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Abstract

We study the communication complexity of asynchronous distributed algorithms, such as the dis-

tributed Bellman-Ford algorithm for the shortest path problem. Such algorithms can generate

excessively many messages in the worst case. Nevertheless, we show that, under certain proba-

bilistic assumptions, the expected number of messages generated per time unit is bounded by a

polynomial function of the number of processors under a very general model of distributed com-

putation. Furthermore, for constant-degree processor graphs, the expected number of generated

messages is only O(nT), where n is the number of processors and T is the running time. We also

argue that our bounds are tight in certain cases. We conclude that (under our model) any asyn-

chronous algorithm with good time complexity will also have good communication complexity, on

the average.
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1. INTRODUCTION

In recent years, there has been considerable research on the subject of asynchronous distributed

algorithms (see [BT] for a comprehensive set of references). Such algorithms have been explored

both in the context of distributed numerical computation, as well as for the purpose of controlling

the operation of a distributed computing system (e.g., finding shortest paths, keeping track of the

systems's topology etc. [BG]). Some of their potential advantages are faster convergence, absence of

any synchronization overhead, graceful degradation in the face of bottlenecks or long communication

delays, and easy adaptation to topological changes such as link failures.

In the simplest version of an asynchronous distributed algorithm, each processor i maintains in

its memory a vector yi consisting of a variable xi, together with an estimate x of the variable

xj maintained by every neighboring processor j. Every processor j updates once in a while its

own variable xj on the basis of the information available to it, according to some mapping fj. In

particular, zj is replaced by fj(yi). Furthermore, if the new value of xj is different from the old

one, processor j eventually transmits a message containing the new value to all of its neighbors.

When a neighbor i receives (in general, with some delay) the new value of xj, it can use it to update

its own estimate x of xj.

A standard example is the asynchronous Bellman-Ford algorithm for the shortest path problem.

Here, there is a special processor designated by 0, and for each pair (i, j) of processors, we are given

a scalar cqj describing the length of a link joining i to j. One version of the algorithm is initialized

with xs = c/o, i 7 0, and is described by the update rule

xi := min{X4, m{in c I + x}} i 0.i jYt,01

Under reasonable assumptions, the distributed asynchronous implementation of this algorithmn

terminates in finite time and the final value of each xi is equal to the length of a shortest path from

i to 0 [B].

In general, whenever some processor i receives a message from another processor j, there is a

change in the vector yi and, consequently, a subsequent update by processor i may lead to a new

value for xi that has to be eventually transmitted to the neighbors of processor i. Thus, if each

processor has d neighbors, each message reception can trigger the transmission of d messages, and

there is a clear potential for an exponential explosion of the messages being transmitted. Indeed,

there are simple examples, due to E. Gafni and R. Gallager (see [BT, p. 450]), showing that the

asynchronous Bellman-Ford algorithm for an n-node shortest path problem is capable of generating

11( 2n) messages, in the worst case. These examples, however, rely on a large number of "unhappy

coincidences": the communication delays of the different messages have to be chosen in a very

special way. It is then reasonable to inquire whether excessive amounts of communication are to be

expected under a probabilistic model in which the communication delays are modeled as random

variables.
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In the main model studied in this paper, we assume that the communication delays of the

transmitted messages are independent and identically distributed random variables, and show that

the expected number of messages transmitted during a time interval of duration T is at most of the

order of nd2+ 1 (lnd)l+-T, where n is the number of processors, d is a bound on the number of

neighbors of each processor, and m is a positive integer depending on some qualitative properties
of the delay distribution; in particular, m = 1 for an exponential or a uniform distribution, while,

for a Gamma distribution, m equals the corresponding number of degrees of freedom.3 Note that

this estimate corresponds to O(dl+' (lnd)'+~) messages per unit time on each link, which is
quite favorable if d is of the order of 1 (i.e., when the interprocessor connections are very sparse).

We also argue that this bound on the expected total number of messages generated is tight (or
is close to tight) in certain cases, such as that of a complete graph. Our result is derived under

practically no assumptions on the detailed operation of the asynchronous algorithm (with one

exception discussed in the next paragraph). Furthermore, the result is valid for a very broad class
of probability distributions for the message delays, including the Gamma distributions as special

cases.

Since we are assuming that the delays of different messages are independent, messages can arrive

out of order. Suppose that a message I carrying a value xj is transmitted (by processor j) before

but is received (by processor i) later than another message 1' carrying a value x;. Suppose that 1
is the last message to be ever received by i. Then, processor i could be left believing that Xz is the
result of the final update by processor j (instead of the correct x~). Under such circumstances, it is
possible that the algorithm terminate at an inconsistent state, producing incorrect results. To avoid
such a situation, it is essential that a receiving processor be able to recognize whether a message

just received was transmitted earlier than any other already received messages and, if so, discard

the newly arrived message. This can be accomplished by adding a timestamp to each message, on

the basis of which old messages are discarded. There are also special classes of algorithms in which

timestamps are unnecessary. For example, in the Bellman-Ford algorithm described earlier, the

value of xj is nonincreasing with time, for every j. Thus, a receiving processor i need only check
that the value xj in a newly received message is smaller than the previously stored value x;, and
discard the message if this is not the case.

The above described process of discarding "outdated" messages turns out to be a very effective

mechanism for controlling the number of messages generated by an asynchronous algorithm. In
particular, whenever the number of messages in transit tends to increase, then there are many

messages that are overtaken by others, and therefore discarded.

