
Heavy Quark Symmetry in the Soft Collinear
Effective Theory

by

Gautam Mantry

Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Physics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2005 [Jute- Loo_3

(© Massachusetts Institute of Technology 2005. All rights reserved.

Author ..............................................................
Department of Physics

May 20, 2005

Certified by .................... ................. ..........
lain W. Stewart

Assistant Professor
Thesis Supervisor

Accepted by ........................... .. ... .......Accepte by/ Tho Greytak

Chairman, Department Committee on Grad e Students

AMFICHIVES



2



Heavy Quark Symmetry in the Soft Collinear Effective

Theory

by

Gautam Mantry

Submitted to the Department of Physics
on May 20, 2005, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Physics

Abstract
We study strong interaction effects in nonleptonic decays of B mesons with energetic
particles in the final state. An introduction to Soft Collinear Effective Theory(SCET),
the appropriate effective field theory of QCD for such decays, is given. We focus on
decays of the type B -+ D(*)M where M is a light energetic meson of energy E.
The SCET formulates the problem as an expansion in powers of AQCD/Q where
Q ' {mb, me, E}. A factorization theorem is proven at leading order that separates
the physics of the scales AQCD < EAQCD Q. In addition, the factorization the-
orem decouples energetic degrees o freedom associated with the light meson allowing
us to derive heavy quark symmetry relations between the B -+ DM and B -+ D*M
type amplitudes. A new mechanism for the generation of non-perturbative strong
phases is shown within the framework of factorization. Heavy quark symmetry re-
lations are shown to apply for these strong phases as well. Furthermore, the strong
phases for certain light mesons in the final state are shown to be universal. The
analysis is extended to B - D(*)Ms and B -+ D**M type decays with isosinglet
light mesons and excited charmed mesons in the final state respectively. A host of
other phenomenological relations are derived and found to be in good agreement with
available data.
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Chapter 1

Introduction

1.1 Low Energy Symmetry and Power Counting

We are fortunate in that nature allows to investigate various phenomena indepen-

dently of each other. For example we can study planetary motion without under-

standing atomic structure, atomic physics without knowing that nuclei are made up

of protons and neutrons, and nuclear physics without solving quantum gravity. We

then come to realize the world by unifying the physics of these different domains into

a coherent picture of our universe.

In the modern language, we say that the world is described by a set of "Effective

Theories" each describing the world as seen at some resolution. For example, in

studying properties of an atom, we are investigating the world at a resolution of

- 1 0-1°meters, roughly the size of the atom. At this resolution, the substructure

of the nucleus(typically of size 10-1 5meters) cannot be seen and effectively behaves

as a point particle with some characteristic mass, charge, and spin. The relevant

physics regarding the nucleons and their interactions that goes into making up the

nucleus, is encoded in such parameters. We can directly measure these parameters

from experiment and proceed with atomic physics to make quantitative predictions

even if we lack an understanding of the underlying nuclear physics that goes into

making the core of the atom. One can continue along this line and study the structure

of the nucleus(- 10-15meters) in terms of nucleon and meson degrees of freedom
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without a knowledge of the underlying quark-gluon dynamics(- 10-1 8 meters). In

this sense, the world can be viewed as a chain of effective theories starting at very

large distance scales(low energy) on the order of the size of our universe all the way

down to the Planck scale(high energy).

Furthermore, effective theories allow us to describe various phenomena by for-

mulating the problem in the "appropriate" degrees of freedom. For example, even

though the Standard Model gives a correct description of the strong, electromagnetic,

and weak interactions down to distances of order 10 - 18 meters, it would be silly to

study the hydrogen atom in terms of quark and gluon degrees of freedom interacting

with the electron. Instead a simple and accurate description is given by an effective

theory in which non-relativistic quantum mechanics is applied to an electron moving

in the Coulomb field of a point particle whose mass is equal to that of the proton. The

relevant physics of quark-gluon dynamics in the proton is absorbed into parameters

of the effective theory such as the proton mass and charge. At very high precision,

effects from phenomenon such as vacuum polarization, predicted only in a more fun-

damental theory such as the Standard Model, become important and can be treated

perturbatively as corrections to the Hamiltonian of the effective theory.

Thus, even if the underlying theory of our universe is known, most likely it will

be expressed in terms of inappropriate degrees of freedom for most problems. The

fundamental question then becomes

"What is the appropriate effective theory with the right degrees of

freedom for the problem at hand?"

In the context of Quantum Field Theory(QFT), the problem of formulating the theory

in the right degrees of freedom becomes more non-trivial. We define a low energy scale

E at which we would like to construct an Effective Field Theory(EFT) entirely in

terms of the low energy degrees of freedom. We also define an UltraViolet(UV) scale

Auv such that Auv > E. The physics of the UV scale may or may not be understood.

The problem in QFT is that the physics of the UV scale can significantly affect the

formulation of a low energy theory. Heisenberg's uncertainty principle allows energy

20



non-conservation for short periods of time. Thus, even if we start out exclusively with

low energy modes at the scale E, UV degrees of freedom show up in the form of large

momenta in virtual loops and heavy particles (m Auv > E) far of their mass shell.

A familiar example of this is muon (m A 105MeV) decay which proceeds through

the exchange of a heavy virtual W (Mw 90GeV» ma) boson.

The challenge becomes to remove the UV degrees of freedom in the low energy

EFT and still get the physics right. The key idea is that at low energies, the UV

physics associated with heavy virtual particles and large momenta in loops looks

local. All the relevant UV physics can be absorbed into a set of local operators in

the EFT. More specifically, UV effects can be absorbed into the low energy theory

by adjusting the coefficients of the EFT Lagrangian built entirely in terms of the

low energy degrees of freedom. As we shall see, in the EFT, higher dimensional or

non-renormalizable operators are suppressed by positive powers of E/Auv allowing

us to treat their effects perturbatively.

Here in lies the power of EFT. It allows us to express theories entirely in terms of

the low energy degrees of freedom in such a manner, that corrections from the effects

of UV modes, can be treated perturbatively in powers of (E/Auv). The effective

theory Lagrangians, will have the general form

LEFT = () +(1) + (2) +... (1.1)

where the superscript denotes the order in power counting. Furthermore, we will

find that the leading terms £() in the power expansion exhibit symmetries that

are in general broken by the power suppressed terms. In other words, in the low

energy EFT we find additional approximate symmetries that are not manifest in

the underlying UV theory and are broken in a controlled manner at higher powers in

(E/Auv). Thus, even if the underlying UV theory is understood, the low energy EFT

can give us additional information by allowing us to exploit low energy approximate

symmetries while providing a framework to systematically compute power corrections.

The underlying theme of all our discussions is captured in two main ideas
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· Low Energy Symmetry.

* Power Counting.

The low energy symmetries of EFTs combined with power counting can be exploited

to make quantitative model independent phenomenological predictions.

1.2 An Example: U(1)BL as a Low Energy Sym-

metry

To illustrate the above discussion, let's consider the familiar example of the Standard

Model(SM) which is an SU(3)c x SU(2)L x U(1)y gauge theory with quarks, leptons,

gauge bosons, and a scalar Higgs field' as the relevant degrees of freedom at the

electroweak scale (see Table 1.1). Any new physics beyond the standard model can

be absorbed into higher dimensional operators that are suppressed by powers of the

