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Abstract
ZnSe was grown using the gaseous source epitaxial methods of metalorganic

molecular beam epitaxy (MOMBE) and gas source molecular beam epitaxy (GSMBE). A
nitrogen plasma source was used during GSMBE to incorporate the p-type dopant
nitrogen into ZnSe epitaxial layers.

The first part: of this work was the growth of undoped ZnSe by MOMBE. Diethylzinc
and diethylselenium were the primary metalorganic source gases used. The MOMBE
growth rate was less than 400 A/hr when a diethyl metalorganic was the source of Zn
and/or Se. The low growth rate is postulated to be the result of surface passivation of
metal incorporation sites by chemisorbed ethyl radicals. A parallel study of the effects of
laser illumination and electron-beam irradiation during MOMBE growth was also
conducted. Laser illumination and electron-beam irradiation were observed to alter the
growth rate under appropriate growth conditions. An increase in the growth rate by a
factor of 15 over the unilluminated growth rate was observed using laser illumination.

The second part of the study was the growth of ZnSe by GSMBE, and experiments to
dope ZnSe p-type using a radio frequency (RF) nitrogen plasma source. High quality
epitaxial films were produced under a variety of growth conditions as indicated by intense
low temperature photoluminescence dominated by free- and donor-bound exciton
features. Employing the RF plasma source, nitrogen has been incorporated into ZnSe
epitaxial layers in concentrations as high as 6x1018 N atoms/cm 3 , as measured by
secondary ion mass spectroscopy. Hydrogen incorporated in the ZnSe:N grown by
GSMBE. Passivation of the nitrogen acceptors by hydrogen greatly reduced the
electrically-active nitrogen concentrations; the highest net-acceptor concentration
measured by the capacitance-voltage technique was - lx1017 cm- 3 .

Thesis Supervisor: Leslie A. Kolodziejski

Title: Associate Professor of Electrical Engineering
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Chapter 1

Introduction
ZnSe is an ionic wide bandgap II-VI semiconductor with a direct room temperature

bandgap of 2.67 eV. The bandgap is sufficiently large to permit fabrication of injection

devices that emit radiation in the blue and green regions of the visible spectrum.

Semiconductor lasers are preferred in certain applications due to their compact size and

relatively high quantum efficiency. ZnSe and related wide bandgap II-VI alloys are the

subjects of increasing research worldwide as a potential material system to extend the

operation of injection lasers into the blue region of the visible spectrum.

1.1 Background

1.1.1 Progress Toward Blue-Green Injection Lasers

ZnSe has been investigated as a potential light emitter in the blue region of the visible

spectrum for over 30 years. The 2.67 eV room temperature direct energy gap, which

corresponds to a bandgap photon with a wavelength of 464 nm, makes ZnSe an attractive

semiconductor for a blue diode. In spite of considerable research effort, a light emitting

device fabricated in ZnSe was not produced until 1988, when p-n junction light emitting

diodes (LEDs) using Li as the p-type dopant were first reported [1 ,2 ]. The first ZnSe-

based laser diode was reported in 1991 and this device utilized nitrogen as the acceptor

impurity [3 ]. Within a year of the first laser diode announcement, several other research

groups reported blue-green LEDs and laser diodes which used nitrogen as the p-type

dopant [4 -8 ]. These advances in device fabrication were possible due to a milestone
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breakthrough in doping ZnSe p-type by employing a nitrogen plasma source during

molecular beam epitaxy [9 ,10 ].

Stutius [11 ] was one of the first to suggest that N would be the most promising

element for an acceptor in ZnSe based on studies of acceptor atoms incorporated during

organometallic vapor phase epitaxy (OMVPE). Theoretical studies by Chadi and Chang

112 ] had predicted that nitrogen would be the best candidate as a group V substitutional

acceptor atom on the Se site. Unfortunately, molecular nitrogen has a very low sticking

coefficient when used as a gaseous dopant during epitaxial growth [13 ], which limited the

nitrogen incorporation to the 1015 - 1016 atoms/cm 3 range. Attempts to introduce

nitrogen acceptors through low energy ion implantation were unsuccessful [14 ], with the

films being highly resistive (> 104 Q cm) which might have been a result of implantation

damage. The key insight was that a plasma could produce excited species from molecular

N2 with much higher sticking coefficients in the gaseous phase. It has now been

demonstrated that nitrogen can be incorporated in significant concentrations (> 1019

atoms/cm - 3) producing free hole concentrations as high as 1018 h/cm -3 using plasma

sources. Studies of the optical discharge of nitrogen plasma sources suggest that atomic

nitrogen is the 'active' species which after incorporation produces the useful

concentrations of free holes [15 ,16 ]. The sticking coefficient of atomic nitrogen to the

ZnSe surface may be higher due to dangling p-orbital bonds enhancing the chemisorption.

An alternate approach to achieve p-type ZnSe is being investigated for metalorganic

molecular beam epitaxy (MOMBE) of ZnSe. Researchers at Hitachi Central Research

Laboratories have reported the achievement of low resistivity p-type ZnSe grown by

MOMBE where ammonia was the dopant [17 ]. Using this approach to nitrogen doping,

they have reported the fabrication of LEDs with low turn-on voltages for devices

employing a simple Au/p-ZnSe contact [18 ].

18



1.1.2 (Zn,Mg)(S,Se) and (Zn,Cd)(S,Se) Material Systems

Nitrogen plasma sources have been used to produce p-type epilayers in II-VI ternary

and quaternary alloys of the (Zn,Cd)(S,Se) [3-6] and (Zn,Mg)(S,Se) [7,8] material

systems. This is fortuitous since alloying Mg or S into ZnSe increases the energy gap

compared to the compound ZnSe, and increases (Mg) or decreases (S) the lattice

parameter; the composition of the quaternary (Zn,Mg)(S,Se) can be tailored to a specific

bandgap energy while maintaining the lattice match over a range of lattice constants.

Alloying Cd into ZnSe lowers the bandgap energy moving the emission to the green

region of the spectrum and increases the lattice constant.

Figure 1.1 is a diagram showing the bandgap energy Eg versus the lattice constant ao

of II-VI compound semiconductors which are being investigated for injection devices in

the visible. Included in the figure are III-V compounds which alone or as alloys are used

as substrate materials for II-VI growth. The values of the elements Si and Ge are

a)
1)>UO0
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provided as a reference. The diamond shaped region connects the ternary alloys that

define the quaternary (Zn,Mg)(S,Se). Also shown are lines representing the ternaries of

(In,Ga)As and (In,Ga)P which can be lattice matched to a range of II-VI alloys, and a

shaded band (between 400 and 700 nm) corresponding to the approximate energies of the

visible spectrum. The close lattice parameter match of Ge to ZnSe has encouraged efforts

in heteroepitaxy of ZnSe on Ge [19 ], but the non-polar nature of the substrate results in

the formation of' anti-phase defects at the interface and misorientation of the layer with

respect to the substrate [20 ].

Heterostructure device design has been an integral factor in achieving light emission in

-II-VI devices. Judicious selection of heterointerface materials enhances the electrical and

optical confinement, thus lowering the threshold current density for operation. The first

ZnSe laser diode [3] was a separate confinement heterostructure, single quantum well

device (SCH-SQW) consisting of a ZnSe-ZnS.0 7Seo.93 waveguide, and a Cdo.2Zno.8Se

quantum well between ZnSe barriers. In order to obtain shorter emission wavelengths,

other investigators are fabricating SCH-SQW and multiple quantum well (MQW) devices

using (Zn,Mg)(S,Se) cladding layers, and ZnSe quantum wells between Zn(S,Se) barriers

117,8]. As of this writing, Sony Corporation researchers have reported the shortest

wavelength for an injection laser at 447 nm [7].

1.1.3 Material Properties of ZnSe

ZnSe is the base material to which other elements are alloyed to form ternary and

quaternary layers in fabricating blue-green light emitting heterostructures. Some material

constants of ZnSe are presented in this section to provide the reader with background on

the material characteristics of this increasingly important compound.

ZnSe crystallizes in the zincblende lattice structure with the zinc and selenium atoms

located on separate face-centered cubic sublattices. Due to the large difference in the
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electronegativity of the Zn and Se atoms, the Zn-Se bond is more ionic than covalent in

character. It is calculated that the bonding of Zn and Se atoms in the tetrahedral

environment of the zincblende lattice has a 63% ionic component [21 ]. The polar nature

of ZnSe implies that electrons are localized about the Se anion. In terms of band

structure, the tighter binding results in relatively large electron and hole effective masses.

The interest in ZnSe is due to its large direct bandgap (2.67 eV at room temperature) and

large non-linear optical coefficient, due in part, to its non-centrosymmetric crystal

structure [22 ].

Table 1.1 gives values for some electrical and optical properties of ZnSe. An often

quoted nonlinear figure of merit is the product n3 (rlkl2), where n is the index of refraction

at the wavelength of interest, and rk is an element of the electro-optic tensor for the

material. The figure of merit for ZnSe (1.9x10-9 cm/V, at 633 nm) compares favorably to

GaAs (2.6x10 -9 cm/V, at 900 nm), a semiconductor often used to fabricate nonlinear

Table 1.1 Some selected electrical and optical properties of ZnSe.

Property Symbol Value Units Ref.

Energy Gap (R.T.) Eg 2.67 eV [23 ]
(4 K) 2.822 eV [24 ]

o3Egf/T 7.2 10 4 eV/K [23]
Spin-orbit Splitting Aso 0.45 eV [23]
Electron Affinity X 4.1 eV [25 ]

Electron Effective Mass m 0.17 mo [23]

Hole Effective Mass m 0.6 mO [23]

Electron Mobility (R.T.) Ire 600 cm2/V.cm [25]
Hole Mobility (hh, R.T.) Ihh -30 cm 2/V-cm [26 ]
Free-exciton Binding Energy (lh) 21 meV [27 ]
LO Phonon Energy oLo 31.9 meV [28 ]

Dielectric Constant (Static) £r(0) 9.1 £r(Eo) [22]

Index of Refraction (458 nm) n 2.66 [22]
Electro-optic Coefficient r4 2.0 1010 cm/V [22]
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Table 1.2 Selected mechanical properties of ZnSe.

Property Symbol Value Units Ref.

Lattice Constant ao 5.6686 A [25]
Expansion Coefficient a 7.0 10-6 /°C [23]

Melting Point Mp 1520 °C [23]
Thermal Conductivity K 0.19 W/cm-K [23]

Elastic Constants Cll 8.59 1010 dyne/cm2 [30]
C 12 5.06 1010 dyne/cm 2 [30]

devices. ZnSe has the advantage of being an extremely low loss waveguide at III-V

device wavelengths, and can be used as a waveguide at many visible laser wavelengths.

To demonstrate these advantages, a rib-waveguide optical phase modulator has recently

been demonstrated in the ZnSe-Zn(S,Se) material system [29 ].

Knowledge of the mechanical properties of ZnSe is essential to accurately interpret

characterization data in certain measurements such as photoluminescence (PL) and x-ray

diffraction. As an example, ZnSe PL can exhibit positive or negative energy shifts in the

excitonic features depending on the nature of the strain within the heteroepitaxial film.

Understanding how particular growth conditions interact with the mechanical properties of

the film and substrate to introduce strain is critical in evaluating energy values in PL

spectra, and angular separations in x-ray diffraction measurements. Values of selected

mechanical properties of ZnSe are given in Table 1.2.

1.1.4 Technological Applications

A promising application for blue laser diodes is in CD-ROM and magneto-optical

recording. The areal density of recorded information is inversely proportional to the

square of the wavelength, being limited by the minimum diffracted spot size. The

GaAs/AGaAs double heterostructure lasers currently in use in CD-ROM equipment have

a near infrared wavelength of = 870 nm. A laser operating at 440 nm could read
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approximately 4 times the recorded density than is possible with an AlGaAs laser.

Another requirement for the lasers employed in commercial CD-ROM equipment is

compact size. The laser is integrated into an optics assembly for tracking and reading the

data. The whole assembly must be compact so that electro-mechanical actuators can

quickly and accurately position the optics assembly over the recorded media. Frequency

doubled AGaAs laser diodes which also emit blue radiation through up-conversion in a

non-linear crystal 1-[31 ] are too large to be used in current generation CD-ROM and

magneto-optic equipment. Frequency doubled AlGaAs lasers will likely be limited to

high-end systems where more expensive beam steering approaches to tracking and reading

the information are less of a price issue.

A compact semiconductor laser in the blue could also be used in low-power

applications where long coherence lengths are not required. Most argon and krypton ion

lasers require special electrical and cooling facilities and are physically large in size.

Additionally, the plasma tube must be replaced at substantial cost every five to ten years.

(Zn,Mg)(S,Se) and (Zn,Cd)(S,Se) based injection lasers have the potential to span almost

the entire range of the emission lines produced by the argon and krypton lasers. If high

powers are needed, arrays of II-VI lasers could be built.

A promising application being investigated at North Carolina State University (NCSU)

is to build bright emissive LEDs [32 ]. The NCSU researchers are using (Zn,Cd)(S,Se)

and Zn(Te,S,Se) active layer materials for blue and green LED applications, respectively.

The performance of the blue LEDs are better than commercially available SiC LEDs. The

green LEDs are brighter and have a narrower emission bandwidth compared to GaP

devices on the market. The challenge they are now addressing is increasing the lifetime

beyond the several hundred hours currently obtained [32].
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1.1.5 Central Materials Issues

The aforementioned applications will require that the device lifetimes be dramatically

increased. As of this writing, the room temperature operational lifetime of ZnSe based

laser diodes has been reported to be a few minutes to one hour [33 ]; this number needs to

be increased by approximately five orders of magnitude for practical commercial devices.

Lights emitting diodes which are less demanding structures in terms of materials quality

have yet to achieve lifetimes beyond a few hundred hours [32]. This technological hurdle

tnay be possible to clear if the history of III-V lasers can be repeated. The earliest III-V

lasers had equally short lifetimes, but a thorough study of the mechanisms which led to

device failure enabled preventive solutions to be devised which eventually resulted in

devices with lifetimes in excess of 105 hours.

ZnSe and other wide bandgap II-VI compounds present unique problems from a

materials standpoint in eliminating or suppressing defect generation mechanisms. The low

energies required to generate point defects and the large bandgap of the materials make

them susceptible to electronically-enhanced defect reactions [34] resulting from

nonradiative electron-hole recombination events. It was proposed that dark line defects

(DLDs), which are nonradiative recombination centers which have been observed in the

active region of III-V devices, are formed by the climb of dislocation networks by a

mechanism induced by the operation of the device [35 ,36 ]. Recently, a study of the

degradation of the active region of II-VI blue-green light emitters has revealed the rapid

production and propagation of crystalline defects analogous to the DLD in III-V devices

1-[33]; it was observed that the degradation that quenched the light emission nucleated at

pre-existing defects near heterointerfaces. To reduce the probability of DLD formation, it

is necessary to minimize the potential DLD nucleation sites such as threading dislocations

and stress fields near the interfaces. The II-VI devices that have been described required

heterointerfaces to enhance their performance. Therefore, precise control of the ternary
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and quaternary alloy compositions are critical to minimize the strain that can develop at

heterointerfaces.

1.2 Dissertation Overview

This thesis investigated novel epitaxial methods to the growth of ZnSe. The early

chapters will describe and present the results of metalorganic molecular beam epitaxy

(MOMBE) and gas source molecular beam epitaxy (GSMBE) growth of ZnSe. If gaseous

source epitaxy of ZnSe is to be a viable method, it will be necessary to demonstrate that

ZnSe can be doped p-type using these techniques. The initial work investigating the

potential of using a nitrogen plasma source to dope ZnSe p-type is presented. The

consequences of hydrogen contamination of ZnSe:N films resulting from the gaseous

growth process are discussed. The non-ideal behavior of nitrogen as a dopant is becoming

an area of increasing concern. The nature of this non-ideal behavior is discussed and

recent theoretical explanations for the observed phenomena are presented.

1.2.1 Epitaxy System and Experimental Procedures

The second chapter contains a description of the II-VI epitaxy system in the Chemical

Beam Epitaxy (CBE) Laboratory. The layout of the interconnected ultra high vacuum

(UHV) systems and more detailed drawings of the II-VI reactor are shown. The special

features for using and handling gases are described. The second part of the chapter is a

presentation of the standard experimental procedures for preparing a sample for growth.

'The procedures covered include: preparation of the sample holder and the GaAs wafer,

the method used to calibrate the temperature of the substrate in the vacuum system, and

the remaining actions necessary prior to commencement of growth.

1.2.2 MOMBE and GSMBE

Two variations of molecular beam epitaxy (MBE) known as metalorganic molecular

beam epitaxy (MOMBE) and gas source molecular beam epitaxy (GSMBE) were
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investigated. These techniques are best described as hybrid technologies between MBE

and metalorganic vapor phase epitaxy (OMVPE). The raison d'&tre for using gaseous

sources is an attempt to overcome the difficulties in reproducibly controlling the

composition of' ternary and quaternary alloys. The constituent elements of II-VI

compounds have higher vapor pressures than most III-V semiconductors which makes it

difficult to maintain a stable flux throughout growth when effusion ovens are used.

GSMBE has been demonstrated to be an effective epitaxial growth method to

reproducibly control the composition of the quaternary (In,Ga)(As,P) which contains the

high vapor pressure elements As and P [37 ]. Growth of the II-VI quaternary

(Zn,Cd)(S,Se) by MOMBE has recently been demonstrated [38 ]. Chapter 3 is concerned

with MOMBE growth of ZnSe where the effects of laser irradiation were simultaneously

investigated during growth. A major observation of this research was that light could alter

the growth rate of the film through surface interactions of photo-generated electrons

and/or holes with adsorbed species [39 -43 ]. Chapter 4 discusses the current research in

GSMBE of ZnSe using Zn and hydrogen selenide [44 ].

1.2.3 Acceptor Compensation in ZnSe

Chapter 5 addresses the past difficulties in attaining conductive p-ZnSe and reviews

proposed explanations for acceptor compensation in the material. Contrary to the hopes

of the ZnSe research community, nitrogen is not behaving as an ideal acceptor in ZnSe.

The behavior that has attracted the most attention is an apparent solubility limit of

nitrogen which prevents the attainment of free hole concentrations sufficient to tunnel

across the Schottky barrier formed with common contact metals.

1.2.4 ZnSe:N

A nitrogen plasma source has been used to incorporate nitrogen into GSMBE grown

ZnSe:N in concentrations as high as 6x10' 8 N atoms/cm 3, as measured by secondary ion
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mass spectroscopy (SIMS). Chapter 6 discusses the characteristics of the ZnSe:N

produced using the RF plasma source. Most ZnSe:N films have been highly resistive

giving flat-band capacitance-voltage traces. A puzzle in ZnSe research of recent years has

been that only MBE grown nitrogen doped epilayers have yielded low resistivity p-ZnSe.

Recent characterization of our GSMBE films, and films other researchers have grown by

OMVPE, suggests that hydrogen passivation is the most probable cause for the low

degree of acceptor activation [45 ,46 ] of ZnSe:N grown by these methods. SIMS depth

profile analysis of our films has revealed that hydrogen is incorporating at concentrations

equal to or greater than the [N], and preferentially in ZnSe layers with nitrogen. Chapter

7 reviews some of the literature on hydrogenation of semiconductors and relates what is

known about hydrogenation to our ZnSe:N epilayers. Recently proposed models for the

origin of nitrogen acceptor compensation at high doping levels observed in MBE grown

ZnSe:N are also discussed in Chapter 7.

1.2.5 Conclusions and Future Work

The final chapter summarizes the major results of the thesis research. Some

comparison of the gaseous techniques of MOMBE and GSMBE to the established method

of MBE are presented. Recommendations are made for future experiments, and

technological hurdles necessary to be overcome are identified.
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Chapter 2

Epitaxy System and
Experimental Procedures

One thrust of the research effort of the chemical beam epitaxy (CBE) laboratory at

MIT is to investigate alternate epitaxy methods for the growth of ZnSe. In pursuit of this

goal, two gas source MBE systems are being used within the laboratory. To enable the

use of metalorganic and hydride gas sources, a greatly enhanced pumping capability is a

notable feature of these systems. One reactor which will be described in detail is dedicated

to the growth of II-VI thin films. A second GSMBE system (Riber CBE 32) is used to

produce III-V epitaxial layers for II-VI heteroepitaxy, and to fabricate novel III-V devices

based on the (In,Ga)(As,P) materials system.

Figure 2.1 is a drawing of the layout of the interconnected ultra high vacuum (UHV)

chambers within the laboratory. Separate growth chambers are utilized to prevent cross-

contamination of II-VI films by III-V elements and visa versa. An UHV transfer chamber

containing a mechanical transfer mechanism connects the other chambers, and permits in

vacuo movement of a sample between chambers, which greatly reduces the amount of

background gas adsorption on a sample surface. The buffer chamber between the III-V

reactor and transfer chamber is designed to facilitate the transfer of a wafer between the

III-V and II-VI epitaxy chambers for subsequent heteroepitaxy. Hardware in the buffer

chamber (not yet available when this thesis was written) is designed to mate a II-VI

sample holder to a modified Riber sample block. Separate chambers for introducing the

sample into vacuum (load lock), and for analyzing and evaporating metals onto the

samples, are connected to the transfer system.
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AsH3

Figure 2.1 Diagram illustrating the layout of the interconnected UHV epitaxy systems within the CBE
laboratory. The UHV chambers and the major subsystems are identified by name.
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2.1 II-VI Chamber Description

The II-VI reactor is a custom-built MBE chamber with the capability to pump large

gas loads typically generated in MOMBE or GSMBE. To pump gas flows in the 10

standard cubic centimeter per minute (sccm) range, a 2300 1/s diffusion pump and a liquid

nitrogen cryotrap are employed during growth. When the reactor is idle, the chamber is

maintained near UHV pressures by a 1500 I/s cryopump and a 440 l/s ion pump. Figure

2.2 shows schematic views of the growth chamber indicating the positions of the solid

source effusion ovens, gas 'crackers'/injectors, substrate, viewports and other hardware.

The distance from the exit apertures of the effusion ovens and crackers to the center of the

Top View

RF Pla
Source

Laser
Wind(

Side View

Figure 2.2 Top and side view drawings of the II-VI epitaxy chamber which illustrate the geometry of
the chamber. The locations of the sources and some key analytical equipment are also
shown.
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substrate is approximately 21 cm. On one side of the chamber is the vent-run gas manifold

supplying four gas crackers: two high temperature crackers for column V and VI gaseous

sources, and two low temperature crackers for the column II and III gas sources. The

opposite side of the chamber has four 6" source flanges where the effusion ovens, the RF

plasma source, and a viewport for laser-assisted epitaxy are placed. The configuration for

H2Se GSMBE is to use Zn and ZnCl2 effusion ovens, the RF plasma source, and a laser

viewport window. The eight source flanges are oriented upward making a 450 angle with

the reactor wall, and are positioned such that a straight line exists from the center of each

flange to the center of the substrate. The substrate is mounted horizontally with the

sample normal pointing downwards. 360 degrees of rotation is available in the substrate

assembly to increase the uniformity in film thickness and composition. Four window

viewports located at the elevation of the substrate assembly provide views into the

chamber to assist in sample transfers. Two additional windows are positioned to view the

substrate and are normally equipped with an optical pyrometer and a CCD camera.

The effusion ovens and gas crackers were supplied by EPI of St. Paul, Minnesota.