Outline of the paper

In Section 2, we present our main model and assumptions, and state the main results. In Section

3. In fact, it will be seen that, for m = 1, the logarithmic factor in the upper bound can be
removed.
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3, we prove these results and we argue that they constitute fairly tight bounds. In Section 4, we

discuss issues related to the average time complexity of an asynchronous algorithm, under the same

probabilistic model. Finally, in Section 5, we provide a brief discussion of alternative (possibly, more

realistic) probabilistic models of interprocessor communication, and argue that under reasonable

models, there will exist some mechanism that can keep the number of transmitted messages under

control.

2. THE MODEL AND THE MAIN RESULTS

There are n processors, numbered 1,..., n, and each processor i has a set A(i) of neighboring

processors. 4 Let d = maxi IA(i)l. The process starts at time t = 0, with processor 1 transmitting a

message to its neighbors.

Whenever processor i receives a message, it can either ignore it, or it can (possibly, after some

waiting time) transmit a message to some of its neighbors. Suppose that a message I is transmitted

from i to j and, at some later time, another message ' is transmitted from i to j. If l' is received by

j before 1, we say that I has been overtaken by ', and that I is discardable. Our main assumption

is:

Assumption 2.1: (a) Every discardable message is ignored by the receiving processor.

(b) Every nondiscardable message can trigger at most one transmission to each one of the neighbors

of the receiving processor.

Assumption 2.1(b) allows a processor to ignore messages that are not discardable. In practical

terms, this could correspond to a situation where a processor i receives a message, updates its value

of yi, evaluates xi = fi(y4) and finds that the new value of zi is the same as the old one, in which

case there is nothing to be communicated to the neighbors of i.

Our first assumption on the communication delays is the following:

Assumption 2.2: The communication delays of the different messages are independent, identically

distributed, positive random variables.

Let D be a random variable distributed according to the common probability distribution of

the communication delays. Let F be its cumulative probability distribution function; that is,

F(t) = Pr[D < t]. We will be using the following technical assumption on F:

Assumption 2.3: There exists some positive integer m and some E0 > 0 [with F(eo) < 1] such

that F is m times differentiable in the interval (0, 2Eo] and satisfies

dF din-iF dn
limFlt)= Jim -t =lim =(t) = 0 and lim (t) > 0;
tto tjo -dt t=o dtm-1 tio dt>

4. To simplify language, we make the assumption that i E A(j) if and only if j E A(i). Our
subsequent results remain valid in the absence of this assumption.
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moreover, there exist cl,c2 > 0 such that the mth derivative of F satisfies

dm F
c_ < -t--(t) < c2, Vt e (0,20o].

Our assumption on the distribution of the delays is satisfied, in particular, in the case of a

probability density function f that is right-continuous and infinitely differentiable at 0. Of course,

the assumption also holds under rather milder conditions, such as right-continuity of f at 0 together

with limtlo f(t) > 0; in this case, we have m = 1. (Various important distributions satisfy these

properties; e.g., the exponential and the uniform distributions.) Assumption 2.3 is also satisfied by

the Gamma distribution with m degrees of freedom.

Assumption 2.2 does not fully capture the intuitive notion of "completely random and inde-

pendent" communication delays. For example, the way that Assumption 2.2 stands, it allows a

processor to "know" ahead of time the conununication delay of each one of the messages to be

transmitted, and then act maliciously: choose the waiting time before sending each message so as

to ensure that as few messages are discarded as possible. Such malicious behavior is more difficult

to analyze, and also very unnatural. Our next assumption essentially states that as long as a mes-

sage is in transit, there is no available information on the delay of that message, beyond the prior

information captured by F.

Note that if a message has been in the air for some time s > 0, and only the prior information is

available on the delay of that message, then its total delay D is a random variable with cumulative

distribution function

1 - F(s)G(r t s) = Pr[D < r D > 5] = 1r- F(s) ? >8 (2.1)

[Of course, G(r Is) = 0 if r < s.]

Assumption 2.4: For every s > 0, t > 0, and every i, j, k, the following holds. The conditional

distribution of the delay of the kth message transmitted from i to j, conditioned on this message

having being sent at time t and not being received within s time units, and also conditioned on

any other events that have occured up to time t + a, has the cumulative probability distribution

function G(. I s).

Our main results are given by the following two theorems. In particular, Theorem 2.1 corresponds

to the case where Assumption 2.3 is satisfied with m = 1, while Theorem 2.2 corresponds to m > 1.

Theorem 2.1: Assume that T > 1 and that m = 1. Then, there exists a constant A (depending

only on the constants cl, c2 and C0 of Assumption 2.3), such that the expected total number of

messages transmitted during the time interval [0, T] is bounded by And3 T. 

Theorem 2.2: Assume that T > 1 and that m > 1. Then, there exists a constant A' (depending

only on the constants m, cl, c2 and C0 of Assumption 2.3), such that the expected total number of

messages transmitted during the time interval [0, T] is bounded by A'nd2+ (In d)'+ T. 



Notice that the difference between Theorems 2.1 and 2.2 lies on the logarithmic factor; some

more discussion on this point is presented in Subsection 3.3.

In the remainder of this section, we motivate Theorem 2.1, by considering the following special

case: 5

(i) The message delays have exponential probability distributions, with mean 1.

(ii) Each processor transmits a message to every other processor, immediately upon receipt of a

nondiscardable message. (That is, the underlying graph is assumed to be complete.)

Let mij(t) be the number of messages in transit from i to j at time t, that have not been

overtaken; that is, no later transmitted message from i to j has already reached its destination.

