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Abstract

We study strong interaction effects in nonleptonic decays of B mesons with energetic
particles in the final state. An introduction to Soft Collinear Effective Theory(SCET),
the appropriate effective field theory of QCD for such decays, is given. We focus on
decays of the type B — D™ M where M is a light energetic meson of energy E.
The SCET formulates the problem as an expansion in powers of Agcp/Q where
Q ~ {my, m., E}. A factorization theorem is proven at leading order that separates
the physics of the scales Agcp < ]/ EAgep < Q. In addition, the factorization the-
orem decouples energetic degrees of freedom associated with the light meson allowing
us to derive heavy quark symmetry relations between the B — DM and B — D*M
type amplitudes. A new mechanism for the generation of non-perturbative strong
phases is shown within the framework of factorization. Heavy quark symmetry re-
lations are shown to apply for these strong phases as well. Furthermore, the strong
phases for certain light mesons in the final state are shown to be universal. The
analysis is extended to B — D®M, and B — D**M type decays with isosinglet
light mesons and excited charmed mesons in the final state respectively. A host of
other phenomenological relations are derived and found to be in good agreement with
available data.
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Chapter 1

Introduction

1.1 Low Energy Symmetry and Power Counting

We are fortunate in that nature allows to investigate various phenomena indepen-
dently of each other. For example we can study planetary motion without under-
standing atomic structure, atomic physics without knowing that nuclei are made up
of protons and neutrons, and nuclear physics without solving quantum gravity. We
then come to realize the world by unifying the physics of these different domains into
a coherent picture of our universe.

In the modern language, we say that the world is described by a set of “Effective
Theories” each describing the world as seen at some resolution. For example, in
studying properties of an atom, we are investigating the world at a resolution of
~ 10~%meters, roughly the size of the atom. At this resolution, the substructure
of the nucleus(typically of size 10~'5meters) cannot be seen and effectively behaves
as a point particle with some characteristic mass, charge, and spin. The relevant
physics regarding the nucleons and their interactions that goes into making up the
nucleus, is encoded in such parameters. We can directly measure these parameters
from experiment and proceed with atomic physics to make quantitative predictions
even if we lack an understanding of the underlying nuclear physics that goes into
making the core of the atom. One can continue along this line and study the structure

of the nucleus(~ 10~'°meters) in terms of nucleon and meson degrees of freedom
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without a knowledge of the underlying quark-gluon dynamics(~ 10~'®meters). In
this sense, the world can be viewed as a chain of effective theories starting at very
large distance scales(low energy) on the order of the size of our universe all the way
down to the Planck scale(high energy).

Furthermore, effective theories allow us to describe various phenomena by for-
mulating the problem in the “appropriate” degrees of freedom. For example, even
though the Standard Model gives a correct description of the strong, electromagnetic,
and weak interactions down to distances of order 1078 meters, it would be silly to
study the hydrogen atom in terms of quark and gluon degrees of freedom interacting
with the electron. Instead a simple and accurate description is given by an effective
theory in which non-relativistic quantum mechanics is applied to an electron moving
in the Coulomb field of a point particle whose mass is equal to that of the proton. The
relevant physics of quark-gluon dynamics in the proton is absorbed into parameters
of the effective theory such as the proton mass and charge. At very high precision,
effects fromm phenomenon such as vacuum polarization, predicted only in a more fun-
damental theory such as the Standard Model, become important and can be treated
perturbatively as corrections to the Hamiltonian of the effective theory.

Thus, even if the underlying theory of our universe is known, most likely it will
be expressed in terms of inappropriate degrees of freedom for most problems. The

fundamental question then becomes

“What is the appropriate effective theory with the right degrees of

freedom for the problem at hand?”

In the context of Quantum Field Theory(QFT), the problem of formulating the theory
in the right degrees of freedom becomes more non-trivial. We define a low energy scale
E at which we would like to construct an Effective Field Theory(EFT) entirely in
terms of the low energy degrees of freedom. We also define an UltraViolet(UV) scale
Ayy such that Ayy > E. The physics of the UV scale may or may not be understood.
The problem in QFT is that the physics of the UV scale can significantly affect the

formulation of a low energy theory. Heisenberg’s uncertainty principle allows energy
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non-conservation for short periods of time. Thus, even if we start out exclusively with
low energy modes at the scale E, UV degrees of freedom show up in the form of large
momenta in virtual loops and heavy particles (m ~ Ayy > E) far of their mass shell.
A familiar example of this is muon (m, ~ 105MeV) decay which proceeds through

the exchange of a heavy virtual W (My ~ 90GeV>> m,) boson.

The challenge becomes to remove the UV degrees of freedom in the low energy
EFT and still get the physics right. The key idea is that at low energies, the UV
physics associated with heavy virtual particles and large momenta in loops looks
local. All the relevant UV physics can be absorbed into a set of local operators in
the EFT. More specifically, UV effects can be absorbed into the low energy theory
by adjusting the coefficients of the EFT Lagrangian built entirely in terms of the
low energy degrees of freedom. As we shall see, in the EFT, higher dimensional or
non-renormalizable operators are suppressed by positive powers of E/Ayy allowing

us to treat their effects perturbatively.

Here in lies the power of EFT. It allows us to express theories entirely in terms of
the low energy degrees of freedom in such a manner, that corrections from the effects
of UV modes, can be treated perturbatively in powers of (E/Ayy). The effective

theory Lagrangians, will have the general form
Lppr = LO4L0 4@ 4. (1.1)

where the superscript denotes the order in power counting. Furthermore, we will
find that the leading terms £© in the power expansion exhibit symmetries that
are in general broken by the power suppressed terms. In other words, in the low
energy EFT we find additional approximate symmetries that are not manifest in
the underlying UV theory and are broken in a controlled manner at higher powers in
(E/Ayv). Thus, even if the underlying UV theory is understood, the low energy EFT
can give us additional information by allowing us to exploit low energy approximate
symmetries while providing a framework to systematically compute power corrections.

The underlying theme of all our discussions is captured in two main ideas
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e Low Energy Symmetry.
e Power Counting.

The low energy symmetries of EFTs combined with power counting can be exploited

to make quantitative model independent phenomenological predictions.

1.2 An Example: U(l)p_; as a Low Energy Sym-

metry

To illustrate the above discussion, let’s consider the familiar example of the Standard
Model(SM) which is an SU(3). x SU(2)1 x U(1)y gauge theory with quarks, leptons,
gauge bosons, and a scalar Higgs field! as the relevant degrees of freedom at the
electroweak scale (see Table 1.1). Any new physics beyond the standard model can
be absorbed into higher dimensional operators that are suppressed by powers of the

New Physics(NP) scale Ayp resulting in an effective Lagrangian of the form:

1
Legrr = [,SM+A—£5+... (1.2)
NP

where Lg)s denotes the Standard Model Lagrangian, L5 is a dimension five operator
made out of Standard Model fields, and the ellipses denote possible higher dimensional
operators. In the language of EFT, the SM is just the leading term in the expansion
in powers of ﬁ; Gauge symmetry and the particle content of the SM(or the relevant

degrees of freedom at the electroweak scale) allow only one dimension five operator:
Ls = ILTe¢pCo el + h.c., (1.3)

where € is the constant SU(2), antisymmetric tensor and C is the charge conjuga-

tion matrix acting on Dirac spinors in the notation of [98]. L5 and other higher

1The Higgs field which gives mass to the Standard Model fermions through Yukawa interactions
has not yet been observed. However, in the spirit of effective field theories, the Higgs mechanism can
be thought to parametrize the true nature of the UV physics responsible for fermion mass generation.

22



SU@3). SU2)., UQ)y U(Q)p-L

= (a) () () 50 2 0
(Wr= (Wr (c)r (tr 3 1 3 3
@h= (dr  G)r Ok 3 1 -3 3

LzL — VeL VuL VrL 1 9 1 -1
er KL TL 2

(&= (&)r (W)r (T)r 1 1 1 1

é 1 2

=

Table 1.1: Summary of the Standard Model particle content and symmetries. The
SU(3). x SU(2)L x U(1)y symmetry is required by gauge invariance and must be
respected by any new physics beyond the electroweak scale. The global U(1)g_L
symmetry is a low energy leading order accidental symmetry expected to be broken
by power corrections in inverse powers of the new physics scale.

dimensional operators can be thought of as arising from integrating out? UV degrees
of freedom associated with the scale Ayp. The leading order term in Lgpr or the
SM Lagrangian possesses a global U(1)p_; symmetry that is broken by Ls. Here
B and L are the Baryon and Lepton numbers respectively. This U(1)g-1 global
symmetry of the Standard Model is “accidental” resulting from the specific particle
content(see Table 1.1) of the SM, and is not required by any fundamental principle
such as gauge symmetry which would forbid £s. In the effective field theory language,
U(1)p-y is a low energy leading order symmetry[107] in the expansion in powers of
A= E/Anp < 1 where E is the low energy (electroweak) scale. We can use this low
energy symmetry to predict vanishing rates for B — L violating processes at leading
order.

As an example, consider neutron decay in the channel n — e 7n*. Since this

2For example, in the see-saw mechanism [67) of neutrino mass generation, Ayp is of the order of
the mass of a heavy right handed Majorana neutrino which when integrated out generates ﬁﬁs.
When the Higgs field acquires a vacuum expectation value, it generates a small Majorana mass for
the SM neutrino of order %
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process violates B — L, one can predict that at leading order in m,/Ayp
Br(n—er") = 0. (1.4)

In fact, in this case the rate will vanish even at the next order in m,/Ayp, since
one needs at least a six dimensional operator for the decay to proceed[46]. This is
of course a well known result. We were able to obtain this result even though our
understanding of the non-perturbative QCD physics associated with the neutron and
pion hadrons is rather limited. This was made possible by exploiting low energy
symmetry combined with power counting. In this thesis we will consider many other
examples where the presence of low energy symmetries is linked to the dynamics of

the EFT in more complicated ways but the basic idea is the same.

1.3 Mw — Agcp: Electroweak Decay to Confine-

ment

Our main interest is in studying electroweak decays of B mesons made up of a
bottom(b) quark and a light antiquark. In particular, we are interested in controlling
strong interaction effects in such decays. The goal [62] of the B-physics community
is to test flavor physics and CP violation in the quark sector of the SM as determined
by the Cabibbo-Kobayashi-Maskawa(CKM) quark mixing matrix. Any observed de-
viations from results predicted by the SM would signal the onset of new physics and
provide much needed constraints on model building beyond the electroweak scale.
Any hope of observing new physics depends on experimental precision and in addi-
tion the ability of theory to match this precision.

Attaining theoretical precision is complicated by the confining property of QCD at
low energies. Testing the SM at the electroweak scale requires a precise extraction of
the parameters of the CKM matrix which determine the strength with which quarks
couple to the massive electroweak W= gauge bosons. However, QCD confinement

does not allow free quarks to exist, trapping them inside hadrons of size ~ 1/Agcp
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1 Mw b—quark decay through
W exchange
1 _mb W boson integrated out

V
b™ ¢
- Ao @ (1:9 Binding of quarks into hadrons

Figure 1-1: The relevant energy scales involved in the semileptonic decay B — DIp.
Quark level decay is determined by electroweak scale physics. At the characteristic
energy scale m; of the decay process, the electroweak physics of W exchange is de-
scribed by a local effective four fermion operator. At the Agcp scale, the electroweak
decay vertex is hidden deep within the hadronic structure by the non-perturbative
effects that go into binding quarks into hadrons .

where Agcp is the confinement scale. These hadrons then become the observed
asymptotic states in particle detectors. In other words, the flavor physics of the
electroweak scale is hidden deep inside hadrons by strong interaction effects. The
theoretical challenge is to bring these strong interaction effects under control in order
to be able to extract electroweak scale physics to the desired precision. At the next
generation of accelerators, the challenge will become the extraction of TeV scale
physics in hadronic processes. In some scenarios, as suggested by Technicolor [54]
models, we might discover new gauge interactions that confine near the TeV scale
in which case all the machinery and understanding developed in studying the non-
perturbative effects of QCD will become invaluable. Finally, our efforts in studying

strong interaction effects will generally improve our ability to deal with QFTs when
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they become strongly coupled.

We will tackle the problem of strong interaction effects in electroweak decays
using the formalism of EFTs. We can immediately identify two relevant energy
scales in this problem: the mass of the W gauge bosons or the electroweak scale
My ~ 90GeV and the QCD confinement scale Agcp ~ 500MeV. The SM elec-
troweak scale physics that triggers the quark level decay process through W-exchange
is theoretically on firm footing. It is the confining property of QCD at the Agcp
scale, responsible for hadronization, that poses the most difficulty. For the problem
of B-decays, there is another relevant energy scale on the order of the b-quark mass
Agep € my ~ 5GeV < My. This is the characteristic energy scale at which the
quark level decay proceeds. To summarize, there are three widely disparate energy
scales involved in B-decays. In keeping with the theme of low energy symmetry and
power counting, we will begin at the electroweak scale and flow towards the low energy
QCD confinement scale, removing irrelevant degrees of freedom along the way and
obtain an effective field theory expanded in powers of ratios of the disparate energy
scales. This idea is illustrated in Figure 1-1 for the semileptonic decay B — DI of
a B meson into a charmed D meson. The color neutrality of the final lepton pair [
make semileptonic decays the simplest systems in which to study strong interactions
effects in B-decays. As a result, semileptonic B-decays have been widely studied and

a wealth of theoretical work can be found in the literature [91, 77].

Integrating out the electroweak scale physics to construct an effective at the m,
energy scale is well understood and is just the well known Fermi theory of weak de-
cays. The decay amplitudes in Fermi theory involve non-perturbative matrix elements
which cannot be analytically computed, limiting predictive power. In keeping with
our theme of low energy symmetry and power counting, we need to proceed below the
scale m, towards Agcp in hopes of finding additional symmetries that will allow us
to relate the non-perturbative matrix elements of different processes. In other words,
we need to find the appropriate EFT in terms of the right degrees of freedom for
QCD at low energy.

There are in fact various low energy limits of QCD with the appropriate degrees
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NRQCD

HHChPT ChPT

Figure 1-2: Some of the low energy EFTs of QCD. Each EFT is appropriate for a
certain set of processes characterized by the relevant energy scales and degrees of
freedom in the problem.

of freedom relevant for different processes. Some of these are shown in Fig. 1-2. For
example, Chiral Perturbation Theory(ChPT) is an EFT with low momentum light
mesons as the relevant degrees of freedom and chiral symmetry as the low energy
approximate symmetry. Similarly, NonRelativistic QCD(NRQCD)([88, 87, 99, 37]
is for heavy quark-antiquark systems, Heavy Quark Effective Theory(HQET)[92,
60, 59, 51, 91] is for systems with one heavy quark, and Soft Collinear Effective
Theory(SCET)[16, 22, 26, 19] is for systems with the presence of energetic particles
with momenta close to the light cone(collinear). A combination of HQET and ChPT,
Heavy Hadron Chiral Perturbation theory(HHChPT) [91], allows a description of

interactions of hadrons with one heavy quark with low momentum light mesons.

1.4 Objectives

Our main focus will be on the application of the Soft Collinear Effective Theory(SCET)

which is appropriate for B decays into energetic hadrons. This EFT is a rather recent
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development and has been applied to a host of processes with remarkable success.
Some typical examples are B — D [?, 94], B — = [20, 6] , B — 7ip, [74, 75]
B — X,lnu [76, 74, 75], and B — X, [16, 76, 74, 75]. SCET has also been applied

to Deep Inelastic Scattering(DIS) [89] processes at large momentum transfer.

We will apply the SCET to nonleptonic B-decays with a charmed meson and a
light energetic meson(M) in the final state. Typical examples of such decays are
B - Dr, B - D*r, B - Dp, B - D*p, B - DK, B - D*K, B - DK*,
B - D*K*, B— D,K~, B — D,K*... [217, 50, 97, 36, 41, 101, 29, 83, 21, 109,
96, 14, 47, 110, 82]. In particular we will relate B — D7 and B — D*r type decays.
Here the pseudoscalar and vector charmed mesons D and D* respectively are ground
state mesons related by Heavy Quark Symmetry(HQS) which will be explained in
detail in subsequent chapters. This symmetry was first made manifest through the
leading order term ,CES)Q gr in HQET and has been successfully used in semileptonic
decays to relate the B — DIl and B — D*Iv amplitudes through a single form factor
called the Isgur-Wise function [64]. In other words, HQS was used to reduce six form

factors, that appear in the B — D™[5 amplitudes, down to one!

We are tempted to ask if can use HQS in a similar manner to relate B — Dr
and B — D*r type decays. In this case it is not so simple to use HQS directly. The
problem arises from the presence of the energetic pion which introduces a new energy
scale on the order of the pion energy E, ~ 2.3 GeV. As we will explain in subsequent
chapters, the presence of this new energy scale destroys the power counting of HQET.
With the power counting no longer valid, the HQS breaking terms in HQET become
large invalidating the use of HQS.

The SCET solves this problem through a factorization theorem [?, 94] that decou-
ples the problematic energetic degrees of freedom associated with the pion allowing
us to once again use HQS. A typical result that we show from the use of HQS in the
SCET at leading order is of the type

Br(B° — D*0n%)

Br(BY% — DOq%) =L (1.5)
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which is in remarkable agreement with the experimental value of 0.97 + 0.21 [52].
The B® — D*'z° type decays are often referred to as color suppressed decays.
As we will show, proving factorization theorems for color suppresses modes, which
is crucial to predictions of the type in Eq. (1.5), is a rather difficult task since the
decay involves interactions with spectator quarks. SCET is used to deal with such
spectator interactions through a systematic framework of EFTs. We will show that

for color suppressed decays there are in fact four relevant energy scales

Agep < /QAgep € Q < My, (1.6)

where @ ~ {my, m., Ep} and my, me, Epp are the bottom and charm quark masses
and the light meson energy respectively. The SCET provides us with the appropri-
ate EFTs at the two lowest energy scales which is where the relevant factorization
theorems will be proven. In addition, we will show that the SCET provides a novel
mechanism for generating non-perturbative strong phases to take into account final
state interactions. A host of other phenomenological predictions also follow from

SCET and are discussed in subsequent chapters.

1.5 Outline

In chapter 2 we briefly outline the basic terminology of EFTs and describe the Fermi
theory for semileptonic decays. In chapter 3 we give an introduction to HQET and it’s
application to semileptonic decays and set up the transition to nonleptonic decays.
In chapter 4, we give an introduction to SCET in preparation for it’s applications to

nonleptonic decays in chapter 5. We make concluding remarks in chapter 6.
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Chapter 2

Effective Field Theory

2.1 The Basics

In this section we review the basic concepts of EFTs and in the process establish the
relevant terminology that we will use throughout the manuscript. There are many
excellent reviews on this subject and we refer the reader to the literature [102, 58] for
further details.

An EFT is useful in the presence of widely disparate energy scales(see Fig. 2-1).
Typically the low energy scale F, is the scale at which the experiment is performed
and is determined by the characteristic energy of the process in question. The EFT is
constructed exclusively in terms of degrees of freedom that are observable at the low
energy scale E. These degrees of freedom all have momenta upto a typical size p ~ E.
The high energy or UV scale Ayy, is the scale at which the effects of new degrees of
freedom such as heavy particles with mass myg ~ Ayy become important. The theory
at the UV scale that takes into account these new degrees of freedom is often referred
to as the ”full” theory. The EFT computes amplitudes for processes observed by the
experimenter at the low energy scale E as a power expansion in E/Ayy < 1. We
now outline the main steps in constructing an EFT at the low energy scale.

The fundamental question is ”if we know the full theory, how can we use a EFT
Lagrangian constructed entirely in terms of the relevant low energy degrees of freedom

and still get the physics right?”. The main idea is to calculate amplitudes in the full
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and effective theories to a given order in E/Ayy, depending on our desired level
of accuracy, and adjust the parameters of the EFT to reproduce the full theory
result. This procedure is called "matching”. For the problems we are interested
in this matching will be perturbative in nature allowing us to find the appropriate
adjustments of the EFT parameters through the use of Feyman diagrams. We now

present the main steps involved in the matching procedure.

1. The matching calculation is done at some scale u which is the scale we choose
to renormalize the full and effective theories. The UV degrees of freedom in the

full theory now fall into two categories

e Heavy particle fields H with mass my ~ Apy?

e Hard momentum modes of light fields ¢;, with virtuality p* > u? and with

mass my, ~ E.

We divide the light fields ¢, into soft(¢s) and hard modes(¢p)

S = ¢s+ on, (2.1)

such that
ds < pds, 0%n > i’ dn. (2.2)

2. The EFT Lagrangian at the scale p is given by setting all heavy fields H and
the hard modes of the light fields ¢, in the full theory to zero and adding a
complete set of higher dimensional operators made exclusively out of the light

soft fields ¢, to account for the effects of the UV degrees of freedom

Eg’FT(¢s) = Efull(‘bs, ¢h =0, H= 0, gz(/‘l‘))
+ miHc's (%,gi(ﬂ)) Os(p) + -+, (2.3)

1We assume that there are no other heavy particles with mass between E and Ayy. If there
were, we would construct an intermediate EFT at that scale.
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where Os(u) denotes a dimension five operator made out of the light soft fields
¢, and the ellipses denote all other possible higher dimensional operators. The
possible set of added higher dimensional operators is determined by the allowed
symmetries of the full theory. The Wilson coefficients C; ( 7g,(,u)) are to be

determined in the matching calculation.

. Calulate the amplitude A,y in the full theory and expand in powers of (E/mg)

upto a given order depending on the desired level of accuracy.

. Next calculate the same amplitude in the EFT which will have the general form

Aper zc( il >) (04(1)- (2.9

. Compute the Wilson coefficients by requring the difference between the full and

effective theory amplitudes to vanish.

. Since, the EFT reproduces the infrared behavior of the full theory, any infrared
divergences that may appear in loop calculations will cancel during matching.
On the other hand, the structure of ultraviolet divergences in the full and ef-
fective theories will not agree in general. This to be expected since the UV
degrees of freedom are different in the full and effective theories. One will find
additional UV divergences in the EFT that can only removed by an additional

operator renormalization

OZ(O) - ZijOj- (25)

. The operator renormalization in the EFT introduces the renormalization scale

p dependence in the EFT operators O;(u) and their evolution is given by

d
N@Oi = —7:0i, (2.6)
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_ Avuw High Energy scale of Full Theory

B R T } Matching Scale pu ~ Auv
Running with RGE
L E Low Energy scale of EFT

Figure 2-1: Full theory is matched onto EFT at u ~ Ayy. RGE equations of the
EFT are used to lower the matching scale down to the scale of the EFT and summing
large logs.

where -y is known as the anomalous dimension matrix

_ d
Vi = Ty (N@‘Zki)- (2.7)
The renormalization scale independence of the amplitudes in Eq. (2.4) deter-
mines the evolution of the Wilson coefficients through the Renormalization
Group Equation(RGE)

HGl) = =1y, (2.8)

The disparity in energy scales between effective theories can give rise to large log-

arithms in the Wilson coefficients when matching onto the EFT at the low energy

scale. The standard procedure to deal with the presence of large logarithms is to

perform the matching at the scale y ~ Ayy so that the logarithms in the Wilson
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coefficients are small Log(u/Ayy) < 1. However, now large logarithms appear in the
matrix elements (O;(u)) of the form Log(u/E) > 1. The RGE Eq. (2.6) is used to
lower i to p ~ E eliminating the large logs from the matrix element and Eq. (2.8) is

used to sum the large logarithms [39] that now appear in the Wilson coefficients.

2.2 Fermi Theory for Semileptonic Decays

In this section, we review Fermi theory for semileptonic decays. This is an EFT at
the scale ~ my where the decay of the b-quark through W exchange is described by a
four fermion effective operator. In the next chapter we will match Fermi theory onto
HQET which is an EFT near the Agcp scale. We remind the reader that we want to
keep matching onto EFTs at lower energy in hopes of finding additional symmetries.

As shown in Figure 1-1, the bottom quark decay into a charmed quark is deter-
mined by electroweak scale physics and involves the exchange of a W boson. The

tree level amplitude for this quark level decay is given by

g V- —i
W= (Zgw Cb>lb’7uVL gl cLy’br

2 g% — ME,
4G FVy -
- ( 7 ) (1 + /M2 + - ) lpy*veeryubr, (2.9)

where Gr = v/2¢% /8M%, is the Fermi Constant and we have Taylor expanded in
powers of ¢?/MZ, ~ m?/M3, < 1. To leading order in ¢?/M32,, we can reproduce this

tree level amplitude through the matrix element of an effective four fermion operator

4GPV \ 7 4
Hepy = ( jib)lL’YIVLCL'YMbL- (2.10)

Note that H.ss is a dimension 6 operator and is suppressed by two powers of the
electroweak scale My . One can reproduce the amplitude at higher orders in ¢? /M3, by
adding higher derivative effective operators that will be suppressed by higher powers
of the electroweak scale. Thus, at the energy scale £ ~ m;, < My characterizing the

bottom quark decay, we can write down an EFT for semileptonic B-decays without
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the massive W gauge boson as dynamical degree of freedom, incorporating it’s effects

into the local operator H,gy(see Figure 1-1)

4GrVy \ -
Lerr = £QCD_( r b)

liY*vrery,br + -+ 2.11
\/5 LY VLCLYu0L ( )

where the ellipses denote higher dimensional derivative operators. We arrived at
the above result by "matching” the full theory(SM) onto the EFT. In other words,
the above Lagrangian contains only the degrees of freedom relevant well below the
electroweak scale and can still reproduce the amplitudes of the full theory to a given
order in powers of 1/My,. The matching above was performed only at tree level. In
general, being able to reproduce the amplitudes of the full theory at higher loops can
change the coefficients(Wilson coefficients) of the effective operators and can even
require the addition of new operators whose Wilson coefficients vanish at tree level.
However, for the case of semileptonic decays, QCD loop effects will not affect the
coefficient of H.s; or induce new operators. This is because QCD does not affect
the leptonic bilinear [;y*v, but only the quark bilinear ¢;y#b; which is a conserved

current and has vanishing anomalous dimension.

We note that Lgpr has an expansion in Gr. We can write the amplitude for

semileptonic decay to leading order in G as

N 4GrV, T _
A%}}’T = (%) (D( )lV|lL’Y“VLCL’)’ubL|B>

_ (4GFVcb

4 ) Ty (D)2 7,1 B), (2.12)

where in the second line, the color neutrality of the lepton pair was used to factorize
and evaluate the leptonic matrix element (I7|l;y*v1|0 >= [Ly*v;. We have included
the possibilty of decay into a pseudoscalar D or vector D* meson which are related

by heavy quark symmetry as we will show in the next chapter.

We now return to our theme of low energy symmetry and power counting, to see
if we can simplify the amplitude Eq. (2.12). We see that the leading order term Lgcp

in the G expansion of Lgpr in Eq. (2.11), possesses the symmetries of parity(P) and
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charge conjugation(C) which are broken by the suppressed H,ss operator. We can
use the leading order parity symmetry to immediately simplify the matrix element
in Eq. (2.12). To leading order in Gp, the physics of the B — D®) matrix element
in Eq. (2.12) is completely determined by Locp which respects parity. In particular,
QCD doesn’t care if the left-handed quarks in the operator insertion é;y*b; are
replaced by right-handed quarks. This implies an equality between the B — D matrix
element and it’s parity transformed version. The quark bilinear operator ¢;7v,b., can
be written as a linear combination of a vector operator V,, = ¢y,b and an axial vector
operator A, = &y,7sb which have well defined parity transformations. In this basis,

the parity invariance of QCD implies

(DE)IVulB()) = (-1)*(D(pp)|VulB(pp))
(DE)AuB(P)) = —(-1)*(D(pp)|AulB(pp))
(D*(p, )IVulB(p)) = —(=1)*(D(pp,€p)|VulB(pp))
(D*(p', )| Au|B(p)) = (-1)*(D(Pp,€p)|Au|B(pp))
(2.13)

where (—1)* = 1 for 4 = 0 and (—1)* = —1 for p = 1,2,3 and the subscript P on
the momenta denotes the parity transformation. The only four vectors available at
our disposal to parametrize the B — D matrix elements are the four momenta p*
and p™ of the B and D mesons respectively. The B — D* matrix element must be
linear in the polarization vector €* and can also depend on the four momenta p* and
p'*. Given that p#, p’¥, and €* all tranform like vectors and the property p' - € = 0,

the conditions of Eq. (2.13) lead to a general form for the matrix elements

(DEVulB@) = f+(@)p+p)+ f-(a)p-P),

(D®)|AulB(p)) = 0, (2.14)
(
(

9(a*)e " e;(p + p')alp — P)r,

—1f (¢*)e* — 1" - plar (¢®) (p + P)* + a_ () (p — P')"]-

(D*(p', )|Vl B(p))
(D*(p, €)|Au| B(p))

Il
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Thus, the B — DIv amplitude has been reduced to two form factors f,(¢*) and
f—(q?) where ¢> = (p — p')®. On the other hand, there was no further simplification
for B — D*lv which is still parameterized in terms of four form factors. All together
we have six form factors describing the B — DI7 and B — D*Iv amplitudes. Can
we further reduce the number of form factors? As we will discuss in the next chapter,

matching onto HQET reduces the total number of form factors down to one!
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Chapter 3

Heavy Quark Symmetry

In the last chapter, we saw that integrating out electroweak scale physics and arriving
at the Fermi theory of weak decays, the EFT at the m,; energy scale, led to simpli-
fications in the structure of the weak decay amplitudes. We would like to continue
along this line and construct an EFT near the Agcp scale in hopes of finding ad-
ditional symmetries which can further simplify the structure of the amplitudes and
enhance our predictive power. However, the scale of the experiment, determined by
the characteristic energy in the process, is E ~ m;,. Proceeding toward Agcp means
that we will be investigating the process below this experimental energy scale. Thus,
the experimental energy scale 4 ~ mj, becomes the UV scale while the low energy
EFT scale becomes Agep and is the scale at which we choose to ”observe” the pro-
cess(see Fig. 3-1). In other words, we want to observe the process with a resolution
of order 1/Agcp at which the order m, fluctuations become invisible. However, we
cannot simply integrate out the b quark even though m, > Agcp since we want
to study & quark decay. So we must somehow integrate out the hard fluctuations
p? ~ m2 > Agcp without actually removing the b quark field. This situation is
rather different from the more familiar EFTs such as Fermi theory, where the low
energy scale is just the scale of the experiment. Proceeding below the scale of the
experiment leads to a rather different and much richer structure for the EFT as we
will see for HQET and SCET. In this chapter we describe the formalism of HQET

and apply it to the case of semileptonic decays. The tools we develop along the way
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____ m, UV scale and the scale of experiment

_ 1l E~Ayp Low energy scale of observation

Figure 3-1: For the EFT below the scale mj; which is the characteristic energy of the
decay process, the UV scale is m;, and the resolution scale(~ 1/FE) at which we choose
to observe the process determines the low energy scale E.

will be useful for our study of non-leptonic decays for which the appropriate EFT is

SCET.

The characteristic energy scale of B-decays is my > Agep and Agep is the scale
of nonperturbative QCD dynamics responsible for hadronization. HQET separates
these widely disparate energy scales and reformulates the theory through an expansion
in powers of Agcp/myp. The leading terms in the expansion make manifest additional
symmetries, collectively called Heavy Quark Symmetry(HQS). In the limit m, — oo,
the HQS violating subleading terms vanish and HQS becomes an exact symmetry.
Before going over the formalism of HQET [53, 65, ?], we first give a brief intuitive
explanation of HQS.

Consider a Q7 meson where () = b, ¢ is a heavy quark mg > Agep and G is a light
antiquark. Imagine investigating such a system using a "microscope” (the low energy

scale of observation) with a maximum resolution of ~ 1/Agcp, the typical size of the
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meson. The heavy quark @, interacts with degrees of freedom that have momenta
typically of size Agep, which we collectively call the light degrees of freedom and
includes the light antiquark g, light quark-antiquark pairs, and gluons.

The disparity between the large mass mg and the nonperturbative scale Agep
leads to interesting consequences. The on-shell momentum of the heavy quark is
defined by p* = mgu* so that v2 = 1. The momentum of the heavy quark interacting

with the light degrees of freedom can now be written as
pg = mou* +k¥, (3.1)

where kK ~ Agcep. In other words, the heavy quark will be off-shell by an amount
Agcp due to it’s interaction with the light degrees of freedom. As a result, the typical

change in the velocity of the heavy quark is of order

Av* ~ 1—\%2 < 1. (3.2)
The velocity of the heavy quark is almost unchanged and the light degrees of freedom
view the heavy quark as a static color source. This picture becomes exact in the
heavy quark limit mg — oo. Furthermore, in this limit the flavor of the heavy quark,
made manifest in QCD through it’s mass, can no longer be distinguished by the light
degrees of freedom. This leads to a Heavy Quark Flavor Symmetry(HQFS). N}, heavy
quark flavors leads to a global U(N,,) flavor symmetry with N, = 2 in the real world
corresponding to the bottom and charm quarks. In reality, this symmetry is only
approximate and will receive corrections due to the finite masses of the bottom and
charm quarks.