The effusion ovens are standard design source and doping Knudsen cells. The gas

crackers are baffled gas feed tubes surrounded by a heating filament, which extend into the

reactor. The low and high temperature gas crackers are of different design. The material

in the cracking zone of the low temperature cracker is tantalum. A tantalum diffuser plate

on the end of the parabolic cracking zone was removed on the group II cracker to

improve the collimation of the gas beam at the substrate. The high temperature cracker

shown in detail in Figure 2.3 is of composite material construction. The gas feed tube is

pyrolytic boron nitride (PBN) which is surrounded by a Ta:PBN filament assembly. A

removable Ta baffle insert provides catalytic surfaces and increases the gas collisions with

the heated PBN walls.
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Figure 2.3 Detailed view of the high temperature gas cracker. The gas tube wall is PBN and the baffle
insert is made of Ta.
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2.2 Gas Delivery System

Growth of certain types of device structures such as quantum wells require that gas

flows be switched on and off rapidly to achieve abrupt interfaces. To reduce pressure

transients that decrease the abruptness of interfaces, a well designed vent-run gas

switching network is needed near the entrance to the gas crackers/injectors. A vent-run

configuration is a gas switching arrangement that either directs the gas into the reactor

(run), or into a pumped vent line (vent) as illustrated in Figure 2.4. This arrangement

insures that the gas flow established by a mass flow controller (MFC) upstream of the

injector does not experience pressure buildups due to a closed valve. The metalorganic

gases are metered into the reactor using vapor phase mass flow controllers manufactured

by MKS (model 1150A). These vapor phase MFCs do not require a carrier gas, are

calibrated for flows up to 5 sccm, and operate with as little as a few Torr of inlet pressure.

The hydride gas MFCs are industry standard 0-10 sccm controllers (MKS 1461A).

Hydride gases are acutely toxic and require special equipment to be handled safely.

The hydride gases in the laboratory are stored in Semi-Gas cabinets which contain five-

valve gas purge manifolds. The gas purge manifold allows the tubing connected to the

hydride cylinder to be thoroughly purged before changing the cylinder. The hydride lines

that exit the Semi-Gas cabinets are coaxial; the gas line is surrounded by an outer tube that

terminates near a hydride gas detection point. Constant monitoring for hydride gas leaks

is performed by three MDA toxic gas detection systems which provide redundancy in

coverage. These monitors are capable of detecting a hydride gas at concentrations that

are far below levels that will cause harm. Alarms in the laboratory are activated if one of

the monitors detects a hydride concentration above predetermined safe values.

The exhausted gas from the reactor has residual hydride and metalorganic gases

removed by a toxic gas absorber (TGA). The TGA consists of an activated charcoal resin

bed which reacts with the hydride and metalorganic gases as they percolate through. The

33



( -Manual valve -Switching block

(0 - Pneumatic valve L -l - Purifier

Figure 2.4 Representative gas routing arrangement on II-VI reactor. A vent-run configuration is used
near the cracker switching block to suppress gas flow transients.

effluent of the TGA which empties into the room exhaust is monitored by an MDA

process point to verify proper operation.

2.3 Sample Preparation

2.3.1 Sample Holder

GaAs wafers were mounted on a two piece refractory metal sample holder. The outer

piece which was either molybdenum or niobium, was a rim which supported an inner disk,

and had a ring around the periphery to allow a two tine fork to be inserted to lift and

transport the sample holder. The inner piece was a molybdenum disk which rested on an
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inner lip of the outer rim. A 50 mm GaAs wafer could be placed directly in the outer rim

where the center disk normally was placed, but in most experiments a partial GaAs wafer

was mounted to the center disk using In solder. Prior to use, the two pieces of the sample

holder were degreased (to be described in the next section) and etched in a diluted

solution of 20-30% HNO 3 acid. The pieces were next immersed in undiluted HCl acid to

remove the oxide formed, and then thoroughly rinsed in deionized water (DI H20). To

remove acid that might have collected in surface irregularities and at grain boundaries, the

sample holder was vacuum outgassed for 1 hour in the introduction chamber bake station

at a thermocouple setting of 700 °C.

2.3.2 Wafer Preparation

ZnSe was grown heteroepitaxially on GaAs substrates. Growth on all three substrate

conduction types of GaAs were investigated: semi-insulating with a resistivity > 107 Q cm,

n-type wafers with [Si] - 1018 atoms/cm- 3, and p-type substrates with [Zn] or [B] on the

order of 1018 atoms/cm- 3. The wafers were purchased from either the Sumitomo Electric

Company or American Crystal Technology. A wafer In soldered to a molybdenum disk

was normally cleaved into quarter pieces or smaller sizes. Prior to mounting, the wafer

piece was degreased and then etched to form a new 'clean' oxide. The degrease steps

were as follows: (1) wafer was boiled twice in trichloroethane (TCA); (2) TCA was

removed by rinsing with acetone and shaking in an ultrasonic bath cleaner; (3) acetone

was rinsed off by immersing wafer in methonal and placing in ultrasonic cleaner; (4) wafer

was thoroughly rinsed in DI H2 0 and dried with N2. The wafers were purchased as epi-

ready out of the packaging, but the wafers were etched to form a new clean oxide. The

wafer etch was a 5:1:1 solution of H2SO4 :H2 0 2:DI H2 0 mixed approximately 1 minute

prior to dipping a wafer. Wafers were etched for 90 seconds and then thoroughly rinsed

under flowing DI H20 and dried before mounting on the molybdenum disk. A layered
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eutectic was also degreased and mounted alongside the GaAs wafer and was used for

temperature calibration.

2.4 Temperature Calibration

ZnSe was usually grown around 320 C. As is common in MBE systems, the

substrate was heated radiatively from the backside by a heating element located behind the

sample holder. The substrate thermal couple was located in a black body cavity formed by

the heater, the heat shielding, and the substrate holder. The thermocouple did not make

physical contact with the sample holder. The energy radiated per unit time per unit area

(u) by a blackbody, which the carbon filament approximated (adjusted for its emissivity), is

described by the Stefan-Boltzmann law [47 ],

2i 5(kT)4
U h3= _(T (Eq. 2.1)

15h3c2

where is defined as the Stefan-Boltzmann constant. Since the Stefan-Boltzmann

blackbody emissive power varies as T4, heating and cooling of the sample holder required

longer periods of time compared to III-V growth. A 20 C shift in the growth

temperature can have a significant impact on the characteristics of ZnSe, so temperature

calibration was an extremely important step.

An absolute temperature reference was required for each run to insure repeatability. A

layered structure composed of metals which form a eutectic system was used. A layered

eutectic was produced by depositing several hundred angstroms of one metal of the alloy

on a substrate of the other metal. When the temperature was raised to the eutectic

temperature the alloy phase formed. The gold-germanium alloy has a eutectic temperature

of 356 °C which was close to ZnSe growth temperatures. A layered eutectic of - 500 A

of Au on a Ge substrate was used to identify a known temperature within the vacuum.

Visual observation of the phase change was possible due to the change in color from gold
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to a dull silver, and the surface texture became rougher. An alternate approach is to view

the eutectic with an optical pyrometer and observe where the temperature changes

suddenly due to the change in emissivity when the alloy phase forms. Once the absolute

temperature of 356 C was established as described above, the emissivity of the optical

pyrometer was set so the pyrometer would read 356 °C at the observed eutectic phase

change. The pyrometer was the calibrated temperature reference used before and during

growth.

2.5 Other Growth Procedures

Prior to growth, the GaAs oxide was removed by elevating the substrate temperature

to a temperature near 600 °C, but below the congruent sublimation temperature of GaAs

of - 640 °C. Reflection high-energy electron diffraction (RHEED) images were observed

to detect the appearance of lattice diffraction lines and surface reconstructions which

indicated the removal of the oxide. After the oxide was removed, the substrate

temperature was set to the growth temperature and allowed to cool for at least 1 hour, so

the substrate could equilibrate to the lower growth temperature.

During growth, the surface of the sample holder became coated by Zn and Se thin

films. As a result, the emissivity of the sample holder increased which altered the

relationship between the substrate thermocouple and the actual wafer temperature. To get

accurate temperature readings during growth, the optical pyrometer was aimed to measure

the temperature of the In soldering the wafer to the sample holder. The GaAs substrate

and ZnSe thin film were transparent to the infrared wavelengths used by the optical

pyrometer to measure the temperature. By monitoring the temperature of the In solder

protected by the GaAs substrate, it was possible to obtain calibrated temperature

measurements as growth proceeded.
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Chapter 3

Metalorganic Molecular
Beam Epitaxy of ZnSe

Metalorganic molecular beam epitaxy or chemical beam epitaxy, which utilize either

metalorganic gases (MOMBE), or metalorganic and hydride gases (CBE) as the source

materials, eliminate many of the difficulties associated with controlling the fluxes of high

vapor pressure elements which are common in II-VI epitaxy. The gases are introduced

into the epitaxy chamber through gas cracking injectors in carefully metered flows

established by mass flow controllers (MFCs). The relative distribution of gaseous species

produced during cracking remains constant as long as the cracker temperature and gas

flows are unchanged. The cracker temperatures and MFCs are regulated by proportional,

differential, integral (PID) controllers to an accuracy of 1 °C or 1% of flow, respectively.

3.1 Instability in MBE Source Fluxes

The stability of metered gas flows and, hence, the flux, can be contrasted with our

experience using Knudsen cells to generate a flux of zinc or selenium. The flux emitted by

an effusion oven (Knudsen cell) is strongly dependent on the temperature and the exposed

surface area to vacuum. Zinc and selenium are relatively high vapor pressure elements

which are present in the vacuum. The pressure over a solid of pure material in vacuum

can be described by an expression of the form,

b
log(p[Torr])= a- (Eq. 3.1)

T
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where a and b are constants that can be derived from data in vacuum reference texts [48 ].

The Knudsen equation for evaporation from an isothermal enclosure with a small orifice

(an effusion oven approximates this) predicts an effusion rate F as given in equation (3.2),

where A is the area of the orifice, Peq is the pressure over the solid, M is the molecular

weight, N is the number of molecules evaporating from the surface, and kB and NA are the

Boltzmann and Avogadro constants, respectively.

dN NA
dr- N APeq A (mol s) (Eq. 3.2)

To illustrate the sensitivity of the molecular flux to effusion oven temperature, a

demonstration calculation is carried out for selenium. The selenium effusion oven

temperature during growth was typically 220 °C. Assigning values for the constants a and

b in equation (3.1), the vapor pressure of Se at this growth temperature can be found

using equation (3.3).

F 5,71419.073 - T(K)J

PSe (Torr) = 10 (Eq. 3.3)

Calculating the equilibrium pressure from equation (3.3) and substituting into (3.2), a 1 °C

rise in effusion oven temperature results in a 5% rise in the effusion rate and, hence, the

flux which is the effusion rate per unit area. In this calculation it was assumed that the

molecular weight of Se was some weighted average of Se2, Se4 and Se8 that was

insensitive to a one degree rise in temperature. II-VI ternary and quaternary alloys are

formed from high vapor species, so composition control is expected to be difficult using

effusion ovens.

In actual experiments using the Zn and Se effusion ovens, the flux would vary as much

as 20% between the beginning and the end of a film growth, even though long
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equilibration times were used. The fluxes were measured by a crystal oscillator which was

water cooled to enhance metal deposition and the accuracy of the measurements. There

was no clear temporal trend in the crystal oscillator readings that would indicate a drift in

effusion oven temperature or depletion of the source; one day the flux might decrease by

the end of growth, but the next day it might increase. Visual observation of the metal

charge when the shutter was open revealed that the geometry of the metal charge changed

with time. It is possible that a redistribution of metal in the oven, which alters the exposed

area to vacuum and the characteristics of heating, was the major contributing factor to flux

variations from the effusion ovens.

3.2 Metalorganic Gas Sources

The metalorganic gases were delivered to the II-VI reactor without the use of a carrier

gas as is done in organometallic vapor phase epitaxy (OMVPE). A major obstacle to

using a carrier gas in MOMBE is that the total gas load becomes exceedingly difficult to

pump and still maintain conditions for molecular beam transport within the chamber. The

vapor phase mass flow controllers were designed to regulate the flow of metalorganics

without a carrier gas. A few Torr of vapor pressure at the inlet of the MFC was required

for proper operation. The room temperature vapor pressure of all the metalorganics used

were considerably higher than the minimum inlet pressure requirement.

A technology issue for MOMBE is whether the purity of the group II and group VI

metalorganic gases is sufficient to fabricate electrical and optical devices. This same

concern arose when metalorganic gases were first used in III-V epitaxy. Increased

demand for electronic grade metalorganics for III-V OMVPE motivated manufactures to

produce high purity metalorganics. The same stimulus is leading to the availability of high

purity II-VI metalorganics. It is possible to obtain II-VI metalorganic sources with trace

impurities at the ppm level as certified by the manufacturer. In spite of these claims, our

experience suggests that manufacturer supplied purity analyses should be viewed critically.
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It is still advisable to assess the purity of films grown after a metalorganic source gas is

changed. The metalorganics used in this research were purchased from a subsidiary of the

Morton Thiokal company, CVD Incorporated, based in Danvers, Massachusetts. The

metalorganics of diethylzinc (DEZn), dimethylzinc (DMZn), and diethylselenium (DESe)

were believed to be of high purity. Low temperature photoluminescence measurements of

undoped ZnSe did not exhibit appreciable donor- or acceptor-bound exciton peaks

normally associated with impurities.

3.3 Growth Conditions

The growth variables in MOMBE are the temperature of the substrate, the flow rates

of the metalorganic gases, and the temperature of the gas cracking zones. When laser-

assisted epitaxy was performed, as will be discussed in section 3.5, there were the

additional variables of laser intensity and wavelength. A series of experiments were

conducted where one parameter was varied at a time in order to systematically map the n-

dimensional growth space.

The earliest literature on the MOMBE of ZnSe reported that the growth rate has a

I:)ecreasing DEZn
decomposition
at the substrate

Re-evaporation
-f 7n ol-A CV

Growth Temperature

Figure 3.1 Schematic illustration of growth rate dependence of MOMBE on the growth temperature.
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strong dependence on the growth (substrate) temperature [49 -50 ]. A schematic

representation of the 'peaked' dependence of the growth rate on the growth temperature is

depicted in Figure 3.1. The rapid increase in the growth rate with increasing substrate

temperature at low temperatures is postulated to be due to increased thermal

decomposition of the zinc metalorganic at the surface, resulting in more Zn metal

incorporation into the lattice. The more gradual decrease in the growth rate at higher

temperatures is most likely caused by re-evaporation of the constituent elements. In our

experiments, the growth temperature was varied from 150 to 475 °C. The lower limit on

the growth temperature was the requirement that adatoms have sufficient surface mobility

to maintain single crystal, two dimensional growth. At the upper temperature range re-

evaporation began to dominate. The majority of the films were grown near a substrate

temperature of 320 °C; characterization had identified this as the approximate optimal

growth temperature.

Thermal decomposition of the metalorganic gas prior to entering the growth chamber

was necessary for DESe, but not DEZn. The average bond energy Davg required to break

the first carbon-metal (or hydrogen-metal) bond of the precursor gases used in this

research are summarized in Table 3.1. The values were compiled from combined

thermochemical and kinetic data [51 ]. Included in Table 3.1 are values for dimethylzinc

('DMZn) and hydrogen selenide (H2Se) whose use will be described later. Diethylzinc was

selected over dimethylzinc in the initial experiments due to its lower decomposition

Table 3.1 Average bond strength of gaseous precursors [51].

Precursor Davg (kcal/mol)

I:ESe 58

I)EZn 35

DMZn 42

H2Se 66
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temperature. At the growth temperatures investigated (475 °C or less), the thermal energy

at the surface was insufficient to pyrolyze the DESe. To determine the required cracking

cell temperature of DESe, a quadruple mass spectrometer (QMS) was positioned to

intercept the beam exiting the DESe cracker. Analysis of the mass spectra indicated that

DESe was thermally decomposed at temperatures > 800 °C. The QMS spectra collected

in DEZn cracking experiments indicated that the majority of the DEZn was pyrolyzed at

300 C by its cracker. Therefore, it was possible in most of the experiments to rely on

thermal pyrolysis of the DEZn at the substrate. In the majority of the experiments DEZn

was introduced into the chamber near room temperature. When the zinc metalorganic was

cracked during injection the growth mode switched to 'MBE-like'; the Zn and Se both

arrived at the film surface primarily as metal atoms or clusters as is the case in MBE.

The remaining growth variables were the flow rates of the metalorganic gases. The

vapor phase mass flow controllers were capable of regulating flows from 0.1 - 5 sccm.

The flows were varied from 0.25 to 2.5 sccm. It was conservatively estimated using an

effusion oven flux calculation similar to equation (3.2) [52 ], that a gas flow of 0.5 sccm

would be equivalent to a Zn or Se flux that would result in a growth rate of at least 1500

//hr. Subsequent growth experiments using DMZn and solid Se sources appear to

support this estimate. The flows were varied to change the mass transport rate and to

Table 3.2 Summary of the growth parameter space investigated for MOMBE of ZnSe
using DEZn and DESe source gases. The typical growth conditions are
indicated in the final column.

Variable Values

Minimum Maximum Typical

Substrate Temperature (°C) 150 475 320

DESe Flow Rate (sccm) 0.25 2.5 0.5
DESe Cracker Temp. (°C) 50 1200 800

DEZn Flow Rate (sccm) 0.5 2.5 0.5
DEZn Cracker Temp. (°C) 25 900 50
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alter the VI:II flow ratio. The VI:II flow rate ratio affected the ZnSe film quality which

was dependent on the surface stoichiometry at the growth front. The flow rate ratio was

varied between 0.2 to 5 in the experiments. Table 3.2 summarizes the growth conditions

investigated for MOMBE using the DESe and DEZn sources.

3.4 Low MOMBE Growth Rate

The growth rate (GR) using DEZn and DESe sources was abnormally low [39-43].

The growth rate was less than 400 A/hr for all investigated growth conditions. The

measured growth rates for the growth parameter space explored are shown in Figure 3.2.

The growth rate in angstroms per hour is plotted against the growth (substrate)

temperature to allow a qualitative comparison to Figure 3.1. The data points include

significant variations in the following parameters: gas flow rates and VI/II flow rate ratios;

the degree of the thermal decomposition of the DEZn which was influenced by its cracker

temperature; and the introduction of hydrogen for reasons to be explained. The solid

points represent films grown using DESe and DEZn precursors and the open circles

denote growths where hydrogen gas was introduced. Figure 3.2 also includes data for

'mixed' source experiments where a diethyl metalorganic and a non diethyl source were

used.

The low growth rate observed using DEZn and DESe source gases was in

disagreement with a normal growth rate reported by Ando et al. [49,53 ] in their

pioneering work on ZnSe MOMBE using DEZn and DESe. In the original paper [49], a

growth rate versus growth temperature plot of similar shape to Figure 3.1 was presented,

with a peak growth rate of 0.5 tm/hr indicated for the growth conditions used. An

extensive set of experiments were undertaken in an attempt to achieve this reported

growth rate using DEZn and DESe source material. These experiments encompassed a

broad range of substrate temperatures, flow rates and ratios, and cracking temperatures

which spanned the growth conditions reported by Ando et al. in their work. An
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Figure 3.2 MOMBE growth rate versus the growth temperature for all experimental conditions
investigated when at least one diethyl metalorganic was used.

unexpected result apparent in Figure 3.2 was that the growth rate remained below 400

A/hr whenever a diethyl metalorganic source was used. The implication of the low, nearly

constant growth rate which exhibited little dependence on growth conditions, was that a

reaction at the gas/surface interface involving an ethyl group, e.g. C2H5 (ethyl radical) or

C2H4 (ethylene), or a dissociation product of the diethyl metalorganics, was a rate-limiting

step in the kinetics of growth.

3.4.1 Addition of Hydrogen Gas

Hydrogen was introduced during growth to investigate if the persistently low growth

rate could be alleviated. The rationale for these experiments was that OMVPE of ZnSe

using DEZn and DESe can achieve growth rates of microns per hour [54 ], and one

fundamental difference between MOMBE and OMVPE is that the latter requires a

hydrogen carrier gas. In one experiment, hydrogen was mixed with the DESe prior to
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cracking. The experiment was designed to investigate if the presence of hydrogen in the

cracker would enhance the thermal pyrolysis of DESe, or alter the composition of the

cracking by-products, which might then interact to mitigate the growth rate limiting

reaction or mechanism. The other experiments introduced hydrogen in a separate heated

cracker so that thermally excited, but not dissociated, H2 would be present at the surface

to participate in metal incorporation reactions if needed.

The open circles in Figure 3.2 represent the hydrogen experiments. The observation

that these experiments had growth rates less than 400 A/hr implied that molecular

hydrogen had no measurable affect on the growth rate. Three of the experiments using

hydrogen had very low growth rates. This bears no significance since these films were

grown using a source of metalorganics which were of low purity, and tended to yield

lower growth rates.

3.4.2 Mixed Source Experiments

A series of 'mixed' source experiments were conducted in an effort to elucidate the

origin of the low growth rate [40-43]. A mixed source experiment employed one diethyl

rnetalorganic source with either a solid metal source or dimethylzinc. The growth rates

for three combinations of these mixed source experiments are plotted in Figure 3.2 and are

less than 400 A/hr. Based on the experiments utilizing different combinations of Zn and

Se source materials, it became evident that a by-product of the diethyl metalorganic

decomposition was responsible for the growth rate limitation; the common factor in all

experiments with a low growth rate was the presence of an ethyl metalorganic. To verify

that a system related problem was not the cause, MBE and MOMBE using DMZn and

elemental Se were performed. The growth rates in these experiments were only limited by

the mass transport of source material. Table 3.3 summarizes the combinations of zinc and

selenium sources used and the resultant rates of growth. A 'high' entry in the growth rate

(GR) column indicates normal growth rates while 'low' denotes that the growth rate was

46



Table 3.3 Summary of the MOMBE growth rates observed for different combinations of
Zn and Se source materials.

Source of Zn Source of Se MOMBE GR*

DEZn DESe No Growth
DEZn Cracked DESe Low
DEZn Elemental Se Low

Cracked DEZn Cracked DESe Low
Elemental Zn Cracked DESe Low

Cracked DMZn Cracked DESe Low

Cracked DMZn Elemental Se High

Elemental Zn Elemental Se High

* Low: less than 400 A/hr. High: typical of MBE

kinetically limited to less than 400 A/hr. Special attention is drawn to the entry where

DEZn and elemental selenium were the sources. The low entry for this combination of

,sources demonstrates that it was not inefficient cracking of the DESe that was responsible

for the low growth rate. Based on the summarized results in Table 3.3, we have

hypothesized that at the necessarily low ZnSe growth temperatures investigated, blockage

cf metal incorporation sites by chemisorbed ethyl radicals was occurring 1-39-43].

The low MOMBE growth rate using DESe and DEZn deterred us from doping ZnSe

and producing device structures. A minimum film thickness of approximately one micron

is required for capacitance-voltage and Hall effect measurements of undoped films;

otherwise, the depletion width on the semiconductor side of the metal-semiconductor

interface might extend to the substrate resulting in parallel conduction of current in the

substrate. Fabricating devices was impractical due to a minimum thickness requirement of

several microns.
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3.4.3 Site Blockage by Ethyl Radicals

An understanding of the surface chemical processes taking place in MOMBE would be

an aid to unraveling the low growth rate phenomena observed. No specific studies have

been made of the growth kinetics of ZnSe MOMBE, but recent research investigating the

adsorption and decomposition of triethylgallium (TEG) [55 ,56 ] and DEZn [57 ] on

GaAs(100) has been published. Additionally, kinetic models of GaAs CBE/MOMBE

growth using TEG and arsine have been proposed [58 ,59 ]. I believe there is applicability

of these surface science experiments and growth models to the MOMBE of ZnSe. The

adsorption and decomposition of DEZn decomposition on a ZnSe(100) surface is likely to

be similar to that of TEG and DEZn on GaAs(100).