[The notation mij(t) should not be confused with the constant m involved in Assumption 2.3.] At

time t, the rate at which messages arrive to j along the link (i, j) is mij(t). Since any such arrival

triggers a message transmission by j, the rate of increase of mjk(t) is E,;,j mij(t). On the other
hand, an arrival of a message travelling along the link (i, j) overtakes (on the average) half of the

other messages in transit across that link. Thus,

d+E[mij(t)] = E E[mki(t)] - E[mij(t)]- E[(mij(t) - 1)mij(t)]k~~~~i ~~2
~~~~~~

< E E[mki(t)]- lE[mij(t)]2. (2.2)
kIi

Let M(t) = Eil i, E[mij(t)]. The Schwartz inequality gives 1,M 2(t) < ElZ jiE[mij(t)]2

and Eq. (2.2) becomes

d M(t) < nM(t)- 2 M2(t).

Using the fact limtjo M(t) = 1 (because only one message initiates the execution of the algorithm),

we obtain M(t) < 2n 3, for all t > 0. Thus, the rate of reception of nondiscardable messages, summed

over all links, is O(n 3 ). Since each such message reception generates O(n) message transmissions,

messages are generated at a rate of O(n 4). We conclude that the expected number of messages

generated during a time interval [0, T] is O(n4T).

We can now provide some intuition for the validity of Theorem 2.1 for the case m = 1: messages

with communication delay above E0 have very little probability of not being overtaken and can be

ignored; messages with communication delay below Eco have approximately uniform distribution (cf.

Assumption 2.3 with m = 1), which is approximately the same as the lower tail of an exponential

distribution, for E0 small. Thus, we expect that the analysis for the case of exponential distributions

should be representative of any distribution satisfying Assumption 2.3 with m = 1. In fact, the

proof of Theorem 2.1 is based on the argument outlined above. The proof of Theorem 2.2 is based

on a somewhat different idea and is more involved.

5. This calculation is due to David Aldous.
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3. THE PROOFS OF THE MAIN RESULTS

We start by considering the transmissions along a particular link, say the link from i to j. Let

Me be the (random) number of messages transmitted by processor i along that link during the time

interval [0, T]. Any such message is called successful if it arrives at j no later than time T and if it

is not discarded upon arrival, that is, if that message has not been overtaken by a later transmitted

message along the same link. Let Sij be the number of successful messages sent from i to j. Since

only successful messages can trigger a transmission by the receiving processor, we have

M < 1+ E Sij, (3.1)
iEA(j)

which leads to

E[Mj] < 1 + E E[Sij]. (3.2)
iEA(j )

Note that the term "+1" captures the possibility that processor j is the one that starts the process

by transmitting a message, not triggered by the arrival of another message.

In order to establish Theorems 2.1 and 2.2, we upper bound E[Sij] by an appropriate function

of E[Mj]. This is done in a different way for each of the two theorems.

3.1 The Proof of Theorem 2.1

In the present subsection, we assume that Assumption 2.3 is satisfied with m = 1. Prior to

proving Theorem 2.1, we establish the following result:

Lemma 3.1: There exist constants B,B', depending only on the constants c l ,c 2 and E0 of As-

sumption 2.3, such that

E[Sij] < BV/T E[M] + B'T. (3.3)

Once Lemma 3.1 is established, the proof of Theorem 2.1 is easily completed by the following

argument. Let Q - maxi E[Me]. Then, Eq. (3.3) yields E[Sj] < BVT" + B'T. Using Eq.
(3.2), we obtain E[Mj] < 1 + dBV/T + dB'T. Taking the maximum over all j, and using the
fact dT > 1 (for T > 1), we obtain Q < dBV/T" + d(B' + 1)T. Suppose that Q > T. Then,
Q < d(B + B' + 1)V/Tq, which yields Q < (B + B' + 1) 2d2T. If Q < T, this last inequality is
again valid. We conclude that there exists a constant A such that Q < Ad 2T. Each processor

sends Mi messages along every link. Since E[MJ] < Ad 2T and since there are at most nd links, the

expected value of the total number of transmitted messages is bounded above by And3T, which is

the desired result.

It now remains to prove Lemma 3.1.

Proof of Lemma 3.1: For the purposes of the lemma, we only need to consider a fixed pair

of processors i and j. We may thus simplify notation and use M and S instead of Mj and Sjj,

respectively.
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Note that if E[M] < TIEo2, then E[S] < T/eo2 (because S < M with probability 1) and Eq.
(3.3) holds, as long as B' is chosen larger than 1/Eo 2 . Thus, we only need to consider the case
E[M] > T/Eo 2 , which we henceforth assume.

Successful messages can be of two types:

(i) Those that reach their destination with a delay of at least E0; we call them slow messages.

(ii) Those that reach their destination with a delay smaller than E0; we call them fast messages.

Let S. and Sf be the number of slow and fast successful messages, respectively. We will bound

their respective expectations using two somewhat different arguments, starting with E[Sf].

We split [0, T] into disjoint time intervals of length

def T
V E[M]'

To simplify notation, we assume that V/T E[M] is an integer. (Without this assumption, only

