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Abstract

In this work, we study geometry of Ricci-flat Kdhler manifolds, and also
provide some counterexample constructions. We study asymptotic behavior
of complete Ricci-flat metrics at infinity and consider a construction of ap-
proximate Ricci-flat metrics on quasiprojective manifolds with a divisor with
normal crossings removed, by means of reducing torsion of a non-Kéhler met-.
ric with the right volume form. Next, we study special Lagrangian fibrations
using methods of geometric function theory. In particular, we generalize the
method of extremal length and prove a generaliziation of the Teichmiiller
theorem. We relate extremal problems to the existence of special Lagrangian
fibrations in the large complex structure limit of Calabi-Yau manifolds. We
proceed to some problems in the theory of minimal surfaces, disproving the
Schoen-Yau conjecture and providing a first example of a proper harmonic
map from the unit disk to a complex plane. In the end, we prove that the
union closed set conjecture is equivalent to a strengthened version, giving a
construction which might lead to a counterexample.
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Chapter 1

Introduction

The geometry of Ricci-flat Kahler manifolds has been of considerable recent interest.
One of the reasons for this is the existence of mirror symmetry between Calabi-Yau
manifolds and the related Strominger-Yau-Zaslow conjecture which aims to explain
it in a geometric way. But Ricci-flat metrics on Kahler manifolds have also been
studied on their own, and the existence of complete metrics in the non-compact case
is still not completely understood. This is our main topic, but we also present some

counterexample constructions in the last section of this work.

The organization of the text is as follows. In the first chapter we are going to
review some background results, trying to give a concise and intuitive exposition and

set up a relevant context.

Second chapter deals with Ricci-flat metrics on noncompact Kahler manifolds. We
consider a construction of approximate Ricci-flat metrics on quasiprojective manifolds
with a divisor with normal crossings‘removed, in the case when the manifold is a
pencil, from a non-Kéahler metric with the right volume form. For this purpose,
we study torsion reducing flows. Next, we study asymptotic behavior of complete

Ricci-flat metrics at infinity.



In the third chapter we study special Lagrangian fibrations on compact Calabi-
Yau manifolds, using methods of geometric function theory. We derive generalized
Reich Strebel Inequalities and estimate quasiconformality constant of extremal maps.
In particular, we prove a generalization of the Teichmiller uniqueness theorem. We
argue that in the large complex structure limit extremal maps are related to the

existence of special Lagrangian fibrations.

The fourth chapter contains a counterexample to the Schoen-Yau conjecture,
and describes a proper harmonic map from the unit disk to a complex plane. The
last chapter is concerned with the Frankl conjecture about finite lattices, proving a

strengthened version and giving a construction which might lead to a counterexample.

1.1 Kahler Manifolds and Lagrangian Fibrations

Symplectic manifolds - 2n dimensional manifolds M with a skew symmetric non-
degenerate closed two form w, which have additional compatible complex structure
J such that at every point w(v, Jv) > 0 for all nonzero vectors v, are called Kahler
manifolds. They are Riemannian with the metric g(u,v) - we will also use the notation
< u,v > - defined as g(u,v) = w(u, Jv). Sometimes, the complex structure is not
required to be integrable - then we speak of almost Kahler manifolds. The almost
complex structure J : TM +— TM is required to satisfy J? = —I at every point.
Almost complex structure is integrable - i.e. locally looks like the complex structure

of C" - if and only if the Nijenhuis tensor N(J): TM x TM +— TM is zero, where
N(J)(u,v) = [u,v] + J[Ju,v] + J[u, Jv] — [Ju, Jv]

On the other hand, the symplectic structure w always locally looks like the form
Yo dz; A dy; of R?™ - this follows from the condition dw = 0 by the Darboux’

theorem.



The symplectic manifolds originate from the classical mechanics - the symplectic
structure defines the classical Poisson bracket operation, which gives the space of
smooth functions on M a Lie algebra structure. To each function H on M, a Hamil-
tonian vector field - symplectic gradient of H, X = VH - is associated uniquely by
the formula dH = 1x(w). Flow under Hamiltonian fields preserves the symplectic
structure as well as the corresponding Hamiltonian function H. The point of having
a symplectic structure is that the Lie bracket operation on Hamiltonian fields can be

computed using the symplectic form w:
[X,Y] = Vw(X,Y)

whenever X and Y preserve w under local flow. The Poisson bracket {H, F'} is just
w(VH,VF). The symplectic structure determines what fields are locally Hamiltonian
- the one that preserve it, and indentifies closed one forms with such flelds. It essen-
tially gives a Lie algebra structure to closed 1-forms, inducing it from the Lie algebra
of local Hamiltonian vector fields with which it is identified - locally dH corresponds
to VH, and conversely, X to tx(w). The fact that this can be done implies that w
is skew symmetric - because Lie bracket is - and also dw = 0 - because Lie bracket
satisfies the Jacobi identity.

In the almost Kahler case we have metric and the ordinary gradient is related
to the symplectic gradient by VF = J VF. In this case what matters is a property
of gradient fields - the almost Kéahler manifolds can be understood as Riemannian
manifolds equipped with a compatible almost complex structure, which have the

following additional property
[JVH,JVF]=JV <VH,JVF >

This condition is equivalent to g being J invariant and dw = 0, where the form

w is defined with w(X,Y) =< X, JY >. If g is J invariant and J is parallel, i.e.



VJ = 0, this will hold, but these last two conditions are stronger and they imply that
J is integrable - they correspond to the case of a Kahler manifold.

A Lagrangian fibration f : M +— B is a smooth map such that w|;-1(;y = 0 for any
fibre z € B. Smooth functions on B give rise to smooth functions on M, which define
corresponding Hamiltonian fields, preserving the fibration. Because w is zero when
restricted to each fibre, all these fields commute, and so all the fibers are stratified
with invariant subsets of the forrn T* x R,

Conversely, any set of commuting Hamiltonian fields defines a Lagrangian fibra-
tion. The question of integrability of H is the question if H can be consistent with
some Lagrangian fibration of maximal dimension n - i.e. if the corresponding Hamilto-
nian field can preserve an n-dimensional Lagrangian fibration, or equivalently if there
are n functionally independent integrals for H, i.e. independent functions commuting
with H and with each other under the Poisson bracket operation. These integrals are
just functions depending on a fibre - they are induced from functions on the base of
Lagrangian fibration.

A typical Hamiltonian field on a compact manifold, which preserves some n dimen-
sional Lagrangian fibration, determines this fibration uniquely, because trajectories
are dense on the fibres. However, it is not possible to see locally if two points belong
to the same fibre directly from the Hamiltonian field, although of course there are
other Hamiltonian fields, commuting with the given one, and which together give
the distribution corresponding to the fibration. There is a bit more compact local
representation for Lagrangian fibrations, depending on a generic locally Hamiltonian
field belonging to the fibration, almost complex structure on the manifold and metric
on the base. For a Lagrangian fibration on a symplectic manifold, any closed 1-form
on a base gives rise to a locally Hamiltonian field on M, which lies in the fibration.
But if we have specified an almost complex structure J on M and a metric on the

base, then we can lift the corresponding vector field from the base too. In fact, any



gradient field on the base gives rise to two vector fields on M - one, which is locally
Hamiltonian and belongs to the fibration, and an other which preserves the fibration,

acting on fibres as the original field acts on the base.

1.2 Curvature

The Riemannian curvature tensor gives information about the curvature of two di-
mensional sections. For any two dimensional tangent plane, curvature of the image
of that plane under the exponential map is R(u A v,u A v)/||u A v||?, where u and v
are vectors spanning the plane. Specifying all such sectional curvatures is equivalent
to specifying the Riemannian curvature tensor.

Computing trace of the full Riemannian curvature tensor gives us the Ricel cur-
vature Re(u,v), which can be thought of as a Laplacian of the metric tensor, and
scalar curvature s. The Ricci curvature can be interpreted in the following way:
Re(u,u)/||ul|® is sum of all the sectional curvatures of all the 2-dimensional sections
which are normal to u, spanned by vectors in some orthogonal frame which contains
u. Thus, for dimension 3 Ricci curvature gives the same information as the full cur-
vature tensor, and for dimension 2 scalar curvature, which is trace of Ricci curvature,
is enough.

For dimensions greater than 3, the relation between the full Riemannian curvature

and Riccl and scalar curvatures is given by the Weyl tensor W, so that

] 2 s
R=—" — (Re—2= 4%
n(n—1)9°9+n—2( c n9)09+

Here o denotes the Kulkarni-Nomizu product, which can be thought of as giving a
scalar product for 2-forms starting from two scalar products ¢ and A in a bilinear way,
so that goh(uAv,uiv) = %(K—i—l/K)Hu/\v”g[lu/\v”h, where K is the quasiconformal

distortion under the change of scalar product from g to A, corresponding to the plane



spanned by « and v. The Weyl tensor has to do with conformal structure: if we
change g conformally to fg, the Weyl tensor changes to fW.

If W is zero, then ¢ is conformal to the Euclidian metric - in particular, there is
only one conformal structure in dimensions 2 and 3. If the second term also vanishes,
i.e. if Rc = Zgog, then the curvature has to be constant. Constant curvature spaces
are uniformized - any complete metric of constant curvature has universal cover R",
hyperbolic space H" or sphere S™. The case when R = Ago g+ W is that of Einstein
manifolds, when the Ricci tensor is proportional to the metric tensor.

Another aspect of curvature is its relation to the parallel transport. The 2-forms
can be understood as generators of the group of linear transformations of the tangent
space, and the curvature operator R can be thought of as specifying an infinitesimal
transtformation of the tangent space corresponding to the parallel transport around a
small loop, spanned by vectors u and v - this generator only depends on u A v. This
point of view is much more general, as it is not restricted to the tangent space and
allows one to define curvature for any vector bundle with a specified connection.

In the Cartan formalism, the Riemannian connection is represented as a skew
symmetric matrix ~ of 1-forms, which acts on columns 6 = (64,...,60,)" of 1-forms
specifying an orthonormal coframing - up to a gauge, specifying an orthonormal fram-
ing gives the same information as specifying a Riemannian metric. The connection
determines the first derivatives of the coframing, dff = —~ A @ - this is called the first
structural equation. The curvature is represented as a skew symmetric matrix Q of
2-forms, and we have the second structural equation 2 = dy+ v A~y. The relation to
the curvature operator R. is that (4, 7)-th entry of Q2 is Rf; Af;. The formalism is well
suited for computations - one can easily check the first and second Bianchi identities,
which read y A = 0 and dQ = Q Ay — v A Q, by differentiating the structural
equations.

Holonomy is the full group of transformations of the tangent space which arise



from parallel transports around closed loops. For Riemannian manifolds, it is always
a subgroup of the special orthogonal group. If it is a subgroup of the unitary group,
then we can get a parallel almost complex structure and the manifold is thus Kahler.
If it is a subgroup of the special unitary group, we can get a holomorphic (n, 0)-form
by parallel transport - this is the case of Ricci-flat Kahler manifolds.

Curvature depends on the second derivatives of the metric. At any point, we can
get local coordinates - called normal coordinates - in which the first derivatives of the
metric tensor vanish. In the K&hler case we can also get all the higher derivatives
with respect to z; coordinates to be zero in the normal coordinates.

When we have an almost complex structure J, the complexified tangent bundle
has a natural decomposition into ¢ and —% eigenspaces of J. The vector fields 9/dz
and 0/0z; and forms dz; and dz; are natural in any coordinate system for the complex
case. The curvature tensor is also complexified, and there are some special symmetries
which hold for Kahler manifolds, reflecting the fact that VJ = 0. In this case, the par-
allel transport preserves the complex structure, and so the possible transformations
are invariant under the conjugation with J - indeed, the holonomy is a subgroup of
the -unitary group. On generators, this means that R(tAu,vAw) = R{tAu, JuAJw).
Since on forms dz; A dz; and dz; A dz; the sides of this equality are opposite, the only
nonzero terms for the curvature tensor are on forms dz; A dz; in the Kéhler case. A
consequence is that the Ricci tensor is Hermitian, just like the metric tensor, and we
can associate a (1,1)-form p with it. From the second Bianchi identity it follows that
it is a closed form. The matrix representation €2 for curvature has also entries of type
(1,1).