Direct experimental confirmation that ethyl radicals are tightly bound to a GaAs

surface at temperatures less than 330 °C was obtained by Murrell et al. [55] and Banse and

Creighton [56] in studies of the surface chemistry of triethylgallium adsorption and

decomposition on GaAs(100). Temperature programmed desorption (TPD) in

conjunction with x-ray photoelectron spectroscopy, low energy electron diffraction, and

high resolution electron energy-loss spectroscopy were used in these studies to identify

desorbing species and to determine stable reaction intermediates on the surface as a

function of substrate temperature.

Murrell et al. and Banse and Creighton reported that ethylene (C2H4), ethyl radicals

(C2H5), and hydrogen (H2) would desorb from the surface near 330 °C, and ethane (C2H6)

at a slightly higher temperature of 350 °C. Three competing reactions were proposed to

explain the desorption of the ethyl groups. The simplest reaction shown in equation (3.4),

was the direct desorption of ethyl radicals from the chemisorbed state.

C2 H 5(ads) C2H5(g) (Eq. 3.4)
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This reaction could not explain the nearly identical desorption temperature of C2H4 and H2

in the TPD signals. To account for this observation, it was suggested a 3-hydride

elimination reaction, equation (3.5), was removing the ethyl radicals from the surface.

C2 H5(ads) - C2H4(g ) + H(ads) (Eq. 3.5)

The surface recombination rate of adsorbed H to molecular H2(g) was assumed to be very

fast compared to all other reactions, so the removal of hydrogen from the surface was not

a rate limiting step. Further support for the -hydride elimination reaction was provided

by studies of the desorption of H2 from a GaAs(100) surface [55]. Hydrogen desorbed

from the GaAs at 250 °C, a 80 °C lower temperature than observed in the decomposition

of TEG. This and other data indicated that hydrogen desorption was controlled by a rate-

limiting step, rather than a simple desorption process, suggesting that a -hydride

elimination reaction was occurring. A third possibility was the surface recombination of

ethyl radicals with adsorbed atomic hydrogen forming volatile ethane.

C2 H5 (ads) + H(ads) - C2H6(g) (Eq. 3.6)

Ethane (C2H6) was detected in the TPD experiments, but it was inconclusive as to whether

e thane was being formed at the surface or in wall reactions between gaseous ethyl radicals

and hydrogen [56]. The 3-hydride elimination reaction in equation (3.5) was inferred to

be the dominant reaction for the removal of ethyl radicals based on the data.

Rueter and Vohs [57] examined the adsorption and dissociation chemistry of DEZn on

GaAs(100). The desorption temperatures they observed for ethylene, ethyl radicals, and

hydrogen were lower by approximately 80 C (250 C). The lower desorption

temperatures might have been due to the presence of Zn on the surface lowering the

reaction/desorption temperatures [57]. They concluded that a 3-hydride elimination

reaction and direct desorption of ethyl radicals (equations (3.4) and (3.5) ) were the origin
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of the TPD signals at 250 °C. Ethane (C2H6) was also detected at a slightly higher

desorption temperature, but ethane was estimated to be only 1-4% of the hydrocarbon

products on the surface.

Murrell and co-workers [55] developed a model for the observed TPD which

calculated the steady-state surface coverage of the adsorbed species. The computer

simulations closely reproduced the thermal desorption spectra they had measured

experimentally. One result predicted by the simulation was that ethyl species would build-

up on the surface blocking adsorption sites for the TEG when the temperature fell below

430 °C. Computer modeling of the reaction kinetics of CBE growth of GaAs has also

been performed [58,59]. The CBE growth models calculated the steady-state surface

concentrations of adsorbed species as a function of growth temperature. Using kinetic

parameters derived from the recent surface science experiments on TEG decomposition

and desorption [55-57], it was predicted that adsorbed ethyl groups would block the

adsorption of TEG at temperatures less than 430 °C resulting in a decrease of the growth

rate.

In summary, adsorption and decomposition studies of triethylgallium and

diethylgallium on GaAs(100) observed that ethyl radicals remained chemisorbed on a

GaAs(100) surface at temperatures up to 330 C. Modeling of the surface reaction

kinetics indicated that the coverage of ethyl radicals would inhibit adsorption of TEG (and

hence, growth) at temperatures below 430 °C. The temperature at which ethyl radical

coverage begins to block adsorption sites is most likely different for a ZnSe(100) surface,

but the temperature might be in the range of normal ZnSe growth temperatures. The

surface science experiments and growth models described in this section support the

existence of a surface which is chemically passivated by chemisorbed ethyl radicals, which

has been postulated to explain the low growth rate in MOMBE when using a diethyl

metalorganic source.
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3.4.4 Other Reported MOMBE Results

Besides the pioneering work of Ando et al. [49], only one other group has presented

research on MOMBE using DESe and DEZn. Rajavel et al. at Hughes Research

Laboratories recently reported that they had achieved normal growth rates using similar

growth conditions to our experiments [60 ]. A brief effort to do MOMBE using these

diethyl metalorganics was made at AT&T Bell Laboratories in which they observed an

abnormally low growth rate, but the results were never published [61]. Table 3.4

compares the MOMBE growth conditions and the resultant growth rates for experiments

performed by our group and by the researchers at Hughes Research Laboratories [60,62].

The growth conditions were very similar for these 'MBE-like' MOMBE experiments,

which points to an equipment related cause for the markedly different observed growth

rates. In the early stages of our MOMBE research a low cracking efficiency of the DESe

cracking injector was suspected to be the origin of the low growth rate, even though

cracking experiments using the quadruple mass spectrometer indicated the DESe was

being thermally decomposed. Subsequent experiments with an elemental zinc source also

experienced the low rates of growth, which suggests a more subtle equipment related

phenomenon had produced the very different rates of growth.

The designs of the metalorganic gas cracking cells were different amongst the research

efforts investigating MOMBE using diethyl metalorganics. Conversations with Dr.

Rajavel [62 ] revealed that a modified VG Semicon metalorganic cracker was used to

thermally decompose the DESe at 900 °C during growth; the DEZn was cracked at 800

3C in a commercial VG metalorganic cracker. The modifications to the DESe cracker

were part of a proprietary design which consisted of a quartz tube surrounded by heater

filaments, with internal baffling to insure that the metalorganic gases experienced wall

collisions in the heated cracking zone. The Hughes group's motivation for using a quartz

cracker was to avoid tantalum, the usual cracker catalytic material, because it reacted with

tellurium during growth of ZnTe. Ando et al. had built their own DESe cracking cells
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Table 3.4 Comparison of observed growth rates for MOMBE using DEZn and DESe
source gases as reported by our group and Hughes Research Laboratories
[60,62]. The Hughes MOMBE experiments were performed using very similar
growth conditions, yet they were able to achieve a high growth rate.

Growth Temp. DEZn DESe Growth Rate
Investigator (°C) (Cracking Temperature °C) (jm/hr)

Hughes Research 220-325 - 1 sccm - 1 sccm 1.0-1.5
Laboratories: (800) (900)

MIT CBE Laboratory:
ZnSe # 5 320 0.5 sccm (800) 0.5 sccm (1000) 0.015
ZnSe # 6 370 0.5 sccm (900) 0.5 sccm (1000) 0.004

using a quartz gas tube with a Ta wire inside to heat the metalorganics [49]. Our DESe

cracker shown in detail in Figure 2.3 consisted of a PBN gas injection tube with a Ta

baffle insert down the center to promote gas collisions. The filament assembly surrounded

the outside of the PBN tube. The construction of the AT&T group's cracker is unknown.

Since Ando et al. had performed MOMBE without cracking the DEZn and achieved high

growth rates [49], and the Hughes researchers had used a specially designed DESe

cracker, the construction of the DESe cracking cell appears to have been a critical factor

influencing the growth rate.

Recent research on atomic layer epitaxy (ALE) of Ge using diethylgermane [63]

indicates that atomic H might be necessary to scavenge adsorbed ethyl radicals (C2H5)

firom a semiconductor surface at low temperature. In the ALE of Ge, the substrate at 250

"C was exposed to alternating beams of diethylgermane and H per cycle. The atomic

hydrogen which was created by heating H2 with a tungsten filament at 2000 °C was used

to recover a clean surface through the removal of C2H5 and other adsorbed species.

Without the hydrogen exposure the growth rate was low (< 500 Afhr) and considered

'self-limited'. Depending on the H2/diethylgermane ratio, the growth rate could be

enhanced by a factor of 4-8.
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The evidence suggests a cracking by-product of DESe decomposition was necessary

to remove the kinetic limitation in growth caused by ethyl radical passivation of surface

sites. I speculate that the quartz crackers used by the other investigators were producing

an atomic hydrogen flux, and the PBN cracker we used was producing little, if any, atomic

hydrogen. The atomic hydrogen present at the surface is hypothesized to participate in

reactions which remove the ethyl radicals, similar to what was observed in the growth of

Ge using diethylgermane [63], thus preventing passivation of the surface. This hypothesis

might be tested in future experiments by modifying the design of our DESe cracker, or by

introducing atomic hydrogen during growth using a plasma source.

3.5 Laser-Assisted MOMBE

Concurrent to the investigation of MOMBE, laser-assisted growth experiments were

conducted by illuminating a portion of the wafer with laser light. It was observed that the

growth rate could be either enhanced or suppressed in the illuminated region, depending

on the growth conditions [39-43]. In the case of laser induced growth rate enhancement,

the growth rate could be increased by over an order of magnitude, suggesting the potential

for selective area. epitaxy.

Ando et al. was the first group to experiment with photo-assisted growth of ZnSe

from metalorganic sources [64 ]. The experiments involved ultraviolet irradiation of the

substrate during OMVPE from diethylzinc and dimethylselenide source gases. The light

source was a low-pressure mercury lamp emitting ultraviolet (UV) light primarily at 185

and 254 nm. It was demonstrated that UV illumination enhanced the growth rate over the

entire temperature range investigated, and permitted epitaxial growth at much lower

temperatures. Other researchers extended the investigation of photo-assisted OMVPE of

ZnSe by examining the wavelength dependence of growth rate enhancement using filtered

Xenon lamp irradiation [65 ] and the different emission lines of an argon ion laser [66].
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In both studies the researchers observed a threshold photon energy to induce growth rate

enhancement.

3.5.1 Laser-Assisted Growth Set-Up

The laser-assisted MOMBE experiments were accomplished by directing laser light

through a viewport at one of the effusion oven locations. The viewport was oriented 450

with respect to the substrate normal, so the laser beam spot would form an ellipse on the

wafer. Figure 3.3 is a schematic drawing of the optical path from the laser to the

substrate. A continuous wave (cw) intensity of 180 mW/cm 2 was used in most

experiments in order that the effect of illumination by different laser emission lines could

be compared. This low illumination intensity insured that local thermal heating of the

substrate was negligible. The local temperature rise AT induced by a cw laser beam

Laser

M

Figure 3.3 Schematic drawing illustrating light path in laser-assisted growth experiments. M indicates
the location of a mirror and V indicates the viewport.
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impinging on a solid was estimated using equation (3.7) [67 ],

AT = 2(1 - r)P (Eq. 3.7)
nKD

where r is the reflectivity of the sample, P is the laser power, K is the sample's heat

conductivity, and D is the diameter of the laser spot at the surface. Assuming that r = 0

(worst case), converting the laser power density of 180 mW/cm2 into a (P/D) value of

0.25 W/cm, and using K = 0.19 W/cm-K from Table 1.2, the local temperature rise AT in

ZnSe induced by the laser was estimated to be less than 1 degree K. A similar calculation

for GaAs using K = 0.17 W/cm-K [68 ] predicts that the temperature rise in the GaAs

substrate was also less than 1 K.

Three lasers were used in these experiments. The primary laser was a 5 Watt argon

ion laser (Spectra-Physics, model 2025). All of the powerful visible emission lines and the

combined UV lines were used for illumination. A dye laser (Coumarin 7 dye) pumped by

the argon ion laser provided a nearly continuous set of emission lines near the ZnSe

bandgap. A Ti:sapphire laser pumped by the Ar+ laser was used to illuminate with

radiation far below the bandedge. The laser wavelengths used are summarized in Table

3.5.

Table 3.5 Summary of the different laser wavelengths used for illumination during the
laser-assisted MOMBE growth experiments.

Wavelength (nm) Spectrum Laser

78(0 infrared Ti:saphire
555 visible dye
538 visible dye
520( visible dye
515 visible Ar+

488 visible Ar+

458 visible Ar+

352-364 ultraviolet Ar+
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Metal films would coat the laser viewport over time, and in particular, would deposit

most heavily where the laser was incident on the glass. The deposited spots would absorb

some of the incident radiation; the net effect was to slightly reduce the laser intensity at

the substrate as growth proceeded. The viewport had a maximum bake-out temperature

of 250 C which prevented heating the window to a high enough temperature to re-

evaporate the spots. The decline in intensity due to spot formation hindered the collection

of quantitative data on laser-induced changes in the growth rate.

3.5.2 Growth Rate Enhancement

Laser illumination was observed to increase the growth rate over that of unilluminated

regions of the same film. The degree of enhancement depended on the growth conditions

and the sources used, and was observed to be as great as 15 times the unilluminated

growth rate. The growth rate as a function of substrate temperature for both illuminated
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Figure 3.4 Growth rate versus substrate temperature for regions of a film which were illuminated () by
the laser, and received no illumination (o). The gas flows were 2.5 and 0.5 sccm for DEZn
and DESe, respectively, and the laser illumination wavelength was 458 nm.
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and unilluminated regions of a film are shown in Figure 3.4. The flow rates for the data

displayed in Figure 3.4 were 2.5 and 0.5 sccm for DEZn and DESe, respectively, and the

laser illumination wavelength was 458 nm. What is evident from Figure 3.4, but is not

apparent in Figure 3.2, is that for fixed gas flows and cracking conditions, there was a

peaked dependence of the GR on growth temperature. The increase in the GR due to

laser illumination was approximately a factor of 2.5 for each point; a more precise

determination of the enhancement factor was not possible due to the uncertainty in the

intensity caused by spot formation on the laser viewport. The higher growth rate of the

illuminated data more clearly illustrates the strong temperature dependence of MOMBE

growth, and the curve shape resembles Figure 3.1 which is characteristic of MOMBE.

3.5.3 Intensity Dependence

The low growth rate enabled the effect of laser irradiation to be visible to the eye.

ZnSe films were transparent to all but the shortest visible light wavelengths and were

usually less than 1000 A thick, so interference fringes were visible wherever a thickness

gradient existed. The lasers were normally operated in the TEMoo mode which has a

Gaussian intensity profile. The characteristic fringe pattern of a ZnSe epilayer grown with

laser-assistance was an elliptical spot with concentric colored 'rings'.

A thickness profile was obtained by selectively etching the ZnSe from the GaAs, and

using a stylus profilometer (Tencor Instruments, Alpha-Step 100) to measure the step

formed at the region where the ZnSe was removed. The profilometer was calibrated

against VLSI step standards and found to be accurate to ± 50 A. An intensity profile was

measured from the center of a laser illuminated spot out to the edge of the unilluminated

region. The thickness profile and a Gaussian curve normalized to the height of the

measured data are shown in Figure 3.5. The enhancement ratio plotted on the y-axis is

defined as the ratio of the thickness in the laser illuminated region to that of the

unilluminated film. The agreement between the ratio of the measured thicknesses and the
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:Figure 3.5 A thickness profile measured from the center of a laser enhanced growth spot to the edge of
the unilluminated region.

fitted Gaussian curve (representing the Gaussian intensity profile of the laser) strongly

suggested that the growth rate enhancement was proportional to the intensity.

3.5.4 Wavelength Dependence

The growth rate enhancement of photo-assisted OMVPE performed using either a

filtered broadband light source [65], or the emission lines of an argon ion laser [66], was

reported to be wavelength dependent. Illumination of the substrate with photons whose

energy was above the bandgap of ZnSe were required for growth rate enhancement to

occur. The investigators of the photo-assisted OMVPE studies proposed models for

growth rate enhancement where photo-generated electron-hole pairs were integral to the

enhancement mechanism. The photo-assisted enhancement in the growth rate when using

mnetalorganic sources contrasts with the suppression of the growth rate that has been

observed when illuminating with above bandgap radiation during MBE [42,69 -72 ].
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The advantage of using monochromatic radiation in our study was that the energy of

the photons inducing a particular effect could be isolated. The bandgap of ZnSe as a

function of temperature was estimated using equation (3.8) [66],

Eg = 2.67 - 7.2x104 (T - 297) [eV]. (Eq. 3.8)

At the most frequently investigated growth temperature of 320 °C the bandgap was

2.45 eV. This bandgap energy was lower than the energy of the argon ion laser lines

except for the 515 nm line. Enhancement in the growth rate was observed with all Ar+

laser lines, although the degree of enhancement was less when using the 515 nm line. To

examine the effect of illumination near the bandedge, a tunable dye laser (Coumarin 7 dye)

was employed. A Ti:sapphire laser with a wavelength of 780 nm was used to provide
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A . 900 700 600 500 400 350
/'I-, ~] -- I I I I I I

3.5 * - DESe & DEZn
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Figure 3.6 The dependence of the growth rate enhancement during MOMBE (solid points and crosses),
and the growth rate suppression during MBE (open circles), as a function of laser
illumination energy. The bandgap Eg of ZnSe at a growth temperature of 320 °C is indicated
by the arrow.
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illumination far below the bandgap energy.

Figure 3.6 presents the wavelength dependence of the growth rate ratio (defined as the

ratio of the GR in the laser illuminated region to the GR in the unilluminated region) for

both GR enhancement and suppression. The growth rate ratio is plotted versus the laser

photon energies for the cases of: 1) MOMBE from DESe and DEZn (solid points), 2)

MOMBE using Se and DMZn (crosses), and 3) MBE growth (open circles). The growth

temperature for the MOMBE experiments using solid Se and DMZn was 340 °C which

resulted in a slightly lower bandgap. For each set of experiments, the growth conditions

which are shown in Table 3.6 were identical except for the choice of the laser emission

line.

The inference from Figure 3.6 was that enhancement or suppression of the growth rate

required photons with energies approximately greater than the bandgap. Thermal

absorption is known to increase significantly above the bandedge [73 ], but due to the low

illumination intensity used it was estimated that the temperature rose less than 1 °C (see

Table 3.6 Growth conditions for the MOMBE and MBE laser-assisted growth
experiments where the wavelength dependence of the growth rate
enhancement or suppression is shown in Figure 3.6.

Precursors Growth Parameter Value

DESe & DEZn
Substrate Temperature (°C) 310-320
DESe (800 C) (sccm) 0.5
DEZn (50 °C) (sccm) 0.5

Se & DMZn
Substrate Temperature (°C) 340
Se Flux (A/s) 0.47-0.57
DMZn (1050 °C) (sccm) 1.65-2.0

!MBE
Substrate Temperature (°C) 320
VI:II Flux Ratio - 1:1
ZnSe Growth Rate (i/s) 0.41-0.45
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section 3.5.1). The direct absorption bands of the metalorganics existed at much shorter

wavelengths [74 ] (248 nm for DEZn) eliminating the possibility of direct photolysis of the

metalorganics. This suggested that photo-generated electron-hole pairs were responsible

for the growth enhancement or suppression as previously reported in OMVPE [64-66].

Whether the growth rate was enhanced or suppressed depended on the state of

dissociation of the DEZn or DMZn. The growth rate was enhanced if unpyrolyzed (or

partially decomposed) DEZn was present at the surface. Conversely, elemental Zn present

at the surface originating from a Knudsen cell during MBE or created in the thermal

decomposition of DEZn in the gas cracker during MOMBE, resulted in growth rate

suppression. Table 3.7 summarizes the effect laser illumination had on the MOMBE

experiments. In Table 3.7 the combinations of the zinc and selenium sources investigated

are presented with the resultant growth rate modifications induced by laser illumination.

MOMBE growth where the zinc metalorganic was thermally decomposed in its cracker is

referred to as 'MBE-like' growth. The source combinations which resulted in GR

suppression were either MBE or 'MBE-like' in that both the Zn and Se arrived at the

growing surface primarily as metal atoms or clusters. The entries for MOMBE using

'Table 3.7 The modification of the growth rate induced by laser illumination during
MOMBE and MBE is summarized for the different combinations of sources
used.

Source of Zn Source of Se Effect of Laser Illumination

DEZn DESe None
DEZn Cracked DESe Enhancement
DEZn Elemental Se Enhancement

Cracked DEZn Cracked DESe Suppression
Elemental Zn Cracked DESe Suppression

Cracked DMZn Cracked DESe Suppression or Enhancement

Cracked DMZn Elemental Se Suppression or Enhancement

Elemental Zn Elemental Se Suppression
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dimethylzinc were more complicated in that both suppression and enhancement were

observed. MOMBE using DMZn will be discussed further in section 3.6. The

suppression of the growth rate due to laser illumination in the 'MBE-like' growth mode

was similar to that reported for MBE, except that it was the suppression of the kinetically

limited low growth rate.

3.5.5 Flow Ratio Dependence

The observation that growth rate enhancement required partially or unpyrolyzed DEZn
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Figure 3.7 Illustration of dependence of growth rate on the gas flow ratios. The DEZn:DESe (IINI)
flow ratio dependence is shown in (a). The flow ratio is inverted in (b) for clarity of
presentation of the II/VI ratios less than unity. In these experiments the growth temperature
was 320°C, the DEZn and DESe flows ranged from 0.25-2.5 sccm, and the laser illumination
wavelength was 458 nm.
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at the surface was further supported by studies of the flow ratio dependence of the GR

enhancement. Increasing the flow rate of uncracked DEZn for a fixed flow of DESe (0.5

sccm) increased the laser-assisted growth rate as shown in Figure 3.7(a). Larger II/VI

flow ratios increased the concentration of the partially or unpyrolyzed DEZn at the

surface. The decrease in the illuminated GR at a II/VI flow ratio of 5 might be due to the

increased rate of spot formation with increasing DEZn flows. Growth at low substrate

temperatures where DEZn was not expected to be efficiently decomposed also

experienced larger GR enhancement. It was also observed that II/VI ratios less than unity

(VI/II flow ratios greater than one) resulted in larger laser induced growth rates as seen in

Figure 3.7(b). A possible explanation for the VI/II flow ratio dependence of the GR is

discussed in section 3.8.

3.6 MOMBE Using DMZn and Solid Se

The difficulties experienced in increasing the growth rate with diethyl metalorganics

was a contributing factor in the change to dimethylzinc (DMZn) and solid Se precursors.

These sources were selected only as a verification test of the MOMBE system; the

combination was far from optimal since the higher vapor pressure element was a metal

sublimated from a Knudsen cell. Growth using DMZn and elemental Se was mass-

transport limited. The attainment of normal growth rates using DMZn and solid Se was

additional evidence that chemisorbed ethyl radicals were passivating the metal

incorporation sites in MOMBE using DEZn and/or DESe sources.

The higher bond energy of the DMZn compared to DEZn (see Table 3.1) required that

it be cracked prior to injection. Cracking complicated the observations of the growth rate

modifications induced by the laser. Similar to what was observed using DEZn, the

presence of some form of metalorganic zinc at the surface was necessary for growth rate

enhancement. Based on the post-growth observations of enhancement or suppression, it

was concluded that the state of DMZn on the surface was dependent on the growth
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temperature, and the combination of cracker temperature and flow rate of DMZn. As an

example, if the DMZn cracker was set at a low cracking temperature of 900 °C, laser

illumination enhanced the growth rate. Conversely, if the cracker was set at 1050 °C, the

growth rate was suppressed for the same growth temperature and DMZn flow rate. An

insufficient number of experiments were performed to elucidate which growth conditions

lead to enhancement or suppression using DMZn; MOMBE with DMZn was conducted

only to demonstrate that an ethyl-based metalorganic was responsible for the low growth

rate. Optimization of the growth conditions for MOMBE using DMZn and solid Se

sources was attempted, but optical characterization by low temperature

photoluminescence of the films always indicated the presence of structural defects and/or

impurities. Due to concerns about the purity of the DMZn source, further research into

MOMBE with DMZn and solid Se sources was discontinued.