Furthermore, the static heavy quark can only interact with the light degrees of
freedom via it’s chromoelectric charge. The spin dependent interactions of the light
degrees of freedom with the chromomagnetic moment y ~ g/2mg of the heavy quark
vanish in the heavy quark limit where 4 — 0. The light degrees of freedom are
oblivious to the spin state of the heavy quark leading to a SU(2) Heavy Quark Spin
Symmetry(HQSS).
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Putting all this together, the U(N,) flavor symmetry and the SU(2) spin symme-
try can be embedded in to a larger U(2N,) symmetry. The N, flavor states with spin

up and down transform in the fundamental representation of the U(2N,) spin-flavor

symmetry
() ) [ @) )
() i(d)
— U(2N3) % ' . (33)
Qn, (1) Qn,(1)
\ @m (1) / \ Qm () /

The above heavy quark spin-flavor symmetry relates different states in the heavy
meson spectrum. This in turn will allow us to relate nonperturbative matrix elements
appearing in different B-decay channels leading to enhanced predictive power.

For future reference, we note that the propagator of the heavy quark with mo-

mentum given by Eq. (3.1) simplifies in the heavy quark limit

Pq + mq —>(1+¢) i (3.4)

Py — m +ie 2 Jv-k+ie

where corrections to this form are of order k/mg ~ Agep/mo < 1. In the next
section we describe the formalism of HQET which makes the above described heavy

quark symmetry manifest within a systematic EFT framework.

3.1 Heavy Quark Effective Theory

We would like to continue our journey toward the Agcp scale to exploit heavy quark
symmetry as described in the previous section. At this point we are faced with a
problem. We want to construct an EFT by integrating out hard fluctuations p? ~
my > Agep but without actually integrating out the b quark, whose decay we are

trying to study in the first place. How can we do this?
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First let’s consider the light degrees of freedom. The argument for heavy quark
symmetry depends crucially on the light degrees of freedom interacting with the heavy
quark, having momentum fluctuations on the order of k* ~ A%p < mi. Thus, a
description of the light degrees of freedom in the EFT must be given exclusively in

terms of "soft” fields ¢, characterized by momentum fluctuations of order Agcp

0%y ~ Ayop®s. (3.5)

The effects of the hard modes ¢, with fluctuations p? > A%C p, Will be absorbed into

higher dimensional operators made out of the soft fields.

Now let’s turn to the heavy quark field. The momentum of the heavy quark
fluctuates about it’s on-shell value mgu* by an amount £ ~ Agcp as shown in

Eq. (3.1). So, for the heavy quark field @ we have
PQ = (mqu+k)’Q~m)HQ. (3.6)

But this is a problem since we want our EF'T to be free of hard fluctuations so that
we might expand the theory in powers of Agep/mg. We cannot simply divide the
heavy quark field into soft and hard modes as in Eq. (2.1) and set the hard modes
to zero since keeping only the soft modes (p® ~ A% p) would mean that the heavy
quark is far offshell due to it’s large mass mg > Agcp. As we saw in the previous
section, the heavy quark is offshell only by a small amount £k ~ Agcp. What we
really need is a soft field that describes ~ Agcp fluctuations that are centered about

the onshell momentum ~ myg.

In order to do this, we introduce new fields h,(z) and B,(z)

Q@) = e [hy(z) + Ba(o) (37)
where,
ho(a) = emavs (%—”) . B@-c(aw 6y
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We note that in the rest frame of the heavy quark, 1—‘;2 projects onto particle com-
ponents of (). Notice that the two fields h, and B, are labeled by a velocity v
corresponding to the exponential factor e!™@%“ in Eq. (3.8), which precisely subtracts
the on-shell part of the momentum of a heavy quark with velocity v form the heavy

quark field @

0P hy(z) = (pQ - mQ'U)uhv(x) ~ AQCth(-Z'))

O”B,,(a:) = (pQ - va)“'B,,(a:) ~ AQCth(.’L‘). (39)

Thus, as desired, the fields h, and B, describe precisely the soft fluctuations centered
about the on-shell momentum mgv and motivates the label v which characterizes the
on-shell momentum. Recall that since the velocity of the heavy quark is essentially
constant, the label v will take on different values corresponding to heavy quarks with
different velocity vectors. Let’s press on and write the QCD Lagrangian for the heavy

quark field Q in terms of h, and B,. After some computation, we find

L = Q(P-mg)Q
= hy(w-D)h, — B, (w- D+ 2mg) B, + hy1lPB, + B,ulh,,  (3.10)

where we have used the the following properties of the h, and B, fields
ﬁhﬂ = hy, ﬁBv = —B,, (311)

which follow from Eq. (3.8) and v? = 1. The form of the Lagrangian in Eq. (3.10)
makes it clear on how to proceed in constructing the EFT. We note that the first
term in the Lagrangian along with the property l—ﬂh,, = h,, implies a propagator for
the h, field given by the right side of Eq. (3.4). Just what we need! The propagator
of a heavy quark interacting with soft degrees of freedom as seen at a resolution of
1/Agcp. At the same time we have succeeded in removing the hard fluctuations by

introducing the field h, as seen in Eq. (3.9).
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What about the B, field? From it’s equation of motion

1
By = D amg P (3.12)

we see that it is suppressed relative to the field h, by one power of Agcp/mg since the
derivatives acting of h, are of order Agcp. In other words, the antiparticle component
of the heavy quark field @ is small in the heavy quark limit. This motivates us to
integrate out B, so that we can obtain a power expansion in Agcp/mg. Substituting
Eq. (3.12)in Eq. (3.10) and expanding in powers of w - D/2mg we get the HQET

Lagrangian

14

D? el
=h, — a(:u')ghvoZThv +---, (3.13)
Q

EHQET = hv (w . D) hv - hv2mQ

where a(u) will be different from 1 beyond tree level [91])!. The ellipses denote terms

with higher powers of w - D/2mg and the perpendicular derivatives are given by
D} = D*—uv-Dv" (3.14)

The HQET Lagrangian in Eq. (3.13) is the main result of this section. We now have
the Lagrangian for an EFT describing the interaction of a heavy quark with soft

partons and have succeeded in removing the hard fluctuations associated with the @

quark field.

3.2 Power Counting

We notice several interesting aspects about the HQET Lagrangian in Eq. (3.13). The
first term is independent of the heavy quark mass and has a trivial spin(Dirac) struc-
ture. In other words, it possesses a U(N,) Heavy Quark Flavor Symmetry(HQFS)
and a SU(2) Heavy Quark Spin Symmetry(HQSS) which can be embedded together
into a global U(2N,,) symmetry. The second term in the HQET Lagrangian violates

1The coefficient of the second term is fixed to one due to reparameterization invariance which we
will discuss in a later section.
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the HQFS through it’s dependence on the heavy quark mass. The third term violates
both HQFS and HQSS through it’s dependence on the heavy quark mass and a non-
trivial spin structure. Similarly, the remaining terms in the HQET Lagrangian also
violate heavy quark symmetry. These ideas are summarized below for the first three

terms

— - D2 T ouyGHY
hy (w - D) h, —hvﬁ*‘?—hv —a(u)gh —"—Th,,

vV 4m,
+ ¢ + (3.15)
HQFS HQFS -
Symmetries:
HQSS - -

If we want to exploit the heavy quark symmetry of the first term in the HQET
Lagrangian, we must show that the remaining terms which violate this symmetry are
suppressed. Of course in this case the suppression is made evident by the powers of
1/mg accompanying the HQS violating terms. It will however be useful to establish a
systematic power counting scheme. The language for power counting developed here

will directly carry over to SCET where the power counting is more subtle.

We will set the first kinetic term to be of zeroth order in the power counting since
we are only interested in a "relative” suppression for the remaining terms. As we will
see, this constraint allows us to determine a power counting for the fields themselves
which makes power counting of the terms in the Lagrangian quite transparent. The

action of the kinetic term in HQET is

[ d'z [B,, w-0 h,,]
L (3.16)
Agep Adep Agep Adep

where we have also indicated the scaling of the various pieces in powers of Agcp. As
of now, the scaling of the HQET field is not known and is denoted as some power «
of Agep which needs to be determined. Since there are no hard fluctuations in the

theory, any derivative acting on the HQET fields will scale like one power of Agcp(see
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L(x;) L(xi.1)

Figure 3-2: For momentum fluctuations of size Agcp, a significant variation in the
integrand of the HQET Lagrangian will only occur over distances of size 1/Agcp. As
a result, the HQET action can be computed using the average value Lygger(z;) of
the integrand over the ith four dimensional box of volume 1/A%¢p as in Eq. (3.17).

Eq. (3.9)). The scaling of the integration measure can be roughly understood as
follows. Since the dynamical momentum fluctuations in theory are of order Agcp, a
significant variation in the integrand of the action will only occur over distances of

order 1/Agcp(see Fig. 3.2). As a result the action can be approximated as
/ d4$£HQET(1') ~ Z EHQET(.’I),')A4.'I?i, (3.17)
i

where Az; is a four dimensional box of volume Ac_gé‘D implying the scaling for the
measure indicated in Eq. (3.16). Requiring the overall action of the kinetic term to
scale as an order one quantity implies = 3/2 and a scaling for the HQET field
hy ~ Agg,}. Similarly, requiring the kinetic term of the soft gluon field to be of
zeroth order gives a scaling A, ~ Agcp. We can now easily compute the scaling of

any term in the HQET Lagrangian. We show this for the three terms in Eq. (3.13)

’_L‘U ('l/U M D) h'v ~ AéCD
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Field Fluctuations Scaling
h, Oh, ~ Agep A3/2

Ak 0A, ~ Agep A

Table 3.1: A summary of the HQET fields, the characteristic size of their fluctuations,
and their scaling in powers of A = Agep/Q.

2

L

- A
iy QCD
2m

mqQ

he ~ Agep (3.18)

14

o Cia
4mQ

Agep
mq

g}_lv hy ~ Aé)CD
where we have ignored the scaling of the measure which is common to all terms.

We now see that the HQS violating terms are indeed suppressed by a factor of

Agep/mg < 1. It becomes convenient to define a power counting parameter

A
)= 9P

3.19
oo, (319)

in terms of which we get the scalings h, ~ (mgA)*? and A; ~ mgA. We can set mg —
1 so that we can talk about scalings exclusively in terms of A and the appropriate
powers of mg can always be inserted in the end using dimensional analysis. We
summarize the situation so far in Table (3.1).

We can now write the HQET Lagrangian as an expansion in powers of A
Luger = LO+LW 4@ ... (3.20)
where the superscript denotes the order in \. From Egs. (3.18) and (3.19) we see that

L9 = h,(w- D) h,,
oCiad

_ D? _
LY = —h,—th, - h . 2
3 o v — a(p)ghy prom iy (3.21)

Thus, the leading order term £® possess heavy quark symmetry which is broken

by the subleading term £ ~ A. We can now clearly see heavy quark symmetry
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emerging as a low energy symmetry. In the EF'T near the low energy scale Agcp, the
absence of hard fluctuations associated with the UV scale p* ~ mg, > A p, allows
us to expand in powers of Agep/mg and the leading term in this power expansion

exhibits heavy quark symmetry.

3.3 Heavy Meson Spectroscopy

We how explore some of the consequences of heavy quark symmetry. We first look
at the implications of HQSS which will be most useful for our purposes and then

comment on HQFS.

The total spin J of the heavy quark meson is a conserved quantity and is given
by the sum of the heavy quark spin §Q and the spin of the light degrees of freedom
S,

J = Syp+8. (3.22)

The HQSS of £© implies that at leading order in ), the heavy quark spin S is
conserved. i.e. at leading order, the interaction of the heavy quark with the light
degrees of freedom is spin independent. Combined with the conservation of J, the
spin of the light degrees of freedom 5‘1 is also a conserved quantity. The spin of the
light degrees of freedom in turn is given by the sum of the light antiquark spin 5",7

and the relative orbital angular momentum L

-

S, = L+85, (3.23)

5]

Thus, we can characterize the heavy meson states in terms of two good quantum
numbers j and s; for the total heavy meson spin and the spin of the light degrees of
freedom respectively. The HQSS of £ implies a degeneracy in the coupling of the
heavy quark spin sg = 1/2 to the spin of the light degrees of freedom s;. In other

words, we can expect to find heavy quark mesons of similar mass to appear in the
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heavy quark spin symmetry doublets

For example, in ground state charmed mesons which have zero orbital angular mo-
mentum [ = 0, the spin of the light degrees of freedom is just s, = 1/2 corresponding
to the light antiquark spin and Eq. (3.24) implies a spin doublet j = (0,1) corre-
sponding to the charmed mesons (D, D*). At leading order, HQET predicts equal

masses for the D and D* mesons

mp = me+A+0(1/m,),

mp = me+A+0(1/m,) (3.25)

where? A = (D|HO|D) = (D*|H®|D*) as a consequence of HQSS and H® is the
leading order HQET Hamiltonian obtained from £(®. A is the leading order effective
meson mass in HQET since the charm quark mass m, has been subtracted from all
energies. A difference in the D and D* masses comes in at the next order in A from the
spin dependent interaction term in £V, Experimentally, the D — D* mass difference
is ~ 100MeV which is tiny compared to the typical mass of a charmed meson ~ 2GeV.
Heavy quark symmetry works quite well! The lowest lying heavy quark spin doublets
for the charmed mesons are listed in Table (3.2) where the mass of each doublet is
averaged over all the spin states [77]. Similar heavy quark spin doublets also exist for

the bottom mesons [91]

mp = My +A+O(l/mb),

mp = mp+ A+ 0(1/my), (3.26)

where once again a B — B* mass splitting comes in at the next order in A through

the spin dependent interaction in £(). Experimentally, B — B* mass difference [91]

2The heavy meson states appearing in the matrix elements are actually HQET states which differ
from the full QCD states by a normalization and A
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| Charm Doublets [ I [ s, [ jE [ Mass(GeV) ]
(D, D% 0]3](0,17) 1.971
(D, D}) 1{11(0%1%) 2.40
(D1, D3) 1|3 |(1t,2%) 2.445

Table 3.2: The first three heavy quark spin symmetry doublets for charmed mesons
along with their quantum numbers. The last column gives the mass averaged over all
the spin states in the doublet [77].

is ~ 46 MeV which is smaller than the D — D* mass difference. This reflects the
fact that heavy quark expansion works better for bottom mesons compared to charm
mesons since Agep/my < Agep/me.

Note that the same A appears in Eqgs. (3.25) and (3.26) as a consequence of HQFS.
In fact, combining the HQFS and HQSS of H(¥ we have

A = (DIHO|D) = (D*|HO|D") = (BIH|B) = (B*|H"|B"), (3.27)
resulting in the leading order mass relations

mp = Mp- mp = mp«,

mp—mMp=mMp—Mp+ = Mpg— Mp=TMpg+ — Mp=. (3.28)

We refer the interested reader to [92] for further details on this type of heavy meson

spectroscopy.

3.4 Isgur-Wise Functions

We have just witnessed the power of low energy symmetry and power counting. Sim-
ply by observing the HQSS of the leading order term in the HQET Lagrangian and
without doing any detailed calculations we were able to make quantitative predictions
of mass relations between heavy mesons. So, far the predictions we have explored

have to do with the static properties (spectroscopy) of heavy mesons. Can we exploit
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heavy quark symmetry for decay rates? Let’s come back to the case of semileptonic
decays B-decays. Now that we know that the charmed D and D* mesons sit in a heavy
quark symmetry doublet, can we relate the B — DIv and B — D*I5 amplitudes?

Before addressing this question, it will be useful to introduce a formalism in which
the heavy quark spin symmetry doublet (D, D*) can be treated as a single object that
transforms linearly under heavy quark symmetry. We treat this subject briefly with
just enough detail to establish the necessary language and allow us to proceed with
our investigation of semileptonic decays. A more complete treatment can be found
in [91].

The ground state 7 mesons can be represented by a bilinear field H(?) that

transforms under Lorentz transformations as
HY' (') = D(A)HQ (z)D(A) 7, (3.29)

where v' = Av and 2’ = Az and D(A) is the spinor representation matrix of the
Lorentz group. The introduction of the field H(?) with the Lorentz transformation
property above is motivated by the transformation of the product of spinors @}g. Since
the ground state heavy quark charmed mesons (D, D*) involve a pseudoscalar and a
vector, we would like the field H(?) to be a linear combination of a pseudoscalar field

png) (z) and a vector field PJ}LQ)

1+9¢

H® = — 29 +1P@rs], (3.30)

144

where the projector 3

picks out only the large particle component of the heavy quark
field Q ignoring corrections from the small antiparticle component B, in Eq. (3.7).
Thus, the meson states destroyed by H(?), which we call the HQET states, will differ
from the full QCD states due to subleading corrections to ) coming from substituting
Eq. (3.12) in Eq. (3.7). We will always work with these leading order HQET states
and include subleading corrections through matrix elements of time ordered products

with insertions of subleading operators. The definition of H{? is consistent with

P*@) transforming as a vector and P transforming as a pseudoscalar. The vector
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particles have a polarization vector ¢,, with €-e = —1 and v - € = 0 and are destroyed
by P;{9 with an amplitude of ¢,.

H(9 transforms in the (1/2,1/2) representation under Sq®S;, the spin operators
for the heavy quark and light degrees of freedom. In particular, under heavy quark

spin transformations
H{? — D(R)oH?. (3.31)

We now have a field that destroys mesons in the ground state heavy quark spin
symmetry doublet with a well defined heavy quark spin transformation. The HQET
states destroyed by H(? are labeled by their velocity v and and are related to the
QCD states as

|H(p) >%P= y/my| |H(v) > +O(1/myq) ], (3.32)

where the details of the normalizations, etc. can be found in [91].

Matching onto HQET

We now have enough tools to apply HQET for semileptonic decays. As seen in the last
chapter in Eq. (2.14), Fermi theory at the scale u ~ m;, gives an effective operator that
appears in the hadronic matrix element between the bottom and charmed mesons,
of the form ¢I'd where I' = 7,7s,7,. The next step is to match this operator onto
HQET at the scale u ~ my. At tree level matching and leading order in 1/my, . there
is only HQET operator available

eTb — B9Th®. (3.33)

We can now use heavy quark symmetry to write 2 I h{®) directly in terms of the
meson fields H? and H¢,. This must we done in such way that all quantum numbers
and transformation properties are preserved in going to the new operator in terms of

the meson field. We use the standard trick and note that h{® T h() is invariant under
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heavy quark spin transformations if we assign to I' the transformation rule
I' - D(R).I'D(R);". (3.34)

The problem now becomes to write 29 Th{®) as some combination the meson fields H?
and H;, which is invariant under heavy quark spin transformations combined with the
rule of Eq. (3.34). From Eq. (3.31) and the requirement that the operator be linear
in H? and HS, we are led to the combination HSTH?. Finally, Lorentz covariance

requires this to be a trace
KOTh® = TrXx HOTH®, (3.35)

where X is the most general bispinor that can be constructed using the available

variables v, v
X =Xo+ Xap + Xopf' + X3, (3.36)

where the coefficients are functions of the invariant w = v - v’. However, the relations
$H® = H® and ¢'HY = —H'? make all the terms above proportional to the first

.ul

so that we can write
RO T RO = —¢(w)TrHOTHY. (3.37)

Evaluating the above trace between the HQET states |H®(v) > and |H©)(v') > gives

us the relations

(D[R 7, hP|B(v)) = &(w)[v, + v}, (3.38)
(D* ()[R 775 KO [B(v)) = —w€(w)[(1 +w)e, — (" - v},

(D* (0B 7, RO [B(w)) = E(w)[(1 + w)eumapelv'®0?)].
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Note that only one form factor £(w) relates all the above matrix elements. This
is the Isgur-Wise function. We see that the low energy heavy quark symmetry of
HQET has allowed us to go from six from factors in Eq. (2.14) down to just one
significantly enhancing our predictive power. We point the interested reader to [91]
for the phenomenological implications in semileptonic B-decays.

What would happen if we were to replace the lepton pair (7 in the semileptonic
decays with a pion? Could we also relate the amplitudes for B — D and B — D*r
by heavy quark symmetry? In this case it becomes much more difficult to make
heavy quark symmetry manifest. The problem is that the pion introduces a new hard
scale in the problem due to it’s large energy E, ~ m;. In particular, the presence of
energetic degrees of freedom related to the pion destroy the power counting scheme
of HQET. For example, the subleading terms in HQET which usually are of order
Agep/mp < 1 can now scale like E; /m;, ~ 1 due to the presence of hard fluctuations
introduced by the pion degrees of freedom. We need a new EFT that takes into
account this new hard scale and expands in powers of Agcp/E,. The theory which
does this is Soft Collinear Effective Theory(SCET) and is the subject of the next

chapter.

95



o6



Chapter 4

Soft Collinear Effective Theory

The Soft Collinear Effective Theory(SCET) is an effective theory describing the inter-
actions of soft particles with energetic collinear particles defined to be close to their
light cone. This effective theory is appropriate for the B — D®) 7 type decays that we
are interested in. The B and D™ mesons are treated as soft and the pion is treated

as collinear. The Fermi theory Hamiltonian for such decays gives the amplitude

1A = %VcbVJd{ Cy(1){DWr| (eb)v—a(du)v_a |B)

+ Co()(D®r| (€bs)v-aldjui)v-a |B) }. (4.1)

The nonperturbative matrix elements that appear in the amplitude, limit our pre-
dictive power and as seen in the previous chapter, the presence of the energetic pion
even forbids us to use heavy quark symmetry to make a relative prediction for the
D and D* rates. Once again we will proceed below the scale of experiment y ~ my
toward Agcp, integrating out hard fluctuations along the way but without actually
removing the relevant fields, in hopes of finding new symmetries to enhance our pre-
dictive power. The relevant EFT below the u ~ m; scale is the SCET and it will help

us do the following:

e In addition to the hard scales m; and m(as for HQET), an additional hard
scale E,; appears due to the energy of the pion. The SCET takes this additional

hard scale into account and expands the theory in powers of Agcp/Q where
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Q ~ {mba My, Ew}

e The SCET allows us to factorize the nonperturbative matrix elements into a
product of soft and collinear matrix elements. This factorization permits us to
use the formalism of HQET on the soft matrix elements and relate the D and
D* rates through heavy quark symmetry. A host of other phenomenological

predictions also follow from factorization.

e From a theoretical point of view, a clear separation of physics coming from the
different scales @ > \/EAqcp > Agep is achieved. Furthermore a systematic
framework to sum large logarithms between @) and \/EAqcp, although we will

not address the latter in this thesis and leave it as possible future work. The
relevance of the intermediate scale \/EAgcp will become apparent as we try to

construct the SCET near the Agcp scale.

4.1 Degrees of Freedom: SCET; and SCET};

The presence of light energetic particles makes it convenient to introduce the light

cone coordinate system. The basis vectors in this coordinate system are given by

n* =(1,0,0,-1), @*=(1,0,0,1),
.’%i“ = (07 11 0,0), ',i.iﬂ = (07 07 17 0)7 (42)

with a normalization for the light cone vectors given by 7 - n = 2, and n? = A2 = 0.

Any four vector can be decomposed in this basis as

n-p_ n-p
= 5 n"+——2 n* +pl, (4.3)

where the components in the z* direction are collectively labeled as p/. We will

denote momentum vector components using the compact notation

(»*,p7,pL) = (n-p,0-p,py), (4.4)
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(A, A, A) (A, A, A) (AE, E, A)

Figure 4-1: The two body B — D7 decay in the rest frame of the B meson. The
typical scaling of the momentum components (p*,p~,p,) for the partons in the B,
D, and m mesons are shown where E, is the pion energy. The bottom and charm
quarks are described by HQET fields with the hard part of their momenta removed as
described in the previous chapter. The momenta that scale as (Agcp, Agep, Agep)
and (A%CD/E,,E,,,AQCD) correspond to soft and collinear degrees of freedom re-
spectively. The SCET describes the interaction dynamics of these relevant degrees of
freedom in terms of soft and collinear effective theory fields introduced explicitly at
the level of the Lagrangian.

so that p* and p~ denote components along the i* and n# directions respectively.

Having established a coordinate system let’s look at the B — D decay channel
in the rest frame of the B meson(see Fig. 4.1). The momentum of the B meson
is pls = mpv* where v* = (1,0,0,0) in the rest frame. The momentum of the D
meson is denoted by pf, = mpv'* where v denotes it’s four velocity. Solving the
kinematics of this two body problem, we find that the D meson has an energy on
the order of it’s mass Ep ~ mp allowing us to treat the light degrees of freedom in
the D meson as soft p; ~ (Agcp, Agep, Agep) and describe the relevant dynamics
using the formalism of HQET. Of course the same holds true for the light degrees of
freedom in the B meson which is at rest. On the other hand, the momentum of the
pion is found to be collinear, close to the light cone, to a very good approximation
p* = (2.310GeV, 0,0, —2.306GeV) =~ E,n*. The partons in the pion will also have a
large momentum component along the n# direction but in addition will have smaller
dynamically generated components in the 7# and xff’ directions. The momentum
scaling of the collinear partons are given by p. ~ (Ajcp/Ex, Ex, Agep). One can
understand this scaling as the result of boosting from the pion from it’s rest frame in
which the partons have a soft momentum scaling p, ~ (Agcp, Agep, Agep) to the rest

frame of the B meson in which the pion travels close to the light cone. Since the boost
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is in the light cone direction orthogonal to the xﬂf directions, the p// momenta are
unaffected. The p~ component just becomes p~ ~ E; corresponding to the observed
momentum of the pion in the B rest frame. The scaling of the p* component then

follows by the requirement that the partons have a virtuality p2 ~ A%qp.

In addition to the hard scales m; and m, that we encountered in semileptonic
decays, there is a new hard scale E,; ~ 2.31GeV in this problem. We will not
distinguish between these hard scales and will collectively refer to a hard scale @ ~
{ms, m, E,}. We introduce the power counting parameter 7 = Agep/@Q in terms of

which we can write the scaling of the soft and collinear momenta as

ps ~ Q(mm,m),  pi~Q7
pe~ QA L,m), pl~Q7. (4.5)

We notice that the interactions of the soft and collinear modes are non-local. The

sum of the soft and collinear momenta produce an offshell state of momentum s*

pr+pi=r*~Q(n1,n), & ~Qn>Q7, (4.6)

whose virtuality is much larger than Agcp. Even after removing all the hard fluc-
tuations p* 3> Ad:p, the soft and collinear infrared degrees of freedom of the EFT,
through their interactions, generate an intermediate hard scale p ~ k ~ \/m.
This is a consequence of the inhomogeneous scaling of the collinear momentum com-
ponents. In other words, even though the collinear modes have a soft virtuality
p? ~ A4cp, they contain a hard momentum component p~ ~ Q. In order to con-
struct an EFT in terms of the soft and collinear infrared degrees of freedom, we must

integrate out the far offshell modes k ~ Q(n,1,7) [22, 63].

An alternative is to construct an intermediate EFT at the scale u ~ 1/QAqcp for
these offshell modes and then match onto the EFT of soft and collinear modes. We

will use the latter method and it’s advantages will become clear as we proceed. We

refer to this intermediate EFT at u ~ \/QAgcp as SCET; and the EFT at p ~ Agcp
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as SCET}; . We will use a two step matching procedure [100] to go from the Fermi
theory of b quark decay to SCETy;

Fermi Theory + QCD — SCET; — SCET};, (4.7)

where we match onto SCET; at y ~ @, use the renormalization group to run in

SCET| down to u ~ /QAgcp, and then match onto SCETy; .

We introduce a new power counting parameter A for SCET] such that A = /i =
v/Agcp/Q. The relevant modes for SCET; are ultrasoft(usoft) and hard-collinear

with momenta denoted as p,; and pp. respectively

Dus ~ Q()\27 A27 A2)7 Pﬁa ~ Qz)‘4
DPhc ~ Q()\za 13 /\)7 pgc ~ Qz)‘2) (48)

with all other modes integrated out. What is the physical relevance of these modes?
From the relation A = /7 we see that the usoft modes of SCET] have the same
scaling as the soft modes of SCETy; . In fact these two modes are identical with
momentum scaling (Agep, Agep, Agep). The different names ”usoft” and ”soft”
correspond to the scaling of these modes in terms of the SCET; power counting pa-
rameter A and the SCETy; power counting parameter 7 respectively. In other words,
the (Agep, Agep, Agep) modes have a usoft scaling in SCET; and a soft scaling in
SCETy . On the other hand, the hard-collinear modes of SCET; have a virtual-
ity pi. ~ QAgep > Adep and correspond to the far offshell modes of SCETy; of
momentum s* produced by the interactions of the soft and collinear modes. In
matching SCET; onto SCETy; , the usoft states match onto the soft states and the
hard-collinear states will match onto the collinear states. We summarize the degrees

of freedom in SCET; and SCET}; in Table 4.1.
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Scale of Power counting Degrees of Momenta

EFT EFT Parameter Freedom Scalings

hard-collinear Q(A%,1,))

SCETI o~ \/QAQCD A= ‘/ AAQ—CE

usoft QR(A%, A2 )\?)
collinear Q% 1,7)
SCETy  p~ Agep n =292
soft Q(n,n,n)

Table 4.1: A summary of the relevant degrees of freedom in SCET; and SCETY; .

4.2 SCET] : Leading Order

4.2.1 The Lagrangian

We need to write down a Lagrangian for SCET] in terms of hard-collinear and usoft

fields. There are several pieces to the Lagrangian
‘CSCETI = ‘Chc + Lus + £ﬁs + Eic + EZs + ['hc,usa (49)

where L. has only hard-collinear quarks and their interactions with usoft and hard-
collinear gluons, £, has only light usoft quark fields and their lowest order inter-
actions with usoft gluons, £, has only heavy bottom and charm quarks and their
lowest order interaction with usoft gluons, L7 is the kinetic term for hard-collinear
gluons, £9_ is the kinetic term for usoft gluons , and L., includes the remaining
terms involving hard-collinear and usoft modes in general. In keeping with our theme
of low energy symmetry and power counting, our ultimate goal will be to expand the
SCET; Lagrangian in powers of A and identify as many leading order symmetries as
possible.

We start with the Lagrangian for the hard-collinear quarks. Before working out
the details, let’s look at what we should expect. What will be the form of the hard-

collinear free quark propagator in SCET; ? We can find this out by expanding the
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QCD propagator for a massless hard-collinear quark in powers of A

1P u -p
p? + 1€ 27-pn-p+p% +1e
uh 1

2
2 n-p+%+zeszgn(ﬁ-p)

(4.10)

where we have used the momentum scaling for the hard-collinear momenta given in
Table(4.1) and the ellipses denote higher order terms in A. Thus, we expect the leading
order term of the SCET] hard-collinear Lagrangian to reproduce this propagator and

will provide a consistency check.

The massless collinear field of QCD ¥,, which creates a hard-collinear parton with

large momentum in the n* direction can be decomposed as

where
_ T _ it
ETL = T‘I’, §ﬁ, = T\I’, (412)

and satisfy the relations

i, _ _
To=6, Ta=6 (413)

We have used the identity

L. (4.14)

to achieve the decomposition in Eq. (4.11). The above decomposition of the hard-
collinear QCD field is a projection onto the components &, and &; which create

momenta in the n* and 7* directions respectively. This evident from the properties
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of &, and &; fields

¢€n = 07 ﬂgﬁ = 0:
(4.15)

which follow from the n? = 2 = 0 property of the light cone vectors combined with
Eq. (4.12). These conditions just correspond to the equations satisfied by massless
fermion spinors with momentum in the n* and 7# direction respectively. We point out
that the above decomposition does not require the QCD spinor to have hard-collinear
momentum and can be done for any type of spinor field. However, as we shall see,
this decomposition is most useful for hard-collinear spinor fields. Since ¥, creates
a parton with large momentum in the n# direction we expect the &; component to
be small relative to £, and we will use this to our advantage. This idea will become

precise shortly. Let us substitute Eq. (4.11) into the QCD Lagrangian to obtain

TP, = (G+6n) [zgﬁ D+ zgn D +1Dy) (€ + &n)
= Ealn Dt Eln DEt Eabit+ EubiE  (416)
where additional possible terms vanish by the property in Eq. (4.15). The gluon field

in the covariant derivative is a sum of usoft A,; and hard-collinear A,, gluon fields
1DF =10" + AL, + AR (4.17)

which are the relevant modes for SCET| . The presence of two types of gluon fields
will lead to a rich structure of gauge symmetry which we will explore in some detail
in the next section. But for the moment, let us look at the equation of motion that

follows for &;

1 i
G = —tPigén (4.18)

From the scaling of the hard-collinear momenta in Table(4.1), we see that in the above
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equation the derivatives scale like D; ~ @n and i - D ~ Q' implying that & is in
fact suppressed relative to £, by one power of A as we suspected. So, we can integrate
out the &; field to get an expansion in powers of A. At tree level we substitute the

result of Eq.(4.18) in Eq.(4.16) to obtain the hard-collinear Lagrangian

1
D

Ly = & (m -D+1p, leJ_) gfn. (4.19)

We see that the above Lagrangian does in fact reproduce the hard-collinear propagator
of Eq. (4.10). In other words, by integrating out the small &; field, we have made
the expansion of the massless hard-collinear propagator in Eq. (4.10) manifest in the
EFT Lagrangian itself. We can further expand the above Lagrangian in powers of A.
We postpone this for the moment and will do so in a later section.