By the d0-Lemma, any closed form of type (1,1) can locally be represented as
A8 f for some function f - if the form is cohomologous to zero, there is a global
representation. Such a function corresponding to the symplectic form w is called

a Kahler potential. There is an expression for the Ricci form p in terms of volume,



—30 log det v, where dV = vdz; Adzi A. . . Adza AdZ,, but this representation depends
on the choice of local coordinates. However, since allowed changes of coordinates are
holomorphic, all choices give the same Ricci form.

The first Chern class is represented by the Ricci curvature p. A canonical rep-
resentative for the first Chern class as a Ricci curvature would correspond to the
Einstein metric, if it exists, and in particular Ricci-flat metrics represent the zero
first Chern class.

When the Ricci curvature is zero only the Weyl curvature remains, and in the
Kahler case the local holonomy will be contained in SU(n). By transporting parallelly
the form dz; A. . . Adz, we can get a closed holomorphic (n, 0)-form. Assuming that the
global holonomy is also in SU(n), i.e. that the canonical line bundle is trivial, the Ricci
flat Kahler case will be distinguished by the existence of a nonvanishing holomorphic
(n, 0)-form ¢, which can be normalized to the volume, so that ¢ A ¢ = dV.

The necessary condition for the existence of a Ricci-flat metric on a Kahler man-
ifold is that the first Chern class is zero. When the manifold is compact, only the
constant functions are holomorphic, and the volume form is fixed up to a constant
factor. By the Yau’s celebrated proof of the Calabi conjecture, in every Kéhler class
then there is a Ricci-flat representative. Any representative of a Kahler class of w has
the form w483 f, and the corresponding Monge- Ampere equation (w+90 f)"* = e~ 9w
can be solved for any smooth real valued function g, and since then the Ricci cur-
vature form will change by 9dg, any representative of the first Chern class can be
achieved by this method.

However, in the noncompact case there are some differences. Noncompact mani-
folds generally allow nonconstant holomorphic functions, and so the form ¢ has to be
given first, i.e. we need to have a manifold with a specified canonical line bundle. If
M = M\ D, where M is a compact complex manifold, and D is a divisor of M, we

can consider a meromorphic (n, 0)-form ¢ which is singular on D, or more generally



a line bundle locally represented with such a form. Then we can ask for a complete
Ricci-flat metric corresponding to this form, holomorphic on M. The problem is to
find a complete metric with the symplectic form w, such that ¢ A ¢ is well approxi-
mated by w™, before we can proceed as in the compact case. The case when D has
normal crossings is still open in general. We have considered the case when M is a
pencil of curves, which is an instance where D has normal crossings.

The Strominger-Yau-Zaslow conjecture requires that Calabi-Yau manifolds have
special Lagrangian fibrations. These are Lagrangian fibrations for which Ime vanishes
on fibres. The analogous question can be asked for noncompact Ricci-flat Kahler
manifolds too. The known examples where special Lagrangian fibrations exist include
K3-surfaces and some noncompact manifolds. In the case of K3-surfaces, which
are hyper-Kahler manifolds, i.e. have a quanternionic structure compatible with the
metric, special Lagrangian fibrations are obtained as Lefschetz fibrations with respect
to an other complex structure, which has special Lagrangian submanifolds as complex
submanifolds.

A special Lagrangian submanifold is necessarily volume minimizing in its homol-
ogy class. This is a consequence of the fact that Rey provides a calibration: for any
choice of an n-plane V' in the tangent space, Rep|y < volV. The equality holds for
tangent spaces of special Lagrangian submanifolds, and therefore they are minimal
submanifolds. The local theory of deformations of SL submanifolds is well developed.
If a deformation field X preserves the special Lagrangian condition, then necessarily
JX is dual to a harmonic form in the corresponding submanifold, for instance. This
condition is also sufficient, as there are no obstructions to deforming a compact SL

submanifold in such a direction by the theorem of McLean.
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1.3 Analytic Tools

In this section, we recall some theorems which we are going to use in our work, paying
attention to the technical details.
First we quote some standard elliptic regularity results, interior Schauder esti-

mates, taken for instance from [25].

Theorem 1.3.1. Let be a C*(Q) solution of the equation Lu = f in an open set
Q, where f and the coefficients of the elliptic operator L are in C*k2(Q)). Thenu €
Ck+22(Q). If f and the coefficients of L ke in C*°(2), then u € C™(Q)

We quote a more precise version of the interior Schauder estimates.

Theorem 1.3.2. Suppose By and By are balls of radius 1 and 2 in R™. Let L be a

linear elliptic operator of order 2 on functions on By defined by

H*u . Ou

Lu(z) = a” ((L)quja.’rj (z) + b’(m)awi (x) + c(x)u(z)

Suppose the coefficients a¥, bt and ¢ lie in C%*(B,) and there are constants A, A > 0
such that |a¥ (z)&E;] > ME|2 for allx € By and £ € R™, and [[a¥ || goa < A, ||b]|coe <
A, |lclcoe € A on By for all 4,5 = 1...n. Then there are constants C' and D
depending only onn, o, A and A, such that whenever u € C?*(Bs) and f € C%*(B,)
with Lu = f, we have u|p, € C**(B) and

lulg, [z < Clflloox + |ullco)

and whenever u € C*(B;) and [ is bounded, then u|g, € CH*(B) and

luls llcre < DUIflice + llullco)

Moreover, if a*,b* and c lie in C*(By)and there are constants A, A > 0 such that

la¥ (2)&:E;1 = MEP for all z € By and £ € R™, and |6 ||gra < A, [|0]lcte < A,
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lellcia < A on By for all 4,7 = 1...n. Then there is a constant C' depending only
onmn, l, a, A and A such that whenever u € C*(B,) and f € C4*(By) with Lu = f,

we have u|g, € C*2*(B,) and
lulg llcrene < O fllera + llullco)

A graded Fréchet space is a vector space together with a choice of grading - a
sequence of seminorms || - ||, of increasing strength, which define the topology. Then
a tame linear map L : F' — G of one graded space to another is a map that satisfies a
tame estimate || L f|ln < C||f|lnyr for each n > b and some r, with constant C possibly
depending on n. Then a space is said to be tame if it is a tame direct summand (i.e.
there are tame extension and projection maps) of a space 3(B) of exponentially
decreasing sequences in some Banach space B. The Nash-Moser inverse function

theorem we quote in the version of R.S. Hamilton, [24]:

Theorem 1.3.3. Let F' and G be tame spaces and P : U C F — G a smooth tame
map. Suppose that the equation for the derivative DP(f)h = k has a unique solution
h=VP(f)k for all f inU and all k, and that the family of inverses VP : UxG — F
is a smooth tame map. Then P is locally invertible and each local inverse P~ is a

smooth tame map.

Here a tame map means that |P(g)|ln < C(1 + ||g|lnsr) for all f € U and all
n > b, where ' may depend on n.

Next, we quote several results about quasiconformal maps, using [31] as a refer-
ence.

A map f: Q — R" where 2 is a domain in R", is said to be of bounded
distortion if there is a constant K such that the differential of f is bounded in terms
of the Jacobian, 1/KJ(x, f) < |Df(z)¢|™ < KJ(z, f) for any unit vector ¢ almost

everywhere in . Alternatively, the condition is that eccentricity of the ellipsoid
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images of small balls is bounded

. [flz+¢Q) — flx)] _
hriljélplmgl);r Tt =@ H(z,f) < H ae.

This is called a linear distortion. Unlike K, the essential supremum of H is not a lower
semicontinuous functional of quasiconformal maps - for dimensions n > 3 there are
maps with linear distorton H converging to a map with a higher linear distortion. A
map f of bounded distortion is quasiregular if its Jacobian is locally integrable, does
not change sign in Q@ and f € W™ (Q, R"). The last, condition can be replaced with the

absolute continuity on the lines condition for f, as we already know that Df € L},

and this in conjunction with the ACL condition is equivalent to f & VVllocn By a

1n+4e
oc

theorem of Gehring, bounded distortion implies that in fact f € W) with some
positive ¢ which depends on K and n. If f is a homeomorphism with bounded linear
distortion it is quasiregular and is called a quasiconformal map. But quasiregular
maps have nice topological properties too - they are always open and discrete, and
can be understood as a branched generalization of quasiconformal maps.

We are mostly interested in the compactness properties of quasiconformal maps

- any reasonably normalized family of quasiconformal maps forms a normal family.

First, we state a theorem describing limits of quasiconformal maps.

Theorem 1.3.4. Let f; : Q+— R™ be a sequence of K-quasiconformal maps converg-
ing pointwise to f: Q+— R™. Then one of the following occurs:

e f is a K-quasiconformal embedding and the convergence is uniform on compact
subsets

e f(Q) consists of two values one of which is attained only once

e f s constant

Next, we state a result about dominated compactness, with a pointwise bound on

the distortion.
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Theorem 1.3.5. Let f; be a sequence of mappings with finite distortion which is
bounded in WH™(Q, R™) and which satisfies K (z, f;) < K(z) < co almost everywhere
on Q. Then it contains o subsequence converging weakly in W,2™ and locally uniformly
on € to a mapping f € WI™(2,R™) of finite distortion, satisfying K(x, f) < K(x)

almost everywhere on €.

The Montel’s theorem for quasiconformal maps gives a sufficient condition for a

family of quasiconformal maps to be normal.

Theorem 1.3.6. Suppose that 2 is a domain in R™, and that K > 1 and € > 0 are
some fized constants. If F is a family of K -quasiconformal maps f : Q — R™\{ay, b5},

such that ay and by have spherical distance greater than €, then F is a normal family.

The Beltrami equation in the higher dimensional case can be understood as a

system

D'f(z)D f(z) = |D [ ()" G (x)

where G(z) is a symmetric matrix of determinant one, specifying the change of con-
formal structure. This system admits nonconstant local solutions for dimensions 4
and up if and only if the Weyl curvature of G vanishes. Matrix G represents a lin-
ear transformation of R™ and can be lifted to the level of exterior algebra, i.e. G
induces a linear map Gy : A’ — A represented as a matrix of determinant one having
entries the { x [ minors of G. For an even dimension n = 2m, there are analogies
to the complex case. Introducing p = % : A™(R™) — A™(R™) we can write an

equation on the level of m forms, analogous to the one in the two dimensional case.
Let d* = L{d+ (i)™ *d), d” = 2(d — (=)™ = d), o € C®(Q, A1) N Ker(d~) and
w be a pushforward of « under f, then we can write d"w = pd*w. The theory in
even dimensions has further analogies with the two dimensional theory, but the main
difference is that in higher dimensions the Weyl curvature tensor is an obstruction to

the existence of local solutions of the Beltrami equation.



Chapter 2

Ricci-flat Metrics on Noncompact

Manifolds

In this section we study noncompact Ricci-flat Kahler manifolds. The question of
constructing a complete Ricci-flat metric on quasiprojective complex manifold M\ D,
where D is a divisor of a compact algebraic variety D, has been solved in [1] and [2]
for a class of smooth divisors D. The case when D has normal crossings is still open.
The method used in [1] and [2] was to first construct a complete Kahler metric which
is asymptotically flat at infinity, and then apply a variant of the Yau’s method for
Monge-Ampere equation on non-compact manifolds. Getting an approximate metric
for the more general case is the main issue here. In the case when the manifold is a
pencil, our approach is to use cylindrical metric on the projective space and a Ricci-
flat metric on the fibres. This metric has the right volurne form but is not Kahler.
The idea is to deform it using a flow which reduces torsion, and we study such flows.
Also, we consider behavior of metrics from [1] at infinity, showing that they are in

fact very well aproximated by the initial metric that was used in construction.

14
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2.1 Introduction

To apply Yau’s method for solving the Calabi conjecture, {3, 4], to the case of non-
compact manifolds, a preliminary step of constructing a Kéhler metric which has
asymptotically the right volume form is needed. Having such an asymptotic metric,

the following result of Tian and Yau from [1] can be applied to finish the construction.

Theorem 2.1.1. Let (M,g) be a complete Kahler manifold of quasi-finite geometry
of order 2 +% and with (K, 2, 3)-polynomial growth. Let f be a smooth function such

that [,,(ef — D)w} =0 and for some constant C

C
ShlljpﬂvgflalAg”}SC; | f(z}] < W, xe M

where N > 4+ 3 and p(z) is a distance from some fized point xq with respect to g.