some very minor modifications would be needed in the argument that follows.) Thus, the number
of intervals is T/6 = V/T E[M]. Note also that 6 < e0, due to our assumption E[M] > T/Eo 2 .

Let tk = (k - 1)6 be the starting time of the kth interval. Let Ik be the set of messages
transmitted during the kth interval, and let Ik be the cardinality of -. Let Ark be the set of

messages with the following properties:

(a) The time t at which the message was transmitted satisfies tk - e0 < t < te.

(b) At time tk the message has not yet reached its destination.

(c) The message has not been overtaken by another message that has reached its destination by

time tk.

Thus, the set Ark contains the messages that are in transit at time tk, that still have a hope of
being successful (not yet overtaken), and that have not been in the air for "too long". Let Nk be

the cardinality of Ak.

Consider now a message in the set Ark and suppose that it was transmitted at time tk - s,

where 0 < s < E0. Such a message reaches its destination during the time interval (tk, tk+l] with

probability
G(6+s ( ) F(6+s) -F(s)

1 - F(s)

[See Eq. (2.1) and Assumption 2.4.] Furthermore, Assumption 2.3 (which was taken to hold with

m = 1) implies that

c16 < F(6 + s) - F(s) < C2 6 V6, s E [0,Eo];

also, for s e [0,e0], we have 0 < 1 - F(Eo) < 1 - F(s) < 1. [Recall that F(eo) < 1 by Assumption

2.3.] Thus, it follows that

c1 6 < G(6 + s I s) < a 2 6, V6, s E [0 ,Eo], (3.4)
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where a 2 = c2 /[l - F(Eo)]. Therefore, the probability that a message in the set A1k reaches its

destination during (tk, tk+l] lies between c16 and a 26. Similarly, for any message in the set 2k, the

probability that it reaches its destination during the time interval (tk, tk+1 ] is at most F(6), which

does not exceed a 26. [To see this, apply Eq. (3.4) with s = 0.]

For a message to be received during the time interval (tk, tk+±] and for it to be successful and

fast, it is necessary that it belong to the set Afk Usk. Using the bounds of the preceding paragraph,

the expected number of such successful fast messages is bounded above by a 26(E[Nk +Ik]). Adding

over all k, we see that the expected number of successful fast messages satisfies

Tfb

E[Sa] < a2 E E[Nk + Ik1- (3.5)
k=1

Next, we estimate the number of messages in the set Ark that also belong to Afk+l. (Notice that

these two sets may possibly intersect, because tk+l - e0 < tk due to the assumption 6 < Eo.) Let us

number the messages in the set Ark according to the times that they were transmitted, with earlier

transmitted messages being assigned a smaller number. Note that the Ith message in Ark belongs

to Ark+l only if none of the messages 1,..., e has been received during the time interval (tk, tk+1l].

Using our earlier calculations, each message in Ark has a probability of at least cl1 of being received

during (tk, tk+1]. Using the independence of the delays of different messages (Assumption 2.4), the

Ith message in f/k makes it into ANk+l with probability no larger than (1 - cl6)'. Summing over

all 1, the expected number of elements of Ark that make it into Ak+, is bounded above by 1/(c,6).

The set Afk+l consists of such messages together possibly with some of the elements of T k. We thus

have
1

E[Nk+l] < - + E[II]. (3.6)

Combining Eqs. (3.5) and (3.6), and using the property T1= E[Ik] = E[M], we obtain

a2 T Tf 6
E[Sf] < C16 + Ca26 E E[Ik-1 + Ik]

kc=1

< 2T + 2a 26E[M]
-c 1 6

'2 + 2a2 V~TE[M]. (3.7)

We now derive an upper bound for the expected number of successful "slow" messages. For the

purposes of this argument, we split [0, T] into intervals of length Eo/2. (The last such interval might

have length smaller than Eo/2 if 2T/Eo is not an integer.) The total number of such intervals is

[2T/Eol. Let tc = (k - 1)eO/2. Let us number the messages transmitted during [tk,tk+l], in order

of increasing time that they were transmitted. Clearly, a message generated at time tk+1 - a, with

0 < s < EO/2, is received during the time interval [tk+I,t,+2] with probability F(s + Eo/2) - F(s);
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reasoning similarly as in previous cases, it is seen that this probability is at least c1(Eo/2). Notice
now that for the Ith message transmitted during [tk, tk+l] to be a slow and successful message, it
is necessary that none of the messages 1,..., £ transmitted during that same interval is received

during the time interval [tk+h, tk+2]; the probability of this event is at most (1 - cj(eo/2))'. Thus,

the expected number of messages that are transmitted during [tk, tk+l] and are slow and successful

is bounded above by ( /2)1 Adding over all k, we obtain

r2Ti 1
E[S,] < •-* < B'T, (3.8)

1 E0 ci(,Eo/2)-

where B' is a suitable constant.

Since E[S] = E[Sf] + E[S,], Eqs. (3.7) and (3.8) establish the lemma and the proof of Theorem
2.1 is complete. Q.E.D.

3.2 The Proof of Theorem 2.2

In the present subsection, we assume that Assumption 2.3 is satisfied with m > 1. Prior to

proving Theorem 2.2, we establish the following result:

Lemma 3.2: There exists a constant B, depending only on the constants m,c l ,c 2 and E0 of

Assumption 2.3, such that