We can assign a power counting to the hard-collinear field by requiring it’s kinetic
term to be of order A°. Recall that we would like to establish a power counting
scheme relative to the kinetic terms of the relevant degrees of freedom which will
count as zeroth order. We illustrate the power counting for the kinetic term of the
hard-collinear quark obtained by setting all gluon fields in the covariant derivatives

of Eq. (4.19) to zero

[ dzt dz= d%zy [f—n m-0 + P 5 Py ] g{n.
l e \ I 1 (4.20)
PLEEED LD D LD A A0 A

Here we have used the scaling of hard-collinear momenta in Table(4.1) for the deriva-
tives and the measure and have set () — 1 since the appropriate powers of () can
always be restored in the end by dimensional analysis. Both the terms above are of
the same order and the requirement that they be of zeroth order gives a = 1. Thus,
the hard-collinear quark fields scale as &, ~ A.

Similarly, there will be EFT fields for the usoft light quarks g,s. The EFT La-

1We will show that the gluon fields A, and A,, appearing in the covariant derivative scale in the
same way as the usoft and hard-collinear momenta respectively, implying the scaling D, ~ Qn and
ii-D~ Q.
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grangian for the usoft quarks has the same form as in QCD

Lys = Qus (zmts) Qus (4-21)

but with the covariant derivative D, involving only usoft gluons since a hard-collinear

gluon will turn a usoft quark into a hard-collinear quark
1Dl = 10" + gAL.. (4.22)

We see that the form of the usoft quark propagator is the same as in QCD since all the
momentum components of a usoft quark scale in the same way. In the next section
we will discuss the absence of a hard-collinear gluon in the covariant derivative in
more detail. Once again, by requiring the kinetic term for the usoft quark to be of
zeroth order we obtain a scaling relation g,, ~ 3.

The heavy usoft bottom and charm quarks are created by the usoft EFT fields
and hS . which are identical to the HQET soft fields k%, hS,. The Lagrangian

hb
v jus vy 1oyl

v,uS

will be the same as in HQET

Lh = RO (w- Dy) B® + B (1’ - Dyy) B (4.23)

(]

and once again no hard-collinear quarks enter in the covariant derivative.

The kinetic term for the usoft gluon takes the usual form as in QCD
L, = L tr s GG 4.24
us_—Er{ us p,v}? ( )
where G* =1[D¥ , DY,]/g and the kinetic term for the hard-collinear gluon is
1 2
o — 5 T {[za" 4 gAE 4 gAR WO 4 gAE + gA;’L,q,]} . (425)

which is also identical to the form in QCD except that the usoft gluon appears as a
"background” field. We will discuss this point in the next section. We have ignored

the gauge fixing and ghost field terms [?] since they will not be essential for our
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Type Momenta p* = (p*,p~,p") Fields Field Scaling
hard-collinear P~ Q(A1, ) &n A
(A%, A7, A7) (A%,LA)
usoft P* ~ Q(A\%, A% \?) Qus A3
Po,us A3
Ak A2

Table 4.2: Power counting for the SCET; quark and gluon fields.

purposes.

All that remains are the terms for Lp.,;. As we shall see later on, these terms
will be power suppressed relative to the kinetic terms of the hard-collinear and usoft
modes. For any physical process only a small number of terms from L5 will con-
tribute at any given order. We postpone the derivation of the relevant terms in Ly ys
until section??.

As we did for the hard-collinear quark field, one can obtain scalings for the usoft
light and heavy quarks, usoft gluons, and hard-collinear gluons as gyus ~ A3, hy, 45 ~ A3,
Al ~ (X202 02), and AP, ~ (A%, 1,)). The field content of SCET; along with their

scalings are summarized in Table(4.2).

4.2.2 Ultrasoft and Hard-Collinear Gauge Symmetry

As we briefly mentioned in the previous section, there are two types of gluon fields A,
and A, corresponding to usoft and hard-collinear gluons of the EFT. The difference in
the momentum scaling of the hard-collinear and usoft modes leads to a rich structure
of gauge symmetry. Corresponding to the usoft and hard-collinear gluons we define
usoft and hard-collinear gauge transformations denoted by Up. and U,, respectively

such that

O Une(z) ~ Q(N%, 1, 1), " Uys(z) ~ Q(A%, 2%, 2?). (4.26)
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The above scalings of U, and U, correspond to the scalings of the hard-collinear and
usoft momenta respectively. In the EFT only the subset of usoft and hard-collinear
gauge transformations of the full gauge symmetry of QCD are relevant. The usoft
and hard-collinear quarks will not transform under ”harder” gauge transformations
which introduce large phases in the integrand and their rapid oscillations set the
variations to zero. This is also true for HQET for which only soft gauge symmetry
corresponding to the soft gluons is relevant. However, in HQET since all the degrees
of freedom have the same soft scaling in momenta, only one type of gluon(soft) is
needed, and the form of the gauge transformations are identical to that in QCD. This
is not the case for SCET. For example, a usoft field does not transform under a hard-
collinear gauge transformation. Intuitively, this is apparent since a hard-collinear
gauge transformation will turn a usoft field into a hard-collinear field. One can see
this more explicitly through the effect of large phase oscillations, by looking at the

variation of the kinetic term of a usoft quark under a hard-collinear transformation

Qus (*7:) - Uhc (x)Qus (1")

) / d*z Gus(2)1Pqus () = / d*zqys () [U,‘:czﬂUhc(x)]qus(x)

dp~ -t

— 4 —p~ -zt~ t -

= [ dis [ Toe " @) U aplselp™ 27,21 000 )
= 0, (4.27)

where in the second line [u,’{cwu,w (p,z7,z l)] was obtained by Fourier transforming
[U,‘:czﬁUhc(J:)] in the 1 coordinate. The last equality was obtained after performing
the integration over the zt coordinate and noting that the quantity

[u,{cwuhc(p-, T7,x l)] has support only over large p~ ~ @Q > Q2. In this region the
rapid oscillation of the large phase e=® "¢" compared to the usoft fields g,,(z) gives
a vanishing integral over z+. So, we see that the kinetic derivative term of the usoft
quark does not transform under a hard-collinear gauge transformation. This implies
that the covariant derivative for the usoft quark will not have a hard-collinear gluon
field. Equivalently, the interaction of a usoft quark with a hard-collinear gluon will

vanish [ d*r g@us(x) An(z)gus(z) = 0 due to rapid oscillations of the hard-collinear
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gluon. It was in anticipation of this result that we first wrote Eq. (4.21) for the usoft
quark Lagrangian without a hard-collinear gluon. By the same argument as above,
the usoft gluon also does not transform under a hard-collinear gauge transformation.

We summarize the hard-collinear and usoft gauge transformations below [30]

hard-collinear: A, — U, A, Ul + 3 U. [Dus, U], £ = UL,
Ays = Aus, qg—q,
(4.28)
ultrasoft: A. = Uy A UL, £ — Uk,

Aw = Ui A UL+ Ui [BUL], 42 Ve

One can check that due to the fact that the usoft gluons do not transform under
hard-collinear gauge transformations, hard-collinear gauge invariance of the hard-
collinear quark Lagrangian? requires the replacement éUhcé)“UZc - _‘%Uhc [Dus, Uzc]
in the second term of the usual transformation of the hard-collinear gluon field. This
is seen in the first line of Eq. (4.28). In this sense the usoft gluon field plays the role of
a ”"background” field under hard-collinear gauge transformations. Once again it was
in anticipation of this result, that we included A,; in £j, in Eq. (4.25). Conversely,
a usoft gauge transformation is effectively global for the hard-collinear quarks and

gluons as seen in the third line of Eq. (4.28).

4.2.3 Label Operators

Altough we have a Lagrangian for the usoft and hard-collinear particles, we have not

yet managed to remove all the hard fluctuations p > /QAqcp
. = Q(N2,1,\) ¢n, (4.29)

as can be seen from the p~ ~ ) momentum fluctuations of the hard-collinear field

¢n. Here ¢, represents either a hard-collinear quark or gluon. In fact, unlike in

2This is most clear for the hard-collinear quark Lagrangian ¥, [2Pys + 94,]¥,, before integrating
out the &5 field in order to obtain an expansion in powers of A and here ¥,, = £, + &;.
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HQET, we will not entirely succeed in removing these hard fluctuations. In HQET,
the hard part of the heavy quark momentum remained static since it’s interactions
with the light degrees of freedom involved momenta exchange of order Agcp < mgu.
In this sense, the hard part of the heavy quark momentum was no longer dynamical
in HQET. As a result, we were able to formulate the dynamics of the heavy quark
exclusively in terms of fluctuations of order Agcp centered about the hard part of

it’s momentum.

The situation for SCET; (and also SCETY; ) is rather different. In this case the
hard part of the hard-collinear momentum is dynamical. The interactions of hard-
collinear particles amongst themselves involves the exchange of order @ momenta for
the p~ component. But we want to construct an EFT at the scale yu ~ \/QTQCD.
Physically, this means that we are looking at the system using a ”microscope” with
a maximum resolution of distances or order 1/ m and we will not be able to
resolve the p~ ~ @ momentum fluctuations. So, we would still like to construct the
EFT using fields with the hard fluctuations removed. How can we do this considering

that there are dynamical hard p~ ~ ) momenta present in this problem?

We can do this by generalizing the method of separating out the hard momenta
in HQET. In HQET there was one heavy quark field h, corresponding to order Agcp
fluctuations about the hard on-shell momentum mgv. Similarly, in SCET; we can
introduce a hard-collinear field ¢,, with a label p, corresponding to small fluctua-
tions about the hard momentum component p~ ~ @ of the hard-collinear particle.
However, in this case there will be one such field for each hard-collinear particle and
a hard momentum exchange will be taken into account by a corresponding change in

the label momentum. We now make this idea precise.

Before proceeding, we point out that unlike in HQET, from the scaling of the hard-
collinear momenta we see that there are actually two low energy scales Q\, Q\? < Q.
In this situation, it becomes convenient to absorb the order QA momentum along
with the order ) momentum into the label, and let the ¢, , field have only order Q\?
fluctuations. As we will see, with all the effective theory fields now having uniform

order QA? fluctuations the power counting in this ”label” formalism will be much
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more transparent. Continuing along, we separate the momenta as
Pt = pF + k¥ (4.30)

so that p™* ~ @ and p/| ~ Q) get absorbed into the label momentum p and the
k ~ Q)? momenta become the "residual” momenta corresponding to fluctuations of

the field ¢, ,. We write the hard-collinear field ¢, as

¢n = Z e_w.mqbn,p, (431)
p

so that

Hdnp ~ Q0 1%, 7). (4.32)

In other words, the field ¢,, has Fourier components to create all hard-collinear par-
ticles with momenta that scale as indicated in Table (4.1) and Eq. (4.31) just divides
up this momentum space into bins corresponding to each label p and each bin is of

size k ~ QA?(see Fig.4.2.3)

/ P>y / k. (4.33)

In each bin corresponding to the label p there sits a field ¢, , that creates momentum
fluctuations of size k ~ Qn? centered about the label momentum p. In this language,
in SCET] one can think of two hard-collinear particles with label momenta p; and
P2, as being particles with global ”charges” p; and p; and are created by the fields
@np, and @np, respectively. The conservation of these label momenta in the EFT
corresponds to the conservation of global charges. Note that a separate conservation
for the label and residual momenta is required since the label momenta are harder

than the residual momenta.

To keep track of the changes in label momenta due to hard momentum exchange

among hard-collinear particles, it becomes convenient to introduce the label opera-
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@np. On,p

i i+l

p

Figure 4-2: The separation of momenta into “label” and “residual” components. The
SCET fields ¢y, describe k ~ @QA? fluctuations centered about the label momentum

D.

tors [26]

75¢n,p = 7 * PPn,p, Pﬁ¢n,p = p{l‘_ﬁbn,p’ (4.34)

so that P and P operators pick out the 7 - p and p/, components of the label respec-

tively. We define their action on a product of fields as

P (gl 8 b Bp) = D+ Aph—g—. .= gh)(gh, - &) o -'-¢pn)
(4.35)

where we have defined P* = —“2i73 + P¥. Note that these label operators always
act in the forward direction. The hermitian conjugate of these operators acts in the

backward direction so that

(¢;1 o '¢;~m¢p1 e ¢Pn)‘PM‘ = (qf+ . -+qg—pl1‘—' e p‘r:z)(¢:rn e ¢gm¢p1 e ¢Pn)'
(4.36)
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The introduction of these label operators allows us to write
10 (677 %np(7)) = €% (PH +10") 6np(2), (4.37)
so that all the derivatives 20 in SCET] scale like Q)2

10 ~ QN2
(4.38)

and all the large phases get pulled out in front of the operator. The rapid oscillation
of the large phase relative to the slowly varying ¢,, type fields in position space,

ensures conservation of label momenta

/ d4.'L' e—Z(Pl+P2+-"Pn)'z ¢n,p1 (x) e ¢n,pn (x) — (27{')362(1)1_]- + p2-L + .- .pnl)

x 6(py +pz +---pn) / d4x¢n,m(x) " O pa (T)- (4.39)

When the above property is combined with the sum over momentum labels that will
appear in the Lagrangian due to the substitution of Eq. (4.31), the delta functions
over the momentum labels can be removed with the implicit understanding that the
sum of the labels in a product of hard-collinear fields must add up to zero. This leads

to four rules regarding our label notation:
1. There is always an implicit sum over all label momenta unless otherwise stated.

2. For any interaction involving a product of fields with momentum labels py, - - -, p,,
there is an implicit conservation of label momenta p; + - - - + p, = 0. This con-

servation of label momenta will also carry over to the Feynman diagrams.

3. The implicit sum over label momenta allows a change of variables on the labels

since the original summation variable is a dummy index.

4. In general PO = [PO] + OP where the square bracket indicates that the label

operator P acts only on terms within the bracket.
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What will the hard-collinear gauge transformations look like in the label formal-
ism? Consider a hard-collinear gauge transformation Upe(z) = e**@T* with all of
it’s support over hard-collinear momenta as in Eq. (4.26). Just as we did for the

hard-collinear fields, we can remove the hard momenta by a redefinition
Uhc(.'l}) = Z e—zQ-qu’ (4.40)
Q

such that Uy ~ QA% We can extract the transformation of the hard-collinear

quark field &, , by looking at the transformation of the full hard-collinear field &,(z) =

Tpe P np

‘Sn = Z e_lq.wgn,q — Uhc‘ll)n = Z C_E(Q_{_p)'IUan,p. (441)
e Q.

For clarity, in the above equation we make the summation over labels explicit. Using
the orthogonality property of the phases® [ d*zd?z, e~ 4=%)* o §(¢g~—k~)82 (gL —kL),

we arrive at the transformation of the hard-collinear label fields

€ng — D Ug-p&nps (4.42)
p

where in the above equation there is no sum over ¢q. One can similarly derive the
transformation for the hard-collinear gluon label fields A, ,. However, we postpone
this result until later in the section after we have discussed how to incorporate the

label formalism for covariant derivatives.

We now apply the full power of the label formalism to separate out the hard parts
of momenta in the EFT and make power counting as transparent as possible. We can
break up the covariant derivatives of SCET] into terms characterized by their scaling

in powers of A just like the decomposition of the ordinary derivative in Eq. (4.37).

3We remind the reader that the label momenta p have non-zero components only for p~ and p; .
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For the 72 - D and 2D, components, the decomposition is given by

wn-D =i Dpe + it - Dy, DY =Dy, +1Dh,
1 1 { i (4.43)
A0 pL A A2

where 1D, was defined in Eq. (4.22) and

- Dpe =P +ghi-An,y,  1Dhy =P +gAL ). (4.44)

No such decomposition is required for the n - D component since all it’s term have a

homogeneous scaling in A

m-D =wm-Dy, + n-Ay,
\ 1 (4.45)
A2 A2

As promised we now state the leading order transformation of hard-collinear gluon

label fields under hard-collinear gauge transformations

Ay =Y Ug Al pUlyin g+ éuq [Dm,uf_], (4.46)
Q.R
which can be derived in the same way as we did for the hard-collinear quarks and

once again there is no sum over q. Here we have defined
n# n#
D+ = —2—7? +PL+Pl+ S Dy, (4.47)

which is obtained after dropping the order A? terms in the equations of (4.43). It is
interesting to note from this example that hard-collinear gauge transformations will in
general relate the coefficients of terms of different order in the EFT Lagrangian [24, 7).
It is possible to use redefined fields so that the gauge transformations do not mix terms

of different order in power counting. This was shown in [24, 32]. We simply state
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the result that is relevant to us. In terms of the redefined fields the n* and perp

components of the total covariant derivatives get modified
ti - D = 17 - Dy + Whetfi - DysWi,,  1DH = 1Dl # + Wy D W, (4.48
he hel usLl "’ he

where the W}, are Wilson lines that will be defined in the next section.

We now have all the pieces needed to rewrite the hard-collinear Lagrangian £,
of Eq. (4.19) in label notation. In fact, with the power counting of the various terms
in the covariant derivatives made explicit by Eqgs. (4.43) and (4.45), we can obtain a

power expansion of L,
Lhe = LO+0 +... (4.49)

where the superscripts denote the order in A. Ignoring the order A? terms in Eq. (4.43),

we obtain the leading order hard-collinear Lagrangian [18]

1

i
- L L
P+ g - A’n,s (ZPJ- + gAJ_n,t)] 2§n,p;

(4.50)

E;zoc) = g'n,P' [7’" : DUS + gn- A"’q + (ZP-L + gAl_J‘_n,r)

where as discussed earlier there is an implied sum over all momentum labels and an
implicit conservation of the label momenta in each term of the sum. The leading order
hard-collinear Lagrangian of the above equation is the main result of this section.
The homogeneous scaling of the D, as seen in Eq. (4.45) implies that all the terms
in the light and heavy usoft quark Lagrangians £,; and £",, defined in Eqgs. (4.21)

and (4.23) respectively, have the same scaling and can be checked to be of zeroth

order
Loys~ L~ M0 (4.51)

As a result there is no expansion for the light and heavy usoft quark Lagrangians L,

and L! similar to Eq. (4.49) for the hard-collinear Lagrangian. Subleading terms
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involving the usoft quarks will appear in Ly s defined through Eq. (4.9).

4.2.4 Wilson Lines

As we saw in section 4.2.2, SCET] has hard-collinear and usoft gauge symmetries as
the relevant subset of gauge symmetries in QCD. However, the hard-collinear gauge
symmetry is not manifest in the current form of the leading order hard-collinear
Lagrangian £\ in Eq. (4.50). We would like to recast £ in a form that will make
hard-collinear gauge invariance manifest at leading order and is the main goal of this

section. In the course of doing so we will be led to the introduction of Wilson lines.

We introduce a order A° object W which is a function of 72 - 4, ,

W= [ > exp (—g%ﬁ-An,q> ], Wt = [ Y exp (—gﬁ-A;’q%,F)], (4.52)

perms perms

and satisfies W1W = 1. In the expansion of the exponential we sum over all permu-
tations of the gluon fields and in the Feynman rules the %! in this expansion cancels

the n! from the permutation of the gluon fields. It is easy to show that W satisfies
A DpeW = [ (P + gfi - Ang) W] =0. (4.53)

We note that the above equation looks a lot like the equation for a Wilson line
along a path in the n* direction. We will come back to this point and make the
connection clearer later in the section. For now let us proceed and try to figure out
the transformation of W under a hard-collinear gauge transformation. We will show

that the correct transformation of W is given by
W — UrWw, (4.54)

as follows. We note that for a given boundary condition, Eq. (4.53) has a unique

solution and that UrW satisfies Eq. (4.53) with (75 + gn - An,q) transformed using
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Eq. (4.46)

_ 1 _
[(’P + g{uQ A An U p_g + EuQ [Puj_,] })uTW]
(uT (BT + P} + g 7 An p UL U + 7-(q — Q) Ug U}y, uT) W]

- (uT (T + P} + gUg - A g — 1-Q U U!, uT) W] (4.55)

= (P + gn-An,R)W] —0.

In the second line we have used (for fixed p) Ponp = [Phny| + npP = np(P -
p + P). To obtain the third and fourth lines unitarity of the gauge transformation
up, +r Upw = Orp (with fixed 7, ') was used. Thus, we see that Uy is a solution
of the linear equation with (P + gf - A, ,) transformed using Eq. (4.46). Thus, from
uniqueness the transformation is given by Eq. (4.54). This immediately allows us to

write a hard-collinear gauge invariant combination
Wit p, (4.56)

which can be used as one of building blocks for constructing gauge invariant operators.
We will see examples of this later on. Similarly, one can write down another building

block using the perpendicular hard-collinear covariant derivative

WDy &nps (4.57)

which is suppressed by one power of A relative to the building block of Eq. (4.56).
The corresponding building block using 7 - Dy, can always be rewritten to arrive at

the form in Eq. (4.56) as we now show. Using unitarity WW' =1 and Eq. (4.53),

o = [p(ww)
= [Pww!+ [wPw!]
= —git- Any+ [WPWT], (4.58)
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which combined with WPWT = [W’PW"] + P gives
WDy = WPWH. (4.59)
Thus, the building block Wt - Dpc&np can be rewritten as

Whit - Dpebnyp = (W"zﬁ-D th) (Wtf"”’)
= PWit,,, (4.60)

which is of the same form given in Eq. (4.56). In fact, by replacing P with any
function f(P) in Eq. (4.58), we can show

fGn-Dy) = WfP)WH (4.61)

In particular, we can write 1/ - Dy, as W%W'f in the second term of the hard-

collinear Lagrangian L',g)c) in Eq. (4.50) to arrive at the form

- 1
£ = up[im- Dus b g0 Ang + (P + g4 W EWHPL+ 9880)] By (462)

We now see that hard-collinear gauge invariance is made manifest. The first two terms
together are easily checked to be invariant while the last term is now written as a
product of the hard-collinear gauge invariant building blocks of Eq. (4.57). Since the
hard-collinear gauge transformations don’t commute with label operators, the 1/P
operator in the second term sits between gauge invariant products and appears in the
denominator by dimensional analysis. In fact using the constraints of power counting,
gauge invariance, and dimensional analysis, we the above form of the leading order
hard-collinear Lagrangian ﬁ}?c) can be uniquely determined. The terms in ,szoc) are
protected from acquiring anamolous dimensions by normalizing the hard-collinear
quark kinetic term and imposing gauge invariance. Expanding the factors of W gives

an infinite set of leading order couplings of hard-collinear quarks to 7 - A, 4 gluons.

We now turn to an interpretation of these objects W which from the point of view
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of SCET] are just functions of 72 - A, 4 gluons. It can be shown that the object W is

the fourier transform of the position space Wilson line
0
W(z,—o0) = Pezp (zg/ dsn - A(zt + sn*)) , (4.63)

along the n# direction. We can see this by fourier transforming the exponential in

Eq. (4.52)

. ﬁ-A __g lq (y+—w+)
_ dg e Y et g = / d /d . An +
g/ q e y" ) de P (")

_ _—_9 +(_ — a7 - +

= 5 /_oody (=2mf(zt —y™))n- An(y™)
zt

= zyf_oody+ﬁ-An(y+)

0
= zg/_oo dsn - Ap(zt + sn'). (4.64)

For brevity in notation we have used n-q = ¢, etc. The +1¢ prescription was used
while integrating over ¢~ to close the countour in the bottom half of the complex ¢~
plane giving rise to the step function 6(z* — y*) in the second line. In the last line
we changed the integration variable y* — sn* = y* — T to obtain the form of the
exponential for the position space Wilson line in Eq. (4.63). Finally, it can be shown
that the +1c prescription enforces path ordering and we refer the reader to [43] for

an illustration of this point at order g2.

We should not be suprised at the appearance of Wilson lines along the n# direction.
Recall that the interactions of hard-collinear particles among themselves involve the
exchange of order Q > QA momenta in the n* direction. Thus, in our effective
theory at the scale ), such interactions will be non-local giving rise to Wilson
lines. However, in our formulation of SCET; using label operators we have removed
these hard fluctuations through field redefinitions like the one in Eq. (4.31). However
these field redefinitions simply relate the label fields ¢, , to the position space fields
¢n(z) through a fourier transform over the label momenta. As a result in our label

formulation of SCET] , we see the presence of the ”momentum space” Wilson lines
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W which can be thought of as connecting hard-collinear particles in different p~ label
bins(see fig. 4.2.3).

The transformation of the momentum space Wilson line W, shown in Eq. (4.54),
under a hard-collinear gauge transformation is consistent with that of the position

space Wilson line W (z, —00)
W (z, —00) — Upe(z)W (2, —00)U} (2 — ooii), (4.65)

with U,Ic(m — oofi*) = 1. In other words, the hard-collinear gauge transformations
have no support at n-z — —oo. But this follows immediately from the scaling of the

hard-collinear momenta
¢n (x) — / dp—d2p_Le(—‘tp_ .x+_zpl-:u)¢n,p —_ 0’ (466)

as 2+ — 00, —oo due to rapid oscillations of the exponential (="~ *") over the smooth
function ¢, in the region of large p~. For clarity we have switched from our usual
convention of denoting the integral over label momenta by a summation symbol, and
have made the integral explicit. So, all hard-collinear particles are effectively confined
to a bin near n -z = O(see fig. 4-3). More intuitively, this just corresponds to the fact

that
n-r=t—z=0, (4.67)

for hard-collinear particles close to their light cone direction n*. Thus, with all hard-
collinear gluons confined to be near the n -z &~ 0 bin, the gauge transformation
Unc(x) has no support for large n - z which is consistent with the transformation of

the momentum space Wilson line W shown in Eq. (4.54).

4.2.5 Hard-Collinear and Ultrasoft Decoupling

Now that we have a manifestly gauge invariant leading order Lagrangian L:Eloc) for

hard-collinear quarks, we could go ahead and write down the leading order Feynman
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Figure 4-3: The hardcollinear particles with a large momentum component 7 -p ~ @
are effectively confined to bins near n -z = 0.

rules for SCET; . However, we momentarily postpone this to the end of this section
and first discuss another important property of the hard-collinear Lagarangian. This
property called Ultrasoft-Hard-Collinear decoupling [22], is at the heart of factoriza-
tion theorems in SCET and has a huge impact in our ability to make phenemenological
predictions. In fact, it is this property of SCET] that will allow us to implement heavy
quark symmetry in B — D® 7 type decays which cannot not be done in HQET alone.

The idea of ultrasoft-hard-collinear decoupling is to reformulate SCET] in terms
of new fields such that there are no interactions between hard-collinear and usoft par-
ticles at leading order A\°. We see that in it’s current form in Eq. (4.62), .cﬁfi? involves
the interaction of a hard-collinear quark with a usoft gluon through D,,. Ultrasoft-
hard-collinear decoupling uses redfined fields such that this interaction disappears at
leading order. In this new formulation one can factorize amplitudes for appropriate
physical processes at leading order and then systematically compute power correc-
tions to it. We will show how this works in detail for the B — D™ type decays in
later chapters.

We now show how decoupling works. Just as we introduced hard-collinear momen-
tum space Wilson lines W in the previous section, we can define a usoft momentum
space Wilson line

00 (_g)m n.Aal - n.Aam
Y — 1 + us us
mZ:lp;ns m! n-kyn-(ky +kp) - n- (T2, ki)

Tom...T% | (4.68)

where n - k; denotes the 7* momentum component of the ith fourier transformed usoft
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gluon A%, (k;) and the a; denote color indices. It is related to the fourier transform of

the position space Wilson line
Y(z) = Pexp (ig /_: ds n-Azs(ns)T“) . (4.69)
In a manner similar to the proof of Eq. (4.61), we can show
Yin.-D,Y =n-0. (4.70)

Next we perform field redefinitions which introduce new fields denoted by the super-

script (0)

bnp = YE) Ab, =YADRYT, tap = YO Y. (471)

P

The field redefinition for the hard-collinear gluon implies a redfinition for the hard-

collinear Wilson line

W= [ > exp(—g% Yn-AggYT)]=YW(°>Yf. (4.72)

périns
In Eq. (4.71) we have also included the field redefinition for the ghost fields ¢, ,. For
the hard-collinear Lagrangian cﬁ,"c’, the above field redefinitions give
LY = g0yt {zn Dy, + gYn- ALY + (P + YgdO YY) YW OYT %

XYWOIY! (P, + YAy }g Yg,(;jg,}

; 1
= ) (Yt Dy gne A+ (P oA WO 5 WO (B, + 0497

7

I 1
= &), {m- 0+ gn-AQ) + (’P’l + g/ﬂ(nozll) wo 5 wort (’I?_L + 945.0,3;)}'2‘ 0.

We see in the last line above that in terms of the new fields there are no usoft-

hard-collinear interactions. We have, at leading order, decoupled the usoft gluons
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Figure 4-4: The interactions of usoft gluons with hardcollinear quarks can be summed
into a Wilson line along the path of the hardcollinear quark. [22]

from the hard-collinear quarks at the level of the Lagrangian itself. Similarly, we the

hard-collinear gluon Lagrangian becomes

0 1 v O)v 1
[,;,,)lc = 2g2 {[zD(O) + gAsgzl , z'D y + gA( ) ]} + — 5 {[ZD(O) AS}}Z;‘]}
+2 tr{ e [zD(O) [zD” + gASf’ZI" ) c(o) ”} (4.75)
where
nt _ s

The result in Eq. (4.75) shows that the new hard-collinear gluon and ghost fields
A and c¢{) also decouple from usoft gluons. From now on we will work in this new
formulation in terms of the redefined fields and drop the superscript (0) for notational
simplicity.

From the form of the field redefinitions in Eq. (4.71), we can interpret this result
of decoupling as the statement that the interactions of hard-collinear particles with
usoft gluons can be summed into Wilson lines Y along the n# direction at leading
order. This idea is shown pictorially in Fig. 4.2.5. We stress that decoupling is only
a leading order property of SCET. Beyond leading order, there will be interactions
between hard-collinear and usoft gluons that cannot be summed into Wilson lines.

Finally, we end this section by giving the Feynman rules for the leading order inter-

actions between hard-collinear quarks and gluons as determined by ;Cfloc) in Eq. (4.73).
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Figure 4.2.5 gives the Feyman rules for the first few terms of £§f?.

4.3 SCET; : Beyond Leading Order

In the previous section we derived the leading order Lagrangian for SCET| which
involved no interactions between usoft and hard-collinear particles. However heavy
hadron decays cannot proceed without usoft-hard-collinear transitions. Such transi-
tions occur at subleading order in SCET; . To go beyond leading order it becomes
convenient to establish a set of constraints that will allow us to write down a com-
plete set of operators onto which we can match QCD plus Fermi theory which was

the relevant the EFT at u ~ Q.

4.3.1 Operator Constraints and Symmetries

There are three main guiding principles for the construction of operators in SCET|
1. Power counting.
2. Hard-collinear and usoft gauge invariance.
3. Reparameterization invariance(RPI).

We have already discussed the first two principles in some detail. In addition. SCET
also contains a kinematical reparameterization invariance [90] analogous to HQET

which we now discuss.

Reparameterization Invariance

SCET is an EFT constructed in a frame of reference in which the degrees of freedom
have usoft or hard-collinear momenta. In a different frame of reference these same
degrees of freedom will in general have very different looking momentum scalings for
which SCET] is not appropriate. However, the appropriate frame of reference for
SCET] is not absolute. SCET; will be invariant under the subset of Lorentz trans-

formations that do not alter the momentum scalings of the usoft and hard-collinear
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particles. The invariance of SCET; under this subset of Lorentz transformations is
what we call the RPI symmetry of SCET; . In particular, due to the vectors n, 7,
Lorentz invariance is broken by the generators n#M,,, 7*M,, but preserved under

14
e’ M.

In HQET, RPI is the result of the freedom to make small changes to the heavy
quark four velocity label v# without changing the scaling of the soft momenta and
preserving the on-shell condition v? = 1 for the heavy quark. In SCET, RPI mani-
fests itself as the freedom to make changes to the light cone vector label n* without
changing the scaling of the hard-collinear momenta and preserving the normalization
conditions n? = i = 0,n -7 = 2. There are three types of RPI transformations

allowed

type I: n—n+Aj, A ~ A
type II: n—n+ey, €L ~ 0. (4.77)

type III: n —e%*n, 7 — e %A, a~ A

The scaling of the transformation parameters A, e, ,a given above are determined
by the requirement the scaling of the hard-collinear momenta remain unchanged. For
example, under a type I RPI transformation, the hard-collinear momentum p# =

(n-p,fi-p,p1) ~ (A2, A% \) transforms as

pr = (PR AsE Y A ERppg (ph+ BRAL),
+ i ! (4.78)
A2 A0 A

where the last line shows the required scaling for the hard-collinear momentum com-

ponents and implies that A; ~ A.

RPI transformations also affect the hard-collinear fields due to the requirement

of preserving Egs. (4.13), (4.15), and (4.53). We refer the reader to [90] for further

86



details. We point out that just as in HQET, RPI transformations in SCET; connect
operators at different orders which provides severe constraints on the Wilson coeffi-
cients of subleading terms. In fact we will exploit this property in the next section to

derive the order A usoft-hard-collinear coupling using tree level equations of motion.

