdN(O,I)(w)
ak ( Vf(x),w) > o

_ k X I f wdN(O,I)(w) + 2VU(x) f dN(O,I)(w)
ak

a VU(x),w) ' 0( b- ) ( VU(x),w)> 2 °( b)

+ o LIXI + 0(bk Ix |)

bk Ix b
= k Ix I f wdN(O,I)(w)

o0< <VU(x),w) < °o( b)

- 2VU(x) f dN(O,I)(w)

0 < VU(x),w)> _ o( b-)

+ Ok-k Ix | (4.14)

Hence by the Claim parts a), b) and again using IVU(x) I = O( Ix i) we have

E{(k Xk x)k=X} = a II (4.15)
bk J

Combining (4.11) and (4.15) completes the proof of Lemma 2a).

Proof of Lemma 2b):

Using (4.6) and the fact that P{(k E A Ilk} = P{(k E A lXk}, Wk is independent

of Xk, and IVU(x) I = o( ix I) we have (w.p.1)
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E{(k 0 ~k l'k} = E{(k 0 (k lXk}

(b ( Xk 12 V 1)E{((1-M-k)Wk) 0 ((1-fk)Wk) IXk} + ek(Xk)

ak (ak

=j- _ ( [Xkl2 [ 1)I- ( (Xk 2 V l)E{Wk 0() WkE{'k lXk,Wk} IXk} + ek(Xk)

- J( jXk 12 V 1)I L_ P 2( Xk 12 V 1)E{Wk WkP{k 1 lXkWk} IXk} + ek(Xk)

-= ( IXk 12 V 1)I- r( lXk 12 V 1)E {Wk 0 WkP{fk 1 lXk,Wk}} + ek(Xk)

where

ek(Xk) = o0lXk 2 v 1)j.

Henceforth we condition on Xk = x where Ix I > 1; the case where ix I 1 is similar.

Hence using (4.5)

E({k 0 ~k lXk = X} X= t -k Ix12Ij - Ix I2 fw Wsk(X,X + bk Ix lw)dN(O,I)(w)
I~akJ ak)

Let sk(x,Y) be given by (4.7) and sk(x,y) = sk(x,y) - k(x,y). Then using (4.8)
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E{6k 8Q k lXk = x) k I x I I fw 02fW WSk(X,X + bk ix Iw)dN(O,I)(w)

-b-J Ix 12fw WSk(X,X + bk Ix Jw)dN(O,I)(w)
+ak

0 bk ]X 12

+O blIx 12 + 0 ! kI 12 (4.16)
ak ak

Ix 12I - X 12 f w 0 wdN(O,I)(w)
ak I) ak K <VU(x),w) so

bk > f w wexp k (),w N(OI)(w)
ak~rjXIZ ( VU(x),w> >0 b k IxI

+ bk x 12 . (4.17)
ak

Clearly

E{fk 0 )k IXk =X} = bO k IX 12 (4.18)

for x such that VU(x) = 0. Henceforth we assume that VU(x) O0. Let

VUL(x) = VU(x)/ IVU(x) i. Completing the square in the second integral in (4.17), and

proceeding similiarly to the derivation of (4.14) in the proof of Lemma 2a) we have
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Ix x} f bk x 121j Ix 12 f (w 0 wdN(O,I)(w)
E{(k 0 (k 1k } ( akJ 1 ak K J(x) W) O

+k O t l 1

bka( |_J I~ f ' w|xp b2I(- IX1 IwdNO,)(w
< akJf wepf(ak 1) Ik VU(ax) <I)(>) Co

kk 1 112 I - wdN(O,I)(w)

bk f 1l 12 w+W wdN(OI)(w)-I

k °'j) <) 0VU(x),w> Ž °(b)

I kak

Hence by the Claim part c)

E{k* Xk =X}O 12 f xN 12w ) (4.19)

Combining (4.18) and (4.19) and using the fact that I(k 0 (k 1 • VEk 12 completes the

proof of Lemma 2b). wdN0,
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Remark: In Figure 1 we demonstrate the type of approximations used in the proof of

Theorem 3. In Figure 1(i) we show the transition density pk(X,y) for the Markov chain

with transition probability given by (3.9)-(3.11); in Figure 1(ii) we show the transition

density pk(X,y) for the same Markov chain but using Sk(x,y) (eqn. (4.7)) in place of

sk(x,y) (eqn. (3.11)); and in Figure 1(iii) we show the transition density pk(x,y) for the

Markov chain of (2.1) with ok = 0. Note that the densities in Figures 1(i) and (ii) con-

tain impulsive components associated with the positive probability of no transition. All

three densities are "close" for sufficiently large k.

4.2. Proof of Theorem 4

We write

Xk+1 =Xk - ak(VU(Xk) + ~k) + bk( IXk I V 1)Wk

(this defines Jk) and apply Theorem 1 to show that if {Xk: k > 0, x E K} is tight for K

compact then (3.18) is true. We further let

-b1(x) =VU(x) if U(x) < 12 V 1
ak

= 2x if U(x) > Ix 2 V 1

and write

Xk+l =Xk - ak((k(Xk) + 77k) + bk( IXk I V 1)W k

(this defines 7rk) and apply Theorem 2 to show that {X': k > 0, x E K} is infact tight

for K compact and (3.18) is infact true.