New Physics(NP) scale ANp resulting in an effective Lagrangian of the form:

~~~~~~~~~(1.2£EFT = CSM + -- C5 + (1.2)
ANP

where £sM denotes the Standard Model Lagrangian, £5 is a dimension five operator

made out of Standard Model fields, and the ellipses denote possible higher dimensional

operators. In the language of EFT, the SM is just the leading term in the expansion

in powers of 1 . Gauge symmetry and the particle content of the SM(or the relevant

degrees of freedom at the electroweak scale) allow only one dimension five operator:

£5 = ci L eECT eLj + h.c., (1.3)

where is the constant SU(2)L antisymmetric tensor and C is the charge conjuga-

tion matrix acting on Dirac spinors in the notation of [98]. £5 and other higher

1The Higgs field which gives mass to the Standard Model fermions through Yukawa interactions
has not yet been observed. However, in the spirit of effective field theories, the Higgs mechanism can
be thought to parametrize the true nature of the UV physics responsible for fermion mass generation.

22



SU(3)c SU(2)L U(1)y U(1)B-L

Q (L (L) ( tLt 3 2 1 1
\dL SL bL 6 3

(U)i = (U)R (C)R (t)R 3 1 2 13 3

(d)R= (d)R (S)R (b)R 3 1 _1 1bL3 3(~~~~~~~~~~~~~~ 1

- = V1 eL ) "Wz ( VTL ) 1 2 -1 -1
eL 1kI-L TL2

(e)R = (e)R (l)R (T)R 1 1 1 1

1 2 02

Table 1.1: Summary of the Standard Model particle content and symmetries. The
SU(3) x SU(2)L x U(1)y symmetry is required by gauge invariance and must be
respected by any new physics beyond the electroweak scale. The global U(1)B-L
symmetry is a low energy leading order accidental symmetry expected to be broken
by power corrections in inverse powers of the new physics scale.

dimensional operators can be thought of as arising from integrating out2 UV degrees

of freedom associated with the scale ANP. The leading order term in LEFT or the

SM Lagrangian possesses a global U(1)BL symmetry that is broken by £5. Here

B and L are the Baryon and Lepton numbers respectively. This U(1)B-L global

symmetry of the Standard Model is "accidental" resulting from the specific particle

content(see Table 1.1) of the SM, and is not required by any fundamental principle

such as gauge symmetry which would forbid 5. In the effective field theory language,

U(1)BL is a low energy leading order symmetry[107] in the expansion in powers of

A E/ANP < 1 where E is the low energy (electroweak) scale. We can use this low

energy symmetry to predict vanishing rates for B - L violating processes at leading

order.

As an example, consider neutron decay in the channel n -+ e-7r+. Since this

2For example, in the see-saw mechanism [67] of neutrino mass generation, ANP is of the order of
the mass of a heavy right handed Majorana neutrino which when integrated out generates £5.
When the Higgs field acquires a vacuum expectation value, it generates a small Majorana mass for
the SM neutrino of order .ANP
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process violates B - L, one can predict that at leading order in ml/ANp

Br(n -+ e-r+) = 0. (1.4)

In fact, in this case the rate will vanish even at the next order in mf/ANp, since

one needs at least a six dimensional operator for the decay to proceed[46]. This is

of course a well known result. We were able to obtain this result even though our

understanding of the non-perturbative QCD physics associated with the neutron and

pion hadrons is rather limited. This was made possible by exploiting low energy

symmetry combined with power counting. In this thesis we will consider many other

examples where the presence of low energy symmetries is linked to the dynamics of

the EFT in more complicated ways but the basic idea is the same.

1.3 M - AQCD: Electroweak Decay to Confine-

ment

Our main interest is in studying electroweak decays of B mesons made up of a

bottom(b) quark and a light antiquark. In particular, we are interested in controlling

strong interaction effects in such decays. The goal [62] of the B-physics community

is to test flavor physics and CP violation in the quark sector of the SM as determined

by the Cabibbo-Kobayashi-Maskawa(CKM) quark mixing matrix. Any observed de-

viations from results predicted by the SM would signal the onset of new physics and

provide much needed constraints on model building beyond the electroweak scale.

Any hope of observing new physics depends on experimental precision and in addi-

tion the ability of theory to match this precision.

Attaining theoretical precision is complicated by the confining property of QCD at

low energies. Testing the SM at the electroweak scale requires a precise extraction of

the parameters of the CKM matrix which determine the strength with which quarks

couple to the massive electroweak W + gauge bosons. However, QCD confinement

does not allow free quarks to exist, trapping them inside hadrons of size 1/AQCD
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_ M w b-quark decay through
d}W W exchange

b bo ngto
- mb W boson integrated out

- A QCD Binding of quarks into hadron!

Figure 1-1: The relevant energy scales involved in the semileptonic decay B -+ DlIP.
Quark level decay is determined by electroweak scale physics. At the characteristic
energy scale mb of the decay process, the electroweak physics of W exchange is de-
scribed by a local effective four fermion operator. At the AQCD scale, the electroweak
decay vertex is hidden deep within the hadronic structure by the non-perturbative
effects that go into binding quarks into hadrons.

where AQCD is the confinement scale. These hadrons then become the observed

asymptotic states in particle detectors. In other words, the flavor physics of the

electroweak scale is hidden deep inside hadrons by strong interaction effects. The

theoretical challenge is to bring these strong interaction effects under control in order

to be able to extract electroweak scale physics to the desired precision. At the next

generation of accelerators, the challenge will become the extraction of TeV scale

physics in hadronic processes. In some scenarios, as suggested by Technicolor [54]

models, we might discover new gauge interactions that confine near the TeV scale

in which case all the machinery and understanding developed in studying the non-

perturbative effects of QCD will become invaluable. Finally, our efforts in studying

strong interaction effects will generally improve our ability to deal with QFTs when

25

,\I r



they become strongly coupled.

We will tackle the problem of strong interaction effects in electroweak decays

using the formalism of EFTs. We can immediately identify two relevant energy

scales in this problem: the mass of the W± gauge bosons or the electroweak scale

Mw 90GeV and the QCD confinement scale AQCD 500MeV. The SM elec-

troweak scale physics that triggers the quark level decay process through W-exchange

is theoretically on firm footing. It is the confining property of QCD at the AQCD

scale, responsible for hadronization, that poses the most difficulty. For the problem

of B-decays, there is another relevant energy scale on the order of the b-quark mass

AQCD < b 5GeV < Mw. This is the characteristic energy scale at which the

quark level decay proceeds. To summarize, there are three widely disparate energy

scales involved in B-decays. In keeping with the theme of low energy symmetry and

power counting, we will begin at the electroweak scale and flow towards the low energy

QCD confinement scale, removing irrelevant degrees of freedom along the way and

obtain an effective field theory expanded in powers of ratios of the disparate energy

scales. This idea is illustrated in Figure 1-1 for the semileptonic decay - DiW of

a B meson into a charmed D meson. The color neutrality of the final lepton pair Iv

make semileptonic decays the simplest systems in which to study strong interactions

effects in B-decays. As a result, semileptonic B-decays have been widely studied and

a wealth of theoretical work can be found in the literature [91, 77].

Integrating out the electroweak scale physics to construct an effective at the mb

energy scale is well understood and is just the well known Fermi theory of weak de-

cays. The decay amplitudes in Fermi theory involve non-perturbative matrix elements

which cannot be analytically computed, limiting predictive power. In keeping with

our theme of low energy symmetry and power counting, we need to proceed below the

scale mb towards AQCD in hopes of finding additional symmetries that will allow us

to relate the non-perturbative matrix elements of different processes. In other words,

we need to find the appropriate EFT in terms of the right degrees of freedom for

QCD at low energy.

There are in fact various low energy limits of QCD with the appropriate degrees
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Figure 1-2: Some of the low energy EFTs of QCD. Each EFT is appropriate for a
certain set of processes characterized by the relevant energy scales and degrees of
freedom in the problem.

of freedom relevant for different processes. Some of these are shown in Fig. 1-2. For

example, Chiral Perturbation Theory(ChPT) is an EFT with low momentum light

mesons as the relevant degrees of freedom and chiral symmetry as the low energy

approximate symmetry. Similarly, NonRelativistic QCD(NRQCD)[88, 87, 99, 37]

is for heavy quark-antiquark systems, Heavy Quark Effective Theory(HQET)[92,

60, 59, 51, 91] is for systems with one heavy quark, and Soft Collinear Effective

Theory(SCET)[16, 22, 26, 19] is for systems with the presence of energetic particles

with momenta close to the light cone(collinear). A combination of HQET and ChPT,

Heavy Hadron Chiral Perturbation theory(HHChPT) [91], allows a description of

interactions of hadrons with one heavy quark with low momentum light mesons.

1.4 Objectives

Our main focus will be on the application of the Soft Collinear Effective Theory(SCET)

which is appropriate for B decays into energetic hadrons. This EFT is a rather recent
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development and has been applied to a host of processes with remarkable success.

Some typical examples are B -+ D7r [?, 94], B -+ 7r7r [20, 6], B -+ lPi, [74, 75]

B - Xulfu [76, 74, 75], and B -+ Xs 7 [16, 76, 74, 75]. SCET has also been applied

to Deep Inelastic Scattering(DIS) [89] processes at large momentum transfer.

We will apply the SCET to nonleptonic B-decays with a charmed meson and a

light energetic meson(M) in the final state. Typical examples of such decays are

1 - D-r, X D*Tr, - Dp, - D*p, - DK, B -+ DK, 1¢ -+ DK*,

B - D*K*, B -+ DK-, B -+ DK*-... [27, 50, 97, 36, 41, 101, 29, 83, 21, 109,

96, 14, 47, 110, 82]. In particular we will relate B -+ D7r and B -+ D*r type decays.

Here the pseudoscalar and vector charmed mesons D and D* respectively are ground

state mesons related by Heavy Quark Symmetry(HQS) which will be explained in

detail in subsequent chapters. This symmetry was first made manifest through the

leading order term L(°) ET in HQET and has been successfully used in semileptonic

decays to relate the B -+ Dlp and - D*lp amplitudes through a single form factor

called the Isgur-Wise function [64]. In other words, HQS was used to reduce six form

factors, that appear in the B -+ D(*)Il amplitudes, down to one!

We are tempted to ask if can use HQS in a similar manner to relate B - Dr

and B -+ D*7r type decays. In this case it is not so simple to use HQS directly. The

problem arises from the presence of the energetic pion which introduces a new energy

scale on the order of the pion energy E 2.3 GeV. As we will explain in subsequent

chapters, the presence of this new energy scale destroys the power counting of HQET.

With the power counting no longer valid, the HQS breaking terms in HQET become

large invalidating the use of HQS.

The SCET solves this problem through a factorization theorem [?, 94] that decou-

ples the problematic energetic degrees of freedom associated with the pion allowing

us to once again use HQS. A typical result that we show from the use of HQS in the

SCET at leading order is of the type

Br(f¢ °-- D*%r )
Br(B D* ) = 1, (1.5)

Br(B o -+ D07ro)
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which is in remarkable agreement with the experimental value of 0.97 + 0.21 [52].

The B 0 -+ D*7%rO type decays are often referred to as color suppressed decays.

As we will show, proving factorization theorems for color suppresses modes, which

is crucial to predictions of the type in Eq. (1.5), is a rather difficult task since the

decay involves interactions with spectator quarks. SCET is used to deal with such

spectator interactions through a systematic framework of EFTs. We will show that

for color suppressed decays there are in fact four relevant energy scales

AQCD < QAQCD < Q < Mw, (1.6)

where Q {mb, m, EM} and mb, m, EM are the bottom and charm quark masses

and the light meson energy respectively. The SCET provides us with the appropri-

ate EFTs at the two lowest energy scales which is where the relevant factorization

theorems will be proven. In addition, we will show that the SCET provides a novel

mechanism for generating non-perturbative strong phases to take into account final

state interactions. A host of other phenomenological predictions also follow from

SCET and are discussed in subsequent chapters.

1.5 Outline

In chapter 2 we briefly outline the basic terminology of EFTs and describe the Fermi

theory for semileptonic decays. In chapter 3 we give an introduction to HQET and it's

application to semileptonic decays and set up the transition to nonleptonic decays.

In chapter 4, we give an introduction to SCET in preparation for it's applications to

nonleptonic decays in chapter 5. We make concluding remarks in chapter 6.
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Chapter 2

Effective Field Theory

2.1 The Basics

In this section we review the basic concepts of EFTs and in the process establish the

relevant terminology that we will use throughout the manuscript. There are many

excellent reviews on this subject and we refer the reader to the literature [102, 58] for

further details.

An EFT is useful in the presence of widely disparate energy scales(see Fig. 2-1).

Typically the low energy scale E, is the scale at which the experiment is performed

and is determined by the characteristic energy of the process in question. The EFT is

constructed exclusively in terms of degrees of freedom that are observable at the low

energy scale E. These degrees of freedom all have momenta upto a typical size p - E.

The high energy or UV scale Auv, is the scale at which the effects of new degrees of

freedom such as heavy particles with mass mH Auv become important. The theory

at the UV scale that takes into account these new degrees of freedom is often referred

to as the "full" theory. The EFT computes amplitudes for processes observed by the

experimenter at the low energy scale E as a power expansion in E/Auv < 1. We

now outline the main steps in constructing an EFT at the low energy scale.

The fundamental question is "if we know the full theory, how can we use a EFT

Lagrangian constructed entirely in terms of the relevant low energy degrees of freedom

and still get the physics right?". The main idea is to calculate amplitudes in the full
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and effective theories to a given order in E/Auv, depending on our desired level

of accuracy, and adjust the parameters of the EFT to reproduce the full theory

result. This procedure is called "matching". For the problems we are interested

in this matching will be perturbative in nature allowing us to find the appropriate

adjustments of the EFT parameters through the use of Feyman diagrams. We now

present the main steps involved in the matching procedure.

1. The matching calculation is done at some scale which is the scale we choose

to renormalize the full and effective theories. The UV degrees of freedom in the

full theory now fall into two categories

* Heavy particle fields H with mass mH - Auv1

* Hard momentum modes of light fields bL with virtuality p2 > j 2 and with

mass mL - E.

We divide the light fields XL into soft(5) and hard modes(h)

L = .s+ h, (2.1)

such that

02, < 20, 2Oh > h. (2.2)

2. The EFT Lagrangian at the scale 1t is given by setting all heavy fields H and

the hard modes of the light fields Oh in the full theory to zero and adding a

complete set of higher dimensional operators made exclusively out of the light

soft fields Us to account for the effects of the UV degrees of freedom

EFT( 5s) = CfI.(Osh = 0,H = 0,gi(M))

+ C5 ,i(It) 05() +..., (2.3)

1We assume that there are no other heavy particles with mass between E and Auv. If there
were, we would construct an intermediate EFT at that scale.
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where 05(H) denotes a dimension five operator made out of the light soft fields

5 ad the ellipses denote all other possible higher dimensional operators. The

possible set of added higher dimensional operators is determined by the allowed

symmetries of the full theory. The Wilson coefficients Ci (mH gi(p)) are to be

determined in the matching calculation.

3. Calulate the amplitude Afutl in the full theory and expand in powers of (E/mH)

upto a given order depending on the desired level of accuracy.

4. Next, calculate the same amplitude in the EFT which will have the general form

AEFT = - ( 9i (p)) (2.4)

5. Compute the Wilson coefficients by requring the difference between the full and

effective theory amplitudes to vanish.

6. Since, the EFT reproduces the infrared behavior of the full theory, any infrared

divergences that may appear in loop calculations will cancel during matching.

On the other hand, the structure of ultraviolet divergences in the full and ef-

fective theories will not agree in general. This to be expected since the UV

degrees of freedom are different in the full and effective theories. One will find

additional UV divergences in the EFT that can only removed by an additional

operator renormalization

O(0 ) ZijO j (2.5)

7. The operator renormalization in the EFT introduces the renormalization scale

/p dependence in the EFT operators Oi(pl) and their evolution is given by

/Id11 2 = -hji', (2.6)P d Oi ---~ji~i, 26

33



High Energy scale of Full Theory

Matching Scale g " A uv

Running with RGE

Low Energy scale of EFTE

Figure 2-1: Full theory is matched onto EFT at ,u Auv. RGE equations of the
EFT are used to lower the matching scale down to the scale of the EFT and summing
large logs.

where 7y is known as the anomalous dimension matrix

= Z 1 I di Zki ) (2.7)

The renormalization scale independence of the amplitudes in Eq. (2.4) deter-

mines the evolution of the Wilson coefficients through the Renormalization

Group Equation(RGE)

ud Ci(A) = -jicj(u) (2.8)

The disparity in energy scales between effective theories can give rise to large log-

arithms in the Wilson coefficients when matching onto the EFT at the low energy

scale. The standard procedure to deal with the presence of large logarithms is to

perform the matching at the scale ,u AUV so that the logarithms in the Wilson
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coefficients are small Log(pu/Auv) < 1. However, now large logarithms appear in the

matrix elements (Oi(I)) of the form Log(t/E) > 1. The RGE Eq. (2.6) is used to

lower 1 to lt -, E eliminating the large logs from the matrix element and Eq. (2.8) is

used to sum the large logarithms [39] that now appear in the Wilson coefficients.

2.2 Fermi Theory for Semileptonic Decays

In this section, we review Fermi theory for semileptonic decays. This is an EFT at

the scale Mb where the decay of the b-quark through W exchange is described by a

four fermion effective operator. In the next chapter we will match Fermi theory onto

HQET which is an EFT near the AQCD scale. We remind the reader that we want to

keep matching onto EFTs at lower energy in hopes of finding additional symmetries.

As shown in Figure 1-1, the bottom quark decay into a charmed quark is deter-

mined by electroweak scale physics and involves the exchange of a W boson. The

tree level amplitude for this quark level decay is given by

iM ( lLb YVL Yq 2 - M CL bL

(4GFVcb) (1 + q MW + )LOY VLeLybL, (2.9)

where GF = x2g2/8MW is the Fermi Constant and we have Taylor expanded in

powers of q2 /MW _ mb2/Mw < 1. To leading order in q2 /MW, we can reproduce this

tree level amplitude through the matrix element of an effective four fermion operator

Heff ( V, )LYjVLgLfUgbL. (2.10)

Note that Heff is a dimension 6 operator and is suppressed by two powers of the

electroweak scale Mw. One can reproduce the amplitude at higher orders in q2 /Mw2 by

adding higher derivative effective operators that will be suppressed by higher powers

of the electroweak scale. Thus, at the energy scale E - mb << Mw characterizing the

bottom quark decay, we can write down an EFT for semileptonic B-decays without
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the massive W gauge boson as dynamical degree of freedom, incorporating it's effects

into the local operator Heff(see Figure 1-1)

LEFT = LQCD- ( 4 Vcb) / LYVLCLyjbL + * (2.11)

where the ellipses denote higher dimensional derivative operators. We arrived at

the above result by "matching" the full theory(SM) onto the EFT. In other words,

the above Lagrangian contains only the degrees of freedom relevant well below the

electroweak scale and can still reproduce the amplitudes of the full theory to a given

order in powers of 1/Mw. The matching above was performed only at tree level. In

general, being able to reproduce the amplitudes of the full theory at higher loops can

change the coefficients(Wilson coefficients) of the effective operators and can even

require the addition of new operators whose Wilson coefficients vanish at tree level.

However, for the case of semileptonic decays, QCD loop effects will not affect the

coefficient of Heff or induce new operators. This is because QCD does not affect

the leptonic bilinear LrY"v, but only the quark bilinear EL7y'bL which is a conserved

current and has vanishing anomalous dimension.

We note that LEFT has an expansion in GF. We can write the amplitude for

semileptonic decay to leading order in GF as

A()T = (4GFVCb) (D(*)l10,Ly1,L6LbL IB)EFT ---

= 4GFVcb-
- (4 AA) tLY"VL (D() ILymbL I B), (2.12)

where in the second line, the color neutrality of the lepton pair was used to factorize

and evaluate the leptonic matrix element (l/L-yvLIO >= ILyVL. We have included

the possibilty of decay into a pseudoscalar D or vector D* meson which are related

by heavy quark symmetry as we will show in the next chapter.

We now return to our theme of low energy symmetry and power counting, to see

if we can simplify the amplitude Eq. (2.12). We see that the leading order term CQCD

in the GF expansion of LEFT in Eq. (2.11), possesses the symmetries of parity(P) and
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charge conjugation(C) which are broken by the suppressed Heff operator. We can

use the leading order parity symmetry to immediately simplify the matrix element

in Eq. (2.12). To leading order in GF, the physics of the B -+ D(*) matrix element

in Eq. (2.12) is completely determined by CQCD which respects parity. In particular,

QCD doesn't care if the left-handed quarks in the operator insertion eL'ybL are

replaced by right-handed quarks. This implies an equality between the B -+ D matrix

element and it's parity transformed version. The quark bilinear operator eLYbL can

be written as a linear combination of a vector operator VU = y,1b and an axial vector

operator A, = &y,,-y5b which have well defined parity transformations. In this basis,

the parity invariance of QCD implies

(D(p')IVp,1B(p)) = (-l)'(D(p)IV B(pp))

(D(p')[AIB(p)) = -(-1)'(D(pp) AIB(pp))

(D*(p', E)IV, lB(p)) = -(-l)' (D(p, ep)IVlB(pp))

(D*(p', E)IAIB(p)) = (-1)'(D(pp ,ep)lAlB(pp))

(2.13)

where (-1) = 1 for i = 0 and (-1) = -1 for p = 1, 2, 3 and the subscript P on

the momenta denotes the parity transformation. The only four vectors available at

our disposal to parametrize the B -+ D matrix elements are the four momenta pi

and p'" of the B and D mesons respectively. The B -+ D* matrix element must be

linear in the polarization vector e* and can also depend on the four momenta p" and

p"'. Given that pI', p'l, and e* all tranform like vectors and the property p' e = 0,

the conditions of Eq. (2.13) lead to a general form for the matrix elements

(D(p,)IVIB(p)) = f+(q2)(p + p), + f_(q2)(p _ p),

(D(p')IAIB(p)) = 0, (2.14)

(D*(p', E)lV, lB(p)) = g(q2)e'"v"'e(p + p').(p - p)

(D*(p', e)jAlB(p)) = -zf(q2)e*,' - ZE* .p[a+(q2)(p + p')' + a_(q2)(p -p')].
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Thus, the - DIlP amplitude has been reduced to two form factors f+(q2 ) and

f_(q 2) where q2 = (p _ p') 2 . On the other hand, there was no further simplification

for B - D*1p which is still parameterized in terms of four form factors. All together

we have six form factors describing the B - Dl and - D*l amplitudes. Can

we further reduce the number of form factors? As we will discuss in the next chapter,

matching onto HQET reduces the total number of form factors down to one!
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Chapter 3

Heavy Quark Symmetry

In the last chapter, we saw that integrating out electroweak scale physics and arriving

at the Fermi theory of weak decays, the EFT at the mb energy scale, led to simpli-

fications in the structure of the weak decay amplitudes. We would like to continue

along this line and construct an EFT near the AQCD scale in hopes of finding ad-

ditional symmetries which can further simplify the structure of the amplitudes and

enhance our predictive power. However, the scale of the experiment, determined by

the characteristic energy in the process, is E mb. Proceeding toward AQCD means

that we will be investigating the process below this experimental energy scale. Thus,

the experimental energy scale - mb becomes the UV scale while the low energy

EFT scale becomes AQCD and is the scale at which we choose to "observe" the pro-

cess(see Fig. 3-1). In other words, we want to observe the process with a resolution

of order 1/AQcD at which the order mb fluctuations become invisible. However, we

cannot simply integrate out the b quark even though mb > AQCD since we want

to study b quark decay. So we must somehow integrate out the hard fluctuations

p2 mb 2> AQCD without actually removing the b quark field. This situation is

rather different from the more familiar EFTs such as Fermi theory, where the low

energy scale is just the scale of the experiment. Proceeding below the scale of the

experiment leads to a rather different and much richer structure for the EFT as we

will see for HQET and SCET. In this chapter we describe the formalism of HQET

and apply it to the case of semileptonic decays. The tools we develop along the way
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UV scale and the scale of experiment- --- D

-E A-- Low enervy scale of observation

Figure 3-1: For the EFT below the scale mb which is the characteristic energy of the
decay process, the UV scale is mb and the resolution scale(- 1/E) at which we choose
to observe the process determines the low energy scale E.

will be useful for our study of non-leptonic decays for which the appropriate EFT is

SCET.

The characteristic energy scale of B-decays is mb > AQCD and AQCD is the scale

of nonperturbative QCD dynamics responsible for hadronization. HQET separates

these widely disparate energy scales and reformulates the theory through an expansion

in powers of AQCD/mb. The leading terms in the expansion make manifest additional

symmetries, collectively called Heavy Quark Symmetry(HQS). In the limit mb - 00,

the HQS violating subleading terms vanish and HQS becomes an exact symmetry.

Before going over the formalism of HQET [53, 65, ?], we first give a brief intuitive

explanation of HQS.

Consider a Qq meson where Q = b, c is a heavy quark mQ > AQCD and q is a light

antiquark. Imagine investigating such a system using a "microscope" (the low energy

scale of observation) with a maximum resolution of 1/AQCD, the typical size of the
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meson. The heavy quark Q, interacts with degrees of freedom that have momenta

typically of size AQCD, which we collectively call the light degrees of freedom and

includes the light antiquark q, light quark-antiquark pairs, and gluons.

The disparity between the large mass mQ and the nonperturbative scale AQCD

leads to interesting consequences. The on-shell momentum of the heavy quark is

defined by pA = mQvA so that v2 = 1. The momentum of the heavy quark interacting

with the light degrees of freedom can now be written as

PQ = mQv + k, (3.1)

where k - AQCD. In other words, the heavy quark will be off-shell by an amount

AQCD due to it's interaction with the light degrees of freedom. As a result, the typical

change in the velocity of the heavy quark is of order

AV AQCD < 1. (3.2)
mQ

The velocity of the heavy quark is almost unchanged and the light degrees of freedom

view the heavy quark as a static color source. This picture becomes exact in the

heavy quark limit mQ -+ oc. Furthermore, in this limit the flavor of the heavy quark,

made manifest in QCD through it's mass, can no longer be distinguished by the light

degrees of freedom. This leads to a Heavy Quark Flavor Symmetry(HQFS). Nh heavy

quark flavors leads to a global U(Nh) flavor symmetry with Nh = 2 in the real world

corresponding to the bottom and charm quarks. In reality, this symmetry is only

approximate and will receive corrections due to the finite masses of the bottom and

charm quarks.

Furthermore, the static heavy quark can only interact with the light degrees of

freedom via it's chromoelectric charge. The spin dependent interactions of the light

degrees of freedom with the chromomagnetic moment - g/2mQ of the heavy quark

vanish in the heavy quark limit where - 0. The light degrees of freedom are

oblivious to the spin state of the heavy quark leading to a SU(2) Heavy Quark Spin

Symmetry(HQSS).
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Putting all this together, the U(Nh) flavor symmetry and the SU(2) spin symme-

try can be embedded in to a larger U(2Nh) symmetry. The Nh flavor states with spin

up and down transform in the fundamental representation of the U(2Nh) spin-flavor

symmetry

!I / , 

Q1 (T)IQ1(0

QNh (
C) n. (I 

-+ U(2Nh) x

Qi(t)

Q1()

QNh(t)

Q Nh (

(3.3)

The above heavy quark spin-flavor symmetry relates different states in the heavy

meson spectrum. This in turn will allow us to relate nonperturbative matrix elements

appearing in different B-decay channels leading to enhanced predictive power.

For future reference, we note that the propagator of the heavy quark with mo-

mentum given by Eq. (3.1) simplifies in the heavy quark limit

fiQ+mQ (1+) iipQ mQ +i' (3.4)
2_ 2 iE 2 v- k +ie'

where corrections to this form are of order k/mQ AQCD/mQ < 1. In the next

section we describe the formalism of HQET which makes the above described heavy

quark symmetry manifest within a systematic EFT framework.

3.1 Heavy Quark Effective Theory

We would like to continue our journey toward the AQCD scale to exploit heavy quark

symmetry as described in the previous section. At this point we are faced with a

problem. We want to construct an EFT by integrating out hard fluctuations 2 

mb > AQCD but without actually integrating out the b quark, whose decay we are

trying to study in the first place. How can we do this?
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First let's consider the light degrees of freedom. The argument for heavy quark

symmetry depends crucially on the light degrees of freedom interacting with the heavy

quark, having momentum fluctuations on the order of k2 AQcD < m. Thus, a

description of the light degrees of freedom in the EFT must be given exclusively in

terms of "soft" fields 0, characterized by momentum fluctuations of order AQCD

a 20s A CDOS. (3.5)

The effects of the hard modes Oh with fluctuations p2 > AQcD, will be absorbed into

higher dimensional operators made out of the soft fields.

Now let's turn to the heavy quark field. The momentum of the heavy quark

fluctuates about it's on-shell value mQv ~' by an amount k AQCD as shown in

Eq. (3.1). So, for the heavy quark field Q we have

,92Q = (mQv + k)2Q ., m2Q. (3.6)

But this is a problem since we want our EFT to be free of hard fluctuations so that

we might expand the theory in powers of AQCD/mQ. We cannot simply divide the

heavy quark field into soft and hard modes as in Eq. (2.1) and set the hard modes

to zero since keeping only the soft modes (p2 '-, AQCD) would mean that the heavy

quark is far offshell due to it's large mass mQ > AQCD. As we saw in the previous

section, the heavy quark is offshell only by a small amount k AQCD. What we

really need is a soft field that describes - AQCD fluctuations that are centered about

the onshell momentum mQ.

In order to do this, we introduce new fields hv(x) and By(x)

Q(x) = e-ZMQVX[hv(x) + Bv(X)] (3.7)

where,

h,(x) = ezmQV. (1 2J) Q(x), B,(x) = emQvx ( 2) Q(x) (3.8)
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We note that in the rest frame of the heavy quark, 1+- projects onto particle com-

ponents of Q. Notice that the two fields h and B, are labeled by a velocity v

corresponding to the exponential factor emQv' in Eq. (3.8), which precisely subtracts

the on-shell part of the momentum of a heavy quark with velocity v form the heavy

quark field Q

9'hv(x) = (pQ - mQv)h(x) AQcDhv(x),

l'BV(x) = (pQ - mQv)'B,,(x) AQcDh,,(x). (3.9)

Thus, as desired, the fields hv and Bv describe precisely the soft fluctuations centered

about the on-shell momentum mQv and motivates the label v which characterizes the

on-shell momentum. Recall that since the velocity of the heavy quark is essentially

constant, the label v will take on different values corresponding to heavy quarks with

different velocity vectors. Let's press on and write the QCD Lagrangian for the heavy

quark field Q in terms of hv and B,. After some computation, we find

1 = Q (zP-mQ)Q

= hv (zv D) hv - Bv(wv . D + 2mQ) Bv + hB, + vth, (3.10)

where we have used the the following properties of the h and Bv fields

fhv = hv, Bv = -Bv, (3.11)

which follow from Eq. (3.8) and v2 = 1. The form of the Lagrangian in Eq. (3.10)

makes it clear on how to proceed in constructing the EFT. We note that the first

term in the Lagrangian along with the property +hv, = h,, implies a propagator for

the h field given by the right side of Eq. (3.4). Just what we need! The propagator

of a heavy quark interacting with soft degrees of freedom as seen at a resolution of

1/AQcD. At the same time we have succeeded in removing the hard fluctuations by

introducing the field h as seen in Eq. (3.9).
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What about the B, field? From it's equation of motion

1
BD 2 mQ = z v, (3.12)

tv D + 2mQ

we see that it is suppressed relative to the field hv by one power of AQcD/mQ since the

derivatives acting of h, are of order AQCD. In other words, the antiparticle component

of the heavy quark field Q is small in the heavy quark limit. This motivates us to

integrate out B, so that we can obtain a power expansion in AQCD/mQ. Substituting

Eq. (3.12)in Eq. (3.10) and expanding in powers of v D/2mQ we get the HQET

Lagrangian

HQET = hv (tv D) hv- hv hv - a()ghv hv +..., (3.13)CHQET= h, (iv D) ,, -
2mQ 4 mQ 

where a(,u) will be different from 1 beyond tree level [91]1. The ellipses denote terms

with higher powers of zv D/2mQ and the perpendicular derivatives are given by

D = D ' - v Dv. (3.14)

The HQET Lagrangian in Eq. (3.13) is the main result of this section. We now have

the Lagrangian for an EFT describing the interaction of a heavy quark with soft

partons and have succeeded in removing the hard fluctuations associated with the Q

quark field.

3.2 Power Counting

We notice several interesting aspects about the HQET Lagrangian in Eq. (3.13). The

first term is independent of the heavy quark mass and has a trivial spin(Dirac) struc-

ture. In other words, it possesses a U(Nh) Heavy Quark Flavor Symmetry(HQFS)

and a SU(2) Heavy Quark Spin Symmetry(HQSS) which can be embedded together

into a global U(2Nh) symmetry. The second term in the HQET Lagrangian violates
1The coefficient of the second term is fixed to one due to reparameterization invariance which we

will discuss in a later section.
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the HQFS through it's dependence on the heavy quark mass. The third term violates

both HQFS and HQSS through it's dependence on the heavy quark mass and a non-

trivial spin structure. Similarly, the remaining terms in the HQET Lagrangian also

violate heavy quark symmetry. These ideas are summarized below for the first three

terms

h (v . D) h, -h, 2_- Lh -a(p)gh, h
v2mQ 4mQ

(3.15)
HQFS HQFS

Symmetries: HQS 
HQSS

If we want to exploit the heavy quark symmetry of the first term in the HQET

Lagrangian, we must show that the remaining terms which violate this symmetry are

suppressed. Of course in this case the suppression is made evident by the powers of

1/mQ accompanying the HQS violating terms. It will however be useful to establish a

systematic power counting scheme. The language for power counting developed here

will directly carry over to SCET where the power counting is more subtle.

We will set the first kinetic term to be of zeroth order in the power counting since

we are only interested in a "relative" suppression for the remaining terms. As we will

see, this constraint allows us to determine a power counting for the fields themselves

which makes power counting of the terms in the Lagrangian quite transparent. The

action of the kinetic term in HQET is

f d4x [h, tv * a h]

4$ 4 4. $ (3.16)

AQCD AQCD AQCD AQCD

where we have also indicated the scaling of the various pieces in powers of AQCD. As

of now, the scaling of the HQET field is not known and is denoted as some power a

of AQCD which needs to be determined. Since there are no hard fluctuations in the

theory, any derivative acting on the HQET fields will scale like one power of AQCD (see
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L(xi+,)

C 1 

Figure 3-2: For momentum fluctuations of size AQCD, a significant variation in the
integrand of the HQET Lagrangian will only occur over distances of size 1/AQcD. As
a result, the HQET action can be computed using the average value HQET(Xi) of
the integrand over the ith four dimensional box of volume 1/AcD as in Eq. (3.17).

Eq. (3.9)). The scaling of the integration measure can be roughly understood as

follows. Since the dynamical momentum fluctuations in theory are of order AQCD, a

significant variation in the integrand of the action will only occur over distances of

order 1/AQCD(see Fig. 3.2). As a result the action can be approximated as

J d4 XCHQET(X) E Z CHQET(Xi) A4Xi, (3.17)
i

where A4xi is a four dimensional box of volume A - 4 D implying the scaling for the

measure indicated in Eq. (3.16). Requiring the overall action of the kinetic term to

scale as a order one quantity implies a = 3/2 and a scaling for the HQET field

hv A 3C. Similarly, requiring the kinetic term of the soft gluon field to be of

zeroth order gives a scaling As , AQCD. We can now easily compute the scaling of

any term in the HQET Lagrangian. We show this for the three terms in Eq. (3.13)

h (v D) h AQCD
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Field Fluctuations Scaling

h, aOhv - AQCD A3/2

AP OA , AQCD A

Table 3.1: A summary of the HQET fields, the characteristic size of their fluctuations,
and their scaling in powers of A = AQCD/Q.

2 h A4 AQCCD (3.18)2 mQ QUVMQ
- 2_ G v ,.N4 AQCD

Ygk hV A4 AQCD4mQhv mQ h QCD Q

where we have ignored the scaling of the measure which is common to all terms.