Then the compler Monge-Ampere equation on M

(g + 5=080)" = efuy, wy + =800 >0, ¢ € C*(M,R)

g9

has a bounded, smooth solution ¢ such that w, + #85@ defines a complete Kahler
metric equivalent to g. The supreme norms of ¢ and its derivatives can be bounded

by constants depending only on f,C, N, K, 3 and the order of the derivative.

Here (K, o, B)-polynomial growth means that sectional curvature is bounded by
K, volume of a ball centered at zy of radius R by CR* and volume of a ball of radius
one centered at z by C~'(1 + p(z))™. Quasi-finite geometry of order ! + & means
that there are r > 0 and ry > 7o > 0 such that each geodesic ball of radius r admits a
holomorphic chart sandwiched between balls of radii r; and ro centered at the origin
in C", with a pullback metric bounded in the Holder space C**. In particular, the
injectivity radius is greater than r.

The asymptotic behavior at infinity makes up for the non-compactness of a mani-

fold. The solution ¢ in the above theorem which decays to zero at infinity sufficiently
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rapidly is unique, as can be proved in the same way as in the compact case. To see
this, one needs to go over the proof in the compact case and observe that the only
place where compactness assumption was used was an application of the Stokes theo-
rem to argue that [, d((p1—92)((0 =) (w1 — ) At w2 Awa 4. +uf™)
is zero, where ¢, and s, are two solutions, and w; and ws the corresponding Kahler
forms. But the conclusion is still valid in the noncompact case under the assump-
tion that ¢y and @y decay to zero at infinity faster than the size of boundaries of
an exhausting sequence of compacts subsets, since the term with which (¢, — ) is
multiplied is bounded by assumption that w; and w, give equivalent metric to g and
that derivatives of i are bounded.

We are especially interested in the case of a quasiprojective manifold with a divisor
with normal crossings removed, which comes from a pencil. Suppose we have a pencil
{ M)} repr with a base locus B, and let f : M\ B + C* be the associated holomorphic
mapping to the Riemann sphere, with fibres M, \ B = f~!(}). Then we consider
the case when a supporting manifold of a divisor D is a union of My and M, which
intersect along B. Since we are considering the Ricci-flat case, we suppose that we
have a meromorphic (n,0) form ¢ which is singular at D, and for which we want to
find a complete metric w, such that ¢ A @ is proportional to the corresponding volume

form.

Proposition 2.1.2. Suppose that ¢ has a pole of first order at D. Then the form
@ induces meromorphic (n — 1,0) forms @y on each fibre M), so that ¢ = d/\—’\ Ay .
In the case of a pencil of curves, the flat metric of a line bundle corresponding to ¢

induces a flat metric on the fibres.

Proof. This is a straightforward application of the second adjunction formula - we
can consider A_—“’)\O to get the form corresponding to Ap. In the case of a pencil of
curves, a norm of the line bundle is suflicient to determine a conformal factor on the

fibres, and hence a metric. a
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This suggests a method for constructing an approximate Kéhler metric for the
desired volume form - combining a metric which is Ricci-flat on the fibres and cylin-
drical metric on the projective space, we get a metric which has the right volume
form, but is not Kéhler, and we try to reduce its torsion. In the case of a pencil of
curves the flat, and possibly singular, metric on the fibres can be computed from the
form ¢ directly, while in the higher dimensional case we might use the theorems from

[1] and [2].

2.2 Torsion Reducing Flows

Suppose that we have a Hermitian form w on a complex manifold, with an associated
Riemannian metric < u,v >,= w(u, Jv), but such that dw is not zero. We can try to
reduce torsion by means of some flow.

A natural thing to do is to consider a gradient flow with respect to the functional
| v < dw,dw >,. We are going to assume that derivatives of w are vanishing at infinity
sufficiently fast, so that it is possible to work essentially as if M were compact. We
will consider a flow unrestricted to (1, 1)-forms, with an associated Riemannian metric
coming from a (1, 1) part of w, which we assume only to be a real 2-form.

We first compute the first variation and the corresponding gradient.

Proposition 2.2.1. The Euler-Lagrange equations for the torsion reducing flow at

w, gradient with respect to the functional [,, < dw,dw >., can be written as
wy = —d*dw — (n— 1) * (Pd*dw A (Pw)* ) /n! — (I — P)d*dw
where P is a projector onto (1,1) forms.

Proof. We compute the first variation. All the following equalities are modulo terms

of second order in dw. First consider the case when éw is a (1,1) form.

< d(w+ dw), d(w + dw) >yt — < dw,dw >,=
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2 < dw,dbw >, + < dw,dw >y — < dw,dw >,

The integration by parts step gives an equivalent term

2 < d'dw,dw >, + < d'dw,w >u450 — < d¥dw,w >,=
< d'dw,bw >, + < d*dw,w + dw >,150 — < d¥dw,w >,=
< d*dw,dw >, +d*dw A (Pw + dw)" ! — (Pw)* 1) /n! =

< d*dw,bw >, +(n — 1)d*dw A (Pw)" 2 Adw/n! =
<d*'dw+ (n—1)* (d*dw A (Pw)" %) /n!, dw >,

When dw is in the complement space, the variation of metric is zero, and so we

have a total variation term

< d(w+ dw),d(w + dw) >, — < dw,dw >,= 2 < dw, déw >

Partial integration step then gives the term < 2d*dw, dw >.
The assertion then follows from the fact that P and I — P project onto orthogonal

spaces, since metric is J compatible. (]
Next, we show that the stationary points of the flow are w that are torsion free
Proposition 2.2.2. If w satisfies
d*dw + (n — 1) * (Pd*dw A (Pw)"" ) /n! + (I — P)d*dw =0
then dw =10
Proof. Note that
< *(Pd*dw A (Pw)""?)/n!, Pw >,= Pd*dw A (Pw)"'/n! =< Pd*dw,w >,
Applying this formula we get

0= / < Pd*dw + (n — 1) * (Pd*dw A (Pw)"?)/n!, Pw >,= / n < Pd'dw,w >,
M M
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But we also know that (I — P)d*dw = 0 and hence
0= / < d'dw,w >,= / < dw,dw >=0
M M

proving that dw =0 O

Note that our flow can be written in the form w; = —A(w)d*dw, where A(w) is
some linear operator. We can consider various flows with different factors A(w).

We can write A(w) in another form, defined for (1, 1) forms as

Tr,, -1
Alw)p = ngo Pw+ =

¥

and for (2,0) and (0,2) forms A(w)e = 2¢.

Here Tr,, is a linear operator mapping forms %dzk/\dzk to one and all other forms to
zero, where dzy = dxy+idy, comes from a diagonal basis of the associated Riemannian
metric, in the cotangent space of the corresponding point. We can check that on
Hermitian forms ¢ factor A(w) acts in the same way as ¢+ (n—1) * (p A (Pw)™2) /n!

. . :
(n—1) * ((%dzk A dz) A (Pw)"?) nl = ~(Pw - %dzk A d3)
and also

(n—1)# ((%dzk Adz) A (Pw)"™2) fnl = 2—Zn—d2k Adz = —ﬁ(%dzk Adz)

The flow w; = —A(w)d*dw is not strictly parabolic, but only weakly so. Thus, to
prove local existence even for compact manifolds, we need to use a following theorem
of R.S. Hamilton, whose proof relies on the Nash-Moser inverse function theorem,

from his paper on Ricci-flow, [23]:

Theorem 2.2.3. Let ¢, = E(yp) be an evolution equation with integrability condition
L(p), such that
o L(p)E(p) has degree at most one
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o all the eigenvalues of the eigenspaces of aDE(p)(&) in Ker oL(p)(£) have
strictly positive real parts
Then the initial value problem ¢ = @g at t = 0 has a unique smooth solution for

a short time 0 < t < ¢ where € may depend on p.

Here ¢ is a smooth section of a vector bundle, integrability condition is a first
order operator in ¢ and %, from the same vector bundle and with a value L(¢) in
an other, possibly different, vector bundle.

For L{w)%) we can take d*A(w) ™14, and also E(w) = —A(w)d*dw . Then L(w)E(w) =
—d*d*dw = 0, and L(w) has degree one.

To write an operator L(w) more explicitly, note that on (1,1) forms A(w)™! =
(I — 22 Tr,). Indeed, applying this to A(w)e = "Ly + %“—’Trw@ and using

Tr, (Pw) = n we get

n Pw n—1 Pw

I— Tr., —Tr p) =
n_l( T ) i+ — p) = p+
Pw Pw Pw n

—’I‘rw _ "_n—-w _
T e e A T |

+ Trop=¢

Thus, we can consider

n Pw

Lw)p = ——=d"(PY — 5—

Tr, Py) + %d*([ _ Py

We proceed with the computation of principal symbols of E and L. We will use
notation dt, = dxk, dtgsn = dyk, and write ¢ = fi;dt; Adt; with 1 <4 < j < n. Also,
we will work in the basis at a point in which a metric tensor has diagonal form. The
principal symbol for £ we can then compute from the principal symbol of d*d, as
F(w) = —A(w)d*dw. We have

82 ” . 2 » . 2 - . ‘
d'dp = E ((%gt]kdtk/\dt] + —%dtZ A dtk — hdt’ Adt?) + ...
ksti,g *

Ot; 0, ot
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Here lower order terms depend on the connection, but we are interested in principal
symbol, and this computation suffices.

Thus, the principal symbol of E(w) reads in this local basis

oDEW)(E) Y fiydti Nty =" Aw)(dt; Adty) > (ERfis — Ebufis — Esnfir)

i i ki,
But we may choose this basis further and rescale £ for convenience so that §; =1

and & =0 for k > 1. In this basis, we compute, with indices modulo 2n
G'DE(L«J)({)dtl N dtj =0

UDE(UJ)(&)(dti/\dt]+dtz+n/\dtj+n) = nT(dt%/\dt3+dt1+n/\dtj+ﬂ) Z,j ?é 1,TL+1, |Z—_’]| 7é n

UDE((.U)(f)(dti/\dtj—dti+n/\dtj+n) = 2(dti/\dtj—dt¢+n/\dtj+n) Z,_] 3'& 1,n+1, IZ*]‘ :,£ n

n+1 3n—1 n+1 ,
O’DE(w)(g)(dtn+1/\dtj—3n — ldtl/\dtj+n) = (dtn+1/\dtj_3n——1dt1/\dtj+n) J 74 1

1
0 DE(w)(§)dt; N dtipn = dt; A dtiyn + ~ Yo dtjndt,  1<i<n

1<i<n,j#i

From this we see that E is weakly parabolic. Zero eigenvalues come from the action
of d*d, whose symbol maps dt; A dt; to zero and acts as identity on all other basis
forms, with the conventions as above. We ought to show that the principal symbol
of L has kernel which intersects transversally the kernel of the principal symbol of
E. To compute the principal symbol of F, we start with the principal symbol of d*.
Note that

dfi; Ofi
d'o= Yt — 2Ldt) + ...
v Z;( ot o, )+
Here lower order terms do not involve derivatives of . Thus, the principal symbol
of d*, with the conventions as before, has kernel spanned by forms dt; Adt; with ¢, #

1. The principal symbol of L is a composition of A(w)~" with the principal symbol of
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d*, and hence kernel consists of forms spanned by A(w)dt; Adt; with 4,7 # 1. But this
intersects transversally the kernel of c DE(w) - if o DE(w)A(w) >, ;4 fisdti Adt; =0
then we see that f;; = 0 for |[¢ — j| # n, and for the terms dt; A dt;;n the kernel
of ¢ DE(w) is spanned by dt, A dt,,1, but A(w)~'dt; A diyy1 has a component with
dty Adlnyr.

This shows that our flow has local existence on compact manifolds, since all eigen-
values of ¢ D E(w) are zero or positive. Note that if A(w) is a scalar, then the condition
for symbols is also satisfied, and such flows also have local existence.