4.3.2 Ultrasoft-Hard-Collinear Transitions

In this section we derive the form of subleading usoft-hard-collinear interactions using
tree level equations of motion. In principle there are two problems with this approach.
The first is that we may miss non-trivial Wilson coefficients that may arise during
matching beyond tree level and the second is that we may miss operators whose tree
level Wilson coefficients vanish. However, it was shown in [100], that using RPI
invariance along with gauge symmetry and power counting, neither of these problems
arise up to order A2. We will assume this result and derive the usoft-hard-collinear

Lagrangian at order A using tree level equations of motion.

For simplicity of notation we drop label fields in the following and will put them
back in the final result. Furthermore, in what follows we will be starting at the very
beginning before having made the ultrasoft-hard-collinear decoupling transformation.

We will make the decoupling transformation after we arrive at the final result.

We simply generalize our procedure for obtaining the leading order hard-collinear
Lagrangian by including the usoft quark field in the decomposition of the quark field
into SCET] fields

W =&, +&n + Gus. (4.79)

Starting with the action £ = Ui]D¥ we get

L = Eng”"Dgn + gnzpj_fﬁ + EngAc Qus + Qus gAc gn + Gus gAc é.ﬁ + Qus il’us Qus
+ _ﬁipj-gn + gﬁnganﬁ + gﬁgAc‘Ius] ’ (480)
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where D = D, + Dj.. The equation of motion for &; is given by

3

"_: D% [(Pibn+94naus), &= [Tuegdn— £ D . gm—l‘ﬁ . (4.81)

Substituting Eq. (4.81) in Eq. (4.80) and only keeping mixed usoft-hard-collinear

terms(since this is the additional piece we want) we get

_ _ 1
Leg = [6ngn qus + 6»%”” L o594 Gus] + [Gus 9 hn G + Gus 9 iﬁl-DilDlg &
(4.82)

Next we use the power counting scheme of SCET| to expand the above Lagrangian

in powers of A. The terms up to first order in A are given by [100]

£ = &(94S - il —= 97-Ac)gus + hoc, (4.83)

(4.84)

1
in-D,

where as always the superscript denotes the order in A. For the purposes of phe-
nomenology which we discuss in later chapters, it is enough to keep only LZSI) and we
will not worry about the further suppressed terms [100]. We can write .Cgl) in the

more compact form

igB-Wqus + h.c., (4.85)

M _ £
Le n in- D,
by introducing the field strength

igB* = [ifi-D°,iD}]. (4.86)

Finally, we perform the decoupling transformation of Eq. (4.71) to arrive at

W _ £ : t
L &n D igB-WYlq,, + hec., (4.87)

as our final result for the order A usoft-hard-collinear interaction. In the above expres-
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Figure 4-5: Order A\ Feynman rules: collinear quark propagator with label  and
residual momentum k, and collinear quark interactions with one soft gluon, one
collinear gluon, and two collinear gluons respectively. [22]

sion the hard-collinear fields are the redefined fields of Eq. (4.71) with the superscript
(0) dropped. In other words the hardcollinear fields in the above expression do not
transform under usoft gauge transformations. Usoft gauge invariance in made mani-
fest through the invariant combination Ytq,,. To see the gauge invariance note that
under a hard-collinear gauge transformation Uy, we have &, — Upkn, W — Up W,

B = U, B U}, and (i-D,)™" — U, (fi- Dye) " U}, so all factors of Uy, cancel.

The usoft-hard-collinear transition [,g) will play a crucial role for color suppressed
decays of the type B — D™ in which soft spectator quarks in the B, D®*) mesons
end up in the energetic collinear pion. We will discuss this at length in subsequent
chapters. In Fig. 4-6 we show the Feynman rule for the first term in ‘C‘S;) which

involves one hard-collinear gluon.
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4.4 Matching

The previous sections were devoted to the development of SCET; as the EFT near the
s~ \/QTQCD entirely in terms of usoft and hard-collinear degrees of freedom. We are
now in a position to match Fermi theory onto SCET; . However, the peculiar nature
of SCET] due to the presence of three different scales in the hard-collinear momenta,
leads to non-trivialities in the matching procedure which we explore in this section.
In fact we will find that matching simplifies dramatically due to all the symmetries

of SCET] discussed in previous sections.

4.4.1 Operator Wilson Coeflicients

In matching from Fermi theory at the scale u ~ @ onto SCET at u ~ m,
the Wilson coefficients will depend on the hard scale Q. In other words, the physics
of the hard scale is captured by the Wilson coefficients and SCET} describes the
dynamics at the scale p ~ \/m . However, as we have discussed before the hard-
collinear modes with virtuality g ~ \/m possess a hard momentum component
n-p~Q> \/ZQXQC—D making this separation of scales more difficult.

To get a better idea of the interplay between the different scales associated with
hard-collinear momenta, let’s consider the example of heavy to light semileptonic
decay. Consider the matching [18] of the weak Hamiltonian of Fermi theory for heavy

to light semileptonic decays

Hyp = % V C™ (1) Jhaa 7, (4.88)

where J is the leptonic current and J,q4 is a heavy to light hadronic current of the

form
Jhada = qL'b (4.89)

for the decay of a b quark into a light quark g. The Wilson Coefficient C™!(y) has

been run down from p ~ My to pim,. Finally, I represents the general Dirac structure
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Figure 4-6: Feynman rules for the subleading usoft-collinear Lagrangian Egl) with

one and two collinear gluons (springs with lines through them). The solid lines are
usoft quarks while dashed lines are collinear quarks. For the collinear particles we
show their (label,residual) momenta. (The fermion spinors are suppressed.)

of the operator and it’s details will not be relevant for our discussion.

The tree level matching of Jyeq onto the SCET operator J&, is shown pictorially
in Fig. (4-7) [18]. On the left we show hard-collinear gluons interacting with a usoft
heavy b quark in the full theory. Each hard-collinear gluon knocks the b quark far
offshell and this offshell mode must be integrated out to match onto SCET; which
only contains a b quark that is offshell by a small amount ~ Agcp. Note that it is the
hard 7 - p ~ m; component of the hard-collinear gluon responsible for knocking the b
quark far offshell. As a result the Wilson coefficient will depend on 7 - p. However, at
the same time, the hard momentum component 7 - p is still dynamical in SCET; due
to the exchange of 72-p momentum components among hard-collinear modes. In other
words, the hard component 7 - p appears both in the Wilson coefficients and in the

EFT at the same time!

In the label formalism introduced in the previous sections, we introduced EFT
fields ¢y, such that the hard momentum component 7 - p ~ Q gets absorbed into the
label and the dynamical momenta now have fluctuations d#¢,, ~ (A%, A2, \%)dy, .
In this way we managed to seperate the hard scale ) from the EFT at the scale
T \/Q—AQ—C; . But from our discussion above this implies that the Wilson coefficients
in SCET] will depend on the hard-collinear field labels. In particular, we can express

the Wilson coefficients as functions of the label operators

C =C(P,Ph. (4.90)
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In this sense, the Wilson coefficients become operators that act on the labels of the
SCET; operators. When this formalism is combined with the gauge symmetries and
power counting framework of SCET; , matching calculations can simplify dramati-
cally. We now illustrate this for the matching of the heavy to light operator J,4 onto
SCET; . We use two guiding principles

e Write down all possible operators in SCET] consistent with power counting,

gauge symmetry, and RPI.

e Operator Wilson coeflicients for SCET; operators are inserted only between

gauge invariant blocks.

To avoid confusion, we first work with fields of SCET] defined before the ultrasoft-
hard-collinear decoupling redefinition. We will rewrite the SCET| operators in terms
of the redefined fields as the very last step. At leading order in SCET] , there is only

one gauge invariant heavy to light operator and Jp,q matches onto SCET] as
Jnad = [C(P)&n,W| T B (4.91)

We note that the Wilson coefficient C(P) can only be placed in front of the hard-
collinear gauge invariant block * &, ,W. Thus, we see that hard-collinear gauge in-
variance relates the Wilson coefficients of the various terms obtained after expanding
out the hard-collinear Wilson line W. In other words, if we were unaware of hard-
collinear gauge symmetry and we attempted to match diagrammatically as in figure

4-7, our matching equation would look like

Jte;;f;td = CO(ﬁ Dy /1') En,p I'h, + Cl(ﬁ PN q, [,l,) En,p (9ﬁ' ’ An,ql)F hy

+co(R-p, - q1, 7+ go, 14) fn,,, (97 Ang )97 - Apgo)T hy + ... ,(4.92)

where the ellipsis stand for terms of the same order with more powers of 72+ A, ;. We

would not expect the Wilson coefficients ¢; to be related in any way since in general

“Hence the Wilson coefficient is independent of P which only acts in the backward direction.
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they would be expected to evolve independently through the RGE equations down to

lower scales. But hard-collinear gauge invariance tells us that this is not the case.

In terms of the redefined fields of Eq. (4.71) with the superscript (0) dropped, the
SCET} heavy to light operator becomes

Jnat = [C(P)ensW| L YTH, (4.93)

and we remind the reader that in the above expression the hard-collinear fields are
decoupled from the usoft fields and do not transform under usoft gauge transforma-
tions. So, we see that this SCET] operator is just a product of hard-collinear and usoft
gauge invariant blocks with a Wilson coefficient operator acting on the hard-collinear

block.

Finally we end this section by introducing notation that will make the separation

of the hard scale manifest. We define

(En,pW)w = £, ,Wé(w — P),
(4.94)

in terms of which we can write Eq. (4.93) as a convolution
Thad = / dw{ C(w) (&,W) TY'H}, (4.95)

and all the physics of the hard scale is now contained in C(w). In other words, we

have "factorized” the hard scale physics.

4.4.2 SCETI — SCETII
SCETy

We are now ready to match SCET] onto SCETy; . Recall that SCETY; is the appro-
priate EFT of soft and collinear degrees of freedom near the Agcp scale. The form

of SCETY is similar to that of SCET; . Recall that the soft modes of SCETy; are
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Figure 4-7: Matching for the order A’ Feynman rule for the heavy to light current
with n collinear gluons. All permutations of crossed gluon lines are included on the
left. [18]

identical to the usoft modes of SCET; . The collinear modes of SCET}; are contained
in the hard-collinear modes of SCET] and correspond to subset of ”softer” fluctu-
ations (p* ~ A¢p) of the hard-collinear modes in the sense of Eq. (2.1). Thus,
the SCET}; Lagrangian is obtained from SCET; by identifying the usoft fields with
the soft fields and keeping only the “softer” fluctuations® of the hard-collinear fields
which are identified with the collinear fields of SCETy; . The physics that is missed
by setting the ”harder” hard-collinear fields to zero will be captured by the Wilson
coefficients or ”jet functions” of higher dimensional or non-renormalizable operators
of SCETy . But these higher dimensional operators are power suppressed. Thus, to
leading order SCET; and SCETy; have identical Lagrangians with the usoft and soft
fields and hard-collinear and collinear fields identified respectively. We summarize
the content of SCET; and SCETy; in Table ?77.

All the arguments for gauge symmetry and RPI invariance of SCET] carry over to
SCETy . In particular, SCETy; will have Soft and Collinear gauge symmetry and one
can construct gauge invariant objects as products of soft and collinear gauge invariant
blocks.

We summarize the two step matching procedure[25] (QC D+ Fermi) — SCET; —
SCETy below

e Match QCD+Fermi theory onto SCET] at the scale u ~ . Here the hard-

5We mean this in the sense of Eq. (2.3), where we set ¢, to zero since 8%¢, ~ QAgcp and only
the ¢, modes are kept such that 8°¢n ~ Adop-
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collinear fields of SCET; have virtuality p}, ~ QAgcp -

Factorize the usoft-hard-collinear interactions with the field redefinitions of the

ultrasoft-hard-collinear decoupling.
by = YED, Al =Y Ak YT,

followed by a renaming of the £, AQ¥ fields in which the superscripts (0) are
dropped. Run down to the scale p ~ /QAgcp using the RGE equations in
SCET; .

Match SCET; onto SCET}; at the scale y ~ \/m. At leading order, since
the SCET and SCET}; Lagrangians are identical, all time ordered products will
exactly agree. Thus, the leading order matching amounts to identifying usoft
fields with soft fields and hard-collinear fields with collinear fields(p? ~ Ad¢p)-
Run down towards pu ~ Agcp using the RGE equations in SCETY; .

We illustrate this matching sequence by continuing with our example of heavy to

light semileptonic decays from the previous section. We only consider matching at

tree-level which will allow us to ignore the RGE running between scales altough this

can be included in a straightforward manner. We have already performed the first

two steps in the matching procedure

1. Match QCD+Fermi theory onto SCETj :

Jhaa = qTb — [C(P)En,W| T B,

2. Perform decoupling field redefinition:

[C(P)&u,W| T hE = [C(PYEQWO]| T Yh,

followed by a renaming of the new decoupled hard-collinear fields by dropping
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the superscript (0)

[CP)EQWO| T YThPm — [C(P)E,,W] T Y.

3. Match onto SCETy; at leading order by identifying usoft and hard-collinear
fields with the soft and collinear fields of SCET|; respectively:

[CP)&,W|TYH — [C(P)ELW| T Stht, (4.96)

where we have denoted the SCET]; collinear fields with numeral I7 for clarity
but is coventionally dropped. Note that we have identified the usoft Wilson line
Y of SCET; becomes the soft Wilson line S of SCET}; under the identification
of the usoft and soft fields.

We note that one could have arrived at the above result by considering a direct match-
ing from QCD onto SCETy; without using the intermediate theory SCET; . We can
write down a set of gauge and RPI invariant leading operators in SCETy; onto which
QCD will be matched. Doing this we will immediately arrive at the SCET}; operator
£.pW T Sth. However, neither gauge invariance nor power counting can tell us
the exact path of the Wilson line S from —oo to z since all the components of
the soft fields A¥ scale the same way. The only way to determine this path of the
soft Wilson line is through an explicit matching calculation which integrates out the
p? ~ QAgcp (63, 26] fluctuations generated from the soft-collinear interactions.

The procedure described above in which one goes through SCET; as an inter-
mediate step is a simpler alternative. In particular, the path of the Wilson line S
is determined by the path of Y which was introduced in the field redefinitions of
Eq. (4.71) in order to decouple hard-collinear and usoft modes in SCET} .

Going through SCET] becomes especially useful at subleading order where time
ordered products in SCET; and SCET}y; can differ. In particular, time ordered prod-
ucts in SCET| can induce non-trivial jet functions in SCETy; containing the physics

of effects at the u ~ {/QAqgcp scale. In this case matching directly from QCD to
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SCETy; can become even more diffcult. On the other hand SCET; gives well defined
Feyman rules along with a power counting scheme for computing these non-trivial
jet functions. We will explore such situations in detail in the next chapter when we

apply SCET to color suppressed B-decays which proceed only at subleading order.
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Chapter 5

Color Suppressed Decays

We are finally ready to consider applications of the SCET discussed in the last chapter.
We focus on two body nonleptonic decays of B mesons. Typical decays of this kind
are B - Dn, B - D*r, B— Dp, B - D*p, B—» DK, B —» D*K, B —» DK*,
B -+ D*K*,B - D,K~, B— D,K*", ... and will be generically referred to as B —
Dm decays. Since these decays are the simplest of a complicated array of hadronic
channels a great deal of theoretical work has been devoted to their understanding [27,
50, 97, 5, 45, 36, 61, 41, 101, 29, 83, 21, 109, 96, 14, 47, 110, 82]. In subsequent chapters
we also consider the color suppressed decays B — D®){n, 7/, ¢,w} where the light
meson is an isosinglet and B — D**1 type decays where the charmed meson is in an

orbitally excited stated.

5.1 Color Allowed and Color Suppressed Decays

After integrating out the W-boson the weak Hamiltonian for B — D decays is

Hy = %vc,, walCL(1) @) v-a(du)v_a + Co(u)(@bj)v-aldjui)v-a],  (5.1)

where %, j are color indices, and for p, = 5GeV, Ci(up) = 1.072 and Co(pp) = —0.169
at NLL order in the NDR scheme [40]. For the Cabibbo suppressed Hy we replace

d — 3 and V; —» V. It is convenient to categorize the decays into three classes [27],
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depending on the role played by the spectator in the B meson (where “spectator” is
a generic term for the flavor structure carried by the light degrees of freedom in the
B). Class I decays receive contributions from graphs where the pion is emitted at the
weak vertex (Fig. 5-1T), while in class II decays the spectator quark ends up in the
pion (Figs. 5-1C,5-1E). Finally, class III decays receive both types of contributions.
Many of these channels have been well studied experimentally [52, 4, 48, 2, 49, 103],
see Table 5.1. Another method to categorize these decays makes use of amplitudes
corresponding to the different Wick contractions of flavor topologies. These can be
read off from Fig. 5-1 and are denoted as T (tree), C' (color-suppressed), and F

(W-exchange or weak annihilation).

5.1.1 Theoretical Status

Long ago, it was observed that approximating the matrix elements by the factorized
product (D|(eb)y_4|B){r|(du)y_4|0) gives an accurate prediction for the branching
fractions of type-I decays, and a fair prediction for type-III decays. For all class-1 and
-IT amplitudes a similar procedure was proposed [27]. In terms of two phenomeno-

logical parameters a, 2,

iA(B® - D*r-) = G—ﬂvv 01(Dr) (D*|(@)v—a | BY) (x| (du)y_al0) . (5.2)
IA(B® - D) = %v 2 aa(Dr) (] (db)y—a | B) D] @)y 10)

Type-III amplitudes are related by isospin to linear combinations of type-I and II
decays. Naive factorization! predicts the universal values a; = C; + C3/N, and
as = Cy + C1/N,.. Phenomenological analyses testing the validity of the factorization
hypothesis have been presented in [97], where typically contributions from E are not
included. These contributions can be modeled using the vacuum insertion approxi-

mation which gives the D — 7 form factor at a large time-like momentum transfer

!We will use the phrase naive factorization to refer to factoring matrix elements of four quark
operators even though this may not be a justified procedure, and will use the phrase factorization
for results which follow from a well-defined limit of QCD.
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1. B°— Dtn~ c. B~ — Dn g. B"— Dtr-
B~ — D~ BY — Dx° B® — D0
Figure 5-1: Decay topologies referred to as tree (T), color-suppressed (C), and W-
exchange (E) and the corresponding hadronic channels to which they contribute.

q?> = m%. For this reason, they are often estimated to be suppressed relative to the

T amplitudes by Ajcp/mj [29].

One rigorous method for investigating factorization in these decays is based on the
large N, limit of QCD. In this limit the amplitudes for type-I decays start at O(N}/?)
while type-1I decays are suppressed by 1/N, (whence the name color-suppressed). The
type-I amplitudes have a form similar to Eq. (5.2) since non-factorizable diagrams are
suppressed, while type-II decays simultaneously receive contributions from factorized
and non-factorizable diagrams. For a typical class-II decay, a Fierz transformation

puts the amplitude into the form

Gr

iA(BO—)DOWO) = E

VaVid (Co+ D) O R@NE)lB) (59

+2C1(Dn°|(dT"b) (eT*u)|B°) } .

where the (V — A) ® (V — A) structure is implicit. The two matrix elements have

expansions in 1/N, which start with terms of order N}/2 and N;'/2, respectively

1 * T — D * 1 *

7 (D*70|(db) (cu)|B®) = F{*) + mFé U (5.4)
[+ [4
1

[

7 D 1 * 1 *
7 (D(*)Oﬂ.OKdTab)(ETau)lBO) _ NG(l ) 4 mGf%) e

where F{") ~ N9 G ~ N°. The Wilson coefficients in Eq. (5.1) can be assigned
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scalings with N, following from their perturbative expansions C; ~ O(1), Cy ~ N1,
which roughly corresponds to the hierarchy in their numerical values at ;. The
leading terms are the matrix elements FO(*), which factor in terms of large V. form

factors and decay constants
NI2E ~ (D™P|2u|0) (r)db| BY) + (D™°x°|2u|0) (0] db| B , (5.5)

plus the matrix elements G(l*) which are nonfactorizable. The naive factorization
assumption would keep only FO(*) and neglect G §*). This approximation is not justified
in the 1/N, expansion since G(l*) is enhanced by the large Wilson coefficient C;. In
either case, no prediction is obtained for the ratio of the B — Dr and B — D*rx

amplitudes,

A(B® = D*n%) _ (Cy + Cy/Ne) Fy + (2Cy/Ne) G (5.6)

B A(B® — DO0) — (Cy + Cy/N.)Fy + (2C1/N.)Gy

i

Heavy quark symmetry does not operate with large N, factorization because for C
and F it is broken by the allowed exchange of energetic hard gluons between the
heavy quarks and the quarks in the pion. In contrast, we will show that expanding
about the limit E; > A this ratio is predicted to be 1 at leading order in A/Q. Here
A ~ Aqep is a typical hadronic scale.

Another rigorous approach to factorization becomes possible in the limit E, >
Aqcep which corresponds to having an energetic light hadron in the final state. In
this thesis we analyze type-II decays using QCD and an expansion in Agcp/ms,
Aqep/me, and Agep/Ex (or generically Aqep/Q where Q = {my, m¢, mp—m.}). We
derive a factorization theorem and show that E and C appear at the same order in
the power counting, and are suppressed by Aqcp/@ relative to 7. Arguments for the
suppression of C' by (Aqep/Q)' and E by (Aqep/Q)%? appear in the literature [29],
but we are unaware of a derivation that is model independent. Our leading order result
disagrees with the ap-factorization result. Instead the amplitudes for B® — D®*)070
and B® — D®)°4 are determined by the leading light-cone wavefunctions ¢ ,, and

two new universal B — D) distribution functions. Long distance contributions also
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occur at this order in Aqcp/@Q, but are shown to be suppressed relative to the short
distance contributions by an additional a,(Q)/~.

For type-I decays a color transparency [35] argument given by Bjorken suggested
A(BY = D¥r~) =~ (Cy + Co/N.) frFEP (m2) + O(0s(Q)). In Ref. [50] it was argued
that this factorization is the leading order prediction in the large energy limit E, >
Aqcp, and in Refs. [101, 29] that a, corrections can be rigorously included. This
factorization was extended to all orders in o, with the proof of a factorization theorem

using the soft-collinear effective theory [21]
1
A(B — DWr) = N® ¢(wp, ) / dz T (z, mo/mip, 1) bu(z, ) + ..., (5.7)
0

where the ellipses denote power suppressed terms. This result is similar to predictions
obtained from the hard exclusive scattering formalism of Brodsky-Lepage [80], except
for the presence of the Isgur-Wise function, £(wp, £). The normalization factor is given

by 2

N® —

GrV,Vy mp
b ud . 5.8
V2 ) (58)

4 B fr/Mpmmp (1 +

mp)

The proof of Eq. (5.7) uses the heavy quark limit, so mp = mp- and N = N*. In
Eq. (5.7), ¢x(z, ) is the non-perturbative pion light-cone wave function, and &(wy, i)
is evaluated at maximum recoil v-v' — wo = (m% + m2.))/(2mpmp)). The hard
coefficient T®) (z, u) = C\°) ((4z — 2)Ey, 1, m3), where the =+ correspond to the D
and D* respectively, and C’g R= S” :l:Cﬁg) is the calculable Wilson coefficient of the
operators defined in Eq. (5.19) below. The renormalization scale dependence of the
hard scattering function T'(z, ) cancels the u dependence in the Isgur-Wise function

and pion wave function. In this framework [29] there is no longer a need to identify

by hand a factorization scale.® In the language of SCET [21], the scale dependence

2Note for longitudinal D*, n-ep+ = n-v'. Production of transverse p’s is suppressed by A/Q.

3In naive factorization the hadronic matrix elements in Eq. (5.2) are independent of the scale
that separates hard and soft physics. The scale dependence in a; and as then causes the physical
amplitudes to become scale dependent. The parameters a; and a; were therefore assumed to be
evaluated at a specific scale called the ”factorization scale”. In other words, the non-factorizable
effects were accounted for by allowing a; and as to be free parameters that are fit to data. The
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is understood from the matching and running procedure.

Eq. (5.7) implies equal rates for B — D*7~ and B® — D**7~ up to the a,(m;)
corrections in T®*) and power corrections. This prediction is in good agreement with
the observed data for type-I and III decays to m, p, K and K* as shown in Tables
I and II. For two-body type-I decays both the large N, and large energy mecha-
nisms make similar phenomenological predictions. However, these mechanisms can
be distinguished with B — DX decays where X is a multi-hadron state [14].

So far, no results of comparable theoretical rigor exist for the color-suppressed
type-II decays. In fact existing results in B — D7 and B — %K™ do not support
naive factorization with a universal coefficient ay [96]. Furthermore, it has been
argued that in general factorization will not hold for type-II decays [29].

Using the soft-collinear effective theory (SCET) [16, 22], we prove a factorization
theorem for color-suppressed (type-II) B — DM decays, M = {n° 0% ...}. These
decays are power suppressed relative to the type I decays, and our results are valid

at leading nonvanishing order in A/Q. The main results of our analysis are

e The color suppressed (C) and exchange (E) contributions to B® — D*)°70 are
both suppressed by A/Q relative to the amplitude (T). The C' and E ampli-
tudes are found to be of comparable size since the factorization theorem relates
them to the same perturbative and non-perturbative quantities. Our result is

incompatible with the naive as type factorization.

e When our result is combined with heavy quark symmetry it predicts the equality
of the amplitudes for B® — D%7® and B® — D*°7° (in fact for any DM and
D*M). This prediction is in good agreement with existing data and will be

tested by future measurements.

e Our result gives a new mechanism for generating non-perturbative strong phases
for exclusive decays within the framework of factorization. For DM and D*M
it implies the equality of the strong phases § between isospin amplitudes. Fur-

thermore, certain cases with different light mesons M are predicted to also have

factorization scale can then be extracted from the scale dependence of a; and a2 [97].
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a universal non-perturbative strong phase ¢ in their isospin triangle.

e The power suppressed amplitudes for all color suppressed B — D®)M de-
cays are factorizable into two types of terms, which we refer to as short dis-
tance (u?> ~ EyA) and long distance (u? ~ A?) contributions. The short
distance contributions depend on complex soft B® — D®)? distribution func-
tions, S}gﬁ’(h, ¢,), which depend only on the direction of M (the superscripts
indicate that two color structures contribute). For M = 7, p the long distance

contributions vanish at lowest order in o,(Q)/7.

Combined with Eq. (5.7) the results here give a complete leading order description
of the B — D isospin triangles.

In Section 5.1.2 we review the current data for B — Dw decays. The derivation
of a factorization theorem for the color suppressed channels B® — D®970 and B —
D®0 0 ig carried out in section 5.1.3 using SCET. Then in section 5.1.4 the formalism
is applied to decays with kaons, B® — D®OK® B — D®OK*0 B0 DWEK—
and B® - DWK*~. In section 5.1.5 we contrast our results with the large N,
limit of QCD and prior theoretical expectations. Readers only interested in final
results can safely skip sections 5.1.3, 5.1.4, and 5.1.5. In section 5.1.6 we discuss the
phenomenological predictions that follow from our new formalism for color suppressed
channels. Conclusions are given in 5.1.7. In Appendix 9.1 we prove that for 7° and
p° the long distance contributions are suppressed. Finally in Appendices B and C we
elaborate on the properties of the jet functions and our new soft B — D®) distribution

functions respectively.

5.1.2 Data

We start by reviewing existing data on the B — D™ decays. The branching ratios
for most of these modes have been measured and the existing results are collected in

Table 5.1. Taking into account that the D™ final state can have isospin I = 1/2,3/2,
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these decays can be parameterized by 2 isospin amplitudes A, /5, A3/2:

_ 1 2
A+_ = A(BO — D+7T-) = 75'143/2 + \/;Al/Z =T+ F,

Ao =A(B~ = D°n7) = VBA3,=T+C,

_ 2 1 1
Ao() = A(BO — DO ’H'O) = J;A3/2 — ﬁAl/z = E(C — E) . (59)

Similar expressions can be written for the decay amplitudes of B — D*x, B — Dp,
B — D*p with well defined helicity of the final state vector mesons. Eq. (5.9) also
gives the alternative parameterization of these amplitudes in terms of the amplitudes

T,C,E.

Using the data in Table 5.1, the individual isospin amplitudes A and their relative
phase 6 = arg(Ai/2A43 /2) can be extracted using

Br(B — DWM) = r50(B — DWM) = TB"’J Y JA(B — DWM)[.(5.10)

8mmy ol

with 750 = 2.343 x 1012 GeV ™! and 75- = 2.543 x 102 GeV~'. We find

|AD,| = (433+£047) x 1077 GeV, &7 =30.5]3, (5.11)
|AD,] = (445%£0.17) x 1077 GeV,

|AD5l = (4.60£0.36) x 1077 GeV, 7" =30.2+6.6°,
|AZs|l = (4.33£0.19) x 1077 GeV.

The ranges for 0 correspond to 1o uncertainties for the experimental branching ratios.
A graphical representation of these results is given in Fig. 5-6, where we show contour
plots for the ratios of isospin amplitudes Ry = A;/» /(V243 s2) for both D and D*r
final states. For B — D an isospin analysis was performed recently by CLEO [4]
including error correlations among the decay modes; we used their analysis in quoting

errors on 6P7.
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| Decay | Br(10°) [[A](1077GeV)]| Decay [ Br(107%) [[A] (1077 GeV) |
B 5> Dtn~ | 2.68+£0.29 ¢ 5.89+£0.32 BY - D**r~ [2.76 £0.21 6.05 +0.23
B~ - D%~ | 497+0.38¢ 7.70 £ 0.29 B~ - D~ | 46404 7.49 1+ 0.33
BY — D%° | 0.292 +0.045 ° 1.94+0.15 B® — D*7% % | 0.25 + 0.07 1.824£0.25
B° — D*p~ 78+14 10.2+0.9 B D*tp~ [ 68+1.0° 9.08+0.68 T
B~ — D%~ 134+18 128+ 0.9 B~ — DY | 98+18° 10.5+0.97
B" D% | 020+011¢ | 1974037 | B°— D | <0.56 <2.77

Table 5.1: Data on B — D®)x and B — D®)p decays from “Ref.[4], *Ref.[48, 2],
“Ref.[49], “Ref.[103], or if not otherwise indicated from Ref.[52]. tFor B — D*p the
amplitudes for longitudinally polarized p’s are displayed. The above data is as of
June 2003.

For later convenience we define the amplitude ratios

A(BO — D*DMO) M/M' _ A(BO — D(*)DMO)

M = — — = .

Ry = A(B® — D'M?) ’ B = A(BY — DMopr0)’ (5:12)
R = Ap _, 3C-F RZA(BO—>D(*)+M‘)=1_C—E
"= VaAy, 2T+C’ ©= A(B- & D@OM-) T+C’

where the ratios R; and R, are defined for each D™*) M mode. Predictions are obtained
for the ratios in Eq. (5.12), including the leading power corrections to R; and R..
The relation Ry = 1+ O(A/Q) can be represented graphically by a triangle with base
normalized to 1 (see Fig. 5-6 in section 5.1.6). The two angles adjacent to the base are
the strong isospin phase §, and another strong phase ¢. The usual prediction is that
§ ~ 1/QF [29, 96], and that there is no constraint on the strong phase ¢ which can
be large. In section 5.1.6 we show that at lowest order the angle ¢ is predicted to be
the same for all channels in Table 5.1, and that  can be dominated by a constrained
non-perturbative strong phase. From R; in Eq. (5.12) we note that for a leading order
prediction of § it is not necessary to know the power corrections to the T amplitude.

A similar analysis can be given for the Cabibbo suppressed B — DK® decays.
Although several of these modes had been seen for some time, it is only recently that
some of the corresponding class-II decays have been seen by the Belle Collaboration
[72] (see Table II). For this case the final D) K*) states can have isospins I = 0, 1,

so these decays are parameterized in terms of 2 isospin amplitudes A;—q; (for given
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[ Decay | Br(10™°) []|A] (1077 GeV) | Decay Br(107°) | |A] (1077 GeV) ]
B S DYK- 20.0 £ 6.0 162+£024 [ B - D**K- | 205 1.64 £ 0.20
B~ — D°K- 37.0£6.0 211+0.17 | B- = D®K~ | 36+10 | 2.11+0.29
B® — D°K°® |5.07134+06(72]| 0.81£0.11 B® — DK - -

B> DtK* | 37.0£180 2241054 | B> D*TK* | 3815 | 230+0.457
B~ — D°K* | 61.0+23.0 2.76+£0.52 | B~ — D®K* | 72+£34 | 3.03+0.72
B - DK*® | 48111 +£05(72] | 081+£0.11 | B°— D*K* ~ -

Table 5.2: Data on Cabibbo suppressed B — DK™ decays. Unless otherwise in-
dicated, the data is taken from Ref.[52]. TSince no helicity measurements for D*K*
are available we show effective amplitudes which include contributions from all three
helicities.The above data is as of June 2003.

spins of the final particles)

_ 1
A+_ = A(BO — D+K_) = %Ao + §A1 =T,
Ao =A(B- 5 D°K™) = A, =T+C,
_ 1 1
AQO = A(BO — DO KO) = EAI — EAO =C. (513)

Isospin symmetry implies the amplitude relation among these modes A, _ + Ag =
Ao, which can be used to extract the isospin amplitudes Ag; and their relative phase

0 = arg(A¢A}). Using Gaussian error propagation we obtain

|APK| = (1.45+£0.62) x 1077 GeV,  6P* =49.9+95° (5.14)
|APK| = (2.10£0.17) x 1077 GeV,
|ADE"| = (1.93+£1.49) x 1077 GeV,  6°K" =349+194°  (5.15)
|APK™| = (2.76 £0.52) x 1077 GeV.