E[Sqj] < BT -+~ (E[Mi])--~ max {1,ln(E[Mi]/T)}. (3.9)

U

Once Lemma 3.2 is established, the proof of the Theorem 2.2 is completed by the following

argument. Let Q = maxiE[Mi]. Then, Eq. (3.9) yields E[Sqj] < BTn--'iQi max{1,ln(Q/T)}.

Using Eq. (3.2), we obtain E[Mj] < 1+dBT 4 Q -, max {1, ln(Q/T)}. Taking the maximum over
all j, and using the fact dT > 1 (for T > 1) we obtain Q < dT + dBT-+f Qm- max{l,ln(Q/T)}.

Suppose that Q > e m T. Then, Q < d(B + 1)T-+ Qm+l ln(Q/T), which yields

(Q/T) _-i

In [(Q/T)-i-] • Bd, (3.10)

where B = m+l (B + 1).

Next, we prove the following auxiliary result: if z > e and <- - Y, then x < 2y In y. Indeed,
since e is an increasing function of x for x > e, it is sufficient to show that if ln = Y then~~~~~~~~~~~~~~~~~~~~~Inc Inc~ qivlnl
x < 2ylny. Thus, it is enough to show that x < 2 lIn (i) or x < 2 - 2 n; equivalently
2 In In x < ln x or In x < V, which is true for all x > e.

Due to Eq. (3.10) and the assumption Q > e -, T , we can apply the above result with x =

(Q/T),, and y = Bd; thus, it follows that

< 2dn(10d),
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which gives
Q < A'dl+ (ind)l+ T,

where A' is a suitable constant. If Q < e -m+ T, this last inequality is again valid. We conclude that
there exists a constant A' such that Q < AIdl+ (ind)l1 +T. Each processor sends Mi messages
along every link. Since E[Mi] < A'd'+ (ind)+ 1 T and since there are at most nd links, the ex-
pected value of the total number of transmitted messages is bounded above by Atnd2+ (In d)l+ T,
which is the desired result.

It now remains to prove Lemma 3.2.

Proof of Lemma 3.2: For the purposes of the lemma, we only need to consider a fixed pair
of processors i and j. We may thus simplify notation and use M and S instead of MI and Sjj,
respectively.

Let 6 be defined as follows:
1

=EM (] (3.11)

Note that if 6 > e0, then E[M] < T/Eom+l, which implies that E[M] < () T+ (E[M])-+I;

therefore, Eq. (3.9) holds as long as B is chosen larger than 1/Eom. Thus, we only need to consider
the case 6 < e0, which we henceforth assume.

We split the interval [0, T] into disjoint intervals of length 6. To simplify notation, we assume
that T/6 is an integer. (Without this assumption, only some very minor modifications would be
needed in the arguments to follow.) For definiteness, let the qth interval be Zq = [(q - 1)6, q6), with
the exception of T T/6 = [T - 6, T]. Let Mq denote the number of messages generated during 'q.
Clearly, we have

T/6

_ E[Mq] = E[M]. (3.12)
q=1

Let Sq be the number of nondiscardable messages generated during T . We have

T/6

, E[Sq] = E[S]. (3.13)
q=1

Henceforth, we fix some q E {1,..., T/1} and we concentrate on bounding E[Sq].

Let Nq be the number of messages that are generated during the interval T q and arrive no later
than time q6. We will now bound E[Nq]. Let t 1,...,tM, be the times in Tq, in increasing order,
at which messages are generated. Let Dl,..., DM, be the respective delays of these messages. We
have



E[Ng] = E Pr[M, = I] Pr[tk + Dk < q6 I Mq = e]}
t=1 k=1
00 00

= EL a, Pr[Mq = e and tk + Dk < q6]
k=1 t=k

00

= E Pr[Mq > k and tk + Dk < q6]
k-=1

00

= Pr[Mq > k] Pr[Dk < q5 - tk I Mq > k]
k=1

00oo

< S Pr[Mq > k] Pr[Dk < 6 1 Mq > k], (3.14)
k=1

where the last inequality follows from the fact tk > (q - 1)6. By Assumption 2.4, the delay of a

message is independent of all events that occured until the time of its generation; hence, we have

Pr[Dk < 61 Mq > k] = F(6), (3.15)

because, at time tk, the event Mq > k is known to have occured. Furthermore, it is an inunediate

consequence of Assumption 2.3 that there exist constants al, a 2 > 0 such that

a(x " - y') < F(x)- F(y) < a 2 (Xm - y'), for 0 < y < z < 2Eo. (3.16)

(In particular, al = -! and a 2 = 2.) Applying Eq. (3.16) with x = 6 and y = 0, we have,rn! r~~~n!
F(6) < aC26m ; combining this with Eqs. (3.14) and (3.15), we obtain

00

E[Nq] < a 26m 5 Pr[Mq > k] = a26'E[Mq]. (3.17)
k=1

Let Sq be the number of nondiscardable messages that are generated during Iq and arrive after

time q6. Recalling that Nq is the number of messages that are generated during Tq and arrive no

later than q5, we have

E[Sq] < E[Nq] + E[Sq]. (3.18)

Eq. (3.17) provides a bound for E[Nq]; thus, it only remains to upper bound Sq.
Let F be a a-field describing the history of the process up to and including time q6. Let NQ be

the number of messages that were transmitted during Iq and have not been received by time q6;

note that Nq = Mq - Nq. We will be referring to the aforementioned Nq messages as Pl,..., PN,. In

particular, message Pk is taken to be generated at time tk, where (q-1)6 < t1 < t2 < ... < tNv < q6.

The delay of Pk is denoted by Dk; there holds Dk > q6 - tk, by assumption. Note that Nq and

12



(ti,..., tN,) are F-measurable. Also, Assumption 2.4 implies that, conditioned on F, the random

variables D 1,..., DN, are independent, with the conditional cumulative distribution of Dk being

G(. I q6 - th).

In the analysis to follow, we assume that Nq > 2; the trivial cases N. = 0 and Nq = 1 will be

considered at the end. At time qp, message Pk has been in the air for sk, = q - th time units; notice

that Sk < 6. Let Rk denote the random variable Dk - sk; that is, Rk is the residual time (after