To see what is needed in the case of noncompact manifolds, we need to review
the proof of the theorem from [23]. This proof first notes that the flow existence
follows from the Nash-Moser inverse function theorem applied to the operator P(f) =
(8f/0t—E(f), fli=0), defined on smooth sections of the corresponding bundles. When
a manifold is compact, this is automatically a tame space, but in the non-compact
case even this point needs some care. The proof further uses the tamely equivalent
Sobolev norms, slightly modified so that the time derivatives are counting twice as
the space derivatives, but in the non-compact case we might as well work directly in
this graded space, or a weighted version which does not change anything in the proof,
rather than with the smooth sections, because we do not have the Sobolev inequality
at our disposal.

The proof proceeds by checking the solvability of the linearized equation. This is

shown to be equivalent to the existence and uniqueness of the system

8f 3 * - 1
PO+ (a=F
9 -
- M()f =

This is a system in f and §, and P(f) is elliptic of order two, while L*(f) and M (f)

are of the first order. To solve this, a time lag § for the second equation is introduced,
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and a-priori estimates derived which do not depend on §, with the solution obtained
as a limit when ¢ tends to zero.

The main difference in the non-compact case is that ellipticity of P does not
_imply necessarily the strong ellipticity with an uniform bound of eigenvalues from
zero. Apart from this, all the estimates from [23] work, because the ™ bounds
on coefficients are used. Thus, if w is of quasi-finite geometry of infinite order, the
conditions on the coefficients will be satisfied.

However, the operator P(f) also needs to have eigenvalues uniformly bounded
away from zero. This operator is equal to DE(f) + L*(f)L(f) and hence o P(f)(£) =
oDE(f)(&) + oL*(f/)(&)aL(f)(€). It is thus necessary that o DE(f) has non-zero
eigenvalues with real part uniformly bounded away from zero, and in addition to
this, that oL{f)(€)aL*(f){€) has nonzero eigenvalues from the image of o L(f)(£)
uniformly bounded away from zero - any eigenvalue of P that is not in the kernel of
L is a positive eigenvalue of o L(f)(§)oL*(f)(€), which can be seen by multiplying
P with L, but we also want it to be uniformly bounded away from zero. These are
the additional conditions which we need if we want to use the Hamilton method in
the non-compact case to prove the local existence. To obtain an approximate metric,
however, we also need global existence for initial conditions which will give the desired
metric in the limit, and thus results from this section serve more as an illustration

and a first step in this direction.

2.3 DMetrics at Infinity

Vanishing at infinity of the volume correction function f to the approximating volume
form, which appears in Theorem 2.1.1, and its derivatives implies vanishing of the
corresponding derivatives of the solution . This is a consequence of elliptic regularity,

as we are going to see. Thus, having a good approximating metric enables us to
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compute behavior of the solution at infinity. For instance, the asymptotic behavior
of curvature tensor for the solution will be the same as for the initial metric when C*

norm of f vanishes at infinity.

Proposition 2.3.1. If f has derivatives vanishing ot infinity up to an order k + a,
and metric w, is quasi-finite of order k + «, then the solution ¢ from the Theorem

2.1.1 has derivatives vanishing up to an order k + 2 + « at infinity.

Proof. To prove this assertion, consider the operator

Inp = %851/) Awrt+wi?Aw+ .+ )/ W)

where w = w, + ~80¢. Note that
Ly = (w — wg) A (w) ™ +w;1‘2 Aw+. . o™ Njwl = (" — ) fwy = el —1

Since metric g is quasi-finite, we can map neighborhood of any point to a corre-
sponding ball in C™ and consider pullback of L restricted to this chart. Then because
w and w, are equivalent the symbol will have eigenvalues uniformly bounded away
from 0. Because ¢ is smooth with all derivatives bounded by Theorem 2.1.1, and
geometry is quasi-finite of order k + «, the coefficients will be uniformly bounded in
C*> and so we can apply Theorem 1.3.2 to estimate k + 2+ o derivatives of ¢. Thus
we conclude that in a half ball B,

||90||ck+2fa(31) < C(”f”C"’“(Bl) + ||‘PHCD(31))

with some uniform C. But ¢ vanishes at infinity, and also the derivatives up to order

k + aof f, and the statement follows. O

To construct an approximate metric in [1], the following approach was used. A
form w which has approximately the right volume form at infinity, and is positive near
the divisor, is constructed, and away from divisor it was combined with another form

which gives positive metric, to give a positive metric on the whole manifold. The
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second form, which is positive on the whole manifold, is the curvature of some norm
of line bundle defining the divisor. When such a form exists, we need only to worry
about constructing approximating form which is positive near the divisor. Since a
convex combination df two positive forms is positive, we can add a multiple of the
second form to the first one, with a factor which takes over away from divisor and
vanishes near it. But the problem is that we need a closed form, which is obtained
from some Kahler potential. The fact that the second form is obtained as i90s where
s = —log||S||?, can be used to get around this - taking g(s) instead of s, with some
appropriately chosen g, we get ¢'(s)w+q"(s)8s AQs, and by rescaling and multiplying
by a constant, we can get to neglect the second term, while form of ¢'(s) is at our
will. We can in fact choose it to be zero around a divisor, which was not used in
[1], but a function s~V instead. The error term for the volume correction function is
dominated by this part in [1], improving when one increases IV, but there is no need
for this as we can simply drop the second part near the divisor, using the same idea of
rescaling and normalizing with two free parameters, as in [1], and a function ¢’ that
vanishes at infinity. In fact, we will show that all the derivatives of f vanish. Thus,

near infinity, we can assume that approximating metric is given as

pltl/n OF A OF
(CnF)n-D/n

The form w,, = iG0F is a form which is flat when restricted to a divisor, and pos-

w=i BOF N/ — (Y, g

n+1

itive near it in the orthogonal direction too. Here F = —log||S||2 = —log(e=*||S|?),
and ¢ is a smooth function on M, so that the curvature condition for the restriction
is satisfied.

To see what f is and how it behaves near the divisor, we choose a local coordinates,
which can be always done so that dz; A ... A dzp_1 A dz,/2, is a section of the
holomorphic (n,0) form and thus a volume form that we aim at is dV/|z,|? where dV

is the local Euclidean volume. Suppose that the line bundle norm is represented as
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18112 = a(z)|2x|* with smooth positive function a. Then we compute

w, = —i08loga
N
OF = —0loga — dzi OF = —dloga — zi

Therefore
e dV = |z |°w" = @y + 2,P; + 2, D1 — nF|z,|*(—i00loga)™

Here ®4,®, and 1 are forms that can be written as nonsingular real analytic
expressions in z,a, da, da, 9da and F~Y/" in the given local chart. The condition for
a on the divisor means that ®; tends to dV when =z, tends to zero, and so f tends to
zero as we approach the divisor. The metric corresponding to w expands transversally
with a factor (—log|z,|)¥™ and with a factor 1/|2,| in the normal direction, and so
from this expression it follows that all the derivatives of f tend to zero too. It also
follows that the curvature tends to zero because of this expanding property, and hence
curvature of the solution also tends to zero at infinity.

We can use the obtained formula to solve for a for which f = 0 near the divisor,
by means of a power series. The variables are z, and Z,, and also ¢ = (—log|z,|*)~"/"
can be thought of as an independent variable except when computing the derivatives.
The solution is of the form 3 aijlszij' ¢ where i and j are positive integers, while k
can be negative too, starting with —n. Equalizing coefficients will give a sequence of
linear partial differential equations of second order on the norm of the corresponding

line bundle restricted to the divisor. Solving such an equation in each iteration step

leads to a solution in the neighborhood of D.



Chapter 3

Special Lagrangian Fibrations and

a Change of Complex Structure

Our approach to special Lagrangian fibrations is global. Lagrangian fibrations can be
represented with a locally Hamiltonian field and a fibration preserving resolving vector
field, which are paired in a natural way, with an associated singular almost complex
structure. We generalize the method of extremal length and drive analogies with the
two dimensional Teichmiller theory. In particular, we relate extremal problems to
the existence of special Lagrangian fibrations, proposing a method for constructing

them in the large complex structure limit of Calabi-Yau manifolds.

3.1 Representing Lagrangian Fibrations

In the presence of an almost complex structure J, Lagrangian fibrations have at each
point x two mutually orthogonal Lagrangian tangent subspaces specified, the tangent
space V, of a fibre and its orthogonal complement, equal to JV, when the fibre is
of maximal dimension n. This enables one to pair locally Hamiltonian fields with

fibration preserving fields, provided that we have a metric on the base too.

27
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Suppose that we have a fibration f : M +— B, and that B is equipped with a
metric. Then to any locally gradient field on B two vector fields on M correspond - a
locally Hamiltonian vector field X, the symplectic gradient of the lifted local potential
from B, and a fibration preserving vector field ¥ which is lifted from the base field
directly. To define the first vector field we need a metric on B, and for the second, a
metric on M , which comes from the almost complex structure.

If dH = 1x(w) locally, then the derivatives LY(H), for m = 0...n — 1, are
generically functionally independent, and will determine the distribution correspond-
ing to the fibration. Thus, the pair (X,Y") generically determines the fibration, and
describes it in terms of local data.

The choice of a metric on the base is arbitrary, and it determines the pairing. We
can suppress this metric, and consider all possible pairs (X,Y") where X is a locally
Hamiltonian field belonging to the fibration, and Y preserves the fibration, but is
orthogonal to all the fibres.

Definition 3.1.1. Suppose X is a locally Hamiltonian field on an almost Kahler man-
ifold (M, w, J), then we say that Y is a resolving field for X if for any corresponding
local Hamiltonian H satisfying dIf = 1x(w), the derivatives H™ = L7*(H) commute
with respect to the Poisson bracket, are functionally independent for 0 <m < n — 1
and have symplectic gradients orthogonal to Y. If the induced base field correspond-
ing to Y is the gradient of H with respect to a metric g on the base of a related

fibration, we will say that X and Y form a g-pair, and use a notation (X,Y),.

Thus, only integrable Hamiltonian fields will have a resolving field. As we have
seen above, a generic locally Hamiltonian field, belonging to some Lagrangian fibration
with a generic fibre of dimension n, has a resolving field. Once a metric on the base
is specified, the resolving field can be associated in a canonical way. Conversely, a
generic vector field which is orthogonal to all the fibres is a resolving field for some

locally Hamiltonian field, belbnging to the fibration.
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Kahler Ricci-flat manifolds have a specified holomorphic (n,0)-form ¢, and a
Lagrangian fibration described with a pair (X,Y") will be special Lagrangian when
Imp(VH® . VH®™ D) =0, where X = VH is some local representation of X as
a symplectic gradient and H™ = L%(H). Pairs .(X ,Y') satisfying these requirements
always exist, and the real issue is to get the dimension of a fibration to be n with some
additional topological constraints. But constructing a fibration along these lines has
problems with convergence, as fields need to be regular because higher derivatives
are involved, and with uniqueness, as there are many possible pairs representing the
same fibration. However, the pairing itself is a canonical object which might be used
to encode a fibration.

Suppose that we have a metric g; specified on the base of our fibration. Then
using the associated g;-pairing we can define an almost complex structure J; on all
nonsingular points of the fibration, such that ¥ = J;1.X. Indeed, both X and Y can be
expressed in terms of dH, and depend only on the value of dH at a point. This induces
a linear map which is an isomorphism of spaces V, and JV, whenever z is a point on a
nonsingular fibre, and we can extend this map to get an almost complex structure Ji.
When we have a Lagrangian fibration whose all fibres have finite n-volume, we can
define a natural metric on the base, obtained by averaging the original dot product
over the fibre. In particular, special Lagrangian torus fibrations have a naturally
defined metric on the base. We are going to normalize it so that the volume of the
fibres remains the same when we change a metric coming from the original complex

structure J to the one corresponding to the almost complex structure JJ,J.

Proposition 3.1.1. Let J; be an almost complex structure corresponding to a special
Lagrangian torus fibration, obtained from the metric conformal to the averaged metric
on the base. Then the metric g\(u,v) = w(u, Jiv) is J; tnvariant and agrees with the
metric on the base. The metric go(u,v) = gi1(Ju, Jv) is flat on the fibres and we can

normalize metrics and complex structure Jy so that the fibres have the same volume
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for both g and gs. The map from the original manifold with o Ricci-flat metric g to
the same manifold with the metric go induced from the identity map ts harmonic when

restricted to nonsingular fibres.