The following lemmas give the crucial estimates for E{ lIk 12 lIk}, IE{(k lk)} I,

E{ Ir7k 12 l1k} and IE{77k IOk} I (compare with Lemma 2).

Lemma 3: Let K be a compact subset of IRd. Then there exists L > 0 such that

a) IE{(k Jkk} I < Lw V Xk E K, w.p.1
IE{-·-·1· 3-kIY- -- -k-I•kV EK
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bk
b) E{ lk 12 Ik} -< L -V Xk EK, w.p.1

ak

Lemma 4: There exists L > 0 such that

al-27

a) 1E{k lWk} -< L b (Ixk V 1) w.p.1
bk

b) E( Irk 12 I2k} < L b+ ( (Xk 12 V 1) w.p.1

Assume that Lemmas 3 and 4 are true. Then (A3) is satisfied with

1 1 1
a = -- - > --1 and 0 < / < - 2-y, and (B1), (B2) are satisfied with =--c,

2 2 2

0 < Fi < -, = y and Y2 = 0 (recall that we assume 0 < < 4 ). Hence Theorems

1 and 2 apply, and Theorem 4 follows. It remains to prove Lemmas 3 and 4.

Proof of Lemma 3:

In the sequel we condition on Xk = x where x E K and Ix I > 1; the case where

Ix I < 1 is similar. Let

2 ak [<VU(x),y--x ]+ IX 12
k(x,y)= exp bx12 if U(x) a

2ak [<2x,y-x) 1+ (4.20)
exp bX12 if U(x)> (4.20)

and sk(x,y) = sk(x,y) - -k(x,y). Using the fact that HU(-) is bounded on a compact we

get for any fixed 6 > 0

sup IHU(x +, (y - x)) < sup IHU(z) I-< c,
E(O, l) Iz-x I< IxI

for all ly -x < 6 x 1, and in particular the inequality holds when U(z) = Iz F2.

Hence by considering the two cases where U(x) is < or > Ix 12/aj and using Lemma 1

we get
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Ik(xy)I ak ly-x1 2

Sk(y) c2 2- 11 , Y-x < 6x | (4.21)
bk Ix i

Note that (4.21) unlike (4.8) only holds for |y - x I < & Ix i. Of course

Isk(X,y) _< 1 (4.22)

Using (4.21), (4.22) and a standard estimate for the tail probability of a Gaussian ran-

dom variable we get for i > 0

f Iw Ii lsk(x,x + bk Ix 1w) IdN(o,I)(w)

f Iw i Isgk(x,x + bk Ix 1w) IdN(O,I)(w)
Iw I ' b/bk

+ f Iw Ii ISk(X,x + bk Ix 1w) IdN(o,I)(w)
Iw I> 6/bk

C4
c3 a k + c3 exp kj

= O(ak) (4.23)

Using (4.23) we get similarly to the derivation of (4.9) and (4.16)

E{(k IXk = X} = -U(X) -bk - Ix IfWSk(X,x + bk Ix Iw)dN(O,I)(w)

+t O(bk) (4.24)

and

E{(k ) hk IXk =} x 2 -- J Ix Ifw (a wsk(x,x + bk Ix Iw)dN(O,I)(w)
ak ak

-O bk j (4.25)
ak)

Now recall that x E K and 'y > 0. Hence for k large enough (and it is enough to con-

sider large k), U(x) < Ix 12/aj so that §k(x,Y) which was defined by (4.20) is the same

as (4.7), and consequently (4.24) and (4.25) are the same equations as (4.9) and (4.16),
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respectively (except for the error terms). Lemma 3 now follows by the same procedure

as in the proof of Lemma 2 except now VU(x) = 0(1) instead of VU(x) = O( Ix I).

Proof of Lemma 4:

In the sequel we condition on Xk = x where lx I > 1; the case where Ix I < 1 is

similar. Let gk(x,y) be given by (4.20) and sk(x,y) = sk(x,y) - -k(x,y). Using (3.17) we

get for some 6 > 0

sup IHU(x + e(y - x)) I< sup IHU(z) l1 • lx 12 + 1
EE(O, 1) Iz-x I<IIxI

for all ly -x I< 6 x I, and in particular the inequality holds when U(z) = Iz 12.

Hence by considering the two cases where U(x) is < or > Ix 12/a~ and using Lemma 1

we get

k(xY) I --< -C2 yx12 I-x I < Ix I. (4.26)
b2 Ix F

Using (4.26) we get similarly to the derivation of (4.23)

r Iw [i lsk(X,x + bk Ix 1w) IdN(O,I)(w) = O(al-v) (4.27)

Using (4.27) we get similiarly to the derivation of (4.9) and (4.16)

E{r/k IXk = x} = -4-(x) - - Ix Ifwsk(x,x + bk Ix Iw)dN(0,I)(w)
ak

+ 0 b'llk I (4.28)

and

E{7rk ® k X = x} Ix 12I -- x I2fw k(x,x + bk Ix Iw)dN(O,I)(w)

+ O a- X 12- (4.29)

Now (4.28) and (4.29) are the same equations as (4.9) and (4.16), respectively, with

VU(x) replaced by ~4k(x) and ¢k replaced by ?7k (except for the error terms). Lemma 4
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now follows by the same procedure as in the proof of Lemma 2 except now

4(x) = O( Ix I/ai) instead of VU(x) = O( Ix I)-
0
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Figure 1. Three transition probability densities