We now see that the HQS violating terms are indeed suppressed by a factor of

AQCD/mQ < 1. It becomes convenient to define a power counting parameter

A AQCD (3.19)
mQ

in terms of which we get the scalings hv (mQA)3/2 and As - mQA. We can set mQ -

1 so that we can talk about scalings exclusively in terms of A and the appropriate

powers of mQ can always be inserted in the end using dimensional analysis. We

summarize the situation so far in Table (3.1).

We can now write the HQET Lagrangian as an expansion in powers of A

LHQET = L() + L(1) + (2) +... (3.20)

where the superscript denotes the order in A. From Eqs. (3.18) and (3.19) we see that

L(°) = h ( D) hv,
12(1) °-wG'
L(1) = -h 2mq v - a(pu)ghv 4- h. (3.21)

Thus, the leading order term L() possess heavy quark symmetry which is broken

by the subleading term L(1) - A. We can now clearly see heavy quark symmetry
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emerging as a low energy symmetry. In the EFT near the low energy scale AQCD, the

absence of hard fluctuations associated with the UV scale p2 > ACD, allows

us to expand in powers of AQCD/mQ and the leading term in this power expansion

exhibits heavy quark symmetry.

3.3 Heavy Meson Spectroscopy

We how explore some of the consequences of heavy quark symmetry. We first look

at the implications of HQSS which will be most useful for our purposes and then

comment on HQFS.

The total spin J of the heavy quark meson is a conserved quantity and is given

by the sum of the heavy quark spin SQ and the spin of the light degrees of freedom

SI

J = SQ+Sl. (3.22)

The HQSS of L(°) implies that at leading order in A, the heavy quark spin SQ is

conserved. i.e. at leading order, the interaction of the heavy quark with the light

degrees of freedom is spin independent. Combined with the conservation of J, the

spin of the light degrees of freedom Sl is also a conserved quantity. The spin of the

light degrees of freedom in turn is given by the sum of the light antiquark spin Sq

and the relative orbital angular momentum L

Si = L+ Sq. (3.23)

Thus, we can characterize the heavy meson states in terms of two good quantum

numbers j and s for the total heavy meson spin and the spin of the light degrees of

freedom respectively. The HQSS of C() implies a degeneracy in the coupling of the

heavy quark spin Q = 1/2 to the spin of the light degrees of freedom s. In other

words, we can expect to find heavy quark mesons of similar mass to appear in the
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heavy quark spin symmetry doublets

j= S i 1/2. (3.24)

For example, in ground state charmed mesons which have zero orbital angular mo-

mentum = 0, the spin of the light degrees of freedom is just s = 1/2 corresponding

to the light antiquark spin and Eq. (3.24) implies a spin doublet j = (0,1) corre-

sponding to the charmed mesons (D, D*). At leading order, HQET predicts equal

masses for the D and D* mesons

mD = m +A+ (1/m,),

mD. = m + A + O(1/m,) (3.25)

where2 A = (DLI( 0 )D) = (D*I7(O)® D*) as a consequence of HQSS and W() is the

leading order HQET Hamiltonian obtained from C() . A is the leading order effective

meson mass in HQET since the charm quark mass m, has been subtracted from all

energies. A difference in the D and D* masses comes in at the next order in A from the

spin dependent interaction term in C(1) . Experimentally, the D -D* mass difference

is - 100MeV which is tiny compared to the typical mass of a charmed meson ,, 2GeV.

Heavy quark symmetry works quite well! The lowest lying heavy quark spin doublets

for the charmed mesons are listed in Table (3.2) where the mass of each doublet is

averaged over all the spin states [77]. Similar heavy quark spin doublets also exist for

the bottonm mesons [91]

mB = mb+ + O(1/mb),

mB = mb + A + O(1/mb), (3.26)

where once again a B - * mass splitting comes in at the next order in A through

the spin dependent interaction in £1). Experimentally, B - B* mass difference [91]

2 The heavy meson states appearing in the matrix elements are actually HQET states which differ
from the full QCD states by a normalization and A
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Charm Doublets l |sI i Mass(GeV)
(D, D*) 0 (0-, 1-) 1.971

(D, D) 1 1 (0+,1+) 2.400 1 21

(D1 , D) 1 3 (1+,2+) 2.445~~2

Table 3.2: The first three heavy quark spin symmetry doublets for charmed mesons
along with their quantum numbers. The last column gives the mass averaged over all
the spin states in the doublet [77].

is - 46 MeV which is smaller than the D -D* mass difference. This reflects the

fact that heavy quark expansion works better for bottom mesons compared to charm

mesons since AQCD/mb < AQCD/mC.

Note that the same A appears in Eqs. (3.25) and (3.26) as a consequence of HQFS.

In fact, combining the HQFS and HQSS of 7/(0) we have

A = (Dl-( ° ) I) = (D* I(°) ID*) = (Bl(°) B) = (B* (°) IB*) (3.27)

resulting in the leading order mass relations

mD =mD* mB = B*,

mB -mD = mB - mD* = mB* -mD = mB* - mD*. (3.28)

We refer the interested reader to [92] for further details on this type of heavy meson

spectroscopy.

3.4 Isgur-Wise Functions

We have just witnessed the power of low energy symmetry and power counting. Sim-

ply by observing the HQSS of the leading order term in the HQET Lagrangian and

without doing any detailed calculations we were able to make quantitative predictions

of mass relations between heavy mesons. So, far the predictions we have explored

have to do with the static properties (spectroscopy) of heavy mesons. Can we exploit
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heavy quark symmetry for decay rates? Let's come back to the case of semileptonic

decays B-decays. Now that we know that the charmed D and D* mesons sit in a heavy

quark symmetry doublet, can we relate the - DlV and B - D*Il amplitudes?

Before addressing this question, it will be useful to introduce a formalism in which

the heavy quark spin symmetry doublet (D, D*) can be treated as a single object that

transforms linearly under heavy quark symmetry. We treat this subject briefly with

just enough detail to establish the necessary language and allow us to proceed with

our investigation of semileptonic decays. A more complete treatment can be found

in [91].

The ground state Qq mesons can be represented by a bilinear field HQ) that

transforms under Lorentz transformations as

HV(Q) = D(A)Hv(Q)(x)D(A) -1 , (3.29)

where v' = Av and x' = Ax and D(A) is the spinor representation matrix of the

Lorentz group. The introduction of the field Hv( Q) with the Lorentz transformation

property above is motivated by the transformation of the product of spinors Qq. Since

the ground state heavy quark charmed mesons (D, D*) involve a pseudoscalar and a

vector, we would like the field Hv(Q) to be a linear combination of a pseudoscalar field

P(Q)(x) and a vector field P(Q)

H.Q) _ 1 + [v(Q) + ZP(Q)Y5] (3.30)
2

where the projector 1+ picks out only the large particle component of the heavy quark

field Q ignoring corrections from the small antiparticle component BV in Eq. (3.7).

Thus, the meson states destroyed by H( Q), which we call the HQET states, will differ

from the full QCD states due to subleading corrections to Q coming from substituting

Eq. (3.12) in Eq. (3.7). We will always work with these leading order HQET states

and include subleading corrections through matrix elements of time ordered products

with insertions of subleading operators. The definition of H(Q) is consistent with

P*(Q) transforming as a vector and Pv(Q) transforming as a pseudoscalar. The vector
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particles have a polarization vector e, with e. e= - 1 and v e = 0 and are destroyed

by P*(Q) with an amplitude of e.

H( Q) transforms in the (1/2, 1/2) representation under SQ ® S, the spin operators

for the heavy quark and light degrees of freedom. In particular, under heavy quark

spin transformations

H(Q) D(R)QH(Q ) . (3.31)

We now have a field that destroys mesons in the ground state heavy quark spin

symmetry doublet with a well defined heavy quark spin transformation. The HQET

states destroyed by H( Q) are labeled by their velocity v and and are related to the

QCD states as

JH(p) >QCD= /-H[ H(v) > + (1/mQ) ] (3.32)

where the details of the normalizations, etc. can be found in [91].

Matching onto HQET

We now have enough tools to apply HQET for semileptonic decays. As seen in the last

chapter in Eq. (2.14), Fermi theory at the scale - mb gives an effective operator that

appears in the hadronic matrix element between the bottom and charmed mesons,

of the form dFb where F = yA,?5, %y. The next step is to match this operator onto

HQET at the scaleA - mb. At tree level matching and leading order in 1/mb,c there

is only HQET operator available

F b - h(c) F h( b). (3.33)

We can now use heavy quark symmetry to write h(c P hb) directly in terms of the

meson fields HV and H,,. This must we done in such way that all quantum numbers

and transformation properties are preserved in going to the new operator in terms of

the meson field. We use the standard trick and note that h,) F h(b) is invariant under

53



heavy quark spin transformations if we assign to F the transformation rule

F -÷ D(R),FD(R) -1 . (3.34)

The problem now becomes to write hc) F h ) as some combination the meson fields Hv

and H~, which is invariant under heavy quark spin transformations combined with the

rule of Eq. (3.34). From Eq. (3.31) and the requirement that the operator be linear

in H and H, we are led to the combination HFH b. Finally, Lorentz covariance

requires this to be a trace

h(c,) rh(b) =TX()rH(b) (3.35)

where X is the most general bispinor that can be constructed using the available

variables v, v'

X = X0 + X1 + X2f' + X3ff', (3.36)

where the coefficients are functions of the invariant w = v v'. However, the relations

~H®b) = H®b) and 'H(c) =-H(,) make all the terms above proportional to the first

so that we can write

h(,) F h(b) = -(w)TrHft)H(b). (3.37)

Evaluating the above trace between the HQET states H(b)(v) > and IH(c)(v') > gives

us the relations

(D(v')h,) % h(b)IB(v)) = (w)[v, + vI], (3.38)

(D*(vI')hc) yy5 h(b)lB(v)) = -z(w)[(1 + w)e - (e*. v)v],

(D* (vI) Ih,) h(b) IB(v)) = (w)[(1 + w) aVevav].
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Note that only one form factor (w) relates all the above matrix elements. This

is the Isgur-Wise function. We see that the low energy heavy quark symmetry of

HQET has allowed us to go from six from factors in Eq. (2.14) down to just one

significantly enhancing our predictive power. We point the interested reader to [91]

for the phenomenological implications in semileptonic B-decays.

What would happen if we were to replace the lepton pair Iv in the semileptonic

decays with a pion? Could we also relate the amplitudes for B -+ D7r and B - D*7r

by heavy quark symmetry? In this case it becomes much more difficult to make

heavy quark symmetry manifest. The problem is that the pion introduces a new hard

scale in the problem due to it's large energy E - mb. In particular, the presence of

energetic degrees of freedom related to the pion destroy the power counting scheme

of HQET. For example, the subleading terms in HQET which usually are of order

AQCD/mb < 1 can now scale like Er/mb - I due to the presence of hard fluctuations

introduced by the pion degrees of freedom. We need a new EFT that takes into

account this new hard scale and expands in powers of AQCD/Er. The theory which

does this is Soft Collinear Effective Theory(SCET) and is the subject of the next

chapter.
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Chapter 4

Soft Collinear Effective Theory

The Soft Collinear Effective Theory(SCET) is an effective theory describing the inter-

actions of soft particles with energetic collinear particles defined to be close to their

light cone. This effective theory is appropriate for the B - D(*),r type decays that we

are interested in. The B and D(*) mesons are treated as soft and the pion is treated

as collinear. The Fermi theory Hamiltonian for such decays gives the amplitude

VA = VcbVjd{ Cl(M)(D(*)7r (b)v-A(dU)v-A B)

+ C2(/i)(D(*)7r (ib)v-A(dJjUi)v-A B) }. (4.1)

The nonperturbative matrix elements that appear in the amplitude, limit our pre-

dictive power and as seen in the previous chapter, the presence of the energetic pion

even forbids us to use heavy quark symmetry to make a relative prediction for the

D and D* rates. Once again we will proceed below the scale of experiment - mb

toward AQCD, integrating out hard fluctuations along the way but without actually

removing the relevant fields, in hopes of finding new symmetries to enhance our pre-

dictive power. The relevant EFT below the -, mb scale is the SCET and it will help

us do the following:

* In addition to the hard scales mb and m,(as for HQET), an additional hard

scale E, appears due to the energy of the pion. The SCET takes this additional

hard scale into account and expands the theory in powers of AQCD/Q where
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* The SCET allows us to factorize the nonperturbative matrix elements into a

product of soft and collinear matrix elements. This factorization permits us to

use the formalism of HQET on the soft matrix elements and relate the D and

D* rates through heavy quark symmetry. A host of other phenomenological

predictions also follow from factorization.

* From a theoretical point of view, a clear separation of physics coming from the

different scales Q AQCD > AQCD is achieved. Furthermore a systematic

framework to sum large logarithms between Q and /EAQCD, although we will

not address the latter in this thesis and leave it as possible future work. The

relevance of the intermediate scale VEAQCD will become apparent as we try to

construct the SCET near the AQCD scale.

4.1 Degrees of Freedom: SCETI and SCETI

The presence of light energetic particles makes it convenient to introduce the light

cone coordinate system. The basis vectors in this coordinate system are given by

nL = (1, 0,0,-1), IL" = (1, 0,0, 1),

X = (0, 1, 0, 0), 1 =(0,0,1, 0), (4.2)

with a normalization for the light cone vectors given by . * n = 2, and n2 = h2 = 0.

Any four vector can be decomposed in this basis as

pi = p h + pn + , (4.3)

where the components in the x direction are collectively labeled as p. We will

denote momentum vector components using the compact notation

(p+,p-,p±) - (n p, . A p ), (4.4)
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(A, A, A) (A, A, A) (AlE, E, A)

Figure 4-1: The two body B -+ D7r decay in the rest frame of the B3 meson. The
typical scaling of the momentum components (p+,p-, P1) for the partons in the B,
D, and 7r mesons are shown where E is the pion energy. The bottom and charm
quarks are described by HQET fields with the hard part of their momenta removed as
described in the previous chapter. The momenta that scale as (AQCD, AQCD, AQCD)
and (A'CD/E, Es, AQCD) correspond to soft and collinear degrees of freedom re-
spectively. The SCET describes the interaction dynamics of these relevant degrees of
freedom in terms of soft and collinear effective theory fields introduced explicitly at
the level of the Lagrangian.

so that p+ and p- denote components along the nV and n ' directions respectively.

Having established a coordinate system let's look at the B - D7r decay channel

in the rest frame of the B meson(see Fig. 4.1). The momentum of the B meson

is pB = mBV"' where v = (1,0,0,0) in the rest frame. The momentum of the D

meson is denoted by p = mBv'A where v' denotes it's four velocity. Solving the

kinematics of this two body problem, we find that the D meson has an energy on

the order of it's mass ED -' mD allowing us to treat the light degrees of freedom in

the D meson as soft pS " (AQCD, AQCD, AQCD) and describe the relevant dynamics

using the formalism of HQET. Of course the same holds true for the light degrees of

freedom in the B meson which is at rest. On the other hand, the momentum of the

pion is found to be collinear, close to the light cone, to a very good approximation

p" = (2.310GeV, 0,0, -2.306GeV) r E.n. The partons in the pion will also have a

large momentum component along the n" direction but in addition will have smaller

dynamically generated components in the iP and xil directions. The momentum

scaling of the collinear partons are given by Pc - (A2cD/E ,E,AQCD). One can

understand this scaling as the result of boosting from the pion from it's rest frame in

which the partons have a soft momentum scaling Ps , (AQCD, AQCD, AQCD) to the rest

frame of the B meson in which the pion travels close to the light cone. Since the boost
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is in the light cone direction orthogonal to the xl directions, the p_ momenta are

unaffected. The p- component just becomes p- - E, corresponding to the observed

momentum of the pion in the B rest frame. The scaling of the p+ component then

follows by the requirement that the partons have a virtuality p - A'cD.

In addition to the hard scales mb and mc that we encountered in semileptonic

decays, there is a new hard scale E,- 2.31GeV in this problem. We will not

distinguish between these hard scales and will collectively refer to a hard scale Q 

{mb, mc, E}. We introduce the power counting parameter r] = AQCD/Q in terms of

which we can write the scaling of the soft and collinear momenta as

Ps r4 Q(.,VW, P,)

PC " Q( 2 7 1 7 ) p2 2 Q2rl2 ' (4.5)

We notice that the interactions of the soft and collinear modes are non-local. The

sum of the soft and collinear momenta produce an offshell state of momentum ni

P' + P = K - Q(1, 1, v), K2 Q2 > Q2'q2, (4.6)

whose virtuality is much larger than AQCD. Even after removing all the hard fluc-

tuations p 2 > A2CD the soft and collinear infrared degrees of freedom of the EFT,

through their interactions, generate an intermediate hard scale I n QAQCD.

This is a consequence of the inhomogeneous scaling of the collinear momentum com-

ponents. In other words, even though the collinear modes have a soft virtuality

p2 - AQcD, they contain a hard momentum component p- Q. In order to con-

struct an EFT in terms of the soft and collinear infrared degrees of freedom, we must

integrate out the far offshell modes - Q(7, 1, 7) [22, 63].

An alternative is to construct an intermediate EFT at the scale lu -' /AQCD for

these offshell modes and then match onto the EFT of soft and collinear modes. We

will use the latter method and it's advantages will become clear as we proceed. We

refer to this intermediate EFT at - QAQCD as SCETI and the EFT at -t AQCD
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as SCET1 . We will use a two step matching procedure [100] to go from the Fermi

theory of b quark decay to SCETII

Fermi Theory + QCD >- SCETI -+ SCET1I, (4.7)

where we match onto SCETi at - Q, use the renormalization group to run in

SCETI down to p QAQCD, and then match onto SCETI .

We introduce a new power counting parameter A for SCETi such that A = =

VAQCD/Q. The relevant modes for SCETI are ultrasoft(usoft) and hard-collinear

with momenta denoted as PUS and Phc respectively

Pus - Q(A2 , A2 A2), P2s Q2 A4

Phc . Q(A 2, 1, A), PhC Q2 A2, (4.8)

with all other modes integrated out. What is the physical relevance of these modes?

From the relation A = we see that the usoft modes of SCETI have the same

scaling as the soft modes of SCETI . In fact these two modes are identical with

momentum scaling (AQCD, AQCD, AQCD). The different names "usoft" and "soft"

correspond to the scaling of these modes in terms of the SCETI power counting pa-

rameter A and the SCETI1 power counting parameter ] respectively. In other words,

the (AQCD, AQCD, AQCD) modes have a usoft scaling in SCETi and a soft scaling in

SCETI . On the other hand, the hard-collinear modes of SCETI have a virtual-

ity PhC QAQCD > AQCD and correspond to the far offshell modes of SCETI of

momentum nc produced by the interactions of the soft and collinear modes. In

matching SCET, onto SCETIn, the usoft states match onto the soft states and the

hard-collinear states will match onto the collinear states. We summarize the degrees

of freedom in SCETI and SCETnI in Table 4.1.
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EFT Scale of Power counting Degrees of Momenta
EFT Parameter Freedom Scalings

hard-collinear Q(A 2 , 1, A)

SCETi 1.1,, ~/QAQCD A = AQCDQSCET, As H Q__ ~ usoft Q(A 2, A2, A2 )

collinear Q(72, 1, rl)
SCETI Am AQCD 7 AQCD

Qsoft Q(71, , v)

Table 4.1: A summary of the relevant degrees of freedom in SCETI and SCETI.

4.2 SCETI: Leading Order

4.2.1 The Lagrangian

We need to write down a Lagrangian for SCETI in terms of hard-collinear and usoft

fields. There are several pieces to the Lagrangian

£SCETi = Chc + us + U + hc + u + Chc,us, (4.9)

where Chc has only hard-collinear quarks and their interactions with usoft and hard-

collinear gluons, Lu has only light usoft quark fields and their lowest order inter-

actions with usoft gluons, £us has only heavy bottom and charm quarks and their

lowest order interaction with usoft gluons, 9c is the kinetic term for hard-collinear

gluons, L9 is the kinetic term for usoft gluons , and £hc,uS includes the remaining

terms involving hard-collinear and usoft modes in general. In keeping with our theme

of low energy symmetry and power counting, our ultimate goal will be to expand the

SCETI Lagrangian in powers of A and identify as many leading order symmetries as

possible.

We start with the Lagrangian for the hard-collinear quarks. Before working out

the details, let's look at what we should expect. What will be the form of the hard-

collinear free quark propagator in SCET ? We can find this out by expanding the
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QCD propagator for a massless hard-collinear quark in powers of A

=__ _ aliT .-IF -~- + · o.-

p2 + e 2 h.pn.p+p +e

Ad 1

2 n.p+ + esign( p)2 -p +1 + zcsign(fi . p)
(4.10)

where we have used the momentum scaling for the hard-collinear momenta given in

Table(4.1) and the ellipses denote higher order terms in A. Thus, we expect the leading

order term of the SCETI hard-collinear Lagrangian to reproduce this propagator and

will provide a consistency check.

The massless collinear field of QCD In which creates a hard-collinear parton with

large momentum in the nP direction can be decomposed as

'On = + , (4.11)

where

(4.12)4

and satisfy the relations

(4.13)

We have used the identity

(4.14)

to achieve the decomposition in Eq. (4.11). The above decomposition of the hard-

collinear QCD field is a projection onto the components n and ~n which create

momenta in the n and ' directions respectively. This evident from the properties
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of n and ~a fields

-n, = 0,

(4.15)

which follow from the n2 = 2 = 0 property of the light cone vectors combined with

Eq. (4.12). These conditions just correspond to the equations satisfied by massless

fermion spinors with momentum in the n' and in direction respectively. We point out

that the above decomposition does not require the QCD spinor to have hard-collinear

momentum and can be done for any type of spinor field. However, as we shall see,

this decomposition is most useful for hard-collinear spinor fields. Since In creates

a parton with large momentum in the nA direction we expect the F, component to

be small relative to 6n and we will use this to our advantage. This idea will become

precise shortly. Let us substitute Eq. (4.11) into the QCD Lagrangian to obtain

= .+ 2 D + 2f D + zpD] (n + n)

= nZ/n'* D n±+ (n7 *Dn ±+ ntpX)L + &azgP)n, (4.16)

where additional possible terms vanish by the property in Eq. (4.15). The gluon field

in the covariant derivative is a sum of usoft AUs and hard-collinear An gluon fields

zDA = zOA + AA + AA, (4.17)

which are the relevant modes for SCET . The presence of two types of gluon fields

will lead to a rich structure of gauge symmetry which we will explore in some detail

in the next section. But for the moment, let us look at the equation of motion that

follows for a

1
& = zn /- -6. (4.18)

From the scaling of the hard-collinear momenta in Table(4.1), we see that in the above
From the scaling of the hard-collinear momenta in Table (4. 1), we see that in the above
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equation the derivatives scale like D1 - Qr7 and * D Q1 implying that in is in

fact suppressed relative to 6n by one power of A as we suspected. So, we can integrate

out the 6f field to get an expansion in powers of A. At tree level we substitute the

result of Eq.(4.18) in Eq.(4.16) to obtain the hard-collinear Lagrangian

L = n(n D + Dt)l n. (4.19)

We see that the above Lagrangian does in fact reproduce the hard-collinear propagator

of Eq. (4.10). In other words, by integrating out the small 6, field, we have made

the expansion of the massless hard-collinear propagator in Eq. (4.10) manifest in the

EFT Lagrangian itself. We can further expand the above Lagrangian in powers of A.

We postpone this for the moment and will do so in a later section.

We can assign a power counting to the hard-collinear field by requiring it's kinetic

term to be of order A. Recall that we would like to establish a power counting

scheme relative to the kinetic terms of the relevant degrees of freedom which will

count as zeroth order. We illustrate the power counting for the kinetic term of the

hard-collinear quark obtained by setting all gluon fields in the covariant derivatives

of Eq. (4.19) to zero

f dx+ dx- d2 xl [e n 0 + 1 n #± ] n,. ,. ,. ,. 4 , . 4. 4 ,. (4.20)
AO A- 2 A- 2 As A2 A AO A A s

Here we have used the scaling of hard-collinear momenta in Table(4.1) for the deriva-

tives and the measure and have set Q -+ 1 since the appropriate powers of Q can

always be restored in the end by dimensional analysis. Both the terms above are of

the same order and the requirement that they be of zeroth order gives a = 1. Thus,

the hard-collinear quark fields scale as 6n v A.

Similarly, there will be EFT fields for the usoft light quarks q. The EFT La-

1We will show that the gluon fields AS and An appearing in the covariant derivative scale in the
same way as the usoft and hard-collinear momenta respectively, implying the scaling D Qi, and
-D-Q.
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grangian for the usoft quarks has the same form as in QCD

us = qus (Is) qus, (4.21)

but with the covariant derivative Du, involving only usoft gluons since a hard-collinear

gluon will turn a usoft quark into a hard-collinear quark

zDs - Z0 + gA . (4.22)

We see that the form of the usoft quark propagator is the same as in QCD since all the

momentum components of a usoft quark scale in the same way. In the next section

we will discuss the absence of a hard-collinear gluon in the covariant derivative in

more detail. Once again, by requiring the kinetic term for the usoft quark to be of

zeroth order we obtain a scaling relation q - A3.

The heavy usoft bottom and charm quarks are created by the usoft EFT fields

hbus and h,,. 8 which are identical to the HQET soft fields h, h,. The Lagrangian

will be the same as in HQET

£hS = (b) (v Du,) h(b) + h(c (v' DU,) htc (4.23)

and once again no hard-collinear quarks enter in the covariant derivative.

The kinetic term for the usoft gluon takes the usual form as in QCD

L = -tr{GIsG8} (4.24)

where GO' = z[DO, DJ8 ]/g and the kinetic term for the hard-collinear gluon is

L(9) - - tr { [0d + gAA, + gAA, m0/ + gAO + gAq,] } (4.25)

which is also identical to the form in QCD except that the usoft gluon appears as a

"background" field. We will discuss this point in the next section. We have ignored

the gauge fixing and ghost field terms [?] since they will not be essential for our
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Type Momenta pA = (p+, p-, p') Fields Field Scaling

hard-collinear pu - Q(A 2, 1, A) n A

(A + , A, Al ) (A2,1,A)

usoft p - Q(A 2, A2, A2 ) qus A3

hvus A3

AA A
2

Table 4.2: Power counting for the SCETI quark and gluon fields.

purposes.

All that remains are the terms for Chc,us. As we shall see later on, these terms

will be power suppressed relative to the kinetic terms of the hard-collinear and usoft

modes. For any physical process only a small number of terms from £hc,us will con-

tribute at any given order. We postpone the derivation of the relevant terms in Chc,us

until section??.

As we did for the hard-collinear quark field, one can obtain scalings for the usoft

light and heavy quarks, usoft gluons, and hard-collinear gluons as qus -u A3 , h, A3,

AA, - (A2, A2, A2), and A 8, (A2, 1, A). The field content of SCETI along with their

scalings are summarized in Table(4.2).

4.2.2 Ultrasoft and Hard-Collinear Gauge Symmetry

As we briefly mentioned in the previous section, there are two types of gluon fields Au,

and An corresponding to usoft and hard-collinear gluons of the EFT. The difference in

the momentum scaling of the hard-collinear and usoft modes leads to a rich structure

of gauge symmetry. Corresponding to the usoft and hard-collinear gluons we define

usoft and hard-collinear gauge transformations denoted by Uhc and Uus respectively

such that

c9Uh,(x) 0 Q(A 2, 1, A), 9'Uus,(x) - Q(A 2, A2 , A2 ). (4.26)
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The above scalings of Uhc and Uus correspond to the scalings of the hard-collinear and

usoft momenta respectively. In the EFT only the subset of usoft and hard-collinear

gauge transformations of the full gauge symmetry of QCD are relevant. The usoft

and hard-collinear quarks will not transform under "harder" gauge transformations

which introduce large phases in the integrand and their rapid oscillations set the

variations to zero. This is also true for HQET for which only soft gauge symmetry

corresponding to the soft gluons is relevant. However, in HQET since all the degrees

of freedom have the same soft scaling in momenta, only one type of gluon(soft) is

needed, and the form of the gauge transformations are identical to that in QCD. This

is not the case for SCET. For example, a usoft field does not transform under a hard-

collinear gauge transformation. Intuitively, this is apparent since a hard-collinear

gauge transformation will turn a usoft field into a hard-collinear field. One can see

this more explicitly through the effect of large phase oscillations, by looking at the

variation of the kinetic term of a usoft quark under a hard-collinear transformation

qus(X) -+ Uhc (x)qu (x)

Jf d4x qs (x)tqu, (x) = f d4xqus (X) [UlpUh (x)]qu, (x)

4X dp- _,-.~+q
= J dx eJ 2 e ~(x) z[Uhzcpuh (P, x-,l)]qu,,(x)

- 0, (4.27)

where in the second line [UtcpUhc(p-, x-, x)] was obtained by Fourier transforming

[Ut zUhc(x)] in the x+ coordinate. The last equality was obtained after performing

the integration over the x+ coordinate and noting that the quantity

[ltztPUhc(p-, x-,xl)] has support only over large p- Q > QA2. In this region the

rapid oscillation of the large phase e- ' - ' + compared to the usoft fields qu, (x) gives

a vanishing integral over x+. So, we see that the kinetic derivative term of the usoft

quark does not transform under a hard-collinear gauge transformation. This implies

that the covariant derivative for the usoft quark will not have a hard-collinear gluon

field. Equivalently, the interaction of a usoft quark with a hard-collinear gluon will

vanish f d4x gqus(x)4n(x)qus(x) = 0 due to rapid oscillations of the hard-collinear
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gluon. It was in anticipation of this result that we first wrote Eq. (4.21) for the usoft

quark Lagrangian without a hard-collinear gluon. By the same argument as above,

the usoft gluon also does not transform under a hard-collinear gauge transformation.

We summarize the hard-collinear and usoft gauge transformations below [30]

hard-collinear: A - Uc A, Ut + UC [DUS U], u ,

g

Aus - AuS, q q,
(4.28)

ultrasoft: A, - Uus Ac Uuts, - Uus S,

AUS Uus Aus Uts + Uus [, q- Uu. q.
g

One can check that due to the fact that the usoft gluons do not transform under

hard-collinear gauge transformations, hard-collinear gauge invariance of the hard-

collinear quark Lagrangian2 requires the replacement Uhy U Dus Ut]

in the second term of the usual transformation of the hard-collinear gluon field. This

is seen in the first line of Eq. (4.28). In this sense the usoft gluon field plays the role of

a "background" field under hard-collinear gauge transformations. Once again it was

in anticipation of this result, that we included AU8 in LC in Eq. (4.25). Conversely,

a usoft gauge transformation is effectively global for the hard-collinear quarks and

gluons as seen in the third line of Eq. (4.28).

4.2.3 Label Operators

Altough we have a Lagrangian for the usoft and hard-collinear particles, we have not

yet managed to remove all the hard fluctuations p > QAQCD

ato. = Q(A2, 1, A)qp,, (4.29)

as can be seen from the p- - Q momentum fluctuations of the hard-collinear field

0b~. Here 0n represents either a hard-collinear quark or gluon. In fact, unlike in

2 This is most clear for the hard-collinear quark Lagrangian 4n[IuA + g4n q]'4 before integrating
out the ~a field in order to obtain an expansion in powers of A and here n = n + $a.
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HQET, we will not entirely succeed in removing these hard fluctuations. In HQET,

the hard part of the heavy quark momentum remained static since it's interactions

with the light degrees of freedom involved momenta exchange of order AQCD << mQv.

In this sense, the hard part of the heavy quark momentum was no longer dynamical

in HQET. As a result, we were able to formulate the dynamics of the heavy quark

exclusively in terms of fluctuations of order AQCD centered about the hard part of

it's momentum.

The situation for SCETI (and also SCETI ) is rather different. In this case the

hard part of the hard-collinear momentum is dynamical. The interactions of hard-

collinear particles amongst themselves involves the exchange of order Q momenta for

the p- component. But we want to construct an EFT at the scale V QAQCD.

Physically, this means that we are looking at the system using a "microscope" with

a maximum resolution of distances or order 1/ QAQCD and we will not be able to

resolve the p- - Q momentum fluctuations. So, we would still like to construct the

EFT using fields with the hard fluctuations removed. How can we do this considering

that there are dynamical hard p- Q momenta present in this problem?

We can do this by generalizing the method of separating out the hard momenta

in HQET. In HQET there was one heavy quark field h, corresponding to order AQCD

fluctuations about the hard on-shell momentum mQv. Similarly, in SCETi we can

introduce a hard-collinear field 0bn,p with a label p, corresponding to small fluctua-

tions about the hard momentum component p - Q of the hard-collinear particle.

However, in this case there will be one such field for each hard-collinear particle and

a hard momentum exchange will be taken into account by a corresponding change in

the label momentum. We now make this idea precise.

Before proceeding, we point out that unlike in HQET, from the scaling of the hard-

collinear momenta we see that there are actually two low energy scales QA, QA2 < Q.

In this situation, it becomes convenient to absorb the order QA momentum along

with the order Q momentum into the label, and let the 0,n,p field have only order QA2

fluctuations. As we will see, with all the effective theory fields now having uniform

order QA2 fluctuations the power counting in this "label" formalism will be much
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more transparent. Continuing along, we separate the momenta as

P', = pA + k, (4.30)

so that p-' Q and pa QA get absorbed into the label momentum p and the

k . QA2 momenta become the "residual" momenta corresponding to fluctuations of

the field bn,p. We write the hard-collinear field O as

0b = e-P'.,p, (4.31)
p

so that

AOdnp,. Q(rl 2r fl r 12) (4.32)

In other words, the field On has Fourier components to create all hard-collinear par-

ticles with momenta that scale as indicated in Table (4.1) and Eq. (4.31) just divides

up this momentum space into bins corresponding to each label p and each bin is of

size k - QA 2 (see Fig.4.2.3)

f d4 P -+ Z f d4k. (4.33)
p

In each bin corresponding to the label p there sits a field (On,p that creates momentum

fluctuations of size k Qr72 centered about the label momentum p. In this language,

in SCETI one can think of two hard-collinear particles with label momenta Pi and

P2, as being particles with global "charges" Pi and P2 and are created by the fields

(qn,p1 and bnp2 respectively. The conservation of these label momenta in the EFT

corresponds to the conservation of global charges. Note that a separate conservation

for the label and residual momenta is required since the label momenta are harder

than the residual momenta.

To keep track of the changes in label momenta due to hard momentum exchange

among hard-collinear particles, it becomes convenient to introduce the label opera-
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Figure 4-2: The separation of momenta into "label" and "residual" components. The
SCET fields 0,n,p describe k QA2 fluctuations centered about the label momentum
p.

tors [26]

p/cn,p = Pn,p, PII/ n,p = PA /On,p, (4.34)

so that P and P_ operators pick out the ft p and pA components of the label respec-

tively. We define their action on a product of fields as

-P( t1· (...m()Pl (Pn) = (Pl + - q' - .* ) (t ... qmbp" Ct. Pn)
(4.35)

where we have defined 7'P = n-HP + PA. Note that these label operators always

act in the forward direction. The hermitian conjugate of these operators acts in the

backward direction so that

O ... 1 'L 'P1 n) ( +*+ P....* m) (ON~1 ¢ > q).+ q~-p m¢ . t(Pl 4.Pn)

(4.36)
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The introduction of these label operators allows us to write

ZAO (e-ZPX n,p(x)) - e- PX (P' + Zaf) n,p(x), (4.37)

so that all the derivatives a0p in SCETI scale like QA2

0A QA 2

(4.38)

and all the large phases get pulled out in front of the operator. The rapid oscillation

of the large phase relative to the slowly varying 0b~,p type fields in position space,

ensures conservation of label momenta

I d4x e-z(Pl+P2+'Pn)'x npl((X) .q n,pn(x) -+ (27r)362(pl' +P2, + **Pn)

X J(P- + P2- + ' ' ' pn )f d4X¢qn, pl(X) ... On,p (X) (4.39)

When the above property is combined with the sum over momentum labels that will

appear in the Lagrangian due to the substitution of Eq. (4.31), the delta functions

over the momentum labels can be removed with the implicit understanding that the

sum of the labels in a product of hard-collinear fields must add up to zero. This leads

to four rules regarding our label notation:

1. There is always an implicit sum over all label momenta unless otherwise stated.

2. For any interaction involving a product of fields with momentum labels pl, , p,

there is an implicit conservation of label momenta Pi + " + Pn = 0. This con-

servation of label momenta will also carry over to the Feynman diagrams.

3. The implicit sum over label momenta allows a change of variables on the labels

since the original summation variable is a dummy index.

4. In general PO = [PO] + OP where the square bracket indicates that the label

operator P acts only on terms within the bracket.
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What will the hard-collinear gauge transformations look like in the label formal-

ism? Consider a hard-collinear gauge transformation Uhc(x) = e A (x)TA with all of

it's support over hard-collinear momenta as in Eq. (4.26). Just as we did for the

hard-collinear fields, we can remove the hard momenta by a redefinition

Uhc(x) = e-'Q'xUQ, (4.40)
Q