3.7 Electron-Beam Assisted Growth

Early in the MOMBE experiments it was discovered that the electron-beam was

inducing similar modifications to the growth rate as the laser. The reflection high-energy

electron diffraction (RHEED) gun was normally turned on briefly during a growth because

operation when the chamber pressure was in the 10-4 Torr range greatly reduced the

lifetime of the filament and risked high voltage arcing. The effect of the electron-beam

was probably first noted when the RHEED gun was accidentally left on for an extended

period during growth. A colored streak appeared where the beam was incident on the

surface and was measured to have increased the growth rate. After this discovery, the

RHEED gun was left on during selected experiments to verify that the effect of the

electron-beam was qualitatively similar to that of the laser. Observations were only

qualitative due to limited flexibility in controlling the electron-beam source which was

dictated by the chamber pressure. The intended mission of the RHEED gun was to

provide diffraction information on the growth surface, so keeping it operational for this
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task was of primary importance. To achieve this end, the gun was operated sparsely at

low acceleration voltages and beam currents in the harsh operational environment of

MOMBE growth.

The electron-beam was observed to effect the MOMBE growth in the same manner as

above bandgap laser radiation. An incident electron-beam can produce a cascade of

electron-hole pairs in a semiconductor. The effect of the electron-beam when various

combinations of sources were used was identical to those summarized in Table 3.7 for the

laser. Enhancement was greatest when large concentrations of partially or undecomposed

DEZn were present on the surface. The electron-beam also suppressed the growth rate in

MBE. To the author, the identical phenomenological influence of the laser and electron-

beam on growth suggests that the underlying growth rate enhancement and suppression

mechanism(s) were the same. Electron-beam modification of the growth rate has the

potential to selectively write fine line features if the method could be adapted to a

precision electron-beam source such as a scanning electron microscope.

3.8 Model for Laser-Assisted Growth.

Yoshikawa has reviewed the results of laser-assisted OMVPE of ZnSe films using an

Ar ion laser as the irradiation source [75 ]. The OMVPE growth was performed using

dimethylzinc and dimethylselenium sources. The following observations were presented

concerning laser-assisted OMVPE: (1) Photons with energies higher than the bandgap of

ZnSe at the growth temperature contributed to the growth; (2) the initial growth rate

under laser-illumination was increased with increasing thickness of a pre-deposited ZnSe

layer; and (3) the quantum yield for forming Zn or Se atoms by photons was high,

typically more than 10%. The first observation reports the same wavelength dependence

of the growth rate enhancement we observed in our laser-assisted MOMBE experiments

(see section 3.5). The second and third observations suggest that a large number of

electrons and/or holes were reaching the growing film surface. The pre-deposited layers
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were undoped -films of ZnSe that had been grown on GaAs substrates prior to the

experiments in the which the ZnSe growth rates under laser irradiation were measured. It

was proposed earlier by Yoshikawa et al. that photo-generated holes were participating in

oxidation reactions of the adsorbed surface species [76 ]. An energy band diagram for the

ZnSe/GaAs heterojunction was proposed; the ZnSe energy bands bend upward from the

undoped n-type ZnSe near the GaAs substrate to more intrinsic ZnSe near the surface.

Photo-generated holes would drift to the surface under the influence of the built-in field.

To verify that a large number of holes were present at the surface during the laser-

assisted MOMBE experiments, an estimate of the number of holes which reached the

surface is calculated. It is assumed that the number of holes that reached the surface per

unit area per second was described by the equation,

h _ - )- IR) B [holes/cm 2-s] (Eq. 3.9)

where Lp is the hole diffusion length, 6 is the absorption depth of the Ar ion laser

radiation, R is the reflectivity of the ZnSe surface, 11 is the quantum efficiency in

converting photons to e-h pairs (assumed to be unity), and () is the incident photon flux.

All the holes which were generated within the absorption depth 6 will be assumed to have

drifted in the direction of the surface due to the band-bending [76]. Converting the 180

mW/cm2 laser power density to the number of photons/cm 2-s for 500 nm radiation yields

() _ 5x1017 photons/cm 2 .s. The increase in the growth rate on pre-deposited ZnSe layers

during laser-assisted OMVPE [75] was observed to reach 90% of the maximum

enhancement value when a 0.3 m thick pre-deposited layer was used; 0.3 rm was close

to the estimated penetration depth of the Ar ion laser. Therefore, 6 will be assumed to be

0.3 m in this calculation. The index of refraction of ZnSe is 2.66 for 458 nm radiation

(Table 1.1) so R at normal incidence is approximately 0.2. The laser was incident at 45 to

the substrate normal and the polarization of the laser at the substrate was not known,
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therefore, a higher value for R of 0.5 will be used to be conservative in this estimate.

Finally, the hole diffusion length is estimated from the relation,

Lp = Dp , (Eq. 3.10)

where Dp is estimated using the Einstein relationship Dp = (kT/q)p, and rp is the hole

lifetime which will be approximated by the decay time of room temperature blue

luminescence in ZnSe of - 100 picoseconds [77 ]. Using gp given in Table 1.1, Lp is - 0.1

Mtm. Therefore, the number of holes which reached the surface is estimated by equation

(3.9) to have been approximately 8x1016 h/cm2 -s. The surface density of Zn and Se atoms

is 6x l014 atoms/cm 2 which confirms that a large number of holes were available for surface

reactions if they were required.

A kinetic model of laser-assisted MOMBE using DEZn and/or DESe sources has been

developed. This model is based on proposed surface reactions which are consistent with

the observed dependencies of the growth rate enhancement and suppression due to laser

illumination discussed in section 3.5. Simple rate equations for desorption and

incorporation of adsorbed surface species are derived from the surface reactions; only

qualitative predictions were possible since the rate constants for the proposed reactions

have not been determined. Enhancement and suppression of the growth rate for the

vrarious combinations of Zn and Se sources summarized in Table 3.7 can be explained by

the model.

Two necessary conditions for growth rate enhancement were observed in the

MOMBE experiments. The first condition was that e-h pairs were generated within the

growing ZnSe layer by laser illumination. A band-bending model where holes are swept to

the growing film surface [76] will be assumed in this model. The second requirement was

that some form of metalorganic Zn was present at the surface. In addition to these

necessary conditions for growth rate enhancement, it was observed that VI/II flow ratios

67



greater or less than unity would increase the GR enhancement. Based on these

experimental observations, two possible reactions which might be occurring at the surface

resulting in the growth rate enhancement are:

(1) 2Zn(C2 H5)(ads) + h+ + Se(ads) + e- - ZnSe + Zn(C2H5)2(g)

(Eq. 3.11)
or

(2) 2Zn((CiH5 )(ads) + 2h+ + 2 Se(ads) + 2e- -> 2ZnSe + (C4Ho)(g)

(Eq. 3.12)

Equations (3.11) and (3.12) are bimolecular reactions where the zinc atom(s) are oxidized

from the ethyl radical allowing them to incorporate into the lattice, while simultaneously

removing the chemisorbed C2H5 through the formation of a volatile species.

Monoethylzinc (MEZn), Zn(C 2H5), was the most likely form of metalorganic zinc at the

surface since a bond was free for chemisorption to the surface, and the probability of

DEZn physisorption on a hydrocarbon terminated surface was most likely low. A hole is

required to oxidize the MEZn in reactions (1) and (2) and the adsorption of a Se on the

positively charged surface is assumed to require an electron at the surface to maintain

charge balance. Reaction (1) is the reverse reaction of DEZn decomposing to MEZn,

which would normally occur at the surface in the absence of surface passivation by the

ethyl radicals. A recombination of two chemisorbed ethyl radicals at the surface to form a

volatile species such as C4H10 (reaction (2)) is another possibility consistent with the

experimental evidence. The actual reaction(s) leading to the formation of volatile ethyl

species and the subsequent incorporation of zinc could not be determined using our

experimental apparatus. One requirement for the reaction imposed by the observations of

laser-assisted MOMBE shown in Table 3.7 is that the C2H5 desorption involve a a

bimolecular reaction. The observation of a suppressed low growth rate when laser-

assisted MOMBE was conducted using elemental zinc and cracked DESe was evidence
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against direct desorption of (C2H5) induced by the laser. The Zn:Se flow ratio

dependencies can only be accounted for by a bimolecular surface process.

The proposed reactions satisfy the necessary conditions for growth rate enhancement

of an intermediate product of DEZn decomposition (MEZn) at the surface and the

presence of photo-generated carries. Figure 3.8 is a schematic drawing of the reactions in

equations (3.11-3.12). It should be noted that a MEZn molecule chemisorbed to a Se

surface site is equivalent to an ethyl radical chemisorbed to a Zn site as is shown in Figure

3.8 by the circled ethyl radical. Rate equations for the zinc incorporation and the C2H5

desorption through the formation of a volatile species can be derived from reactions (1)

and (2). Possible dependencies of the incorporation and desorption rates based on

reactions (1) and (2) are,

RZnSe kl[MEZn]2[h][e] or k:[MEZn][h][e] (Eq. 3.13)

RDes 5 kl[MEZn] 2 [h][e] or kMEZn] 2 [h]2 [e]2 (Eq. 3.14)

where k and k2 are the rate constants for reactions (1) and (2), respectively. The Zn

incorporation rate is either linearly or quadratically proportional to the surface

concentration of MEZn, and linearly dependent on the e-h concentration generated by the

laser. Se is assumed to be arriving at the surface in a sufficiently large flux so that

whenever a Zn atom is released in reactions (1) or (2), ZnSe is formed. The desorption

rate of C2H5 which is a bimolecular desorption process in both reactions is proportional to

the square of the MEZn surface concentration, and is either linearly or quadratically

proportional to photon flux generating the e-h pairs.

The steady-state surface coverage of Zn, Se, and C2H5 (possibly MEZn on a Se site)

has been hypothesized to be shifted to almost complete C2H 5 coverage at the low

temperatures of ZnSe growth [39-43]. The growth rate was the metal incorporation rate
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Figure 3.8 Drawing of possible surface reactions proposed to explain the observed necessary conditions
for growth rate enhancement in the MOMBE of ZnSe using at least one diethyl metalorganic
source gas. Holes generated by a laser or electron-beam drift to the surface and participate in
anti-bonding reactions which free Zn metal sites and remove an ethyl radical through the
formation of a volatile species containing C2H5 which subsequently desorbs.

minus the metal desorption rate. Surface passivation by ethyl radicals was speculated to

reduce the sticking coefficient of incident Zn, Se, C2H5, and other hydrocarbons lowering

the metal incorporation rates. Hence, growth was not mass-transport limited as expected,

but instead was reaction-rate limited by the rate of desorption of the chemisorbed C2H5.

Figure 3.2 suggests that the steady-state surface coverage of C2H5 was dominant over the

growth temperatures investigated.

Laser illumination is proposed to increase both the rate of C2H 5 desorption through the

formation of volatile gaseous species, and the rate of Zn incorporation. Laser induced

changes in the incorporation and desorption rates can qualitative explain the first six

entries in Table 3.7 which summarize the effect laser illumination had on the MOMBE

growth rate when a diethyl metalorganic source was used. Figure 3.9 shows the expected

dependence of the Zn, Se, and C2H5 desorption rates (a), the incorporation rate of Zn (b),

and the net growth rate (c), on the incident photon flux. The C2H5 desorption rate curves

in Figure 3.9(a) are shown with curvature to represent the bimolecular desorption rate
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process represented by equation (3.14). The Se desorption rate is shown to have a greater

dependence on the laser intensity which is consistent with the speculation that suppression

of the growth rate observed during MBE was due to enhanced Se desorption. The Zn

desorption rate curve is assumed to have little or no slope. A Se incorporation rate curve

is not shown in Figure 3.9(b) since Se was assumed to be available as needed at the

surface to form ZnSe. Increasing growth rates with increasing concentrations of MEZn

on the surface is reflected by a displacement of the C2H 5 desorption rate curve to the left,

and an increase in the photon flux dependence of the Zn metal incorporation rate. The six

combinations of laser-assisted MOMBE growth using DEZn and/or DESe are now

compared to the qualitative predictions of this model.

The case of no growth using uncracked DESe is simply the consequence that no Se

atoms are available at the surface for incorporation without cracking. Suppression of the

growth rate was observed for three combinations of sources: (i) cracked DEZn and

cracked DESe, (ii) elemental Zn and cracked DESe, and (iii) cracked DMZn and cracked

DESe. When the metalorganic of Zn is cracked, Zn arrives as atoms at the surface. In

this case the desorption rate curve for C2H5 in Figure 3.9(a) and the incorporation rate

curve in Figure 3.9(b) are the curves labeled by the number 1. Laser illumination has no

effect on the Zn incorporation rate and little effect on the C2H 5 desorption rate, but does

enhance the desorption of Se. This should result in a decrease in the growth rate with

increasing photon flux (laser intensity) as shown in Figure 3.9(c) by the curve labeled 1.

This prediction agrees with the observed suppression in the GR shown in Table 3.7.

Enhancement of the growth rate was observed when uncracked DEZn was used with

either cracked DESe or elemental Se. Not cracking the DEZn during injection required

that it be decomposed at the substrate surface, insuring a source of MEZn. The

desorption rate for C2H5 and the Zn incorporation rate are represented by curves similar to

those labeled 2 and 3, the actual curves would depend on how the growth conditions used

71



X A
Photon Flux ( ) 

(a) re

- .0
[MEZn]
ace

Photon Flux ()
(c)

[MEZn]
ace

Photon Flux ()
(b)

Figure 3.9 The top left figure (a) represents the proposed dependence of the Zn, Se, and C2H5

desorption rates on the photon flux 4. The bottom left figure (b) is the postulated
dependence of the Zn incorporation rate on laser photon flux. The laser-assisted growth rate
which is the difference in the deposition rate (proportional to Zn incorporation) and the
etching rate (proportional to re-evaporation of Se) is shown in figure (c) to the right.

influenced the surface concentration of MEZn. Laser illumination is seen to enhance the

desorption of the ethyl radicals and to increase the rate of zinc incorporation. Se (and

possibly Zn) also experiences an increase in its desorption rate, but the rate of increase in

Zn incorporation should dominate the enhanced Se desorption. Combining the two effects

should result in a net increase of the growth rate as shown by the curves numbered 2 or 3

in Figure 3.9(c), which was observed experimentally as shown in Table 3.7.

In summary, the kinetic model developed in this section, based on the rates of

:incorporation and desorption of the surface species of Zn, Se, and the ethyl radical (C2H5),
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is able to qualitatively describe the effect laser illumination had on the MOMBE of ZnSe

when at least one diethyl metalorganic source material was used.

3.9 ZnSe Film Characterization

Characterization of the structural and optical properties of ZnSe produced by

MOMBE was critical to assess the viability of the growth method. Structural

characterization of extended defects and the surface morphology was undertaken. The

relative density of extended defects were qualitatively determined using the full width at

half maximum (FWHM) of x-ray rocking-curve measurements. The surface morphology

was examined by RHEED, Nomarski microscopy, and scanning electron microscopy

(SEM) measurements. Optical characterization techniques such as photoluminescence

(PL) are sensitive to low concentrations of impurities and crystalline defects in

semiconductors. Photoluminescence was measured for all ZnSe thin films and was used as

the first-order comparison standard amongst the films. The energy of a feature in the PL

spectrum could be used to identify a specific impurity and/or defects within the film. The

next three sections describe the standard characterization methods used to evaluate the

ZnSe epilayers.

3.9.1 RHEED

Reflection high-energy electron diffraction (RHEED) is an in-vacuo technique to

monitor the smoothness of a surface and the reconstructions that develop to minimize the

surface free energy. RHEED is accomplished by directing an electron-beam at near

glancing incidence to a film's surface. The electrons reflected off the surface strike a

phosphor screen causing luminescence wherever one impinges. Electron interference

generated by diffraction from periodic arrangements of atoms near the film surface

produce patterns which depend on the orientational azimuth of the substrate. The shallow

glancing angle limits the electron penetration depth to a few monolayers since the normal
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component of the electrons' energy is small. Therefore, a RHEED image is the diffraction

from lattice atoms just below the surface and from any periodic surface reconstruction. A

further discussion of RHEED is presented in Appendix A.

Figure 3.10 are RHEED photographs representative of the ZnSe(100) surface

observed after MOMBE growth. The long vertical streaks indicate that the film grew in a

layer-by-layer Frank-van der Merwe mode. The dimmer streaks between the primay

diffraction lines were due to periodic surface reconstructions. The faint two-fold

reconstruction in the <010> crystalline azimuth and no reconstruction in the <011>

timuth imply that the final surface was terminated with Zn atoms, i.e. a Zn-rich surface

reconstruction. Monitoring the surface reconstructions during growth yielded qualitative

information about the surface stoichiometry in-situ, increasing our control over the

growth conditions.

Figure 3.1(.) Post--growth RHEED photographs of a ZnSe(100) surface in the (a) <011> and () <010>
azimuths. The two-fold reconstruction in the <010> azimuth and no reconstruction in the
<011 > direction indicates a Zn-rich surface.

<011> <010>

(a) (b)
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It was postulated in section 3.4 that the low growth rate was due to blockage of lattice

sites by strongly chemisorbed ethyl radicals. Experimental evidence from X-ray

photoelectron spectroscopy (XPS) studies of laser-induced desorption/decomposition of

triethylgallium on GaAs(100) [78 ] suggest that the alkyl coverage will saturate at roughly

one chemisorbed monolayer. The RHEED photographs shown in Figure 3.10 and the

patterns observed on the phosphor screen during growth are of the same quality of

published RHEED images from MBE of ZnSe. The patterns reflected the same underlying

surface stoichiometry of a Zn- or Se-rich surface based on our setting of the flow(s)

and/or flux(es) during experiments. The RHEED images appeared to be undisturbed by

the hypothesized presence of large concentrations of ethyl radicals on the surface. The

adsorbed ethyl radicals were most likely randomly arranged on the surface. Cross-linking

of the hydrocarbons was unlikely since any free carbon bonds were probably tied up with

hydrogen. If the electron-beam cross-section of the hydrocarbons was not too large, the

electron-beam could constructively interfere from the underlying metal layer, although the

reconstructions were probably reduced in intensity.

3.9.2 DCXRD

The ZnSe fi]ms grown without laser-assistance were normally 1000 A thick or less.

'The lattice mismatch between ZnSe and GaAs at room temperature is 0.25 %. The critical

thickness widely reported for a MBE grown film to remain pseudomorphic is 1500 A

179 ]. The films were expected to be fully tetragonally distorted. Double crystal x-ray

diffraction (DCXRD) measurements confirmed this expectation. A description of the

DCXRD apparatus used in rocking curve measurements is given in Appendix B. Figure

3.11 is a rocking curve of a 1000 A ZnSe film grown heteroepitaxially on GaAs. The 780

arcsecond angular separation between the substrate and layer peaks indicated the film was

pseudomorphic. The 212 arcsecond FWHM was approximately 60-70 arcseconds larger

than values reported for high quality MBE films of similar thickness [80 ]. The larger
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values for the FWHM of MOMBE grown ZnSe might be a consequence of the difficulty in

controlling the surface stoichiometry when the surface was experiencing blockage by ethyl

radicals.

-1500 -1000 -500 0 500
Angular Separation (arcseconds)

Figure 3.11 (400) x-ray reflection of a 1000 A thick ZnSe film on GaAs. The angular separation of
nearly 780 arcseconds indicates the film is pseudomorphic.
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3.9.3 Photoluminescence

Optical characterization by photoluminescence (PL) was the primary characterization

method used in this research. Appendix C contains a description of the PL apparatus, a

more detailed description of the theory of photoluminescence, and a tabulation of common

energy features seen in ZnSe photoluminescence spectra. A photoluminescence

measurement records the intensity of electron-hole radiative recombination as a function

of the emission wavelength. Electron-hole pairs are generated in the semiconductor by

photo-excitation. The charge carriers rapidly thermalize (-10-1 3 seconds) to the bandedge

or inter-bandgap states. Subsequent recombination of the electrons and holes results in

luminescence where the wavelength (photon energy) contains information about the initial

electron and hole state energies. PL is usually measured at low temperatures where

excitons have not been thermally dissociated; the existence of sharp excitonic features can

greatly aid in identifying the energy of features and in providing qualitative information

about the film quality.

3.9.3.1 Representative PL of a MOMBE Thin Film

A characteristic feature in nearly all the MOMBE photoluminescence was a broad

defect band centered near 2.25 eV. Figure 3.12 contains low temperature (10 K) PL

spectra for two regions of an epitaxial film. The luminescence in Figure 3.12(a) came

from an unilluminated region while the spectra in (b) was measured in an area illuminated

with 488 nm radiation during growth. The growth conditions of this film are given in

'Table 3.8. The sample was 1100 A thick in (a) and 3400 A thick in (b). The usual effect

of laser illumination was to either reduce the deep level luminescence so that near-

bandedge (NBE) excitonic features would radiate, or to increase the ratio of the intensity

of the NBE to the deep level emission. The deep level is commonly observed in highly

non-stoichiometric layers. The laser appears to alter the surface stoichiometry during

growth so as to reduce the number of native defects in the film.

77



* -
CA

)
4-A

1.8 2 2.2 2.4 2.6 2.8 3
Energy (eV)

Figure 3.12 Low temperature (10 K) photoluminescence of a MOMBE thin film grown using DEZn and
DESe sources. The PL spectrum in (a) is from an unilluminated region that was 1100 i

thick. The spectrum in (b) is from a laser illuminated region 3400 A thick.

3.9.3.2 Laser Tuning of Stoichiometry

Generally the most prominent feature in the photoluminescence was deep level

recombination. This PL is characteristic of highly non-stoichiometric ZnSe. The emphasis

in the MOMBE research was to elucidate the origin of the low growth rate and to

understand why laser illumination and electron-beam irradiation enhanced the growth rate.

Hence, setting the gas flow ratios and/or oven fluxes to obtain optimum PL was not the

first priority. In fact, control of the surface stoichiometry via gas flows was probably

limited, since laser or electron-beam growth rate enhancement required partially
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undissociated zinc metalorganics on the surface, implying the postulated site blockage by

ethyl radicals promoted a Zn deficient surface stoichiometry.

In Figure 3.1 3 the modification of the surface stoichiometry by the laser is dramatically

evident. The growth conditions are given in Table 3.8. Figure 3.13(a) is the PL of a 1100

A thick unilluminated area which was dominated by deep level recombination which is

speculated to be caused by zinc vacancy complexes. The region that was illuminated by

458 nm radiation during growth (5500 A thick) shown in Figure 3.13(b) exhibits an

intense donor-bound exciton peak at 2.799 eV, and almost no deep level luminescence. A

c,
I)ct
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Figure 3.13 Low temperature photoluminescence illustrating tuning of stoichiometry by laser
illumination. The spectrum in (a) is dominated by deep level recombination. Laser
illumination was observed to dramatically improve the optical properties of the ZnSe film as
shown in (b) where the PL spectrum is now dominated by an exciton feature in the near-
bandedge.
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small blue-shift in the donor-bound exciton peak energy from the bulk ZnSe value was

likely for the 5500 A thick film which had undergone some relaxation of the strain through

the formation of misfit dislocations. The donor-bound exciton could be one of several

catalogued by Dean et al. [81 ] (also see Appendix C). Chlorine is suspected to be the

impurity since it is a possible contaminant in DESe, and the energy of 2.799 eV is within

the ±1 meV resolution of the spectrometer and the slight blue-shift in energy due to

residual compressive strain.