However, note that scanning the amplitudes A, _, Ago, Ao in their 1o allowed regions

still allows a flat isospin triangle [47].
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5.1.3 SCET Analysis: Factorization

Observing the decay in the rest frame of the B meson, one can identify two types
of degrees of freedom with offshellness p? ~ A%, that are responsible for binding
the hadrons. These are the collinear (p*,p~,p,) ~ Q(n?,1,7) and soft (p*,p~,p1) ~
Q(n,n,n) degrees of freedom where n ~ Agcp/Q. The formalism of SCET allows
us to construct an effective theory of this process directly in terms of these relevant
soft and collinear modes with all other offshell modes integrated out. This effective
theory at the hadronic scale is given the name SCETy; 4.

The B — D® M processes receive contributions from various effects occuring at
different distance scales. A complete description of these decays requires us to flow
between effective theories from the electroweak scale down to the hadronic scale. Each
effective theory along the way contributes the neccessary mechanism for the decay
to proceed. These mechanisms are encoded as effective operators with appropriate
Wilson coefficients in the next effective theory on our way down to SCETy; at the
hadronic scale.

The b — ¢ quark flavor changing process occurs at the electroweak scale (p? ~
m?,) through a W-exchange process. The W boson is then integrated out to give the
effective Hamiltonian of Eq. (5.1). This Hamiltonian gives rise to the three distinct
topologies through which the decay can proceed as shown in Fig. 5-1.

Next we would like to match Hy, onto operators in SCET with soft and collinear
degrees of freedom. However, the soft-collinear interactions produce offshell modes
p? ~ QAgcp that are not present in SCETy; . These modes have momentum scalings
(pt,p7,p1) ~ Q(n,1,7n) and have to be integrated out [22]. Instead, as discussed in
the last chapter, it is more convenient to go through an intermediate effective theory
SCET; [23] at the scale QAgcp and do the matching in two steps. SCET] is a theory
of ultrasoft (p*,p~,p1) ~ Q(A%, A2, \?) and hard-collinear (p*,p~,p*) ~ Q(N\%, 1, )
modes where A = ,/f = \/@ The ultrasoft modes are identical to the soft modes

4The soft-collinear messenger modes of Ref. [28] could play a role in subleading corrections which
we will not consider. The nature of these messenger modes is still unclear due to their dependence
on the choice of infrared regulator [33, 15].

109



| Theory |  Scale Wilson Coefficients | Physics Effect |
SM u? ~ mié, - b — ¢ quark flavor transition
Hy pu? ~ Q2 C1,Cs W boson integrated out
SCET: | u? ~ QAgcp CL,Cr soft-collinear transitions
SCETy | p?~Adcp J binding of hadrons

Table 5.3: The effective theories at different distance scales and the effects they
provide for the B — DM process to occur. The Wilson coefficients that show up in
each theory are also given.

and the hard-collinear modes play the role of the offshell modes produced by the soft-
collinear interactions in SCETy; . The hard-collinear modes are eventually matched
onto the collinear modes of SCET}; . This two step matching procedure allows us to
avoid dealing directly with non-local interactions, altough it is also possible to con-
struct SCET}; directly from QCD [63]. In summary, one arrives at the effective theory
SCETy; at the hadronic scale through a series of matching and running procedures

starting with the Standard Model(SM)

In the above chain of effective theories, each matching calculation introduces Wilson
coeflicients which encode the physics of harder scales. These ideas are summarized
in Table 5.3 and are illustrated in Fig. 3. We now briefly review the details of the

procedure just discussed.

We start by reviewing type-I decays. Using SCET, the factorization of the leading
amplitude for type-I decays has been proven in Ref. [21] at leading order in 1/Q (and
non-perturbatively to all orders in ;). The operators in Eq. (5.1) are matched onto

effective operators at a scale pug ~ Q

) /dﬁde[C,(-O)(ﬁ,’ra)Qf,-O)(Tl,Tz)+C,(-8)(T1,72)Q§8)(T1,Tz)]- (5.16)

Jj=L,R

Z CzOz — 4
1,2
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Figure 5-2: A schematic representation of the B — DM process and the contributions
it receives from effects at different distance scales. The shaded black box is the weak
vertex where the b — c transition takes place, the shaded grey region is where soft
spectator quarks are converted to collinear quarks that end up in the light meson, and
the unshaded regions are where non-perturbative processes responsible for binding of
hadrons take place. These regions correspond to the functions C, J, S, and ¢, as
labeled in the figure. For the color allowed modes, where the light meson is produced
directly at the weak vertex and no soft-collinear transitions involving the spectator
quarks are required, the jet function J is trivially just one.

At leading order in SCET] there are four operators [j = L, R]

QP () = [ T3 hPNE W) n(WHEL)] (6.17)
AV (r,m) = [RYYTITYRONEOW), DT (WHEW)n]

The superscript (0,8) denotes the 1 ® 1 and 7% @ T* color structures. The Dirac
structures on the heavy side are F'LL’ r = Py r With Pp ) = %(1 =+ 75), while on the
collinear side we have I, = #P/2. The momenta labels are defined by (W'¢,),, =
[0(w2=P) WTE,].

The matching conditions for the Wilson coefficients at tree level at u = E, are

Co

N CPm)=20,, CRP¥m)=0. (518

CP(m) = Ci+
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Matching corrections of order O(a;) can be found in Ref. [29)].

The operators in Eq. (5.17) are written in terms of collinear fields which do not
couple to usoft particles at leading order. This was achieved by a decoupling field
redefinition [22] on the collinear fields &, — Y, etc. The operators in Eq. (5.17) are
then matched onto SCET}; to give [w; = 73]

QP (wwn) = [P TIRONE W) Ca (W] (5.19)

Q¥ (wi,wz) = [RYSTITESTAY[(EDW ), LT (WTEM),,],

where the collinear and soft Wilson lines W and S are defined in Eq. (9.15) of Ap-
pendix 9.3. At leading order in 1/Q only the operators Q(LO,)R and the leading order
collinear and soft Lagrangians (£, £{®), contribute to the B~ — D®°r~ and
B —» D™*7~ matrix elements. The matrix elements of Q&?R vanish because they
factorize into a product of bilinear matrix elements and the octet currents give van-

ishing contribution between color singlet states [21].

Note that we take the pion state or interpolating field to be purely collinear and the
B and D™ states to be purely soft. Power corrections to these states are included as
time ordered products. This includes asymmetric configurations containing one soft

and one collinear quark which involve T-products with subleading Lagrangians [23].

Next we consider type-II decays. The matrix elements of the leading order opera-
tors vanish, (D°7r°|Q§-°’8) |B®) = 0. This occurs due to a mismatch between the type of
quarks produced by ng,s) and those required for the light meson state, where we need

5.0’8) produces collinear quarks

two collinear quarks of the same flavor. The operator Q
with (du) flavor. Therefore it can not produce a 7° since the leading order SCET
Lagrangian only produces or annihilates collinear quark pairs of the same flavor. For

this reason the leading contributions to B® — D®*%70 are power suppressed.

In SCET; there are several sources of power suppressed contributions obtained
by including higher order four quark operators, higher order contributions from the
Lagrangians, or both. However, there is only a single type of SCET| operator which
contributes to B® — D™ M0 decays at leading order. They are given by T-ordered
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Figure 5-3: Graphs for the tree level matching calculation from SCET; (a,b) onto
SCETYy (c,d,e). The dashed lines are collinear quark propagators and the spring with
a line is a collinear gluon. Solid lines in (a,b) are ultrasoft and those in (c,d,e) are
soft. The ® denotes an insertion of the weak operator, given in Eq. (5.17) for (a,b)
and in Eq. (5.19) in (c,d). The & in (e) is a 6-quark operator from Eq. (5.27). The
two solid dots in (a,b) denote insertions of the mixed usoft-collinear quark action Eg) .
The boxes denote the SCETy; operator Eg?qq in Eq. (5.24).

products of the leading operators in Eq. (5.17) with two insertions of the usoft-

collinear Lagrangian 521) :

J

T = 2 [ty T{QPO0), it @), iLD (W)} (5.20)

Here the subleading Lagrangian is [31, 23]

1

. ) 1
5 Wiig BW)aus — ua(Whig BLW ) W), (5.20)

Ly = Ew)(

where igl; = [ifi- D¢, 1]0¢]. The two factors of i[’g;) in Eq. (5.20) are necessary to
swap one u quark and one d quark from ultrasoft to collinear. In contrast to the tree
amplitude, for this case both the Qg-o) and Q;s) operators can contribute. By power
counting, the T}O’S)’s are suppressed by A2 = A/Q relative to the leading operators.
They will give order A/Q contributions in SCETYy; , in agreement with our earlier

statements.
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In Fig. 6-2 we show graphs contributing to the matching of SCET; operators (a,b)
onto operators in SCETy; (c,d,e). In Figs. 6-2a,b the gluon always has offshellness
p* ~ EyA due to momentum conservation, and is shrunk to a point in SCETY; .
However, the collinear quark propagator in (a,b) can either have p? ~ EpA giving
rise to the short distance SCETy; contribution in Fig. 6-2e, or it can have p* ~ A2
which gives the long distance SCETY; contribution in Figs. 6-2¢,d. To match onto the
short distance contribution in Fig. 6-2e we subtract the SCETy; diagrams (c,d):

(@) +(b) — () - (d) = (e) - (5.22)

The operators in Figs. 6-2a,b are from the T-products TJ-(O’S) in Eq. (5.20), while
Figs. 6-2c,d involve the SCETy; T-products O’ in Eq. (6.15), and Fig. 6-2e involves
O in Eq. (5.27).

To generate connected SCET; diagrams from the time-ordered product in Eq. (5.20)
requires at least two contractions, of which the minimum basic possibilities can be

grouped as follows:
1) Contraction of £ ™ and the L gluon in BY BY (C-topology, Fig. 6-2a),
2) Contraction of £% £@ and the L gluon in BY B% (E-topology, Fig. 6-2b),
3) Contraction of £ £ and ¢@ €@ (topology with two external collinear gluons
and no external collinear quarks, not shown).

All more complicated contractions have one of these three as a root. Case 3) only
contributes for light mesons with an isosinglet component (7, 7', w, @), which we will
consider in the next chapter.

Each of the SCET; T-products is matched onto SCET}; operators at scale p = py,

and

/ dr dry 01(0’8) Tj(o’s) - [Tj(o’8)]shon

[T(O 8)]shm = /dTi dk; dwy Cﬁ‘fﬁ’(n,uo) JOB (1, kF wiy po, 1) O, % )(ke y Wy [4)

[Tl(z(,)}g)]long = /dk+ dL’Jl dw2 dw C(O )(wu HO) J( ’ )(k+w Mo, i ) O(O )(wia k+7 w, l“') ’

+ [1-"1'(0,8)]10ng ’ (523)
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where the subscripts i, £, k run over values 1, 2. Here J, J are jet functions containing
effects at the p?> ~ EyA scale and are Wilson coefficients for the SCET); operators
O and O. The [TS};? Jshort, and [Té?;g)]long terms are respectively Fig. 6-2e and Fig. 6-
2c,d (after they are dressed with all possible gluons). The uy and p dependence
in Eq. (5.23) signifies the scale dependence in SCET; and SCETY; respectively. The
jet functions are generated by the contraction of intermediate collinear fields with
couplings a,(uo) (where p2 ~ E;A). In general the jet functions depend on the large
light-cone momenta 7; coming out of the hard vertex, the large light-cone momenta
wy, of the external collinear SCET]; fields, and the k;' momenta of the external soft
SCETy; fields. No other soft momentum dependence is possible since the leading

SCET] collinear Lagrangian depends on only 7-0y;.

The difference between the time-ordered products T( %) and the time-ordered
products O( 4 gives the six quark SCET}; operator O L whose coefﬁcients are the
jet functions J®®, In this SCET; — SCET}; matching calculation the OL graphs
subtract long distance contributions from the T(0 %) graphs so that J(8 are free of
infrared singularities. In general the matrix elements for color suppressed decays
then include both short and long distance contributions as displayed in Eq. (5.23).
However, for the isotriplet 7 and p a dramatic simplification occurs at leading order
in C’y). In this case it can be proven that the long distance contributions [fl"j(i)]long
vanish to all orders in the o, couplings in SCET] , and with the «; couplings in
SCETy; treated non-perturbatively. The proof of this fact uses the G-parity invariance
of QCD and is carried out in Appendix 9.1. At leading order in the coefficients C( )
the M = m, p factorization theorem is therefore more predictive since possible long-
6()

distance contribution from are absent. Most of the following discussion will focus

on O;i), but Ug-i) is fully included in the final factorization theorem.

In the SCETy; diagrams in Fig. 6-2c,d a power suppressed four quark Lagrangian
appears. It is similar to an operator introduced in Ref. [63], and can be obtained

from T{z[,g), (1)} in SCET} by a simple matching calculation [25]. Summing over
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Figure 5-4: Tree level matching calculation for the Lg),’,? operators, with (a) the T-
product in SCET} and (b) the operator in SCETy; . Here q,q" are flavor indices and
w ~ A are minus-momenta.

flavors q, ¢’ we find

‘Cégq = > 2> [j(o)(Wk+)L§'0) (w, kY z) + J® (wk+)L§-8) (w, kf:v)] ,

j=L,R w g+
LY, k5z) = L[EOW)ABWED),][(@8)tPi(S'ow]@).  (5:29)

In Eq. (5.24) the soft momenta labels are defined by (Stq)s+ = [6(kT—n-P) Stq], and
the positions (z*,z~,7.) ~ (1/A,Q/A%,1/A). For the soft fields the z~ coordinates
encode small residual plus-momenta, and for the collinear fields the z+ coordinates
encode small residual minus-momenta. Thus, we used the summation/integration
notation for label/residual momenta from Ref. [86]. The operator L§8) (w, k", z) has
the same form as Eq. (5.24) except with color structure 7% ® T®. At tree level the

coefficient functions are given by the calculation in Fig. 5-4

TOwrt) = - Or dmasll) g o L Amos(l) g o

2N, wk*t ’ 2N, wkt

Beyond tree level they obtain contributions from loop diagrams with additional Eég)
vertices. In terms of the operator in Eq. (5.24) the SCET}; operators that contribute

to [TZ’]-(’.)]I(,ng in the factorization theorem are
O (i ktw,p) = /d4a: T Q" (w;,z = 0) iL®® (w,k%z).  (5.26)

The operators O generate the diagrams (c) and (d) in Fig. 6-2.

At any order in perturbation theory the jet functions J from the C—topology and

E-topology generate one spin structure, and two color structures for the SCETy; operators.
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For the six quark operators we find

O (kH,we) = [RST} AP () hPr (STu)er ]| [EW ) Te(WHen)un] (5.27)
O (kf,wi) = [(AQSTYT (S'hY) (d9)hPLT(S )t | [EaW ) Te( W)

where here the d, u, h,(f) , and B fields are soft, and the &, fields are collinear isospin
doublets, (£M,£@). In Eq. (5.27) T}z = #PLr as in Eq. (5.17), while for the
collinear isospin triplet I', = 737 P, /2.° We do not list operators with a T next to I,
since they will give vanishing contribution in the collinear matrix element. For light
vector mesons the spin structure I'; only produces the longitudinal polarization. This
result follows from the quark helicity symmetry of L',gg) and is discussed in further
detail in Appendix 9.2.

In position space the O§i) are bilocal operators, with the two soft light quarks
aligned on the ny, light cone direction (™ = In,n-z,y~ = n,fi-y) passing through

the point z =0

(R S)Lh(STh®) (dS),+To(Stu)ps = (5.28)
dT™dyY™ iartam—tty-yr(e o o
—J(EM)Z /2= =LY RO, BO1(0)[d(z ) Sa(z™, 0)T4S (0, 57 )uly™)] -

The gluon interactions contained in matrix elements of 05-0’8) include attachments to
the light quarks ¢, to the heavy quarks h,,, and to the Wilson lines S, as shown
in Fig. 5-5. The interactions with h,, have been drawn as Wilson lines S, s along
v,v' [71]. Even though we have factored the collinear and soft degrees of freedom in
the two final state hadrons, the presence of the soft Wilson lines bring in information
about the vector n#. This allows the soft operators O](-i) to be non-trivial functions
of n-kj, n-v, and n-v', and this information gives rise to a compler phase in the
soft functions Sg]”;) as shown in Appendix 9.3. Thus, the S, Wilson lines are directly
responsible for producing final state interactions, and the soft fields in OJ(-O’S) encode

non-perturbative rescattering information.® This makes good sense given that the

5There are also isosinglet contributions with T', = #Py /2.
8Note that in semi-inclusive processes a different mechanism is responsible for the phases in
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Figure 5-5: Non-perturbative structure of the soft operators in Eq. (5.28) which arise

from 01(-0’8). Wilson lines are shown for the paths S,(z,0), S,(0,y), Sy(—00,0) and
Sy (0,00), plus two interacting QCD quark fields inserted at the locations = and y.
The S, and S, Wilson lines are from interactions with the fields h, and h, fields,

respectively. The non-perturbative structure of soft fields in Ugo,s) is similar except
that we separate the single and double Wilson lines by an amount z, .

soft gluons in the S,’s were originally generated by integrating out attachments to

the collinear quarks and gluons making up the light energetic hadron.

The above procedure provides a new mechanism for generating non-perturbative
strong phases for exclusive decays within factorization. In the soft B — D) matrix
elements the information about the light energetic meson is limited to its direction of
motion n*. Since these matrix elements know nothing further about the nature of the
light meson, these strong phases are universal. In particular the same strong phase
¢ is generated for the decays B — D™r and B — D®p. (We caution that this is
not the isospin strong phase, but rather a different angle in the triangle.) The same
mechanism produces another universal strong phase for color suppressed decays to
DEK®P® and a third for decays to D,K™*)~. The different phases in the three classes
arise in part due to the appearance of different moments of the matrix elements of the
soft operators. However, for the kaons there are additional long distance contributions
to the strong phases from [Tiong, Which make the universality of the phase ¢ from
[T)short hard to test. A more complete set of phenomenological predictions is given

in Section 5.1.6, including a comparison with existing data. Further details on the

single-spin asymmetries which has to do with the boundary conditions on Wilson lines [38].
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properties of the soft functions S(*% are given in the Appendix 9.3.

The matrix elements of the short distance operators OJ(-i) in Eq. (5.27) factor into
products of soft and collinear parts, respectively. The collinear part of the matrix
elements are simply given in terms of the light cone wave function of the light meson.
For the 7 and p the definitions are [we suppress pre-factors of [y dzd(w; — z7i-

par) 6(ws + (1 — z)7-par) on the RHS)'

<7rgl(£—nW)w1¢757—3(WT€n)wzI0> = -1 \/i.fn ﬁ'pn ¢1r (,U,, .’L') ’ (529)
(p(r)p(g)l(EnW)wlﬂTIi(WTEn)wzIO> = iV2 fom,n-e* ,(u, )
= iV2f,7p, b, 7) .

In the last equality we have used the fact that at this order the collinear operator
only produces longitudinal p’s, for which m,n-£7, = 7i-p,.

Since it no longer contains couplings to energetic gluons, the soft part of the matrix
elements of 0§0,8) can be constrained using heavy quark symmetry. In other words,
heavy quark symmetry relations can be derived for matrix elements of soft fields.
The constraints can be implemented most compactly using the trace formalism of the
HQET [91]. First consider the matrix element of the soft fields in OJ(-O’S). For O;-O) we

have

(D) (RS S)T (SThY) (dS)+1#Ps (S'u)yy |B(v))

Tr [A9TH® X, (5.30)
mpmp

o
where X = X (0)(19;', n,v,v') and we use the standard relativistic normalization for
the states (and note that the LHS is independent of my . in the heavy quark limit).
An identical equation holds for O;-s) with an X® . In writing the trace formula in
Eq. (7.11) we have used the fact that the d and w quarks must end up in the B
and D™ states.® The heavy mesons (D, D*) and (B, B*) are grouped together into

7Our vector meson states are defined with an extra minus sign relative to the standard convention.
8The matrix element of the analogous soft operators with (#u) + (dd) would contain a second

term in Eq. (7.11) of the form Tr [?I'S,f) TH® X ]Tr [Y), which arises from contracting the light quarks

in the operator. These types of traces also show up for power corrections to B - D*)* M~ and
B~ - DMOM-,
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superfields [91], defined as
1
H, = —*2’—’5(10;”7,, + Pyys). (5.31)

Now X (8 are the most general structures compatible with the symmetries of QCD.

They involve 4 functions a{*? k], k5, v-v', n-v, n-v')

XO8 = o9 P 4 ol Py + aPP Py + aLP Py, (5.32)
Structures proportional to ¢ and ¢’ can be eliminated by using H,p = —H,, etc.

The presence of four functions in Eq. (5.32) would appear to restrict the predictive
power of heavy quark symmetry. However, using the properties of H, and H, and
the fact that the two-body kinematics relates n to v and v’ via mgv = mpv' + Eyn,
it is easy to see that the four functions a; appear only in two distinct combinations.
(Note that we are taking ma/mp ~ A/mp < 1.) For I'} p they give soft functions
St,r defined as Sp, = (n - v')(a1 — a3/2) — as/2,Sr = (n - v')(az — a4/2) — a3/2 and

(D°(v)| (RS SYRPL,R(STHY)(dS) s $Ps(Stu) s | BO(v))

— g0 .+
memp - SL,R(k] ) )
(D0, )| (R SYBPLr(S'h(P)(dS) .+ #PL(Stu) o4 | BO(v)) net o
= = 7 SL,R(’“@%)
v/mpmp-« n-v

where the + for the D* refers to the choice of P;, or Pg. Identical definitions hold
for the matrix elements of the color-octet operators which give S,(fiz(kf). We will
see in section 5.1.6 that the result in Eq. (6.5) relates decay amplitudes and strong
phases for B® — D°M° and B° — D**M?° at leading order in the power expansion,
and up to terms suppressed by a,(Q)/7. If one takes n-v = 1, then n-v' = mp/ m(D*),
v-v' = (my +m.))/(2mpmpe). The D, D* variables are equal in the heavy quark
limit.

For the long distance operators a;i) the same set of arguments in Egs. (7.11-6.5)
can be applied except that now we must add terms a{"®#, Py + a>® ¢, P to X©8),

and the a;’s can also depend on z%. The functions analogous to ngﬁ) are defined as
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@gﬁ) (k*,z1,€5+)- In this case the D and D* decompositions are no longer related
since the matrix element involves both n-¢* and z -€* terms for the D*. Thus, due to
the long distance contributions for light vector meson we must restrict ourselves to the
longitudinal polarization in order to have equality for the D and D* amplitudes. In the
case of the p this restriction is not important since the long distance contributions
vanish (see Appendix 9.1). However this observation does have phenomenological

implications for decays to K™*’s.

We are now in a position to write down the most general factorized result for the
amplitude for the decays B® — D®OM° Combining all the factors, this formula
contains the soft functions S8 (k{, k3) from Eq. (6.5), the jet functions J® from
Eq. (5.23), and the Wilson coefficients Cgﬁ) from Eq. (5.16). In J®(r;, k), wi) we
can pull out a factor of §(13 — 72 — w;y + wy) by momentum conservation. This leaves
the variables 71 + 72 = 2E3(22 — 1) and w; +wz = 2E)/(2z — 1) unconstrained, which
give convolutions with the momentum fractions z and z respectively. In defining
JO(z,z, k) we multiply J(7;, k', wi) by w1 — wa = - par. All together the result
for the B® — D®OM0 amplitude is

1 . . .
AD® . NM / do dz[dki dkj [CP(2) TD (2,2, kt, k3) SO (kt, k) dar(2)(5.34)
0
+C(2) IO (2, 2, kf, k) Si (kT k) dma ()]

DM
+Along ’

where we sum over i = 0,8 and the po,x dependence is as in Eq. (5.23). The
Aﬁng in Eq. (5.34) denotes the contributions from the matrix elements of the
SCETy; time-ordered products [T]iong. Also the + refer to D/D*, Cg)R(z) = C,(j,)R('rl +

T2, EM7 Mp, Me, ,U), and

GrV Ve
Ny = Zh e ud 2Cb % frr /MBMDE - (5.35)

The normalization factor is common since mp = m}, and n-¢‘®") = n-v'. This follows

since the M’s produced by O§0’8) are longitudinally polarized.
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The long distance amplitudes also obey a factorization theorem which can be
derived by examining the matrix elements of the 6(2’:,) operators in Eq. (6.15). First
factorize the collinear fields into the matrix element with the M and the soft fields into
the matrix element with the B, D®). The independence of the collinear propagators
on the residual soft minus-momenta leads to a d(z*) and the independence of the
soft propagators on the residual collinear plus-momenta leads to a §(z~) (somewhat

similar to the calculation for B — X, as described in Ref. [22]). The result is

1 . . . R
AL = N [ dafak* duofas. [C (2) TO (k™) 9 (K, 21, €5 )8R 2,0, 2.1, 3)
+CP (2) JO(wk*) 8P (21, 5) ¥ (2, 0,31, €3)] - (5.36)

where the * is for D and D* and we defined the non-perturbative functions in a
way which gives the same prefactor as in Eq. (5.34). Here Cﬁ)R are the Wilson
coefficients of the weak operators in Eq. (5.19), and the jet functions T are the
coefficients of the SCETy; Lagrangian in Eq. (5.24). The <I>(Li,)R and ¥ are soft and
collinear matrix elements from the operators O and are given by [with prefactor

JEdz 8(wy — 2n-par)6(ws + (1 — 2)A-pay) for TY)

(M°ar, €30) || EOW)in APLW D)) (01) [EIW )t PL(WTED), ] (.1)]0)
=ifp/V2 \IIS:,),)(z,w,xJ_,E}‘W) ,

(DO, ep-)|[(R )T R(STAE)]| (01) [(AS) e+ Py (ST ] (1) B)
= +/mampem PRkt z1,6h.), (5.37)

and \1153’ and <I>§i)R are defined by analagous equations with color structure 7% ® T°.
The =+ is for P and Pg respectively. In a more traditional language the AD-M
contributions might be referred to as “non-factorizable” since they involve an direct
z,. convolution between non-perturbative functions. Eqgs. (5.34) and (5.36) are the
main results of our work. Additional details about the derivation of Eq. (5.36) will

be presented in Ref. [?].

Using the SCETy; power counting in 7 = A/Q we can verify that the short and
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long distance contributions to the factorization theorem are indeed the same order.
The coefficients C’L 'w ~ 1°. The results in Eqgs. (5.25) and (5.41) for the jet functions
imply J® ~ 1/A% and J 79 ~ 1 /(QA). Furthermore, ¢ps ~ n° from the definitions
in Eq. (5.29). For the soft function in Eq. (6.5) we get (n*/2)* from the fields, n=3
from the states, times =2 from the delta functions indicated by the momentum
subscripts. This gives S(ki, k3) ~ n, ie. S(ki, k) ~ A. A similar calculation for the
collinear and soft long distance matrix elements in Eq. (6.16) gives \I!Sg,’s) ~ A?/Q and
<I>(LO,’18{) ~ A. In the factorization theorem the measures have scaling (dki dky) ~ A2
and (dk*d?z;) ~ 1/A. Combining all the factors for the short distance amplitude
gives (A)(A?)(1/A%)(A)(A°) = A?, while for the long distance amplitude we find
(A)(1/A)(1/A)(A)(A2) = A? also. Therefore, both terms in AR are the same order

in the power counting. They also give the complete set of contributions at this order.

DM

For numerical results with M = =, p the A5,

contributions are very small since

DM

long = 0 as shown in Appendix 9.1. This

taking Cﬁ’R (z) independent of z gives A
implies that Allg;zM /Ao ~ as(Q)/, and together with the helicity structure of the jet
function discussed in Appendix 9.2 implies that the production of transverse p mesons

is suppressed. In Section 5.1.6 we explore further phenomenological implications.

Next tree level results are presented for the jet functions J(®®. The SCET graphs
in Fig. 6-2 are computed with insertions of ng,s) and taking momenta —k; and —k,
for the initial and final light soft antiquarks, together with momenta p, and p, for

the collinear quark and antiquark. The diagrams in Fig. 6-2a,b with insertions of
(0) (8)
(O, 0P} are

7 (T Pu{1, TP Yuld) 0, P21, TPV T o) 0T )
[n- (k1 — ko) +i€][fi-pe n- k1 +ie]
_ 2 @ P, T2ha) @O T Ao (0O TA{L, TP}t/ 20, Prvlt) 3)
g [ (k1 —k2) +i€][—7i-py n-ko+i€] =

?

Adding these contributions with factors of C’(O) and C’(s) to distinguish the two color
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structures, and then Fierzing gives

OO [ hPLu® 5P (5.39)
2mo,Cr aOpPLv® _ VAP
N, [n-(k1—kz) + i€][i-pan-ky +i€]  [n-(k1—k2) + i€][-A-pin-ks + i€]

= CP (e P Tu® 5P T 0]

L s A DA PLv B aMpP vl
ch [’n(k'l—kg) + ze][ﬁpgnkl + 'LC] [Tb(kl—kg) + ze][—ﬁplnkz + ’LE] ’

where Cp = (N2 — 1)/(2N,) and we set C®) = 0. The first term in each round
bracket originates from the C—type graph (Fig. 6-2a) and the second term from the
E—type graph (Fig. 6-2b). It is convenient to group the result into isosinglet and

0 and p° have definite charge

isotriplet terms for the collinear spinors. Since the 7
conjugation we can freely interchange the positive momenta 7.-p; <> 7 - p,, so a factor

of 1/ - p; can be pulled out front. For the terms in round brackets we find

1 [Pl — el Pl 1 [al#PLolP + el P n- (ks + k1)
2 [n-ky+ i€][—n-ko + i€] 2 [n-(k1—k2) + i€][n-k1 + i€][—n-ky + i€]

) (5.40)

For B® — D®)X70 and B® — D®*°p0 where we have isotriplet M®’s the contri-
butions from the SCET|; diagrams in Figs. 6-2c,d cancel. Thus, the denominator in
Eq. (5.40) directly gives the tree level isotriplet jet functions

_47TO!3 (M)CF (5(2{ — x)

(0) + ) —
T2z ki k) N.  z[n-ky+i€][-n-ky +ie]’ (541)

2ma(p) 6(z — )
@®) + o4
Iz, 2, kT, kF) N2 z[nks +i€[—n-ks+ i’

where n-p; = z i-py. These jet functions are non-singular given that the non-
perturbative soft function S(ki, k3 ) vanishes for ¥} = 0 or k3 = 0, and that ¢, ,(z)
vanishes at £ = 0 and £ = 1. On the other hand for isosinglet M?’s the result in
Eq. (5.40) has a singular denominator 1/[n-(k; — k2) +14€]. The singularity occurs when
the collinear quark propagators in Figs. 6-2a,b get too close to their mass shells, ie.

when n - (k; — k2)A?/Q. This singularity is exactly what is canceled by subtracting
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the SCETy; diagrams in Figs. 6-2c¢,d, which then gives a non-singular isosinglet jet
function.

Next we consider the result for the factorization theorem for M = w,p with
these tree level jet functions. Taking the matrix elements of the 020’8) operators,
the collinear part factors from the soft operators as explained above. Their matrix
elements are given in terms of the M? light cone wave function, and the S8 (k,,1,)
functions, respectively. This gives the explicit result for the B® — D®*)0z% and

B® — D®°g0 decay amplitudes, at lowest order in the matching for C and J
_ 4 2
A(B® - D¥07%) = N7 {_——msj(\‘;")c‘” O 50 4 ———”‘xﬁ“") c® s(f*)} @Yy,
[+ c

_ 4
A(B® = DW0,0) = Ng {_% cO 50 4 211]\75&) c® s(s>} (- 1Y5.42)
[4

4

We choose to evaluate C{®, s®®) and (z~!) at the common scales p = o ~ vVE A
since one of the hard scales m? is not much different than E,A. In Eq. (5.42) the

convolutions of the soft and collinear matrix elements are defined by

Sp® (k' k5, 1)
T+ ie)(—ks +1ie)’

(™Y = /Oldwm(xﬁﬂ—). (5.43)

508) | 8(0,8)|ei¢(0,8) _ / dk}dk; G

(From Eq. (5.43) we can immediately verify the result of the power counting for
operators described earlier. Since (z7')a ~ (2% ~ A%, comparing Egs. (5.7,5.8)
and (5.42) we see that

A(B® — D%
A(B® - D+r-)

N,y s© (0) Aqep

S
N E‘" ~ 471'0{3([1,0) E—'n' ~ 47!-0!3(”‘0) E7r )

(5.44)

~ dmay(po)

where we have used the standard HQET power counting for the soft matrix elements
to determine that s(0% ~ Aqcp. Thus, the ratio of type-II to type-I amplitudes
scales as A/Q just as predicted. Due to the factor of 47 the suppression by a, does
not have much effect numerically. The 47 arises because the o is generated at tree

level. It is expected that perturbative corrections to the matching for C and J will
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be suppressed by factors of a;(Q)/m and as(vE,A)/m respectively. In Eq. (5.44)
grouping g?>N, ~ 1 gives an extra factor of 1/N,, so with this counting the ratio is

color suppressed as expected.