such that 0,UQ QA2. We can extract the transformation of the hard-collinear

quark field n,p by looking at the transformation of the full hard-collinear field n (x) =

Ep e - zQ ' , p

, = A e-q' n,q UhC.O = E e (Q+P)xUQ~n,p. (4.41)
q Q,q

For clarity, in the above equation we make the summation over labels explicit. Using

the orthogonality property of the phases3 f d+xd2x xe- (q- k)' x oc (q--k-)62 (q _k),

we arrive at the transformation of the hard-collinear label fields

6n,q , EUq-pen,p, (4.42)
p

where in the above equation there is no sum over q. One can similarly derive the

transformation for the hard-collinear gluon label fields An,q. However, we postpone

this result until later in the section after we have discussed how to incorporate the

label formalism for covariant derivatives.

We now apply the full power of the label formalism to separate out the hard parts

of momenta in the EFT and make power counting as transparent as possible. We can

break up the covariant derivatives of SCETI into terms characterized by their scaling

in powers of A just like the decomposition of the ordinary derivative in Eq. (4.37).

3We remind the reader that the label momenta p have non-zero components only for p- and pi.
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For the zn * D and zD1 components, the decomposition is given by

z, D = zhn Dh + Dus,

Ao A2

where zD,, was defined in Eq. (4.22) and

zt* Dhc - P + gn * A,q tzDh _ Pi + gA,,ql.

No such decomposition is required for the n D component since all it's term have a

homogeneous scaling in A

znm. D = zn * Dus + n An,q.

A2
A2

(4.45)

As promised we now state the leading order transformation of hard-collinear gluon

label fields under hard-collinear gauge transformations

(4.46)A,q -UQAUQ,+R-q + UQ [, UQ-q] 
Q,R g9

which can be derived in the same way as we did for the hard-collinear quarks and

once again there is no sum over q. Here we have defined

l'- -_ 7P +P +jl + (-.4n -Du,,
22

which is obtained after dropping the order A2 terms in the equations of (4.43). It is

interesting to note from this example that hard-collinear gauge transformations will in

general relate the coefficients of terms of different order in the EFT Lagrangian [24, ?].

It is possible to use redefined fields so that the gauge transformations do not mix terms

of different order in power counting. This was shown in [24, 32]. We simply state
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the result that is relevant to us. In terms of the redefined fields the n" and perp

components of the total covariant derivatives get modified

if * D = n * Dhc + Whczi DusWC, zDA = zD± lA + WhczDs± Wtc (4.48)

where the Wh, are Wilson lines that will be defined in the next section.

We now have all the pieces needed to rewrite the hard-collinear Lagrangian £hc

of Eq. (4.19) in label notation. In fact, with the power counting of the various terms

in the covariant derivatives made explicit by Eqs. (4.43) and (4.45), we can obtain a

power expansion of £hc

£hc = (hc) + £(1) +'" (4.49)

where the superscripts denote the order in A. Ignoring the order A2 terms in Eq. (4.43),

we obtain the leading order hard-collinear Lagrangian [18]

( ( , I . Dus + gn An,q + (Pi + gP_) 7 + g. A, (+ g-/.*A, t (] 2,
(4.50)

where as discussed earlier there is an implied sum over all momentum labels and an

implicit conservation of the label momenta in each term of the sum. The leading order

hard-collinear Lagrangian of the above equation is the main result of this section.

The homogeneous scaling of the Du, as seen in Eq. (4.45) implies that all the terms

in the light and heavy usoft quark Lagrangians £s and Lh, defined in Eqs. (4.21)

and (4.23) respectively, have the same scaling and can be checked to be of zeroth

order

£CusN£_ --h A° . (4.51)

As a result there is no expansion for the light and heavy usoft quark Lagrangians £~

and Ls similar to Eq. (4.49) for the hard-collinear Lagrangian. Subleading terms
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involving the usoft quarks will appear in 'Chc,us defined through Eq. (4.9).

4.2.4 Wilson Lines

As we saw in section 4.2.2, SCETI has hard-collinear and usoft gauge symmetries as

the relevant subset of gauge symmetries in QCD. However, the hard-collinear gauge

symmetry is not manifest in the current form of the leading order hard-collinear

Lagrangian Lh() in Eq. (4.50). We would like to recast Lh() in a form that will make

hard-collinear gauge invariance manifest at leading order and is the main goal of this

section. In the course of doing so we will be led to the introduction of Wilson lines.

We introduce a order A° object W which is a function of f . An,q

TV= [ A exp -gi. An,q)], Wt = [ E exp (-gi. A*,q- )], (4.52)
perms perms

and satisfies WtW = 1. In the expansion of the exponential we sum over all permu-

tations of the gluon fields and in the Feynman rules the ! in this expansion cancelsn

the n! from the permutation of the gluon fields. It is easy to show that W satisfies

h * DhCW= [ (P + gn Anq) W] = 0. (4.53)

We note that the above equation looks a lot like the equation for a Wilson line

along a path in the n" direction. We will come back to this point and make the

connection clearer later in the section. For now let us proceed and try to figure out

the transformation of W under a hard-collinear gauge transformation. We will show

that the correct transformation of W is given by

W UTW, (4.54)

as follows. We note that for a given boundary condition, Eq. (4.53) has a unique

solution and that UTW satisfies Eq. (4.53) with (P + gh* An,q) transformed using
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Eq. (4.46)

KP + g{UQ i An,R UQ+Rq + UQ [PUQ] }) UTW]9~~~~~~~
= [(UT{*.T+P}+gUQ.AnRuqUT+ii.(q-Q)QU -qUT)w]

= [(UT {ii.T + P} + gUQ * An,R-n * QUQU!qUT)W] (4.55)

= [UT(P + gA * An,R) W] = 

In the second line we have used (for fixed p) P~n = [Pn,] + ,npP = Onp(
p + P). To obtain the third and fourth lines unitarity of the gauge transformation

Utp+r Up+r = r,r' (with fixed r, r') was used. Thus, we see that UT is a solution

of the linear equation with (P + gh *An,q) transformed using Eq. (4.46). Thus, from

uniqueness the transformation is given by Eq. (4.54). This immediately allows us to

write a hard-collinear gauge invariant combination

Wrenp, (4.56)

which can be used as one of building blocks for constructing gauge invariant operators.

We will see examples of this later on. Similarly, one can write down another building

block using the perpendicular hard-collinear covariant derivative

Wt 'hL,,p, (4.57)

which is suppressed by one power of A relative to the building block of Eq. (4.56).

The corresponding building block using zn . Dhc can always be rewritten to arrive at

the form in Eq. (4.56) as we now show. Using unitarity WW t = 1 and Eq. (4.53),

o = [P (WW) ]

= [PWWt] + [WPWt]

= -g* Anp + [WPWt]v (4.58)
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which combined with WPW t = [WPWt] + P gives

zn- Dh = WPWt. (4.59)

Thus, the building block Wtz· Dh,(,p can be rewritten as

wtzt Dh,6,n, = (Wtdi DhCW) (wtfnp)

= pWt,p, (4.60)

which is of the same form given in Eq. (4.56). In fact, by replacing P with any

function f (P) in Eq. (4.58), we can show

f(Pn. DhC) = Wf(P)Wt. (4.61)

In particular, we can write 1/- Dh, as W Wt in the second term of the hard-

collinear Lagrangian L() in Eq. (4.50) to arrive at the form

Lhc = Tp' [in Dus + gn * Anq + (ZP/ + 941n,)W Wt(ZP1 + 9-4'1 n,t)] #6np. (4.62)

We now see that hard-collinear gauge invariance is made manifest. The first two terms

together are easily checked to be invariant while the last term is now written as a

product of the hard-collinear gauge invariant building blocks of Eq. (4.57). Since the

hard-collinear gauge transformations don't commute with label operators, the 1/P

operator in the second term sits between gauge invariant products and appears in the

denominator by dimensional analysis. In fact using the constraints of power counting,

gauge invariance, and dimensional analysis, we the above form of the leading order

hard-collinear Lagrangian L() can be uniquely determined. The terms in £() are

protected from acquiring anamolous dimensions by normalizing the hard-collinear

quark kinetic term and imposing gauge invariance. Expanding the factors of W gives

an infinite set of leading order couplings of hard-collinear quarks to fl. An,q gluons.

We now turn to an interpretation of these objects W which from the point of view
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of SCETI are just functions of ft An,q gluons. It can be shown that the object W is

the fourier transform of the position space Wilson line

W(x, -coo) = Pexp zg f dsii* A(x + + sn +)) (4.63)

along the n direction. We can see this by fourier transforming the exponential in

Eq. (4.52)

- dq-e-iq-+ Anq - f dy+ dq eiq- (Y+-+)t An(Y)
q+ + z 27r y - Aq+

- J dy+(-2rzO(x+ - y+))n An(y+)

zg f ldy + An (y+)

zgJ ds An(x + + sn+). (4.64)
-00

For brevity in notation we have used f. q = q-, etc. The +te prescription was used

while integrating over q- to close the countour in the bottom half of the complex q-

plane giving rise to the step function O(x+ - y+) in the second line. In the last line

we changed the integration variable y+ - sn+ = + - x+ to obtain the form of the

exponential for the position space Wilson line in Eq. (4.63). Finally, it can be shown

that the +ze prescription enforces path ordering and we refer the reader to [43] for

an illustration of this point at order g2.

We should not be suprised at the appearance of Wilson lines along the nP direction.

Recall that the interactions of hard-collinear particles among themselves involve the

exchange of order Q > QA momenta in the n direction. Thus, in our effective

theory at the scale QA, such interactions will be non-local giving rise to Wilson

lines. However, in our formulation of SCETI using label operators we have removed

these hard fluctuations through field redefinitions like the one in Eq. (4.31). However

these field redefinitions simply relate the label fields 0,,p to the position space fields

On(x) through a fourier transform over the label momenta. As a result in our label

formulation of SCET , we see the presence of the "momentum space" Wilson lines

80



W which can be thought of as connecting hard-collinear particles in different p- label

bins(see fig. 4.2.3).

The transformation of the momentum space Wilson line W, shown in Eq. (4.54),

under a hard-collinear gauge transformation is consistent with that of the position

space Wilson line W(x,-oo)

W(x,-oo) -+ Uh,(x)W(x,-oo)Ut(x - ooi), (4.65)

with Ut (x- oof u) = 1. In other words, the hard-collinear gauge transformations

have no support at n x - -o. But this follows immediately from the scaling of the

hard-collinear momenta

On(x) = dp-d2p±e(-p- .x+-zpl x)n,p 4 0, (4.66)

as x+ -+ oc, -co due to rapid oscillations of the exponential e(- '
P 

- 'x+) over the smooth

function Onp in the region of large p-. For clarity we have switched from our usual

convention of denoting the integral over label momenta by a summation symbol, and

have made the integral explicit. So, all hard-collinear particles are effectively confined

to a bin near n x 0(see fig. 4-3). More intuitively, this just corresponds to the fact

that

n- x = t - z - 0, (4.67)

for hard-collinear particles close to their light cone direction nl. Thus, with all hard-

collinear gluons confined to be near the n x 0 bin, the gauge transformation

Uhc(x) has no support for large n · x which is consistent with the transformation of

the momentum space Wilson line W shown in Eq. (4.54).

4.2.5 Hard-Collinear and Ultrasoft Decoupling

Now that we have a manifestly gauge invariant leading order Lagrangian £() for

hard-collinear quarks, we could go ahead and write down the leading order Feynman
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Figure 4-3: The hardcollinear particles with a large momentum component f p - Q
are effectively confined to bins near n x 0.

rules for SCET . However, we momentarily postpone this to the end of this section

and first discuss another important property of the hard-collinear Lagarangian. This

property called Ultrasoft-Hard-Collinear decoupling [22], is at the heart of factoriza-

tion theorems in SCET and has a huge impact in our ability to make phenemenological

predictions. In fact, it is this property of SCETI that will allow us to implement heavy

quark symmetry in B - D(*)7r type decays which cannot not be done in HQET alone.

The idea of ultrasoft-hard-collinear decoupling is to reformulate SCETI in terms

of new fields such that there are no interactions between hard-collinear and usoft par-

ticles at leading order A°. We see that in it's current form in Eq. (4.62), £() involves

the interaction of a hard-collinear quark with a usoft gluon through DUS. Ultrasoft-

hard-collinear decoupling uses redfined fields such that this interaction disappears at

leading order. In this new formulation one can factorize amplitudes for appropriate

physical processes at leading order and then systematically compute power correc-

tions to it. We will show how this works in detail for the B -+ D(*)7r type decays in

later chapters.

We now show how decoupling works. Just as we introduced hard-collinear momen-

tum space Wilson lines W in the previous section, we can define a usoft momentum

space Wilson line

00 (=1Eg)m nAa ... n.Aam Tam Ta (Y=1±ZZ m! .. (4V6)
M =l perms m! n kl n.(kl + k2) ... n ( fiml ki) Tansm usf

where n ki denotes the nl momentum component of the ith fourier transformed usoft
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gluon A (ki) and the ai denote color indices. It is related to the fourier transform of

the position space Wilson line

Y(x) = Pexp (igf dsn.Aas(ns)Ta)
(; ) 0 U 

(4.69)

In a manner similar to the proof of Eq. (4.61), we can show

t nDu Y = n a. (4.70)

Next we perform field redefinitions which introduce new fields denoted by the super-

script (0)

n,p = y (o),n~~p - Sn~p A= YA(o) yt,n n,p (4.71)

The field redefinition for the hard-collinear gluon implies a redfinition for the hard-

collinear Wilson line

W = E exp (g Yn. A(o) yt)] =yW(O) yt (4.72)

In Eq. (4.71) we have also included the field redefinition for the ghost fields cn,p. For

the hard-collinear Lagrangian / ( ), the above field redefinitions give

(O~) = °) vt {in Du, + gYnA(°)Y t + + Y )q yt) YW(O) Yt -- 1np'" n,q nq1
xYW(°)tYt (If + Yg Yt)}2Y }

- ?() {Ytin- D,,Y + gn.A(° ) + ( 1 + g4,,0) W(°) W()t= ~,pt n { a n + +9 ) ) (+n,q n q

- -(0) -el~ a + gn.A~0 + + 9g )J1 w(0) I (O)t ( + g4n,i o O+gnA( ) +(I ngqq ) W°
-- %n~ ~~~ ,qf n,q 1 ,

(4.73)

+ -4n qa ) (,p)

)1 ) 0 d(4).

(4.74)

We see in the last line above that in terms of the new fields there are no usoft-

hard-collinear interactions. We have, at leading order, decoupled the usoft gluons
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Figure 4-4: The interactions of usoft gluons with hardcollinear quarks can be summed
into a Wilson line along the path of the hardcollinear quark. [22]

from the hard-collinear quarks at the level of the Lagrangian itself. Similarly, we the

hard-collinear gluon Lagrangian becomes

(°h = 21 tr f iDo) + gA(°) iDT o)+ gA)v 2+- 1tr (0 [i), A(O)4] 1
(o) 2L. nq +O nq -tr nq

292 tr±) 

+2tr C( °) [in(°) [io) +gA (°) , c( °) ]} (4.75)I- I~ (0.. n,q n,pj

where

n u_
i(0) = + P + -- i nu. (4.76)

The result in Eq. (4.75) shows that the new hard-collinear gluon and ghost fields

A °) and c() also decouple from usoft gluons. From now on we will work in this new

formulation in terms of the redefined fields and drop the superscript (0) for notational

simplicity.

From the form of the field redefinitions in Eq. (4.71), we can interpret this result

of decoupling as the statement that the interactions of hard-collinear particles with

usoft gluons can be summed into Wilson lines Y along the n" direction at leading

order. This idea is shown pictorially in Fig. 4.2.5. We stress that decoupling is only

a leading order property of SCET. Beyond leading order, there will be interactions

between hard-collinear and usoft gluons that cannot be summed into Wilson lines.

Finally, we end this section by giving the Feynman rules for the leading order inter-

actions between hard-collinear quarks and gluons as determined by £(c) in Eq. (4.73).
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Figure 4.2.5 gives the Feyman rules for the first few terms of (°).*hc '

4.3 SCETI: Beyond Leading Order

In the previous section we derived the leading order Lagrangian for SCETI which

involved no interactions between usoft and hard-collinear particles. However heavy

hadron decays cannot proceed without usoft-hard-collinear transitions. Such transi-

tions occur at subleading order in SCET . To go beyond leading order it becomes

convenient to establish a set of constraints that will allow us to write down a com-

plete set of operators onto which we can match QCD plus Fermi theory which was

the relevant the EFT at p - Q.

4.3.1 Operator Constraints and Symmetries

There are three main guiding principles for the construction of operators in SCETi

1. Power counting.

2. Hard-collinear and usoft gauge invariance.

3. Reparameterization invariance(RPI).

We have already discussed the first two principles in some detail. In addition. SCET

also contains a kinematical reparameterization invariance [90] analogous to HQET

which we now discuss.

Reparameterization Invariance

SCETI is an EFT constructed in a frame of reference in which the degrees of freedom

have usoft or hard-collinear momenta. In a different frame of reference these same

degrees of freedom will in general have very different looking momentum scalings for

which SCETi is not appropriate. However, the appropriate frame of reference for

SCETI is not absolute. SCETI will be invariant under the subset of Lorentz trans-

formations that do not alter the momentum scalings of the usoft and hard-collinear
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particles. The invariance of SCETI under this subset of Lorentz transformations is

what we call the RPI symmetry of SCET . In particular, due to the vectors n, ,

Lorentz invariance is broken by the generators n' MM, , but preserved under

In HQET, RPI is the result of the freedom to make small changes to the heavy

quark four velocity label vA without changing the scaling of the soft momenta and

preserving the on-shell condition v2 = 1 for the heavy quark. In SCET, RPI mani-

fests itself as the freedom to make changes to the light cone vector label n" without

changing the scaling of the hard-collinear momenta and preserving the normalization

conditions n2 = 2 = 0, n = 2. There are three types of RPI transformations

allowed

type I: n -+ n + A, A A.

type II: - + e, e A° . (4.77)

type III: n -+ en, n -+ e- h, a A°.

The scaling of the transformation parameters Ai, el, a given above are determined

by the requirement the scaling of the hard-collinear momenta remain unchanged. For

example, under a type I RPI transformation, the hard-collinear momentum p =

(n -p, -p,P ) (A2, A° , A) transforms as

pI_ (n +z ) + AIn+ ()x n+ (+ + ±),

4.; 4 4 (4.78)

A2 A 0 A

where the last line shows the required scaling for the hard-collinear momentum com-

ponents and implies that A - A.

RPI transformations also affect the hard-collinear fields due to the requirement

of preserving Eqs. (4.13), (4.15), and (4.53). We refer the reader to [90] for further
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details. We point out that just as in HQET, RPI transformations in SCETI connect

operators at different orders which provides severe constraints on the Wilson coeffi-

cients of subleading terms. In fact we will exploit this property in the next section to

derive the order A usoft-hard-collinear coupling using tree level equations of motion.

4.3.2 Ultrasoft-Hard-Collinear Transitions

In this section we derive the form of subleading usoft-hard-collinear interactions using

tree level equations of motion. In principle there are two problems with this approach.

The first is that we may miss non-trivial Wilson coefficients that may arise during

matching beyond tree level and the second is that we may miss operators whose tree

level Wilson coefficients vanish. However, it was shown in [100], that using RPI

invariance along with gauge symmetry and power counting, neither of these problems

arise up to order A2. We will assume this result and derive the usoft-hard-collinear

Lagrangian at order A using tree level equations of motion.

For simplicity of notation we drop label fields in the following and will put them

back in the final result. Furthermore, in what follows we will be starting at the very

beginning before having made the ultrasoft-hard-collinear decoupling transformation.

We will make the decoupling transformation after we arrive at the final result.

We simply generalize our procedure for obtaining the leading order hard-collinear

Lagrangian by including the usoft quark field in the decomposition of the quark field

into SCETI fields

T + nt + qus (4.79)

Starting with the action £ = iPT we get

£ = + in-Dn+ i n + G,94c qu + qu 4 , + q, g4l n + qus ius qus

+ [2niLn + ni Dn + q] (4.80)+ [&P ,+ ift D~f, + (4.80)
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where D D + Dhc. The equation of motion for ~n is given by

= 2- [iPGn + 9n qus] in.D 2

Substituting Eq. (4.81) in Eq. (4.80) and only keeping mixed usoft-hard-collinear

terms(since this is the additional piece we want) we get

£C = [g-~n qu, + n 2 iPlI D94n aud] + [qu, 94n , + qg 94n i iPL2 n] -

(4.82)

Next we use the power counting scheme of SCETI to expand the above Lagrangian

in powers of A. The terms up to first order in A are given by [100]

Cl) = n(g91 - i__1 gn.

where as always the superscript denotes the order

nomenology which we discuss in later chapters, it is

will not worry about the further suppressed terms

more compact form

in A. For the purposes of phe-

enough to keep only £(l) and we

[100]. We can write (1) in the

q nD iglfWqu + h.c.,~[lq) ff-D, i'O (4.85)

by introducing the field strength

(4.86)

Finally, we perform the decoupling transformation of Eq. (4.71) to arrive at

1
£1) = f i - igJ/3 WYtqu8 + h.c.,

irh .Dc
(4.87)

as our final result for the order A usoft-hard-collinear interaction. In the above expres-
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Figure 4-5: Order A Feynman rules: collinear quark propagator with label and
residual momentum k, and collinear quark interactions with one soft gluon, one
collinear gluon, and two collinear gluons respectively. [22]

sion the hard-collinear fields are the redefined fields of Eq. (4.71) with the superscript

(0) dropped. In other words the hardcollinear fields in the above expression do not

transform under usoft gauge transformations. Usoft gauge invariance in made mani-

fest through the invariant combination Ytqs. To see the gauge invariance note that

under a hard-collinear gauge transformation Uhc we have n -+ Uhcn, W - UhcW,

l - UP -_ U, and (. D)- 1 U (.D )- 1 Unt so all factors of UhC cancel.

The usoft-hard-collinear transition L(1) will play a crucial role for color suppressed

decays of the type B -+ D(*)7r in which soft spectator quarks in the B, D(*) mesons

end up in the energetic collinear pion. We will discuss this at length in subsequent

chapters. In Fig. 4-6 we show the Feynman rule for the first term in £(1) which

involves one hard-collinear gluon.
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4.4 Matching

The previous sections were devoted to the development of SCETI as the EFT near the

P , /QAQcD entirely in terms of usoft and hard-collinear degrees of freedom. We are

now in a position to match Fermi theory onto SCET . However, the peculiar nature

of SCETi due to the presence of three different scales in the hard-collinear momenta

leads to non-trivialities in the matching procedure which we explore in this section.

In fact we will find that matching simplifies dramatically due to all the symmetries

of SCETI discussed in previous sections.

4.4.1 Operator Wilson Coefficients

In matching from Fermi theory at the scale Q onto SCETI at , QAQCD,

the Wilson coefficients will depend on the hard scale Q. In other words, the physics

of the hard scale is captured by the Wilson coefficients and SCETI describes the

dynamics at the scale L - /QAQCD. However, as we have discussed before the hard-

collinear modes with virtuality t - /QAQCD possess a hard momentum component

i p Q > /QAQCD making this separation of scales more difficult.

To get a better idea of the interplay between the different scales associated with

hard-collinear momenta, let's consider the example of heavy to light semileptonic

decay. Consider the matching [18] of the weak Hamiltonian of Fermi theory for heavy

to light semileptonic decays

Heff - V C () Jhad J, (4.88)

where J is the leptonic current and Jhad is a heavy to light hadronic current of the

form

Jhad = qFb (4.89)

for the decay of a b quark into a light quark q. The Wilson Coefficient Cfull(/) has

been run down from -i Mw to Imb Finally, F represents the general Dirac structure
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Figure 4-6: Feynman rules for the subleading usoft-collinear Lagrangian L ) with
one and two collinear gluons (springs with lines through them). The solid lines are
usoft quarks while dashed lines are collinear quarks. For the collinear particles we
show their (label,residual) momenta. (The fermion spinors are suppressed.)

of the operator and it's details will not be relevant for our discussion.

The tree level matching of Jhad onto the SCETI operator Jheft is shown pictorially

in Fig. (4-7) [18]. On the left we show hard-collinear gluons interacting with a usoft

heavy b quark in the full theory. Each hard-collinear gluon knocks the b quark far

offshell and this offshell mode must be integrated out to match onto SCETI which

only contains a b quark that is offshell by a small amount - AQCD. Note that it is the

hard . p mb component of the hard-collinear gluon responsible for knocking the b

quark far offshell. As a result the Wilson coefficient will depend on ft p. However, at

the same time, the hard momentum component h p is still dynamical in SCETI due

to the exchange of h- p momentum components among hard-collinear modes. In other

words, the hard component ft .p appears both in the Wilson coefficients and in the

EFT at the same time!

In the label formalism introduced in the previous sections, we introduced EFT

fields bn,p such that the hard momentum component h p - Q gets absorbed into the

label and the dynamical momenta now have fluctuations Oiqnp (A2, A2, A2 )q n,p.

In this way we managed to seperate the hard scale Q from the EFT at the scale

1.1 .-- QAQCD. But from our discussion above this implies that the Wilson coefficients

in SCETi will depend on the hard-collinear field labels. In particular, we can express

the Wilson coefficients as functions of the label operators

C = C(p, pt) (4.90)
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In this sense, the Wilson coefficients become operators that act on the labels of the

SCETI operators. When this formalism is combined with the gauge symmetries and

power counting framework of SCET , matching calculations can simplify dramati-

cally. We now illustrate this for the matching of the heavy to light operator Jhad onto

SCET . We use two guiding principles

* Write down all possible operators in SCETI consistent with power counting,

gauge symmetry, and RPI.

* Operator Wilson coefficients for SCETi operators are inserted only between

gauge invariant blocks.

To avoid confusion, we first work with fields of SCETi defined before the ultrasoft-

hard-collinear decoupling redefinition. We will rewrite the SCETI operators in terms

of the redefined fields as the very last step. At leading order in SCETI, there is only

one gauge invariant heavy to light operator and Jhad matches onto SCET as

Jhad = [C(P),pW] F h. (4.91)

We note that the Wilson coefficient C(P) can only be placed in front of the hard-

collinear gauge invariant block 4 npW. Thus, we see that hard-collinear gauge in-

variance relates the Wilson coefficients of the various terms obtained after expanding

out the hard-collinear Wilson line W. In other words, if we were unaware of hard-

collinear gauge symmetry and we attempted to match diagrammatically as in figure

4-7, our matching equation would look like

Jhea = co(n p, l,) ,p h + cl ( p, q, u) n,p (g n . Anq)Phvad lrh

+C2(n 'p,i h ql, * 'q2,1/ ) en,p (g O' A n ql ) (g n' A n q2) F h v + ..,(4.92)

where the ellipsis stand for terms of the same order with more powers of h . An,q. We

would not expect the Wilson coefficients ci to be related in any way since in general

4 Hence the Wilson coefficient is independent of Pt which only acts in the backward direction.
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they would be expected to evolve independently through the RGE equations down to

lower scales. But hard-collinear gauge invariance tells us that this is not the case.

In terms of the redefined fields of Eq. (4.71) with the superscript (0) dropped, the

SCETI heavy to light operator becomes

Jhad = [C(P)&,pw] r Yth, (4.93)

and we remind the reader that in the above expression the hard-collinear fields are

decoupled from the usoft fields and do not transform under usoft gauge transforma-

tions. So, we see that this SCETi operator is just a product of hard-collinear and usoft

gauge invariant blocks with a Wilson coefficient operator acting on the hard-collinear

block.

Finally we end this section by introducing notation that will make the separation

of the hard scale manifest. We define

(&,npW) = ,GW6(w - Pt),

(4.94)

in terms of which we can write Eq. (4.93) as a convolution

Jhad = dw{ C(w) (,pW) F YthV }, (4.95)

and all the physics of the hard scale is now contained in C(w). In other words, we

have "factorized" the hard scale physics.

4.4.2 SCET - SCETII

SCETII

We are now ready to match SCETI onto SCETI . Recall that SCETI is the appro-

priate EFT of soft and collinear degrees of freedom near the AQCD scale. The form

of SCETI is similar to that of SCET . Recall that the soft modes of SCETII are
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Figure 4-7: Matching for the order A Feynman rule for the heavy to light current
with n collinear gluons. All permutations of crossed gluon lines are included on the
left. [18]

identical to the usoft modes of SCET . The collinear modes of SCETII are contained

in the hard-collinear modes of SCETI and correspond to subset of "softer" fluctu-

ations (p2 - AQcD) of the hard-collinear modes in the sense of Eq. (2.1). Thus,

the SCETIn Lagrangian is obtained from SCETI by identifying the usoft fields with

the soft fields and keeping only the "softer" fluctuations 5 of the hard-collinear fields

which are identified with the collinear fields of SCETI . The physics that is missed

by setting the "harder" hard-collinear fields to zero will be captured by the Wilson

coefficients or "jet functions" of higher dimensional or non-renormalizable operators

of SCETI . But these higher dimensional operators are power suppressed. Thus, to

leading order SCETI and SCETIn have identical Lagrangians with the usoft and soft

fields and hard-collinear and collinear fields identified respectively. We summarize

the content of SCETI and SCETII in Table ??.

All the arguments for gauge symmetry and RPI invariance of SCETI carry over to

SCET . In particular, SCETII will have Soft and Collinear gauge symmetry and one

can construct gauge invariant objects as products of soft and collinear gauge invariant

blocks.

We summarize the two step matching procedure[25] (QCD+Fermi) - SCETI -,

SCETIL below

* Match QCD+Fermi theory onto SCETI at the scale t Q. Here the hard-

5We mean this in the sense of Eq. (2.3), where we set Oh to zero since 02q, QAQCD and only
the qs modes are kept such that O2 h AQCD.
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collinear fields of SCETI have virtuality P, QAQCD 

* Factorize the usoft-hard-collinear interactions with the field redefinitions of the

ultrasoft-hard-collinear decoupling.

G -,p y (o) A = YAMoL yt,
np- ~n,p, X A ,p- np(°AH- () tn,p

followed by a renaming of the ~(0 Ah, fields in which the superscripts (0) are

dropped. Run down to the scale p QAQCD using the RGE equations in

SCETi.

* Match SCETI onto SCETII at the scale t - VQAQCD. At leading order, since

the SCETI and SCETI, Lagrangians are identical, all time ordered products will

exactly agree. Thus, the leading order matching amounts to identifying usoft

fields with soft fields and hard-collinear fields with collinear fields(p A'CD).

Run down towards AQCD using the RGE equations in SCETII .

We illustrate this matching sequence by continuing with our example of heavy to

light semileptonic decays from the previous section. We only consider matching at

tree-level which will allow us to ignore the RGE running between scales altough this

can be included in a straightforward manner. We have already performed the first

two steps in the matching procedure

1. Match QCD+Fermi theory onto SCETi:

Jhad = erb -+ [C(P)&,FW] F hV.

2. Perform decoupling field redefinition:

~[C(-)6W '] Fh' = [C(P)- W(p)] yt thb

followed by a renaming of the new decoupled hard-collinear fields by dropping
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the superscript (0)

[C(P)(°)W(° )] F yth()u > [C(P)n,pW] r yth.

3. Match onto SCETI, at leading order by identifying usoft and hard-collinear

fields with the soft and collinear fields of SCETIn respectively:

[C(P)npW] r Yth' + [C(P),p W ] F Sth, (4.96)

where we have denoted the SCETI collinear fields with numeral II for clarity

but is coventionally dropped. Note that we have identified the usoft Wilson line

Y of SCETI becomes the soft Wilson line S of SCETIi under the identification

of the usoft and soft fields.

We note that one could have arrived at the above result by considering a direct match-

ing from QCD onto SCETIi without using the intermediate theory SCET . We can

write down a set of gauge and RPI invariant leading operators in SCETII onto which

QCD will be matched. Doing this we will immediately arrive at the SCET1 operator

~npWF Sth~. However, neither gauge invariance nor power counting can tell us

the exact path of the Wilson line S from -oo to x since all the components of

the soft fields A' scale the same way. The only way to determine this path of the

soft Wilson line is through an explicit matching calculation which integrates out the

p2 QAQCD [63, 26] fluctuations generated from the soft-collinear interactions.

The procedure described above in which one goes through SCET, as an inter-

mediate step is a simpler alternative. In particular, the path of the Wilson line S

is determined by the path of Y which was introduced in the field redefinitions of

Eq. (4.71) in order to decouple hard-collinear and usoft modes in SCET .

Going through SCETI becomes especially useful at subleading order where time

ordered products in SCETI and SCET1I can differ. In particular, time ordered prod-

ucts in SCETI can induce non-trivial jet functions in SCETI1 containing the physics

of effects at the p, 4QAQCD scale. In this case matching directly from QCD to
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SCETI can become even more diffcult. On the other hand SCETI gives well defined

Feyman rules along with a power counting scheme for computing these non-trivial

jet functions. We will explore such situations in detail in the next chapter when we

apply SCET to color suppressed B-decays which proceed only at subleading order.
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Chapter 5

Color Suppressed Decays

We are finally ready to consider applications of the SCET discussed in the last chapter.

We focus on two body nonleptonic decays of B mesons. Typical decays of this kind

are B -+ D7r, - D*7r, B -- Dp, B - D*p, B --+ DK, - D*K, B -+ DK*,

B -+ D*K*, B -+ DK-, - DK*-, ... and will be generically referred to as B -+

D7r decays. Since these decays are the simplest of a complicated array of hadronic

channels a great deal of theoretical work has been devoted to their understanding [27,

50, 97, 5, 45, 36, 61, 41, 101, 29, 83, 21, 109, 96, 14, 47, 110, 82]. In subsequent chapters

we also consider the color suppressed decays B -+ D(*){77', , w} where the light

meson is an isosinglet and B - D**7r type decays where the charmed meson is in an

orbitally excited stated.

5.1 Color Allowed and Color Suppressed Decays

After integrating out the W-boson the weak Hamiltonian for B -+ D7r decays is

?- W = -"VcbV*d[CI (J)(cb)v-A(dU)V-A + C2([)(6ibj)v-A(djUi)V-A] , (5.1)

where i, j are color indices, and for Ib = 5 GeV, Cl (b) = 1.072 and C2(Pb) = -0.169

at NLL order in the NDR scheme [40]. For the Cabibbo suppressed 7/w we replace

d -s and Vu*d - Vu*. It is convenient to categorize the decays into three classes [27],
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depending on the role played by the spectator in the B meson (where "spectator" is

a generic term for the flavor structure carried by the light degrees of freedom in the

B). Class I decays receive contributions from graphs where the pion is emitted at the

weak vertex (Fig. 5-1T), while in class II decays the spectator quark ends up in the

pion (Figs. 5-1C,5-1E). Finally, class III decays receive both types of contributions.

Many of these channels have been well studied experimentally [52, 4, 48, 2, 49, 103],

see Table 5.1. Another method to categorize these decays makes use of amplitudes

corresponding to the different Wick contractions of flavor topologies. These can be

read off from Fig. 5-1 and are denoted as T (tree), C (color-suppressed), and E

(W-exchange or weak annihilation).

5.1.1 Theoretical Status

Long ago, it was observed that approximating the matrix elements by the factorized

product Dl(cb)v-AIB)Trl(du)v-A[O) gives an accurate prediction for the branching

fractions of type-I decays, and a fair prediction for type-III decays. For all class-I and

-II amplitudes a similar procedure was proposed [27]. In terms of two phenomeno-

logical parameters al,2,

iA(B ° D+r -) = bVd al(D7r) (D+(cb)v-AB 0)(7-l(du)v-A 0), (5.2)

iA(B ° -+ D°Tr°) = -cbV*d a2(D7) ( °0 (db)v-AB 0)(D0O(SU)v-A0).

Type-III amplitudes are related by isospin to linear combinations of type-I and II

decays. Naive factorization predicts the universal values a = C + C2/N, and

a2 = C2 + C1/N,. Phenomenological analyses testing the validity of the factorization

hypothesis have been presented in [97], where typically contributions from E are not

included. These contributions can be modeled using the vacuum insertion approxi-

mation which gives the D - 7r form factor at a large time-like momentum transfer

1We will use the phrase naive factorization to refer to factoring matrix elements of four quark
operators even though this may not be a justified procedure, and will use the phrase factorization
for results which follow from a well-defined limit of QCD.
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T BO _ D+7r- C B- : --+ Drr- E-
B- -+ D°r - 7r B - Dw7r
Figure 5-1: Decay topologies referred to as tree (T), color-suppressed (C), and W-
exchange (E) and the corresponding hadronic channels to which they contribute.

q2 = m2. For this reason, they are often estimated to be suppressed relative to the

T amplitudes by ACD/m [29].

One rigorous method for investigating factorization in these decays is based on the

large NC limit of QCD. In this limit the amplitudes for type-I decays start at O(NC/ 2)

while type-II decays are suppressed by 1/NC (whence the name color-suppressed). The

type-I amplitudes have a form similar to Eq. (5.2) since non-factorizable diagrams are

suppressed, while type-II decays simultaneously receive contributions from factorized