Proof. 1If we define metric g; as the J; invariant metric consistent with the metric
on the base, then it suffices to check that g(X,JY) = ¢:(X,/1Y). But from the
properties of J and J; we see that this is true if only we can check it for ¥ in the
fibration, and X orthogonal to the fibration - since spaces JV; and J1V; are the same
by construction, for a tangent space V, of a fibre at z. But then we may assume
that Y is a symplectic gradient of H, and so g(X,JY) = dH(X). On the other
hand, by definition of J; we have dH(X) = ¢:(X, /1Y). To prove the last assertion,
note that there are functions Hy ... H, induced from functions on a base such that
dH, ...dH, is a g; orthonormal basis of the space JV*. But then JdH;...JdH, form
an orthonormal coframe in V' with respect to g, for any y in the same fibre as z, and
are harmonic forms with respect to g, by the easier direction of the McLean theorem.
The normalization changes metric on a base conformally and complex sturctures J;

and J; = JJiJ in a consistent way. O

Maps corresponding to a change of metric from g to g; and g, do not have bounded
quasiconformality constants in general, and it can tend to infinity as we approach
singular fibres. The Jacobian determinants of these two maps are the same. However,
of special interest is the Jacobian determinant of a harmonic map on the fibres,
cotresponding to a change of metric from g to go. It defines a nonnegative function
po on the manifold, which is an extremal metric with respect to the fibration, as
we are going to see. This is the reason we normalized metrics g; and g, with the

correspoding almost complex structures Jy and Ja, to the gs-volume of the fibres.
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3.2 Quadratic Differentials and Higher Dimensional
Singular Flat Examples

When n = 1, Ricci-flat condition coincides with the flat condition, and we have a flat
metric on a Riemann surface. Such a metric is equal to hdz?, where h is a harmonic
function in any isothermal coordinates. These metrics are generally not uniformized,
because the completion can have singﬁlarities, corresponding to the zeroes of h. In
the natural parameter the metric has the form dw?, and h = |¥|? where ¥ = dw/dz.
This leads to study of holomorphic quadratic differentials, and special Lagrangian
fibrations correspond to trajectories of such quadratic differentials. The theory of
trajectories of quadratic diferentials is well developed, for instance we refer to the
book of Strebel, [7]

The Teichmuller theorem for surfaces of finite analytic type links quadratic dif-
ferentials to extremal quasiconformal maps. Any quasiconformal map of minimal
dilatation in its class has a Beltrami differential of a form k@/|p|, where k < 1 is a
constant and ¢ is an integrable holomorphic quadratic differential, and is uniquely
extremal.

The situation for surfaces of infinite analytic type is strikingly different. Extremal
maps do not necessarily have Beltrami differentials of constant absolute value, for in-
stance the so called Strebel chimney is an example. The similar question for uniquely
extremal maps was long open, and it was thought that they have to be of the form
k@/|p| with analytic, but not necessarily integrable quadratic differential ¢ - this was
conjectured by Teichmiiller. This conjecture was disproved in my joint work with N.
Lakic, V. Markovi¢ and M. Mateljevié, [9], where uniquely extremal condition was
characterized. Examples of uniquely extremal maps which do not have constant mod-
ulus and which disprove the Teichrhuller conjecture, a part of this joint research with

my particular contribution, were first announced in [10], and [11] provides account
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of the first counterexample. The counterexample theorem from [9] provides uniquely
extremal maps with essentially arbitrary choice of Beltrami differential outside some
set of small measure on any Riemann surface from which a set with a cluster point is
removed. Thus, while extremality sometimes grants nice regularity properties, this is
not always the case.

The higher dimensional singular flat examples are important to understand, as
they are conjectured to correspond to the large complex structure limits of Calabi-Yau
metrics. One simple class of such examples can be obtained by the analogy with the
two dimensional billiards. Such a billiard is a polygonal domain in C, with trajectories
extending by reflection. The angles at vertices are rational, so that reflections induce
a compact Riemann surface, with a corresponding branched covering and quadratic
differential. We can do a similar construction in C", using hyper-planes of reflection
instead. To any polygonal domain in C" with rational hyperplane angles we can
associate an orbifold, obtained as a formal union of multiply reflected domains along
the polygonal hyperplanes. Such an orbifold might have a resolution of singularities
which gives a Calabi-Yau manifold, and we can hope to represent its large complex
structure limit with the singular metric induced from the flat orbifold that we started
with.

Alternatively, we may combine singular two-dimensional flat examples in a Carte-
sian product. The special Lagrangian fibres in the product will be products of tra-
jectories of quadratic differentials. Note that in higher dimensions the parameter
¢ corresponding to the flat special Lagrangian fibration is not enough to determine
the direction - there are many special Lagrangian tangent. n-planes with the same 6,
which is essential problem in constructing an SL fibration. The angle 0 even together
with the homology condition does not generally determine the direction uniquely, for
instance in the case of C". A flat complex torus might not have a special Lagrangian

fibration at all. We believe that these monodromy problems are an issue with the
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existence of special Lagrangian fibrations, rather than the convergence problems.

3.3 Extremal Methods

Here we are going to generalize the method of extremal length and adopt it to the
problem of special Lagrangian fibrations. This method in Teichmiiller theory is also

known as the Grotzsch’s argument.

Definition 3.3.1. Let [’ be a family of rectifiable n-submanifolds of a Riemannian

2n dimensional manifold M. The generalized extremal length of this family is

A(T) = sup ML, p)7

p=0 HPH2

where p € L2(M) and AT, p) = infger [, pdo.

The p for which the supremum is attained is called extremal metric. Modulus of
I is defined as a reciprocal, M(I') = 1/A(I'). Like the ordinary modulus of curves,
it is conformal invariant and is quasi-preserved under quasiconformal maps - the
quasiconformality constant gives a bound on the linear distortion, and hence a bound
on the distortion of n-plane volumes too.

The comparison and composition properties of generalized extremal length are the
same as in the classical case, [6]:

o If every § € I contains a S* € I then A(I') > A(IY)

o If ) and Q, are disjoint open sets, all §; € I'y belong to Q; and all S, € ', to
(2 and every S € I contains a S} € I'; and a S, € I’y then

AD) > A(TY) + A(TY)

1/M(T) 2 1/M(Ty) + 1/ M(I)
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o If Q) and Oy are disjoint open sets, all 51 € I'; belong to 4 and all S; € I’y to
{1y and every 5] € ' and every S, € I'y contains a S € I' then

L/A(T) > 1/A(T)) + 1/A(T)
M(D) > M(Dy) + M(Ty)

The link between extremal length and volume minimizing fibrations is given by

the following Beurling criterion:

Proposition 3.3.1. A nonnegative py € L*(M) is extremal for ' if T contains a
subfamily I'y with the following properties:

o [5podo = XTI, po) for all S € Ty

e If a real valued h € L*(M) satisfies [(hdo > 0 for all S € Ty then

/ hpodv 2 0
M

Proof. Take any other nonnegative p € L?(M) and normalize it so that A(T,p) =
ML, o). Then [gpdo > [, pode for any S € Ty, and so by our assumption

/ (p— po)podV >0
M

But this means that f,, ppodV > [, p3dV, and thus by the Cauchy-Schwarz inequal-
ity ||pll = lleoll- It follows that
My po)® AT, p)?
lpoliz = llpll®

O

The application of the Cauchy-Schwarz inequality here is essentially the original

Grotzsch’s argument.

Proposition 3.3.2. Let 'y be a family of non-degenerate Lagrangian torus fibres
corresponding to some SL torus fibration. Then the Jacobian determinant py of the
map on fibres induced by the identity map under the change of metric from the original

Ricci-flat metric g to the fibrewise flat go is an extremal metric for Ty.
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Proof. We employ the Beurling criterion. By the definition of a metric g, follows
that, with respect to the original metric g, [ ¢ podo is constant for all § € Iy, as it
equals [ doy with respect to go. Now suppose that we have A such that | ghdo >0
for all § € Ty. We can use the compatibility of a metric g; with the metric on the

base to get the second condition:

/ hpng=/ hpoda/\Jda=/ hdcr/\Jd02=/d71/ hdo > 0
M M M B 8(m1)

Here 7, denotes base coordinate and dr; base volume form with respect to the

metric g;. O

Suppose ¥ = Re ¢ is a calibration form for our SL fibration. Then in general
dpoy) = dpg Atl is not zero, and therefore we cannot argue that pg is an extremal metric
for a more general family of homologous n-manifolds I'. However, if it is extremal,
then we can use modulus to test weather a certain set of n-manifolds can belong to a
fibration: If M\ Q, = Q, where Q; is an open set obtained as a variation of such a set
of n-manifolds, which we want to test, then necessarily M(M) = M(Qy) + M(Qy).

To get around the fact that dpgt is not always zero, and still be able to get some
estimates about the extremal maps, we are going to use ¥ to compare lengths, and
thus a variation of pg, the number sup,; po/ infpr po, will measure how far we are from
the sharp estimates.

We first derive a generalization of the Reich-Strebel Inequality, which estimates

quasiconformality constant of a self-map homotopic to identity for Riemann surfaces.

Theorem 3.3.3. Let I' be a special Lagrangian fibration with the corresponding ex-
tremal metric p having mean value p with respect to the Calabi- Yau volume form on

M. Then for any quasiconformal self-map [ of M homotopic to identity the following

/MdVS/MKr,f(m)z(%)QdV

inequality holds:
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Here Kr¢(z) denotes quasiconformal distortion of the n-plane which is tangent
to the fibration T' atl x, i.e. the Jacobian of the map [ restricted to this n-plane s
K s(2)|Df (2)}2.

Proof. Let pi(z) = Kp ¢(x)|Df(z)|*?. Then we have

/,01,0dV=/d7'1/ p1d0=/d7'1/ do'z/dﬁ/ dcr=/ pdV
M B 8(m) B F(S(n)) B S(m) M

where we used minimality property of the special Lagrangian fibres in their homology
class, and the fact that f is homotopic to the identity.
On the other hand,

/M prpdV = /M K +(2)| DS (@)|20dV < ( /M K (2)?2dV) V2 ( /M \Df(@)|dv)?

by the Cauchy-Schwarz inequality. But [, |Df(z)|dV is the volume of the manifold,
by the change of variables formula and the fact that f is a homeomorphism. Squaring

and combining the two inequalities then proves the assertion. O

Here the only substantial difference from the classical Reich-Strebel Inequality
is that we used a non-extremal metric, but which has a closed calibration form, to
compare volume of the fibres. So p is average, instead of quadratic mean as in the
original Reich-Strebel Inequality, and the inequality is not sharp if there is a variation
of p. We can write a simpler inequality which emphasizes this difference, which will

not be sharp unless the variation of extremal metric is one.

Corollary 3.3.4. Suppose that T, p,p and [ are as before, and let C = supy p/p.

Then
/ dVv S 02/ Kp,f(.’L')de
M M

Next, we proceed with the Main Inequality, which deals with maps f : M — M
and f, : My — M, such that f; o f is homotopic to the identity
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Theorem 3.3.5. Let ", p, p be as before, and let f: M — My and f,: My — M be
quasiconformal maps such that fyo f is homotopic to the identity. Then the following
inequality holds:
| av < [ KedwfKopw?Erav
M M P
where IV = f(T') and y = f(x)
Proof. We apply the generalized Reich-Strebel Inequality, using the fact that

Kr p105(x) = Kr s (z) Ky 1, ()
|

The importance of the Main Inequality is that it enables one to estimate the
quasiconformality constant of an extremal map. The quasiconformality constants in
higher dimensions are many and are all intertwined, and we have in mind the n-
plane quasiconformality constant. The following corollary corresponds to the First
Fundamental Inequality in Teichmiiller theory.

Corollary 3.3.6. Let Kq be the minimal n-plane quasiconformality constant for all

maps f1: M w— M, such that [ o f is homotopic to the identity. Then
(1/K0)2/ dV < / K () (Eydv
M M P
This illustrates why our inequality isn’t sharp. Having a constant dilatation on the
right hand side would imply that the map is extremal, if p was quadratic mean, like

it is in the original Reich-Strebel Inequality. We can get the same type of inequality

when the form p) is closed, and in fact a variation from such a form is what matters.