5.1.4 Adding strange quarks

In this section we consider how the factorization theorem derived in section 5.1.3 is
modified in the case of color suppressed decays involving kaons, which include B® —
DM K-, B® — DM K*~, as well as the Cabbibo suppressed decays B° — D*)0K?
and B® — D®OK*0,

If strange quarks are included in the final state then operators with different flavor
structure appear. In the exchange topology we can have the production of an s3 pair
(as shown by the s-quarks in brackets in Fig. 6-2b). This gives SCETy; six-quark

operators

OP (ki w) = [RTH D (d9) b Pr (S18) s | [ EDW ) Le(WHED)] (5.45)
0P (k},w) = [(RYS)TET (S'AY) (dS),rhPLT(S"8) ] [(EIW)ern Te (W)

which mediate B® — D K™~ For the long distance contribution we take flavors
¢ = d and ¢ = s in the Lagrangian in Eq. (5.24), which leads to s,5 quarks replacing
u, % quarks in Ug’)R. The result for the factorization theorem is then identical to
Egs. (5.34) and (5.36), except that only the E-topology contributes. For this case the
long distance contribution is not suppressed, and serves to regulate the singularity
when matching onto the E-topology jet functions J©® = J®®  Fyrther discussion
of the singularities is left to Ref. [?]. The hard coefficients Cﬁ‘jﬁ) are the same as in
the previous section.

The remaining difference for B® — D K*)~ are the non-perturbative functions.
The light-cone wavefunctions for K=, K°, K*~, and K*? are [with ¢ = u, d, w; = fpz,,

we = —W-pT,, and a prefactor as in Eq. (5.29)]

(K| (€W )y s (WD), [0) = —2ifx 7-px ¢k (s, Ts) (5.46)
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(Kn(OIEIW )i BWTED)[0) = —2ifie m- ore® dice (1, 7,)

= —2ifg« N-px+ Gk (4, T5) -

(0,8)
M

The collinear functions ¥, also depend on the light meson M. The non-perturbative

soft functions involve strange quarks and are also different from section 5.1.3, § —
S'I(f)R and @g’l? — &)g’,?. The non-perturbative functions are related to those in the
previous section in the SU(3) flavor symmetry limit. However, the jet functions are
not related in this limit, they differ since different topologies contribute. This leads
to different convolutions over the non-perturbative functions.

Next consider the Cabibbo suppressed b — cs@ transition with the color sup-

pressed topology (as shown by the brackets in Fig. 6-2a). For the six quark operators

we have®

OP(kf,we) = [ROTE Y ()P (S'u)r] [(EW ) T (WHED), ] (5.47)
OP (K we) = [(RYS)TET (SThY) (d8) hPLT(SMu) et | [(EOW ) (WD),

which mediate the decays B® — D®OK®)0  In this case the SCETy; Lagrangian in
Eq. (5.24) has the same flavor structure as in section 5.1.3. Since only the C-topology
contributes the long distance contribution is not suppressed in the factorization the-
orem, and the jet function J@8 — J®¥  For both the short and long distance
non-perturbative functions the change of flavor appears only through the collinear
quarks in the weak operator, so the collinear functions depend on the K®*)° but the
soft functions S(L?ﬁ) and @(Loj? are identical to those in section 5.1.3. (However, now
Jg) 8) appears, so the moments over the soft function ng’,? will be different.) Finally
note that if we allow a strange quark in the initial state (for Bs-decays) then the
E-topology can also contribute and more operators are generated.

Due to the non-negligible long distance contributions the number of model inde-
pendent phenomenological predictions for kaons are more limited. The main predic-

tions are the equality of branching fractions and strong phase shifts for decays to

®Note that the flavor structure was not distinguished in naming the operators in
Eqgs. (5.27,6.4,5.47). This should not cause confusion since they always contribute to different decays.
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D versus D*. For M = K° K~ an identical proof to the one for 7° and p° can be
used. For the vector mesons the proof can also be used if we restrict our attention to
longitudinal polarizations, so the final states D™ K; ITO are related, and so are D® K i
The factorization theorem allows for transversely polarized kaons at the same order

in the power counting, but only through the long distance contribution.

5.1.5 Discussion and comparison with the large N, limit

It is instructive to compare the N, scaling of the different terms in the SCET result
Eq. (5.34) (or Eq. (5.42)) with that expected from QCD before expanding in 1/Q
given in Eq. (5.3). Combining the matrix elements in Eq. (5.3) written in a form

similar to Eq. (5.42) gives the decay amplitude at leading order in 1/Q as

A(B* - D°'M°) = NM (01 + %) [NL(F0+2GI)+...] (5.48)
1
+ N'Cy [F0+ﬁ(—F0+F2—ZGl)+---]---.

The ellipses denote power suppressed terms. This reproduces the 1/N, expansion of

the SCET amplitude in Eq. (5.42) with the identification

F,=0, Gy = —7a,Cp s , Fy — 2G, = 270, s®

. (5.49)

Ne—o00 Ng—00

where s©@ ~ N? and s(® ~ N,. This implies that the factorizable term F is power
suppressed in the limit of an energetic pion relative to the leading order amplitude in
Eq. (5.42).

The naive factorization approach in Eq. (5.2) keeps only the Fy term, which is
expressed in terms of the B — 7 form factor in the large N, limit. We comment here
on the form of this contribution in the effective theory. They appear in the matching

of the (db)y _a(cu)v_4 operator onto SCET; T—products such as

¥ = T{0,ic?}, TP =7{0¥,,iLy}, (5.50)
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where the operators Q23 contain one usoft light quark. From the leading order
operators in Eq. (5.19) they can be constructed by switching &, — ¢ to give Q®,
and adding a further W1iD, W to get Q®). Their precise form is different depending
on whether they are introduced by matching from the color-suppressed (C) or the

W-exchange (E) graph. Schematically

C-type: QP = [(EDW),T, h(b)][ﬁ“)r u] (5.51)
0 = (EOLip, W) LIRS )
1 ¢ )
QY = - UEIW)uT h@nh‘ (WHiPLW s T

E-type: O = [d[h®][RET, W‘fg )o] (5.52)
Q) = [HPIFIT = (Wi Eeo),

1. - . _ u
Qi) = E[drhhs,'*][h,‘,,’[wwplcvv]wl Ce(WE( )]

The presence of the usoft quark field g in these operators introduces an additional
suppression factor of A%, such that the 7—products Tl(g are O(\*) ~ A?/Q? down
relative to the operators Q(LD,’,? in Eq. (5.19). (Note that since the form factors enter
as time ordered products we do not expect a different o, suppression for Tl(g relative
to those in Eq. (5.20) [23].) This explains the absence of the Fy contributions at order
A/Q, as noted in (5.49). Although Fj is part of the leading order result in the large
N, limit, it is subleading in the 1/Q) expansion.

After soft-collinear factorization, the T-products (5.50) match onto factorizable
operators in SCETy; . For example, the C—type time-ordered product containing

ﬁ) gives (schematically)
T — [ dundun T (i, k) [(@S)i DSBS Trul (€W ) Do (W), ] (5.53)

Apart from the (¢u) soft bilinear, this is similar to a factorizable operator contributing
to the B — 7 form factor [23]. The presence of the D meson in the final state implies

that the matrix element of the soft operator in Eq. (5.53) is different from that
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appearing in B — 7. Therefore, naive factorization of type-II decay amplitudes, as
written in Eq. (5.2), does not follow in general from the large energy limit. Still, in
the large N, limit, the matrix element of T1(4) above can be indeed expressed in terms

of the B — 7 form factor, as required by Eq. (5.5)

Recently an analysis of color-suppressed decays was performed using the “pQCD”
approach working at leading order in an expansion in mp)/mp and Aqep/mpi-) [68].
This differs from the expansion used here in that we do not expand in mp.),/mp. The
non-perturbative functions in their proposed factorization formula include the light-
cone wavefunctions ¢®)(z3), ¢p(z2) and a B light-cone wavefunction that depends
on a transverse coordinate @¢p(z1,b1). This differs from our result which involves
a B — D function S(ki, k) and also has additional long distance contributions,
Allg,(le , at the same order in our power counting. Our long distance contributions
are “non-factorizable” in the sense that the non-perturbative functions Q(If?R(k“L, z,)
and \Ilg\i}(z,w, z,) communicate directly through their z, dependence without going
through a hard kernel. In Ref. [68] strong phases only occur from the perturbative
p? ~ EpA scale, whereas we also find non-perturbative strong phases from the AZ
scale (in S(k;,k3)). The non-perturbative phases are expected to dominate in our
result. Finally, the results in Ref. [68] do not manifestly predict the equality of
the D and D* amplitudes since at the order they are working contributions from
different B — M form factors show up. For example their pQCD prediction Br(B° —
D*°p%)/Br(B® — D) = 2.7 is much different than the prediction of 1.0 that we

obtain in the next section using heavy quark symmetry.

The time ordered products presented in Eq. (5.20) are only A/Q down from the
class-I T amplitudes. Therefore, they give the dominant contribution to the color-
suppressed and W-exchange amplitudes in the limit of an energetic pion (A/Q < 1).
This is a new result, not noticed previously in the literature. The power counting of
“factorizable” Fj type contributions are indeed suppressed by A?/Q? in our analysis
in agreement with the literature. However, these terms do not give the dominant

contribution.
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5.1.6 Phenomenology

A factorization theorem for color-suppressed B® — DM? decays was proven in Sec-
tion 5.1.3 and extended to decays to kaons in Section 5.1.4. The amplitudes at leading
order in Aqcp/Q with @ = {msy, m., E;} have the form

Ay = A(B"— DMMO)
1 X . R ., .
— NM /0 dxdz/dk;rdk; Y [C8(2) SP(k}) £ CP(2) SP (k)] IOz, 2, k) daa(a)
1=0,8
+ARM, (5.54)

where the sign =+ corresponds to a D° or D*® meson in the final state, respectively. In
this section the implications of Eq. (5.54) for the phenomenology of color suppressed
decays are discussed. One class of predictions follow without any assumptions about

the form of J:

e Heavy quark symmetry relates the nonperturbative soft matrix elements ap-
pearing in the B® — D°M? and B® — D**M?° decays with the same light
meson at leading order in a,(Q)/7. This implies relations among their branch-

ing fractions and equal strong phases in their isospin triangles.

These relations are encoded in the ratios R} in Eq. (5.12). A second class of predic-

tions depend on using a perturbative expansion of J in ay(uo) for u2 ~ EpA:

e Using a perturbative description of J the amplitudes and strong phases for

decays to different light mesons M can be related at leading order in a,(ug)/7.

These predictions are encoded in the ratios ROM/ M’, R., and strong phase ¢ in Ry, as
defined in Eq. (5.12). We consider the two classes of predictions in turn.

First, consider relations between color-suppressed B — DM and B — D*M
decays with the same light meson. At tree level in the matching at the hard scale

i~ Q, two of the Wilson coeflicients vanish C’g)’s) = 0. Therefore both amplitudes

for D and D* contain only the soft functions Sg)’s)(kj) appearing in the same linear

combination. This implies model-independent predictions, which can be made even in
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the absence of any information about the jet functions J® and the non-perturbative

DM

functions Sg), ¢m, and without knowing A;5.. ™. For M = 79, p°, we have A{) CM

long

so Eq. (5.54) gives

A(B® - D*n%) A(B® — D*°p") _

T . 0 _— - —
B =am sy = Fo=Zm S oo

1. (5.55)

For decays to D{K~, D{* o D®PK°, and D*PK0 it was shown that ADM =
AD™M

long and so

AB° - DiK™) . ki~ AB°— DIK;™) .
AB*— D,K-) 7’ ~ A(B*— D,K;T)

no D*KU «0 A BO Y D*I_{*O
AB o D'K) _ K _ Al KD _ 1 (556

K __ I
= — — =1 = -
Ry ABSDRy) - B Tam S DK;)

RE =

The ratios in Egs. (5.55) and (5.56) have calculable corrections of order a,(Q)/n and
power corrections'® of order A/Q, which can be expected to be ~ 20%.

These amplitude relations imply the equality of the branching fractions. They also
imply the equality of the non-perturbative strong phases between isospin amplitudes,
namely the phases 6°’™ in the ratios R?“’ as shown in Fig. 5-6. Thus for each of

M = WO,pD,KO,Kﬁ‘O
Br(B® —» D**M°) = Br(B" — D°M"), FOTOM® — gDOM° (5.57)

and for M = K',K"'
Br(B® — D:M) = Br(B® — D,M), §D0sM — §DM (5.58)

The predictions in Eqgs. (5.55,5.57) agree well with the data for D®)r in Table 5.1,

which give

|R5|*® =0.944+021, &°"=30317%, P"=301°%6.1°. (5.59)

10Note that using the observed D and D* masses RY = N§/No = 1.04. This small difference
corresponds to keeping an incomplete set of higher order corrections.
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Figure 5-6: The ratio of isospin amplitudes R; = A;/s/ (V243/2) and strong phases
0 and ¢ in B — D7 and B — D*n. The central values following from the D and
D* data in Table I are denoted by squares, and the shaded regions are the 1o ranges
computed from the branching ratios. The overlap of the D and D* regions show that
the two predictions embodied in Eq. (5.55) work well.

This agreement is represented graphically by the overlap of the 1o regions in Fig. 5-6,
with small squares indicating the central values. The dominant contribution to the
phase ¢ is generated by the (C — E) amplitudes which have complex phases from
J® S,(JU’S) in Eq. (5.54). Since the phases in S}IO’S) are non-perturbative and can be
large it is expected that they will dominate. Note that with this choice of triangle the
power suppressed side in Fig. 5-6 is enlarged by a isospin prefactor of 3/v/2 = 2.1.
For B decays to D®)0p0, D*0 [0 D(*)OK,‘I‘O, DMK~ and D§*>K|*|‘— only upper
bounds on the branching ratios exist, so our relation between D and D* triangles has
not yet be tested. For each of these channels similar triangles to the one in Fig. 5-6

can be constructed once data becomes available.

The results in Egs. (5.55) and (5.56) can be contrasted with the absence of a
definite prediction in the large N, limit as in Eq. (5.6). Even when only the Fy term
is included (naive factorization), R, is given by a ratio of B — « form factors, which
for generic my . are not related by heavy quark symmetry. Thus, one does not expect
a relation between the branching fractions or strong phases unless the 1/Q expansion

is used.
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Next consider the second class of predictions, which follow from the perturbative
expansion of the jet function in Eq. (5.54). We now assume that a;(uo) is pertur-
bative, and focus on M = m, p since the kaons are contaminated by contributions
from A{g,(l:M . The tree level result for J is given in Eq. (5.41), and was used to define

the nonperturbative parameters s(>® through convolutions with the soft distribution

functions S(Lo,s) (ki) as in Eq. (5.43). It is convenient to introduce an effective moment

parameter,
1 CY ;
= —g0® ZL_(8) — —i¢
Sef = =5 ¥ ON.Cr C,‘f’)s = [sexle™. (5.60)

In terms of the effective moment the result in Eq. (5.54) at lowest order in a,(Q) and

os(po) becomes

y 16mar, (o)

A(B - DM = N O ——

Seit (110) (z7")m (5.61)
where N} is defined in Eq. (5.35). Since seg is independent of M = =, p the same

phase ¢ is predicted for these two light mesons.

At leading order in 1/Q the type-I amplitude Ay_ = A(B~ — D%r~) factors as
in Eq. (5.7) giving the product of a form factor and decay constant, both of which
are real (with the usual phase conventions for the states, and neglecting tiny oy(m;)
strong phases (~ 2°) generated by the coeflicients Cgf}a at one-loop [29]). Therefore
the amplitude Ay_ is real at leading order in 1/Q), up to calculable corrections of
order o,(Q). Choosing the orientation of the triangle so that Ay_ lies on the real

axis, the phase ¢ can be directly extracted as one of the angles in the isospin triangle
V2Ag + Ay_ = Ag_. (5.62)

This is shown in Fig. 5-7 where we divide by Aj_ to normalize the base. The data
on B — D% is not yet sensitive enough to test the prediction that ¢ is the same

for 7% and p°.
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Using Egs. (5.7) and (5.61) it is possible to make a prediction for the ratio R,
in Eq. (5.12) at NLO in the power expansion. Since R, = A,_/Aq_ contains only
charged light mesons it is easier to measure than neutral pion channels. Data is
available for all four of the D®)7 and D™ p channels. Using the triangle relation in

Eq. (5.62) one finds for the ratio of any two such modes [M = , p]

A 16ma, . e -
00 _ 1 _ 67ra (NO)mD( ) S ﬁl(l'l’ﬂ) <z 1>M ] (5.63)

RPOM =1 2220 _
Ag_ 9Ep(mp + mpe) &(wo, o)

It is easy to see that the ratio of amplitudes on the right-hand side is common to final
states containing a D or D*, and has only a mild dependence on the light meson,
introduced through the inverse moment (z7!)5;. In particular we note that there is
no dependence on the decay constant f)s on the RHS of Eq. (5.63), since it cancels in
the ratio Agg/Ap—. This implies that the ratios R, are comparable for all four channels
D™ and D™p, up to corrections introduced by (), # (z~1),. These corrections
can be smaller than the correction one might expect from the ratio of decay constants
fo/ fx =~ 1.6 (which appear in the naive a, factorization). The experimental values
of these ratios can be extracted from Table I and are in good agreement with a

quasi-universal prediction

|A(B® — Dtr™)|

|R{P™)| 4B~ Don)| = 0.77 +0.05, (5.64)
|RP™™| = :iggi:%:;;: — 0.81 £0.05,
A(BY + -
RPA| = :Ag_:%oﬁ_;: — 0.80 4 0.09,
|RPLPD| = :ﬁgilf;ﬁ :;I = 0.86 % 0.10.

This lends support to our prediction for the universality of the strong phase ¢ in
B — D™ and B — D™ p decays from the seg in Eq. (5.63). The central values
of R, ~ 0.8 are well described by an st of the expected size (~ Aqcp) as discussed
in the fit to the isospin triangle below. Further data on these channels may expose

other interesting questions, such as whether R(®"M) is closer to R(®M) than R(P*"'™)
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is to RV,

An alternative use of Eq. (5.63) and the R, amplitude ratios is to give us a method
for extracting the ratio of p and 7 moments. Using the Dm and Dp measurements

which have smaller errors than for D*, we find

(z71), _ |RPPA| -1
(= |RPM| -1

=0.871+0.42. (5.65)

where only the experimental uncertainty is shown. The extraction in Eq. (5.65) is
smaller, but still in agreement with the ratio extracted from light-cone QCD sum rules.
The best fit from the v*y — 70 data performed in Ref. [11] gives (z!), = 3.2 £ 0.4
in agreement with sum rule estimates of the moment. The QCD sum-rule result

(z71), = 3.48 + 0.27 [12], then implies

(z™1)
(x_l>: L = 110016, (5.66)

The result that this ratio is close to unity is consistent with the universality of the
data in Eq. (5.64). This data can be contrasted with cases where the single light
meson is replaced by a multibody state such as [52]

Br(B® — D**r—n~rtn?)
Br(B- — D®n+g—m—n0)

=1.02+0.27, (5.67)

For the four pion final state our proof of the factorization theorem does not work,
since for many events one or more of the pions will be slow. We therefore would
expect less universality in branching ratios involving more than one light meson.
(For these decays a different type of factorization involving large N, works well for
the ¢* spectrum [83].)

The result in Eq. (5.61) also leads to predictions for the ratios of color-suppressed
decay amplitudes to final states containing different light mesons M°® = 70, p°. We

find

Rg/fr — IA(BO — D0p0)| _ ig <x~1)l)

= AT S D)~ F (T~ L0077, (5.68)
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where we used fr+ = 130.710.4 MeV, and f,+ = 210+10 MeV, and inserted the result
in Eq. (5.65) for the moments. This can be compared with the experimental result
(Rp/x)®® = 1.02 £ 0.21. The large uncertainty in the ratio of moments in Eq. (5.65)
dominates the error in Eq. (5.68). With the QCD sum rule result in Eq. (5.66) we
find R,/ = 1.6410.35, a result whose central value is farther from the experimental

data, but still consistent with it.

In contrast to the first class of predictions, the predictions for the ratios in
Egs. (5.63), (5.65), and (5.68) and the prediction for the universality of ¢ can re-
ceive corrections from neglected [a;s(uo)?/7] terms in J. The dominant theoretical
corrections to this extraction are expected to come again from these perturbative
corrections to J or from power corrections, which we estimate may be at the ~ 30%
level. A future study of the perturbative corrections is possible within the framework

of our factorization theorem and SCET.

The result in Eq. (5.61) and the data on B — Dm and B — D*r decays can
be used to extract values of the moment parameters |ses| and strong phase ¢. We
present in Fig. 5-7 the constraints on the parameter s.g in the complex plane, obtained
from Dr (light shaded region) and D*m data (darker shaded area). We used in
this determination py = E; = 2.31GeV, and leading order running which gives
as(po) = 0.25, C1(u = po) = 1.15, and Cy(u = po) = —0.32. The good agreement
between the D7 and D*7 1o regions marks a quantitative success of our factorization
relation in Eq. (5.54). Averaging over the D and D*7 results, we find the following

values for the soft parameters at u = po

| et

(428 + 48 + 100 MeV) ( oA (M(Z')zi (uo)) ( (;;2)7) :

¢ = 44.0°+65°. (5.69)

In this determination the inverse moment of the pion wave function was taken from
the best fit to the y*y — #° data [11], (z7!), = 3.2 & 0.4. For |s.g| the first error
is experimental, while the second is our estimate of the theoretical uncertainty in

the extraction from varying po from E,/2 to 2E,. At the order we are working the
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Figure 5-7: Fit to the soft parameter s.s defined in the text, represented in the
complex plane with the convention that Ag_ is real. The regions are derived by
scanning the 1o errors on the branching fractions (which may slightly overestimate
the uncertainty). The light grey area gives the constraint from B — Dr and the dark
grey area gives the constraint from B — D*r.

extraction of the phase ¢ is independent of the scale, since the prefactor a;,(uo){z ™),
drops out. The result in Eq. (5.69) agrees well with the dimensional analysis estimates
et ~ 88 ~ Aqcp. Since ¢ is non-perturbative its value is unconstrained, and a

large value of this phase is allowed.

The recent B® — D%p° data from Belle allows us to extract |seg| and ¢ in a
manner independent of the above determination. Keeping only experimental errors

we find

[ser] = (259 + 124 MeV) (CL(u?,}fs(uo)) (<w3—'15>,,) ’

6 = 17°+70°. (5.70)

The results agree with Eq. (5.69) within 1o, but currently have errors that are too
large to significantly test the factorization prediction of equality on the 20-30% level

of the parameters extracted from Dp and Dw.

The B® — D+ K~ channels proceed exclusively through the W-exchange graph

and have been the object of recent theoretical work [85]. For the result analogous to
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Eq. (5.61) we would have [M = K, K*|

_ 167a, :
AB* = DWM) = vaNM o —”%ﬂ“’—) 55 (o) (2 s + A . (5.71)

Both the B° — D{** K~ modes and the Cabibbo-suppressed decays B — D® K*)

receive this additional contribution from Allg,(;M . This makes the factorization theo-

. . . . *) 7o (%) 4
rem less predictive, and so we do not attempt an analysis of ratios RP“’ X R} ™

or the universal phases ¢g and ¢¢ that are analogous to the ¢ in Eq. (5.60).

On the experimental side both the Babar and Belle Collaborations [7] recently
observed the B® — Df K~ decay, and set an upper limit on the branching ratio of

B - DK~

B(B® - DYK~™) = [3.2+1.0 (stat) £ 1.0 (sys) ] x 107° (Babar) (5.72)
= [4.67]2 (stat) £ 1.3 (sys) ] x 107° (Belle)
B(B" - D:*K~) < 2.5 x107°(90%CL) (Babar) .

The branching fraction for B° — Df K~ is an order of magnitude smaller than that
for B® — D%7%. This indicates that the W-exchange amplitude EP+X" is suppressed
relative to (C — E)P™ and (Vya/v2V,,) CP*K°. In SCET the SU(3) breaking between
¢ () and @k (z) is generated by masses in the collinear quark Lagrangian [79]. This
causes an asymmetry in the light-cone kaon wavefunction. This SU(3) violation can
be expected to be at most a canonical ~ 20-30% effect, which would not account for

the observed suppression.

However, there is one important source of potentially larger SU(3) breaking from
an enhancement in moments of the light-cone kaon wavefunction which appear in the
short distance amplitude. This may account for the observed suppression. Basically
strange quark mass effects imply a larger SU(3) violation for inverse moments than
expected for ¢, versus ¢x alone, and implies that (z;!)x < (z;')k. Using the result
from QCD sum rules the ratio of moments [12] is (z;')x/{z;'}x ~ 1.4. Furthermore,

we anticipate a similar large effect from the moments that appear in the soft matrix
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elements which again differ by factors of (k})~! versus (k})~!, and appear in a way
that suppresses D,K~. The combination of these two suppression factors might
accommodate the observed factor of three suppression in the DK~ amplitudes.!! The
long distance amplitude also involves two inverse momentum fractions through 708
in Eq. (5.25), although admittedly much less is known about the non-perturbative
functions ¥{%® and <I>(L°,’,?. Thus, we find that the suppression of EP+X™ may not imply
much about the relative size of CP™ and EP". Finally, we note that the suppression
mechanism for 3 creation that we have identified is particular to problems involving
large energies where light-cone wavefunctions arise.

Further information on the relative size of the short and long distance contribu-
tions to the kaon factorization theorem is clearly desirable. In section 5.1.4 it was
noted that in type-II decays transverse K*’s are produced only by the long distance
contribution at this order in Aqcp/Q. Therefore, measuring the polarization of the
K* in both the B® — D:K*~ and B° — D*K*° decays can give us a direct handle
on whether there might be additional dynamical suppression of either the long or

short distance contributions, or whether they are similar in size as one might expect

apriori from the power counting.

5.1.7 Discussion of results

We presented a model-independent analysis of color-suppressed B® — D) M° de-
cays, in the limit of an energetic light meson M°. The soft-collinear effective theory
(SCET) was used to prove a factorization theorem for these decay amplitudes at
leading order in Aqcp/Q, where Q@ = {my, m., Epr}. Compared with decays into
a charged pion these decays are suppressed by a factor Aqcp/Q. Therefore, in the

effective theory they are produced exclusively by subleading operators.!?

'Tn general this argument gives a dynamic explanation for the suppression of s3-popping at large
energies which could be tested elsewhere. The production of an s3 pair which end up in different
strange hadrons is likely to be accompanied by a suppression from inverse momentum fractions that
arise from the gluon propagator that produced these quarks. This enhances the SU(3) violation in
a well defined direction so that less s5 pairs are produced. A factor of 3 suppression of s3 popping
is implemented in JETSET [106].

12In type-I decays, other subleading operators can compete with the time ordered products we
have identified at the same order in A/Q. This makes a complete analysis of power corrections to
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We have identified the complete set of subleading operators which contribute
to B® - D'™)M° decays with M = m,p, K, K*, as well as for the decays B —
DK™~ After hard-soft-collinear factorization, their matrix elements are given by
i) a short distance contribution involving a jet function convoluted with nonpertur-
bative soft distribution functions, and the non-perturbative light-cone meson wave
function, and ii) a long distance contribution involving another jet function and ad-
ditional z;, dependent nonperturbative functions for the soft B, D and collinear M.
The long distance contributions were shown to vanish for M = =, p at lowest order
in o,(Q) /7.

The factorization formula is given in Egs. (5.34) and (5.36). It may seem surprising
that the type-II decays factor into a pion light-cone wave function and a B — D™
soft distribution function rather than being like the naive a, factorization in Eq. (5.2).
Our results indicate that factorization for type-II decays is similar to factorization for
type-1 decays (albeit with new non-perturbative soft functions and additional long
distance contributions for kaons). To derive Eq. (5.34), QCD was first matched onto
SCET at the scale u? = Q2. In SCET] it is still possible for gluons to redistribute
the quarks. This intermediate theory provides a mechanism for connecting the soft
spectator quark in the B to a quark in the pion, and for connecting the energetic
quark produced by the four-quark operator with the soft spectator in the D (see
Fig. 6-2). This process is achieved by the power suppressed time ordered products
given in Eq. (5.20). SCET] is then matched onto SCETy; at a scale y2 = EyA. In
SCETY; the collinear quarks and gluons are non-perturbative and bind together to
make the light meson M. This second stage of matching introduces a new coefficient
function (jet functions) as in Eq. (5.23). The jet function J contains the information
about the SCET I graphs that move the spectator quarks into the pion. The physics
at various scales is neatly encoded in Eq. (5.34). The Wilson coefficient C(z) from
matching QCD onto SCET I depends on physics at the scale Q?, the jet functions J, J
from matching SCET I onto SCET II depends on QA physics which is where quark

redistribution occurs, and finally the soft distribution functions S, ® and the pion

type-I decays more complicated than our analysis of type-II decays.
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light cone wavefunction ¢, ¥y, depend on non-perturbative physics at A2 which is
where the binding of hadrons occur.

The soft functions S are complex, and encode information about strong rescat-
tering phases. This information is introduced through Wilson lines along the light
meson direction of motion, which exchange soft gluons with the final state meson D®).
They provide a new mechanism which generates non-perturbative strong phases. In
the literature other mechanisms which generate perturbative strong phases have been
proposed. In particular in Ref. [13, 29] a method for identifying perturbative strong
phases with an expansion in o4(Q?) was developed. In Ref. [70, 68] it was pointed
out that strong phases can also be generated perturbatively at the intermediate scale
as(EymA). In the language of our factorization theorem in Eq. (5.34) these phases
roughly correspond to imaginary parts in the hard coefficients C,(J[f}? and jet functions
J respectively. These phases exist, but for the B — D7 channels they only show up
at next-to-leading order in the a,(my) or a,(uo) expansion. (In type-I B — DM
decays the hard strong phase is very small, ~ 2° [29]). In contrast, our new source of
strong phases is entirely non-perturbative in origin and can produce unconstrained
phases. For the case of B — D®) M these phases show up in the power suppressed
class-II amplitudes.

The factorization theorem proven in this section leads to predictions which were
tested against existing experimental data on color-suppressed decays. We derived two

model independent relations, which related
e the B® — D°M° and B° — D**M? decay branching fractions and
e the B — DM and B — D*M strong phases.

Here M =m,p, K, K IT , and these relations are true to all orders in the strong coupling
at the collinear scale. The same predictions are also obtained for B® — D{* K~ and
B - DWK, |- The good numerical agreement observed between the strong phases
and branching fractions in the Dm and D*m channels gives strong backing to our
results. This prediction can be tested further since the equality of the strong phases

for the p, K, and K| channels have not yet been tested experimentally.
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Additional predictions followed from the factorization theorem by using a pertur-

bative expansion for the jet function, including [M =, p]
e the ratios |R.| = |A(B® = D™+ M~)/A(B~ — D®°M~)| to subleading order
e the ratios |R§/™| = |A(B® — D®°p0)/A(B® — D™®1%)] to subleading order
e universal parameters {|sez|, #} which appear for both D7 and D®)p, and

e a mechanism for enhanced SU(3) violation in s§ production for the short dis-
tance amplitude which might explain the suppression of the B® — D{*) K~ rates

relative to B — D70,

For |R.| taking different values of M with the same isospin the power corrections
only differ by the moments (), giving an explanation for the observed quasi-
universality of these ratios. The isospin triangles for these M’s are predicted to involve
a universal angle ¢. The ratio of neutral modes |R2/™| are determined by inverse
moments of the light-cone wavefunctions and decay constants. Finally extractions
of the non-perturbative soft moment parameter ses agrees with the ~ Aqcp size
estimated by dimensional analysis.

In the case of B® — Dg*)K ()= an additional suppression mechanism was identified,
which arises from enhanced SU(3) violation due to the asymmetry of non-perturbative
distributions involving strange versus down quarks. The inverse moments that appear
in the factorization theorem enhances this difference, and can lead to a dynamic
suppression of ss-popping. Further information on the size of the short and long
distance amplitudes would help in clarifying this observation.

A more detailed experimental study of the channels in Tables I and II is crucial to
further test the accuracy of the factorization theorem and improve our understanding

of the structure of power corrections.
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Chapter 6

Isosinglets

6.1 Isosinglets

6.1.1 SCET Analysis and Data

We now consider the case when the final state light meson is an isosinglet. The
Belle and BaBar Collaborations have recently reported measurements of the color
suppressed decay channels B® — D®%, BY — DO and B® — D™ which have
an isosinglet meson M in the final state [10, 1, 9]. A summary of the data is given
in Table 6.1. By now it is well understood that naive factorization [108] fails for
these color-suppressed decays. A rigorous framework for discussing them in QCD is
provided by the factorization theorem derived in the last section. The presence of
isosinglet mesons enriches the structure of the decays due to n—7 and w—¢ mixing
effects and gluon production mechanisms [56, 73, 34]. In this section, we generalize
the SCET analysis of the last section to include isosinglets. We also construct a test
of SU(3) flavor symmetry in color suppressed decays, using our results to include the
n — 7 mixing.