and non-factorizable diagrams. For a typical class-II decay, a Fierz transformation

puts the amplitude into the form

iA(B° - Dr °) = GFVcbV*d{ (C2 + ) (D7r°oI(db)(6u) B°) (5.3)

+2C (D%°7r (dTab) (Tau)IB°) }.

where the (V - A) 0 (V - A) structure is implicit. The two matrix elements have

expansions in 1/NC which start with terms of order N 1/2 and NC- 1/2, respectively

1 D(*)or= _odu 1F L,(*) + (5.4)

( D(*)rOl (db)(cu)I1o) -F() +1,

1e 2(D(*) 7r (dTab)(c TaG)IB°) = N (+ 3G*) +...
r, F/ 2 Ng Nca)N N

where F (*) NO, G*) - N° . The Wilson coefficients in Eq. (5.1) can be assigned
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scalings with Nc following from their perturbative expansions Cl O(1), C2 Nc1 ,

which roughly corresponds to the hierarchy in their numerical values at /b. The

leading terms are the matrix elements FO(*), which factor in terms of large NC form

factors and decay constants

N1/2F (*) _ (D(*)°OluJO)(or°ldblt°) + (D(*)°Tr°olulO)(OldbIB3o), (5.5)

plus the nmatrix elements G*) which are nonfactorizable. The naive factorization

assumption would keep only Fo(*) and neglect G(*). This approximation is not justified

in the 1/AJc expansion since G*) is enhanced by the large Wilson coefficient C1. In

either case, no prediction is obtained for the ratio of the B - D7r and B - D*7r

amplitudes,

7r A(B - D*O°7r°) (02 + Cl/N,)Fo* + (2Cl/Nc)G .56
A(B - D070) (C2 + C1/Nc)Fo + (2CI/N~)G (5.6)

Heavy quark symmetry does not operate with large NC factorization because for C

and E it is broken by the allowed exchange of energetic hard gluons between the

heavy quarks and the quarks in the pion. In contrast, we will show that expanding

about the limit E, > A this ratio is predicted to be 1 at leading order in A/Q. Here

A , AQCD is a typical hadronic scale.

Another rigorous approach to factorization becomes possible in the limit E, >

AQCD which corresponds to having an energetic light hadron in the final state. In

this thesis we analyze type-II decays using QCD and an expansion in AQCD/mb,

AQcD/mC, and AQCD/E (or generically AQCD/Q where Q ={mb, mc, mb - mc}). We

derive a factorization theorem and show that E and C appear at the same order in

the power counting, and are suppressed by AQCD/Q relative to T. Arguments for the

suppression of C by (AQCD/Q)1 and E by (AQCD/Q)12 appear in the literature [29],

but we are unaware of a derivation that is model independent. Our leading order result

disagrees with the a2-factorization result. Instead the amplitudes for B_ _ D(*)07r0

and B - D(*)°p° are determined by the leading light-cone wavefunctions q0,p, and

two new universal - D(*) distribution functions. Long distance contributions also
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occur at this order in AQCD/Q, but are shown to be suppressed relative to the short

distance contributions by an additional a,(Q)/Tr.

For type-I decays a color transparency [35] argument given by Bjorken suggested

A(B - D+7r- ) - (C1 + C2/Nc)fFD(m ) + O(aS(Q)). In Ref. [50] it was argued

that this factorization is the leading order prediction in the large energy limit Er >

AQCD, and in Refs. [101, 29] that corrections can be rigorously included. This

factorization was extended to all orders in a, with the proof of a factorization theorem

using the soft-collinear effective theory [21]

A(B -+ D(*)lr) = N(*) (wo, ) f dx T(*)(x, m,/mb, X) A(x, /) +..., (5.7)

where the ellipses denote power suppressed terms. This result is similar to predictions

obtained from the hard exclusive scattering formalism of Brodsky-Lepage [80], except

for the presence of the Isgur-Wise function, ((wo, ). The normalization factor is given

by 2

N®-GFVbV.* E(1jF- mB
N(*) - Go *b<d E(*f7,mD()mB ( + m()) (5.8)

- v~ E~~~f~~x/mD(*)m

The proof of Eq. (5.7) uses the heavy quark limit, so mD = mD* and N = N*. In

Eq. (5.7), gi(x, aL) is the non-perturbative pion light-cone wave function, and ((wo, l)

is evaluated at maximum recoil v.v' -+ wo = (m~ + m2 (*))/(2mBmD(*)). The hard

coefficient T(*)(x, I) = C(R((4x - 2)E~, p,mb), where the i correspond to the D

and D* respectively, and C($R - C(° ) + C() is the calculable Wilson coefficient of the

operators defined in Eq. (5.19) below. The renormalization scale dependence of the

hard scattering function T(x, [) cancels the dependence in the Isgur-Wise function

and pion wave function. In this framework [29] there is no longer a need to identify

by hand a factorization scale.3 In the language of SCET [21], the scale dependence

2Note for longitudinal D*, n-ED* = n.v'. Production of transverse p's is suppressed by A/Q.
3In naive factorization the hadronic matrix elements in Eq. (5.2) are independent of the scale

that separates hard and soft physics. The scale dependence in a and a2 then causes the physical
amplitudes to become scale dependent. The parameters a and a2 were therefore assumed to be
evaluated at a specific scale called the "factorization scale". In other words, the non-factorizable
effects were accounted for by allowing a and a 2 to be free parameters that are fit to data. The
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is understood from the matching and running procedure.

Eq. (5.7) implies equal rates for B -+ D+7r- and B0 -+ D*+7r- up to the ao(mb)

corrections in T(*) and power corrections. This prediction is in good agreement with

the observed data for type-I and III decays to 7r, p, K and K* as shown in Tables

I and II. For two-body type-I decays both the large NC and large energy mecha-

nisms make similar phenomenological predictions. However, these mechanisms can

be distinguished with B -+ DX decays where X is a multi-hadron state [14].

So far, no results of comparable theoretical rigor exist for the color-suppressed

type-II decays. In fact existing results in B -+ D7r and B -+ bK(*) do not support

naive factorization with a universal coefficient a2 [96]. Furthermore, it has been

argued that in general factorization will not hold for type-II decays [29].

Using the soft-collinear effective theory (SCET) [16, 22], we prove a factorization

theorem for color-suppressed (type-II) - DM decays, M = {1r°,p°,...}. These

decays are power suppressed relative to the type I decays, and our results are valid

at leading nonvanishing order in A/Q. The main results of our analysis are

* The color suppressed (C) and exchange (E) contributions to B - D(*)%r° are

both suppressed by A/Q relative to the amplitude (T). The C and E ampli-

tudes are found to be of comparable size since the factorization theorem relates

them to the same perturbative and non-perturbative quantities. Our result is

incompatible with the naive a2 type factorization.

* When our result is combined with heavy quark symmetry it predicts the equality

of the amplitudes for B0 -+ DOr0 and B ° -+ D*%r° (in fact for any DM and

D*M). This prediction is in good agreement with existing data and will be

tested by future measurements.

* Our result gives a new mechanism for generating non-perturbative strong phases

for exclusive decays within the framework of factorization. For DM and D*M

it implies the equality of the strong phases between isospin amplitudes. Fur-

thermore, certain cases with different light mesons M are predicted to also have

factorization scale can then be extracted from the scale dependence of a1 and a2 [97].
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a universal non-perturbative strong phase 0 in their isospin triangle.

* The power suppressed amplitudes for all color suppressed B -+ D(*)M de-

cays are factorizable into two types of terms, which we refer to as short dis-

tance (/U2 EMA) and long distance (u2
' A2) contributions. The short

distance contributions depend on complex soft B° -+ D(*)° distribution func-

tions, S(°'(k+, +), which depend only on the direction of M (the superscripts

indicate that two color structures contribute). For M = 7r, p the long distance

contributions vanish at lowest order in oa(Q)/rw.

Combined with Eq. (5.7) the results here give a complete leading order description

of the B -+ D7r isospin triangles.

In Section 5.1.2 we review the current data for B -+ D7r decays. The derivation

of a factorization theorem for the color suppressed channels B10 -4 D(*)%rO and B 0 +

D(*)°p° is carried out in section 5.1.3 using SCET. Then in section 5.1.4 the formalism

is applied to decays with kaons, B0 -+ D(*)OKO, Bo -+ D(*)OK*O, BO _ D(*)K-,

and B0 -+ D(*)K*-. In section 5.1.5 we contrast our results with the large NC

limit of QCD and prior theoretical expectations. Readers only interested in final

results can safely skip sections 5.1.3, 5.1.4, and 5.1.5. In section 5.1.6 we discuss the

phenomenological predictions that follow from our new formalism for color suppressed

channels. Conclusions are given in 5.1.7. In Appendix 9.1 we prove that for 7r° and

po the long distance contributions are suppressed. Finally in Appendices B and C we

elaborate on the properties of the jet functions and our new soft B -+ D(*) distribution

functions respectively.

5.1.2 Data

We start by reviewing existing data on the B -* D(*)7r decays. The branching ratios

for most of these modes have been measured and the existing results are collected in

Table 5.1. Taking into account that the D(*)ir final state can have isospin I = 1/2,3/2,
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these decays can be parameterized by 2 isospin amplitudes A1 /2, A3/2:

A+ = A(B° - D+r- )

Ao = A(B- Do 7r-)

A oo = A (B ° - Do r )

1

1 T1= A3/2 + A/2 = T + E,
V35 V3= V3A312 = T + C,

=3A3/2 -1 xA12 = X (C - E) . (5.9)

Similar expressions can be written for the decay amplitudes of B -+ D*7r, B - Dp,

B -+ D*p with well defined helicity of the final state vector mesons. Eq. (5.9) also

gives the alternative parameterization of these amplitudes in terms of the amplitudes

T,C,E.

Using the data in Table 5.1, the individual isospin amplitudes AI and their relative

phase 6 = arg(A1/ 2A3/2) can be extracted using

Br(B -* D(*)M) = TBrF - D(*)M) _ TBIP A(B - D(*)M) 2 .(5.10)8with =pol 

with Tpo = 2.343 x 1012 GeV - ' and TB- = 2.543 x 1012 GeV - '. We find

IA 2 1I/

IA 213/

JA D* 1

3/2

= (4.33 ± 0.47) x 10 - 7

= (4.45 ± 0.17) x 10- 7

= (4.60 ± 0.36) x 10- 7

= (4.33 ± 0.19) x 10 - 7

GeV,

GeV,

GeV,

GeV.

Dr = 30.5 +7.8
. 13.8 ,

aD *'X = 30.2 6.60,

(5.11)

The ranges for correspond to la uncertainties for the experimental branching ratios.

A graphical representation of these results is given in Fig. 5-6, where we show contour

plots for the ratios of isospin amplitudes RI = Al/ 2/(v/2A 3/2) for both D7r and D*7r

final states. For B -+ Dir an isospin analysis was performed recently by CLEO [4]

including error correlations among the decay modes; we used their analysis in quoting

errors on 6 Dr
.
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Table 5.1: Data on B D(*)7r and B D(*)p decays from aRef.[4], bRef.[48, 2],
cRef.[49], Ref.[103], or if not otherwise indicated from Ref.[52]. tFor B - D*p the
amplitudes for longitudinally polarized p's are displayed. The above data is as of
June 2003.

For later convenience we define the amplitude ratios

A(B° -o D*°M°) RM/M A(B° -+ D(*)°M°) (512)
- A(BO DOMO) ' 0 - A(BO -+ D(*)OMO)'

R - A1/2 3 C-E R A(Bo° D(*)+M- ) C- E
X/2A3/2 2 T+C' - A(B- D(*)°M- ) = T+C '

where the ratios RI and RC are defined for each D(*)M mode. Predictions are obtained

for the ratios in Eq. (5.12), including the leading power corrections to RI and RC.

The relation RI = 1 + O(A/Q) can be represented graphically by a triangle with base

normalized to 1 (see Fig. 5-6 in section 5.1.6). The two angles adjacent to the base are

the strong isospin phase , and another strong phase 0. The usual prediction is that

5 1/Q k [29, 96], and that there is no constraint on the strong phase 0 which can

be large. In section 5.1.6 we show that at lowest order the angle q is predicted to be

the same for all channels in Table 5.1, and that can be dominated by a constrained

non-perturbative strong phase. From RI in Eq. (5.12) we note that for a leading order

prediction of 6 it is not necessary to know the power corrections to the T amplitude.

A similar analysis can be given for the Cabibbo suppressed B DK(*) decays.

Although several of these modes had been seen for some time, it is only recently that

some of the corresponding class-II decays have been seen by the Belle Collaboration

[72] (see Table II). For this case the final D(*)K(*) states can have isospins I = 0,1,

so these decays are parameterized in terms of 2 isospin amplitudes Ai=0,1 (for given
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Decay I Br(10-3) l Al (10- 7 GeV) Decay I Br(10-3) lA (10- 7 GeV)
B° - D+7r- 2.68 + 0.29 a 5.89 ± 0.32 B° -+ D*+7r- 2.76 ± 0.21 6.05 ± 0.23
B- - D07r- 4.97 ± 0.38 a 7.70 ± 0.29 B- - D*7r- 4.6 ± 0.4 7.49 ± 0.33
B -+ DOir0 0.292 ± 0.045 b 1.94 ± 0.15 B0 -+ D*7rO b 0.25 ± 0.07 1.82 ± 0.25
B° - D+p- 7.8 ± 1.4 10.2 ± 0.9 B° -+ D*+p- 6.8 + 1.0 9.08 ± 0.68 t
B- - D°p - 13.4 + 1.8 12.8 ± 0.9 B- - D*°p- 9.8 ± 1.8 10.5 ± 0.97 t
B° - D°p° 0.29 ± 0.11 d 1.97 ± 0.37 B - D*°p° < 0.56 < 2.77



Table 5.2: Data on Cabibbo suppressed B -+ DK(*) decays. Unless otherwise in-
dicated, the data is taken from Ref.[52]. tSince no helicity measurements for D*K*
are available we show effective amplitudes which include contributions from all three
helicities.The above data is as of June 2003.

spins of the final particles)

A+= A(B - D+K- )

Ao- = A(B- -- Do K-)

A oo = A(B - D K )

1 1
= -AO0 Al=T= 2o+=

= A=T+C,
1 1-A 1 - -Ao=C.
2 2

Isospin symmetry implies the amplitude relation among these modes A+_ + A =

A 0_, which can be used to extract the isospin amplitudes A, 1 and their relative phase

6 = arg(AoA*). Using Gaussian error propagation we obtain

= (1.45 0.62) x 10 - 7 GeV,

= (2.10 0.17) x 10 - 7 GeV,

= (1.93 1.49) x 10 - 7 GeV,

= (2.76 0.52) x 10 - 7 GeV.

However, note that scanning the amplitudes

still allows a fat isospin triangle [47].

6DK = 49.9 9.50

5DK* = 34.9 ± 19.40

A+_, Aoo, Ao_ in their lo allowed regions
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IADKI

IADKI

IA DK* I

IAfDK* I1~°'

(5.14)

(5.15)



5.1.3 SCET Analysis: Factorization

Observing the decay in the rest frame of the B meson, one can identify two types

of degrees of freedom with offshellness p2 A2CD that are responsible for binding

the hadrons. These are the collinear (p+,p-,P±) _. Q(q 2 1, 1,) and soft (p+,-,p )

Q(Tj, r/, ij) degrees of freedom where 77 - AQcD/Q. The formalism of SCET allows

us to construct an effective theory of this process directly in terms of these relevant

soft and collinear modes with all other offshell modes integrated out. This effective

theory at the hadronic scale is given the name SCETT 4.

The B -+ D(*)M processes receive contributions from various effects occuring at

different distance scales. A complete description of these decays requires us to flow

between effective theories from the electroweak scale down to the hadronic scale. Each

effective theory along the way contributes the neccessary mechanism for the decay

to proceed. These mechanisms are encoded as effective operators with appropriate

Wilson coefficients in the next effective theory on our way down to SCETII at the

hadronic scale.

The b -+ c quark flavor changing process occurs at the electroweak scale (p 2

mW) through a W-exchange process. The W boson is then integrated out to give the

effective Hamiltonian of Eq. (5.1). This Hamiltonian gives rise to the three distinct

topologies through which the decay can proceed as shown in Fig. 5-1.

Next we would like to match Hw onto operators in SCETI1 with soft and collinear

degrees of freedom. However, the soft-collinear interactions produce offshell modes

p2 QAQCD that are not present in SCETI . These modes have momentum scalings

(p+,p-,px) Q(TI, 1, I1) and have to be integrated out [22]. Instead, as discussed in

the last chapter, it is more convenient to go through an intermediate effective theory

SCETI [23] at the scale QAQCD and do the matching in two steps. SCETI is a theory

of ultrasoft (p+, -, pl) Q(A2, A2, A2) and hard-collinear (p+, p-, pl) Q(A2, 1, A)

modes where A = = Q. The ultrasoft modes are identical to the soft modes

4 The soft-collinear messenger modes of Ref. [28] could play a role in subleading corrections which
we will not consider. The nature of these messenger modes is still unclear due to their dependence
on the choice of infrared regulator [33, 15].
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Table 5.3: The effective theories at different distance scales and the effects they
provide for the B -+ DM process to occur. The Wilson coefficients that show up in
each theory are also given.

and the hard-collinear modes play the role of the offshell modes produced by the soft-

collinear interactions in SCET1 . The hard-collinear modes are eventually matched

onto the collinear modes of SCET1 . This two step matching procedure allows us to

avoid dealing directly with non-local interactions, altough it is also possible to con-

struct SCET11 directly from QCD [63]. In summary, one arrives at the effective theory

SCET1 at the hadronic scale through a series of matching and running procedures

starting with the Standard Model(SM)

SM - Hw - SCET - SCETI .

In the above chain of effective theories, each matching calculation introduces Wilson

coefficients which encode the physics of harder scales. These ideas are summarized

in Table 5.3 and are illustrated in Fig. 3. We now briefly review the details of the

procedure just discussed.

We start by reviewing type-I decays. Using SCET, the factorization of the leading

amplitude for type-I decays has been proven in Ref. [21] at leading order in 1/Q (and

non-perturbatively to all orders in as). The operators in Eq. (5.1) are matched onto

effective operators at a scale MQ _ Q

E CiO - 4 E fdTdT2 [C(O) (TT 2 ) QO)(T, ' T2 ) + C8) (T1, T2 ) Q8) (T1 , T2 )]. (5.16)
1,2 j=L,R
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Theory Scale Wilson Coefficients Physics Effect
SM p 2

- b -+ c quark flavor transition
Hw u2 Q2 C1, 2 W boson integrated out

SCETi p2 QAQCD CL, CR soft-collinear transitions
SCET 11 p2 A2CD J binding of hadrons



J

S IV,

Figure 5-2: A schematic representation of the B - DM process and the contributions
it receives from effects at different distance scales. The shaded black box is the weak
vertex where the b - c transition takes place, the shaded grey region is where soft
spectator quarks are converted to collinear quarks that end up in the light meson, and
the unshaded regions are where non-perturbative processes responsible for binding of
hadrons take place. These regions correspond to the functions C, J, S, and OM as
labeled in the figure. For the color allowed modes, where the light meson is produced
directly at the weak vertex and no soft-collinear transitions involving the spectator
quarks are required, the jet function J is trivially just one.

At leading order in SCETI there are four operators [j = L, R]

Q 0 ( 1, T2) [h=,)jhb)] [Q (d)w)Tl F (wu))T], (5.17)

[h(c)yFTa yt b) d (Wtf(u))j
28)(T1, T2) )Wv 7, 'n/r= [h(, T Yth( )][(/nw) rnt( ].

The superscript (0, 8) denotes the 1 0 1 and T a ® Ta color structures. The Dirac

structures on the heavy side are = /PL,R with PR,L = 2(1 ± 5), while on the

collinear side we have Fn = iAPL/2. The momenta labels are defined by (Wtn),2 

[d(w2-P) Wt%].

The matching conditions for the Wilson coefficients at tree level at p = E are

( C2 CLS(Ti) = 2C2, CR '8)(Ti) = 0 . (5.18)C?)Ti)--C1 ]-Nc'
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Matching corrections of order 0(as) can be found in Ref. [29].

The operators in Eq. (5.17) are written in terms of collinear fields which do not

couple to usoft particles at leading order. This was achieved by a decoupling field

redefinition [22] on the collinear fields - Yn etc. The operators in Eq. (5.17) are

then matched onto SCETIi to give [wPi = Ti]

Q(O) (W1, W2) = [h()rh(b)][(4(d)W)l F (Wt u)) 2 ], (5.19)

Q() (W1, W2) = [h(c)ShTaSth(b)][((d)W) 1rFTa(Wtu))w21

where the collinear and soft Wilson lines W and S are defined in Eq. (9.15) of Ap-

pendix 9.3. At leading order in 1/Q only the operators Q(O) and the leading order

collinear and soft Lagrangians (£(), L()), contribute to the B- -+ D(*)%7r- and

B0 -+ D(*)+7r- matrix elements. The matrix elements of Q(8) vanish because they'L,R

factorize into a product of bilinear matrix elements and the octet currents give van-

ishing contribution between color singlet states [21].

Note that we take the pion state or interpolating field to be purely collinear and the

B and D(*) states to be purely soft. Power corrections to these states are included as

time ordered products. This includes asymmetric configurations containing one soft

and one collinear quark which involve T-products with subleading Lagrangians [23].

Next we consider type-II decays. The matrix elements of the leading order opera-

tors vanish, (D7%roI QO8) 0D) = 0. This occurs due to a mismatch between the type of

quarks produced by Q(,s8) and those required for the light meson state, where we need

two collinear quarks of the same flavor. The operator Q0,8) produces collinear quarks

with (du) flavor. Therefore it can not produce a r° since the leading order SCET

Lagrangian only produces or annihilates collinear quark pairs of the same flavor. For

this reason the leading contributions to Bo X D(*)7r are power suppressed.

In SCETI there are several sources of power suppressed contributions obtained

by including higher order four quark operators, higher order contributions from the

Lagrangians, or both. However, there is only a single type of SCETi operator which

contributes to B 0 - D(*)OMO decays at leading order. They are given by T-ordered
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Figure 5-3: Graphs for the tree level matching calculation from SCETI (a,b) onto
SCETI (c,d,e). The dashed lines are collinear quark propagators and the spring with
a line is a collinear gluon. Solid lines in (a,b) are ultrasoft and those in (c,d,e) are
soft. The 0 denotes an insertion of the weak operator, given in Eq. (5.17) for (a,b)
and in Eq. (5.19) in (c,d). The d in (e) is a 6-quark operator from Eq. (5.27). The
two solid dots in (a,b) denote insertions of the mixed usoft-collinear quark action £(1).

The boxes denote the SCETII operator C(1) in Eq. (5.24).

products of the leading operators in Eq. (5.17) with two insertions of the usoft-

collinear Lagrangian L(1q):

T(0'8) = 1 fd d4y T{ Q(O08) (0), iI) () , iC(1) (Y) }.
2 3q ~

(5.20)

Here the subleading Lagrangian is [31, 23]' (1) I 4 . .

-q
) = (nW) ( Wlig TW)qus- qus(Wtig gjW-)(W ,n), (5.21)

where iggj =- [ii. DC, igL]. The two factors of i(lq ) in Eq. (5.20) are necessary to

swap one u quark and one d quark from ultrasoft to collinear. In contrast to the tree

amplitude, for this case both the Q(o) and Q(8) operators can contribute. By power

counting, the T(0'8 ) 's are suppressed by A2 = A/Q relative to the leading operators.

They will give order A/Q contributions in SCETII , in agreement with our earlier

statements.
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In Fig. 6-2 we show graphs contributing to the matching of SCETI operators (a,b)

onto operators in SCETII (c,d,e). In Figs. 6-2a,b the gluon always has offshellness

p2 EMA due to momentum conservation, and is shrunk to a point in SCET .

However, the collinear quark propagator in (a,b) can either have p2 EMA giving

rise to the short distance SCETII contribution in Fig. 6-2e, or it can have p2 A2

which gives the long distance SCETII contribution in Figs. 6-2c,d. To match onto the

short distance contribution in Fig. 6-2e we subtract the SCETII diagrams (c,d):

(a) + (b) - (c) - () = (e) (5.22)

The operators in Figs. 6-2a,b are from the T-products T' 8 ) in Eq. (5.20), while

Figs. 6-2cd involve the SCETIi T-products O/) in Eq. (6.15), and Fig. 6-2e involves

0 (i) in Eq. (5.27).

To generate connected SCETI diagrams from the time-ordered product in Eq. (5.20)

requires at least two contractions, of which the minimum basic possibilities can be

grouped as follows:

1) Contraction of 6(u) (u) and the gluon in B B' (C-topology, Fig. 6-2a),

2) Contraction of (d) (d) and the gluon in B"B' (E-topology, Fig. 6-2b),

3) Contraction of (n(u) ~(u) and (d) ~(d) (topology with two external collinear gluons

and no external collinear quarks, not shown).

All more complicated contractions have one of these three as a root. Case 3) only

contributes for light mesons with an isosinglet component (, r/, w, 0), which we will

consider in the next chapter.

Each of the SCET, T-products is matched onto SCETI1 operators at scale p = ,,

and

/ dT dT2 CJ0 8) T(0'8) [T(0'8)]sh t + [( 0 '8 )] ong (5.23)
[T0 j ~)] hor t = lfdng
[T(0R)]short = fdTi dk+dwk CL (Ti io) J( '8)(ri,ke+, Wk, o, ) L )(k+ Wk, ) ,

[T(08)]long = fdk+ dwx dw2 dw C(0,R (wi, 0) (0,8)(k+w, o, p) (0,8) (W k+ , ),LR~~~~~~~~~~~~~~~~~ long (~,R k, 0, ) ,
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where the subscripts i, e, k run over values 1, 2. Here J, J are jet functions containing

effects at the p2 EMA scale and are Wilson coefficients for the SCETII operators

O and 0. The [T( R)]short and [T(,OR )]log terms are respectively Fig. 6-2e and Fig. 6-

2c,d (after they are dressed with all possible gluons). The p0 and dependence

in Eq. (5.23) signifies the scale dependence in SCETI and SCETI respectively. The

jet functions are generated by the contraction of intermediate collinear fields with

couplings ao8(po) (where t2 - EIA). In general the jet functions depend on the large

light-cone momenta Ti coming out of the hard vertex, the large light-cone momenta

Wk of the external collinear SCETII fields, and the k momenta of the external soft

SCETII fields. No other soft momentum dependence is possible since the leading

SCETI collinear Lagrangian depends on only n.us.

The difference between the time-ordered products T(0,R) and the time-ordered

products L(0,8) gives the six quark SCETIi operator L(R,), whose coefficients are theOLR (8)

jet functions j(0,8). In this SCET - SCETIi matching calculation the O ) graphs

subtract long distance contributions from the T(0 ) graphs so that j(0,s) are free of

infrared singularities. In general the matrix elements for color suppressed decays

then include both short and long distance contributions as displayed in Eq. (5.23).

However, for the isotriplet 7r and p a dramatic simplification occurs at leading order

in C(i). In this case it can be proven that the long distance contributions [T(i)]ong

vanish to all orders in the a, couplings in SCET , and with the a, couplings in

SCETII treated non-perturbatively. The proof of this fact uses the G-parity invariance
~(0,8)of QCD and is carried out in Appendix 9.1. At leading order in the coefficients CLR

the M = 7r, p factorization theorem is therefore more predictive since possible long-

distance contribution from O() are absent. Most of the following discussion will focus

on o'i ) but oi) is fully included in the final factorization theorem.

In the SCETI diagrams in Fig. 6-2c,d a power suppressed four quark Lagrangian

appears. It is similar to an operator introduced in Ref. [63], and can be obtained

from T{iL(q), iL( )} in SCETi by a simple matching calculation [25]. Summing over
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q

Figure 5-4: Tree level matching calculation for the L(°) operators, with (a) the T-
L,R~

product i SCETI and (b) the operator in SCETI . Here q, q' are flavor indices and
w A° are minus-momenta.

flavors q, q' we find

L)= Z [J(O) (wk+)L(O) w kx) + () (wk+)L(8) (w, k+ x)],
j=L,R k+

Lo°)(w, k x) - Y][((qW)wAPj(Wt(q))w] [(q'S)k+7Pj(tq)k+] (x ) . (5.24)
q,q'

In Eq. (5.24) the soft momenta labels are defined by (Stq)k+ = [6(k+-n.P) Stq], and

the positions (x+, x-, x±) (1/A, Q/A2, 1/A). For the soft fields the x coordinates

encode small residual plus-momenta, and for the collinear fields the x+ coordinates

encode small residual minus-momenta. Thus, we used the summation/integration

notation for label/residual momenta from Ref. [86]. The operator L(8)(w, k+ x) has

the same form as Eq. (5.24) except with color structure T' ® Ta. At tree level the

coefficient functions are given by the calculation in Fig. 5-4

-J()(wk+) _CF 47ra,(/) J(8)(k+) 1 4ira( )
J() 2N (wk+) = 2Nc wk+ '

Beyond tree level they obtain contributions from loop diagrams with additional L(£)

vertices. In terms of the operator in Eq. (5.24) the SCETII operators that contribute

to [Tj(i)]long in the factorization theorem are

O0 '8)(wi, k+w, t) = fd4xT Q x8)(wi, x= 0) iL0 '8)(w, k+ x). (5.26)

The operators O generate the diagrams (c) and (d) in Fig. 6-2.

At any order in perturbation theory the jet functions J from the C-topology and

E-topology generate one spin structure, and two color structures for the SCETIn operators.
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For the six quark operators we find

VI (ds) t Pc~ (5.27)O50 )(kt,wk) = [he,)Lj h() (dS)k+?PL (Stu)k+] [( (527)

j )(k, Wk) = [(hs )rj T (Sth()) (S) iT (S)k+] [(w) (W) 2 ]

where here the d, u, h(cf) , and h?) fields are soft, and the &n fields are collinear isospin

doublets, ((u), (d)). In Eq. (5.27) LR = PL,R as in Eq. (5.17), while for the

collinear isospin triplet Fc = T3'PL/2. 5 We do not list operators with a T a next to Fc

since they will give vanishing contribution in the collinear matrix element. For light

vector mesons the spin structure rF only produces the longitudinal polarization. This

result follows from the quark helicity symmetry of £(O) and is discussed in further

detail in Appendix 9.2.

In position space the Oi ) are bilocal operators, with the two soft light quarks
aligned on the nu light cone direction (x- n x, y- = . y) passing through

the point x = 0

(h(,)S)Fh(Sth(b)) (dS),+Fq(Stu)I+ - (5.28)
dx-dy- ei/2(r+x-t+y-)[h)h(b)(O)[d(x) -)u(y-)]

(47r)2 [h·,, rhh(b)](0)[j(x)Sn(x, 0)FqSn (0, Y

The gluon interactions contained in matrix elements of o5° ' s) include attachments to

the light quarks q, to the heavy quarks hv,v,, and to the Wilson lines Sn as shown

in Fig. 5-5. The interactions with hv, have been drawn as Wilson lines Sv,,, along

v, v' [71]. Even though we have factored the collinear and soft degrees of freedom in

the two final state hadrons, the presence of the soft Wilson lines bring in information

about the vector ni. This allows the soft operators i) to be non-trivial functions

of n kj, n v, and n v', and this information gives rise to a complex phase in the

soft functions S(L) as shown in Appendix 9.3. Thus, the Sn Wilson lines are directly

responsible for producing final state interactions, and the soft fields in (O3° 8) encode

non-perturbative rescattering information.6 This makes good sense given that the

5There are also isosinglet contributions with Frc = fPL/2.
6Note that in semi-inclusive processes a different mechanism is responsible for the phases in
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00
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Figure 5-5: Non-perturbative structure of the soft operators in Eq. (5.28) which arise

from O(0'8). Wilson lines are shown for the paths Sn(x, 0), Sn(O, y), Sv(-oo, 0) and
S,, (0, oc), plus two interacting QCD quark fields inserted at the locations x and y.
The Sv and S,, Wilson lines are from interactions with the fields h and h, fields,

respectively. The non-perturbative structure of soft fields in ,8) is similar except
that we separate the single and double Wilson lines by an amount x .

soft gluons in the Sn's were originally generated by integrating out attachments to

the collinear quarks and gluons making up the light energetic hadron.

The above procedure provides a new mechanism for generating non-perturbative

strong phases for exclusive decays within factorization. In the soft B -+ D(*) matrix

elements the information about the light energetic meson is limited to its direction of

motion n'. Since these matrix elements know nothing further about the nature of the

light meson, these strong phases are universal. In particular the same strong phase

0 is generated for the decays B -+ D(*)r and B - D(*)p. (We caution that this is

not the isospin strong phase, but rather a different angle in the triangle.) The same

mechanism produces another universal strong phase for color suppressed decays to

DK(*)°, and a third for decays to DK(*)-. The different phases in the three classes

arise in part due to the appearance of different moments of the matrix elements of the

soft operators. However, for the kaons there are additional long distance contributions

to the strong phases from [T]long, which make the universality of the phase from

[T]short hard to test. A more complete set of phenomenological predictions is given

in Section 5.1.6, including a comparison with existing data. Further details on the

single-spin asymmetries which has to do with the boundary conditions on Wilson lines [38].
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properties of the soft functions S(08) are given in the Appendix 9.3.

The matrix elements of the short distance operators O'z) in Eq. (5.27) factor into

products of soft and collinear parts, respectively. The collinear part of the matrix

elements are simply given in terms of the light cone wave function of the light meson.

For the 7r and p the definitions are [we suppress pre-factors of fo dx 6(w - x .

PM) 6(w2 + (1 - X)f'pM) on the RHS]7

(7Or0( nW)w1 Y5T3(WGn)w2.j0 = -i/vf. n.p~ --(,x) , (5.29)

(p°(e)l(~nW)r 3(Wtn)w2 10) = i V fp mp.-E* 0p(/,x)

= i fp n-pp 0p(p, x) .

In the last equality we have used the fact that at this order the collinear operator

only produces longitudinal p's, for which mph.E* = -pp.

Since it no longer contains couplings to energetic gluons, the soft part of the matrix

elements of (0'8) can be constrained using heavy quark symmetry. In other words,

heavy quark symmetry relations can be derived for matrix elements of soft fields.

The constraints can be implemented most compactly using the trace formalism of the

HQET [91]. First consider the matrix element of the soft fields in O(0 °8). For 0(° ) we

have

(D(*)O (v') I (hc)S)r (Sth(b)) (S)k+PL (Stu)k+B(v)) Tr [H)Hb)(o)] ,(5.30)
2 T~~r [H, r~b¥v ) ](5.30)

/mBmD

where X (° ) = X(°)(k +, n, v, v') and we use the standard relativistic normalization for

the states (and note that the LHS is independent of mb,c in the heavy quark limit).

An identical equation holds for O(8) with an X(8). In writing the trace formula in

Eq. (7.11) we have used the fact that the d and u quarks must end up in the B

and D(*) states.8 The heavy mesons (D, D*) and (B, B*) are grouped together into

7Our vector meson states are defined with an extra minus sign relative to the standard convention.
'The matrix element of the analogous soft operators with (u) + (dd) would contain a second

term in Eq. (7.11) of the form Tr [H,)FH(b)X]Tr [Y], which arises from contracting the light quarks
in the operator. These types of traces also show up for power corrections to Bo -+ D(*)+M- and
B- -+ D(*)°M- .
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superfields [91], defined as

H, =1+ 2 (P"'y, + PVY5 ). (5.31)
2

Now X(0' 8 ) are the most general structures compatible with the symmetries of QCD.

They involve 4 functions a(°84(k+ k+ , v.v',n.v, n.v')

X (0,8) = a0')PL + a('8),PR + a('8)PL + a' 8) PR, (5.32)1 2 3 4a(O R ~~~~~~~~(5.32)

Structures proportional to and ' can be eliminated by using Hv =-Hv, etc.

The presence of four functions in Eq. (5.32) would appear to restrict the predictive

power of heavy quark symmetry. However, using the properties of H, and ft, and

the fact that the two-body kinematics relates n to v and v' via mBv = mDv' + EMn,

it is easy to see that the four functions ai appear only in two distinct combinations.

(Note that we are taking mM/mB l A/mB << 1.) For FR they give soft functions

SL,R defined as SL = (n v')(al - a3/2) - a4/2, SR = (n v')(a2 - a4/2) - a3/2 and

(D (v') I (h( )S)PL,R(S h( b))(dS)k+PL(Stu)k+ B(v))- ()V~~~~~~~ 2 (0) (+
- L L,R ) J

(D*0(v', e)1( SWPL,R(St h )(dS)k+$PL(StU)k+lB0 ()) *

VmBmD* n-y

where the for the D* refers to the choice of PL or PR. Identical definitions hold

for the matrix elements of the color-octet operators which give SL8R(k+). We will

see in section 5.1.6 that the result in Eq. (6.5) relates decay amplitudes and strong

phases for B0 - DOM' and Bo - D*OMO at leading order in the power expansion,

and up to terms suppressed by a,(Q)/7r. If one takes n. v = 1, then nv' = mB/mD,

v.v' = (m + n2 (.))/(2mBmD()). The D, D* variables are equal in the heavy quark

limit.

For the long distance operators 0!) the same set of arguments in Eqs. (7.11-6.5)

can be applied except that now we must add terms a' 8 )±PL + a°' 8 )•±PR to X(08),

and the ai's can also depend on x. The functions analogous to S(O,) are defined as
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L,(R) (k+x, -*.). In this case the D and D* decompositions are no longer related

since the matrix element involves both n e* and x 1 .e* terms for the D*. Thus, due to

the long distance contributions for light vector meson we must restrict ourselves to the

longitudinal polarization in order to have equality for the D and D* amplitudes. In the

case of the p this restriction is not important since the long distance contributions

vanish (see Appendix 9.1). However this observation does have phenomenological

implications for decays to K*'s.

We are now in a position to write down the most general factorized result for the

amplitude for the decays B0 + D(*)OMO. Combining all the factors, this formula

contains the soft functions S(0'8)(k+, k+) from Eq. (6.5), the jet functions (i) from

Eq. (5.23), and the Wilson coefficients CLR) from Eq. (5.16). In J()(Tri,k+, Wk) we

can pull out a factor of 6(T1 - T2- w1 + w 2) by momentum conservation. This leaves

the variables T1 + T2 = 2EM(2z- 1) and w1 +w 2 = 2EM(2x- 1) unconstrained, which

give convolutions with the momentum fractions z and x respectively. In defining

) (Z. , k+) we multiply j(i) (i, k+, wk) by w1 -W2 = PM. All together the result

for the B O+ D(*)OMO amplitude is

oo) N fx dzfdk+dk + [C)(z) J(i)(z, X, k+,k +) S(i)(k+, k +) qM(X)(5.34)

±tc(i) () P~) (z , k+, k+) S(") (k+, k ) m(XWI

aD(*)M
±long

where we sum over i = 0,8 and the 1 0, ,u dependence is as in Eq. (5.23). The

A Don)M in Eq. (5.34) denotes the contributions from the matrix elements of the
long

SCETII time-ordered products [T]long. Also the ± refer to D/D*, Cj( i(z) = C()R(Ti +

T2, EM, b, me, I), and

N GFV2bud fM VmBmD(*). (5.35)N0
M 2

The normalization factor is common since mD = m* and n-e(D ) = n.v'. This follows

since the MAl's produced by (0 '8) are longitudinally polarized.3
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The long distance amplitudes also obey a factorization theorem which can be

derived by examining the matrix elements of the vL,R operators in Eq. (6.15). First

factorize the collinear fields into the matrix element with the M and the soft fields into

the matrix element with the B, D(*). The independence of the collinear propagators

on the residual soft minus-momenta leads to a (x+) and the independence of the

soft propagators on the residual collinear plus-momenta leads to a (x-) (somewhat

similar to the calculation for B - Xs7 as described in Ref. [22]). The result is

AD(*)M _ 2 )(
long -'v zjdkdwdx 1 1 \J ~ ,XD 'w ±idz Mdk + dw 2x [CL)(z ) J()(wk + ) I)() (k+, X, D.)*M)(Z,W, X.LE/ )

+(i) V(')( k+) (') (k+, xl, z, , x , £M)] . (5-36)

where the + is for D and D* and we defined the non-perturbative functions in a

way which gives the same prefactor as in Eq. (5.34). Here C6i) are the Wilson

coefficients of the weak operators in Eq. (5.19), and the jet functions j(0,) are the

coefficients of the SCETuI Lagrangian in Eq. (5.24). The 4D(i) and !() are soft andL, M are sof