3.9.3.3 MBE PL

Molecular beam epitaxy of ZnSe was performed to provide a comparison for the MOMBE

growths. Figure 3.14 is the PL of a MBE film exhibiting no deep level luminescence and

dominant NBE emission of free- and donor-bound excitons. The growth conditions for

this MBE grown film are given in Table 3.8. The insert is a more detailed view of the

near-bandedge region showing a free-exciton at 2.807 eV and a donor-bound exciton with

1.8 2 2.2 2.4 2.6 2.8 3
Energy (eV)

Figure 3.14 Low temperature (10 K) PL of a ZnSe film grown by MBE. The intense exciton features in
the near-bandedge and absence of deep level recombination indicate good film quality.
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Table 3.8 Growth conditions of the films that were characterized by photoluminescence
in Figures 3.12-14.

PL Parameter Value

Typical MOMBE (ZnSe #42)
Substrate Temperature (°C) 320
DESe (800 °C) (sccm) 1.5
DEZn (50 °C) (sccm) 0.5

Laser Tuning (ZnSe #37)
Substrate Temperature (°C) 310
DESe (800 °C) (sccm) 2.5
DEZn (50 °C) (sccm) 0.5

MBE (ZnSe #68)
Substrate Temperature (°C) 320
Se Flux (A/s) 0.2
Zn Flux (A/s) 0.18

an energy of 2.803 eV. The film was pseudomorphic at the 1200 A thickness so the strain

blue-shifted the energies by approximately 6 meV (see Appendix C). As in the previous

example, the donor-bound exciton was attributed to chlorine. This was the

photoluminescence of the first film grown by MBE. The 'clean' PL spectrum suggested

that metalorganic source gases were compatible with an MBE system since no 'memory'

effect from previous MOMBE growths was evident in the PL of the MBE grown film.

3.10 Summary

ZnSe has been grown by the method of metalorganic molecular beam epitaxy. The

growth rate during MOMBE was unusually low at less than 400 A/hr whenever

diethylzinc and/or diethylselenium were used. MOMBE experiments using mixed sources

where the diethylzinc or the diethylselenium were replaced by DMZn/elemental zinc or

elemental selenium, respectively, confirmed that ethyl radicals were contributing to the

low growth rate. It was hypothesized that surface sites for incorporation of the metal

atoms were saturated by chemisorbed ethyl radicals, thus limiting the growth rate. In a
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parallel investigation of laser-assisted MOMBE, it was observed that laser illumination of

the substrate during growth would reduce the ethyl radical surface passivation

phenomenon under appropriate growth conditions. Electron-beam irradiation of the

substrate using the RHEED gun was found to have qualitatively the same effect on the

growth rate as the laser beam. Two necessary conditions were required during laser-

assisted MOMBE to produce an enhancement in the growth rate when an ethyl source

was employed: (i) photons having energy sufficient to generate electron-hole pairs had to

illuminate the surface, and (ii) some form of metalorganic zinc (speculated to be

monoethylzinc) was required to be absorbed on the surface. Under these conditions of

growth, the measured growth rates of regions illuminated by the laser were increased by as

much as a factor of 15 over the unilluminated growth rates. It is hypothesized that the

laser illumination or electron-beam irradiation created holes which drifted to the surface

and participated in antibonding reactions, which led to the removal of the ethyl radicals,

and allowed more Zn to incorporate into the lattice which increased the growth rate. A

model for the laser-assisted growth rate enhancement was developed in section 3.8 which

could qualitatively explain what was observed experimentally when laser-assisted

MOMBE was performed using at least one diethyl metalorganic source.

The quality of the undoped ZnSe grown by MOMBE was strongly dependent on the

surface stoichiometry which existed during growth. Low temperature photoluminescence

measurements of most films were dominated by a deep luminescence band centered near

2.25 eV. This defect band has been attributed to highly nonstoichiometric growth, and is

speculated to be due to zinc vacancy complexes in the MOMBE films. The laser was

observed to tune the surface stoichiometry by enhancing the incorporation of zinc atoms,

which was being inhibited by the chemisorbed ethyl radicals. X-ray diffraction rocking

curves of fully strained ZnSe on GaAs substrates had FWHMs of approximately 220 arc
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seconds. MBE grown films of similar thickness have FWHMs in the 150 arc seconds

range, indicating a more defective internal structure of the MOMBE films.

Control of the surface stoichiometry by adjusting the metalorganic gas flows was

greatly reduced when surface passivation of the metal incorporation sites by the ethyl

radicals occurred, resulting in a degradation of the optical and structural properties of the

films. Therefore, MOMBE growth of ZnSe under conditions which result in ethyl radical

surface passivation is not generally recommended. An exception to this recommendation

are applications where the selective deposition of ZnSe may be required. The large

difference in the growth rates that have been observed between regions irradiated by a

laser or an electron-beam and regions which were not irradiated, might be exploited in

selective area epitaxy. It may be possible to optimize the growth conditions such that

growth only occurs in a laser illuminated or electron-beam irradiated region. Further

experiments are required to test if a growth rate near a micron per hour can be achieved

without using laser assistance through modifications of the DESe cracker or the addition

of atomic hydrogen during growth. If a usable growth rate can be obtained, it will then be

possible to evaluate whether MOMBE of ZnSe using DEZn and DESe is a viable

alternative to the more established methods of MBE and OMVPE.
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Chapter 4

Gas Source MBE of ZnSe

ZnSe was grown by the method of gas source molecular beam epitaxy (GSMBE)

using elemental zinc and hydrogen selenide (H 2Se) as source materials. The use of

GSMBE is a new approach to the growth of ZnSe [44,82,83 ]. Heteroepitaxy on GaAs

substrates resulted in high quality ZnSe as indicated by intense low temperature

photoluminescence dominated by shallow donor-bound exciton transitions.

An advantage of GSMBE is the higher purity of the source materials in comparison to

the metalorganics used in MOMBE. MBE grade zinc of six nines purity and H2Se with

impurities at the ppm level were used in the experiments. A drawback of GSMBE is the

toxicity of H2Se which requires the installation of expensive safety equipment and the

implementation of special handling procedures, raising the cost of this method.

4.1 GSMBE Growth

Growth of ZnSe by GSMBE was 'MBE-like' in that the constituent elements of Zn

and Se reached the substrate as individual metal atoms, or clusters of metal atoms.

'Thermal dissociation of H2Se in the high-temperature gas cracker separated the hydrogen

from the selenium; the dominant metal species formed has been reported to be Se2 [84 ].

iAn important difference from MBE growth was that during GSMBE, by-products of

cracking were also incident on the growing film surface. The cracking by-product with

the highest partial pressure detected by the QMS was molecular hydrogen. Hydrogen

incorporation in semiconductors, referred to as hydrogenation, is known to occur during

certain growth conditions [85 ]. The presence of hydrogen in a semiconductor can be
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detected by a direct measurement such as secondary ion mass spectroscopy (SIMS) if

hydrogen is present in sufficiently high concentrations. Hydrogen in a semiconductor may

also be inferred if the expected electrical and optical properties of the semiconductor are

modified in ways characteristic of hydrogenation. SIMS analysis of the undoped GSMBE

grown ZnSe was inconclusive concerning hydrogenation. Hydrogen was not detected in

undoped ZnSe at concentrations greater than 5x1017 atoms/cm3, the approximate

detection limit for hydrogen in the SIMS measurements. Hydrogen may be present in

lower concentrations.

4.1.1 Growth Conditions

The growth conditions for GSMBE were similar to those used in MOMBE [44]. The

primary difference was that metalorganic zinc sources were replaced by solid zinc, which

was sublimated from a Knudsen cell. As of this writing, only three laser-assisted growth

experiments have been performed during GSMBE. The growth rate (GR) was measurably

suppressed in all three experiments. Growth rate suppression was expected for 'MBE-

like' growth based on our previous studies which examined the effect of laser illumination

during MOMBE, summarized in Table 3.7. Additional experiments of laser-assisted

GSMBE may be pursued in the future if a means to suppress spot formation on the

Table 4.1 The growth parameter space investigated for GSMBE of ZnSe using H2Se and
elemental Se sources.

Variable Values
Minimum Maximum Typical

Substrate Temperature (°C) 245 395 270

1I2Se Flow Rate (sccm) 1.0 2.4 1.2 or 2.2
1I2Se Cracker Temp. (°C) 600 1100 1000

Zn Effusion Cell Temp. (C) 297 322 304 or 312
Zn Flux (Average) (A/s) 0.55 2.41 0.7 or 1.0

Growth Time (hr) 3 6.67 4
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viewport, which was more severe than spot formation during MOMBE, can be found.

The growth parameter space investigated is presented in Table 4.1. The range of

values of the variables are indicated in the minimum and maximum value columns. The

typical values listed were the most common experimental conditions used.

4.1.2 H2Se Cracking

The H2Se required cracking due to the strength of the hydrogen-metal bond. Table

3.1 indicates the average H-Se bond energy is 66 kcal/mol. H2Se cracking experiments

were conducted using a QMS to record the mass spectrum of the species emitted from the

cracker at different cracker temperatures. Analysis of the spectra indicated that H2Se

began to dissociate at temperatures greater than 700 C; at this temperature the H2 peak

was approximately the same magnitude as the H2Se peak in the mass spectrum. Figure 4.1
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Figure 4.1 Growth rate versus the H2Se cracking temperature illustrating the approximate 700 °C
threshold for growth to occur. The growth conditions for these experiments are summarized
in Table 4.2.
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Table 4.2 Growth conditions of the ZnSe films grown by GSMBE which produced the
data shown in Figure 4.1.

Variable Units Value

Substrate Temperature (°C) 270

H2Se Flow Rate (sccm) 1.7

Zn Effusion Cell Temperature (°C) 307-309
Average Zn Flux (A/s) - 1.0

Growth Time (hr) 3

shows the growth rate versus the hydrogen selenide cracker temperature. The figure

indicates an approximate threshold H2Se cracker temperature of 700 °C for growth to

occur. The apparent peak in the growth rate at 800 °C may be a consequence of the

unstable Zn flux which was described Section 3.1. Error bars are included for growth rate

values, reflecting the uncertainties in the Zn flux and the H2Se flow rate. The

determination of the uncertainty in the growth rate is described in the next section. No

error bars are given for the cracker temperature since the PID controller regulated the

temperature to within +1 C. Table 4.2 summarizes the growth conditions of the films

from which the data in Figure 4.1 was produced.

4.1.3 Estimate of Growth Rate Uncertainty

'The GSMBE growth rate will be shown in Section 4.1.4 to be dependent on the H2Se

flow rate, the Zn beam flux, and the substrate temperature. An estimate of the GR

uncertainty is possible based on the uncertainties in these independent variables. The

growth rate uncertainty calculations are carried out in Appendix D. The results of these

calculations are summarized in Table 4.3. GSMBE will be shown in Section 4.1.4 to be a

mass-transport limited growth process, so the GR was linearly proportional to the incident

fluxes. It was demonstrated in Appendix D that the percentage uncertainty in a source

flux caused the same percentage uncertainty in the growth rate. Since ZnSe is a binary
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Table 4.3 Percentage uncertainty in growth rate (AGR/GR) for different growth
conditions. Entries are given as the percentage uncertainty in the growth rate
caused by the uncertainty in the variables listed. Uncertainty calculations are
carried out in Appendix D.

(AGR/GR)
Surface Stoichiometry: Se-Limited Zn-Limited 1:1

Variable

Substrate Temperature ± 2% ± 2% + 2%
H2Se Flow Rate + 6% * + 6%
Zn Effusion Cell Flux * + 9% + 9%

Total (AGR/GR) + 8% 11% ± 17%

* No contribution to GR uncertainty with the indicated surface stoichiometry.

compound, the growth rate was limited by the flux which contained the fewest atoms of

Zn or Se to incorporate into the film surface, assuming similar sticking coefficients for the

Zn and Se. The majority of the films were grown under conditions where one element

was mass-transport limited, i.e. Zn- or Se-rich growth. Hence, the uncertainty in the GR

was affected by the uncertainty in the flux of the mass-transport limited element only;

excess Zn or Se arriving at the surface did not affect the growth rate because Zn or Se

coverage beyond one monolayer would desorb. When the ratio of the Zn to Se on the

surface was nearly unity as determined by RHEED reconstructions, the uncertainty in both

fluxes was assumed significant. The uncertainty in the Zn flux was greater than the

uncertainty in the H2Se flow, hence, Zn-limited growth was subject to a greater variance in

the growth rate as shown in Table 4.3.

4.1.4 Growth Rate Dependencies

In the next two sections it will be shown that GSMBE exhibits the same dependence

on the growth variables as molecular beam epitaxial growth of ZnSe.
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4.1.4.1 Substrate Temperature

Figure 4.2 shows that the growth rate was dependent on the growth (substrate)

temperature. ?The growth rate decreased at higher growth temperatures due to re-

evaporation of the Zn and Se. ZnSe growth does not require an overpressure in the anion

species as is common in III-V materials growth because of the similar sticking coefficient

of both constituents. The higher growth rate at lower substrate temperatures is also

observed in MBE of ZnSe. The solid points and open circles correspond to different sets

of growth conditions. The solid point data was measured from films grown with a 2.5

sccm H2Se flow rate and an average Zn flux of 0.7 A/s as measured by the quartz crystal

oscillator; the surface stoichiometry during growth was Se-rich as determined from the

RHEED reconstructions. The open circle data were grown using a 1.7 sccm H2Se flow
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Figure 4.2 Dependence of the growth rate on the growth temperature. The growth conditions of the
films whose growth rates are represented by the solid points were grown with a H2Se flow
rate of 2.5 sccm and an average Zn flux of 0.7 Ads. The H2Se flow rate was 1.7 sccm and the
average Zn flux was 1.0 A/s for the data represented by the open circles. The dotted line is a
linear approximation to the growth rate temperature dependence.
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rate and 1.0 A/s average Zn flux, which resulted in a Zn-rich surface during growth. The

error bars are larger for the solid point data reflecting the greater uncertainty in the growth

rate under Zn-limited growth conditions. A representative error bar indicating the

uncertainty in the temperature measurement is also shown.

4.1.4.2 H2Se Flow and Zn Flux

GSMBE was observed to be a mass-transport controlled growth process. The growth

rate increased with greater H2Se flow or Zn flux when the growth was Se-limited or Zn-

limited, respectively. Figure 4.3 illustrates the linear dependence of the growth rate on the

H2Se flow rate. Table 4.4 summarizes the common growth conditions for the data shown

in Figure 4.3.

The ratio of the H2Se flow rate to the Zn flux to produce a 1:1 surface stoichiometry

1

I)

o

1 1.5 2 2.5
Hydrogen Selenide Flow Rate (sccm)

Figure 4.3 Growth rate is a linear function of the H2Se flow rate indicating that arrival of Se to surface
is limiting the growth rate.
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Table 4.4 Summary of the common growth conditions of the experiments from which
Figure 4.3 was produced.

Growth Variable Value

Substrate Temperature (°C) 285-290

H2Se Cracker Temperature (°C) 1000

Surface Stoichiometry Zn-rich

Growth Time (hr) 3

was estimated from the RHEED reconstructions observed during growth. A 1.8-2.0 sccm

H2Se flow rate (cracked at 1000 °C) was required for every 1.0 3As of Zn flux. Therefore,

the Se:Zn source ratio for a 1:1 surface stoichiometry during growth was approximately

1.9+1 (sccm)/A/s. A good correlation between the Se:Zn source ratio and the surface

stoichiometry determined from RHEED reconstructions was observed. When the Se:Zn

source ratio was < 1.7, the surface was Zn-rich. Conversely, when the source ratio was >

2.1, the RHEED reconstructions indicated Se-rich surfaces.

4.2 Characterization of GSMBE films

The surface morphology and structural properties of the undoped ZnSe were

characterized by Nomarski spectroscopy, scanning electron microscopy (SEM), and x-ray

diffraction rocking curve measurements. During growth the film surface was analyzed in-

.situ by RHEEI). The optical properties were investigated by low temperature

photoluminescence. Electrical characterization was possible since the films were normally

several microns thick. Hall effect and capacitance-voltage (C-V) measurements were

performed to characterize the electrical properties.

4.2.1 Structural Characterization

X-ray diffraction rocking curve measurements of the ZnSe grown heteroepitaxially on

(GaAs by GSMBE indicated good structural quality. The full width at half maximum
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(FWHM) of the ZnSe (400) reflection peak was in the range of 180-220 arcseconds [44],

values comparable to the FWHMs of ZnSe grown by MBE.

4.2.1.1 RHEEI)

Representative RHEED photographs of the observed post-growth reconstruction

patterns are displayed in Figure 4.4. The faint two-fold reconstruction in the <011>

crystal azimuth (a), and no reconstruction in the <010> direction (b), indicate the final

surface was slightly Se-rich, the same stoichiometry that was observed during the growth

of the film. The streaky lines suggest the surface at completion of growth was smooth to

within a few n-monolayers. The reconstruction patterns reflected the same surface

stoichiometries observed in MBE of ZnSe; hydrogen present at the surface apparently did

not alter the surface free energy sufficiently to modify the surface reconstructions.

Figure 4.4 Photographs of post-growth RHEED images. The faint two-fold reconstruction in the <011>
azimuth (a), and no reconstruction in the <010> direction (b) indicate the final surface was
slightly Se-rich.

<011> <010>

(a) (b)
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4.2.1.2 Nomarski and Scanning Electron Microscopy

Nomarski microscopy and scanning electron microscopy (SEM) were used to analyze

the surface morphology. Nomarski photographs taken at a magnification of 1000x

revealed the film surfaces to be featureless in almost all cases. Films that were grown at

the lowest substrate temperatures, however, had surfaces that appeared slightly hazy.

Scanning electron microscopy was used to examine the surfaces on a finer scale. Figure

4.5 is a SEM image taken at 100,000x magnification that was representative of the surface

morphology of most undoped films. The surface is seen to be featureless at this high

magnification. The white region in the lower left corner of the image is a dust particle

which the SEM operator used to bring the surface in proper focus.

Figure 4.5 SEM image of the typical surface morphology of ZnSe films grown by GSMBE. The scale is
indicated by the line on the bottom of the photograph. The white region is a dust particle
which was used as an aid in focusing.

93



The slightly hazy surfaces of films grown at lower temperatures were observed to have

a 'sandpaper-like' texture when viewed under a Nomarski microscope at 1000x

magnification. Figure 4.6 is a photograph of a film grown under Zn-rich conditions where

the substrate temperature dropped below 250 °C. The Zn flux and H2Se flow rate were

similar to those of other films which had featureless surface morphologies. An SEM

image of the same hazy surface film is shown in Figure 4.7. The surface at 33,000x

magnification appears to be covered with pits that have three-fold symmetry. The origin

o)f these features is unknown, but it is speculated that the low growth temperature which

reduced the surface mobility of the Zn and Se atoms might have contributed to the

Figure 4.6 Photograph taken using the Nomarski microscope of a film which was grown at an
approximate substrate temperature of 250 °C. Magnification is 1000x.
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formation of tese defects. The surface morphology observed in Figure 4.7 was an

exception most GSMBE ZnSe films were grown at higher substrate temperatures and had

surlace morphologies similar to Figure 4.5.

Figure 4.7 SEM imnage of a ZnSe film where the substrate temperature fell below 250 °C during growth.
Pits with thrce-fold symunetry are visible on the surface. The scale is indicated by the white
line a the bottom of the photograph.
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4.2.2 Photoluminescence

The optical properties of the ZnSe epitaxial layers were investigated by

photoluminescence. Optical excitation was produced by a focused He-Cd laser beam

resulting in a power density of approximately 300 mW/cm2. Appendix C contains a more

detailed description of photoluminescence spectroscopy. Figure 4.8 shows a series of 10

K photoluminescence measurements of films grown at different substrate temperatures,

but otherwise similar growth conditions. The common growth conditions of these films

are listed in Table 4.5. All the films were greater than 1 m in thickness. The PL at each

growth temperature investigated was dominated by an intense donor-bound exciton having
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Figure 4.8 Low temperature (10 K) photoluminescence of ZnSe as a function of the growth temperature.
The donor-bound exciton feature at 2.798 eV is speculated to be due to chlorine.
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Table 4.5 Summary of the growth conditions of the films which are characterized by
photoluminescence in Figures 4.6 and 4.7.

Growth Variable Value

H2Se flow rate (sccm) 2.3-2.5
H2Se Cracker Temperature (°C) 1000

Zn Effusion Cell Temperature (°C) 304-305
Zn Flux (k/s) 0.68-0.77

Surface Stoichiometry Se-rich

Growth Time (hr) 4

an energy of 2.798 eV. Referring to Table C. 1 in Appendix C, several donor impurities

have energies within the +1 meV uncertainty of this energy value; energy shifts due to

strain are assumed to be small for films 1-2 tm thick. The donor impurity is speculated

to be chlorine based on the PL peak energy, and secondary ion mass spectroscopy analysis

of ZnSe:N films, to be described in Chapter 6, where chlorine was detected. Though not

readily visible in Figure 4.8, a deep luminescence band with an intensity at least 100-1000x

weaker than the near-bandedge (NBE) luminescence was centered near 2.25 eV.

To enhance the signal of the defect-related band for closer analysis, the PL of the same

set of samples shown in Figure 4.8 were measured at 77 K. As seen in Figure 4.9, the

donor-bound exciton remained as the dominant feature in the PL spectra. The energy of

the peaks red-shifted to 2.790 eV due to the decrease in the bandgap energy of ZnSe at 77

K. At the lowest growth temperature, a weak luminescence signal originating from a

broadly centered defect band was visible near 2.25 eV. For this PL spectrum, the intensity

ratio of the donor-bound exciton peak to the defect band was slightly over 10. The energy

cf the deep luminescence was the same as observed in MOMBE photoluminescence; the

origin of this deep level could be due to zinc vacancy complexes. The 77 K PL spectra

have more noise than the 10 K spectra because the 77 K scans were measured at a higher

lock-in amplifier sensitivity.

97



77 K
2.790

Grovm

Tem

(Celsius) "'" 1.8 20 - '-
Energy ( eV)

Figure 4.9 77 K photoluminescence of ZnSe as a function of the growth temperature. The donor-bound
exciton feature now at 2.790 eV red-shifted in energy due to the decrease in the ZnSe
bandgap at 77 K.

A qualitative measure of the ZnSe epilayer quality was obtained from measurements of

the integrated intensity of the NBE feature as a function of measurement temperature

[86 ]. A GSMBE grown ZnSe film had its integrated intensity plotted against the PL

measurement temperature to quantify the rate of decline in overall luminescent intensity.

The integrated intensity fell to 20% of the 10 K value at 77 K, and 5% of the 10 K value

at room temperature. Electron-hole pairs created by optical excitation have three possible

recombination pathways: (i) radiative recombination through free-excitons and bound-

excitons, (ii) radiative recombination through impurity and defect states within the
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bandgap, or (iii) recombination at a non-radiative center. A film that has few non-

radiative electron-hole trap states is more likely to recombine through the paths described

in (i) and (ii), producing more intense luminescence. As the measurement temperature is

raised recombination via path (iii) is more favorable. Therefore, films whose integrated

intensity decreases slowly with increasing PL measurement temperature are generally of

higher crystalline quality.

4.2.3 Electrical Measurements

The undoped ZnSe films were all nominally n-type. Hall effect measurements were

performed to determine the free electron concentrations. The Van der Paaw geometry

was used for the measurements, and ohmic contacts to the ZnSe were made by In

soldering. The free electron concentrations appeared to be influenced by the surface

stoichiometry that existed during growth as will be explained in the next section. Electron

concentrations ranged from the mid 1015 n/cm 3 to the low 1017 n/cm 3 .