q5) for which message Pk will remain in the air. As argued above, conditioned on X, the random

variables R 1,..., RN, are independent; moreover, the conditional cumulative distribution function

of Rk is given by

Hk(r)- Pr[Rk < r F] = G(r + Sk I k) = F( + )- F(Sk) (3.19)
1 - F(sk)

Let f(r) = (dF/dr)(r) and hk(r) = (dHk/dr)(r); both derivatives are guaranteed to exist in the

interval (0, Eo] due to Assumption 2.3 and the fact sk < 6 < co. Clearly, if k : Nq, then for Pk not
to be discardable it is necessary that messages Pk+l,..., PNy arrive later than Ph. Therefore, we

have

Pr[Pk is nondiscardable I Fj] < Pr[Rk < Ro for £ k + 1,. ., Nq I F]

,J Pr[r < Re for t = k + 1,. .. , N I ] dHk(r)
00 N

o/ NVX 5 u r[Rt >r ) ] dH~r
II [1 - Ht(k)] ti,(r)

- t=k+l+
fOO( " Ni N

< H,(6) + JX ( 1- Hi(r)] dH(r)+ ± [1- Hi(eo)].

fi tt=k+l }t:=k+l

(3.20)

In what follows, we derive an upper bound for each of the three terms in the lower part of the

above equation.

Starting with Hk(6 ), we have

H a) < [(6 + S)O - ]
1 - F(sk) '

due to Eqs. (3.19) and (3.16). Since Sk < 6, we have (Sk + 6)m - 6E' < (2m - 1)6m; moreover,
there holds 0 < 1 - F(eo) < 1 - F(st), because st < 6 < Eo and F(eo) < 1 (see Assumption 2.3).

Combining these facts, it follows that

H1(6) < a 2(2m - 1)6 = i ' . (3.21)
- 1 - F(o)

13



Furthermore, let A be a small positive real number; by Eq. (3.19), we have

H1(r + A) - Ht(r) = F(r + 8st + A) - F(r + st)1 - F(st)

Since st < 6 < E0 , it follows from Eq. (3.16) that

1 - F(0) [(r + st + A) m -(r + st)m]< Ht(r + A)-H(r) < 1 - F()[(r + st + A) m -(r + st)m],

Vr E [0, o].

Reasoning similarly as in the case of Eq. (3.21), it follows (after some algebra) that

a[(r + A) m - r m ] < H(r + A)- H(r)< a 2 ( (+ A))[ - r m" ], Yr E [0,,Eo]. (3.22)

On the other hand, using Eq. (3.16), we have

al[(r + A)m - rm ] < F(r + A) - F(r) < a 2[(r + A) m - rm ], r E [0,Eo];

this together with Eq. (3.22) implies that there exist constants /2, 3 > 0, which do not depend on

t, such that

,33[F(r + A) - F(r)] < H&(r + A) - H1(r) < 32[F(r + A) - F(r)], Yr E [0,oEo].

Using this, it follows easily that

h1 (r) < /3 2 f(r), Vr E [0,Eo], (3.23)

and

H.C(r) > /3 3F(r), Vr E [0,Eo]. (3.24)

Combining Eqs. (3.23) and (3.24), we have

J (H [1 - Ht(r)]) dHk(r) < 32j [1 - /3F(r)]Nf-kf(r)dr
l

= f ° [1- _ 3,F(r)]jNfT-kd((3F(r))

< 2 fo (1- y)Nf-kdy

= "Nqk + 1' (3.25)

where we have also used the fact / 3 F(eo) < Hk(eo) < 1 [see Eq. (3.22) with r = Eo and t = k].

Similarly, by Eq. (3.24), we have

Ng

II [1- Ht(Eo)] < [1 -/3aF(eO)]N, - k = N-k (3.26)
t=k+1

14



where y is constant and satisfies 0 < < 1.

Combining Eqs. (3.20), (3.21), (3.25) and (3.26), we obtain

Pr[Pk is nondiscardable I oF] <• ,3m + ,2 N 1 + N + -k
13.3 Nq - k + 1

The above result holds for k = 1, .. , Nq - 1; adding over all those k, we have

-N, - 1 1- N1 - 1

j Pr[Pk is nondiscardable I F] < /316 m(Nq - 1)+ s N - k + 1 Z+ ?Nf-k. (3.27)
k= k=1 k=1

Notice that
N,- 1 1 N,

Ec~ Nq <~ Ik<n(N. + 1),
k=1 l - k=2k

and

N-k < E -k 7 
1 -7

k=l k=1

because 0 < 7y < 1. Thus, it follows from Eq. (3.27) that

Ng

E[Sq F] = E Pr[Pk is nondiscardable ,F] </ 3 'mNq + 32 I(N + 1) + + 1,
k=1 3-

where the term "+1" bounds the probability that PN, is nondiscardable. The above result was
established for all Nq > 2; it is straightforward to see that it also holds for Nq = 1 and for Nq = O.
Thus, relaxing the conditioning on F, we obtain

E[Sq] < /31 mE[Nq] + 32E[ln(Nq + 1)] + 1

This together with Eqs. (3.18) and (3.17) implies that

E[Sq] < (C2 + /3)6 m E[Mq] + 2E[ln(M + 1)] + 1 

where we have also used the fact Nq < Mq with probability 1. The above inequality holds for all
q E {1,..., T/6}; adding over all q, and using Eq. (3.13), we obtain

T/6 T16 T/6 1 T
E[S] = E E[Sq] < (oL2 + /3l)& E E[Mq] + / E E[In(Mq + 1)] + 1 (3.28)

q=l q=l q=l

By concavity of the logarithmic function, we have E[ln(Mq + 1)] < ln(E[Mq + 1]) (due to Jensen's
inequality); hence, there holds

Tt6 T/6 T ln T/6\
E E[ln(Mq + 1)] < E ln(E[Mq] + 1) < , E E[Mg] + 1J
q=1 q=l q=l
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where we have again used the concavity property. This together with Eqs. (3.12) and (3.28) implies

that

E[S] < (a2 + 1)6mE[M]+- in ( E[M]-+1) +1 (3.29)

By Eq. (3.11), we have 5 mE[M] = T = T¥(E[M])_;I and IE[M] = 1/8- (E[M]=T)
since 6 < Eo, we have -E[M] > 1/eo-, which gives (after some algebra) that

ln ( E[M] + 1) < in (-E[M]) + ln(Eo- + 1).

Using these facts, it follows from Eq. (3.29) that

E[S] < [a2 + /1 + 1 + ln(Com + 1)]T--I (E[M]);I +± m+13 T--r (E[M])FT ln(E[M]IT);
1-7 ~~~~~~~~(m+-~1)133

this proves the lemma for the case 6 < e0. Q.E.D.

3.3 Some Further Results

First, we discuss a generalization of Theorems 2.1 and 2.2. Let us suppose that the distribution

of the delays is as described by Assumption 2.3, except that it is shifted to the right by a positive

amount. (For example, the delay could be the sum of a positive constant and an exponentially

distributed random variable.) As far as a particular link is concerned, this change of the probability

distribution is equivalent to delaying the time that each message is transmitted by a positive