collinear matrix elements from the operators O and are given by [with prefactor

fl dz (w - Zh-PM)6 (W2 + (1 - Z)'-pM) for T()]

(M (PM, EM) [((d))W1 PL(wt(u))W](±)[(((u)w)W$PL(W d ))](x±) o)

= ifM/vI ) (z, w,. X, £M),
(D(*)O (v, ED*) [(h( s)rLR(sth(?))] () [(dS)k+APL(Stu)k+] (xI) Bo)

= +VImBmD(*) LR(k X, *k v (5.37)

and AMs) and (IL8)R are defined by analagous equations with color structure Ta 0 Ta.

The ± is for PL and PR respectively. In a more traditional language the AD(*)Ml1ong

contributions might be referred to as "non-factorizable" since they involve an direct

xi convolution between non-perturbative functions. Eqs. (5.34) and (5.36) are the

main results of our work. Additional details about the derivation of Eq. (5.36) will

be presented in Ref. [?].

Using the SCETII power counting in = A/Q we can verify that the short and
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long distance contributions to the factorization theorem are indeed the same order.

The coefficients C(Li) , ° . The results in Eqs. (5.25) and (5.41) for the jet functions

imply j(i) 1/A 2 and J() 1/(QA). Furthermore, M ° from the definitions

in Eq. (5.29). For the soft function in Eq. (6.5) we get (713/2)4 from the fields, r1-3

from the states, times r- 2 from the delta functions indicated by the momentum

subscripts. This gives S(k+, k+ ) r, ie. S(k', k) - A. A similar calculation for the

collinear and soft long distance matrix elements in Eq. (6.16) gives I(08) A2 /Q and

LO' ,8 ) A. In the factorization theorem the measures have scaling (dk+dk+ ) A2
L,R

and (dk+d2 x±) 1/A. Combining all the factors for the short distance amplitude

gives (A)(A2 )(1/A2)(A)(A0 ) = A2, while for the long distance amplitude we find

(A)(1/A)(1/A)(A)(A 2) = A2 also. Therefore, both terms in A'(*) are the same order

in the power counting. They also give the complete set of contributions at this order.

For numerical results with M = 7r, p the A(*)M contributions are very small since

AD(*)Mtaking C%)R(z) independent of z gives AD(*)M = 0 as shown in Appendix 9.1. This

AD(*)M Iimplies that AD(long /Aoo' ,a (Q)/7r, and together with the helicity structure of the jet

function discussed in Appendix 9.2 implies that the production of transverse p mesons

is suppressed. In Section 5.1.6 we explore further phenomenological implications.

Next tree level results are presented for the jet functions j(0,8). The SCETI graphs

in Fig. 6-2 are computed with insertions of Q(O08) and taking momenta -kl and -k 2

for the initial and final light soft antiquarks, together with momenta Pl and P2 for

the collinear quark and antiquark. The diagrams in Fig. 6-2a,b with insertions of

{Q}0), Q )} are

C: g2 (t yvPL{ 1, T T}uV ))(U )PLi/2{1, TB}TA T V (u)) ( ( d)TA 'Y d))

[n (k - k2) + iel [np '2 n kl + i]

E _g2 (u,7 PL{ 1, TB}u(b)) (i(u)TAyv(u)) (Vd)TA{ 1, TB}/2PLv$u 3

g [n-(k-k2)+ie][-n-p n.k2+iej 

Adding these contributions with factors of C(° ) and CL8) to distinguish the two color
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structures, and then Fierzing gives

-C() [(c)?pLTU(b) V(d)s pLTa u)]

X S f U( ) WPLV (d) _ f)tlL(U) OP27raCF ~n n n 'z nN N [n-(kli-k2) + ie][p 2n.kl i + ie] [n (ki-k2) + ic][-h-pin-k2 + i])

where CF = (NC2 _ 1)/(2NC) and we set C('8 ) = 0. The first term in each round

bracket originates from the C-type graph (Fig. 6-2a) and the second term from thea~ ~ ~ ~~~~['(lk)+i]-~ln~k) +)d ie]u
E-type graph (Fig. 6-2b). It is convenient to group the result into isosinglet and

isotriplet terms for the collinear spinors. Since the ir° and p0 have definite charge

conjugation we can freely interchange the positive momenta n- *pi + n- P2, so a factor

of 1/n* Pi can be pulled out front. For the terms in round brackets we find(1[(d)pv) (d)PLv(d) (u)PLv(U)] n(k 2 + k)2 n [-k + i e][-n.k2 + ie] 2 [n.(kl-k2) +- i][ k + iE][-n.k2 + i 5.JFowhere CF = (N*)2 and B D(*)p where we ) = e e isotriplet term in each roundtri-bracket originateutions from the SCETII diagrapms in Figs. 6-2cd cancel. Thus, the ond term fromr inthe

E-type graph . (5.40) directly giIt is convesnient to group the resue levelt into isotriplng jeat functions

J(°)(z x kt,k2+) - N~ x [n ki + ie][-rt-k2 + ic] ' (5.41)

J(8) (, x, +, k2+ = NZ x [n *ki + ic] [-n *k2 + ic]isotwhere iplet terms for the ollineos ar spinors. Since o and p hagive definin that the non-rge

conjperturbation we cansoft freely unction S(kter, kch vaneis he positive momenta h p= 0, and that orp(x)of 1/h 'pl can be pulled out front. For the terms in round brackets we find

[n n -- n n . n n, n jn [()pvndqa~~~( n.(k2qkl) ) .0
[Z.kl q iE][--n/k 2 q i1E] 2 [n(k-k1--2) 5 i[n---~ + ]i---n-k2 -q if] ~.0

Forvanishes at x = 0 and x = 1. On the otp wher hand forv isotrsinglet M's the conresult in

Eq. (5.40) has a singular denominator 1/(n(k - k2) + i]. The singularity occurs whenthe collinear quark propagators in Figs. 6-2a,b get too close to their mass shellTs, i.

when n (k -k 2)A 2 /Q. This singularity is exactly whatee e is canceiled by subtractingj(O) (z, x, k+, k+) = -47ra () CF 6( )(5.41)
1~~- 2Z c x [n-kI q-/c][-n-k2 - io]'

( (z, x, , ) = 2rs()6z-X
1 2 ~Nc2 x In q- +if] [-n t k2 q i~] '

where h P --- x pm. These jet functions are non-singular given that the non-
perturbative soft function (k + , k+ ) vanishes for k+ 0 or k+ 0, and that 0b,,p(/)

vanishes at x -0 and x 1. On the other hand for isosinglet M's the result in

Eq. (5.40) has a singular denominator / [n.(kl - k2) i]. The singularity occurs when

the collinear quark propagators in Figs. 6-2a,b get too close to their mass shells, ie.

when n (k - k2)A2/Q. This singularity is exactly what is canceled by subtracting
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the SCETII diagrams in Figs. 6-2c,d, which then gives a non-singular isosinglet jet

function.

Next we consider the result for the factorization theorem for M = r, p with

these tree level jet functions. Taking the matrix elements of the O(0'8) operators,

the collinear part factors from the soft operators as explained above. Their matrix

elements are given in terms of the M ° light cone wave function, and the S(0 ,)(k+, l+)

functions, respectively. This gives the explicit result for the Bo -+ D(*)7ro and

B0° -+ D(*)°p° decay amplitudes, at lowest order in the matching for C and J

A(B ° -+ D(*)7or° O)= N 4 (0)CF C(O) s() + 27a,(L) (8) S(8) (x-1)
L N 2 L

A(B° D°p °) NoP {-_4ra_(/o)CF C(O) S(,) + 27ra,(/o) C(8) S(8)} (x-10.42)CL 2 L j -

We choose to evaluate C (0'8) , s(0 8) , and (x-1 ) at the common scales = o /EA

since one of the hard scales m2 is not much different than ERA. In Eq. (5.42) the

convolutions of the soft and collinear matrix elements are defined by

S(0,8) = les(0,)Iei4(O8) dkdk+ SL(k+, k+,)2dkdk (k+ + ie)(-k + + iE)

(X 1 )M = dx - . (5.43)

/,From Eq. (5.43) we can immediately verify the result of the power counting for

operators described earlier. Since (x- 1 )M -, (x°)m A°, comparing Eqs. (5.7,5.8)

and (5.42) we see that

A(B - D0 r °0 ) No s(0) () AQCD (544)
A(BO D+ D7ir-) ~ N E7, E (,,'o) ,, 4Era~8 (~~o K,, (5.44)

where we have used the standard HQET power counting for the soft matrix elements

to determine that (0,s) AQCD. Thus, the ratio of type-II to type-I amplitudes

scales as A/Q just as predicted. Due to the factor of 4r the suppression by a, does

not have much effect numerically. The 47r arises because the a, is generated at tree

level. It is expected that perturbative corrections to the matching for C and J will
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be suppressed by factors of as(Q)/T and (yEA)/7r respectively. In Eq. (5.44)

grouping g2NC 1 gives an extra factor of l/N, so with this counting the ratio is

color suppressed as expected.

5.1.4 Adding strange quarks

In this section we consider how the factorization theorem derived in section 5.1.3 is

modified in the case of color suppressed decays involving kaons, which include B0 e

D!*)K-, B - D(*)K*-, as well as the Cabbibo suppressed decays B0 -+ D(*)OKO

and D - D(*)OK*O.

If strange quarks are included in the final state then operators with different flavor

structure appear. In the exchange topology we can have the production of an s pair

(as shown by the s-quarks in brackets in Fig. 6-2b). This gives SCETIn six-quark

operators

O() (kt, Wk) [h)j h() (S)k+iPL (StS)k+] [( )W) (w ( ))2], (5.45)

O38)(k (C ha)
8) (kt, w) = [(h(S)1 T (Sth(b)) (S)k+iPLT(Sts)k+] [(S)W) r (Wt($U))2]

which mediate B 0 -+ D(*)K(*)-. For the long distance contribution we take flavors

q' = d and q = s in the Lagrangian in Eq. (5.24), which leads to s,s quarks replacing

u, quarks in i). The result for the factorization theorem is then identical to

Eqs. (5.34) and (5.36), except that only the E-topology contributes. For this case the

long distance contribution is not suppressed, and serves to regulate the singularity

when matching onto the E-topology jet functions j(0,8) j?8). Further discussion

of the singularities is left to Ref. [?]. The hard coefficients C(O,) are the same as in

the previous section.

The remaining difference for 0 -+ D*)K(*)- are the non-perturbative functions.

The light-cone wavefunctions for K-, K° , K*-, and KR'° are [with q = u, d, w1 = npx,,

W2 = -- PXq, and a prefactor as in Eq. (5.29)]

(Knl(()W),,L5(W (q)),,2) = -2ifK F'PK OkK(, Xs) , (5.46)
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(K () | (E,()w) $(wt~( ) 2 10) = - 2 ifK mK, C* (., x8 s)

= - 2 ifK* ii PK* qK* (, Xs)

mV(0,s)The collinear functions =m8) also depend on the light meson M. The non-perturbative

soft functions involve strange quarks and are also different from section 5.1.3, S -

~1( · (0,8) _ (0,8)S!R and L(,R) - 4LR). The non-perturbative functions are related to those in the

previous section in the SU(3) flavor symmetry limit. However, the jet functions are

not related in this limit, they differ since different topologies contribute. This leads

to different convolutions over the non-perturbative functions.

Next consider the Cabibbo suppressed b -+ csii transition with the color sup-

pressed topology (as shown by the brackets in Fig. 6-2a). For the six quark operators

we have 9

0 (°)(k+, wk) = [h()r h) (dS)k+IPL (Stu)k+] [(nW)wrc(w(d))] v (5.47)
0~~~~8 LOv 'J $)[ri L " , s,W ,~2j, ~ (d

() (kt,k) = [(h()S)r1 Ta (St h)) (dS)k+PLT (StU)k+] [(n( )w),r(Wt ( ))W2]

which mediate the decays B - D(*)°K(*)°. In this case the SCETII Lagrangian in

Eq. (5.24) has the same flavor structure as in section 5.1.3. Since only the C-topology

contributes the long distance contribution is not suppressed in the factorization the-

orem, and the jet function j(08) J(08). For both the short and long distance

non-perturbative functions the change of flavor appears only through the collinear

quarks in the weak operator, so the collinear functions depend on the K(*)° but the

soft functions (O,) and =4(0,) are identical to those in section 5.1.3. (However, now
T~~~~~~~~~~~~~~~~~(0,) S08

J(0,) appears, so the moments over the soft function (OLR) will be different.) Finally

note that if we allow a strange quark in the initial state (for Bs-decays) then the

E-topology can also contribute and more operators are generated.

Due to the non-negligible long distance contributions the number of model inde-

pendent phenomenological predictions for kaons are more limited. The main predic-

tions are the equality of branching fractions and strong phase shifts for decays to
9Note that the flavor structure was not distinguished in naming the operators in

Eqs. (5.27,6.4,5.47). This should not cause confusion since they always contribute to different decays.
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D versus D*. For M = K ° , K- an identical proof to the one for 7r° and p0 can be

used. For the vector mesons the proof can also be used if we restrict our attention to

longitudinal polarizations, so the final states D(*)Ki° are related, and so are D(*)Ki*-.

The factorization theorem allows for transversely polarized kaons at the same order

in the power counting, but only through the long distance contribution.

5.1.5 Discussion and comparison with the large Nc limit

It is instructive to compare the NC scaling of the different terms in the SCET result

Eq. (5.34) (or Eq. (5.42)) with that expected from QCD before expanding in 1/Q

given in Eq. (5.3). Combining the matrix elements in Eq. (5.3) written in a form

similar to Eq. (5.42) gives the decay amplitude at leading order in 1/Q as

A(B - DOM) = NoM (C i+ C) [ (Fo+2G1)+...] (5.48)

+ Nom C2 Fo + I(-Fo +F2 -2G,)- . ]--- ...

The ellipses denote power suppressed terms. This reproduces the 1/NC expansion of

the SCET amplitude in Eq. (5.42) with the identification

Fo = 0, G1 = -7rasCF s() N X F 2 - 2G1 = 2ra (8) , (5.49)
' ~~~~INc-+oO' Nc -'oo'

where s(°) N and s(8) - Nc. This implies that the factorizable term F0 is power

suppressed in the limit of an energetic pion relative to the leading order amplitude in

Eq. (5.42).

The naive factorization approach in Eq. (5.2) keeps only the F0 term, which is

expressed in terms of the B - 7r form factor in the large Nc limit. We comment here

on the form of this contribution in the effective theory. They appear in the matching

of the (db)v-A(Eu)v-A operator onto SCETI T-products such as

T (4) - T{Q(2) i2)} T(4) = T{Q(3a) i£)} (5.50)
- ,C 2 -'la,lbI q
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where the operators Q(2 ,3) contain one usoft light quark. From the leading order

operators in Eq. (5.19) they can be constructed by switching - q to give Q(2 ),

and adding a further WtiDiW to get Q(3). Their precise form is different depending

on whether they are introduced by matching from the color-suppressed (C) or the

W-exchange (E) graph. Schematically

C-type: Q?) = [((d)W)Fch( )][hc) Fhu] (5.51)

Q(3) = [(((d) 2 j/ 1 w 1 r h(b)l[h)rhu]1, , 2 J_,,~_L .'Pt rh h"c~rU
Q( 3) = 1[((d) W), rch(b)] [h(c) [WtiPJDcW]2 rhu]

E-type: Q2) = [drhhV)] (C )rC (Wt ))] (5.52)

Q(3) = [d(hh$b)][h(c)v 1 (WtiiD 26(u)) Ila [j~---vc~r t.1 'wiPI 2 )

Qb = - [dFhh(b)][h, [WtiIPicW]IFrC(wtf(U))W2].
mc

The presence of the usoft quark field q in these operators introduces an additional

suppression factor of A2, such that the T-products T are O(A4 ) A2 /Q2 down

relative to the operators Q(O,') in Eq. (5.19). (Note that since the form factors enter

as time ordered products we do not expect a different a, suppression for T®2 relative

to those in Eq. (5.20) [23].) This explains the absence of the F0 contributions at order

A/Q, as noted in (5.49). Although F0 is part of the leading order result in the large

Nc limit, it is subleading in the 1/Q expansion.

After soft-collinear factorization, the T-products (5.50) match onto factorizable

operators in SCETII . For example, the C-type time-ordered product containing

Ql) gives (schematically)

- f dwldW2 J(wi, kt) [(dS)klr(Sth(b))] [h)rhu][(?u)W)lrc(Wtu))w 2] (5.53)

Apart from the (u) soft bilinear, this is similar to a factorizable operator contributing

to the B -+ 7r form factor [23]. The presence of the D meson in the final state implies

that the matrix element of the soft operator in Eq. (5.53) is different from that
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appearing in B -+ i7r. Therefore, naive factorization of type-II decay amplitudes, as

written in Eq. (5.2), does not follow in general from the large energy limit. Still, in

the large Nc limit, the matrix element of T(4) above can be indeed expressed in terms

of the B -4 7r form factor, as required by Eq. (5.5)

Recently an analysis of color-suppressed decays was performed using the "pQCD"

approach working at leading order in an expansion in mD()/mB and AQCD/mD() [68].

This differs from the expansion used here in that we do not expand in mD()/mB. The

non-perturbative functions in their proposed factorization formula include the light-

cone wavefunctions (P)(x3), qD(x2) and a B light-cone wavefunction that depends

on a transverse coordinate B(x1,bl). This differs from our result which involves

a B -+ D function S(k+,k +) and also has additional long distance contributions,

AD()M, at the same order in our power counting. Our long distance contributions

are "non-factorizable" in the sense that the non-perturbative functions )(i) R(k+, x)

and T(i)(z, w, x±L) communicate directly through their x 1 dependence without goingx M

through a hard kernel. In Ref. [68] strong phases only occur from the perturbative

P EMA scale, whereas we also find non-perturbative strong phases from the A2

scale (in S(k+, k+)). The non-perturbative phases are expected to dominate in our

result. Finally, the results in Ref. [68] do not manifestly predict the equality of

the D and D* amplitudes since at the order they are working contributions from

different B - M form factors show up. For example their pQCD prediction Br(B -+

D*°p°)/Br(B - D°p° ) - 2.7 is much different than the prediction of 1.0 that we

obtain in the next section using heavy quark symmetry.

The time ordered products presented in Eq. (5.20) are only A/Q down from the

class-I T amplitudes. Therefore, they give the dominant contribution to the color-

suppressed and W-exchange amplitudes in the limit of an energetic pion (A/Q << 1).

This is a new result, not noticed previously in the literature. The power counting of

"factorizable" F0 type contributions are indeed suppressed by A2/Q 2 in our analysis

in agreement with the literature. However, these terms do not give the dominant

contribution.
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5.1.6 Phenomenology

A factorization theorem for color-suppressed B - D°M ° decays was proven in Sec-

tion 5.1.3 and extended to decays to kaons in Section 5.1.4. The amplitudes at leading

order in AQCD/Q with Q = mb, m, E,} have the form

A00o = A(B ° - D(*)OMO)

= NOm J dxzJdki'dk2 E [C) (z) S (kj ) ± CR(Z) S (kJ)] J() (z, x, kj ) qM(x)
0 i=0,8 -RZ)S

+AD(*)M (554)
long (5.54)

where the sign ± corresponds to a DO or D*° meson in the final state, respectively. In

this section the implications of Eq. (5.54) for the phenomenology of color suppressed

decays are discussed. One class of predictions follow without any assumptions about

the form of J:

* Heavy quark symmetry relates the nonperturbative soft matrix elements ap-

pearing in the B - DOMo and B - D*°M° decays with the same light

meson at leading order in a,(Q)/'r. This implies relations among their branch-

ing fractions and equal strong phases in their isospin triangles.

These relations are encoded in the ratios Rm in Eq. (5.12). A second class of predic-

tions depend on using a perturbative expansion of J in aS(p0) for p2 EMA:

* Using a perturbative description of J the amplitudes and strong phases for

decays to different light mesons M can be related at leading order in oaS(Io)/7r.

These predictions are encoded in the ratios R M/M, R, and strong phase 0 in Ri, as

defined in Eq. (5.12). We consider the two classes of predictions in turn.

First, consider relations between color-suppressed B -+ DM and B - D*M

decays with the same light meson. At tree level in the matching at the hard scale

p Q, two of the Wilson coefficients vanish C s8) - 0. Therefore both amplitudes

for D and D* contain only the soft functions S(0,8)(k+) appearing in the same linear

combination. This implies model-independent predictions, which can be made even in
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the absence of any information about the jet functions (i) and the non-perturbative

functions Sz), OM, and without knowing AO()M. For M = 7r°, p0, we have ADo(g = 

so Eq. (5.54) gives

A(B ° -± D*r °)

- A(B0 D07rO) = 1,

For decays to D(*)K-, D(*)Ki*-, D(*)°OKo°,

A DM and so

A(3 D'K-) = 1
R -= A(Bo - DK-)

Ko A(B° - D*K°)
Ro = A(BO - DK°)

p _ A(B ° - D*°pO)
A(BO - DOpO) = 1 (5.55)

and D(*)°fKfl° it was shown that ADnM =

- A(B° O- D*K*-)
°0 A(B - DsKi- )
RKIo _A(B ° - D*K*°)

A(BO - DK* 0 )
(5.56)

The ratios in Eqs. (5.55) and (5.56) have calculable corrections of order as(Q)/7r and

power corrections10 of order A/Q, which can be expected to be - 20%.

These amplitude relations imply the equality of the branching fractions. They also

imply the equality of the non-perturbative strong phases between isospin amplitudes,

namely the phases 6 D(*)M in the ratios RD(*)M as shown in Fig. 5-6. Thus for each of

M = , p, K 0, Kl*0

Br(B° - D*OMO) = Br(B° - D°M°), 6 D*O°M° 6 D°M°

and for M =K- K1-, K

Br(B° - D*M) = Br(B° - DSM), jD*M = 6 DsM (5.58)

The predictions in Eqs. (5.55,5.57) agree well with the data for D(*)7r in Table 5.1,

which give

IR rle xp = 0.94 ± 0.21, 6Di = 30.30 +7.8
-13.8 6 D*7 = 30.1° + 6.1 .

10Note that using the observed D and D* masses R M = N&/No = 1.04. This small difference
corresponds to keeping an incomplete set of higher order corrections.
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Figure 5-6: The ratio of isospin amplitudes R = A1/2/(v/A 3/2) and strong phases
6 and in - D7r and B -+ D*7r. The central values following from the D and
D* data i Table I are denoted by squares, and the shaded regions are the la ranges
computed from the branching ratios. The overlap of the D and D* regions show that
the two predictions embodied in Eq. (5.55) work well.

This agreement is represented graphically by the overlap of the la regions in Fig. 5-6,

with small squares indicating the central values. The dominant contribution to the

phase 6 is generated by the (C - E) amplitudes which have complex phases from

j(i) S(0 8) in Eq. (5.54). Since the phases in S(0'8 ) are non-perturbative and can be

large it is expected that they will dominate. Note that with this choice of triangle the

power suppressed side in Fig. 5-6 is enlarged by a isospin prefactor of 3/v1 = 2.1.

For B0 decays to D(*)°p°, D(*)°KO, D(*)°OK*o, D(*)K- and D(*)K*- only upper

bounds on the branching ratios exist, so our relation between D and D* triangles has

not yet be tested. For each of these channels similar triangles to the one in Fig. 5-6

can be constructed once data becomes available.

The results in Eqs. (5.55) and (5.56) can be contrasted with the absence of a

definite prediction in the large NC limit as in Eq. (5.6). Even when only the F0 term

is included (naive factorization), RP is given by a ratio of B -- r form factors, which

for generic mb,, are not related by heavy quark symmetry. Thus, one does not expect

a relation between the branching fractions or strong phases unless the 1/Q expansion

is used.
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Next consider the second class of predictions, which follow from the perturbative

expansion of the jet function in Eq. (5.54). We now assume that as(po) is pertur-

bative, and focus on M = 7r, p since the kaons are contaminated by contributions

from AD(*)M. The tree level result for J is given in Eq. (5.41), and was used to definellong

the nonperturbative parameters s(0,8) through convolutions with the soft distribution

functions S(0'8) (kt) as in Eq. (5.43). It is convenient to introduce an effective moment

parameter,

1 C (8 )

Seff = -s() + 2NcCF (8) = ISeffe-'. (5.60)

In terms of the effective moment the result in Eq. (5.54) at lowest order in a, (Q) and

as (po) becomes

A(B ° -+ D(*)°M°) = NJf C(°) 167ras(IO) Seff(AO) (-)M, (5.61)

where NoM is defined in Eq. (5.35). Since seff is independent of M = 7r, p the same

phase is predicted for these two light mesons.

At leading order in 1/Q the type-I amplitude A0- = A(B- -+ D%7r-) factors as

in Eq. (5.7) giving the product of a form factor and decay constant, both of which

are real (with the usual phase conventions for the states, and neglecting tiny as(mb)

strong phases ( 2) generated by the coefficients C(°) at one-loop [29]). Therefore

the amplitude A 0- is real at leading order in /Q, up to calculable corrections of

order as(Q). Choosing the orientation of the triangle so that Ao_ lies on the real

axis, the phase b can be directly extracted as one of the angles in the isospin triangle

V2Aoo + A+_ = Ao_. (5.62)

This is shown in Fig. 5-7 where we divide by Ao- to normalize the base. The data

on BO -+ DOpO is not yet sensitive enough to test the prediction that is the same

for 7r° and po.
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Using Eqs. (5.7) and (5.61) it is possible to make a prediction for the ratio RC

in Eq. (5.12) at NLO in the power expansion. Since RC = A+_/Ao_ contains only

charged light mesons it is easier to measure than neutral pion channels. Data is

available for all four of the D(*)7r and D(*)p channels. Using the triangle relation in

Eq. (5.62) one finds for the ratio of any two such modes [M = 7r, p]

~(*)M X ~A00 167aS(o)mD(*) Seff (o)RC~A . f- =1--( (5.63)AoD -- 9 EM(mB + mD(-)) (w0 , io) )M

It is easy to see that the ratio of amplitudes on the right-hand side is common to final

states containing a D or D*, and has only a mild dependence on the light meson,

introduced through the inverse moment (x-1 )M. In particular we note that there is

no dependence on the decay constant fM on the RHS of Eq. (5.63), since it cancels in

the ratio Aoo/Ao-. This implies that the ratios RC are comparable for all four channels

D(*)7r and D(*)p, up to corrections introduced by (x-1),r = (x-1 )p. These corrections

can be smaller than the correction one might expect from the ratio of decay constants

fp/f _ 1.6 (which appear in the naive a2 factorization). The experimental values

of these ratios can be extracted from Table I and are in good agreement with a

quasi-universal prediction

D A (/ ° A-+ D+7r-)l=07+0.5IRD)l = A(B- D ) = 0 77 ± 0.05, (5.64)
IA(B-+ DOr- )

R]A( B 7-I D*+=-) = 0.81 ± 0.05,
IRD)l = IA(B - D*07r-)l

RC~ = A(B -+ DP)I = 0.80 + 0.09,
IRnDP)I = IA(B-+ Dp-)JI

J[RC =IA(B - D*+ P) = 0.86 ± 0.10.IR zl) = IA(B - D*Op- )

This lends support to our prediction for the universality of the strong phase q in

- D(*)7r and B - D(*)p decays from the Seff in Eq. (5.63). The central values

of Rc _ 0.8 are well described by an eff of the expected size ( AQCD) as discussed

in the fit to the isospin triangle below. Further data on these channels may expose

other interesting questions, such as whether R!D*M) is closer to RDM) than R!D(*)-)
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is to RD(*)P).

An alternative use of Eq. (5.63) and the Rc amplitude ratios is to give us a method

for extracting the ratio of p and r moments. Using the D7r and Dp measurements

which have smaller errors than for D*, we find

(X-1 )p JR (RDp)I - 1
( D= = 0.87 + 0.42. (5.65)

{x-1)7 - IR~cD'-1

where only the experimental uncertainty is shown. The extraction in Eq. (5.65) is

smaller, but still in agreement with the ratio extracted from light-cone QCD sum rules.

The best fit from the yp' -+ 7r° data performed in Ref. [11] gives (x-'1' = 3.2 ± 0.4

in agreement with sum rule estimates of the moment. The QCD sum-rule result

x-i)p = 3.48 ± 0.27 [12], then implies

(- 1) = 1.10 + 0.16. (5.66)

The result that this ratio is close to unity is consistent with the universality of the

data in Eq. (5.64). This data can be contrasted with cases where the single light

meson is replaced by a multibody state such as [52]

Br(B0~ -+ D*+r-r-r +wO)
Br(B -4 D*°r+7r-TrTro) = 1.02 i 0.27, (5.67)

For the four pion final state our proof of the factorization theorem does not work,

since for many events one or more of the pions will be slow. We therefore would

expect less universality in branching ratios involving more than one light meson.

(For these decays a different type of factorization involving large NC works well for

the q2 spectrum [83].)

The result in Eq. (5.61) also leads to predictions for the ratios of color-suppressed

decay amplitudes to final states containing different light mesons M ° = 7r°, p0. We

find

R A(B0 - 4 D°p°)I = fp (x _ - 1.40± 0.77, (5.68)
-A(B0 - Doro)I f (x5.
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where we used fr = 130.7+0.4 MeV, and fp+ = 210±410 MeV, and inserted the result

in Eq. (5.65) for the moments. This can be compared with the experimental result

(Rp1 )exP = 1.02 ± 0.21. The large uncertainty in the ratio of moments in Eq. (5.65)

dominates the error in Eq. (5.68). With the QCD sum rule result in Eq. (5.66) we

find Rp, = 1.64 ± 0.35, a result whose central value is farther from the experimental

data, but still consistent with it.

In contrast to the first class of predictions, the predictions for the ratios in

Eqs. (5.63), (5.65), and (5.68) and the prediction for the universality of q can re-

ceive corrections from neglected [ (/'o)2/7r] terms in J. The dominant theoretical

corrections to this extraction are expected to come again from these perturbative

corrections to J or from power corrections, which we estimate may be at the 30%

level. A future study of the perturbative corrections is possible within the framework

of our factorization theorem and SCET.

The result in Eq. (5.61) and the data on B -+ Dir and B -+ D*7r decays can

be used to extract values of the moment parameters seffl and strong phase 0. We

present in Fig. 5-7 the constraints on the parameter seff in the complex plane, obtained

from D7r (light shaded region) and D*7r data (darker shaded area). We used in

this determination /io = E = 2.31 GeV, and leading order running which gives

as(po) = 0.25, CI(p = y0) = 1.15, and C2(p = p0) = -0.32. The good agreement

between the D7r and D*7r la regions marks a quantitative success of our factorization

relation in Eq. (5.54). Averaging over the Dir and D*7r results, we find the following

values for the soft parameters at = 0

I[eff I = (428 ± 48 ± 100 MeV) (C(0 ( )) ((3.)r)

b = 44.0° 6.5°0. (5.69)

In this determination the inverse moment of the pion wave function was taken from

the best fit to the y*y -+ r° data [11], (x-1 )7, = 3.2 ± 0.4. For IseffI the first error

is experimental, while the second is our estimate of the theoretical uncertainty in

the extraction from varying o from E,/2 to 2Ev. At the order we are working the

137



0.5

0.4

0.3
Im Seff
(GeV) 0.2

0.1

nv
o 0.1 0.2 0.3 0.4 0.5

Re Seff (GeV)

Figure 5-7: Fit to the soft parameter Seff defined in the text, represented in the
complex plane with the convention that Ao- is real. The regions are derived by
scanning the la errors on the branching fractions (which may slightly overestimate
the uncertainty). The light grey area gives the constraint from B - D7r and the dark
grey area gives the constraint from B3 - D*or.

extraction of the phase 0 is independent of the scale, since the prefactor a, (/o) (x-1 )f

drops out. The result in Eq. (5.69) agrees well with the dimensional analysis estimates

Seff s(o'8) AQCD. Since is non-perturbative its value is unconstrained, and a

large value of this phase is allowed.

The recent B0 -+ DOpO data from Belle allows us to extract Iseffd and in a

manner independent of the above determination. Keeping only experimental errors

we find

0.26 3___5
Iseff = (259 ± 124 MeV) (C ( o)) (( )p

= 17 ±70 °. (5.70)

The results agree with Eq. (5.69) within 1a, but currently have errors that are too

large to significantly test the factorization prediction of equality on the 20-30% level

of the parameters extracted from Dp and D7r.

The B° - D*)+K - channels proceed exclusively through the W-exchange graph

and have been the object of recent theoretical work [85]. For the result analogous to
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Eq. (5.61) we would have [M = K, K*]

A( - D(*)M) X= vNoM C() 16a (io) E ( ) + Ao)M ( )
9 Seff(II) (Xs)M + long (5.71)

Both the B0 -+ D,*)+K- modes and the Cabibbo-suppressed decays B -+ D(*)(*)
Do(*)M Ti ae h atrzto horeceive this additional contribution from Alo( )M This makes the factorization theo-

rem less predictive, and so we do not attempt an analysis of ratios RD( )K(*), R/M,

or the universal phases qE and tbc that are analogous to the 0 in Eq. (5.60).

On the experimental side both the Babar and Belle Collaborations [7] recently

observed the B0 - D+K- decay, and set an upper limit on the branching ratio of

B0-+ D+K

B(B ° -+ D+K- ) = [3.2 ± 1.0 (stat) ± 1.0 (sys) ] x 10- 5 (Babar) (5.72)

= [4.6+l.2 (stat) 1.3 (sys) ] x 10- 5 (Belle)

B(B - D*+K-) < 2.5 x 10- 5 (90%CL) (Babar).

The branching fraction for B0 -+ D+K - is an order of magnitude smaller than that

for B0 - D7r0. This indicates that the W-exchange amplitude ED K - is suppressed

relative to (C- E)Dr and (Vud/V'Vs,,) CDOR°K °. In SCET the SU(3) breaking between

0,(x) and qK(x) is generated by masses in the collinear quark Lagrangian [79]. This

causes an asymmetry in the light-cone kaon wavefunction. This SU(3) violation can

be expected to be at most a canonical - 20-30% effect, which would not account for

the observed suppression.

However, there is one important source of potentially larger SU(3) breaking from

an enhancement in moments of the light-cone kaon wavefunction which appear in the

short distance amplitude. This may account for the observed suppression. Basically

strange quark mass effects imply a larger SU(3) violation for inverse moments than
(x )~< x a )K. Using the result

expected for , versus bK alone, and implies that (X 1)K < ( 1 )K. Using the result
(xd )K/(x,1)K -" 1.4. Furthermore,

from QCD sum rules the ratio of moments [12] is (xd )K/(xs)K 1.4. Furthermore,

we anticipate a similar large effect from the moments that appear in the soft matrix

139



elements which again differ by factors of (k+)- 1 versus (k+) - ', and appear in a way

that suppresses DsK-. The combination of these two suppression factors might

accommodate the observed factor of three suppression in the DsK- amplitudes.11 The

long distance amplitude also involves two inverse momentum fractions through (0,8)

in Eq. (5.25), although admittedly much less is known about the non-perturbative
a(°'8) and a(°'8) T

functions (08) and (0 ) Thus, we find that the suppression of ED / K may not imply

much about the relative size of CD" and ED. Finally, we note that the suppression

mechanism for s creation that we have identified is particular to problems involving

large energies where light-cone wavefunctions arise.

Further information on the relative size of the short and long distance contribu-

tions to the kaon factorization theorem is clearly desirable. In section 5.1.4 it was

noted that in type-II decays transverse K*'s are produced only by the long distance

contribution at this order in AQcD/Q. Therefore, measuring the polarization of the

K* in both the B0 -+ D*K*- and B0 -+ D*OK*O decays can give us a direct handle

on whether there might be additional dynamical suppression of either the long or

short distance contributions, or whether they are similar in size as one might expect

apriori from the power counting.

5.1.7 Discussion of results

We presented a model-independent analysis of color-suppressed B 0 -+ DO(*)M de-

cays, in the limit of an energetic light meson M° . The soft-collinear effective theory

(SCET) was used to prove a factorization theorem for these decay amplitudes at

leading order in AQCD/Q, where Q = {mb, m, EM}. Compared with decays into

a charged pion these decays are suppressed by a factor AQCD/Q. Therefore, in the

effective theory they are produced exclusively by subleading operators. 12

"In general this argument gives a dynamic explanation for the suppression of sg-popping at large
energies which could be tested elsewhere. The production of an sg pair which end up in different
strange hadrons is likely to be accompanied by a suppression from inverse momentum fractions that
arise from the gluon propagator that produced these quarks. This enhances the SU(3) violation in
a well defined direction so that less s pairs are produced. A factor of 3 suppression of ss popping
is implemented in JETSET [106].

12In type-I decays, other subleading operators can compete with the time ordered products we
have identified at the same order in A/Q. This makes a complete analysis of power corrections to
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We have identified the complete set of subleading operators which contribute

to B 0 -+ Do(*)MO decays with M = r, p, K, K*, as well as for the decays B0

D(*)K(*)-. After hard-soft-collinear factorization, their matrix elements are given by

i) a short distance contribution involving a jet function convoluted with nonpertur-

bative soft distribution functions, and the non-perturbative light-cone meson wave

function, and ii) a long distance contribution involving another jet function and ad-

ditional x1 dependent nonperturbative functions for the soft B, D and collinear M.

The long distance contributions were shown to vanish for M = 7r, p at lowest order

in as(Q)/r.

The factorization formula is given in Eqs. (5.34) and (5.36). It may seem surprising

that the type-II decays factor into a pion light-cone wave function and a B -+ D(*)

soft distribution function rather than being like the naive a2 factorization in Eq. (5.2).

Our results indicate that factorization for type-II decays is similar to factorization for

type-I decays (albeit with new non-perturbative soft functions and additional long

distance contributions for kaons). To derive Eq. (5.34), QCD was first matched onto

SCETI at the scale / 2
= Q 2 . In SCETi it is still possible for gluons to redistribute

the quarks. This intermediate theory provides a mechanism for connecting the soft

spectator quark in the B to a quark in the pion, and for connecting the energetic

quark produced by the four-quark operator with the soft spectator in the D (see

Fig. 6-2). This process is achieved by the power suppressed time ordered products

given in Eq. (5.20). SCETI is then matched onto SCETIu at a scale MO2 = EMA. In

SCETI1 the collinear quarks and gluons are non-perturbative and bind together to

make the light meson M. This second stage of matching introduces a new coefficient

function (jet functions) as in Eq. (5.23). The jet function J contains the information

about the SCET I graphs that move the spectator quarks into the pion. The physics

at various scales is neatly encoded in Eq. (5.34). The Wilson coefficient C(z) from

matching QCD onto SCET I depends on physics at the scale Q2, the jet functions J, J

from matching SCET I onto SCET II depends on QA physics which is where quark

redistribution occurs, and finally the soft distribution functions S, 4) and the pion

type-I decays more complicated than our analysis of type-II decays.
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light cone wavefunction qm, AM depend on non-perturbative physics at A2 which is

where the binding of hadrons occur.

The soft functions S are complex, and encode information about strong rescat-

tering phases. This information is introduced through Wilson lines along the light

meson direction of motion, which exchange soft gluons with the final state meson D(*).

They provide a new mechanism which generates non-perturbative strong phases. In

the literature other mechanisms which generate perturbative strong phases have been

proposed. In particular in Ref. [13, 29] a method for identifying perturbative strong

phases with an expansion in a,(Q 2) was developed. In Ref. [70, 68] it was pointed

out that strong phases can also be generated perturbatively at the intermediate scale

as(EMA). In the language of our factorization theorem in Eq. (5.34) these phases

roughly correspond to imaginary parts in the hard coefficients C(0,8) and jet functionsL,R

J respectively. These phases exist, but for the B -+ D7r channels they only show up

at next-to-leading order in the oaS(mb) or acs(/o) expansion. (In type-I B - D(*)7r

decays the hard strong phase is very small, 2 [29]). In contrast, our new source of

strong phases is entirely non-perturbative in origin and can produce unconstrained

phases. For the case of B - D(*)M these phases show up in the power suppressed

class-II amplitudes.

The factorization theorem proven in this section leads to predictions which were

tested against existing experimental data on color-suppressed decays. We derived two

model independent relations, which related

* the B0 + DOMo and B0 -+ D*OMO decay branching fractions and