4.3 Effect of Surface Stoichiometry

The ZnSe surface was normally maintained in either a Zn-rich or Se-rich surface

stoichiometry during a growth. RHEED reconstructions were used to establish whether

the surface was Se-rich, (2xl) reconstruction pattern, or Zn-rich, a centered (2x2) pattern.

It was observed that the surface stoichiometry during growth influenced the near-

bandedge features of the PL, as well as the free carrier concentrations measured by the

Hall effect.

Figure 4.10 is a comparison of the photoluminescence of two ZnSe epilayers which

were produced using similar growth conditions, except the H2Se flow was adjusted to

produce (a) slightly Se-rich and (b) Zn-rich surface stoichiometry during growth.

Independent of the surface stoichiometry, the most intense feature in the near bandedge

photoluminescence was a donor bound-exciton transition at 2.798 eV, where the donor
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Figure 4.10 Low temperature (10 K) PL illustrating the effect the surface stoichiometry during growth
had on near-bandedge features of the photoluminescence. The near-bandedge PL of a film
grown with a Se-rich surface (a) was dominated by a donor-bound exciton at 2.798 eV. The
film grown with a Zn-rich surface stoichiometry (b) had a distinct free-exciton peak at 2.803
eV.

has been speculated to be chlorine. In the case of the film grown with a Zn-rich surface

stoichiometry (b), a free-exciton peak at 2.803 eV is clearly evident. The free-exciton

feature appears as a high-energy shoulder of the donor bound-exciton in the Se-rich

spectrum (a). The more intense free-exciton peak in spectrum (b) suggested that ZnSe

grown under Zn-rich surface stoichiometries would have lower free carrier concentrations.

Hall effect measurements confirmed that films grown with a Zn-rich surface

stoichiometry had lower free electron concentrations. Table 4.6 shows the electron

concentrations measured for representative films grown with Se-rich and Zn-rich surface

stoichiometries. Hall measurements for films grown with a Zn-rich surface had free
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Table 4.6 Summary of the effect the surface stoichiometry during growth had on the
measured free electron concentrations. Hall effect measurements were
performed to obtain the values.

Surface Stoichiometry Se-Rich Zn-Rich

ZnSe Film # 119 123 125 126

Electron Concentration (n/cm3) 7x1016 5x1016 8-9x101 5 7-9x1015

electron concentrations in the mid 1015 n/cm -3 to low 1016 n/cm -3 range. Se-rich films had

free electron concentrations an order of magnitude higher in the mid 1016 n/cm -3 to the low

10'7 n/cm -3 range.

4.5 Summary

High quality ZnSe films 1-2 [tm thick were grown by the method of gas source

molecular beam epitaxy using elemental zinc and hydrogen selenide. Cracking of the H2Se

at temperatures > 700 °C was required for appreciable growth to occur. GSMBE was

observed to be a mass-transport limited growth process and to have a growth temperature

dependence similar to MBE. High quality films could be produced over an extended

range of growth conditions as indicated by intense low temperature photoluminescence

dominated by free- and donor-bound exciton features. Films grown with a Zn-rich surface

stoichiometry were observed to have a more intense free-exciton peak in the low

temperature photoluminescence, and lower free electron concentrations as measured by

the Hall effect, than films which had a Se-rich stoichiometry during growth. Electron

concentrations were in the mid 1015 to low 1016 n/cm-3 range for undoped ZnSe grown

under Zn-rich surface stoichiometry conditions. Characterization of the structural, optical,

and electrical properties of the GSMBE films indicated they were of the same quality as

MBE grown ZnSe. This research demonstrates that gas source molecular beam epitaxy
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using H2Se and elemental zinc is capable of producing undoped ZnSe of comparable

quality to the established methods of MBE and OMVPE.
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Chapter 5

Acceptor Compensation in P-Type ZnSe
This chapter discusses the past difficulties in producing low-resistivity p-type ZnSe.

Reported experimental failures and successes in p-type doping are reviewed. Theoretical

models of acceptor compensation processes are presented. The motivation for using

nitrogen as a p-type dopant during GSMBE will become apparent in this discussion. The

milestone breakthroughs in achieving low-resistivity p-ZnSe [9,10] were preceded by

many incremental steps forward in the understanding of compensation processes, and the

development of growth techniques which minimized compensation in p-ZnSe. Acceptor

compensation in ZnSe is once again an active area of research since it has been reported

that nitrogen is compensated at high doping levels [87 ].

The Introduction discussed recent advances in producing p-ZnSe:N with substitutional

nitrogen (Ns,), which resulted in the fabrication of light emitting devices. Prior to the first

reports of conductive p-ZnSe using Li as a dopant (Liz,) beginning in 1988 [1,2], ZnSe

was seldom mentioned without the accompanying term 'self-compensation.' There was

good reason for this association. Attempts to dope ZnSe p-type using likely candidates

such as Na [88 ], As [89 ], and P[90,91 ] yielded highly resistive material. An effort to

(lope ZnSe using the isoelectronic impurity oxygen as a shallow acceptor also produced

highly resistive films [92 ]. Measurements of the atomic concentrations of the dopants

indicated high levels of incorporation into the ZnSe lattice, but very low electrical

activation of the acceptors. An accepted explanation for the electrical inactivity was that

the intended acceptor atom was inducing the creation of a compensating donor type

defect, hence, the common usage of the term self-compensation. While it appears that
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most of the difficulties in doping ZnSe p-type have been surmounted using nitrogen, it was

reported early in the investigations of nitrogen plasma doping that a compensating donor

appears at high doping levels [87]. Confirmation of this behavior by other investigators

has focused attention on determining the origin of the compensation, so if possible, it may

be suppressed. The compensation of the nitrogen acceptor which occurs at high nitrogen

doping levels will be discussed in Chapter 7.

Lithium was the first dopant used to achieve low-resistivity p-ZnSe [1,2]. Interest in

lithium as a p-type dopant has waned due to its instability in the ZnSe lattice and the

appearance of acceptor compensation at higher doping levels. Lithium was shown to

diffuse rapidly throughout the ZnSe matrix during growth at 300 C [93 ]. Figure 5.1(a)

reproduced from reference [93], illustrates how lithium had diffused into 1.0 tm thick

undoped layers from the original 0.5 ptm doping region, indicated by the dotted

rectangular profile, during growth. The SIMS depth profile indicates that Li had diffused

into a nearly uniform distribution throughout the entire ZnSe layer. Another serious
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Figure 5.1 Two characteristics of Li which make it a less attractive p-type dopant compared to nitrogen.
In (a), a SIMS depth profile illustrates how Li diffused into undoped regions during growth
from the doped region indicated by the dotted rectangle [93]. The figure in (b) summarizes
the net acceptor concentration as a function of the Li concentration. Arrows indicate
ZnSe:Li layers which were fully depleted during C-V measurements.
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limitation to Li is the appearance of compensating donors, suspected to be Li in interstitial

sites or related complexes, which limits the net acceptor concentrations to approximately

1017 (NA-ND)/cm3. Figure 5.1(b) also taken from [93], illustrates how the net acceptor

concentration (NA-ND) decreased at higher Li concentrations. In contrast, nitrogen has

been reported to be stable in ZnSe at temperatures as high as 400 C [87]; this

temperature is above the processing temperatures currently used to fabricate ZnSe

devices.

5.1 Early Compensation Model: Native Defects

The first mechanism suggested for self-compensation was that donors or acceptors

introduced into wide bandgap semiconductors would induce the formation of

compensated native defects such as vacancies or interstitials by their presence. In 1964

Mandel [94 ] proposed that the origin of acceptor compensation was through the

formation of native defects. It was argued that the host lattice would form electrically

active native defects to at least partially compensate the electrical activity of intentionally

introduced impurities. Acceptors in ZnSe would be compensated by selenium vacancies in

this model. Mandel estimated the degree of compensation based on a formalism first

applied by Kroger and Vink [95 ]. An energy balance was established between the energy

supplied by the crystal to form excess defects and the energy gained by the crystal when

free carriers interacted with the defects. Calculations based on a singly ionized vacancy

model were found to agree with the observed behavior of alkali halides and III-V

materials, but could not explain the compensation observed in II-VI materials. Predictions

of the degree of compensation in II-VI materials that agreed with the experimental data

were obtained by extending the model to include the effect of doubly ionized vacancies.

Mandel used thermodynamic data from equilibrium bulk growth processes in estimating

the concentrations of native defects; therefore, non-thermal equilibrium growth methods
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such as MBE and OMVPE developed after this model was proposed may not be

adequately described by this theory.

5.2 Recent Compensation Models

The energies of various defect and impurity configurations within a host lattice have

been the subject of several theoretical investigations based on first-principles total energy

calculations [12,96 -98 ]. These calculations were based on the density-functional theory

[99 ] and solved by the pseudopotential method [100 ]. In addition to estimating the

energy of a particular defect or impurity configuration, these models can predict the

degree of lattice relaxation caused by a lattice imperfection. Predictions of lattice

relaxation can be compared to experimental data to test the validity of a theory.

The study of II-VI materials using magnetic resonance measurement techniques such

as electron spin resonance (ESR) [101 ] or optically detected magnetic resonance

(ODMR) [102 ] has provided information on paramagnetic point defects within host

crystals. A defect can be detected using magnetic resonance techniques if a paramagnetic

state of the defect exists or can be induced. Defects in semiconductors often have either

an unpaired spin state associated with them, or can be easily excited into a paramagnetic

state through excitation, e.g. optical illumination. A magnetic resonance spectrum enables

the determination of the electron (or hole) g-factor; the g-factor is often unique to a

particular defect within a material. Magnetic resonance experiments are of particular

:interest to defect theorists because the symmetry of the g-tensor, which reflects the

symmetry of the defect state, can be determined by measuring the magnetic resonance

spectrum at different orientations within a magnetic field. ESR and ODMR have been the

primary sources of information on the symmetry of point defects. ODMR measurements

were attempted on undoped ZnSe films grown by MOMBE, and on nitrogen doped ZnSe

grown by GSMBE. No resonance signals were detected for any of the samples using an

ODMR apparatus at MIT. It was subsequently learned after the completion of these
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experiments that only a small percentage of ZnSe samples give a detectable magnetic

resonance signal [103 ].

5.2.1 Lattice Relaxation Models

ESR studies of P and As impurities in ZnSe [101] provided some of the first evidence

that compensation of acceptors in ZnSe might occur by mechanisms other than native

defect formation. It was observed that phosphorus and arsenic in substitutional selenium

sites would form deep-levels not associated with any defect, where the symmetry was

lowered from Td to C3v by a Jahn-Teller distortion. Chadi and Chang [12] were the first to

propose a mechanism to explain the Jahn-Teller distortion about the impurities using first-

principles energy calculations. The Chadi and Chang model postulated a reaction where a

neutral and positive acceptor state were created from two neutral acceptors. The

prediction of a positively charged acceptor state was unusual, but their calculations

indicated such a reaction was exothermic and would result in a large lattice relaxation of

the type observed in the ESR measurements [101].

Chadi extended the total energy calculations to search for the possibility of a large

lattice relaxation in the neutral and ESR active states of column V impurities in ZnSe [96].

It was found that there were two distinct configurations for As and P in a neutral charge

state. One state was a metastable four-fold coordinated effective-mass-like state. This

state which donates a hole will be represented by a. The other neutral state was

energetically more stable (0.34 eV lower in energy for P) and was characterized by a

large lattice relaxation which lowered the symmetry about the acceptor to C3v. The three-

fold coordinated state is represented by A in the lattice relaxation reaction shown in

Equation (5.1),

o o
a -> A (Eq. 5.1)
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The tetrahedral coordinated a state is metastable since the transition to the A state

involves breaking one of the Zn-P bonds, the activation energy for the transformation.

Figure 5.2(a-b) are diagrams illustrating the two proposed stable structural configurations

for neutral column V acceptors in ZnSe [96]. The four-fold structure of the effective-

mass-like state (Figure 5.2(a)) preserves the sp3 bonding geometry of a substitutional atom

in the tetrahedrally bonded zincblende structure. The lattice relaxed state in Figure 5.2(b)

has lowered its symmetry from Td to C3v, resulting in an almost planer sp2 bonding

geometry. The predicted bond displacements of P along the [111] and -[111] directions

due to lattice relaxation were in good agreement with the published ESR data [101].

Chadi calculated that N would act as a shallow acceptor in both the four-fold

coordinated effective-mass-like state and the lower symmetry lattice relaxed state. This

prediction might. explain the relative success in doping ZnSe p-type with nitrogen. Other

theorists have performed first-principles energy calculations using more sophisticated

pseudopotential models to verify the existence of two stable acceptor states [98]. The

preliminary results appear to support Chadi's theoretical predication of a bond-breaking

bistability for column V acceptors.

Zn i

(a) (b)

Figure 5.2 Postulated stable structural states of neutral column V acceptors in ZnSe [96]. The four-fold
coordinated P in (a) is the shallow effective-mass-like state. The more energetically
favorable state (b), characterized by a broken P-Zn bond and subsequent lattice relaxation,
has C3V symmetry and a nearly planer sp2 bonding geometry.
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5.2.2 Solubility Limits of Dopants

Theoretical estimates of the solubilities and doping limits of Li, Na, and N in ZnSe

have recently been performed [97]. This work calculated the total energies of all native

defects and the energies of the various configurations that can be assumed by an impurity

in the ZnSe host lattice. The unified treatment of native point defects (vacancies, self-

interstitials, and anti-sites) and impurities in the energy calculations allowed the relative

concentrations of compensating native defects to be compared to other sources of

compensation. Three major findings were advanced based on the calculations: (i) under

close to stoichiometric growth conditions, native defect concentrations are far too low to

explain observed levels of compensation; (ii) competition between substitutional and

interstitial (compensating) configurations exists for Li; and (iii) the solubility limit is

imposed by the formation of other phases.

In calculating the solubility limits, precipitation of a new phase was assumed to occur

when the chemical potential of a dopant exceeded the chemical potential of the lowest

energy compound which could form from Zn, Se, and the dopant element. In the cases of

Na, Li, and N, the upper bounds were the chemical potentials of Na2Se, Li2Se, and both

Zn3N2 and N2, respectively. The solubility limit of Na was calculated to be less than 1016

atoms/cm 3; the predicted low solubility limit might explain a previously unsuccessful

attempt to dope ZnSe using sodium [88]. The solubility calculations also provide a

theoretical basis for the reported success in nitrogen doping. The calculations predict a

nitrogen solubility limit greater than 1019 atoms/cm 3, and that nitrogen would not

experience substitutional/interstitial site competition [97].

In summary, past efforts in doping ZnSe p-type reported in the literature have

identified nitrogen as the most promising acceptor impurity. Recent total energy

calculations predict that acceptor compensation caused by lattice distortions about a

column V impurity atom is the lowest for N in the ZnSe lattice. Total energy calculations
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have also predicted that the solubility limit of N in ZnSe is greater than 1019 atoms/cm 3 .

Based on the aforementioned evidence, nitrogen doping of ZnSe during GSMBE was

investigated.
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Chapter 6

Doping With Nitrogen During GSMBE
The discussion in the last chapter identified nitrogen as the best candidate for a p-type

dopant in ZnSe based on past doping experiments and recent first-principles theoretical

calculations. Previous attempts to incorporate nitrogen from N2 and NH 3 during MBE

resulted in low nitrogen incorporation [13], most probably due to very low sticking

coefficients of these molecules to the ZnSe surface. Creating a plasma of nitrogen gas

prior to injection into the chamber has been demonstrated to greatly enhance the

incorporation of N through the creation of species with much higher sticking coefficients

[9,10]. Studies of the optical discharges of plasma sources [15,16] suggest that atomic

nitrogen is the species created in the plasma leading to high levels of nitrogen

incorporation.

This chapter presents the initial results of ongoing research investigating nitrogen

doping of ZnSe by a plasma source during gas source molecular beam epitaxy [44]. The

effectiveness of a nitrogen plasma source to incorporating nitrogen when operating in the

pressure regime of GSMBE (10-5-10 4 Torr) was unknown when the doping study was

initiated. At GSMBE operating pressures, the molecular mean free path is on the order of

the source to substrate distance of 21 cm. At the confluence of the molecular beams in

front of the substrate, the probability of a collision is even higher. The concern was that

collisions with other molecules would either de-excite an excited state of a N2 molecule,

or remove atomic nitrogen through bonding, reducing the 'active' nitrogen species the

plasma source was generating. Nitrogen concentrations as high as 6x1018 atoms/cm 3 in

ZnSe:N films grown thus far suggest that the sticking coefficient of the 'active' nitrogen
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species (now believed to be atomic nitrogen) remains high when the plasma source is

operated at GSMBE pressures.

6.1 Radio Frequency Plasma Source

The radio frequency (RF) plasma source (model MPD21) used in these experiments

was manufactured by Oxford Applied Research, Crawley Mill, England; future

experiments are using an upgraded version of the MPD21 source, a CARS25. The

MPD21 is called a free radical source (FRS) by the manufacturer, and will be referred to

as a FRS in this thesis. The Oxford RF plasma source is the most common type of plasma

source being used for nitrogen doping during MBE; an alternative to a RF source is an

electron cyclotron resonance plasma source [104 ].

6.1.1 Description

The FRS was designed to fit in an effusion oven location on a MBE system. The

MPD21 which has a 4.5" mounting flange, was bolted to a 6" source flange on the II-VI

epitaxy chamber using a 6" to 4.5" adapter flange. The FRS operated at a frequency of

13.56 MHz. Power from a 600 Watt RF generator (Advanced Energy, model RFX-600)

was delivered through a capacitance impedance matching network to the RF coupling on

the FRS. ULSI grade nitrogen gas (Matheson Gas Products) was supplied through a two-

stage regulator to a precision leak-valve attached to the FRS. The source was cooled

using the chilled water heat-exchange system of the II-VI reactor.

A schematic drawing of the source is shown in Figure 6.1. The plasma was struck in

the cavity formed by the PBN discharge tube and the aperture. RF excitation was coupled

into the plasma via the water cooled RF coil surrounding the discharge tube. A single 0.3

mm hole in the exit aperture allowed a molecular beam of nitrogen species to enter the

reactor chamber. The glow of the plasma discharge was visible through the viewport
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Figure 6.1 Schematic drawing of the Oxford free radical source. The capacitance matching network
which makes electrical contact at the RF coupling (F) is not shown.
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which looked down the gas feed tube. A Si photodiode could be placed over this

viewport to monitor the intensity of the plasma discharge.

6.1.2 Operation

The conditions to strike a plasma in the FRS depended on the nitrogen flow through

the plasma discharge region as well as the applied RF power. The plasma had two

operating modes, low and high brightness, which could easily be differentiated by eye.

The low brightness mode was reported to incorporate nitrogen less efficiently [87], so the

FRS was always operated in the high brightness mode. The FRS was purchased with

automatic tuning electronics (ATM-600) to adjust the capacitance of the impedance

matching network. The reflected power returned to the generator would fall below 1%

when the matching network was tuned with the plasma in the high brightness mode.

To establish a measure of the nitrogen flow through the FRS, the background pressure

in the chamber due to nitrogen flowing through the FRS was monitored on an ionization

gauge. In this chapter a nitrogen flow was defined by the background pressure it created

in the epitaxy chamber. A plasma was excited by setting the nitrogen flow > 2x10- 5 Torr

and setting the RF power at approximately 200 Watts. Once the plasma struck, the power

was set at its desired value and the nitrogen flow allowed to stabilize prior to introducing

the H2Se. The automatic tuning unit optimized the impedance of the capacitance network

to minimize the amount of reflected power.

A unique feature of this plasma source is that the plasma discharge region was isolated

from the rest of the II-VI chamber. Accelerated ion bombardment damage of the

substrate apparently does not occur using this type of plasma source. Past efforts of low

energy ion implantation of nitrogen produced polycrystalline material at [N] = 2x1018

atoms/cm3 110]; no such damage occurs in nitrogen plasma doped ZnSe with [N] > 1019

atoms/cm3 , suggesting that few, if any, nitrogen ions bombard the substrate.
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6.2 ZnSe:N Produced Using a RF Plasma Source

A systematic study of nitrogen doping using the FRS was undertaken. The goal was

to optimize the growth and plasma conditions to maximize the hole concentrations in p-

ZnSe. Table 6.1 summarizes by experiment number the ZnSe growth conditions and FRS

plasma settings which were used in the doping study. The GSMBE growth conditions

which had an effect on nitrogen incorporation are listed on the left side of Table 6.1. The

ZnSe growths were performed at roughly three temperatures of 250, 270, and 290 °C.

The temperatures are grouped according to the surface stoichiometry that was maintained

during growth, either Zn-rich or Se-rich. The plasma source settings are shown across the

top of Table 6. 1. The FRS power was set at 100, 150 (once), 200, or 300 Watts as

measured by the forward power meter on the RF generator. The nitrogen flow which was

measured by the chamber ionization gauge was set at 5.0x10 -6, 1.0x10-5, or 2.0x10 -5 Torr.

The growth conditions and plasma settings were held constant throughout a film growth,

Table 6.1 Summary of growth conditions and plasma source settings used in RF plasma
doping study. The experiment number is entered in the matrix location
corresponding to the conditions used.
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so the [N] was expected to be uniform. It will be shown in section 6.2.2 that growth and

plasma source conditions in the bottom right corner of Table 6.1 resulted in greater

nitrogen incorporation in the ZnSe films.

6.2.1 Evidence of Nitrogen Incorporation

The presence of nitrogen in the ZnSe was detected by changes in the low temperature

photoluminescence attributed to the presence of nitrogen acceptors [13], and secondary

ion mass spectroscopy (SIMS) measurements of the atomic nitrogen concentration.

6.2.1.1 Photoluminescence

Photoluminescence of ZnSe:N are shown in Figure 6.2. The 10 K spectra are

compared for samples grown under identical growth conditions, however, the nitrogen

flow was systematically increased at a fixed RF power of 100 Watts in an attempt to

increase the nitrogen incorporation into the films. The growth conditions for these films

are summarized in Table 6.2. The top spectrum (Figure 6.2(a)) is the photoluminescence

of an undoped film grown under identical growth conditions, and is provided as a

reference for the changes that occurred in the PL as the nitrogen flow was increased. The

PL of the sample doped using the lowest nitrogen flow (Figure 6.2(b)), had a neutral N

acceptor-bound exciton peak at 2.793 eV appear in the near-bandedge region. A free

electron-to-acceptor transition (FA) was present at 2.716 eV, and a zero-phonon donor-

acceptor-pair (DAP) transition at 2.700 eV with its associated phonon-replicas were also

visible. A higher nitrogen flow resulted in a merging of the FA and DAP transitions,

forming a dominant peak at 2.707 eV (Figure 6.2(c)). At the highest nitrogen flows

investigated (Figure 6.2(d)), the FA transition disappeared, and the DAP and phonon

replicas merged into a single broad feature. Similar changes in the PL spectrum,

corresponding to increasing levels of nitrogen incorporation as measured by SIMS, had

been observed by Ohkawa et al. [10], which suggested that our ZnSe:N incorporated

greater [N] with higher nitrogen flows through the FRS.
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(a) Undoped reference, #119 A 2.798

10 K

2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90

Increasing

Nitrogen

Background

Pressure

2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90
Energy (eV)

Figure 6.2 The 10 K photoluminescence intensity as a function of energy for nitrogen flows of: (a) no
flow (undoped), (b) 5x10 -6 Torr, (c) lx10 -5 Torr, and (d) 2x10 -5 Torr, measured by the
chamber ionization gauge.