The quark level weak Hamiltonian is the same as in Eq. (5.1). For color-suppressed
decay channels with isosinglets, it gives rise to three flavor amplitudes denoted C, E,
and G in Fig. 6-1, which take on a precise meaning in terms of operators in the SCET

analysis at leading order in Agep/Q. Here @ is a hard scale on the order of the heavy
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Figure 6-1: Flavor diagrams for B — Dn decays, referred to as color-suppressed
(C), W-exchange (E), and gluon production (G). These amplitudes denote classes of
Feynman diagrams where the remaining terms in a class are generated by adding any
number of gluons as well as light-quark loops to the pictures.

quark masses mp, m. or the isosinglet meson energy E),. The gluon G amplitude is

unique to isosinglet mesons. We will show however that for B — D™ M decays the

G amplitude is suppressed by a;(v/ EA) relative to the C, E contributions.

For color suppressed decays to isosinglet mesons M = {n,7',w, ¢} we will show

that the factorization theorem for the amplitudes A%Y = (D™OM|Hy|B°) is

A(*)M A(*)M +A(*)M +A(*)M

short glue long

+ (L R), (6.1)

[ Decay | Br(10~%) (BaBar) | Br(107%) (Belle) [ Br(107*) (Avg.) [ |A] (107! MeV) |
BY - D% 2.54+0.2+0.3 1.83+0.15+ 0.27 2.1+£0.2 1.67 4+ 0.09
B — Dy 26+04+04 - 2.6+ 0.6 1.87+0.22
B — D% 1.7£04+0.2 1.14 + 0.20 + 0.11 1.3+£0.2 1.314+0.11
B° — DOy 1.34+£0.7+0.2 1.26 4+ 0.35 4+ 0.25 1.3+0.4 1.3340.19
B° = D% 3.0+£03+04 2.254+0.21 +0.28 2.5+0.3 1.83 £+ 0.11
B® — D*0y 42407409 - 42+1.1 2.40 4+ 0.31
BO N D(*)Od) _ _ _ _
B — D70 29+02+0.3 2.314+0.124+0.23 2.5+0.2 1.81 £ 0.08
B — D*0x0 — — 2.8+0.5 1.95+0.18
B 5 DYK° | 0.62+0.12 +0.04 0.5010:13 & 0.06 0.44 £ 0.06 0.76 & 0.06
B - D*K° | 0.4540.19 £+ 0.05 < 0.66 0.36 £ 0.10 0.69 £ 0.10
B - D}K=]0.32+£0.10 £0.10 | 0.293 + 0.055 4 0.079 0.30 + 0.08 0.64 4 0.08

Table 6.1: Data on B — D and B — D* decays with isosinglet light mesons and
the weighted average. The BaBar data is from Ref. [10] and the Belle data is from

Refs. [1].
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where the + refers to the cases DM, D*M and the three amplitudes at LO are

AGM = NM Y / dz dz|dki dif C$(2) I (2, 3, kF , kF) SP (K, k) 6 (), (6.2)

1=0,8

A = NS [dodsfakpakg OP () J0 e, n, k) 8P KD By (2),
1=0,8

Al(;,)f\é[ = /dz/dk’*'dw/d%c_L (2) T (wk*) P (k+, 21, e%.) 08 (z,w,:rj_,s}‘w),
1,—08

(M

where 7 = 0, 8 are for two different color structures. Here Ay

and Along are very
similar to the results derived for non-singlet mesons the last section, and each contains

a flavor-singlet subset of the sum of C' and E graphs. The amplitude ADM ontains

glue
the additional gluon contributions. The S§°’8) are universal generalized distribution
functions for the B — D®) transition. The (bfl‘:’g are meson distribution functions,

and !

1 . 8 v
= 5 f;WGFVcqud \/mBmD(‘) ] N;l = \/;fll\l GF‘/cqud mBmD(*) . (6.3)

The @g) and lIle} are long distance analogs of S}j) and ¢™ where the z, dependence
does not factorize. At lowest order in the perturbative expansion, C,EO) =C; +Cy/3
and C(s) 2C, and are independent of the parameter z. The (L < R) terms
in Eq. (6.1) have small coefficients C(O 8 ~ O(0,(Q)) and will be neglected in our
phenomenological analysis. Finally, the jet functions J{?, J{, and J® are responsible
for rearranging the quarks in the decay process; they can be computed in perturbation

theory and are discussed further below.

The derivation of Eq. (6.2) involves subsequently integrating out the scales Q =
{ms, m, Eps} and then \/EMTQCD by matching onto effective field theories, QCD —
SCET; — SCETy as for the case of non-singlet mesons. Here we only give the
reader a sense of the procedure, and discuss additions needed for the isosinglet case.
In SCET] the same time ordered product of Eq. (5.20) appears. However, this time

additional Wick contractions corresponding to the gluon production mechanism or

1For Cabbibo suppressed channels we replace Viag = Vi, in N,}” and N, gM .
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Figure 6-2: Graphs for the tree level matching calculation from SCET; (a,b,c) onto
SCET}; (d,e,f,g,h). The dashed lines are collinear quark propagators and the spring
with a line is a collinear gluon. Solid lines are quarks with momenta p* ~ A. The ®
denotes an insertion of the weak operator in the appropriate theory. The solid dots
in (a,b,c) denote insertions of the mixed usoft-collinear quark action L',gl). The boxes

in (d,e) denote the SCETy; operator Eél) from Ref. [93].

&qq

the G topology are possible. Once again, the power suppression from the two Egl) ’s
makes the amplitudes for color suppressed decays smaller by A/Q from those for
color allowed decays. The C, F, and G diagrams in Fig. 6-1 are different contractions
of the terms in TI(,?}S), and at tree level are given by Figs. 6-2(a), 6-2(b), and 6-
2(c) respectively. The propagators in these figures are offshell by p?> ~ EpyA. In
SCETy; all lines are offshell by ~ A2, so the propagators either collapse to a point
as shown in Figs. 6-2(f), 6-2(g), and 6-2(h), or the quark propagator remains long
distance as denoted in Figs. 6-2(d) and 6-2(e). For the terms in the factorization
theorem in Eq. (6.2), Figs. 6-2(f,g) contribute to Aghor;, Fig. 6-2(h) contributes to

Agle, and Figs. 6-2(d,e) contributes to Ajng. A notable feature is the absence of a

long distance gluon contribution. Momentum conservation at the ‘ng) vertex forbids
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the quark propagators in Fig. 6-2(c) from having a long distance component (or more
generally there does not exist an appropriate analog of the shaded box operator in

Figs. 6-2(d,e) that takes a soft d to a soft @).

The diagrams in Fig. 6-2(f,g) have isosinglet and isotriplet components. The

corresponding isosinglet operators in SCET}; are [93]

O (k! we) = [T A (d8) Py (ST) | [(EDW)o Te(WHED)] (6.4)
OP(kf we) = [(AS )T (SThD) (d8)r hPLT*(SM)p | [(EOW ), Lo (WHED )]

where h, and h, are Heavy Quark Effective Theory (HQET) fields for the bottom and
charm quarks, the index j = L, R refers to the Dirac structures I'* = P, or ', = ¢
Pg, T = (AP)/2, &9 are collinear quark fields and we sum over the ¢ = u, d flavors.
Note that no collinear strange quarks appear. In Eq. (6.4) the factors of W and S
are Wilson lines required for gauge invariance and the momenta subscripts (- - -),,
and (-- ')k;." refer to the momentum carried by the product of fields in the brackets.
The matrix element of the soft fields in O"® gives the S\"® (ki k#) distribution

functions, for example

(D ()| (RS SYRP(STHY) (dS), P (Su) 5 | B (v)

mpmp

= AP SPO(kE kS,
(6.5)

where AP = 1 and AP" = n-e*/n-v' = 1 (since the polarization is longitudinal).
The matrix element of the collinear operator gives the LO light-cone distribution

functions. We work in the isospin limit and use the (u@ + dd), s3 basis for our quark

operators. For M = n,n" we have

(M(p)] Z(é&q)W)wl@(W*&”)mlm = —inpf) ¢y (w,z),  (6.6)
q=u,d \/i
(M()EPW ) s (WIEE),10) = —in-p fM oM (u,2) |

while for vector mesons M = w, ¢ we simplify the dependence on the polarization

149



using my fi-¢* = fi-p and then have

(M(p,e")| Z(E,‘.q’W)wl%(W*&“’)mw) = inpfM M), (67)

q=u,d

(M (P, e)EPW)un RV 10) = i7op £1 0} (1, ) -
In both Eq. (6.6) and (6.7) we have suppressed a prefactor for the ¢™’s on the RHS:
1
/0 dz 8(wy — 2 71-p) 8(ws + (L—2)7-p). (6.8)

Note that these definitions make no assumption about 7n-n’ or w-¢ mixing. The
SCET operators in Eq. (6.4) only give rise to the ¢)2” terms. By charge conjugation
¢M(1—z) = ¢ (z) and ¢} (1 — ) = ¢ (x) for both the isosinglet pseudoscalars and
isosinglet vectors. Our definitions agree with those in Ref. [73].

Now consider the graph emitting collinear gluons, Fig. 6-2(c). and integrate out
the hard-collinear quark propagators to match onto Fig. 6-2(h). Writing the re-
sult of computing this Feynman diagram in terms of an operator gives a factor of

[ROT™{1, T}hP] times

—Np2 n-py (6.9)

J A M cﬁuTb s oRBeN(: pub
(AT PL{1,T }2’7& ul(igB1*) (igB1’) “hopan-ks + i€ Aopin-ky i€’

where igB'2T? = [1/P Wilin- D, ,iD* W], is a LO gauge invariant combination
with the gluon field strength. The Dirac structure can be simplified: v Py} = —¢
Pr(g"” +i€"”) where €3 = +1. Furthermore we only need to keep operators that are
collinear color singlets, since others give vanishing contributions at this order. These
simplifications hold at any order in perturbation theory in SCET] , so the matching

gives only two SCET|; operators

GPO(kf,wn) = [RITEY (d9) Py (ST ] (g +ieh) BL,BYS,] (6.10)
GP Kkt we) = [APTITRY (dS)phPLT(SMu) s [(95 +ieh,) BLL, B, -

lws

The operators in Eq. (6.10) appear as products of soft and collinear fields allowing us
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to factorize the amplitude into soft and collinear matrix elements. We immediately
notice that the soft fields in Eq. (6.10) and Eq. (6.4) are identical. Thus, the same

S,(JO’B) occur in the factorization

non-perturbative B — D® distribution functions
theorem for the gluon and quark contributions (cf. Eq. (6.2)). The matrix elements

of the collinear fields give

X ) i —
M=n1s (M@l B ,BL,100 = 5Crfl Gy(mz), (611)

M=gw: (MEIGEBLLBLI0) = £ \JOrfl Bhiluz)
where
- ¢3! (z, 1)
Gy (1) = m (6.12)

Cr = (N? —1)/(2N.) = 4/3,and f* = /2/3 f¥ +,/1/3 f}. (We again suppressed
a prefactor on the RHS of Eq. (6.11) which is given in Eq. (6.8).) Our ¢} and ¢’g" are
the same as the ones defined in Ref. [73], where they were used to analyze the y-n

and -7’ form factors. Charge conjugation implies
oY (1 —z) = —¢) (). (6.13)

At tree level using Eq. (6.9) to match onto the gluon operators Gf,-o’s) gives

(0) — Was(l‘m) J(8)= ﬂas(uO) (6.1
Iy N(n-ky—ie)(n-ky+ie)’ 9 (—N3+Nc)(n-k2—ie)(n-kl-i—ieTﬁ' 4

where more generally J(™® = J®(z,x,k,k3). Thus, the jet functions are even
under z — 1—z while the gluon distributions are odd, and the convolution in Eq. (6.2)
(x)M

for Ag‘)lﬁl vanishes. Thus, Ay starts at O[a2(v EA)] from one-loop corrections to

the gluon jet function.

The remaining contributions to the amplitude come from the isosinglet component

of the long distance operators shown in Figs. 6-2(d,e). These operators take the form
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of a T-ordered product in SCETY;
0 (i, K w, ) = /d4:v T Q¥ (wi,z = 0) i (w, k% 7). (6.15)

where L8 (w, k*, z) [93] are four quark operators in SCET}; denoted by the shaded
boxes in Figs. 6-2(d,e). The matrix element of these long distance operators give the
contribution AM in Eq. (6.2) where the collinear and soft functions ¥{%® and @20’8)

long

are defined as

(M (pas, €a1)|[(EOW ) BPLWHED), ) (00) [ EPW )W PLW D) (21)[0)
=ifM V23 (2,0,51,3)

(DO, epe)|[(RS S)RPE(STHD)] (01) [(dS) e+ #PL (S u)e+] (1) B)
= Vmgmpe OF (k*,7.1,6p.), (6.16)

and at tree level the jet functions are 7 (wk*) = —4/3 T® (wk*) = —8ma, (1)/ (Iwk™).

Egs. (6.5,6.6,6.11,6.16) combined with Eq. (6.2) completely define the amplitude
for color suppressed decays to leading nonvanishing order in Agcp/Q. We are now
in a position to make phenomenological predictions. We will neglect perturbative
corrections at the hard scale, a,(Q). For heavy quark symmetry predictions we will
work to all orders in a,(v/EA), while for relating the n and 7' amplitudes we will
work to leading order in o, (VEA).

6.1.2 Phenemenology

The first class of predictions that we address make use of heavy quark symmetry
to relate the D and D* amplitudes. The factorization theorem in SCET, Eq. (6.2),
moves the energetic light meson into a separate matrix element. This allows us to use
the formalism of HQET in the soft sector to relate the B — D and B — D* matrix
elements in Eqs. (6.5) and (6.16). For A¥ . the contribution is the same for the D
and D* channels with identical soft functions Sg) as a consequence of heavy quark

symmetry. The same is true for the soft matrix element in Agy, which also gives Sg).
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Figure 6-3: Comparison of the absolute value of the ratio of the amplitude for B —
D*M divided by the amplitude for B — DM versus data from different channels.
This ratio of amplitudes is predicted to be one at leading order in SCET. For w’s
this prediction only holds for the longitudinal component, and the data shown is for
longitudinal plus transverse.

For the long distance contribution A{‘fng, in addition to a dependence on powers of z2 ,
the soft function <I>J(Li)(k+, Z),€5.) can have terms proportional to z; - €p. in the D*
channel while the collinear function ‘Ilg?(z, w,Z),€%) can have terms proportional to
1 -€}, in the case of vector mesons. In the convolution over z, in A}}, , the term in the
integrand proportional to the product (z, - €}.)(z L - €}7) can be non-vanishing in the
D* channel with a vector meson. Such terms do not appear in the D channel making
the D and D* amplitudes unrelated in general. However, if we restrict ourselves to
longitudinal polarizations, such terms in the D* channel vanish and the long distance
contributions in the two channels become identical. Finally, note that the SCET jet
functions, and the other collinear matrix elements in SCET}; are identical for the two

channels. Thus, at leading order in o,(Q) and Agcp/Q the D and D* channels are
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related as

Br(B— D*n) _Br(B— D) Br(B— D'w)) _

Br(B—Dn)  Br(B— Dy)  Br(B— Duw) L. (6.17)
For the decay to ¢’s we also have
BT(B — D*(ﬁ”) _
Br(B — D¢) L (6.18)

however in this case the prediction assumes that the o?(v/EA) contribution from Aglue
dominates over power corrections. Note that we are expanding in mys/E)ps so one
might expect the predictions to get worse for heavier states. Fig. (6-3) summarizes
the heavy quark symmetry predictions for cases where data is available. In Fig. (6-3)
we have included the results from section 5.1.6 for non-singlet mesons as well as the
results for the color allowed modes [?]. We show the ratio of amplitudes because our
power expansion was for the amplitudes making it easier to estimate the uncertainty.
There is remarkable agreement in the color allowed channel where the error bars are

smaller and good agreement in the color suppressed channels as well.

So far our parameterization of the mixing between isosinglets in the factorization
theorem has been kept completely general, and we have not used the known exper-
imental mixing properties of -1’ and ¢-w. For the next set of predictions we use
the flavor structure of the SCET}; operators and the isosinglet mixing properties to
a) relate the n and 7’ channels and b) show that decays to ¢’s are suppressed. Our
discussion of mixing parameters follows that in Refs. [81, 57, 66, 55]. In general for
a given isospin symmetric basis there are two light quark operators and two states
(say n and n') so there are four independent decay constants. These can be traded
for two decay constants and two mixing angles. In an SU(3) motivated singlet/octet

operator basis, {(@u+dd+35s)/v3, (tu+dd—235s)/v/6}, we have
fi'l = —fl sin 91 y flnl = f1 Cos 91 y fg’ = fs Ccos 08 y fsnl = fg sin 08 . (619)

An alternative is the flavor basis used in Eq. (6.2) , {O,, O,} ~ {(@u+dd)/v?2, 3s}.
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Here

fI=fyeos6,, fI =f,sinb,, f1=—fgsinb,, fI=fcosf,. (6.20)

Phenomenologically, (6s—6,)/(63+6;) ~ 0.4 which can be attributed to sizeable SU(3)
violating effects, whereas (6, — 6;)/(6, + 05) ~ 0.06 where a non-zero value would be
due to OZI violating effects [56]. We therefore adopt the FKS mixing scheme [55, 56]
where OZI violating effects are neglected and the mixing is solely due to the anomaly.

Here one finds experimentally
0, ~0;, ~0=393"+1.0°. (6.21)
Thus it is useful to introduce the approximately orthogonal linear combinations
Ing) = cos@ |n) +sinb |n'), |ns) = —sin@ |n) + cos@ |1y, (6.22)

since neglecting OZI effects the offdiagonal terms (0]Oy|n,) and (0|O,|n;) are zero.
Since this is true regardless of whether these operators are local or non-local, the ma-

trix elements in Egs. (6.6,6.16) must obey the same pattern of mixing as in Eq. (6.20)
[f1d0(x) = fadq(z) cosby, etc.] and so

gl(z) = @7 () = dg(z),  d(z) = ¢7 (2) = §5(z),  TOD =¥ = ¥¥6.23)

()M

The SCETy operators of Eq. (6.10) which contribute to Ay,

can produce both

the 7, and 7, components of the isosinglet mesons. However, recall that at LO in
(M

give vanishes allowing

as(vV EA) the convolution over the momentum fractions in A
us to ignore this contribution. The remaining contributions from ASL)(% and A}jﬁff

involve operators that can only produce the n, component of the isosinglet mesons

as seen by the flavor structure of the operators in Egs. (6.4) and (6.16). We can now
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write the amplitude for the () channels in the form

AW = cos @ [AGM + AL AT = sing [AGM + AL, (6.24)

short long long

This leads to a prediction for the relative rates with SCET

Br(B — D)  Br(B — D*7') )
Br(B — Dn) Br(B — D*n) an”(9) ’ (6.25)

with uncertainties from (v EA) that could be at the ~ 35% level. Experimentally

the results in Table 6.1 imply

Br(B — Dn)
Br(B — Dn)

Br(B — D*n)

=0.61£0.12 —
’ Br(B — D*n)

=0.5140.18, (6.26)

which agree with Eq. (6.25) within the 1-0 uncertainties.

For the isosinglet vector mesons we adopt maximal mixing which is a very good
approximation (meaning minimal mixing in the FKS basis), and is consistent with
the anomaly having a minimal effect on these states and with neglecting OZI effects.
In this case only (0|O4|w) and (0|Os|¢) are non-zero. Thus only AW and A§;)j; are

non-zero and we predict that ¢ production is suppressed

Br(B° —» D"%) 2 Aqcp Adep
— =0 VEA), as(VEAN)——, —==) ~ 0.2, 6.27
possibly explaining why it has not yet been observed. Interestingly a measurement
of B = D¢ or B — D*¢ may give us a direct handle on the size of these expansion
parameters.

Just using the original form of the electroweak Hamiltonian in Eq. (5.1) there is

an SU(3) flavor symmetry relation among the color suppressed decays [104]

R Br(B" = D{K~) | |Vua[?Br(B® - D°K®)  3Br(B® = D)
SU@) Br(B — DrY) Vus| Br(B — Dn%) Br(B — D°z0) 7’
R _ Br(B*—> D;*K™) | |Vuw|?Br(B° — D*°K") B 3Br(B" — D*%ng) )
SU®) 7 Br(B — D*0x0) Vus| Br(B — D*7%  Br(B — D®g%) — ’
(6.28)
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where 73 is the SU(3) octet component of the 5. In the SU(3) limit the 7 — 5’ mixing
vanishes and we can take 7g = 7. Away from this limit there is SU(3) violation from
the mixing as well as from other sources, and it is the latter that we would like to
study. To get an idea about the effect of mixing we set |ng) = cos ¥|n)+sin 9|n'), which
from Eq. (6.22) can then be written in terms of |n,) and |7,), and vary ¥ between
—10° and —23°. From the flavor structure of the leading order SCET operators for
B — DM decays we then find

Br(B" — Dns)  Br(B°— D*ng) _ cos?( — 9)
Br(B®— Dn) ~ Br(B"— D*p) ~  cos(f) ’

(6.29)

where 9 is the 7-n’ state mixing angle in the flavor octet-singlet basis and 6 is the
FKS mixing angle. In the SU(3) limit J = #; = f3 = 0, however phenomenologically
9 ~ —10° to —23°. Experimentally taking |V,s/Vue| = 0.226 and using Table 6.1

gives
1.00+0.59 [0 = 0°] —0.22 +0.97 [J =0°]
Rsu@) = { 1.75+0.57 [9 =-10°] , Ry =9{ 0.59+0.88 [¢=—10(.30)
2.64+0.56 [9 = —23°] 1.57+0.83 [ = —23°]

In all but one case the central values indicate large SU(3) violation, however the exper-
imental uncertainty is still large. It would be interesting to compute the uncertainties
by properly accounting for correlations between the data rather than assuming these
correlations are zero as we have done. At 1-o the errors accommodate Ry = 1
except if ¥ = 0°, and only accommodate Rgy(3) = 1 if 9 = 0°. Note that the heavy
quark symmetry prediction, R§U(3) = Rgy(3), is still accommodated within the error

bars.

In the pQCD approach predictions for color suppressed decays to isosinglets have
been given in Refs. [69, 84], where they treat the charm as light and expand in m./m;.
With such an expansion there is no reason to expect simple relationships between
decays to D and D* mesons because heavy quark symmetry requires a heavy charm.

In Ref. [84] predictions for 1 and n’ were given dropping possible gluon contributions.
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Our analysis shows that this is justified and predicts a simple relationship between

these decays, given above in Eq. (6.25).



Chapter 7

Excited charmed Mesons

7.1 Excited Charmed Mesons

We now turn to nonleptonic decays where the final state charmed meson is in an
orbitally excited state such as the D; and Dj(see Table 7.1) collectively referred to
as D*. B — D*K decays have been recently proposed [105] as candidates for a
theoretically clean extraction of the CKM angle v making such decays all the more
interesting to study. These decays also raise interesting questions regarding the power
counting scheme used to make quantitative phenomenological predictions. Based on
analysis of semileptonic decays [77] near zero recoil, the leading order contributions
are expected to be suppressed due to heavy quark symmetry constraints. This sug-
gests that subleading contributions could have a significant effect on leading order
predictions in B — D**M type processes. We will address these issues on power
counting and provide a resolution. On another note, the B® — D®)0 rates are more
difficult to extract cleanly from experimental data due to background contributions
from intermediate D** states. In particular, in the D*° channel only an upper bound
on the branching fraction has been measured [52] and the errors in the D° channel
are still fairly large [103]. This has made it difficult to test the SCET prediction [94]
relating the D and D* amplitudes. With the p° meson primarily decaying to 77~
and the excited D*** mesons decaying to D*)%7* the same final state is observed for

B® - D**t1~ and B® — D®°p0 Thus, a precise extraction of the B® — D{*)0p0
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| Mesons [ si' | J¥ [ m(GeV) |
(D,D*) |17 | (0~,17) | 1971
(D, D) | 17 ] (0+,1%) | 2.40
(D, D) | 2% | (1+,2%) | 2.445

B ICON =D

Table 7.1: The HQS doublets are labeled by s;*. Here s; denotes the spin of the light
degrees of freedom and 7; the parity. The D, D* mesons are L = 0 negative parity
mesons. The Dg, D} and Dy, D; are excited mesons with L = 1 and positive parity.
mm refers to the average mass of the HQS doublet weighted by the number of helicity
states [77].

rates requires us to better understand B decays to excited charmed mesons.

The B — (D™, D**)7 type decays proceed via three possible topologies shown in
Fig. 5-1 but with the D meson replaced by the orbitally excited state D**. The color
suppressed modes which proceed exclusively through C and E topologies and will be
shown to be suppressed relative to the color allowed modes that are dominated by
the T' topology.

As explained in chapter 3, there exists a tower of HQS doublets for the charmed
mesons where (D, D*) sits at the base. The first three HQS doublets are listed in
Table 7.1. In this section we extend the analysis to the case where the final state
charmed mesons are D; or Dj which sit in the third HQS doublet. A similar analysis
can be done for the (Dg, D}) doublet but these are difficult to observe due to their
relatively broad width [91]. For this reason, we restrict our analysis to the (D;, Dj)
doublet. The most recent measurements in the color allowed sector giving the ratio

Br(B~ — D)
Br(B~ — D{n~)

=0.79 +0.11, (7.1)

obtained after averaging the Belle [3] and Babar (8] data. In this section, we shed
light on this ratio and also make predictions in the color suppressed sector.

In extending the analysis to include excited charmed mesons, the constraint of
HQS introduces possible complications in the power counting scheme. HQS requires
the matrix elements of the weak current between B and (D;, Dj) to vanish at zero

recoil [65]. This requires that they be proportional to some positive power of (w — 1)
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at leading order in Agcp/Q. Here w = v - v' where v and v’ are the velocities of the
bottom and charm quarks respectively and v = v'2 = 1. For semileptonic decays this
means that HQS breaking Agcp/@Q corrections can compete with the leading order

prediction [77, 78]. For example, if the amplitude were to have the generic form

Aw) ~ (W =11+ Agep/Q + -] + [0+ Agep/Q + -+, (7.2)

and (w — 1) ~ Agep/Q, then the subleading Agcp/Q terms in the second square
bracket are of the same order as the leading order terms in the first square bracket.
The effect of the subleading corrections is especially important near zero recoil where
w — 1. The two body decays B — (D;, D})M occur at maximum recoil where
(wo — 1) ~ 0.3 which is numerically of the same order as Agcp/Q. One is thus forced
to consider the role of subleading corrections and how they compare with the leading
order predictions. However, we will see that maximum recoil is a special kinematic
point at which the constraint of HQS enters in a very specific manner so as to preserve

the Agep/Q power counting scheme. The main results of this paper are

e At leading order, the ideas of factorization, generation of non-perturbative
strong phases, and the relative Agcp/@ suppression of the color suppressed
modes are the same for B-decays to excited charmed mesons B — D**M and

to ground state charmed mesons B — D™ M.

e The constraint of HQS takes on a different character at maximum recoil com-
pared to expectations from the analysis of semileptonic decays near zero recoil.
In particular, at maximum recoil there is no suppression of the leading order
contribution due to HQS. Thus, the SCET/HQET power counting scheme re-
mains intact and allows us to rely on leading order predictions up to corrections
suppressed by at least Agcp/Q. We verify this explicitly for subleading correc-

tions to the semileptonic form factors at maximum recoil.

e At leading order, factorization combined with HQS predicts the equality of the
B — DM and B — D3M branching fractions and their strong phases. In
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the color suppressed sector, this prediction is quite non-trivial from the point
of naive factorization since the tensor meson D} cannot be created via a V-A

current.

e Recent data [3, 8] reports a 20% deviation of the ratio of branching fractions
from unity in the color allowed sector. The subleading corrections of order
Agcep/@Q are expected to be of this same size and could explain this deviation

from unity.

Eqgs. (5.7) and (5.34) are the main results of the analysis for the B — D®M
decays. The analysis for decays with excited charmed mesons B — D**M will proceed
in exactly the same manner. Any difference in results will show up only at the non-
perturbative scale i.e. in SCETy; . In other words, the doublets (D, D*) and (D, D3)
have the same quark content and any difference between them arises only from non-
perturbative effects responsible for their binding. The physics at the scales u% ~ m%,,
Q?, and QAgcp or in the theories SM, Hy, and SCET; is the same leaving the
perturbative functions C} o, C’,E?’,?, and J©®8 unchanged (see Fig. 5-2). The light cone
wave function ¢, will also remain unchanged since the same final state light meson
appears. At leading order, the only change will be in the soft functions Sg,)R and
¢ since the matrix elements will now involve different non-perturbative final states

namely (D;, D3). We will denote the modified functions as Qg?R and 7 corresponding

to S,gi,)R and & respectively.

7.1.1 SCET Analysis: Leading Order

We now begin our analysis for the excited charmed states. We start by obtaining the
modified soft functions 7 and Qg,)R and then carry over results for the perturbative
functions and the non-perturbative collinear sector from the previous section to obtain

the analog of Egs. (5.7) and (5.34).
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Color Allowed Modes

We first analyze the soft functions for the color allowed modes B® — (Df, Dy )M~
and B~ — (D?, D3%)M~. As before, the leading contribution to these modes comes
from the 7" topology which is given by the matrix elements of the effective SCET}; operators
Q(LO”;) of Eq. (5.19). These matrix elements factorize into soft and collinear sectors.
Using the formalism of HQET, the soft part of the matrix element can be expressed

in general form as a trace

(D3, Dy (v)) |y T} oh{| B°(v))
mpmp

= 7(w)Tr [v, FY°TH®) (7.3)

where 7(w) is a new Isgur-Wise function analogous to {(w). As in the case of ground
state charmed mesons, the operators Q(LS,)R give vanishing contribution. H®) and F©°
in Eq. (7.3) are the superfields for the heavy meson doublets (B, B*) and (D, D})
respectively [53]

1+¢
H, = e R
o 1+ *oV 3 v o 1 ag g
By = —— (D3 vu~\/§Dlvs[gu—§7u(7 —v7%))). (7.4)

As mentioned in the introduction, the matrix element in Eq. (7.3) which also appears
in the case of semileptonic decays must vanish in the limit of zero recoil. This condi-
tion is manifest in the right hand side of Eq. (7.3) through the property v{,ﬁff)a =0.
Thus, we expect the leading order amplitude to be proportional to some positive
power of (w—1). At maximum recoil (wp — 1) ~ 0.3 ~ Agcp/® putting (wo — 1) and
Agen/Q on the same footing in the power counting scheme. In addition, maximum
recoil is a special kinematic point where the heavy meson masses are related to wy
through (wy—1) = %‘f’;‘;ﬁ—’;)z We must keep this relation in mind to make the power

counting manifest and so it becomes convenient to express (mp — mp) in terms of

((AJ() — 1)
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Computing the trace in Eq. (7.3) we arrive at the result

(D1 (v")[RTE RhP|BO(v)) [mp(w+1) ,
= T(W)| ———€" v
mpmp 3mD

(D3 WEITE OB 0
7(w)
mpmp 2mp(w — 1)

€ v,,, (7.5)

where the & for the D} refer to the choice of I'"* and ', Dirac structures respectively.
¢* and €*” are the polarizations for D, and D} respectively. Combining this result for
the soft sector with the hard and collinear parts from the previous section we obtain

the final result

1
A(B—= Di1M) = NDIEA,I\/—mB(w0 T )e* - v 7(wo, 1)
3mD

/Oldx TDI (-T7 mC/mba ,u') ¢M (1‘, H)

* = D2*E ___'IT.LL_— *ov v
A(B — D; M) N My / S (o = 1)6 VeUy T(Wo, 1)

/Oldx TD; ("I’" mc/mb7 /‘L) ¢M($7 “) ) (76)

X

X

where the normalizations are given by

GrVauVe . _ GrVaVi
ND1=%fM\/W, NP2 =—F—\/%——dfM\/—mBmD2_* (7.7)

and the hard kernels T(Pv:P%)(z, 1) are the same as those appearing in Eq. (5.7)
TPuD3) (g, u) = T™(z, u). Using the properties of the polarization sums

Sl v =(w+1)(w—-1), 3 e vpu, P = %(w +1)%(w — 1), (7.8)

pol pol

the unpolarized amplitude squared is given by

1 *
SIA(B = (Dy, DYM)P = [N®1P2) [ da TOVPD) (3, mefmy, 1) gz, 1)
pol
mBT2(w7ﬂ’)
3mD

X

((JJ() + 1)2(w0 - 1) (79)
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At leading order in Agcp/ms,. the masses in the heavy quark doublet (Dy, D}) are
degenerate giving the relation NPV = N(P2*)_ In addition at leading order in o, (Q),
TD1) = T(D2%) allowing us to make a prediction for the unpolarized color allowed
branching ratios:

Br(B® = Dy*M~) Br(B- — DM")
A : = ) St Sasl S (7.10)
Br(B" » DfM-)  Br(B- — DIM")

The same result was derived in ref. [77] at lowest order in 1/m; . by evaluating their
results for semileptonic decays at the maximum recoil point and replacing the e pair
with a massless pion. Recently, a theoretical prediction of 0.91 for the above ratio

was made in the covariant light front mode] [44].