3.4 (eneralized Teichmiiller Theorem and Extremal

Fibrations

We can prove the following result about a uniquely extremal map, corresponding to

the Teichmiiller uniqueness theorem, using the inequalities like those that we have
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obtained

Theorem 3.4.1. Suppose that dp A = 0, where p is an extremal metric of a
spectal Lagrangian fibration T' with a calibrating form v = Re . Then the map
[ (M,g) — (M, gr) induced by the identity, and corresponding to the shrinking
of the Calabi-Yau metric g on fibres by a homothety with a constant factor k, is
uniquely extremal in the class of all gc-maps f1: (M, g) — (M, g) such that f{'o f
is homotopic to the identity. The extremality is understood as minimizing first the
n-plane quasiconformality constant, and then the one dimensional qc-constant, and

uniqueness s understood up to conformal self-maps of the target.

Proof. Note that the extremality here means double minimization - although qc-
constants are intertwined, and families compact with respect to any one of them, the
particular minimizers might differ for various gc-classes. The second minimizing will
ensure that our map is in fact uniquely extremal, as the n-plane constant has to be
k™/? and therefore pointwise we can get uniqueness, up to conformal self-maps of the
target. The extremality of the map would follow from the equality analogous to the
First Fundamental Inequality, only with g being replaced with a quadratic mean. We

will prove this as our next proposition. O

Proposition 3.4.2. Ifdp At = 0 then we can replace p with a quadratic mean in all

the theorems above.

Proof. In this case, the proof of the generalized Reich-Strebel inequality goes along
essentially the same lines as in the classical case. We repeat the two steps with the

necessary changes. Let p;(z) = p(f(z))Kr ¢(x)|D f(x)|*/2. Then

/ plpdV=/d7’1/ p1d0'=/d7’1/ deZ/dTl/ pd0=/ p2dV
M B S(m1) B f(S(m1)) B S(r1) M

and

[ et = [ e @Ds@ o @ppav < ([ KEgpavy [ pavy
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by the Cauchy-Schwarz inequality and using [,, |D f(z)|o(f(x))*dV = [, p*dV. Squar-

ing and combining the two inequalities then shows that we can replace the average p

with the quadratic mean. O

Note that that what matters to us is a fibration which is given as a family of n-
submanifolds I', such that an extremal metric for this family p is also extremal for a
~ larger family of homologous submanifolds. Such an object is what seems to correspond
to integrable holomorphic quadratic differentials in the higher dimensional case. In
fact, we can define extremal fibrations of arbitrary dimension m, which correspond
to quadratic differentials in the higher dimensional case in this sense.

Definition 3.4.1. Suppose (M, g) is a compact Riemannian manifold, with an m-
dimensional fibration given as a projection m : M +> B with singular locus A and
'y = {7~ (z) : x € B\ A} consisting of compact fibres. Let T be a family of m-
submanifolds homotopic to fibres from I', and let p: M — Rt be a conformal factor,
such that all fibres from I’y have the same m-volume, and such that there is a volume
form on a base that can be pullbacked to M in a way consistent with p on orthogonal
complements of fibre tangent spaces. Then p is extremal metric for I'y by the analog
of the Beurling criterion, and if it is extremal metric for I', i.e. if m-volume of all
clements of I is greater or equal to the volume of fibres from Iy, then we say that

the fibration (w, I, p) is extremal.

Note that in this definition Iy depends only on the conformal structure specified
on M. We use a conformal factor p, and in the case that the dimension of a manifold
n = 2 that we have considered so far, p™ was used instead. Correspondingly, now
p € L™ instead of L2

The analog of the Beurling criterion we can state as two corresponding conditions

e [spgdo =MD, p) forall S €Ty

o If a real valued h € L"™(M) satisfies Jshdo > 0 for all S € T'g then

/ hog™™dV > 0
M
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As before, these conditions imply the extremality of pp. Indeed, for any other

nonnegative p € L™(M), normalized so that A(T', p) = A(T, po), we have

/pmd02 /pgnda, Sely
s s

/(p —pp ) dV 20
M

But this means that [, p™pg~"dV > [,, ppdV. By the Holder inequality with p =

So by our assumption

n/m and ¢ = n/(n — m)
/ o on AV < [l ool
M

Thus ||pllz, = |lpollz., and it follows that
MCupo)™ AT p) V"
loolle. = llollzn

The last expression is of course the corresponding defining term for extremal

metric in our generalization.
Next, we prove the generalized Reich-Strebel inequality for an extrermal fibration

of dimension m.

Theorem 3.4.3. Let (7,T', p) be an extremal fibration of dimension m on a n dimen-
stonal manifold M. Then for any quasiconformal self-map f of M homotopic to the
identity the following tnequality holds:

lollz. < /M K,y (@)™ g v

Here Kr;(z) denotes quasiconformal distortion of the m-plane which is tangent

to the fibration I' at x, i.e. the Jacobian of the map f restricted to this n-plane is
Kr;(z)|Df ()™,

Proof. Let py(x) (f (@) Kr ¢ (z)™| D f(z)|*/™. Then

/ prpt AV = /dT1/ o1 da—-/dﬁ/ mda>/d7'1/ mda—/ "dV
M T]_) S(T]_)) B S(‘Tl) M
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and

L

/M Y = /M K 4(2)| DI (@)™ ol (@)™ dV < ( /M K2 V) /M odV)

by the Holder inequality with p = n/(n—m) and ¢ = n/m and using [,, |Df(z)|p(f(z))*dV =
/ y P"dV . Combining the two inequalities then finishes the proof, as before. O

The Teichmiiller uniqueness theorem follows.

Theorem 3.4.4. To any estremal fibration of dimension m, the corresponding map
f:(M,g) — (M, gr), induced by the identity, and corresponding to the shrinking of
the melric g on fibres by ¢ homothety with a constant factor k, is uniquely extremal
in the class of all gc-maps f1 : (M,g) — (M, g) such that f{' o f is homotopic to
the identity. The estremality is understood as minimizing first the m-plane quasi-
conformality constant, and then the one dimensional qc-constant, and uniqueness is

understood up to conformal self-maps of the target.

Proof. The proof is exactly the same as before, starting from the generalized Reich-

Strebel inequality. O

In the classical Teichmiiller theory, infinitesimally trivial Beltrami differentials p
are characterized as those that anihilate quadratic differentials, i.e. such that [ e =
0 for all integrable holomorphich quadratic differentials ¢. Here is the corresponding

condition for extremal fibrations.

Theorem 3.4.5. Let (p,I') be an m-dimensional extremal fibration of an n-dimensional
Riemannian manifold M, and let §Kr be some infinitensimal variation of an m-
dimensional quasiconformality constant with respect to T', corresponding to a variation

of the identity map, homotopic to identity. Then

/ §Kpp"dV = 0
M
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Proof. This follows from the fact that the first variation of the integral [,, K {3/ f(”_m) prdvV
is zero when f is an identity, since identity is an extremal map. We can show this
more directly, using the fact that the first variation of an m-area of any S € T', mea-
sured with respect to conformal factor p, is zero by the assumption that (p,T’) is an
extremal fibration, but this proof goes essentially along the lines of the proof of the
generalized Reich-Strebel inequality as well. If §J is the corresponding variation of

the Jacobian determinant and dp of p, then for any S €I’
m m—1
(6Krp + EcUp +mép)p™ do =0
5

Now, we can use this and the fact that [, (0Jp" 4+ np"~18p)dV = 0, since variation

comes from a homeomorphism, to prove the assertion:

/ 6Kpp”dV:/dT/ dKprp™do =
M B 5(7)

- _T/ dT/ (6Jp + ndp)p™ ‘do = _?1?/ (6Jp + nép)p™ tdV =0
nJg 5(7) nJm

O

Special Lagrangian fibrations are in some cases also extremal fibrations. One
such case comes from the examples constructed by E. Goldstein in [26], where SL

fibrations come from structure preserving torus action on a noncompact Ricci-flat

Kahler manifold.

Proposition 3.4.6. Suppose SL fibration is obtained from a structure preserving
torus action with the corresponding vector fields X, ..., X1 as in [26], such that
(n-1)-volume spanned by X1,... Xn_) is constant along the fibres. Then the fibration

is ertremal.

Proof. The fibration is obtained by contracting the form ¢ with vector fields X, ... X,_1
to get a holomorphic 1-form dn+¢d¢, and then the fibres correspond to the condition

§ = c in addition to the fixed moments corresponding to the torus action. Then
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V&= JVn, and so df = iv,w and both V¢ and V7 preserve w. Then if duy = ix, w,
we have the form dr = duy A. . . Adp,_1 AdE, which is a pullback of the corresponding
form on the base, and we ought to show that dr A Jd7 is some function on the base

times the volume form. But
drAJdr=i1xw . ix, (WANIggw Atgxw AL ix, WA Tyugw

This is proportional to the volume form for points on nonsingular fibres, and the coeffi-
cient of proportionality is constant times volume spanned by vectors X,,...,Xm_1, VD
JX1,...,JXu-y and JV7. But the volume spanned by these vectors is | V7|4, since

Re ¢ is the volume form on a fibre by the calibration property, and
Re p(X1,... Xpo1, Vi) = dn(Vi) = [Vn?

But since V7 is orthogonal to the orbits of the torus action, the volume spanned
by Xi,...,Xn_1 is just |[Vn|, and so it follows that |Vn|? is constant along the fibres

too, and the fibration is extremal. O

The additional condition is satisfied for instance in the case of an n — 1 torus

action on C" given by

(e'wl’ o ’e'iﬁnfl) (21, %) = (ewlzl, . ’e’ienﬁlzn_]., e—¢(01+...+6n_1)zn)

The fibration is given by

|z1-l2 — Iznl2 = q, Im(i"_lzl CeZp) = Cp

This is a classical example of Harvey and Lawson, [12].
It is also true that SL fibrations are extremal when the condition dp A = 0
is satisfied, and in particular when p is a constant. When a variation supys p/p of

extremal metric becomes close to 1 we can expect that the metric g, will be close
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to extremal. The metric g can be obtained by changing a complex structure J to
some almost complex structure. It will not be integrable, but we can expect it to
be close to the integrable almost complex structure in the large complex structure
limit of Calabi-Yau manifolds. In this limit, we expect that variation of extremal
‘metric p will also tend to one, and so extremal maps corresponding to the change of
complex structure should be related to the existence of special Lagrangian fibrations
in this limit. The Strominger-Yau-Zaslow conjecture can be understood as relating
the geometry of mirror manifolds only in such a limit. It is possible that one can relate
the extremal qc-maps obtained by varying the complex structure and the symplectic
structure of the mirror in the large complex and large symplectic structure limits
more directly. In any case, the study of extremal problems in this context seems to
make sense.

The question which naturally arises is how are we to understand the large complex
structure limit. We again recall the two-dimensional case where there are various
possible compactifications of the Teichmiiller space. The Teichmiiller compactification
is obtained by adding points at infinity to the rays corresponding to Teichmiiller type
Beltrami differentials, k@/|¢|. But this compactification depends on the base point.
A more natural Thurston compactification is obtained by gluing projective measured
foliations onto Teichmiiller space. By a theorem of M. Wolf, this compactification
can be related to quadratic differentials which are obtained as Hopf differentials of
harmonic maps, in an alternative representation for Teichmiiller space, [5]. The Hopf
differential gives a corresponding fibration which has the property that the harmonic
map shrinks maximally along the fibres, although the quasiconformality constant
varies from point to point for this harmonic representative. However, in the large
complex structure limit this map varies little from the afline stretch in the natural

parameter, as shown in the proof of the Wolf’s theorem. This seems similar to the
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asymptotic behavior which might exist in the large complex structure limit of Calabi-
Yau manifolds. It is possible that energy minimizing representatives in the higher
dimensional case can be used to represent the corresponding compactifications in
some way, and for constructing SL fibrations in the large complex structure limit.
Some conjectures about how the right compactification should look like have been
proposed by Kontsevich and Soibelman in [16].