The energies of the FA and the zero-phonon DAP transitions can be used to estimate

the acceptor ionization energy of the nitrogen acceptor. Subtracting the FA transition

energy from the 4 K ZnSe bandgap energy of 2.822 eV gives an acceptor binding energy

of 106 meV. The acceptor ionization energy can also be calculated from the equation:
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EDA = Eg - (ED + EA) + e2/r , (Eq. 6.1)

where e2/£r is the Coulomb donor-acceptor interaction term (- 14 meV [24]). Using the

donor binding energy for chlorine (26.1 meV [28]), the lightly doped no-phonon DAP

value (2.700 eV), and the 4 K bandgap energy, the acceptor binding energy estimated

from Equation (6.1) is 109 meV. Both of these values are in good agreement with the

value of 110 meV determined by Dean et al. [24].

Table 6.2 Growth conditions of the films which have their photoluminescence shown in
Figure 6.2.

Variable Value

Substrate Temperature (°C) 270-280

Surface Stoichiometry Se-Rich

Zn Effusion Cell Temperature (°C) 303-304
Average Zn Flux (A/s) - 0.7

6.2.1.2 Secondary Ion Mass Spectroscopy

Secondary ion mass spectroscopy was used to measure the atomic concentrations of

nitrogen and likely impurity elements in the ZnSe:N. The SIMS depth profiles were

measured by Evan East of Plainsboro, New Jersey. The data was obtained using a Perkin-

Elmer Physical Electronics Model 6300 SIMS instrument. A positive cesium ion was the

primary bombarding species. The ion current was approximately 200 nAmp with an ion

energy of 5 keV. The secondary ion intensities were converted to atomic concentrations

using ion implanted ZnSe standards. The profile depths were calibrated after analysis by

measuring the depths of the sputtered craters with a stylus profilometer. The overall

accuracy of each set of measurements were estimated to be in the 15-20% range.

Figure 6.3 is a SIMS depth profile of ZnSe #148. The calibrated atomic

concentrations of nitrogen, hydrogen, and chlorine are shown on the left side axis. The
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Figure 6.3 SIMS depth profile of ZnSe #148. Depth profiles of the calibrated atomic concentrations of
nitrogen, hydrogen, and chlorine are shown. The nitrogen concentration in this uniformly
doped film was approximately 5x1018 atoms/cm3.
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approximate location of the ZnSe:N/GaAs heterointerface is indicated by the arrow at

1.3km. ZnSe #148 had the highest measured [N] to date of approximately 6x1018

atoms/cm 3. The profile throughout the ZnSe:N layer was uniform which was expected for

the constant doping conditions used. The impurities of hydrogen and chlorine are both

above their detection sensitivity limits of approximately lx10' 7 and 2x1016 atoms/cm 3 ,

respectively. The concentrations are only valid within the ZnSe:N epilayer since the

calibration of atomic concentrations were made using implanted ZnSe standards.

6.2.2 Plasma Doping Dependencies

6.2.2.1 Nitrogen Flow Rate

Figure 6.2 suggests that nitrogen incorporation into the ZnSe lattice was greater when

higher nitrogen flows were used during doping. The three ZnSe:N films whose PL is

shown in the figure were analyzed by SIMS to determine the [N]. All three films had

nitrogen concentrations below the detection limit of approximately lx1017 atoms/cm 3 for

the measurements, so it could not be confirmed with this set of samples that the atomic

nitrogen concentration was an increasing function of N2 flow for a fixed power.

6.2.2.2 RF Power

Nitrogen incorporation was found to be strongly dependent on the RF power supplied

to the FRS during doping. Figure 6.4 is a plot of the [N] measured by SIMS as a function

of the RF power used to excite the plasma. The substrate temperature was 270 °C and the

nitrogen gas flow was 2.0x10O-5 Torr for these doping experiments. ZnSe:N grown with a

Zn-rich surface stoichiometry are indicated by the solid points, while the single Se-rich

film with a [N] above the detection limit is denoted by the circle. Increasing [N] with

increasing RF power is a characteristic reported by all other researchers using a RF plasma

source. At higher RF excitation powers the intensity of the plasma emission associated
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with atomic nitrogen increased [15,16], implying that the atomic nitrogen concentration in

the plasma also increased at higher RF powers.
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Figure 6.4 Nitrogen concentration measured by SIMS as a function of the RF power supplied to the
FRS. The background pressure due to the nitrogen flow was 2x10l5 Torr during doping.

Data denoted by the solid points () are from films grown with a Zn-rich surface
stoichiometry, while the circle (o) was from a Se-rich growth.

6.2.2.3 Growth Temperature

The substrate temperature was observed to influence the degree of nitrogen

incorporation. ZnSe:N films # 137 and # 142 were grown at substrate temperatures of

270 and 250 C, respectively. The measured nitrogen concentrations for these films were

2x10 7 and 4x1017 atoms/cm3 , respectively. The greater nitrogen incorporation at lower

growth temperatures, and the dependence of nitrogen incorporation on nitrogen flow and

RF power, are in agreement with the conclusions of an extensive investigation of nitrogen

RF plasma doping during MBE [87].
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6.2.2.4 Surface Stoichiometry

In Figure 6.5 the effect of the surface stoichiometry on the incorporation of nitrogen is

shown. The figure compares the photoluminescence of films grown with either a Se-rich

(a) or Zn-rich (b) surface stoichiometry, but otherwise identical growth conditions. The

merging of the DAP transition and its phonon replicas into a single peak in (b) (see Figure

6.2), suggested that nitrogen incorporated more effectively on the Zn-rich surface. SIMS

measurements confirmed that the [N] of the ZnSe:N whose PL is shown in Figure 6.5(b)

(2x1017 atoms/cxn3 ) was higher than the Se-rich growth of Figure 6.5(a) (< 1017 cm 3).

This result was in agreement with published papers which examined the effect of the

surface stoichiometry on nitrogen incorporation during MBE [10,105 ].

1.8 2 2.2 2.4 2.6 2.8 3
Energy (eV)

3.2

Figure 6.5 The 10 K photoluminescence from films
stoichiometry during growth.

grown with (a) a Se-rich, and (b) Zn-rich surface
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6.3 Characterization of ZnSe:N

The structural characteristics of the GSMBE ZnSe:N films were similar to the

undoped layers. RHEED patterns of the ZnSe:N surfaces were streaky, resembling the

RHEED of an undoped film shown in Figure 4.4. The surfaces were featureless when

view at a 1000x magnification under a Nomarski microscope. The structural properties of

the ZnSe:N did not appear to degrade at nitrogen concentrations as high as < 6x101 8

atoms/cm 3.

It was not possible to use the Hall effect to measure the hole concentrations due to the

difficulty in making an ohmic contact to p-ZnSe. The valence band of ZnSe is over 1 eV

deeper than the GaAs valence band. As a consequence, the Fermi level of p-ZnSe is 2 1.5

eV below the work function of metals such as Au or Pt. Two novel approaches to form

contacts to p-ZnSe have been described [106 ,107 ], but the complexity of these methods

precluded their use.

Capacitance-voltage (C-V) measurements were made using Cr/Au Schottky contacts

in a ring-dot configuration. The devices were typically 200 gim dots with a 20 gim wide

separation between the center dot and the outer ground plane. The measurement

firequency was 1 MHz. The ZnSe:N epilayers were 1.2-2 ptm thick. The depletion layer

width W in the semiconductor side of the Schottky contact can be estimated using the

equation,

W NA bi - V - ) [108 ], (Eq. 6.2)

where £s is the semiconductor permittivity (9.1£o for ZnSe), Vbi and V are the Schottky

barrier height (built-in potential) and the applied voltage, respectively, and NA is the

concentration of acceptors which will be approximated by (NA-ND). The depletion layer

width for a net-acceptor density of 5x1015 acceptors/cm 3 will be estimated. Assuming a

large Schottky barrier height Vbi of 1.5 Volts, W = 0.5 [tm for no applied voltage. An
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additional depletion layer existed at the GaAs/ZnSe heterojunction. The depletion layer

within the ZnSe at the heterojunction was widest when a n-type GaAs substrate was used

(most devices were fabricated on semi-insulating substrates), but the magnitude of the

built-in potential for the heterojunction in this worst case depletion layer width scenario

was still less then the 1.5 Volt barrier assumed in the Schottky barrier depletion width

calculation. A conservative estimate of the total depletion layer thickness (at the Schottky

barrier and heterojunction) within a C-V device at zero applied voltage is twice the

Schottky depletion width, - 1 tm for (NA-ND) = 5x10' 5/cm3. Since the minimum ZnSe:N

layer thickness was - 1.2 glm, a capacitance-voltage measurement should be valid for (NA-

ND) > 5x10' 5 net-acceptors/cm 3 .

Table 6.3 summarizes the electrical characteristics of all the ZnSe:N produced thus far.

The net-acceptor concentrations measured by the capacitance-voltage method are shown

in the second column. An entry of 'flat-band' indicates the film had a (NA-ND) < 1015 net

acceptors/cm 3 since the capacitance did not change with reverse bias, indicating insulating

films. The final three columns of Table 6.3 contain SIMS data if it was available.

The three films which had measurable (NA-ND) were not unique when compared to the

growth and doping conditions of the other films summarized in Table 6.1. The high

resistivity of the films might be due to hydrogen passivation of the N acceptor atoms;

hydrogenation will be covered in the next chapter. No explanation can currently be

offered to explain why films #135, #136, and #137 were conductive. To check if the

conductivity of the films was influenced by the processing of the ring-dot devices,

conductive and highly resistive films were processed into ring-dot structures multiple

limes. Repeated C-V measurements yielded the same values listed in Table 6.3,

apparently ruling out the possibility that post-growth device processing was affecting the

C-V data.
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Table 6.3 Summary of the C-V measurements and chemical concentrations of nitrogen
and hydrogen measured by SIMS of the ZnSe:N films grown to date. An entry
of 'flat-band' indicates the film was highly resistive resulting in a flat C-V
trace.. [N] and [H] are shown if available.

C-V SIMS (atoms/cm 3) [H]/[N]
ZnSe:N film (NA - ND) /cm3 [N] [H] Ratio

127 flat-band < 1017

128 flat-band
129 flat-band < 1017

130 flat-band < 1017

131 flat-band < 1017

132 flat-band
133 flat-band
134 flat-band < 1017

135 1016 2x1018 6x1018 3
136 1016 2x10'8

137 1017 2x1017 2x1018 10
138 flat-band 5x1018

142 flat-band 4x 10 7 1.5x10l8 4
143 flat-band lxlO 8 2x 1018 2
144 flat-band
145 flat-band 2x 101 8 6x101 8 3
146 flat-band 5x101 8 lxO119 2
148 flat-band 5x10 18 lx10 19 2

Figure 6.6 is a SIMS depth profile measurement of ZnSe #135. The ZnSe:N layer was

grown on a 0.8 tm undoped ZnSe layer. This figure and the SIMS profile in Figure 6.3

indicate that hydrogen incorporated in concentrations greater than the nitrogen

concentration. The final column of Table 6.3 shows that the [H]/[N] ratio is typically

between 2 and 4. The sharp drop in the [N] concentration at the transition between the

doped and undoped layers suggested that substitutional N was stable in the ZnSe matrix at

the growth temperature of 270 C. Profiling through the ZnSe:N/ZnSe layer interface

revealed a phenomenon not apparent in the uniformly doped films; hydrogen was

preferentially incorporating into layers which were nitrogen doped. Chlorine was also

observed in higher concentrations in the ZnSe:N layers, but to a much lesser degree than
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Figure 6.6 SIMS depth profile of ZnSe #135. The structure consists of a doped ZnSe:N layer on an
undoped ZnSe layer. The hydrogen and chlorine concentrations are observed to be higher in
the nitrogen doped layer.
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hydrogen. The concentrations of hydrogen and chlorine fell below the detection limits of

the SIMS apparatus in the undoped layer. The very sharp drop in the hydrogen

concentration at the ZnSe:N/ZnSe layer interface suggests that there exists a strong

interaction between the hydrogen and nitrogen, possibly bonding, which prevents diffusion

of the mobile hydrogen into the undoped layer.

Imaizumi et al. at Mitsubishi Electric Corporation have reported obtaining low

resistivity p-ZnSe:N grown by GSMBE using H2Se and Zn sources [82]. A RF plasma

source was used to incorporate the nitrogen acceptor resulting in ZnSe:N layers with net-

acceptor concentrations as high as 1018 acceptors/cm3. The Mitsubishi researchers

reported growth rates which were 2 to 4 times higher than we investigated, but the growth

temperatures and the H2Se cracking temperature were similar. Imaizumi et al. speculated

that the H2Se cracking temperature affected the degree of hydrogen incorporation,

although they had not conducted extensive experiments to verify this claim. Therefore,

further optimization of the growth condition such as the H2Se cracking temperature might

enable us to achieve low resistivity p-ZnSe:N.

6.4 Summary

Utilizing a RF nitrogen plasma source during growth, we have produced ZnSe:N films

with nitrogen concentrations as high as 6x1018 atoms/cm3 as measured by SIMS. The

structural characterization performed to date has not revealed any degradation in the

structural qualities of ZnSe:N layers compared to the undoped films, even at the highest

levels of nitrogen incorporation. The low temperature photoluminescence exhibited

features reported to be characteristic of low resistivity p-ZnSe:N grown by MBE.

Electrical characterization of the GSMBE grown ZnSe:N by capacitance-voltage

measurements indicated that they were highly resistive, except for three films which had

(NA-ND) in the 1016 - 10 l7 net-acceptors/cm 3 range. Thus far, we have been unable to

determine or replicate the conditions which produced the ZnSe:N with measurable net-
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acceptor concentrations. SIMS measurements revealed that hydrogen was an impurity in

the ZnSe:N layers, incorporating in concentrations 2 to 4 times as great as the nitrogen.

Hydrogen incorporation in the undoped layers, if it was occurring, was below the

detection limit of the SIMS measurements which was approximately 5x1017 atoms/cm3 .

Based on the characterization, it was concluded that ZnSe:N grown by GSMBE was not

conductive due to hydrogen passivation of the nitrogen acceptor. The growth conditions

are being optimized in an attempt to lower the hydrogen incorporation to achieve low

resistivity p-ZnSe:N as has been reported by another group performing GSMBE [82].

The electrical activity of the nitrogen acceptors must be increased if GSMBE growth of

ZnSe is to develop into a competitive technology for the fabrication of blue-green light

emitting devices.
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Chapter 7

Outstanding Issues in Nitrogen Doping
Two issues have developed in using nitrogen as a substitutional acceptor in ZnSe. A

critical issue for gaseous growth methods such as GSMBE and OMVPE is hydrogen

passivation of the nitrogen acceptor which appears to occur under most growth

conditions. A general issue pertaining to all the epitaxial methods is the appearance of a

deep donor state in highly doped ZnSe:N which is apparently limiting the hole

concentrations to < 1018 h/cm3.

7.1 Hydrogenation

There have been no reports of low resistivity p-type ZnSe:N grown by the method of

OMVPE. The highest net acceptor concentration reported for OMVPE grown ZnSe:N

has been lx1017 acceptors/cm 3 in a photo-assisted OMVPE doping study [109 ]. Most

researchers have reported (NA-ND) concentrations below 1016 acceptors/cm 3 . Our efforts

at producing low-resistivity ZnSe:N by GSMBE have thus far not succeeded, as was

documented in the previous chapter. A common factor in the methods of OMVPE and

GSMBE is the presence of hydrogen in the growth process. SIMS analysis of our ZnSe:N

epitaxial films have revealed heavy hydrogen contamination in the layers doped with

nitrogen. Low resistivity p-ZnSe:N produced by GSMBE has recently been reported [82],

so it may be possible to avoid hydrogenation using this growth method.

7.1.1 Experimental Evidence of N-H bond in OMVPE Grown ZnSe

When the nitrogen plasma doping experiments were initiated, hydrogenation in

ZnSe:N had not yet been reported. Recently, two reports have appeared [45,46] which
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conclude that acceptor compensation in OMVPE grown ZnSe:N is caused by hydrogen

passivation of the nitrogen acceptor. One paper was a study of OMVPE grown ZnSe:N

characterized by SIMS and infrared absorption measurements [45]. This study is

particularly relevant to our GSMBE doping research due to the striking similarities in a

SIMS depth profile presented in the paper to the SIMS depth profile of one of our ZnSe:N

layers shown in Figure 6.6. SIMS analysis of an OMVPE grown ZnSe:N layer showed an

almost one-to-one incorporation ratio of hydrogen to nitrogen at concentrations exceeding

1019 atoms/cm 3 1-45]. The ZnSe:N had been grown on an undoped ZnSe layer (the same

structure of our sample profiled in Figure 6.6), so changes in the concentrations when

entering the undoped layer were visible. The nitrogen and hydrogen concentrations

dropped sharply to the detection limits in the undoped OMVPE grown layer. This is

qualitatively identical behavior to what is observed in Figure 6.6 for our GSMBE grown

ZnSe:N. Spectroscopic evidence of a N-H bond was obtained by infrared absorption

measurements at 11 K. An absorption peak at 3193 cm-l was identified which was found

to be unique to the nitrogen doped films. This energy is close to the nitrogen-hydrogen

stretching mode in the ammonia molecule (3336 cm-1 [110 ]), and in a-SiN:H film (3340

cm-l [111 ]). II was concluded that hydrogen was passivating the intended nitrogen

acceptor based on the equal concentrations of nitrogen and hydrogen, and the existence of

an infrared absorption peak close in energy to known nitrogen-hydrogen vibrational

stretching modes. The compensation mechanism for hydrogen passivation in ZnSe:N was

proposed to be the following [45]:

N + h+ + H -> (NH)° . (Eq. 7.1)

'Thus, the free hole created by the nitrogen acceptor is neutralized when nitrogen and

hydrogen bond.
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A second paper currently in press [46], studied OMVPE grown ZnSe:N by infrared

absorption and Raman spectroscopy. The layers examined had electrically-active acceptor

concentrations (measured by C-V) of less than 1015 acceptors/cm 3 , even though SIMS

measurements showed nitrogen concentrations exceeding 1018 atoms/cm 3. Infrared

absorption measurements at 9 K had two peaks in the spectrum, one at 3194 cm-' and

another at 783 cm', which were only observed in the nitrogen doped ZnSe; measurements

of undoped OMVPE layers did not have these peaks. The high energy peak at 3194 cm-'

was attributed to the stretching mode of a N-H complex, and the low energy peak at 783

Zn. ZnO

N.

(a) (b)

Figure 7.1 Proposed configurations for N-H complex based on C3v symmetry of N-H complex
determined from Raman spectroscopy [46]. The configuration in (a) has hydrogen located in
the bonding direction (bond centered position), while configuration (b) shows the anti-
bonding location.

cml to a wagging mode of a N-H complex. Characterization by polarized Raman

spectroscopy indicated that the N-H complex had C3v symmetry. A model for the N-H

complex was proposed where the H atom is bonded to the N in either a bonding or anti-

bonding direction [46]. Figure 7.1 shows the two proposed bonding configurations which

satisfy the C3v symmetry observed in Raman measurements.

7.1.2 Possibilities to Reverse Hydrogen Passivation.

Hydrogen has been observed to passivate shallow donors and acceptors in other

semiconductors such as Si [112], GaAs [113], and InP [114]. Si and III-V material
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which is hydrogen passivated can have extremely low dopant activation, as deduced from

comparisons of dopant concentrations measured by SIMS to the net-acceptor densities

measured by C-V. Table 6.3 is a compilation of the measured (NA - ND), and the nitrogen

and hydrogen concentrations, for our GSMBE grown ZnSe:N. A large disparity exists

between the nitrogen concentrations and (NA-ND), which suggests that the layers are

hydrogen passivated. Hydrogen passivation has been demonstrated to be completely

reversible in Si, GaAs, and InP. Reactivation of the dopant can be accomplished through

annealing. As an example, Te and Sn ions passivated in hydrogenated GaAs can be

completely reactivated by annealing for 1 hour at 325 C [113]. Recently published

research on OMVPE grown ZnSe:N has investigated the effect of a rapid thermal anneal

(RTA) on the electrical characteristics [115 ]. An increase in the (NA-ND) concentrations

into the mid 10" acceptors/cm 3 range has been achieved using a RTA, demonstrating that

an anneal will reactivate nitrogen acceptors to some degree. As part of the continuing

study of nitrogen doping during GSMBE, RTA experiments will be performed on the

ZnSe:N to investigate if the nitrogen acceptor can be reactivated through annealing.

7.2 Compensation in Heavily Doped ZnSe:N

It was first reported by Qui et al. [87] that heavily doped ZnSe:N grown by MBE was

compensated. Compensation places an apparent upper limit on (NA-ND) of approximately

lx 108 acceptors/cm 3 [87]. Hole concentrations of 1018 h/cm3 are too low for p-ZnSe:N

and a metal such as Au or Pt to form an ohmic contact. The Fermi level of p-ZnSe:N is >

1.5 eV below the work function of candidate contact metals [107], hence, large hole

concentrations are necessary for an ohmic contact to occur through tunneling.

7.2.1 Evidence of a Deep Donor State

Detailed photoluminescence studies of heavily doped ZnSe:N grown by MBE has been

reported by several groups [87,116 -118 ]. These studies stated that a second DAP
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transition series, associated with a new compensating donor state, appears at high levels of

nitrogen incorporation. The zero-phonon peak energy of this second DAP transition has

been reported to range from a low value of 2.623 eV [87] to a high value of 2.689 eV

[118]. The scatter in the reported values for the position of the zero-phonon DAP

transition might be due to a dependence of the DAP peak position on the PL excitation

intensity [117]. Photoluminescence measurements of our films with the highest nitrogen

incorporation (#146 and 148) had a peak energy of the DAP feature at approximately 2.65

eV. It is possible that compensation through a new donor state which appears at high [N]

is occurring in these layers, but this can not be proven until increased conductivity is

obtained in our GSMBE doped films. Optically detected magnetic resonance has been

used to investigate the recombination associated with the deep DAP transitions [119 ]. A

new anisotropic donor magnetic resonance was observed for the deep DAP transition.

This deep donor resonance was not present in lightly doped ZnSe:N, which suggests that

it is associated with the nitrogen compensation mechanism occurring at high doping levels.

The anisotropy of the g-tensor suggested that the symmetry about the donor or donor

complex would have axial symmetry.

7.2.2 Proposed Models for Compensation

Hauksson et al. [116] have proposed a model for the compensation process in ZnSe:N

based on their photoluminescence measurements. The model postulates that the

compensating donor is a complex of Vse - Zn - Ns, which is depicted in Figure 7.2. The

complex involves a selenium vacancy in the next-nearest neighbor position to a

substitutional nitrogen atom. A Vse is a double donor with an ionization energy of 300

mreV [120 ], but the complex of VSe - Zn - Ns, is expected to be a shallow single donor.

This model can account for the axial symmetry observed in ODMR [119] and

polarization-dependent photoluminescence measurements [ 118].
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OVse * Zn ON

Figure 7.2 Model for the deep donor complex in ZnSe:N involving the next-nearest neighbor
association of a selenium vacancy and nitrogen acceptor [116].