constant. Such a change does not affect the number of overtakings that occur on any given link.

Thus, Lemmas 3.1 and 3.2 remain valid, and Theorems 2.1 and 2.2 still hold.

Next, we examine cases for which the bounds of Theorems 2.1 and 2.2 are tight. In particular,

for m = 1, we are looking for cases where the expected total number of messages per interval of

duration T > 1 is Q(nd3T). Obviously, this is true whenever d = 0(1). Moreover, the calculation

presented in the last paragraph of Section 2 suggests that the bound is tight for the special case

considered therein: namely, for a complete graph and exponential delay distribution.

As far as the bound of Theorem 2.2 is concerned, it is again tight whenever d = O(1). Next,

we argue that this bound is close to being tight in the case where all nodes have roughly the same

degree [which is Q(1)]. Even though we have not completely established this claim, we provide

some strong evidence for it; in particular, we show that, if messages are generated at constant

pace, then the bound of Lennna 3.2 is tight within a factor of (lnd)l+ . Recall that this bound is

interesting for E[M] > T. Thus, the lemma to follow pertains to a case where "many" messages

are transmitted.

Lemma 3.3: Suppose that a fixed number M of messages are transmitted along a link, with the

kth message being generated at time (k - 1) T; let S be the corresponding (random) number of
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nondiscardable messages. Assume that

M > Tmax (3 p) ( ,) (3.30)

where the constant / satisfies
1 +--- ca 2 m+ l -1 (3.31)

[a 2 is the constant appearing in Eq. (3.16).] Then there exists an absolute constant B such that

E[S] > PT IT M - .

Proof: The main idea for proving this result is to show that any message with delay not exceeding
/,36 [where 3 is the constant defined in Eq. (3.31) and 6 is given by Eq. (3.11)] is not discarded
with probability at least .

Let A be defined as follows:
def T (3.32)
A M; (3.32)

also, let L be defined as follows:

Ld,= -; (3.33)

Using Eqs. (3.11) and (3.32) we have L = f3( MT)-+. Thus, by Eq. (3.30), we have L > 2; for
simplicity, we assume that L is integer. We denote by Pk the message generated at time (k -1)A,
for k - 1,..., M; let Dk denote the delay of this message. Assume that Dk < /6; that is, message
Pk arrives prior to time (k- 1)A + 36 = (k +L - 1)A [see also Eq. (3.33)]. Then, Pk may
be discarded only if at least one of the following events occurs: either P,+1 arrives prior to time

(k + L - 1)A or Pk+2 arrives prior to time (k + L - 1)A or ... or Pk+L-1 arrives prior to time

(k + L - 1)A. (Notice that messages Pk+L, Pk+L+1,...,PM cannot cause the discarding of Pk,

because they are generated after the latter has arrived.) Applying the union bound, it follows that

L-1

Pr[Pk is discarded I Dh < 36] < F(LA-A)+F(LA-2A)+. .. +F(LA-(L-1)A) = F(tA).
t=-1

(3.34)
In the argument presented above, it was implicitly assumed that k + L - 1 < M, in order that all

messages Pk+l, -', Pk+hL-. actually exist; however, it is straightforward that Eq. (3.34) holds even
if this is not the case.

Notice now that, by Eqs. (3.11) and (3.30), we have,/36 < 2e0 ; this together with Eq. (3.33)
implies that £A < 2eo for £ = 1,.. , L - 1. Thus, applying Eq. (3.16) with x = lA and y = 0, we
have F(IA) < a 2 (£A) m for £ = 1,...,L - 1. Combining this with Eq. (3.34), we obtain

L-1

Pr[Pk is discarded I Dk _ /36] < a 2 Am Z tm;

17~ ~ =1
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furthermore, there holds
L-l.Z-1 f JL~mdX Lm+1

E em < | m dx = 
Lz=1 om+1

Thus, it follows that
Lm+l

Pr[Pk is discarded I Dki < 036] < a2 A m m+ (3.35)
M +

Notice now that, by Eq. (3.33), we have AmL " + l = ,3m+l 67 ; since 6/+' A [due to Eqs.
(3.11) and (3.32)], it follows that AmLm+l = /3m+l. This together with Eq. (3.35) implies that

1 1
Pr[Pk is discarded Dk < /36] < a 2/3 n+ l = -

-- m+l1 2

where we have also used the definition of /3 [see Eq. (3.31)]. Thus, each message with delay not

exceeding 36 is nondiscardable with probability at least 1. Therefore, we have
1

E[S] > -F(3p6)M. (3.36)

Recall now that 36 < 2Eo; thus, it follows from Eq. (3.16) that F(/36) > al(/36)m; this together

with Eqs. (3.36) and (3.11) implies that

tl>ClpqM = (1 "+E[S] > 2ai(136)mM = 2 13mTn t Mmi,

which proves the lemma. Q.E.D.

The lower bound of Lemma 3.3 differs from the upper bound of Lemma 3.2 by a factor of

ln(E[M]/T). We conjecture that Lemma 3.3 is closer to the truth; that is, we believe that E[Sij] <

BTm'1 (E[Mi]);-+i, for some constant B. Some evidence is provided by Lemma 3.1, which shows

that the conjecture is true for m = 1. Furthermore, we can also prove the conjecture if the number

Mi of transmitted messages is deterministic and the generation times of the Mi messages are also

deterministic. If our conjecture is true, then the logarithmic factor in Theorem 2.2 is redundant.

4. SOME REMARKS ON THE TIME COMPLEXITY

In this section, we still assume that the model of Section 2 is in effect. Furthermore, to simplify

the discussion, let us assume that if a message reception triggers the transmission of messages by

the receiving processor, these latter messages are transmitted without any waiting time.