Color Suppressed Modes

Now we look at the color suppressed modes B® — (DY, D3%)M°. The leading contri-
butions are from the C and E topologies which are given by matrix elements of the
SCET; operators O](-O’B)(kz?" ,wg) of Eq. (5.27). Once again, the result factorizes and
using the formalism of HQET, the soft part of the matrix element can be expressed

as a trace

(DS, DY(W)| (R S)T™ (STh®) (d S) s hPy (Stu) s | B (v))

()o b 17(b) 3 (0)
=Tr [F,,/ TTH\ X 11
memp Py 207 Ae (7.11)

with similar expressions for the O§8)(ki+ ,wy) operators. The Dirac structure X{%® is
of the most general form allowed by the symmetries of QCD and involves eight form

factors

X008 — 4, (ago,e) wPL + ago’s)vﬁPR + ago’s)PL +a{™® Pr)

+n0(aS"VRhPy + oD Pr + PP Pp, + o Pp) (7.12)
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Computing the trace in Eq. (7.11), the soft matrix elements are given by

(D) |(RDS)Th ¢ (SThY) (d9) 41 PL (S'),t |B°(W))  (Feu,0,) Q0%

MpMp 4w+ )w-1)
(DY T (SHD) APy (S BN (e -0)Qh
mpmp V24w + 1) (w — 1)
where,
-1
Qg]) = ———2[2mBmD(2a§ )mB ago)m% - a‘(lo)mBmD)\/(w +1)(w—-1)
mymbp
+ 4a0m4 —2a0m4 —2aQ0mpm3)]
-1
gg) = —2—7[2m3mp(2a§ )m — a( Ympmp — a‘(lo mE)/(w+1)(w — 1)
mpmp
+ 4aQ0m — 200 mpmd, — 2a{m})), (7.14)

with similar expressions for Qg) Here the soft functions Q (0.8) SL R (0 8

are the analog of
in Eq. (5.34). It was shown [94] that these soft functions generate a non-perturbative
strong phase. We note that in both the D; and D} decay channels, since the same
moments of the non-perturbative functions Qg’ ,83) appear, their strong phases are

predicted to be equal

¢piM = PDyMm- (7.15)

The analogous strong phase ¢ for B® — D®*)070 is shown in Fig. 5-6. Since the strong
phases ¢ and @p,x,ps» are determined by different non-perturbative functions S(O 8)

and Q(I?,’g) respectively, we do not expect them to be related.

Keeping in mind that the perturbative functions C}?R and J® remain unchanged,
we can combine the result in Eq. (7.13) for soft sector with the collinear and hard

parts of the amplitude to arrive at the result

—ND1ex ,
A" = 6 [z dafaktars [09(2) IO (e, 2, ki ) QF (k) ()
\/24 wp + 1)(w0 -1)

—CR(2) JO(z, 3,k , k) QR (K, k) daa ()]
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. ND* *oV Uy 1 i . ;
AT = T DT Lokt aks [CP@) 1Oz k) QP (kY k) b (@)

0 7 4w+ 1)(wo — 1
+C(2) IO (2,2, b k) QR (ki k) pua ()] - (7.16)

Once again the vanishing of C,(f’s) in Eq. (7.16) at leading order in a5(Q) and using

the polarization sums in Eq. (7.8) gives the unpolarized amplitude squared

1,D2% 1 * 1 i P
Yol P = | NPeD /0 dz dz|dk{ dk§ [C(2) O (2,3, k¥, k)

pol

X

: 2
QY (K, k) ¢m(@)) | (7.17)
Since NPt = ND2*  at leading order in Agcp/mgq we can make a prediction for the
unpolarized branching ratios

Br(B° — D3*M") _
Br(B® — D9MY)

1, (7.18)

which is one of the main results of this paper. Note that from the point of view of
naive factorization, this result is quite unexpected since the tensor meson D} cannot

be produced by a V-A current.

7.1.2 SCET Analysis: Power Counting at Subleading Order
Color Allowed Modes

We see that as required by HQS, the unpolarized amplitude in Eq. (7.9) is proportional
to (wp — 1) which is expected to provide a suppression of this leading order result.
However, it is also accompanied by a factor of (wg + 1)2. At maximum recoil wy is

related to the energy of the light meson and the mass of the charmed meson through

V(wo + 1) (wo — 1) = i—"; (7.19)

Thus, in the SCET power counting scheme the quantity \/ (wo + 1)(wp — 1) is of order

one. It is now clear from Eq. (7.9) and the above relation that despite the constraint of
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HQS there is no suppression of the leading order result and the subleading corrections
of order Agcp/Q are not dangerous to the leading order result. This allows us to rely
on the leading order predictions up to corrections supressed by Agcp/Q.

To illustrate the above ideas, in this section we will compute some of the subleading
corrections and compare their sizes relative to the leading order predictions. The

leading order operators in Egs. (5.19) and (5.27) are products of soft and collinear

operators Q = O, * O,. Subleading corrections can arise in four possible ways

° correéﬁéns’in‘thé soft sector to O, and from T-products(see Fig. 7-1a) with O;.
: "..x.t' Ll

° correctlons in the collinear sector to O, and from T-products(see for example

Fig. 7-1b) with O..
e corrections from subleading mixed collinear-soft operators and their T-products.

° Beyond' the heavy quark limit, s; is no longer a good quantum number. From
table 7 1 we see that it implies mixing between D; and Dj. Thus, the physical
D1 sta.te w1ll have a small admixture of the D} state beyond the heavy quark

limit which will play a role in subleading corrections.

We will only focus on subleading corrections in the soft sector from HQET as in
Fig. 7-1a in order to illustrate the power counting. These corrections give precisely
the sublzéadfﬁg's"emileptonic form factors which were computed in Ref. [77]. The
analysis for the remaining subleading corrections will follow in a similar manner and
we leave it as possible future work.

The~HQﬁT and QCD fields are related to eachother through

Q(z) = e™™v[1 + -2% +...]h9, (7.20)

where the ellipses denote terms suppressed by higher orders of Agep/mg and @ = b, c.

Including the Agep/meq corrections, the QCD current is now matched onto
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(@) (b)

Figure 7-1: Contributions to the color allowed sector from T-ordered products of the
effective weak vertex in SCET; with subleading kinetic and chromomagnetic HQET
operators (a) and with the subleading SCET operators(b). In this section, to illustrate
through examples the relative suppression the subleading contributions by at least
Agcp/Q, we only consider T-ordered products of type (a). The analysis for type (b)
contributions will proceed in a similar manner.

. (_ .
z ACK L ®)
b — RY(T o I+ memﬁ)hv : (7.21)

Then there are subleading corrections from T-ordered products of the leading order

current with order Agep/Q terms in the HQET Lagrangian:

mag,v

1
§Luger = %5[0’(“?")’” +09 1 (7.22)

where O,(c%),v and Oﬁ,ﬁ)g,v are the kinetic and chromomagnetic operators

Oi2, = KOGDPHD, 0, , = K9 L0u,GhD. (7.23)

in,v mag,v

We employ the trace formalism to compute these subleading corrections to the soft

matrix element from corrections to the matching in Eq. (7.21)

—

Wi Dy ThY = Tr[SYF 9 THY)
KOTiDyh® = Tr[SOFSOT»HY), (7.24)
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and from T-ordered products with §Lyger

i / d*zT(0L), » (@) [RYTE®0) = Tr[RE,FS Do aﬂH’f THY)

mag,v’

i [ 2T, (@)ROTAP)(0) = Tr[RY,Fe@OpF? ” cPHO]  (7.95
mag,w\T) [Tty v af

where the structures S} (@ and R@ are parametrized as

59D = uyfr Dy + 1 + D] + 7P,
Ry = 09078 + 15 0,v075 + 18 gravs,

Rg’c),ﬂ = ng )v,'ya'yﬂ + ng Yvgu! vyY8 + ng )gmv:g. (7.26)

(@)

kin,v

The T-ordered products with the kinetic energy operator O do not violate spin

symmetry and simply provide Agcp/mg corrections to the form factor in Eq. (7.3)
C b

TS T=7+ gﬁ; + 2%; The form factors appearing in St(f)‘)) are not all independent

and are related [77] through

wr? + 1 — 9 = ¢
O twrl? -+ = o

Tl(c) +7'1(b) = At

L "
'réc) + 'réb) = 0
M9 o, (.27

where A and A’ are the energies of the light degrees of freedom in the my . — oo limit
for the (B, B*) and (D;, D3) HQS doublets respectively. Using these relations we

e ), and 7'2(0) form factors. Combining the

can express our results in terms of the 7,
subleading contributions from Egs. (7.24) and (7.25) with the leading order result in

Eq. (7.3) and using constraints from Eq. (7.27) we can write the soft matrix element
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as

Spioae = F(wo)Tr [v,Fy "THP) - .m SO FSOPTHY] - rm SR HY)

+ _;(W)Tr[(AUA—A'U Yv, F, "<C’F7*H<"’]+ TT[R(C) Foigeb “5 ——THY

ocaf

—o(e) 1+ P
+ %—T r[R®, 5T 2’5waﬂHg">]+---,

aaﬂ
where the ellipses denote contributions from other subleading operators that we have
not considered. Computing the above traces and combining the results for the hard
and collinear parts from section II, the amplitudes can be brought into the final form
1
A(B — D ;M) = NP1 fBDlex .y /dx TP (z, me /M, 1) dar(z, 1)
0
1
A(B — DM) = NP fBD2xgrovy o\ / dz TP (3, me/m, ) dae(z, 1), (7.29)
0
where f(BPLED29) are functions of the form factors 7 Tl(c),'rz(c),niczb% For the D,
channel, fBP! is given by
Z et - wfBDI2 = mp(wo +1)
pol 12mD
(c) (c) (c) (b) (b) (b)
2
X [(27"-4_ _6771 — _"7_2 — 7_73_ + _67)_1 + QZ_ + 23_.
me m me my My mp
(c
mp , Mp\7 mp | Mp 2
—22 _(ZELE2 oy 1)(wo — 1
t Gt Gt e — D)@+ Dl —1) (7.30)
my m_ZD) 7 ('rz( ) B 21_\7) + (mB mp (A' ) 3 79 )
m%L  m%'2m, ‘m. me m mB me 2m, 2m,
(C) (©
mp  Mp Ty AT
I | —1 = S Ywe—1
F Gt 2 ) flwo = 1) + (B~ )(wo )]

and for the D, channel, f8P? is given by

Z IE*UVUUqu_BD2*|2 _ mp(wo + 1)

pol 12m D

0@ @ @ @ e ® B ®
X [(27'- Ui +n_+@__7-2_+_?7_ 772 +77___
me me me Me My my my
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mp  Mp T Up)
— 4+ — =1 - = +1 -1
O P = )Y e+ Dl — 1)
() (c) (e)
- T T. mgp Mp M R 2
— A+A)— -2 (= 4+ 241 - — -1
(( + )Wl,b my (mD mp )( me my )> (CUO ) + ]

The above expressions are written in a way to make the power counting manifest.

The ratio T2 is of order one, (wo — 1) is numerically of order Agep/Q, and as dis-

cussed in Eq. (7.19) the quantity \/Zwo — 1)(wp + 1) is of order one. We see that
the leading order contribution inside the square brackets in Eqs. (7.30) and (7.31)

is proportional to T\/ (wo — 1)(wp + 1) and is the same for the D; and Dj chan-
nels. More importantly, there is no suppression of the leading order term due to

HQS since \ﬁwo —1)(wp + 1) is of order one. On the other hand, the subleading

corrections in the square brackets are of size either Agcp/mg, (wo — 1)Agen/mo,

(wo — 1)Agep/mg, or \/ (wo — 1)(wo + 1)Agep/me and hence are suppressed by at
least Agcp/mg relative to the leading order prediction. Thus, we see that the con-
straints of HQS enter in a very specific manner so as to preserve the power counting
scheme of SCET allowing us to ignore the subleading corrections near maximum re-
coil. It was the maximum recoil relation in Eq. (7.19) that ensured no suppression
of the leading order result. The predictions of Eq. (7.10) remain intact with these

subleading corrections suppressed by at least Agcp/Q.

Color Suppressed Modes

In the case of color suppressed decays which are mediated by operators that are not
conserved currents, there is no reason to expect the soft matrix element to vanish at
zero recoil by HQS and thus no reason to expect a suppression at maximum recoil. In
fact the non-trivial dependence of the soft matrix elements in Eq. (7.11) on the light
cone vector n, makes it difficult to make a comparison with the zero recoil limit. The
soft functions Qf”z) will depend on the light cone vector n# through the arguments

(n-v,n-v',n-k;,n-ky) and it is not obvious how to extrapolate such a function away
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from maximum recoil. At maximum recoil v, v’ and n are related through
I
mpv* = mpv* + Eynt. (7.32)

The light cone vector has the special property n? = 0 and is a reflection of the onshell
condition of the pion p? = (E,n)? = 0. Away from maximum recoil, Eyn* is to be
replaced by ¢* which is offshell ¢? # 0, inconsistent with the n? = 0 property of the
light cone vector. So, Eq. (7.32) can no longer be used to determine n# in terms of v#*
and v'* and thus more care is required in extrapolating away from maximum recoil.

From Egs. (7.16), (7.14), and (7.19) and the power counting scheme discussed
earlier we see that there is in fact no suppression of the leading order color suppressed
amplitude. The leading order predictions of Eq. (7.18) remain intact with corrections
suppressed by at least Agcp/Q). We leave the analysis of subleading corrections in

the color suppressed sector as possible future work.

7.1.3 Phenomenology

In the color allowed sector, based on an analysis of semileptonic decays and an ex-
pansion in powers of (wy — 1), the ratio in Eq. (7.10) was previously predicted to be
in the range 0.1 — 1.3 in Ref. [77] and 0.35 in Ref. [95]. In this paper, with the new
power counting introduced at maximum recoil, we have shown the ratio to be one at
leading order. In fact we have obtained the same result even for the color suppressed
channel. The main results of this paper at leading order are the equality of branching

fractions and strong phases

Br(B — D;M)

> -1 DsM _ DM _

where M =, p, K, K* in the color allowed channel and M =7, p, K, Kﬁ in the color
suppressed channel. This result in the color suppressed channel is quite unexpected
from the point of view of naive factorization. In the color suppressed channel the

long distance operators in Fig. 6-2c,d give non-vanishing contributions for kaons at
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leading order in «(Q) unlike the case of M = m, p. However, based on the same
arguments [94] given for the case of B-decays to ground state charmed mesons the long
distance contributions to the color suppressed decays B° — DYK° and B® — DY*K°
are equal and the result still holds. For K*’s the long distance contributions are equal
only when they are longitudinally polarized.

Once data is available for the color suppressed channel we can construct isospin
triangles analogous to Fig. (5-6). With Ay_ chosen as real, the strong phase ¢P**M
generated by the color suppressed channel Ay, through the soft functions Q(LO,’,? in
Eq. (7.14), is identical for Dy and Dj. The isospin angle § which is related to ¢
through Eq. (5.62) is also the same for D; and Dj. Thus, at leading order we predict
the isospin triangles for Dy and Dj to identically overlap.

Recent data [3, 8] reports the ratio of branching fractions in the color allowed
channel

Br(B~ — D3’r7)
Br(B- — Dn~)

=0.79 £ 0.11. (7.34)

The deviation of this ratio from one, which will cause the isospin triangles to no longer
overlap, can be attributed to subleading effects. The subleading effects shown to be
suppressed by Agep/Q are expected to give a 20% correction, enough to bring agree-
ment with current data. Thus, our claim that subleading corrections are suppressed

Agep/Q is in agreement with current data.
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Chapter 8

Conclusions

We have applied effective field theory techniques to gain control over strong interaction
effects in nonleptonic electroweak decays of B mesons into a charmed meson and an
energetic light meson of energy E. A typical decay of this type is B — D™z, There
are several relevant energy scales involved each contributing important effects to the
decay process. The quark level b — ¢ transitions are determined by electroweak scale
physics u ~ My, the characteristic energy scale for the decay process is determined by
the bottom quark mass p ~ my, typical energies involved in soft-collinear transitions
are of order p ~ \/ETQCD , and the non-perturbative physics that goes into binding
quarks into hadrons occurs at the confinement scale p ~ Agep. We dealt with
the large range of energies involved through a sequence of appropriate effective field

theories between the electroweak and QCD confinement scales

Standard Model — Fermi Theory — SCET; — SCETYy .

The major focus of this thesis was Soft Collinear Effective Theory(SCET) which
deals with the physics of the two lowest energy scales in the above sequence. SCET
formulates the problem of studying B — D™ 7 type decays as an expansion in powers
of Agcn/{ms, me, E}. An introduction to SCET was given in chapter 4.

In our journey from the electroweak scale towards the confinement scale, addi-
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tional approximate symmetries were made manifest by the effective field theories
encountered along the way. We found Heavy Quark Symmetry(HQS) as an approxi-
mate low energy symmetry in SCET and used it to derive a host of phenemenological
relations in chapter 5. HQS first appeared in the context of Heavy Quark Effective
Theory(HQET), an effective theory for the interactions of a heavy quark with soft
gluons, and was discussed in chapter 3. Making HQS manifest in SCET was a rather
non-trivial task. It required proving a factorization theorem that decouples the en-
ergetic degrees of freedom associated with the light meson responsible for breaking

HQS and was the subject of chapter 5.

The main results of this thesis have to do with factorization, heavy quark sym-
metry relations, generation of non-perturbative strong phases, and power counting.
Factorization, proven at leading order in SCET, was of two types. The first was
a factorization of effects from the different energy scales involved and the second
achieved a decoupling of the energetic modes associated with the light meson. Fac-
torization of the amplitude was proven for color suppressed modes which involve
interactions of spectator quarks making the proof all the more non-trivial. With
the factorization theorem at hand, we were able to derive heavy quark symmetry
relations. A typical result was the equality of the branching fractions for the color
suppressed modes B® — D%7® and B® — D%#°. Similar relations were derived for
B — D™y and B — D*r type decays with an isosinglet meson and excited charmed
meson in the final state respectively. A new mechanism for the generation of non-
perturbative strong phases was shown within the framework of factorization. Heavy
quark symmetry relations were derived for these strong phases as well. A typical
leading order result was §°" = §2°7 for the above mentioned color suppressed de-
cays. A certain degree of universality was shown for the strong phases through their
independence of the final state light meson. A typical univeraslity relation was of the
type 6P = §PP corresponding to an equality of strong phases for B® — D°z® and
B% — D%°. Finally, color suppressed decays of the type B® — D%7® were shown
to suppressed relative to the color allowed decays of the type B~ — D°r~ by one

power of ~ Agcp/{ms, mc, E}. All of the results obtained are in good agreement
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with available data.
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Chapter 9

Appendix

9.1 Long Distance contributions for 7 and p

The factorization theorem derived in Sec. 5.1.3 for the color-suppressed B® — D°M°
amplitude contains both short- and long-distance contributions. In this Appendix we
show that, working at lowest order in the Wilson coefficients at the hard scale @, the
long-distance amplitude vanishes for the case of an isotriplet light mesons M = =, p.

We start by recalling the factorized form of the long-distance amplitude, which is
(0.8)

given by SCET}; time ordered products TL, R
DM 1 + 2 (%) 760 (.Y &) ( 1+ * (@) *
A - / dz[dk* du [, [CP (2) TO (k) 8 (kY 21, €5) Uiz, w, 21, 3)
0
+C (2) JO(wkt) 8 (k*, 21,5 ) ¥ (2,0, 71, €3)] - (9.1)

The functions \Il%} and @(Li?R are SCETy; matrix elements of collinear and soft fields,
respectively, and their precise definitions are given in Eqgs. (6.16). The jet functions
J®(wk*) appear in the definition of the subleading soft-collinear Lagrangian £g1§)qq

and their lowest order expressions are given in Eq. (5.25).

In the following we derive a few general properties of the functions \Ilg’,,) and T

following from isospin, charge conjugation, parity and time-reversal. The collinear
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function \If(ni,,)(z,w, Zy,€%,) is defined as the matrix element

(M ()| [(EDW ), BPLWHE), | (0 [(EW)APL(WIED), (@) [0}, (9.2)

We will prove that ¥y —., is even under w - —w and z —+ 1 — z. As motivation
consider the first bilinear in Eq. (9.2), which creates a di collinear quark pair. The
second bilinear in Eq. (9.2) must act at some point along the collinear quark lines: it
either takes a d — u (for w > 0) or takes a & — d (for w < 0). Examination of lowest
order graphs contributing to ¥,, shows that these two types of contributions always
appear in pairs, such that the projection of ¥, onto an isotriplet state is even under
w — —w. This suggests the existence of a symmetry argument, valid to all orders in

perturbation theory.

We will prove that \Ilsef’s) is even, as a consequence of G-parity. This is defined
as usual by G = Cexp(—inly) where C is charge conjugation and I is the isospin
generator, and is a symmetry of the collinear Lagrangian in the limit m, ¢ < Aqcp-
Its action on the collinear operators in Eq. (9.2) can be worked out from that of its

components C and I (cf. Ref. [17]) and is given by

G EIW)APLWIEM), Gt = (EOW)_nfiPr(WTEM)_,, (9.3)
G (VW) AP, (WD), Gt = (EWW)_#PrR(WHEWD)_,, .

Taking into account the G-parity of the states, Eq. (9.2) is equal to
(M (e)|[(ELW) _rBPR(W ) ] (0.) [(E0W) o BPR(WHED) -] (.1)]0) , (9.4)

where the + refer to the p® and 7° respectively. Next we apply parity in the matrix

element followed by switching our basis vectors n <> 7i. Acting on Eq. (9.4) this gives

(M°(ep)

[(EOW)_r, APL(WTED) 1] (00) [EW) utPL(WHED) ] (—21) 0) ,(9.5)

where the overall sign is now the same for M = p,n. Now since \IISS,’B) is a scalar
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function the only allowed perpendicular dot products are (—z,)? = 7% and —z €% =
z, -e*. Finally we note that the change in 715 from Egs. (9.2) to (9.5) is equivalent
z — 1 — z. Thus the invariance of SCET}; under G-parity and regular parity has

allowed us to prove that
\Ilg_i,)p(z, Wy T 1, 6*) = \II‘E:,)p(l —Z,~W,T,, 6*) . (96)

Next we prove that 7(0’8)(wk+) is odd under w — —w. By reparameterization
invariance type-III [42] only the product wk* will appear. Consider applying time re-
versal plus the interchange (n < 7) to the SCETy; Lagrangian. Since this Lagrangian
does not have coefficients that encode decays to highly virtual offshell states it should
be invariant under this transformation. Acting on Eq. (5.24) this implies that 708

must be real,
[j(o,S) (wk+)]* _ 7(0,8) (wk*). (9.7)

At tree level this implies that we should drop the e in the collinear gluon propagator in
matching onto this operator. This was done in arriving at the odd functions J®®
1/(wk*) in Eq. (5.25). The imaginary part would give a d(wk™) and corresponds
to cases where the SCET; T-product is reproduced by a purely collinear SCETy; T-
product (k* = 0), or a purely soft SCETy; T-product (w = 0). Thus dropping the e

also saves us from double counting.

Now consider what functions can be generated by computing loop corrections to
TP, By dimensional analysis 7% must be proportional to 1/(wk™) times a dimen-
sionless function of wk™*/u?. Since at any order in perturbation theory the matching
calculation will involve only massless quarks we can only generate logarithms. There-

fore, we must study functions of the form

1

— (9.8)

wkt + ie)

In" ( 7

To demand that only the real part of these functions match onto 7O e average
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them with their conjugates. It is straightforward to check that only terms odd in
w — —w survive. Thus, all the terms that can correct the form of TO at higher

orders in o, are odd under w — —w.

Now in Eq. (9.1) the integration over w is from —oo to oo, while z varies from 0 to
1. Consider the change of variable w & —w and z =+ 1 —z. If C’ﬁ)R(z) = Cﬁ)R(l —2)
then under this interchange one of the functions in the integrand is odd (J) and the

other two are even (Cg,)R and \Ilgf,)p), so the integral would vanish.

Now if Cg,)R(z) are kept only to leading order then they are independent of z and
thus unchanged under z — 1—2. So at this order in the a,(Q)/7 expansion of Cg,)R(z)
we find A2“’M = 0. This completes the proof of the assertion about the vanishing of

long

the long distance contributions for M =, p.

9.2 Helicity Symmetry and Jet functions

In this appendix we discuss the general structure of the jet functions J®®)(z, z, k}f

in BEq. (5.34), which are generated by matching SCET; and SCETy; at any order
in a;s(u). In Fig. 6-2a,b this means adding additional collinear gluons which gen-
erate loops by attaching to the collinear lines already present (as well as vacuum
polarization type collinear quark, gluon, and ghost loops). Additional collinear loops
should also be added to Figs. 6-2c,d,e, and the difference at lowest order in A gives
J. Throughout this appendix we continue to drop isosinglet combinations of & En.
These will also have additional contributions from topologies where the outgoing

collinear quarks are replaced by outgoing gluons (through B operators).

The leading order collinear Lagrangian has a U(1) helicity spin symmetry for the
quarks, see reference 2 in [16). It is defined by a generator h, that has the quark spin
projection along the n direction, which is different from usual definition of helicity
as the projection of the spin along its momentum. Unlike QCD, the collinear fields

in SCET only allow quarks and antiquarks that move in the n direction. For A, we
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1, o
hn = Z eli aﬂ": h121 = ]-a [hru %] = [h’nv %] = 07 {hn77l} = 0 (99)

After making a field redefinition [22] to decouple ultrasoft gluons the leading order

collinear quark Lagrangian is

LY =&y {zn : Dc+upjm_1 Dcwj} g Enps (9.10)
where iD¥ contains only collinear Af = gluons. [,g? is invariant under the trans-
formation &, — exp(i0hy)&n, & — &, exp(—ifh,). This means that any number of
leading order collinear quark interactions preserve the quark helicity h,. The collinear
gluon interactions take u,(1) = un(1), un()—= un(l), va(t) = va(1), vu(l) = va(}),
and can also produce or annihilate the quark-antiquark combinations u, (1) v,({) or
un(}) vn(1) (the arrows refer to the helicity of the antiparticles themselves rather than

their spinors). For this reason we refer to Cg? as a Ah,, = 0 operator.

The leading order SCET] operators in Eq. (5.17) are also unchanged by the hy,-
transformation and therefore does not change collinear quark helicity. In contrast
the operators Lg) do generate or annihilate a collinear quark giving Ah, = +1/2.
However, at tree level we showed in Section 5.1.3 that the two graphs in Figs. 6-2a,b
match onto an overall Ah,, = 0 operator in SCETy; as given in Egs. (5.27). Since at
higher orders the [,é? will not cause a change in the helicity they also match onto these
same operators, so the structure #v% will not occur. At tree level only the structure
# P, ® 7P, appeared in Eq. (5.27). To rule out the appearance of P beyond tree level
we note that the weak operator projects onto left handed collinear fermions, and for
the jet function the conservation of helicity in Eng) implies a conservation of chirality.

This leaves us with the desired result.

It is perhaps illustrative to see this more explicitly by looking at the spin structure
of the loop graphs. We begin by noting that the spin and color structure in ﬁfﬁ) .

is unaffected by this second stage of matching. Adding additional collinear attach-
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ments only can affect the spin and color structure generated in putting the collinear

quark fields and light ultrasoft quark fields together.

Consider how additional gluon attachments effect the spin structures that appear
in Figs. 6-2a,b. The leading order collinear quark Lagrangian is [,g? in Eq. (9.10).
Each attachment of a collinear gluon to a collinear quark lines in the figures generates
a /2 from the vertex and a #/2 from the quark propagator. These combine to a
projector which can be eliminated by commuting them to the right or left to act on
the collinear quark spinors, via (1#jt)/4 &, = &,. Therefore, at most we have additional
pairs of v, ’s that appear between the light quark spinors. The aim is to show that just

like the tree level calculation in Eq. (5.41) the resulting operators have spin structure
(dpPru) (& PLER)-

For the contraction of Tj(o’s) which gives the C topology the spin structure is

[yt - eyt (ﬁPL)WT e (ﬁvi)ug‘)] (a9 (v])vht - - 71 ul®)

2 2
_ ! o u _ A2;
= [@@H - A 5 Pou®] [aPyf ) -y ul®]. (9.11)

In the first line (%PL) comes from Q‘L‘{’;’, the v¢ and ~# are terms generated by
the [’gz) insertions and the #/2 is from the extra collinear quark propagator. In the
second line the P, projector was moved next to ug“) without a change of sign (for
anticommuting 7s), and the remaining # and # were then moved next to the @(# and
canceled. The remaining free | indices in the second line are contracted with each
other in some manner. Fierzing the set of v matrices in Eq. (9.11) by inserting 1 ® 1

next to the collinear spinors gives

[@@ Ty ul®] (@78t 715 T A e P, (9.12)
where
vV
el = g@ﬂﬁ— %7—5®¢75 ﬁ%mﬁi
5 Bnoen-Plemm. (0.13)



In the second line of Eq. (9.13) we have used the fact that the +s in the bracket with
soft quark spinors can be eliminated by moving it next to the P;. To eliminate the
v, Dirac structure we note that between the soft spinors in Eq. (9.12) there are an
odd number of v,’s to the left and right of #y,, and so at least one set of indices
are contracted between the sets {83, A1,..., Ay;} and {p1,..., uow, @}. The identity
{7{,71} = 297" can be used to move these matrices so that they sandwich v, and
this gives the product 'y‘j'yf;fyf; = 0. After these manipulations only the spin structure

(dpPru) (£,71PLE,) remains. A similar argument can be applied to the E-topology

with the same result.

In several places in the above argument we made use of Dirac algebra that is par-
ticular to 4-dimensions (anticommuting -5 and setting 'yﬁ*y,}'yf; = 0). If the v, ’s are
taken in in full dimensional regulation then it is not apriori clear if the manipulations
survive regulation. However, the original helicity symmetry argument shows that as
long as the theory can be regulated in a way that preserves this symmetry this will

indeed be the case.

9.3 Properties of Soft Distribution Functions

In this appendix we derive some useful properties of the soft functions S©®8%). In
particular we show that these functions are complex. The imaginary parts have
a direct interpretation as non-perturbative contributions to final state rescattering

between the D) and final energetic meson as discussed in section 5.1.3.

To be definite we consider the function Sg]), and suppress the index L. The ma-
nipulations for the remaining soft functions Sg]) and Sg}{ are identical. The definition
in Eq. (6.5) is

(D°()| (R S)YhPL(SThP) (dS) e+ PL(S')4 | B°(v)) = SO,  (9.14)
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where the Wilson lines are defined as

W = [ > exp ( - %— - An g(z) )] , S= [ > exp(—gn—_lﬁ n-As,q)](Q.IS)

perms perms

In general S is a dimensionless function of w', nv, nv', mky, wka, Aqep, and p. Since
(S'Tq)k;r = §(k§ —n-P)(STq) the LHS is invariant under a type-III reparameterization
transformation [42] (n — e*n, it — e~®7). Therefore the RHS can only be a function

of w, t =n-v/n-v', z=n-ki/n-ky, K/u=[n-kyn-ky/(n-vn-v'p?)]"?, and Agcp/u.

Rather than study the matrix element in Eq. (9.14) directly it is useful to instead

consider

(H(0)| (o SYAPL (Shy) (@) HPLT(S1) 1 H; (0)

A
=50 (t, 2,00, %, (ZCD)(T“),-]-, (9.16)

where h, are doublet fields under heavy quark flavor symmetry, and ¢ and |H;=; 2(v))
are isospin doublets of (u,d). The last three variables in Eq. (9.16) will not play a
crucial role so we will suppress this dependence. Taking the complex conjugate of

Eq. (9.16) gives

(H;(0)|(hoSYRPL(S hy ) (@8) it #PLT*(S"a)r [Hi(v')) =[St 2)I" (%)
SO(2,2) (7%, (9.17)

Tz

The dependence on w and K is unchanged since they are even under the interchange
v & V', n-ky <> n-ko. Next, decompose the functions S in terms of even and odd

functions under t — 1/t, z = 1/z:
SO = 5O, 50 (9.18)
where Sg),)o = [SO(¢,2) £ S©(1/¢,1/2)]/2. Now Eq. (9.17) implies that

S92 =5 t2), 1852 = -5t 2) (9.19)
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SO0 Sg)) is real and Sg) ) is imaginary. An identical argument for S® implies that it
too is a complex function.

For the above analysis it is important to note that n-v' = mpg/mp is not 1 in the
heavy quark limit where we have new spin and flavor symmetries. These symmetries

arise from taking mp > Aqcp and mp > Aqcp, not from having mp = mp.
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