Chadi and Troullier [121 ] have suggested that the origin of self-compensation in

nitrogen-doped ZnSe might be due to interstitial nitrogen. Based on previous first-

principles total energy calculations of self-interstitials in Si and GaAs [122 ], they predict

that nitrogen can occupy three energetically stable two-fold coordinated interstitial sites in

ZnSe. Two of the interstitial configurations are predicted to be acceptors, but the third

interstitial configuration is a shallow donor which is the speculated source of

compensation. Recently, two new deep trap states in p-ZnSe:N have been detected using

deep-level transient spectroscopy techniques [123 ] which lends credibility to the model of

Chadi and Troullier which predicts three energetically stable interstitial sites. This model

can also account for the observed experimental evidence concerning nitrogen

compensation collected thus far, so further characterization of compensated ZnSe:N is still

required to clarify the actual nature of the compensating defect.
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Chapter 8

Summary and Suggested Future Work
ZnSe was grown by the method of metalorganic molecular beam epitaxy using

diethylzinc and/or diethylselenium. The growth rates during MOMBE were unusually low

at less than 400 A/hr whenever a diethyl metalorganic source gas was used; this included

MOMBE experiments where the diethylzinc or diethylselenium were replaced by elemental

zinc/DMZn or elemental Se, respectively. It was proposed that surface sites for

incorporation of the metal atoms (zinc in particular) were saturated by chemisorbed ethyl

radicals at the low growth temperatures, thus limiting the growth rate. In a parallel

investigation of laser-assisted MOMBE, it was observed that laser illumination of the

substrate during growth would reduce the site blockage phenomenon under appropriate

growth conditions. Electron-beam irradiation of the substrate using the RHEED gun was

found to have qualitatively the same effect on growth as the laser beam. In one

experiment, the measured growth rate in the laser illuminated region was increased by as

much as a factor of 15 over the unilluminated growth rate. It is hypothesized that the laser

illumination or electron-beam irradiation created holes which drifted to the surface and

participated in oxidation reactions, leading to the removal of the ethyl radicals, thus

allowing Zn to incorporate into the lattice increasing the growth rate. A model for the

laser-assisted growth rate enhancement was developed in section 3.8 which could

qualitatively explain what was observed experimentally when laser-assisted MOMBE was

performed using at least one diethyl metalorganic source.

The quality of the undoped ZnSe grown by MOMBE was strongly dependent on the

surface stoichiometry which existed during growth. Control of the surface stoichiometry

through adjustments of the metalorganic gas flows was greatly reduced when surface
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passivation of the metal incorporation sites by the ethyl radicals occurred, resulting in a

degradation of the optical and structural properties of the films. Low temperature

photoluminescence measurements of most films were dominated by a deep defect-related

luminescence band centered near 2.25 eV. This defect band has been attributed to highly

nonstoichiometric growth, and is postulated to be due to zinc vacancy complexes in the

MOMBE films. X-ray diffraction rocking curves of fully strained ZnSe on GaAs

substrates had FWHMs of approximately 220 arc seconds. Fully strained MBE grown

ZnSe films have FWHMs in the 150 arc seconds range, indicating less perfect internal

structure of the MOMBE films. Structural characterization of the film surfaces indicated

comparable quality to MBE grown ZnSe. Laser illumination was observed to enhance the

incorporation of Zn, which under certain conditions would dramatically improve the

optical quality of the films by promoting a surface stoichiometry with a Zn:Se ratio closer

to unity.

High quality ZnSe films 1-2 m thick were grown by the method of gas source

molecular beam epitaxy using elemental zinc and hydrogen selenide. GSMBE was

observed to be a mass-transport limited growth process and to have a growth temperature

dependence similar to MBE. High quality films were produced under a variety of growth

conditions as indicated by intense low temperature (10 K) photoluminescence dominated

by free- and donor-bound exciton features. Films grown with a Zn-rich surface

stoichiometry were observed to have a larger free-exciton peak in the low temperature PL,

and lower free electron concentrations as measured by the Hall effect, than films which

had a Se-rich stoichiometry during growth. Characterization of the structural, optical, and

electrical properties of the GSMBE films indicated they were of comparable quality to

MBE grown ZnSe.

Employing a RF nitrogen plasma source during growth, ZnSe:N films with nitrogen

concentrations as high as 6x10l8 atoms/cm 3 as measured by SIMS were produced. The
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low temperature photoluminescence exhibited features reported to be characteristic of

low-resistivity lp-ZnSe:N grown by MBE. Electrical characterization of the GSMBE

grown ZnSe:N by capacitance-voltage measurements indicated that they were highly

resistive, except for three films which had (NA-ND) in the 1016-1017 net-acceptor/cm 3

range. SIMS measurements revealed that hydrogen was an impurity in the ZnSe:N layers,

incorporating in concentrations 2 to 4 times as great as the nitrogen. Based on the

electrical characterization and SIMS analysis, it was concluded that ZnSe:N grown by

GSMBE was not conductive due to hydrogen passivation of the nitrogen acceptor.

Thus far, hydrogen passivation of the nitrogen acceptor has been a severe impediment

to the fabrication of low resistivity p-ZnSe:N using epitaxial methods which have

hydrogen in the growth process. From a materials growth standpoint, the best approach is

to avoid incorporating hydrogen as an impurity in the ZnSe matrix. It might be possible to

reduce the incidence of N-H bond formation by altering the growth conditions from those

currently used. Experiments should be performed where the H2Se cracker temperature is

raised or lowered from its current value of 1000 °C to evaluate the effect on hydrogen

incorporation; researchers who have reported low resistivity p-ZnSe:N grown by GSMBE

have speculated that the degree of hydrogen incorporation is sensitive to the H2Se

cracking temperature [83]. The substrate temperature could also be raised to investigate

the effect of higher growth temperatures on hydrogen incorporation. Laser-assisted

GSMBE experiments should be conducted if possible, since the highest reported net-

acceptor concentrations for OMVPE grown ZnSe:N were obtained using photo-assisted

growth [111]. A parallel investigation into possible methods to reactivate the nitrogen

acceptor is also recommended. Rapid thermal anneals are suggested for ZnSe due to the

degradation of the material properties with extended high temperature processing. If the

aforementioned approaches should fail, it may be necessary to switch to another source
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gas for selenium which does not release hydrogen during its decomposition to release the

selenium metal.

Significant progress in the development of ZnSe-based blue-green light emitters was

described in Chapter 1. The rapid advances over the last three years which culminated in

the demonstration blue laser-diodes, might suggest that commercial blue and green

wavelength light emitters based on the ZnSe material system are eminent in the near

future. Unfortunately, significant materials issues still need to be resolved before ZnSe-

based light emitters can enter the commercial marketplace. Nitrogen compensation

appears to be a long-term problem which presents two significant challenges. Currently,

the formation of ohmic contacts requires expensive, hard to implement techniques

[ 106,107], since the free hole concentrations are limited by compensation to 1018 h/cm3, a

concentration to low for tunneling to occur across the large Schottky barrier at the metal

p-ZnSe interface. A potentially more serious problem associated with nitrogen

compensation is that it may be contributing to the short lifetimes of current blue-green

light emitting devices.

The difficulties in creating ohmic contacts to p-ZnSe reduces the economic

competitiveness of ZnSe-based light emitters compared to other alternatives for blue-

green light emitting devices Both of the approaches to achieve ohmic contacts require

that epitaxial layers which can be heavily doped p-type be deposited between the p-ZnSe

and the contact metal. The necessity of using another epitaxial growth step (usually in a

separate epitaxy chamber) adds complexity to the production process and incurs additional

cost in equipment; this is not an attractive option if ZnSe-based devices are going to be

developed commercially. Eliminating compensation in ZnSe:N or raising the threshold for

compensation to high hole concentrations will be required if low-cost evaporated metal

c ontacts are to be used.
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The use of nitrogen as a p-type dopant in ZnSe may be in jeopardy if it is

demonstrated that the nitrogen compensation mechanism is contributing to the

degradation of blue-green light emitters. It has recently been reported that the

photoluminescence decay time of heavily doped ZnSe:N is less than 11 picoseconds

[124 ]. The very rapid PL decay was attributed to a high concentration of Schockley-

Read nonradiative recombination centers, possibly the result of nitrogen self-

compensation. Current blue-green light emitters degrade very rapidly through the

formation of dislocation networks in the active region [33]. The dislocations in the active

region nucleate at existing defects (nonradiative recombination centers), in a fashion

characteristic of electronically-enhanced defect reactions [34]. Therefore, it may be

necessary to use another p-type dopant for ZnSe if the nitrogen compensation at high

doping levels can not be eliminated or greatly suppressed.

139



Appendix A

RHEED
Reflection high-energy electron diffraction (RHEED) is an in-vacuo technique to

monitor the smoothness of a surface and the reconstructions that develop to minimize the

surface free energy. RHEED is accomplished by directing an electron-beam at near

glancing incidence to a film's surface. The electrons reflected off the surface strike a

phosphor screen causing luminescence wherever one impinges. Electron interference

generated by diffraction from periodic arrangements of atoms near the film surface

produce patterns which depend on the orientational azimuth of the substrate. The shallow

glancing angle limits the electron penetration depth to a few monolayers since the normal

component of the electrons' energy is small. Therefore, a RHEED image is the diffraction

from lattice atoms just below the surface and from any periodic surface reconstruction.

Figure A. 1 is a drawing of the geometry used for RHEED in these experiments. The

electron-beam angle of incidence was between 1-2° and depended on the physical

dimensions of the sample holder used.

The power of RHEED as a surface diagnostic tool will be illustrated in a discussion of

how the surface smoothness may be inferred from observed RHEED patterns. Electrons

penetrated only a few monolayers deep into a sample since the normal component of their

kinetic energy was low in the glancing incidence geometry. Electrons which were incident

on a surface growing in a layer-by-layer fashion (Frank-van der Merwe mode), where only

a few monolayers are not complete at any given time, experienced true reflection

diffraction. The diffraction pattern consisted of elongated lines (streaky features) resulting

from the constructive interference of electrons diffracted from atoms which were parallel
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Phospher
Screen

Figure A.1 Geometry of RHEED configuration on the II-VI chamber.

to the electron beam direction and resided within the first few monolayers. If growth were

to proceed in a Volmer-Weber mode, where islands many monolayers high coalesce to

form a layer, the diffraction patterns would be points (spotty) since the electron-beam

underwent transmission-reflection through the islands. Interference occurring normal to

the surface collapses the lines to points so the image resembles a bulk x-ray diffraction

pattern. The intermediate case of layer plus island formation, the Stranski-Krastanov

growth mode, lies between the aforementioned cases and appears as a combination of

streaky lines and spots in the RHEED image. Figure A.2(a-c) illustrate what has been

described above concerning the origin of the RHEED patterns.

Surface reconstruction features could be prominent in a RHEED image due to the

shallow penetration depth of the electron-beam. A surface reconstruction was the orderly

rearrangement of surface atoms so as to minimize the surface free energy at the adsorbed

gas-solid interface. Many dangling bonds exist at a surface. The free energy of the
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Figure A.2 Illustrations of the origins of RHEED patterns [52]. The surface smoothness may be inferred
from the particular RHEED pattern observed. Surface reconstructions are not shown in the
figure.

(a) Reflection Diffraction

(b) Intermediate Case

kJ IC dII l UblIll- I1 LIUIIl Ulllli l; LIUII

surface could be reduced if atoms or molecules chemisorb to the dangling bonds. The

energy could be reduced further if the chemisorbed atoms or molecules would form cross-

link bonds with each other, and/or displaced their equilibrium positions relative to the bulk

lattice positions. The resultant surface reconstruction, which had a periodicity that was a

multiple of the underlying lattice periodicity, appeared as features within the lattice

diffraction lines. An example of a surface reconstruction can been seen in Figure 3.10.
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Appendix B

DCXRD
Double crystal x-ray diffraction (DCXRD) is a high resolution method to determine

the lattice constant of a thin film. A rocking curve measurement records the angular

separation between substrate and layer diffraction peaks. From the relative positions and

angular separation of the substrate and layer diffraction peaks the degree of relaxation of a

film can be determined and the composition of an alloy estimated. The angular separation

of a (400) reflection was used to determine the out-of-plane lattice constant; the in-plane

lattice constant was calculated from the out-of-plane value through an expression relating

the elastic constants of ZnSe. The full width at half maximum (FWHM) of a peak has

been correlated with the defect density in the film (misfit dislocations) so it provides a

qualitative measure of the structural quality.

A schematic drawing of the DCXRD apparatus is shown in Figure B.1. The first

crystal used to collimate the x-ray beam was an InP substrate; since the first crystal was

different from the GaAs substrates being measured, it was necessary to set the detector at

an angle of 4.2 °. The second axis where the sample was mounted was rocked very slowly

by a stepper motor to generate the angular scan. A personal computer controlled the

stepper motors on the DCXRD and recorded the counts from the detector. X-ray counts

would be recorded when diffraction from a set of lattice planes satisfied the the Bragg

diffraction condition for constructive interference,

n = 2dsinO . (Eq. B.1)
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Figure B.1 Schematic drawing of double crystal x-ray diffractometer used to measure rocking curves.

In equation (B. 1) X is the wavelength of the x-rays, d is the spacing between diffraction

planes, and E is the angle between the incident x-rays and the surface.

The CUKal and CuK2 beams were sometimes both incident on the sample since one of

the beams was not removed with an aperature. The actual linewidths were broadened by

this apparatus limitation if both the x-ray beams were incident on the sample. A good

quality GaAs substrate normally has a FWHM of 10-20 arcseconds, but values of 30-40

arcseconds were sometimes recorded.
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Appendix C

Photoluminescence
Photoluminescence (PL) is a sensitive optical method to probe the quality of a

semiconductor thin film. A PL measurement records the intensity of radiative

recombination versus the emission wavelength (often converted to photon energy) from a

sample that is optically excited. The optical excitation generates electron-hole pairs in the

semiconductor. The photo-generated carriers rapidly relax to the band edges, or if

available, to lower energy states within the bandgap. Electron-hole pairs created by

optical excitation in a semiconductor at low temperatures (10 K) have three possible

recombination pathways: (i) band-to-band radiative recombination of free-excitions, (ii)

band-to-impurity radiative recombination or transitions between defect states within the

bandgap, and (iii) recombination at a non-radiative center. A film that has few non-

radiative electron-hole trap states is more likely to recombine through the paths described

in (i) and (ii) producing more intense luminescence.

Photoluminescence was normally measured at 10 K where the thermal energy available

in the lattice phonons was insufficient to dissociate the Coulombic pairing of electrons and

holes (excitons). The binding energy of excitons in ZnSe is 21 meV; this large binding

energy allows excitons in ZnSe to exist at room temperature. At 10 K the radiative

recombination peaks due to free or bound excitons can be extremely sharp (2-3 meV

FWHM) and very specific in energy. The features in a PL spectrum can often be identified

by the wavelength (energy) at which they appear. Many luminescent transitions in ZnSe

originating from a specific impurity or lattice defect have been identified in past low

temperature PL studies. Table C. 1 identifies some of the known luminescence features
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'Table C. 1 Known luminescence transitions in unstrained ZnSe based on low temperature
PL measurements. Values were based on data in Ref. [86] unless otherwise
indicated.

Symbol Transition Energy (eV)

Ex1 Free Exciton, light hole 2.802 [105]
11N Neutral acceptor-bound exciton, nitrogen 2.791 [87]
[C Neutral donor-bound exciton, carbon 2.792
I2C1 Neutral donor-bound exciton, chlorine 2.797
[2GA Neutral donor-bound exciton, gallium 2.798

I[91 Neutral donor-bound exciton, indium 2.799

observed in bulk ZnSe. References to the tabulated data will be made in the analysis of PL

spectra presented in this thesis. Photoluminescence is capable of detecting impurities at

low concentrations, making this one of the most sensitive methods of identifying

impurities in semiconductor films.

Recombination also occurs at point and extended defects such as vacancies and

dislocations. Due to the greater configurational possibilities which result in a range of

possible binding energies, these features are generally much broader than excitonic peaks.

Emission associated with recombination at dislocation lines and the Zn and Se atom

vacancies have been reported.

The photoluminescence measurements were made with the sample mounted on a

closed-cycle He cryostat capable of cooling the sample to 10 K. The bandgap of ZnSe at

this measurement temperature was approximately 2.822 eV (see Table 1.1). The large

bandgap energy required that a UV laser be used for excitation. A He-Cd laser which has

an emission wavelength of 325 nm (3.82 eV) was used. The laser was focused onto the

samples producing a relatively low power density of 300 mW/cm2.

A schematic drawing of the PL apparatus is shown in Figure C. 1. Laser light is passed

through a beam chopper (BC) and directed at normal incidence to a sample mounted on

the cryostat's cold-finger by reflection off a mirror sliver (MS). The sample's

146



luminescence is collected by the first collimating lens and focused by a second lens onto

the aperture of a 1/2 meter spectrometer. The grating spectrometer only passes light of a

narrow band of' wavelengths into the photomultiplier tube (PMT) which detects the

photons. The small output signal is boosted by pre-amplifier before it reaches the lock-in

amplifier. The signal-to-noise ratio was improved by modulating the laser at 1000 Hz

using the beam chopper which was used as a reference frequency for the lock-in amplifier.

The voltage signal from the lock-in amplifier was sampled by an analog-to-digital

converter within the control computer. Data collection and analysis were done using the

computer. The resolution of the spectrometer has been estimated to be 3 A or 1 meV in

energy [86].

The energy o)f the radiative recombination of electrons and holes is a function of the

bandgap of the material. The states within the bandgap are to first order constant with

Figure C.1 Schematic drawing of photoluminescence apparatus. The laser light path is indicated
schematically by the lines. The labels M, L, BC, MS, and PMT correspond to a mirror, lens,
beam chopper, mirror sliver, and photomultiplier tube, respectively.
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respect to the valence and conduction band edges from which they are measured, hence,

any red or blue shift of the energy of a particular feature from its bulk value is due to a

change in the bandgap. The bandgap is a function of both temperature and pressure (i.e.

strain). At 10 Kelvin or less the bandgap is practically independent of temperature and has

a value of 2.822 eV. If PL is measured at higher temperatures the contraction of the

bandgap needs to be accounted for using an expression similar to equation 3.4. The

bandgap energy shift due to strain is of particular concern since it will blue (red) shift the

bulk energy values for a compressive (tensile) strain. The increase in energy of PL

features for a pseudomorphic ZnSe film (compressive strain) has been estimated to be - 6

meV and the decrease in energy for films 1-2 gtm thick under tensile strain to be - 2 meV

[86]. In the absence of knowledge of the strain present in the film the identification of

bound-excitons is ambiguous without additional information. Fortunately, if free-excitons

are present, they serve as a reference for the energy shift induced by strain.
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Appendix D

Estimate of GSMBE Growth
Rate Uncertainty

The GSMBE growth rate was shown in section 4.1.4 to be dependent on the H2Se

flow rate, the Zn beam flux, and the substrate temperature. An estimate of the GR

uncertainty is possible based on the uncertainties in these independent variables. Equation

(D. 1) relates the total uncertainty in the growth rate to the uncertainties in each of the

growth variables.

aGR )GR JGR
AGR(NSe, Nzn, TSub) = N (ANse) + N (ANZn)+ (TSub)

"Se,, aNZ aTSub

(Eq. D.1)

In the above expression, Nzn and Ns, are the number of molecules or atoms of Zn and Se

impinging on the substrate per unit area per second, which will be referred to as the flux.

The Se flux was assumed to be an Se2 beam produced in cracking the hydrogen selenide.

GSMBE was shown in Section 4.1.4 to be a mass-transport limited growth process, so the

GR was linearly proportional to the incident fluxes. Since ZnSe is a binary compound, the

growth rate was limited by the flux which contained the fewest atoms of Zn or Se to

incorporate into the film surface. The majority of the films were grown under conditions

where one element was mass-transport limited, i.e. Zn- or Se-rich growth. Hence, the

uncertainty in the GR was affected by the uncertainty in the flux of the mass-transport

limited element only; excess Zn or Se arriving at the surface did not affect the growth rate

because Zn or Se coverage beyond one monolayer would desorb. When the ratio of the
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Zn to Se on the surface was nearly unity as determined by RHEED reconstructions, the

uncertainty in both fluxes was assumed significant.

The effect of the uncertainty in a source flux on the uncertainty in the growth rate can

be demonstrated by a simplified example. Assume that growth is occurring at a constant

temperature, and that one of the element fluxes is constant and high enough to insure that

this element is always in excess at the surface. The GR is then linearly dependent on the

mass-transport limiting element flux N, as shown in Equation (D.2). This simple formula,

where c is a constant, is the growth rate formula for MBE [52]. The derivative of the GR

with respect to the flux is shown in Equation (D.3). The first two terms in Equation (D. 1)

are the contributions to the GR uncertainty due to the uncertainty in the Se and Zn fluxes.

GR = cN (Eq. D.2)

aGR
= c (Eq. D.3)aN

(GR

(AGR cAN AN (Eq. D.4)
( GRFUX GR Fux GR (Eq. D.4)

The percentage uncertainty in the GR due to flux N can be found by dividing a flux

uncertainty term in Equation (D. 1) by the growth rate expressed in Equation (D.2). The

result shown in Equation (D.4) demonstrates that the percentage uncertainty in a source

flux causes the same percentage uncertainty in the growth rate.

The zero flow setting of the hydrogen selenide mass flow controller drifted slowly

Irom the 0.0 sccm value. The time scale of the drift was a tenth of a sccm over several

days, so drift was not a factor during an experiment. It was necessary to establish what

the zero flow setting was prior to initiation of growth so the actual flow could be set

correctly. The zero flow value was determined by directing H2Se into the vent, and

recording the flow setting of the MFC where gas was first detected on the vent line cold-
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cathode gauge. The offset in the zero flow value was determined to within +0.1 sccm

using this method. The percentage uncertainty in the H2Se flow (and, hence, Se flux)

decreased with increasing flow; a sample of forty experiments had an average uncertainty

of 6%.

The uncertainty in the growth rate due to the fluctuating Zn flux was estimated from a

simple statistical analysis of the Zn flux values measured before and after growth. Forty

experiments were used to obtain values for the average percentage uncertainty and the

standard deviation in the percentage uncertainty. The average uncertainty and the

standard deviation in the average uncertainty were 5% and 4%, respectively. These values

were then added together giving a 9% AGR due to the unstable Zn flux.

Estimating the uncertainty due to temperature was more complicated since the GR

was observed to be a non-linear function of the substrate temperature as shown in Figure

4.2. In order to get an estimate, the GR dependence on temperature was approximated by

a linear function. Equation (D.5) is the approximation function which is shown as a

dotted line in Figure 4.2.

GR = -(0.002 )Tsub + 0.97 (gm/hr/°C) (Eq. D.5)

Taking the derivative of Equation (D.5), substituting into the third term in Equation (D. 1),

and then dividing by the GR, the percentage change in the GR due to the uncertainty in the

substrate temperature is estimated in Equation (D.6) to be,

(AGR) -(0.00 2 )ATSub

IGR,) (-0.002TSub + 0.97)

T'he substrate temperature was determined to within 5 °C of an absolute temperature

reference using the calibration method described in Section 2.4. The majority of GSMBE

experiments were conducted at temperatures less than 300 C. Assuming a substrate
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temperature of 300 °C, and a +5 °C uncertainty in this value, the percentage uncertainty in

the GR was 2%. At lower growth temperatures where the GR was higher, the uncertainty

was even lower.

Table D. 1 displays the total percentage uncertainty in the GR due to the error terms of

Equation (D. 1). The uncertainty in the Zn flux was greater than the uncertainty in the

H2Se flow, hence, Zn-limited growth was subject to a greater variance in the growth rate.

Any variations in the growth rate due to oscillations of PID controlled instrumentation

around their setpoints were assumed to be second order because the PID controllers

regulated very closely. The uncertainty in the thickness measurement of ±50 A was very

small compared to film thicknesses of 1-2 tm, so the uncertainty introduced by

measurement error is not included in the growth rate uncertainty.

Table D. 1 Percentage uncertainty in growth rate (AGR/GR) for different growth conditions. Entries
are given as the percentage uncertainty in the growth rate caused by the uncertainty in the
variable listed.

(AGR/GR)
Surface Stoichiometry: Se-Limited Zn-Limited 1:1

Variable

Substrate Temperature ± 2% ± 2% ± 2%
H2Se Flow Rate ± 6% * ± 6%
Zn Effusion Cell Flux * ± 9% ±9%

Total (AGR/GR) ± 8% 11% ± 17%

* No contribution to GR uncertainty with the indicated surface stoichiometry.
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