As opposed to the two dimensional case, in higher dimensions the Weyl curvature
is an obstruction to representing conformal structures as local deformations. Thus,
it seems natural to study only such changes of conformal structure which satisfy a
certain curvature condition, corresponding to the vanishing of the Weyl curvature in
the flat case. It would be interesting to characterize infinitesimally trivial Beltrami
differentials in the higher dimensional case in some way analogous to the two di-
mensional Teichmiiller theory, with extremal fibrations playing the role of quadratic
differentials. We have seen that extremal fibrations have many of the corresponding
properties of the quadratic differentials, but there might be some differences. By a
theorem of Hubbard and Masur every measured foliation on a Riemann surface is
measure equivalent to exactly one measure foliation corresponding to a quadratic dif-
ferential. Weather such strong existence results hold for higher dimensional extremal

fibrations, in some cases at least, remains to be seen.



Chapter 4
The Schoen-Yau Conjecture

In this section we give a counterexample to a conjecture posed by Richard Schoen
and S.T. Yau in [5], which says that there is no proper harmonic map from the unit
disk to the complex plane with the flat metric. This conjecture is connected with

some problems in the theory of minimal surfaces.

4.1 Connection with Minimal Surfaces

The Schoen-Yau conjecture is related to the question weather there is a hyperbolic
minimal surface in R® which properly projects onto R2. There are no known examples
of such a surface - all known minimal surfaces that are graphs over R? project properly.

The link is given by the following proposition.

Proposition 4.1.1. A hyperbolic minimal surface in R* which projects properly onto
xy-plane ewists if and only if there is a proper harmonic map from the unit disk onto
the complex plane with a flat metric, given as Re f + iIm g with analytic functions
of the unit disk [ and g satisfying f' = m? +n? and g’ = m? — n? for some analytic

m and n

Proof. If ds? = Edu® + 2Fdudv 4+ Gduv? is the first fundamental form of our minimal

46
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surface (z(u,v),y(u,v), 2(u,v)), then E = z2 + y2 + 22, F' = ZuZ0 + Yl + 2t
and G = z2 + 12 + 2z2. For conformal coordinates u,v we have that ' = 0 and
E = G. Then the Euler-Lagrange equations for the minimal surface boil down to the
additional condition that the coordinates z,vy and z are harmonic, given as real parts
of some analytic functions fi, f; and fs of u + év. If the surface is hyperbolic, there
is a conformal change of coordinates such that domain of w = u + v is the unit disk.
Then the conditions E = G and F = 0 are equivalent to f2+ 52+ fi2 = 0, and so the
functions f, if} and 7f; form a Pythagorean triangle. In other words, we can restate
this condition in terms of functions m and n so that f| = m? +n?, if, = m* —n® and

ify = 2mn, proving the assertion. O

Our counterexample does not satisfy this restrictive condition, but it shows that
there could be a related construction in minimal surfaces, or that there is no such

minimal surface for some much more subtle reason.

4.2 The Counterexample

By a classical result of E. Heing, [17, 18, 19], there is no harmonic diffeomorphism
from the unit disk A = {z : |2] < 1} to C with flat metric. However, there is a proper
harmonic map, contrary to a conjecture from [3].

The counterexample is given by the following function u : A +— C

N Re (Z S (s
u(z) = 3 Re (L™ +i3 Im ()

k=1

my=mn1 = 1, Mk = {dng + Dmg, niey1 = (dmggr + D)

Proposition 4.2.1. Map u : A+ C is proper harmonic.
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Proof. Let us consider a map v : H — C, where H = {z : Im z > 0}, given by
v(2) = u(e”), ie. (z=z+1y)
1

U(Z) = Z emk('llc'fy)COS (mk;.']?) +1 Z enk(m_y)sj_n (nkx)

k=1 k=1

We are to show that v(z) — oo when y — 0.

Notice that my, ne > i?zk, M1 > M, T = Tk
1

Consider the case -1 <y < 1 (k>2)
2

Re (v) = ™1 (1Y) cog (Mi—12) + €™ EFYeos (mez) + Ay (2)

”k—l('kjlr—y)

Im (v) =e T 7'gin (ng—1z) + As(2)
We have
k=2 . 00 (b= —10) k—2 . 00 L
AL <Y eT + D e TTRE <Y eT 4+ Y e mimy
=1 I=k+1 =1 I=k+1

™41

. 1 m Zil
Since my4; > 22my, we have 2e T < eTit and e”™ > 2e~™+1 50 |A1(2)] <

M2 _ ME4+1
Qe F-2 4 2¢  TF +15%k+1j7 and when k + co we have

| 1
A z — emk—l(kl_l_y)o
|A1(2)| (mi_l)
Similarly
k-2 5 [e3) (i 1 k-2 . o B o _—
|A2(z)| < Ze#{ +Ze l(ﬂ- E'%-) < Bl+7 _|_ 1 _|_ e (k+21)(k+‘zs) < 26k__-%- +2
so when k — oo
1
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Since sin (ng—121) = 0 & 21 = I, p € Z, cos (Mp-122) = 0 & 22 = (gfn—tl_)li,

m

q € Z, and both ng_; and my_; are odd, we have x| # z» and |z; — 25| > S

Similarly if cos (mxx3) = 0 then |z — o3| > 57—
Also notice that cos (mgz1) = cos (mg—y1z;) since myx = (dne—1 + 1)mp—1,
80 Myr, = mk% = (47’1,16__1 + 1)mk_1(n7:’_'1) = ni:mk_l(mod 27T) Slmllarly

kis

sin (ng—123) = sin (nkrs) - here we need 4 since 3 appears.

For given z let z; be the closest zero of sin ng_;z. When |z — 2] < 55—
k-1

s 1 il 1 ™
we have that cos (mgz)cos (mr—1z) > 0 because ond T < 2By 2 g for

me < (4ng_1 + 1)ng_1. Also |cos my_1z| > Z—7—, since the closest zero is at least
=1
m away, and ng_y < (dmg_; + 1)myg_ .
Thus, we have in this case

+ato(—))

> |R. =6Mk-1(ﬁ—’y)

with @ > 0 and @ > 1, and clearly tends to oo as k — oo.

T : 1
When |.’L' — .’,'Cl| > m—i:-l', then |Sll’1 ’I’lk_]_.’fCl > m‘g:, S0

ne_1(—Lr—1) g 1
SRR ))

| > |Imul=c¢e
o> | | 20“}%—1 n12c—1

with 6 > 1, which also tends to oo as k +— cc.
The case 27 <y < ng is completely analogous to the discussed one, with the

roles of Im v and Re v interchanged. In particular, in this case we have

T — 1__ n S
Im (v)=e g y)sin (Mk—12) + € {5E sin (nxz) + A(2)

Re (v) = emk(%_y)cos(mka:) + Ay(2)

Where, by the similar computation as above, when k — oo

1
2
L)

1__
D) = T

)
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1 1
|Ag(2)] = €™ Vo(—5)
m

For given z let x; be the closest zero of cos mgz. As above, when [z — 21| < 355

k

we have that sin (nxz)sin (ng_;z) > 0. Also |sin nx_;z| > & —7—, since the closest
k—1

zero is at least 4m:1mk away, and my < (4ng_y + D)ng_1.

Thus, we have in this case

[v] > |Im v| = enk_l(’“_‘l;_y)( 02 +a+ 0(—21——))
20mg_y -1

with @ > 0 and ¢ > 1, and clearly tends to oo as k — o0.

When |z — 2| > oy then |cos myz| > ,20—1”%, 50

a0 1
lu] > [Re v| = ™01 y)(QOmﬁ +O(ﬁ%))

with @ > 1, which also tends to 0o as k — oc.

Thus, we can conclude that |v] — oo when y +— 0, so our map is proper.



Chapter 5
The Frankl Conjecture

In this chapter, we describe an approach for disproving the Frankl conjecture, [20,
21, 22], and study the structure of finite lattices. We give a stronger, equivalent
statement to the Frankl conjecture, which can be used to construct a counterexample

or, if the conjecture is indeed true, might be easier to prove by induction.

5.1 Introduction

A widely believed hypothesis in the general theory of finite lattices, Frankl conjecture
states that every finite lattice contains a join irreducible element which is below
no more than half of the elements in the lattice. The hypothesis can be restated
in terms of finite families of sets closed under intersection (or union) - every such
family is supposed to have an element occurring in at most (or at least in the dual
formulation with unions) one half of the sets. It was first stated by Frankl in 1979,
[22] and appears in [20] and [21]. There have been many partial results and attempts
to prove it, and the conjecture holds in many special cases.

We are going to consider the version with intersections, and consider finite families

of sets A C P(T") with some finite total set 7T

ol
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To study such families, we will introduce three operations corresponding to an
element a € T: projecting P,, enhancing &, and diluting D, of a family. The pro-
jecting operation P,, mapping one set family closed under intersection to another,
is the simplest of the three, and we define it as removing of an element a from all
the sets in the family. Projections are connected with the surjective meet product
homomorphisms of underlying lattices, and obviously all commute one with another.
We can so define a projection operation P4 corresponding to a set of elements A as
a sequence of corresponding projections P, for a € A. This should be distinguished
from the projection onto set A, which we will denote by I14 = Pp\4. Similar thing
will not possible to define for operations &, and D,, as the order of enhancing and
diluting will matter. The unity of the underlying lattice plays somehow artificial role
in this setting, and we will assume it is removed.

We shall define operations £, and D, so that they map one set family closed under
intersection to another, keeping the cardinality of the set families unchanged and
adding or removing an element ¢ whenever possible. To understand these operations,
we need to introduce a notion of a blinking subfamily, corresponding to a.

Suppose that A C P(T). The ”"blinking” subfamily B, C A is a family of sets
X C T with the property that both X U {a} and X \ {a} are in .A. This family is
also closed under intersections. All other sets of A can be distinguished from each
other by the other elements alone. In particular, if B, is empty, then we might add
a to all the sets of A, or remove it, without changing the cardinality of A. However,
if B, is not empty, then there is the minimal blinking element F, = [ B,. As easily
seen, £, U {a} is the minimal element of A containing a. Then we enhance all the
sets that contain E,, and are not in B,, by adding a to them whenever that does
not contradict closeness of a family under intersections. In other words, whenever we
have a set X D F,, for which X NY € B, for all Y € B,, we will add a to X. In

this way we will obtain a new set family &,.4, which is closed under intersection, has
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the same cardinality as .4, and has frequency of occurrence of all elements at least as
great as in A. Similarly, if we remove a from all the elements not in B,, we will get
a diluted family D, .4

We say that a family A is saturated for a if A = £, A. By repeating the procedure
of enhancing, we can get a maximally enhanced family of sets which will be saturated
for all elements of T'. It will have the same cardinality as .A and it will be closed under
intersections. The enhancing process is not canonical, and such a lattice in general
depends on the sequence of enhancing steps we perform, as well as the underlying
enhanced lattice. But any maximally enhanced family will have frequencies of all the
elements at least as great as in A, and so we may restrict our attention to the families
of sets which are saturated for all the elements of 7.

The diluting operation D, is a bit simpler than &,. The maximally diluted families
are just ideals of the Boolean algebra, i.e. families of sets closed for subsets. Such
families are easily deseribed by specifying the set of maximal elements of the lattice
with the unity removed. The diluting process also depends on the sequence of steps
performed and there is no canonical maximally diluted family of A, and we first need
to specify ordering in which dilution is to be done. The diluting operation can only

possibly decrease cardinality of projections, as the following proposition shows.

Proposition 5.1.1. Let A C P(T) be a family of sets closed under intersections.
Then for any a,b € T we have P,Dy A C DyP,A.

Proof. We have to deal only with the case when a is different from b. We first note
that the projection of E} is By for the projected family, because P, Ey and P, E, U {b}
are both present, and in every case when b is present in some projection, it has to
be present in the original, which hence lies above I, and so the projection is above
the projection for E,. Also, the blinking sublattice of P,D;.A is contained in the one
for DyP,A, which is possibly larger. Indeed, D,P,.A has the same blinking sublattice
as Po. A by the definition of the diluting operation, and if both X and X U {b} are
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present in P, Dp.A then they must be present in P,.A too, because we can pass to the
originals and use the fact that dilution D, will keep b only if a set with b removed
is already present. The rest of the elements of P,D,.4, which are not in blinking
lattices, are present in DyP,.4 because they come from some originals from which a

and b are removed. J

To assess the Frankl conjecture, we may restrict our attention to the maximally
enhanced lattices, saturated for all elements of T in some representation as a set
family. Maximally enhanced families of sets are determined by the blinking sublattices
B,. Lets assume that the blinking sublattices are ideals of the interval [E,, 1], and
that they only depend on some other underlying lattice L'.