Consider the asynchronous Bellman-Ford algorithm and consider a path (ik, ik- 1, . . ., il, 0) from
a node ik to the destination node 0. We say that this path has been traced by the algorithm if
there exist times tl, t 2,. . ., tk such that a message is transmitted by processor ij at time tj and this

message is received by processor ij+l at time tj+l, j = 1,...,k - 1. Under the initial conditions

introduced in Section 1, it is easily shown [BT] that the shortest distance estimate xi, of processor
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ik becomes equal to the true shortest distance as soon as there exists a shortest path from ik to 0

that has been traced by the algorithm.

It is easily seen that under the model of Section 2, the time until a path is traced is bounded

by the sum of (at most n) i.i.d. random variables. Assuming that the delay distribution has an

exponentially decreasing tail, we can apply large deviations bounds on sums of independent random

variables (e.g., the Chernoff bound [C]). We then see that the time until the termination of the

asynchronous Bellman-Ford algoritlunhm is O(n), with overwhelming probability. Furthermore, the

expected duration of the algorithm is also O(n).

From the above discussion and Theorem 2.1, we can conclude that, for m = 1, the number

of messages until termination of the asynchronous Bellman-Ford is O(n 2d3 ), with overwhelming

probability.' Similarly, for m > 1, the corresponding upper bound is O(n2d2+ (lnd)'+ ). We

note that for sparse graphs [i.e., when d = 0(1)], the asynchronous Bellman-Ford has very good

communication complexity, equal to the conunmmunication complexity of its synchronous counterpart.

It should be clear at this point that the above argument is not specific to the Bellman-Ford

algorithm. In particular, any asynchronous algorithm with polynomial average time complexity

will also have polynomial communication complexity, on the average.

5. DIFFERENT MODELS

We have established so far that (under the assumption of i.i.d. message delays) the average

communication complexity of asynchronous distributed algorithms is quite reasonable. In particu-

lar, discarding messages that are overtaken by others is a very effective mechanism for keeping the

number of messages under control.

Modeling message delays as i.i.d. random variables seems reasonable when a "general mail

facility" is used for message transmissions, and the messages corresponding to the algorithm are

only a small part of the facility's load. On the other hand, for many realistic multiprocessor

systems, the i.i.d. assumption could be unrealistic. For example, any system that is guaranteed

to deliver messages in the order that they are transmitted (FIFO links) will violate the i.i.d.

assumption (unless the delays have zero variance). This raises the issue of constructing a meaningful

probabilistic model of FIFO links. In our opinion, in any such model (and, furthermore, in any

physical implementation of such a model) the links have to be modeled by servers preceded by

6. For m = 1, the formal argunment goes as follows. If T is the random time until termination

and C(t) is the number of messages transmitted until time t, then

Pr[C(oo) > AA2n2 d3 ] < Pr[T > An] + Pr[C(Aln) > AjA2n2d3 ].

We bound Pr[T > Ain] using the Chernoff bound, and we bound Pr[C(Aln) > A 1A2 n2d3 ] using

Theorem 2.1 and the Markov inequality.
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buffers, in the usual queueing-theoretic fashion. We discuss such a model below.

Let us assume, for concreteness, that each link consists of an infinite buffer followed by a server

with i.i.d., exponentially distributed, service times. In this setup, the following modification to
the algorithm makes most sense: whenever there is a new arrival to a buffer, every message that

has been placed earlier in that same buffer, but has not yet been "served" by the server, should

be deleted. This modification has no negative effects on the correctness and termination of an

asynchronous distributed algorithm. Furthermore, the rate at which a processor receives messages

from its neighbors is O(d). This is because there are at most d incoming links and the arrival rate

along each link is constrained by the service rate of the server corresponding to each link. Each
message arrival triggers O(d) message transnmissions. We conclude that the expected communication

complexity of the algorithm will be O(nd2T), where T is the running time of the algorithmn.

We have once more reached the conclusion that asynchronous algorithms with good time com-
plexity T will also have a good communication complexity.

Let us conclude by mentioning that an alternative mechanism for reducing the communication

complexity of an asynchronous algorithm is obtained by introducing a "synchronizer" [A]. A syn-

chronizer could result in a communication complexity which is even better than the one predicted

by Theorem 2.1 or by the calculation in this section. On the other hand, our results indicate that
acceptable communication complexity is possible even without a synchronizer.
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