* the B -+ DM and B -+ D*M strong phases.

Here M = r, p, K, K*, and these relations are true to all orders in the strong coupling

at the collinear scale. The same predictions are also obtained for B0 -+ D(*)K- and

BO + D(*)K*-. The good numerical agreement observed between the strong phases

and branching fractions in the D7r and D*7r channels gives strong backing to our

results. This prediction can be tested further since the equality of the strong phases

for the p, K, and K* channels have not yet been tested experimentally.
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Additional predictions followed from the factorization theorem by using a pertur-

bative expansion for the jet function, including [M = 7r, p]

* the ratios IR = A(B1° D(*)+M-)/A(B - D(*)°M-)I to subleading order

* the ratios IR/'l = IA(B° -+ D(*)°p°)/A(B° - D(*)%r°)l to subleading order

* universal parameters {IseffI, 0} which appear for both D(*)7r and D(*)p, and

* a mechanism for enhanced SU(3) violation in s production for the short dis-

tance amplitude which might explain the suppression of the B0 - D(*)K- rates

relative to B -+ D07r0.

For RCI taking different values of M with the same isospin the power corrections

only differ by the moments (X-1 )M, giving an explanation for the observed quasi-

universality of these ratios. The isospin triangles for these M's are predicted to involve

a universal angle . The ratio of neutral modes IRP/ l are determined by inverse

moments of the light-cone wavefunctions and decay constants. Finally extractions

of the non-perturbative soft moment parameter Seff agrees with the AQCD size

estimated by dimensional analysis.

In the case of B_ D(*)K(*)- an additional suppression mechanism was identified,

which arises from enhanced SU(3) violation due to the asymmetry of non-perturbative

distributions involving strange versus down quarks. The inverse moments that appear

in the factorization theorem enhances this difference, and can lead to a dynamic

suppression of s-popping. Further information on the size of the short and long

distance amplitudes would help in clarifying this observation.

A more detailed experimental study of the channels in Tables I and II is crucial to

further test the accuracy of the factorization theorem and improve our understanding

of the structure of power corrections.
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Chapter 6

Isosinglets

6.1 Isosinglets

6.1.1 SCET Analysis and Data

We now consider the case when the final state light meson is an isosinglet. The

Belle and BaBar Collaborations have recently reported measurements of the color

suppressed decay channels B0 - D(*)OrI, B0 - DoI', and B0 - D(*)0w which have

anl isosinglet meson M in the final state [10, 1, 9]. A summary of the data is given

in Table 6.1. By now it is well understood that naive factorization [108] fails for

these color-suppressed decays. A rigorous framework for discussing them in QCD is

provided by the factorization theorem derived in the last section. The presence of

isosinglet mesons enriches the structure of the decays due to rj-r;' and W-0 mixing

effects and gluon production mechanisms [56, 73, 34]. In this section, we generalize

the SCET analysis of the last section to include isosinglets. We also construct a test

of SU(3) flavor symmetry in color suppressed decays, using our results to include the

r - r1 mixing.

The quark level weak Hamiltonian is the same as in Eq. (5.1). For color-suppressed

decay channels with isosinglets, it gives rise to three flavor amplitudes denoted C, E,

and G in Fig. 6-1, which take on a precise meaning in terms of operators in the SCET

analysis at; leading order in AQCD/Q. Here Q is a hard scale on the order of the heavy
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Figure 6-1: Flavor diagrams for - D decays, referred to as color-suppressed
(C), W-exchange (E), and gluon production (G). These amplitudes denote classes of
Feynman dliagrams where the remaining terms in a class are generated by adding any
number of gluons as well as light-quark loops to the pictures.

quark masses mb, mn or the isosinglet meson energy EM. The gluon G amplitude is

unique to isosinglet mesons. We will show however that for B -+ D(*)M decays the

G amplitude is suppressed by a (EA) relative to the C, E contributions.

For color suppressed decays to isosinglet mesons M = {7, 77', W, 0} we will show

that the factorization theorem for the amplitudes A(*) = (D(*)°MIHwIB° ) is

A(*)M = A(*)m A- A(*)M + Al(*)M ±(L - R),s'hort 'glue l 'ong+(L+R) (6.1)

Table 6.1: Data on B -- D and B - D* decays with isosinglet light mesons and
the weighted average. The BaBar data is from Ref. [10] and the Belle data is from
Refs. [1].
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Decay -Br(10-4 ) (BaBar) Br(10 -4 ) (Belle) I Br(10 4 ) (Avg.) AI (10-4 MeV) 
B o -*,q 2.5 ± 0.2 ± 0.3 1.83 ± 0.15 ± 0.27 2.1 ± 0.2 1.67 ± 0.09
Bo - D*%7 o 2.6 ± 0.4 ± 0.4 - 2.6 ± 0.6 1.87 ± 0.22
B° - D°r' 1.7 ± 0.4 ± 0.2 1.14 0.20 0.11 1.3 ± 0.2 1.31 + 0.11

B ° - D*°%' 1.3 ± 0.7 ± 0.2 1.26 ± 0.35 ± 0.25 1.3 ± 0.4 1.33 ± 0.19
Bo - Dow 3.0 ± 0.3 ± 0.4 2.25 ± 0.21 ± 0.28 2.5 ± 0.3 1.83 ± 0.11
B° - D*0w 4.2 + 0.7 + 0.9 - 4.2 ± 1.1 2.40 ± 0.31
B° D(*)° - ...
Bo - D 7 o 2.9 ± 0.2 ± 0.3 2.31 ± 0.12 ± 0.23 2.5 + 0.2 1.81 ± 0.08
B° D*°-,O - 2.8 ± 0.5 1.95 ± 0.18
BO - D()KO 0.62 ± 0.12 ± 0.04 0.50+013 ± 0.06 0.44 + 0.06 0.76 ± 0.06
B0

-D*OKo 0.45 ± 0.19 ± 0.05 < 0.66 0.36 ± 0.10 0.69 ± 0.10
B ° - D+K - 0.32 ± 0.10 ± 0.10 0.293 ± 0.055 ± 0.079 0.30 ± 0.08 0.64 ± 0.08
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where the i refers to the cases DM, D*M and the three amplitudes at LO are

Ashort = NqM E |ddlkd2+((z) x)(, vl72)((klk2 +)(M(x), (6.2)A(*lM = Nq' J dxdzfdkdk2+C( )(z) J)(z,x,k+,k+) S)(k+, k+) Om(x) (6.2)i=0,8

gluem Ngt Z: dxdzfkldk + C()(z) g(i)(z,x, k+,k2-) S()(k+,k2-)- M x)
glue = ~ j i2)--0,8o l/dk2

long) = Nq EAjdzfdk+dwd2xC (z) J(i) (wk+) ( (k+ xi, )(I) (Z w, x, 
l,.ong -- N M d

i=0,8

where i = 0, 8 are for two different color structures. Here A(h)om and (*are very
long e very

similar to the results derived for non-singlet mesons the last section, and each contains

a flavor-singlet subset of the sum of C and E graphs. The amplitude A(*l)M contains

the additional gluon contributions. The S(0,'8) are universal generalized distribution

functions for the B - D(*) transition. The qM are meson distribution functions,

and 

Ng 4 IfGFVcV*dMBDNq = - fq GFVbV,Vd V/mBmD(*), Ng = fl GFVebVud mBmD(*). (6.3)

The (I) and a i'( ) are long distance analogs of Si) and OM where the x± dependence

does not factorize. At lowest order in the perturbative expansion, C(°) = C + C2/3

and C(8) = 2C2 and are independent of the parameter z. The (L + R) terms

in Eq. (6.1) have small coefficients C- ) , O(as(Q)) and will be neglected in our

phenomenological analysis. Finally, the jet functions jPi), (i) and J(i) are responsible

for rearranging the quarks in the decay process; they can be computed in perturbation

theory and are discussed further below.

The derivation of Eq. (6.2) involves subsequently integrating out the scales Q =

{mb, mc, EM} and then ~EMAQCD by matching onto effective field theories, QCD -+

SCET - SCETII as for the case of non-singlet mesons. Here we only give the

reader a sense of the procedure, and discuss additions needed for the isosinglet case.

In SCETI the same time ordered product of Eq. (5.20) appears. However, this time

additional Wick contractions corresponding to the gluon production mechanism or

'For Cabbibo suppressed channels we replace V - V,, in NM and NM.
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Figure 6-2: Graphs for the tree level matching calculation from SCETI (a,b,c) onto
SCETIi (d,e,f,g,h). The dashed lines are collinear quark propagators and the spring
with a line is a collinear gluon. Solid lines are quarks with momenta po - A. The ®
denotes an insertion of the weak operator in the appropriate theory. The solid dots
in (a,b,c) denote insertions of the mixed usoft-collinear quark action £(1). The boxes

in (d,e) denote the SCETIn operator I()q from Ref. [93].

the G topology are possible. Once again, the power suppression from the two ()'s

makes the amplitudes for color suppressed decays smaller by A/Q from those for

color allowed decays. The C, E, and G diagrams in Fig. 6-1 are different contractions

of the terms in T(0 8) and at tree level are given by Figs. 6-2(a), 6-2(b), and 6-

2(c) respectively. The propagators in these figures are offshell by p2 EMA. In

SCETIn all lines are offshell by A2 , so the propagators either collapse to a point

as shown in Figs. 6-2(f), 6-2(g), and 6-2(h), or the quark propagator remains long

distance as denoted in Figs. 6-2(d) and 6-2(e). For the terms in the factorization

theorem in Eq. (6.2), Figs. 6-2(f,g) contribute to Ashort, Fig. 6-2(h) contributes to

Aglue, and Figs. 6-2(d,e) contributes to Along. A notable feature is the absence of a

long distance gluon contribution. Momentum conservation at the £l) vertex forbids
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the quark propagators in Fig. 6-2(c) from having a long distance component (or more

generally there does not exist an appropriate analog of the shaded box operator in

Figs. 6-2(d,e) that takes a soft d to a soft ii).

The diagrams in Fig. 6-2(f,g) have isosinglet and isotriplet components.

corresponding isosinglet operators in SCETIi are [93]

The

o() (kt, we)j ('i ,k)

O!8)(k +t ,:)I \ z ,

= [h()r h ) (dS)k+tPL (Stu)k+] [(d(q)w) I F(W n ),2] (6.4)

= [(h(c)s)rh Ta (Sth(b)) (dS)k+rPL Ta (SU)k+] [( q)w)W ( )2]

where h, and h, are Heavy Quark Effective Theory (HQET) fields for the bottom and

charm quarks, the index j L, R refers to the Dirac structures F = PL or rh = 

PR, Fc = (PL)/2, ((q) are collinear quark fields and we sum over the q = u, d flavors.

Note that no collinear strange quarks appear. In Eq. (6.4) the factors of W and S

are Wilson lines required for gauge invariance and the momenta subscripts (... )i

and (*)k±- refer to the momentum carried by the product of fields in the brackets.

The matrix element of the soft fields in 0 (0 ,8) gives the S'8)(k+, k +) distribution

functions, for example

(D(*)o (v') (ht,)S)giPL (sth(b)) (dS)kP (SU)k+ Bo(v))
m BD - AD(*) S() (k+ k+),

(6.5)

where AD = 1 and AD* = n.E*/n.v' = 1 (since the polarization is longitudinal).

The matrix element of the collinear operator gives the LO light-cone distribution

functions. We work in the isospin limit and use the (ui + dd), s basis for our quark

operators. For M = , Tj' we have

(qW) 75 (wt l(q)
(M(p) E (C(q)W)wl \ .n )w2 1O)

q=u,d 

(M(p) ((s)W)w#7 5(Wt(s)). 2 10)

= -i p f' Oq '(, X) 

: -i t.p fq5(, x),

while for vector mesons M = w, & we simplify the dependence on the polarization
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using mvy f-* = fip and then have

(M(pe*)I Z ((q)w)- i(Wt((q)). 2 ]O) = ip (u,x) , (6.7)
q=u,d

(M(p, e*)(s)w(WiL(t(n))w 2 10) = inTp f s ((j,x)

In both Eq. (6.6) and (6.7) we have suppressed a prefactor for the OM's on the RHS:

1

jo dx (wl - x i.p) 6(w2 + (1-x)h-p) (6.8)

Note that these definitions make no assumption about rr' or w-O mixing. The

SCET operators in Eq. (6.4) only give rise to the Om5 terms. By charge conjugation

(1 - x) = 1 (x) and Om (1 - x) = m (x) for both the isosinglet pseudoscalars and

isosinglet vectors. Our definitions agree with those in Ref. [73].

Now consider the graph emitting collinear gluons, Fig. 6-2(c). and integrate out

the hard-collinear quark propagators to match onto Fig. 6-2(h). Writing the re-

sult of computing this Feynman diagram in terms of an operator gives a factor of

[h(,)F{i, Tc}h b)] times

[dT, yPL{1, TC }-?Tb u](igBa)(igBb) -p 2 pn(6.9)
2 -fi p2nk2 + ie f-plnkl + ie

where igBEb Tb [1/P Wt[ii. Dc, iD` ]W]L,, is a LO gauge invariant combination

with the gluon field strength. The Dirac structure can be simplified: YPL?1YV =-

PL(gV+ie "') where e = +1. Furthermore we only need to keep operators that are

collinear color singlets, since others give vanishing contributions at this order. These

simplifications hold at any order in perturbation theory in SCET , so the matching

gives only two SCETI, operators

G(0 (t k)= VI h'6-0G z0(k ) wk) = [hv ) hv) (dS)k+iPL (Stu)k+] [(g9,+±iv) 3b L3.b2] 1 (6.10)
G(8) k [(C)ph~ hab a [.l i_)&1,G8 (kt,wk) = [h,)vT h,) (dS)k+tPLT (StU)k+] [(gV+ieIJ) Br%1 B L 2] 

The operators in Eq. (6.10) appear as products of soft and collinear fields allowing us
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to factorize the amplitude into soft and collinear matrix elements. We immediately

notice that the soft fields in Eq. (6.10) and Eq. (6.4) are identical. Thus, the same

non-perturbative B -* D(*) distribution functions S,(0'8) occur in the factorization

theorem for the gluon and quark contributions (cf. Eq. (6.2)). The matrix elements

of the collinear fields give

*~~~~~ib iFl -
M= ·rj: (,,IiE B-W130 = 2 (CFfI , XM(ix) (6.11)

M=-w: (M(p) , B_,_ 210) A= 2 X ) 

where

( , y) -(1 -) ' (6.12)~M (, P) X(1-X)

CF = (NC2 - 1)/(2Nc) = 4/3, and fM = / fM + V/1/3 fr . (We again suppressed

a prefactor on the RHS of Eq. (6.11) which is given in Eq. (6.8).) Our 05g and 0" are

the same as the ones defined in Ref. [73], where they were used to analyze the y-ij

and -- 7' form factors. Charge conjugation implies

m(1 - x) = -/, (x). (6.13)

At tree level using Eq. (6.9) to match onto the gluon operators G(0 '8) gives

___ __, ___ __o __ wc'~ (,uo)3?)~~~~~~~~J(O) _ 7ra(PSo) J( 8)= 7r(v 14)
9 Nc(nk2-iE)(n'kl+ic) 9 (-N 3+N c)(n -k2- ie ) (n -kl +i e)

where more generally jos08) = 0,)(z x, k+, k+). Thus, the jet functions are even

under x -+ 1-x while the gluon distributions are odd, and the convolution in Eq. (6.2)

for (*)M vanishes. Thus, A(*um starts at O[ca2(v/EA)] from one-loop corrections tofo glue gu 

the gluon jet function.

The remaining contributions to the amplitude come from the isosinglet component

of the long distance operators shown in Figs. 6-2(d,e). These operators take the form
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of a T-ordered product in SCETII

°' 8)(i, k+,w, /) = Jd4x T Q0 '8)(wi, x = 0) iL(0'8 )(w, k+ x). (6.15)

where L(0 8) (w, k+ x) [93] are four quark operators in SCET1J denoted by the shaded

boxes in Figs. 6-2(d,e). The matrix element of these long distance operators give the

contribution A(*)M in Eq. (6.2) where the collinear and soft functions X(08) and (08)

are defined as

(M (PM, ,M)| [()W) ?PL(W u ))W2] (0)[(d(u)W).p (W d)).] (X )O)

= ifM/V/ T() (z, wx4E) 

(D(*) (v,ED-) )(h () S) PL (SIh(b))] [(dS)k+ ~PL (St)k+] (Xl )

-= mBmD(*) )(\ k, xL* (6.16)

and at tree level the jet functions are J(°)(wk+) = -4/3 (8 )(wk+) = -87roas(p)/(9wk+)

Eqs. (6.5,6.6,6.11,6.16) combined with Eq. (6.2) completely define the amplitude

for color suppressed decays to leading nonvanishing order in AQCD/Q. We are now

in a position to make phenomenological predictions. We will neglect perturbative

corrections at the hard scale, oas (Q). For heavy quark symmetry predictions we will

work to all orders in as(v/E-A), while for relating the r and / amplitudes we will

work to leading order in a(V-X).

6.1.2 Phenemenology

The first class of predictions that we address make use of heavy quark symmetry

to relate the D and D* amplitudes. The factorization theorem in SCET, Eq. (6.2),

moves the energetic light meson into a separate matrix element. This allows us to use

the formalism of HQET in the soft sector to relate the B - D and B -+ D* matrix

elements in Eqs. (6.5) and (6.16). For Amort, the contribution is the same for the D

and D* channels with identical soft functions S() as a consequence of heavy quark

symmetry. The same is true for the soft matrix element in Aglue which also gives s().
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A(DM)
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n

Figure 6-3: Comparison of the absolute value of the ratio of the amplitude for B -

D*M divided by the amplitude for B -- DM versus data from different channels.
This ratio of amplitudes is predicted to be one at leading order in SCET. For w's
this prediction only holds for the longitudinal component, and the data shown is for
longitudinal plus transverse.

For the long distance contribution Amog, in addition to a dependence on powers of x,

the soft function 1)(,k + , E*.) can have terms proportional to x± eD. in the D*L D DX 

channel while the collinear function (i) (z, w, x, e*) can have terms proportional to

x1 .e4 in the case of vector mesons. In the convolution over xl in Amng, the term in the

integrand proportional to the product (x1 E*)(x * ) can be non-vanishing in the

D* channel with a vector meson. Such terms do not appear in the D channel making

the D and D* amplitudes unrelated in general. However, if we restrict ourselves to

longitudinal polarizations, such terms in the D* channel vanish and the long distance

contributions in the two channels become identical. Finally, note that the SCETI jet

functions, and the other collinear matrix elements in SCETIn are identical for the two

channels. Thus, at leading order in a8(Q) and AQcD/Q the D and D* channels are
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related as

Br(B - D*l) _ Br(B D*') _ Br(B - D*w 1 (617)
Br(B - Dr) - Br(B - Dqj') Br(B - Dw) (6.17)

For the decay to qO's we also have

Br(B -+ D*011) - 1
Br(B -+ D) (6.18)

however in this case the prediction assumes that the a'(EA) contribution from Aglue

dominates over power corrections. Note that we are expanding in mM/EM so one

might expect the predictions to get worse for heavier states. Fig. (6-3) summarizes

the heavy quark symmetry predictions for cases where data is available. In Fig. (6-3)

we have included the results from section 5.1.6 for non-singlet mesons as well as the

results for the color allowed modes [?]. We show the ratio of amplitudes because our

power expansion was for the amplitudes making it easier to estimate the uncertainty.

There is remarkable agreement in the color allowed channel where the error bars are

smaller and good agreement in the color suppressed channels as well.

So far our parameterization of the mixing between isosinglets in the factorization

theorem has been kept completely general, and we have not used the known exper-

imental mixing properties of q-r,' and -w. For the next set of predictions we use

the flavor structure of the SCETII operators and the isosinglet mixing properties to

a) relate the and rq' channels and b) show that decays to O's are suppressed. Our

discussion of mixing parameters follows that in Refs. [81, 57, 66, 55]. In general for

a given isospin symmetric basis there are two light quark operators and two states

(say q and I') so there are four independent decay constants. These can be traded

for two decay constants and two mixing angles. In an SU(3) motivated singlet/octet

operator basis, {(Ru+dd+§s)/v/3, (u+dd-29s)/v/6}, we have

fl =-fl sin 01, fl' = cos 01, f8 = f8 cos , f8 f8= fsin 08s. (6.19)

An alternative is the flavor basis used in Eq. (6.2) , {Oq, 0,} {(au+dd)/x/, s}.
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Here

fq:: fcosOq, fqt' = fqsinOq, f~ =-fs sin0 , f,' = f cos0 . (6.20)

Phenomenologically, (08-01)/(08+01) 0.4 which can be attributed to sizeable SU(3)

violating effects, whereas (q - Os)/(Oq + 0s) - 0.06 where a non-zero value would be

due to OZI violating effects [56]. We therefore adopt the FKS mixing scheme [55, 56]

where OZI violating effects are neglected and the mixing is solely due to the anomaly.

Here one finds experimentally

)q Os 0 = 39.3 ° + 1.00. (6.21)

Thus it is useful to introduce the approximately orthogonal linear combinations

rlqq) = cos 0 1I)+sin 0 1j'), I r)=-sin 0 l) + cos 0 '), (6.22)

since neglecting OZI effects the offdiagonal terms (0ql7s) and (Oql7s) are zero.

Since this is true regardless of whether these operators are local or non-local, the ma-

trix elements in Eqs. (6.6,6.16) must obey the same pattern of mixing as in Eq. (6.20)

[fq&q(X) = fq~q(x) cosOq, etc.] and so

( -~(X) -- d
r'/ ( X )

-- Fq(X)0 (,s8(X) = ~ (X,8) S(X)(0,80q, W -9' q (X) , OS'~7((, _-= OS('0,8 _ - ?,Sf q 6.23)

The SCETI, operators of Eq. (6.10) which contribute to A(*)M can produce bothglue

the Tq and T71 components of the isosinglet mesons. However, recall that at LO in

a0(EA) the convolution over the momentum fractions in A(*)M vanishes allowing

us to ignore this contribution. The remaining contributions from A(*)r and A(*)Ishort long

involve operators that can only produce the q component of the isosinglet mesons

as seen by the flavor structure of the operators in Eqs. (6.4) and (6.16). We can now
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write the amplitude for the ir(') channels in the form

A(*)71 = cos 0 [A(*)7q A l (*)=q A(*)"7q + Ang ]. (6.24)
short long

This leads to a prediction for the relative rates with SCET

Br(B -- Dy') _ Br(B - D'r/) = tan2(0) = 0.67, (6.25)
Br(B X D) - Br(B - D)

with uncertainties from a,(EA) that could be at the - 35% level. Experimentally

the results in Table 6.1 imply

B?)--+B Off) =06+012 Br(B -D*Tv')
- =+ Dri) 0.61 ± 0.12, Br(B < -= 0.51 ± 0.18, (6.26)Br(B B+o) Br(B -+ D*)

which agree with Eq. (6.25) within the 1-v uncertainties.

For the isosinglet vector mesons we adopt maximal mixing which is a very good

approximation (meaning minimal mixing in the FKS basis), and is consistent with

the anomaly having a minimal effect on these states and with neglecting OZI effects.

In this case only (00qlw) and (0100b) are non-zero. Thus only A*h)ot and A(*)w are

non-zero and we predict that 0 production is suppressed

BT-(f~o D(*)Oo) AQCD A D
B"(B° -+ D(*)°0$) (9(a2( EA)C( EA)A , CD 0.2, (6.27)
Br(B D( 0 *)) S' (6.27)

possibly explaining why it has not yet been observed. Interestingly a measurement

of B -+ Db or - D*O may give us a direct handle on the size of these expansion

parameters.

Just using the original form of the electroweak Hamiltonian in Eq. (5.1) there is

an SU(3) flavor symmetry relation among the color suppressed decays [104]

Br(B° - D+K- ) l Vud 2 Br(B° - D°K°) 3Br(B - D°%8)
Br(B X D0w0) V,, Br(B X DOir) Br(B D0w0)

Br(B° -+ D*+K) Vl.d 2Br(Bo - D*Oko) 3Br(B3 - D*°18)
~U(3) ~Br(B X D*00) |V,,, Br(B X D*0w0) Br(B D*0wO)

(6.28)
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where q8 is the SU(3) octet component of the T7. In the SU(3) limit the - ' mixing

vanishes and we can take 78 = 77. Away from this limit there is SU(3) violation from

the mixing as well as from other sources, and it is the latter that we would like to

study. To get an idea about the effect of mixing we set J/8) = cos Iq7)+sin 9177'), which

from Eq. (6.22) can then be written in terms of 1%) and Is7), and vary t9 between

-10 ° and -23 ° . From the flavor structure of the leading order SCET operators for

B -+ DM decays we then find

Br(B° -+ Dr8) Br(B - D*s78) cos2(0- 0)=~~~~~~~~ =0 (6.29)Br(B ° -+ Dij) Br(B ° -+ D*r1) cos2 (0) (6.29)

where 9 is the r-r' state mixing angle in the flavor octet-singlet basis and 0 is the

FKS mixing angle. In the SU(3) limit v = 01 = 0 = 0, however phenomenologically

0 _ -10° to -23 ° . Experimentally taking IVus/Vud = 0.226 and using Table 6.1

gives

1.00 ± 0.59 [ = 0] -0.22 + 0.97 [ = 00°]

Rsu(3)= { 1.75 + 0.57 [= -10] , RU(3)= { 0.59 ± 0.88 [=-10%-p.30)

2.64 ± 0.56 [9 = -23 ° ] 1.57 ± 0.83 [ = -23 ° ]

In all but one case the central values indicate large SU(3) violation, however the exper-

imental uncertainty is still large. It would be interesting to compute the uncertainties

by properly accounting for correlations between the data rather than assuming these

correlations are zero as we have done. At 1-a the errors accommodate R*U(3) = 1

except if = 0, and only accommodate Rsu(3) = 1 if = 0. Note that the heavy

quark symmetry prediction, R*U(3) = RsU(3), is still accommodated within the error

bars.

In the pQCD approach predictions for color suppressed decays to isosinglets have

been given in Refs. [69, 84], where they treat the charm as light and expand in mC/mb.

With such an expansion there is no reason to expect simple relationships between

decays to D and D* mesons because heavy quark symmetry requires a heavy charm.

In Ref. [84] predictions for q and 717' were given dropping possible gluon contributions.
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Our analysis shows that this is justified and predicts a simple relationship between

these decays, given above in Eq. (6.25).
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Chapter 7

Excited charmed Mesons

7.1 Excited Charmed Mesons

We now turn to nonleptonic decays where the final state charmed meson is in an

orbitally excited state such as the D1 and D*(see Table 7.1) collectively referred to

as D**. - D**K decays have been recently proposed [105] as candidates for a

theoretically clean extraction of the CKM angle y making such decays all the more

interesting to study. These decays also raise interesting questions regarding the power

counting scheme used to make quantitative phenomenological predictions. Based on

analysis of semileptonic decays [77] near zero recoil, the leading order contributions

are expected to be suppressed due to heavy quark symmetry constraints. This sug-

gests that subleading contributions could have a significant effect on leading order

predictions in B -+ D**M type processes. We will address these issues on power

counting and provide a resolution. On another note, the B0 - D(*)OpO rates are more

difficult to extract cleanly from experimental data due to background contributions

from intermediate D** states. In particular, in the D*o channel only an upper bound

on the branching fraction has been measured [52] and the errors in the Do channel

are still fairly large [103]. This has made it difficult to test the SCET prediction [94]

relating the D and D* amplitudes. With the p0 meson primarily decaying to 7r+7r-

and the excited D**+ mesons decaying to D(*)7r+ the same final state is observed for

B - D**+7r- and B0 - D(*)OpO. Thus, a precise extraction of the B° - D(*)°p°
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Table 7.1: The HQS doublets are labeled by s . Here si denotes the spin of the light
degrees of freedom and 7r, the parity. The D, D* mesons are L = 0 negative parity
mesons. The D, D* and D1, D* are excited mesons with L = 1 and positive parity.
f refers to the average mass of the HQS doublet weighted by the number of helicity
states [77].

rates requires us to better understand B decays to excited charmed mesons.

The B -+ (D(*), D**)7r type decays proceed via three possible topologies shown in

Fig. 5-1 but with the D meson replaced by the orbitally excited state D**. The color

suppressed modes which proceed exclusively through C and E topologies and will be

shown to be suppressed relative to the color allowed modes that are dominated by

the T topology.

As explained in chapter 3, there exists a tower of HQS doublets for the charmed

mesons where (D, D*) sits at the base. The first three HQS doublets are listed in

Table 7.1. In this section we extend the analysis to the case where the final state

charmed mesons are D1 or D* which sit in the third HQS doublet. A similar analysis

can be done for the (Do, D*) doublet but these are difficult to observe due to their

relatively broad width [91]. For this reason, we restrict our analysis to the (D1 , D*)

doublet. The most recent measurements in the color allowed sector giving the ratio

Br(B- X D*]r-)
Br(B- -+ D1%r-) = 0 79 ± 0.11, (7.1)Br(B- D017rj

obtained after averaging the Belle [3] and Babar [8] data. In this section, we shed

light on this ratio and also make predictions in the color suppressed sector.

In extending the analysis to include excited charmed mesons, the constraint of

HQS introduces possible complications in the power counting scheme. HQS requires

the matrix elements of the weak current between B and (D1 , D*) to vanish at zero

recoil [65]. This requires that they be proportional to some positive power of ( - 1)
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at leading order in AQCD/Q. Here w = v v' where v and v' are the velocities of the

bottom and charm quarks respectively and v2 = v'2 = 1. For semileptonic decays this

means that HQS breaking AQCD/Q corrections can compete with the leading order

prediction [77, 78]. For example, if the amplitude were to have the generic form

A(w) (w - 1)[1 + AQCD/Q +--.] + [0 + AQCD/Q + -1' (7.2)

and (w - 1) - AQCD/Q, then the subleading AQCD/Q terms in the second square

bracket are of the same order as the leading order terms in the first square bracket.

The effect of the subleading corrections is especially important near zero recoil where

w -+ 1. The two body decays B -+ (D1, D*)M occur at maximum recoil where

(wO - 1) 0.3 which is numerically of the same order as AQCD/Q. One is thus forced

to consider the role of subleading corrections and how they compare with the leading

order predictions. However, we will see that maximum recoil is a special kinematic

point at which the constraint of HQS enters in a very specific manner so as to preserve

the AQCD/Q power counting scheme. The main results of this paper are

* At leading order, the ideas of factorization, generation of non-perturbative

strong phases, and the relative AQCD/Q suppression of the color suppressed

modes are the same for B-decays to excited charmed mesons B - D**M and

to ground state charmed mesons B - D(*)M.

* The constraint of HQS takes on a different character at maximum recoil com-

pared to expectations from the analysis of semileptonic decays near zero recoil.

In particular, at maximum recoil there is no suppression of the leading order

contribution due to HQS. Thus, the SCET/HQET power counting scheme re-

mains intact and allows us to rely on leading order predictions up to corrections

suppressed by at least AQCD/Q. We verify this explicitly for subleading correc-

tions to the semileptonic form factors at maximum recoil.

* At leading order, factorization combined with HQS predicts the equality of the

B -- D1M and - DM branching fractions and their strong phases. In
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the color suppressed sector, this prediction is quite non-trivial from the point

of naive factorization since the tensor meson D* cannot be created via a V-A

current.

* Recent data [3, 8] reports a 20% deviation of the ratio of branching fractions

from unity in the color allowed sector. The subleading corrections of order

AQCD/Q are expected to be of this same size and could explain this deviation

from unity.

Eqs. (5.7) and (5.34) are the main results of the analysis for the B -+ D(*)M

decays. The analysis for decays with excited charmed mesons B -+ D**M will proceed

in exactly the same manner. Any difference in results will show up only at the non-

perturbative scale i.e. in SCETI . In other words, the doublets (D, D*) and (D1, D*)

have the same quark content and any difference between them arises only from non-

perturbative effects responsible for their binding. The physics at the scales/2 mW,

Q2, and QAQCD or in the theories SM, Hw, and SCETI is the same leaving the

perturbative functions C1,2, C(0,8) and j(0,s) unchanged (see Fig. 5-2). The light cone

wave function OM will also remain unchanged since the same final state light meson

appears. At leading order, the only change will be in the soft functions S()R and

since the matrix elements will now involve different non-perturbative final states

namely (D1 , D*). We will denote the modified functions as Q()R and T corresponding

to S(i) and respectively.

7.1.1 SCET Analysis: Leading Order

We now begin our analysis for the excited charmed states. We start by obtaining the

modified soft functions r and Q
(i ) and then carry over results for the perturbative

functions and the non-perturbative collinear sector from the previous section to obtain

the analog of Eqs. (5.7) and (5.34).
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Color Allowed Modes

We first analyze the soft functions for the color allowed modes B - (D+, D+)M-

and B- -+ (D °, D*°)M-. As before, the leading contribution to these modes comes

from the T topology which is given by the matrix elements of the effective SCETIn operators

Q(O) of Eq. (5.19). These matrix elements factorize into soft and collinear sectors.

Using the formalism of HQET, the soft part of the matrix element can be expressed

in general form as a trace

, (C) h (b)I 30 V
(D2, (w)Tr [v Fhv F,)H(R)v ° (7V3)

m~~mD = r~~(w)Tr ro, (c)untr(b)l 73V/m~~~~~~~~~mD~~~~

where T(w) is a new Isgur-Wise function analogous to ~(w). As in the case of ground
state charmed mesons, the operators Q(8) give vanishing contribution. H(b) and F(c)

~L,RgievnV

in Eq. (7.3) are the superfields for the heavy meson doublets (B, B*) and (D1, D*)

respectively [53]

Hv - 2 (Pv % + P)'5)
2

W 1 +(D~% _ ~ ~/IDD[g7 11-
F _ - 2 (D* A-ya[v3§ - v)]). (7.4)2 2 V2

As mentioned in the introduction, the matrix element in Eq. (7.3) which also appears

in the case of semileptonic decays must vanish in the limit of zero recoil. This condi-

tion is manifest in the right hand side of Eq. (7.3) through the property v' Fvc, = 0.

Thus, we expect the leading order amplitude to be proportional to some positive

power of (w - 1). At maximum recoil (wo - 1) 0.3 - AQCD/Q putting (o - 1) and

AQCD/Q on the same footing in the power counting scheme. In addition, maximum

recoil is a special kinematic point where the heavy meson masses are related to wo

through (wo - 1) = (B -BmD)2 We must keep this relation in mind to make the power2
mroB moD

counting manifest and so it becomes convenient to express (mB - mD) in terms of

(Wo - 1).
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Computing the trace in Eq. (7.3) we arrive at the result

(Dl(v') hv)LRh I(b)lB0 (v))

VmBmD

(D2 (v') I h,Rh(b) IBO(v))

J/mBmD

= (W) mB(w + 1)*

= T(W) 2mD(w --1) e*vvv

where the ± for the D* refer to the choice of Frh and F' Dirac structures respectively.

ed and d' v are the polarizations for D1 and D* respectively. Combining this result for

the soft sector with the hard and collinear parts from the previous section we obtain

the final result

A(B - D1M)

A(B -D*M)

,/MB W + 1)evrW uND1EM 3m B( O *(Wo, )

x f dx T 1 (x, mnC/mb, A) OM(X, A)

= ND2*EM w / ) VVV(Wo)
2mo(Wo- 1)

(7.6)x f dx T 2 (x, /b, mc/mb,1) M(X, ),

where the normalizations are given by

ND= GF VfM /mml, GFVbVMmmD2
VNi

and the hard kernels T(D1,D)(x, u) are the same as those appearing in Eq. (5.7)

T(D1 D2) (x, ) T(*) (x, p) ). Using the properties of the polarization sums

* . v12 = (w + 1)(w - 1),
pol

Zl*e v.v12 = 2 (w + 1)2 (w - 1)2,
pol

the unpolarized amplitude squared is given by

E A(B -+ (D1, D*)M)12 = IN(D1,D2*) jdx T(Dl'D2)(x, mC/mb, ) (IM(X, t)12

pol

mBT2(w, ji) (wo + 1) 2(Wo - 1).
3 reD

(7.9)
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At leading order in AQcD/mb,C the masses in the heavy quark doublet (D1 , D*) are

degenerate giving the relation N(D1) - N(D2*). In addition at leading order in as(Q),

T(D1) = T(D2*) allowing us to make a prediction for the unpolarized color allowed

branching ratios:

Br(B° -+ D*+M-) Br(B- -+ D°M - ) 1 (710)
(7.10)

Br(B - D+M- ) = Br(B- - DOM- )

The same result was derived in ref. [77] at lowest order in 1/mb,C by evaluating their

results for semileptonic decays at the maximum recoil point and replacing the eip pair

with a massless pion. Recently, a theoretical prediction of 0.91 for the above ratio

was made in the covariant light front model [44].

Color Suppressed Modes

Now we look at the color suppressed modes B 0 -+ (DO, D*O)Mo. The leading contri-

butions are from the C and E topologies which are given by matrix elements of the

SCETIn operators 0(°'8)(k+,wk) of Eq. (5.27). Once again, the result factorizes and

using the formalism of HQET, the soft part of the matrix element can be expressed

as a trace

(D(*)o DO(v')I(h( vc)S)' (Sth (b)) (dS)k+IPL (Stu)k+l¢°(v) Tr r(c)aphH(b)X(O).1)

with similar expressions for the 0(8)(k+,wk) operators. The Dirac structure X(0 ,8) is

of the most general form allowed by the symmetries of QCD and involves eight form

factors

X(O,8) = v,(a'(08) PL + a(0°8)/PR + a'(0,8)PL + a(0,8)PR)

+n, (a(?') P + a 8 ) PR + a(O'8)PL + a0'8)PR) (7.12)
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Computing the trace in Eq. (7.11), the soft matrix elements are given by

(Do0(v') ((h)S)rR (Sth(b)) (jS)ktPL (StU)k+ lB0 (v)) L(T.vov)Q)R

m/BmD 4(w + 1)(w- 1)

( o ,v' -h(c) Lh , ,
(Dl°(v )|(h({)S~rh R (Sth~) (dS)kl+'PL (StU)k+IBO(V)) * V)QLO 13)

/mBmD 24(w + 1)(w - 1)

where,

Q(o) 2 2 TmBmD(2a()mB a()B- aO) mBmD) W/( + 1)(W -1)
L( = 2 2 [21D(a ma -3 "B 4mBmD

+ 4a()m4 - 2a()m4- 2a(?)mDmB]
QR(O) = 2 [2mBmD (2a)m -()mB a()m ) /(W + 1)(w - 1)

2Ba 3imBrD
+ 4a()m - 2a(o) mDmB - 2a)m], (7.14)6 a ? 7Dtt B-

with similar expressions for Q(8). Here the soft functions QLO,) are the analog of SL(0,R8)LR LR L,R

in Eq. (5.34). It was shown [94] that these soft functions generate a non-perturbative

strong phase. We note that in both the D1 and D* decay channels, since the same

moments of the non-perturbative functions QL'R) appear, their strong phases are

predicted to be equal

ODjM = OD2M. (7.15)

The analogous strong phase q0 for B0 - D(*)%7r is shown in Fig. 5-6. Since the strong

c(0,8)phases and qOD1 ,D*, are determined by different non-perturbative functions LR

(and ') respectively, we do not expect them to be related.

Keeping in mind that the perturbative functions C()R and (i) remain unchanged,

we can combine the result in Eq. (7.13) for soft sector with the collinear and hard

parts of the amplitude to arrive at the result

=D1 -N DIE*.v 12V,1 , k(
Aoo~l) = -N * v |dx dzfdk+ dk+ [i(z) J() (zxk k+k) Q(i)(k+ k+) ()

24(wo + 1)(wo - 1) 1

-c(i)(z) J()(z, , k+, k+) Q (k+, k +) M(x)]
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00 = dxdz dk+dk+[C(i)(z) J(i)(z,x,k+, k+) Q(i)L'(k+, k+ ) M(X)4(wo + 1)(wo -1) o

+C( )(z) J(i)(z, x, k+ , k +) Q(i) (k +, k +) M(x)] (7.16)

Once again the vanishing of C(' 8) in Eq. (7.16) at leading order in a,,(Q) and using

the polarization sums in Eq. (7.8) gives the unpolarized amplitude squared

A(D1,D2*)I2 = 1 IN(D1,D) Xdzfdk+dk2+ [C(i)(Z) J(i)(z, x, k, kj)
ot 2°° - 241 

x Q( )(k+, k+) M(x)] * (7.17)

Since NDI = ND2*, at leading order in AQCD/mQ we can make a prediction for the

unpolarized branching ratios

Br(B° -o D*°M°) 7
(7.18)Br(BO - DOMO) = 1,

which is one of the main results of this paper. Note that from the point of view of

naive factorization, this result is quite unexpected since the tensor meson D* cannot

be produced by a V-A current.

7.1.2 SCET Analysis: Power Counting at Subleading Order

Color Allowed Modes

We see that as required by HQS, the unpolarized amplitude in Eq. (7.9) is proportional

to (w0 - 1) which is expected to provide a suppression of this leading order result.

However, it is also accompanied by a factor of (w0 + 1)2. At maximum recoil w0 is

related to the energy of the light meson and the mass of the charmed meson through

V/(wo + )(wo- 1)= M (7.19)

Thus, in the SCET power counting scheme the quantity V/(w0 + 1)(wo - 1) is of order

one. It is now clear from Eq. (7.9) and the above relation that despite the constraint of
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HQS there is no suppression of the leading order result and the subleading corrections

of order AQCD/Q are not dangerous to the leading order result. This allows us to rely

on the leading order predictions up to corrections supressed by AQCD/Q.

To illustrate the above ideas, in this section we will compute some of the subleading

corrections and compare their sizes relative to the leading order predictions. The

leading order operators in Eqs. (5.19) and (5.27) are products of soft and collinear

operators Q Os *OC. Subleading corrections can arise in four possible ways
~~~~~~~~~. .. .