Such families can be described in the following way. The set E, will be an element
o of L. Now B, will correspond to an ideal of the interval o, 1z/], which can be
described by an antichain of minimal j;, which are not in the ideal. There might be
more than one a with the same ideal, and hence we add a multiplicity index [ to the

description.

Definition 5.1.1. Let T C {anp, 5.0 : &,01..-8 € L'}. For § € L' let Fs =
{aap .t €T < S}, Bs = {aap. g0 ET < 85,81...0 £ S}, and Eg =
Fs\ Bs. Next, let B = [Es, Fs] = {X : Es C X C Fs}, which is a Boolean algebra
isomorphic to P(Bs). Then we define lattice Ap = {(S,X): 5 € I/, X € Bs} with
the meet product operation (Sy, X1) A (Sz, X3) = (S1 A Sy, X1 N X,).

This construction is not quite the most general that can be considered, as one
generally needs several extension steps and also a possibility that B, is not an ideal,
but only a sublattice of [E,, 1], to construct an arbitrary saturated family.

Let us consider families Apn v = Argmnm, N)E(1..N]), depending on integer
parameters m, n - index subset sizes, index space size N, and multiplicity M, in more

detail.
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The set T'(m,n, M, N) is a set of elements aq5; where o, 8 C [1... N], such that
o] =m,|Bl=nand le[l... M].

For every i € [1...N] we have F; = {aap,; : i ¢ a}, and E; = {aag,; : ¢ ¢ B}
Next, B; = {F;NX : E; C X}. Note that this is a Boolean algebra under intersection,
with E; N F; playing the role of an empty set, and F; role of a full set.

Since all B; are closed under intersection, each nonempty member of a family
Amnmn 18 going to be intersection of sets from B;’s with no repetitions. Let S C
[1...N], then we define

Bs ={[)X:: X c B}
g8
Note that Bs is a Boolean algebra with Fs = [,,5 Fi = {aa1 1 @ C S} playing the
role of a full set and Eg = Fs N ()45 Ei = {aa,s:: @, 8 C S} playing the role of an
empty set. It is isomorphic to P(Bg) where Bs = {aap,: @ € S,8 & S} is the set of
"blinking” elements of Bg. We will call the size of Bg the ”"volume” V(S) of S.

Note that volume is proportional to multiplicity, V(S) = MV’(S). The idea is
that when M is very large, the family A, 5 is going to be dominated by families
Bs maximizing the volume V(.S). We can roughly think of our family of sets as an
enhanced Boolean algebra over [1...N] with each S C [1...N] given multiplicity
V(S). 1t then clear that, by making M large, it is sufficient to restrict attention only
to those S which maximize the volume.

The volume V'(S) of a set of indices S C [1... N] depends on the size of S only.
Define p = |S|/N. It is useful to normalize the volume by considering V' (S)/|T| - the
fraction of all elements which are in Bg, i.e. the probability that an element will be
"blinking” in Bg. This does not depend on the multiplicity M, and we can consider
the limit as N — oo, which will depend on p, n and m alone. So, we define the limit

probability of blinking

v(p) = lim V(S)/IT], where |S| = pN
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Proposition 5.1.2. The limit probability of blinking v(p) = p™(1 — p™)

Proof. The set of ”blinking” elements is Fs\ Eg = Fg \ﬂms E;. This means that an
element aq g, is blinking precisely when a € S and 8 € S. Obviously, when N — oo,
the limit probability of the first condition is p™, and of the second is 1 — p™, and since

a and [ run independently, the statement follows. O

Now it is easy to find p, 0 < p < 1, which maximizes this probability. We have

m — (m +n)p" =0, ie. p= g/-7. For large enough N, and M large enough
(depending on N), only the sets which belong to Bs with the size of S closest to

(1 - ¢/72) N will matter.

An element a, g, occurs in a set from Bg with probability 1 if it belongs to Eg,

with probability % if it belongs to Bg and with probability 0 otherwise. Note that all
families Bg with S of the same size contain the same number of sets. It is also true
that these families are disjoint, provided the size of S is not less than n nor m (if it

is, the families will contain an empty set).

Proposition 5.1.3. Let S,5" C [L...N] be different sets of indices of size not less

than n,m. Then the families Bs and Bgs: are disjoint.

Proof. For any X € Bg, we can reconstruct S as the set {¢ : X € F;}. Indeed, if
i ¢ Sthen X C Fg = ﬂi¢S F; C F;. But if 1 € S, then because of our assumption
about the size of S, we can find «, 8 such that i € o, « C S, § C S, and we have
that ang; ¢ Fi and aa s, € Es C X. This proves the assertion. d

In particular, for n,m fixed, sets of maximal volume will always have disjoint
families Bg, provided that IV is large enough. Thus, the frequency of an element in
all the sets of maximal volume is going to be equal to the probability that it belongs
to Eg, plus one half of the probability that it belongs to Bg, where probability is

taken over all the sets S of maximal volume.
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In the limit N — oo the first probability is going to tend to p™*™ and it is the
same for all elements a, 3;. However, the second probability depends on the size of
the set a N J - it is largest when these sets are disjoint. Indeed, the probability is
of the event o C S and 3 € S, and it will be p™(1 — p"~¢) in the limit of large N,
where d = |a M F|. The fraction of elements with d > 0 is tends to zero as N — oo,
and the total probability equals the expected size of the set in Bg, asymptotically as

N — oo. The frequency of all elements thus tends to p™™™ + %pm(l —").

m
m-+n?

Setting ¢t = m/n, and recalling that for the maximal volume p™ = we can

rewrite this limit as
1

t+1

o)

t+1
1
)T+ 5

(

Proposition 5.1.4. For any t, 0 < t < 1, there is a sequence of families of sets

Amn i, such that the minimal frequency of occurrence of an element tends to

t 1

(m)“l(l + Et-)

Proof. For t = 2 we let N — oo. For each such N, letting M — oo we get that
the minimal frequency of an element is going to tend to the minimal frequency of
an element over the union of families corresponding to § with the maximal volume,
because non-maximal volume differs at least by M from the maximal, and so the
size of Bgr is at least 2 times smaller than Bs when V(S) < V(S). Passing to
a subsequence and using the asymptotic estimate derived above, we get the desired

sequence, O

The function (7)"'(1 + ) has a limit ; when ¢ goes to zero, and e~ when ¢
goes to infinity. The situation does not much improve if we consider multiple 3 and
more general T - we can get frequencies of occurrence of some elements to be above
one half for the maximal volume, but there is always one element which has to pay

for the adjustment of p. In fact, it can be shown that for elements of maximal volume

in any Agr . the Frankl conjecture is true.
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5.2 The Equivalence Theorem

From the considered families Agy, it is evident that there is a link between the fre-
quencies of occurrence of an element a € T and volume contributions. This can be
generalized to any lattice, and we can show that a generalization of the weighted sum
ZaeT fala, where v, is the volume contribution of an element a, is less than equal to

1/2 if the Frankl conjecture holds. This is a strengthened version of the conjecture.

Theorem 5.2.1. The Frankl conjecture holds if and only if for any finite family of
sets A C P(T) closed for intersections, any probability measure p : P(T) — [0,1]
satisfying pla € X) < f, for all a € T, where f, is the frequency of occurrence of a
in A, has an expected value of mass Em(X) < 1/2. Here the random variable m(X),
o mass of a set, is defined as m(X) = 1 — log| Ax|/log|A|, where Ax is a family of

sets obtained by removing all the elements of X from all the sets of A.

Proof. One direction is straightforward - if A has all frequencies of occurrence greater
than ¢ > 1/2, then define p to be T with probability ¢ and zero set with probability
1 — g - it satisfies the required condition and the expected value of mass is equal to g.

To prove the converse, assume that there is a family A and a probability measure
such that Em(X) > 1/2, p(a € X) < f,. By taking complements and boosting a bit
the probability of a full set on expense of all other, we get a probability measure such
that p(a € X) > 1— f, and Em(T \ X) > 1/2. But the mass of T\ X measures the
size of a projection to X, i.e. we have that E(log|lIx.A|/log|A]) < 1/2.

Let A; = AX1 be a cartesian product of K copies of A. Define the corresponding
probability measure p; to be nonzero only on multiple sets X% and define it to be
equal to p(X). Then the desired properties will hold for the new family A, as well. In
this way, taking K to be large, we can get A; with arbitrarily large cardinality, but
with the same expected value of mass, which we denote by m, and the frequencies
the same as in A, only each one repeated K; times. We can also assume that A4,

contains an empty set.
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Then again we take a cartesian product A, = A3%*71. We will take constants
Ky > m+1/2 and K so that [A;| 3> 252 Let us define the family A; in the following
way. Except for the elements of a total set of A, sets from Ay will also have elements
¢ with ¢ € [1,2K, — 1], and As will be generated by the sets from 43 having j-th
component an empty set, to which aset {¢;: j < i< j+ Ky —1Vi<j— Kp}is
added, for j € [1,2K; — 1]. The role of the added elements ¢; is to cut the volume
contribution of the family B, which we will soon describe, in almost a half. To this
end, the frequency of occurrence of c;, which tends to K,/(2K> — 1) as K goes
to infinity, is much closer to one half than the expected value of mass m, by our
assumption about K,. By increasing K, and K, we can get frequencies of all the
other elements to be close to the initial f, frequencies in A; as well, since only the
described generating sets of A3 will matter for K, large enough.

We are going to construct a family of sets 5 which will have frequencies of occur-
rence of corresponding elements from A; greater than 1 — f,, be invariant under the
intersection with A3, and have frequencies of elements ¢; slightly under 1/2. We will
then use a convex combination of the two families A3 and B, with the first having
just above 1/2 and second just under 1/2 contribution, so that all frequencies are
above 1/2. We will do that by adding a multiplicity to the second family using a

| linearly ordered set [1... MAX], where MAX will be present only with A3 and all
other weighting elements from [1... M AX] present as maximums with B.

To get the family B we first approximate p; with a very fine rational measure,
taking an integer K large enough so that all events are with probability 1/K3, but
with repetition. Let M be a multiplicity parameter, and each ¢; we replace with
a block ¢;;r where j € [1...K3] and k € [1...M]. Then for each event w; with
l€[l...K;] we define a family of sets €, = {{ci;x:j #l,k€ B}: BC[1...M]}.
Corresponding to every event there is a set X of 4; and A; = X25271 of A,. Define
By to be a family of sets A;UC, with C, € C;and | € [1... K3]. The idea is that when
M is large enough, closure of By under intersections with itself and under intersections

with Ajy, in which every element ¢; is interpreted as a whole block of ¢, is going
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to be dominated by By in size. But we need to adjust M and K; in such a way that
log|Ba|/log|As| is less than, but very close to one. So we first choose K3 and K3 much
larger than m+1/2 and so large as not to affect the condition on the frequencies f,
and probability p;. Next, we let M and K go to infinity simultaneously, but so that
log|Bo|/log]As| tends to 1 — ¢ with 0 < € « m — 1/2. This is easily achieved since
the size of By does not depend on K and the size of A3 on M.

In this limit, where K3 and K3 are fixed with K3 >> K, the number of intersections
of By with Aj is going to be less than the size of By by a factor which tends to infinity,
because the contribution of elements from the total set of A, is going to be less than
1/2 and of those of C; almost 1/2 of the total logarithm of B, for every one of the K
events w;. The same holds for intersection closure of By, and so in this limit we are
going to have a family of sets B, closed for intersections and for intersections with As,
having size less than A3, but frequencies of occurrence over 1— f, for the corresponding
elements, according to the property of our probability measure. For elements c;;
the frequency will tend to 1/2(1 —~ 1/K3) in B. Now because we took K3 >» K, - a
choice which matters only here - we will have that frequency of ¢; ; x, averaged for A;
and B, will be over 1/2. Then taking a parameter M AX corresponding to a convex
linear combination with slightly greater contribution of A; than of B - we need this
slight difference in order to get weighting element M AX to have a frequency over one
half too - we get that all the frequencies of elements in the obtained combined family
are greater than 1/2. This contradicts the Frankl conjecture, and proves the converse

assertion. O
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