- .. ~ ~ ~ ~~~~~~ . .

: crei0slulithb soft sector to Os and from T-products(see Fig. 7-la) with Os.
.. '::. * *. . .- ..

* corrections in the collinear sector to Oc and from T-products(see for example
.. .. -' 

Fig. 7-1b) with Oc.

* corrections from subleading mixed collinear-soft operators and their T-products.

* Beyond the heavy quark limit, s is no longer a good quantum number. From

table 7.1, we see that it implies mixing between D1 and D*. Thus, the physical. ~~~.. .. .~ : "t
D1 state will have a small admixture of the D* state beyond the heavy quark

limit which will play a role in subleading corrections.

We will only focus on subleading corrections in the soft sector from HQET as in

Fig. 7-la in order to illustrate the power counting. These corrections give precisely

the subleading semileptonic form factors which were computed in Ref. [77]. The

analysis for the remaining subleading corrections will follow in a similar manner and

we leave it as possible future work.
. .

The-HQET and QCD fields are related to eachother through

·.. .. Q(x) = eiIQ[l + . ]hQ) (7.20)
2 mQ 

where the ellipses denote terms suppressed by higher orders of AQCD/mQ and Q = b, c.

Including the AQCD/mQ corrections, the QCD current is now matched onto
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B1
D

(a) (b)

Figure 7-1: Contributions to the color allowed sector from T-ordered products of the
effective weak vertex in SCETI with subleading kinetic and chromomagnetic HQET
operators (a) and with the subleading SCET operators(b). In this section, to illustrate
through examples the relative suppression the subleading contributions by at least
AQCD/Q, we only consider T-ordered products of type (a). The analysis for type (b)
contributions will proceed in a similar manner.

erb -+ hc)(r - 2 - + )hvb) 2m, 2 mnb (7.21)

Then there are subleading corrections from T-ordered products of the leading order

current with order AQCD/Q terms in the HQET Lagrangian:

JLHQET = 2 Q kinv mag (7.22)

where (Q) and )gv are the kinetic and chromomagnetic operatorsVkin'vma'

(7.23)(a) = h(Q) s , (Q)

We employ the trace formalism to compute these subleading corrections to the soft

matrix element from corrections to the matching in Eq. (7.21)

-

h,)i D:, 'Fh$) = Tr[S(c) P(c)^yPM(b)I
V V O-A VI V J~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- ~ ~~ )zv

~
I xtt

h(,)rAi)Ah (b)v' J" zJ = Tr[S(b) Fa(C)pryAHvb)]- Tr[ L""'X "-vt '! 
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\ v 

, x Y

(1:, M:)"I

I 
II I

I I

O(Q),V = h(Q)(iD)2 h(Q)
kin V V I



and from T-ordered products with LHQET

4 IN) rT(),b)f d4xT(Oa)9gvw (X)[h,9Fhjb)](0)) =Tr[R,() ,~(c)ia4 1 + FHb)]2
i d4xT(O)gv(x)[h(c)rh(b)](0)) = Tr[R(c)()l + ~iuaHb)] (7.25)i d xT(Omag,v X v "'v ra(cP(*l() -lr'miv' 2

where the structures s(Q) and R (Q) are parametrized as

(s = v[l) VA + T2Q) V± T Y+ TV)] + Og9,

R(c) = n()v7, + n(c)vv, + n(c) gv,IOaf 1 V~7}3f 2 VV7 3l

R(b) = n(b) V + n vv, + n (b),v, (7.26)-- 1 v,%7Yl+f 2 vay +' 3 PI

The T-ordered products with the kinetic energy operator O(Q)V do not violate spin
kin,v

symmetry and simply provide AQCD/mQ corrections to the form factor in Eq. (7.3)

-T T r = + + _ The form factors appearing in S(Q) are not all independent2m, 2mb a

and are related [77] through

c) + (c) _ c) O
WTi + 2 T3

(b) + (b) _ (b) + (b) = o

T1±WT2 -T +T4-? = 0,
(c) + (b) = AT

2(c) + 2(b) _= Ai

T(c) + (b) T3 + T3 = 0

(c) (%b) = 0,T4 + T4 = , (7.27)

where A and A' are the energies of the light degrees of freedom in the mb,c -X o limit

for the (B,B*) and (D1 , D) HQS doublets respectively. Using these relations we

can express our results in terms of the , C) , and rT2c) form factors. Combining the

subleading contributions from Eqs. (7.24) and (7.25) with the leading order result in

Eq. (7.3) and using constraints from Eq. (7.27) we can write the soft matrix element
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= '(Wo)Tr [vFv) rH )] 1 Tr[S(c),_(c)ArH(b) 1 Tr[S (c)F, A Hb)
2mc 2m o

T(W) v _ _'o , , _,_(c)p_,AH(b)] i 1 rR(c)+ 2( Tr[(Av-, A v7) ) ri+yiH(b)] + 2 Tr[R

+ ±(b) -(c)r 2 ia/H,(b)] + 
+ 2 Mb 0 2

where the ellipses denote contributions from other subleading operators that we have

not considered. Computing the above traces and combining the results for the hard

and collinear parts from section II, the amplitudes can be brought into the final form

A(B -+ DiM)= NDlfBDle* . V odx TD (x, mc/mb, ) OM(X, )

A(B -+ D*M) = ND2*fBD2* e*oVVv jdx TD2*(x, m/mb, A) OM(X, A),
where f(BD1~B2)arfucinoftefrfatr ()()(cb

where f(BD,BD2*) are functions of the form factors , r ) c) (cb)Tch , l 71,2,3'

channel, fBD1 is given by

For the D1

IC* .VfBD12
mB (Wo + 1)

12 mD

x [(2- + 6)11
mc

mB mD) 1(c) (m mM /b)
+ ( + ()- - -(o + -1) )w/(0 o - 1)

mD mB mc mD mB mb
I2

_ (2mD

mB
mD

m2

mB
+ (B mD DA'-r r?)

mD mB mc 2mc 2mc

and for the D2 channel, fBD2 is given by

1e I*0vvf BD 2* 2

pol

mB(wo + 1)
12mD

(c) (c) (c) 6 (b)x [(2r - + 72 + 3 c 67b
mc mc mc mc mb
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as

SD1,D2*

Fp,()ic.B l + H(b)]
2

(7.28)

E
pol

(7.29)

Mc

(c) 6 (b)

mc mb

(b) (b)
'72 773

mb mTb

(c) (c)
_1 2( 2

2mc mc

2AT

mc

/(wo - 1) +

(7.30)

mD -.T c)

m+ +1)
mB mb

(c)

mb

AT A'T
Mb ) Mbmb mb

(b) (b)
+-72 + 773

mb mb



m(B ID )7c T1(b)+ + m- 1)(T _12 ))(Wo + ( 1)(o- 1) (7.31)
'MD MB Ic Mb

- ((A ) - -_( + + 1) (-2 Ti))(Po- 1) + ]
mb mb mD mB mc mb

The above expressions are written in a way to make the power counting manifest.

The ratio B is of order one, (o - 1) is numerically of order AQCD/Q, and as dis-

cussed in Eq. (7.19) the quantity /(wo0- 1)(wo + 1) is of order one. We see that

the leading order contribution inside the square brackets in Eqs. (7.30) and (7.31)

is proportional to T(wo0- 1)(wo + 1) and is the same for the D1 and D* chan-

nels. More importantly, there is no suppression of the leading order term due to

HQS since V/(Wo0- 1)(wo + 1) is of order one. On the other hand, the subleading

corrections in the square brackets are of size either AQCD/mQ, (o - 1)AQcD/mQ,

(wo- 1,AQcD/mQ, or (wo0- 1)(wo + 1)AQcD/mQ and hence are suppressed by at

least AQCD/mQ relative to the leading order prediction. Thus, we see that the con-

straints of HQS enter in a very specific manner so as to preserve the power counting

scheme of SCET allowing us to ignore the subleading corrections near maximum re-

coil. It was the maximum recoil relation in Eq. (7.19) that ensured no suppression

of the leading order result. The predictions of Eq. (7.10) remain intact with these

subleading corrections suppressed by at least AQCD/Q.

Color Suppressed Modes

In the case of color suppressed decays which are mediated by operators that are not

conserved currents, there is no reason to expect the soft matrix element to vanish at

zero recoil by HQS and thus no reason to expect a suppression at maximum recoil. In

fact the non-trivial dependence of the soft matrix elements in Eq. (7.11) on the light

cone vector nT makes it difficult to make a comparison with the zero recoil limit. The

soft functions Q('8) will depend on the light cone vector through the arguments
v, n* v', * k, k2) and it is not obvious how to extrapolate such a function away

(n v, n vn. kl, n k2) and it is not obvious how to extrapolate such a function away
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from maximum recoil. At maximum recoil v, v' and n are related through

mBvA = mDv + EMn". (7.32)

The light (cone vector has the special property n2 = 0 and is a reflection of the onshell

condition of the pion p2 = (En) 2 = 0. Away from maximum recoil, EMn is to be

replaced by q which is offshell q2 ~ 0, inconsistent with the n2 = 0 property of the

light cone vector. So, Eq. (7.32) can no longer be used to determine nu in terms of vu

and v' and thus more care is required in extrapolating away from maximum recoil.

From Eqs. (7.16), (7.14), and (7.19) and the power counting scheme discussed

earlier we see that there is in fact no suppression of the leading order color suppressed

amplitude. The leading order predictions of Eq. (7.18) remain intact with corrections

suppressed by at least AQCD/Q. We leave the analysis of subleading corrections in

the color suppressed sector as possible future work.

7.1.3 Phenomenology

In the color allowed sector, based on an analysis of semileptonic decays and an ex-

pansion in powers of (wo - 1), the ratio in Eq. (7.10) was previously predicted to be

in the range 0.1 - 1.3 in Ref. [77] and 0.35 in Ref. [95]. In this paper, with the new

power counting introduced at maximum recoil, we have shown the ratio to be one at

leading order. In fact we have obtained the same result even for the color suppressed

channel. The main results of this paper at leading order are the equality of branching

fractions and strong phases

Br(B -4 D*M) --, =oM, (7.33)
Br(B DM) D1M (7 33)

where M = r, p, K, K* in the color allowed channel and M = 7r, p, K, K* in the color

suppressed channel. This result in the color suppressed channel is quite unexpected

from the point of view of naive factorization. In the color suppressed channel the

long distance operators in Fig. 6-2c,d give non-vanishing contributions for kaons at
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leading order in cs(Q) unlike the case of Al = , p. However, based on the same

arguments [94] given for the case of B-decays to ground state charmed mesons the long

distance contributions to the color suppressed decays B0 - DoK0 and B0 -+ DO*K0

are equal and the result still holds. For K*'s the long distance contributions are equal

only when they are longitudinally polarized.

Once data is available for the color suppressed channel we can construct isospin

triangles analogous to Fig. (5-6). With A0_ chosen as real, the strong phase D**M

generated by the color suppressed channel A00 through the soft functions Q(',R in

Eq. (7.14'), is identical for D1 and D*. The isospin angle which is related to 

through Eq. (5.62) is also the same for D1 and D*. Thus, at leading order we predict

the isospin triangles for D1 and D* to identically overlap.

Recent data [3, 8] reports the ratio of branching fractions in the color allowed

channel

Br(B- -- >D*°Ir- )

Br(B- - D°i-) = 0 79 ± 0.11. (7.34)Br(B- -+D07n)

The deviation of this ratio from one, which will cause the isospin triangles to no longer

overlap, can be attributed to subleading effects. The subleading effects shown to be

suppressed by AQCD/Q are expected to give a 20% correction, enough to bring agree-

ment with current data. Thus, our claim that subleading corrections are suppressed

AQCD/Q is in agreement with current data.
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Chapter 8

Conclusions

We have applied effective field theory techniques to gain control over strong interaction

effects in nonleptonic electroweak decays of B mesons into a charmed meson and an

energetic light meson of energy E. A typical decay of this type is B - D(*)-r. There

are several relevant energy scales involved each contributing important effects to the

decay process. The quark level b - c transitions are determined by electroweak scale

physics pu v- Mw, the characteristic energy scale for the decay process is determined by

the bottomr quark mass - mb, typical energies involved in soft-collinear transitions

are of order ,u /AQCD, and the non-perturbative physics that goes into binding

quarks into hadrons occurs at the confinement scale p AQCD. We dealt with

the large range of energies involved through a sequence of appropriate effective field

theories between the electroweak and QCD confinement scales

Standard Model > Fermi Theory > SCETI SCET.

The major focus of this thesis was Soft Collinear Effective Theory(SCET) which

deals with the physics of the two lowest energy scales in the above sequence. SCET

formulates the problem of studying B - D(*)- type decays as an expansion in powers

of AQCD/{mb, m~, E}. An introduction to SCET was given in chapter 4.

In our journey from the electroweak scale towards the confinement scale, addi-
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tional approximate symmetries were made manifest by the effective field theories

encountered along the way. We found Heavy Quark Symmetry(HQS) as an approxi-

mate low energy symmetry in SCET and used it to derive a host of phenemenological

relations in chapter 5. HQS first appeared in the context of Heavy Quark Effective

Theory(HQET), an effective theory for the interactions of a heavy quark with soft

gluons, and was discussed in chapter 3. Making HQS manifest in SCET was a rather

non-trivial task. It required proving a factorization theorem that decouples the en-

ergetic degrees of freedom associated with the light meson responsible for breaking

HQS and was the subject of chapter 5.

The main results of this thesis have to do with factorization, heavy quark sym-

metry relations, generation of non-perturbative strong phases, and power counting.

Factorization, proven at leading order in SCET, was of two types. The first was

a factorization of effects from the different energy scales involved and the second

achieved a decoupling of the energetic modes associated with the light meson. Fac-

torization of the amplitude was proven for color suppressed modes which involve

interactions of spectator quarks making the proof all the more non-trivial. With

the factorization theorem at hand, we were able to derive heavy quark symmetry

relations. A typical result was the equality of the branching fractions for the color

suppressed modes B0 -+ D°r 0 and B° -+ D°*1r° . Similar relations were derived for

B -+ D(*)41 and B - D**7r type decays with an isosinglet meson and excited charmed

meson in the final state respectively. A new mechanism for the generation of non-

perturbative strong phases was shown within the framework of factorization. Heavy

quark symmetry relations were derived for these strong phases as well. A typical

leading order result was jD = D*, for the above mentioned color suppressed de-

cays. A certain degree of universality was shown for the strong phases through their

independence of the final state light meson. A typical univeraslity relation was of the

type JDr = Dp corresponding to an equality of strong phases for B° - Dr °0 and

B - D°p°. Finally, color suppressed decays of the type B0
- D07r0 were shown

to suppressed relative to the color allowed decays of the type B- -+ Dr- by one

power of - AQCD/{mb, me, E}. All of the results obtained are in good agreement
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with availlable data.
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Chapter 9

Appendix

9.1 Long Distance contributions for 7r and p

The factorization theorem derived in Sec. 5.1.3 for the color-suppressed B° -+ D°M°

amplitude contains both short- and long-distance contributions. In this Appendix we

show that, working at lowest order in the Wilson coefficients at the hard scale Q, the

long-distance amplitude vanishes for the case of an isotriplet light mesons M = 7r, p.

We start by recalling the factorized form of the long-distance amplitude, which is

given by SCETIn time ordered products (OR8)

AD(*)M fof 2f)long = 1 dzjdk+dwjdx [C( ) (z) J() (wk+) L(k) (k+
1, eD )@(M) (z, w, X 6 M)

CR)(Z) J( )(wk+) ?)(k+ xe;*) ( (Z,w,x±,e*)] (9. 1)

The functions T() and (i)LR are SCETIi matrix elements of collinear and soft fields,

respectively, and their precise definitions are given in Eqs. (6.16). The jet functions

J(i)(wk+) appear in the definition of the subleading soft-collinear Lagrangian (x)qq
~"*qq

and their lowest order expressions are given in Eq. (5.25).

In the following we derive a few general properties of the functions @(i) and J(0,8)

following from isospin, charge conjugation, parity and time-reversal. The collinear
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function (') (z,w,x±, E) is defined as the matrix element

(M ([( d)W)'_l pLwn (u2]° )( W).0PL ft(( d)).] (xI) 0) (9.2)

We will prove that TM=,,p is even under - -w and z -4 1 - z. As motivation

consider the first bilinear in Eq. (9.2), which creates a da collinear quark pair. The

second bilinear in Eq. (9.2) must act at some point along the collinear quark lines: it

either takes a d - u (for w > 0) or takes a u - d (for w < 0). Examination of lowest

order graphs contributing to AM shows that these two types of contributions always

appear in pairs, such that the projection of TM onto an isotriplet state is even under

w - -w. This suggests the existence of a symmetry argument, valid to all orders in

perturbation theory.

We will prove that M(08) is even, as a consequence of G-parity. This is defined

as usual by G = Cexp(-i7rI 2) where C is charge conjugation and I2 is the isospin

generator, and is a symmetry of the collinear Lagrangian in the limit mu,d<< AQCD.

Its action on the collinear operators in Eq. (9.2) can be worked out from that of its

components C and I2 (cf. Ref. [17]) and is given by

G (.(d)W)TlPL(Wt1ru))T2 G = (d(d)W)-T,2PR(WteU))-T1X (9.3)

G (((u)W)w$PL(Wtd))w Gt = (u(u)W)-W PR(Wt (d))_w.

Taking into account the G-parity of the states, Eq. (9.2) is equal to

±(MO () [((d) W)-2 PRwt (u) ](0k)[(u(u)W)-.OPR(Wt( ))-w] (X±) 0),(9-4)_J RWI 10) (.4)

where the ± refer to the p0 and 7r° respectively. Next we apply parity in the matrix

element followed by switching our basis vectors n ++ ,. Acting on Eq. (9.4) this gives

(MO (£:)I [(,(d) W)_T2_PL(Wt(U)") 1] (0_) [(.(uW)_wPL(Wt(d)-] (-xl) O0),(9.5)

where the overall sign is now the same for M = p, 7r. Now since (0,8) is a scalar
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function the only allowed perpendicular dot products are (-xl)2 = x1 and -x-e =

x -*. Finally we note that the change in rT1 ,2 from Eqs. (9.2) to (9.5) is equivalent

z -+ 1 - z. Thus the invariance of SCETI under G-parity and regular parity has

allowed us to prove that

!(i) (z, W, x , E*) = (i,) (1 - ,-W, X e*) . (9.6)

Next we prove that J(°'s)(wck+) is odd under w - -w. By reparameterization

invariance type-III [42] only the product wk+ will appear. Consider applying time re-

versal plus the interchange (n + h) to the SCETIi Lagrangian. Since this Lagrangian

does not have coefficients that encode decays to highly virtual offshell states it should

be invariant under this transformation. Acting on Eq. (5.24) this implies that J(0,8)

must be real,

[(0) (wk+)] = J(0,8) (wk+). (9.7)

At tree level this implies that we should drop the ie in the collinear gluon propagator in

matching onto this operator. This was done in arriving at the odd functions j(0,s) cx

1/(wk +) in Eq. (5.25). The imaginary part would give a 6(wk + ) and corresponds

to cases where the SCETI T-product is reproduced by a purely collinear SCETIi T-

product (k+ = 0), or a purely soft SCET11 T-product (w = 0). Thus dropping the iE

also saves us from double counting.

Now consider what functions can be generated by computing loop corrections to

J(0,8) By dimensional analysis -(0,8) must be proportional to 1/(wk +) times a dimen-

sionless function of wk+/IL2. Since at any order in perturbation theory the matching

calculation will involve only massless quarks we can only generate logarithms. There-

fore, we must study functions of the form

1 n(ak + i (9.8)

wk+ 

To demand that only the real part of these functions match onto j(08) we average
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them with their conjugates. It is straightforward to check that only terms odd in

w -* -w survive. Thus, all the terms that can correct the form of j(0,8) at higher

orders in as are odd under w - -w.

Now in Eq. (9.1) the integration over w is from -oco to oo, while z varies from 0 to

1. Consider the change of variable w -* -w and z -+ 1- z. If C(i)R(z) C(i)R(1 - z)

then under this interchange one of the functions in the integrand is odd (J) and the

other two are even (()R and ), so the integral would vanish.

Now if C(')R(z) are kept only to leading order then they are independent of z and

thus unchanged under z -4 1-z. So at this order in the os (Q)/ir expansion of C()R(z)

we find AD(')M - 0. This completes the proof of the assertion about the vanishing of

the long distance contributions for M = 7r, p.

9.2 Helicity Symmetry and Jet functions

In this appendix we discuss the general structure of the jet functions J(0,8)(z, x, k+ )

in Eq. (5.34), which are generated by matching SCETI and SCETII at any order

in a,(lio). In Fig. 6-2a,b this means adding additional collinear gluons which gen-

erate loops by attaching to the collinear lines already present (as well as vacuum

polarization type collinear quark, gluon, and ghost loops). Additional collinear loops

should also be added to Figs. 6-2c,d,e, and the difference at lowest order in A gives

J. Throughout this appendix we continue to drop isosinglet combinations of ...

These will also have additional contributions from topologies where the outgoing

collinear quarks are replaced by outgoing gluons (through By operators).

The leading order collinear Lagrangian has a U(1) helicity spin symmetry for the

quarks, see reference 2 in [16]. It is defined by a generator h, that has the quark spin

projection along the n direction, which is different from usual definition of helicity

as the projection of the spin along its momentum. Unlike QCD, the collinear fields

in SCET only allow quarks and antiquarks that move in the n direction. For hn we
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have

1 /IV 2hn= 41 h= 1, [hi] =[h,]=O, {h Y} = 0. (9.9)

After making a field redefinition [22] to decouple ultrasoft gluons the leading order

collinear quark Lagrangian is

(0) - r 1 0 (°g)= npj fin D,+iJ~i_ D, iL 1 2 n(9.10)

where iDA contains only collinear Alq gluons. £f() is invariant under the trans-

formation n - exp(ihn))n, n -+ ,n exp(-iOhn). This means that any number of

leading order collinear quark interactions preserve the quark helicity hn. The collinear

gluon interactions take un(t) -+ un(t), un()-* un(), vn(t) - vn(t), vn() -+ vn(),

and can also produce or annihilate the quark-antiquark combinations u(t) vn(4) or

un() v, (t) (the arrows refer to the helicity of the antiparticles themselves rather than

their spinors). For this reason we refer to ) as a Ah,, = 0 operator.

The leading order SCETI operators in Eq. (5.17) are also unchanged by the hn-

transformation and therefore does not change collinear quark helicity. In contrast

the operators C(l) do generate or annihilate a collinear quark giving Ahn = ±1/2.

However, at tree level we showed in Section 5.1.3 that the two graphs in Figs. 6-2a,b

match onto an overall Ahn = 0 operator in SCETI1 as given in Eqs. (5.27). Since at

higher orders the £() will not cause a change in the helicity they also match onto these

same operators, so the structure *y, will not occur. At tree level only the structure

7/PL 0 ®PL appeared in Eq. (5.27). To rule out the appearance of PR beyond tree level

we note that the weak operator projects onto left handed collinear fermions, and for

the jet function the conservation of helicity in C() implies a conservation of chirality.

This leaves us with the desired result.

It is perhaps illustrative to see this more explicitly by looking at the spin structure

of the loop graphs. We begin by noting that the spin and color structure in h(,) ... hb)

is unaffected by this second stage of matching. Adding additional collinear attach-
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ments only can affect the spin and color structure generated in putting the collinear

quark fields and light ultrasoft quark fields together.

Consider how additional gluon attachments effect the spin structures that appear

in Figs. 6-2a,b. The leading order collinear quark Lagrangian is ) in Eq. (9.10).

Each attachment of a collinear gluon to a collinear quark lines in the figures generates

a #/2 from the vertex and a i/2 from the quark propagator. These combine to a

projector which can be eliminated by commuting them to the right or left to act on

the collinear quark spinors, via (0$)/4 n = G. Therefore, at most we have additional

pairs of y1 's that appear between the light quark spinors. The aim is to show that just

like the tree level calculation in Eq. (5.41) the resulting operators have spin structure

(dOPLu) (fPLn)

For the contraction of T(0'8) which gives the C topology the spin structure is

[d(d) Al A2 . . .A72k-1 1A2k ( # ,7..72 (a)u'u)J [aid) (O ) ''\1 . . *y 1\ jUn)

=n *' .... A>LUu()] u(d)Al . ] (9.11). YI" S 1i... ? _ P/) I9.11
~ PL coes from (0,8), h y

In the first line (PL) comes from QL,), the and 7y are terms generated by

the £(1) insertions and the /2 is from the extra collinear quark propagator. In the

second line the PL projector was moved next to u() without a change of sign (for

anticommuting y5), and the remaining and A were then moved next to the ft(d) and

canceled. The remaining free L indices in the second line are contracted with each

other in some manner. Fierzing the set of y matrices in Eq. (9.11) by inserting 1 0 1

next to the collinear spinors gives

[f(d) rl ud)] [(d),.,Al .. ,2 ' ... . W2kt ,pu(U)] (9.12)
n n L~s 77 .I _Ly '"I_ I1 '' I f IPLUS ) (9.12)

where

0X rl = 0 X®. k®- %
5 _ X

2 (-/)2 2

-+ -(1 - 7 5)®iji- 0? iu®y?. (9.13)
2 2
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In the second line of Eq. (9.13) we have used the fact that the y5 in the bracket with

soft quark spinors can be eliminated by moving it next to the PL. To eliminate the

~Ty_ Dirac structure we note that between the soft spinors in Eq. (9.12) there are an

odd number of y±'s to the left and right of r/y/, and so at least one set of indices

are contracted between the sets {, A1,... , A2j} and {1,...--, 2k, a}. The identity

{y', y} = 2g T can be used to move these matrices so that they sandwich 7yj, and

this gives the product ey± - 0. After these manipulations only the spin structure

(d/PLu) (nPLGn) remains. A similar argument can be applied to the E-topology

with the same result.

In several places in the above argument we made use of Dirac algebra that is par-

ticular to 4-dimensions (anticommuting y5 and setting ^/-L = -). If the a±'s are

taken in in full dimensional regulation then it is not apriori clear if the manipulations

survive regulation. However, the original helicity symmetry argument shows that as

long as the theory can be regulated in a way that preserves this symmetry this will

indeed be the case.

9.3 Properties of Soft Distribution Functions

In this appendix we derive some useful properties of the soft functions S(08). In

particular we show that these functions are complex. The imaginary parts have

a direct interpretation as non-perturbative contributions to final state rescattering

between the D(*) and final energetic meson as discussed in section 5.1.3.

To be definite we consider the function SO), and suppress the index L. The ma-

nipulations for the remaining soft functions 5(0) and S(8) are identical. The definition

in Eq. (6.5) is

(D°(v')(h(,c)S)7PL(Sth())(dS)k+tPL(Stu)k+ °(v)) = S( ) (9.14)
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where the Wilson lines are defined as

1W = [ j exp ( h nAn,q())], S = [ ~ exp (-g - n As,q)](9.15)
perms perms A

In general S(O) is a dimensionless function of vtv', nv, nv', nkl, nk 2, AQCD, and . Since

(Stq)k+ = 6(k+ -n-P)(Stq) the LHS is invariant under a type-III reparameterization

transformation [42] (n - en, n -+ e-%). Therefore the RHS can only be a function

of w, t = n.v/n.v', z = n.kl/n.k 2, K/u = [n.kl n.k 2 /(n.v n.v'/ 2)]1/2, and AQCD/[U.

Rather than study the matrix element in Eq. (9.14) directly it is useful to instead

consider

(Hi(v') (hv, S)iPL(Sthv)(qS)k+PLtra(Stq)k+ Hj(v))

- ~K AQcD)r~jS(0) (t , VK AQCD) (v' a),j (9.16)

where hv are doublet fields under heavy quark flavor symmetry, and q and Hi=l,2(v))

are isospin doublets of (u, d). The last three variables in Eq. (9.16) will not play a

crucial role so we will suppress this dependence. Taking the complex conjugate of

Eq. (9.16) gives

(Hj(v)[(hvS)PL(Sthv,)(qS)k+PLT (Stq)k+lHi(v')) = [S(°)(t, z)]*(Ta)ji

- S(o)( z)(T )ji(9.17)

The dependence on w and K is unchanged since they are even under the interchange

v v', n.kl n- k2. Next, decompose the functions S() in terms of even and odd

functions under t -+ l/t, z -+ 1/z:

S(0) = () + S(°) (9.18)"E) 0 (9.18)

where SEO) = [S(°)(t, z) ± S(°)(1/t, 1/z)]/2. Now Eq. (9.17) implies that

[S) (t,z)]* = S (t,z), [S() (t,z)]* = -S(O) (t,z) (9.19)
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so S() is real and S(o° ) is imaginary. An identical argument for S(8) implies that it

too is a complex function.

For the above analysis it is important to note that n v = mB/mD is not 1 in the

heavy quark limit where we have new spin and flavor symmetries. These symmetries

arise from taking mB > AQCD and mD > AQCD, not from having mB = D.
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